blob: 454fb2f09978a886eb3c9979f25b2fe911467296 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner986618e2004-02-22 19:47:26 +000031#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerf70c22b2004-06-17 18:19:28 +000050 switch (Ty->getTypeID()) {
Chris Lattner427aeb42004-04-11 19:21:59 +000051 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000077 struct ISel : public FunctionPass, InstVisitor<ISel> {
78 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Chris Lattnerf70e0c22003-12-28 21:23:38 +000093 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178
179 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000180 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 unsigned Reg;
182 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000183 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
184 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000185 };
186 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000187 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000188 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000189 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000190
191 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000192 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000193 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
194 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000195 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000196
Chris Lattnerf01729e2002-11-02 20:54:46 +0000197 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
198 void visitRem(BinaryOperator &B) { visitDivRem(B); }
199 void visitDivRem(BinaryOperator &B);
200
Chris Lattnere2954c82002-11-02 20:04:26 +0000201 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000202 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
203 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
204 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000205
Chris Lattner6d40c192003-01-16 16:43:00 +0000206 // Comparison operators...
207 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000208 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
209 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000210 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000211 void visitSelectInst(SelectInst &SI);
212
Chris Lattnerb2acc512003-10-19 21:09:10 +0000213
Chris Lattner6fc3c522002-11-17 21:11:55 +0000214 // Memory Instructions
215 void visitLoadInst(LoadInst &I);
216 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000217 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000219 void visitMallocInst(MallocInst &I);
220 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000221
Chris Lattnere2954c82002-11-02 20:04:26 +0000222 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000223 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000224 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000225 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000226 void visitVANextInst(VANextInst &I);
227 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000228
229 void visitInstruction(Instruction &I) {
230 std::cerr << "Cannot instruction select: " << I;
231 abort();
232 }
233
Brian Gaeke95780cc2002-12-13 07:56:18 +0000234 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000235 ///
236 void promote32(unsigned targetReg, const ValueRecord &VR);
237
Chris Lattner721d2d42004-03-08 01:18:36 +0000238 /// getAddressingMode - Get the addressing mode to use to address the
239 /// specified value. The returned value should be used with addFullAddress.
240 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
241 unsigned &IndexReg, unsigned &Disp);
242
243
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
245 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
249 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
250
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, unsigned &BaseReg,
256 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
257
Chris Lattner3e130a22003-01-13 00:32:26 +0000258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000262 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000263 User::op_iterator IdxEnd, unsigned TargetReg);
264
Chris Lattner548f61d2003-04-23 17:22:12 +0000265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000267 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000273 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000275 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
Chris Lattner6621ed92004-04-11 21:23:56 +0000279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
Chris Lattner462fa822004-04-11 20:56:28 +0000286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
Chris Lattnercadff442003-10-23 17:21:43 +0000297 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000298 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000301
Chris Lattner58c41fe2003-08-24 19:19:47 +0000302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000304 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000305 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000306 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000312 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000313 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000314 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
Chris Lattner12d96a02004-03-30 21:22:00 +0000318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000324
Chris Lattnerc5291f52002-10-27 21:16:59 +0000325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000328 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000329 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000330 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000331
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000332 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
Chris Lattner3e130a22003-01-13 00:32:26 +0000335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000343 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000344 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have X86 reg info??");
346 const X86RegisterInfo *MRI =
347 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000354 }
355
Chris Lattnerc0812d82002-12-13 06:56:29 +0000356 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000358 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000359 }
360
Chris Lattnercb2fd552004-05-13 07:40:27 +0000361 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000370 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000371
Chris Lattnercb2fd552004-05-13 07:40:27 +0000372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000376 };
377}
378
Chris Lattnercb2fd552004-05-13 07:40:27 +0000379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
395 // If this operand is a constant, emit the code to copy the constant into
396 // the register here...
397 //
398 if (Constant *C = dyn_cast<Constant>(V)) {
399 unsigned Reg = makeAnotherReg(V->getType());
400 copyConstantToRegister(MBB, IPt, C, Reg);
401 return Reg;
402 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
403 unsigned Reg = makeAnotherReg(V->getType());
404 // Move the address of the global into the register
405 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
406 return Reg;
407 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
408 // Do not emit noop casts at all.
409 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
410 return getReg(CI->getOperand(0), MBB, IPt);
411 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
412 // If the alloca address couldn't be folded into the instruction addressing,
413 // emit an explicit LEA as appropriate.
414 unsigned Reg = makeAnotherReg(V->getType());
415 unsigned FI = getFixedSizedAllocaFI(AI);
416 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
417 return Reg;
418 }
419
420 unsigned &Reg = RegMap[V];
421 if (Reg == 0) {
422 Reg = makeAnotherReg(V->getType());
423 RegMap[V] = Reg;
424 }
425
426 return Reg;
427}
428
429/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
430/// that is to be statically allocated with the initial stack frame
431/// adjustment.
432unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
433 // Already computed this?
434 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
435 if (I != AllocaMap.end() && I->first == AI) return I->second;
436
437 const Type *Ty = AI->getAllocatedType();
438 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
439 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
440 TySize *= CUI->getValue(); // Get total allocated size...
441 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
442
443 // Create a new stack object using the frame manager...
444 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
445 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
446 return FrameIdx;
447}
448
449
Chris Lattnerc5291f52002-10-27 21:16:59 +0000450/// copyConstantToRegister - Output the instructions required to put the
451/// specified constant into the specified register.
452///
Chris Lattner8a307e82002-12-16 19:32:50 +0000453void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000454 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000455 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000456 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000457 unsigned Class = 0;
458 switch (CE->getOpcode()) {
459 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000460 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000462 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000463 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000464 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000465 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000466
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000467 case Instruction::Xor: ++Class; // FALL THROUGH
468 case Instruction::Or: ++Class; // FALL THROUGH
469 case Instruction::And: ++Class; // FALL THROUGH
470 case Instruction::Sub: ++Class; // FALL THROUGH
471 case Instruction::Add:
472 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
473 Class, R);
474 return;
475
Chris Lattner462fa822004-04-11 20:56:28 +0000476 case Instruction::Mul:
477 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000478 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000479
Chris Lattnercadff442003-10-23 17:21:43 +0000480 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000481 case Instruction::Rem:
482 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
483 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000484 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000485
Chris Lattner58c41fe2003-08-24 19:19:47 +0000486 case Instruction::SetNE:
487 case Instruction::SetEQ:
488 case Instruction::SetLT:
489 case Instruction::SetGT:
490 case Instruction::SetLE:
491 case Instruction::SetGE:
492 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
493 CE->getOpcode(), R);
494 return;
495
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000496 case Instruction::Shl:
497 case Instruction::Shr:
498 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000499 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
500 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000501
Chris Lattner12d96a02004-03-30 21:22:00 +0000502 case Instruction::Select:
503 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
504 CE->getOperand(2), R);
505 return;
506
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000507 default:
508 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000509 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000510 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000511 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000512
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000513 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000514 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000515
516 if (Class == cLong) {
517 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000518 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000519 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
520 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000521 return;
522 }
523
Chris Lattner94af4142002-12-25 05:13:53 +0000524 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000525
526 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000527 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000528 };
529
Chris Lattner6b993cc2002-12-15 08:02:15 +0000530 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000531 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000532 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000533 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000534 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000535 }
Chris Lattner94af4142002-12-25 05:13:53 +0000536 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000537 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000538 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000539 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000540 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000541 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000542 // Otherwise we need to spill the constant to memory...
543 MachineConstantPool *CP = F->getConstantPool();
544 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000545 const Type *Ty = CFP->getType();
546
547 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000548 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000549 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000550 }
551
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000552 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000553 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000554 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000555 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000556 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000557 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000558 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000559 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000560 }
561}
562
Chris Lattner065faeb2002-12-28 20:24:02 +0000563/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
564/// the stack into virtual registers.
565///
566void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
567 // Emit instructions to load the arguments... On entry to a function on the
568 // X86, the stack frame looks like this:
569 //
570 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000571 // [ESP + 4] -- first argument (leftmost lexically)
572 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000573 // ...
574 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000575 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000576 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000577
578 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000579 bool ArgLive = !I->use_empty();
580 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000581 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000582
Chris Lattner065faeb2002-12-28 20:24:02 +0000583 switch (getClassB(I->getType())) {
584 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(1, ArgOffset);
587 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
588 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000589 break;
590 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000591 if (ArgLive) {
592 FI = MFI->CreateFixedObject(2, ArgOffset);
593 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
594 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000595 break;
596 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000597 if (ArgLive) {
598 FI = MFI->CreateFixedObject(4, ArgOffset);
599 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
600 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000601 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000603 if (ArgLive) {
604 FI = MFI->CreateFixedObject(8, ArgOffset);
605 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
606 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
607 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000608 ArgOffset += 4; // longs require 4 additional bytes
609 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000610 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000611 if (ArgLive) {
612 unsigned Opcode;
613 if (I->getType() == Type::FloatTy) {
614 Opcode = X86::FLD32m;
615 FI = MFI->CreateFixedObject(4, ArgOffset);
616 } else {
617 Opcode = X86::FLD64m;
618 FI = MFI->CreateFixedObject(8, ArgOffset);
619 }
620 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000621 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000622 if (I->getType() == Type::DoubleTy)
623 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000624 break;
625 default:
626 assert(0 && "Unhandled argument type!");
627 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000628 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000629 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000630
631 // If the function takes variable number of arguments, add a frame offset for
632 // the start of the first vararg value... this is used to expand
633 // llvm.va_start.
634 if (Fn.getFunctionType()->isVarArg())
635 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000636}
637
638
Chris Lattner333b2fa2002-12-13 10:09:43 +0000639/// SelectPHINodes - Insert machine code to generate phis. This is tricky
640/// because we have to generate our sources into the source basic blocks, not
641/// the current one.
642///
643void ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000644 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000645 const Function &LF = *F->getFunction(); // The LLVM function...
646 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
647 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000648 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000649
650 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000651 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000652 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000653 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000654
Chris Lattner333b2fa2002-12-13 10:09:43 +0000655 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000656 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000657 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
658 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000659
660 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000661 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
662 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
663 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000664
Chris Lattnera6e73f12003-05-12 14:22:21 +0000665 // PHIValues - Map of blocks to incoming virtual registers. We use this
666 // so that we only initialize one incoming value for a particular block,
667 // even if the block has multiple entries in the PHI node.
668 //
669 std::map<MachineBasicBlock*, unsigned> PHIValues;
670
Chris Lattner333b2fa2002-12-13 10:09:43 +0000671 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
672 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000673 unsigned ValReg;
674 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
675 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000676
Chris Lattnera6e73f12003-05-12 14:22:21 +0000677 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
678 // We already inserted an initialization of the register for this
679 // predecessor. Recycle it.
680 ValReg = EntryIt->second;
681
682 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000683 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000684 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000685 Value *Val = PN->getIncomingValue(i);
686
687 // If this is a constant or GlobalValue, we may have to insert code
688 // into the basic block to compute it into a virtual register.
Chris Lattnercb2fd552004-05-13 07:40:27 +0000689 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
690 isa<GlobalValue>(Val)) {
691 // Simple constants get emitted at the end of the basic block,
692 // before any terminator instructions. We "know" that the code to
693 // move a constant into a register will never clobber any flags.
694 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000695 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000696 // Because we don't want to clobber any values which might be in
697 // physical registers with the computation of this constant (which
698 // might be arbitrarily complex if it is a constant expression),
699 // just insert the computation at the top of the basic block.
700 MachineBasicBlock::iterator PI = PredMBB->begin();
701
702 // Skip over any PHI nodes though!
703 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
704 ++PI;
705
706 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000707 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000708
709 // Remember that we inserted a value for this PHI for this predecessor
710 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
711 }
712
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000713 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000715 if (LongPhiMI) {
716 LongPhiMI->addRegOperand(ValReg+1);
717 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
718 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000719 }
Chris Lattner168aa902004-02-29 07:10:16 +0000720
721 // Now that we emitted all of the incoming values for the PHI node, make
722 // sure to reposition the InsertPoint after the PHI that we just added.
723 // This is needed because we might have inserted a constant into this
724 // block, right after the PHI's which is before the old insert point!
725 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
726 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000727 }
728 }
729}
730
Chris Lattner986618e2004-02-22 19:47:26 +0000731/// RequiresFPRegKill - The floating point stackifier pass cannot insert
732/// compensation code on critical edges. As such, it requires that we kill all
733/// FP registers on the exit from any blocks that either ARE critical edges, or
734/// branch to a block that has incoming critical edges.
735///
736/// Note that this kill instruction will eventually be eliminated when
737/// restrictions in the stackifier are relaxed.
738///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000739static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000740#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000741 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000742 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
743 const BasicBlock *Succ = *SI;
744 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
745 ++PI; // Block have at least one predecessory
746 if (PI != PE) { // If it has exactly one, this isn't crit edge
747 // If this block has more than one predecessor, check all of the
748 // predecessors to see if they have multiple successors. If so, then the
749 // block we are analyzing needs an FPRegKill.
750 for (PI = pred_begin(Succ); PI != PE; ++PI) {
751 const BasicBlock *Pred = *PI;
752 succ_const_iterator SI2 = succ_begin(Pred);
753 ++SI2; // There must be at least one successor of this block.
754 if (SI2 != succ_end(Pred))
755 return true; // Yes, we must insert the kill on this edge.
756 }
757 }
758 }
759 // If we got this far, there is no need to insert the kill instruction.
760 return false;
761#else
762 return true;
763#endif
764}
765
766// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
767// need them. This only occurs due to the floating point stackifier not being
768// aggressive enough to handle arbitrary global stackification.
769//
770// Currently we insert an FP_REG_KILL instruction into each block that uses or
771// defines a floating point virtual register.
772//
773// When the global register allocators (like linear scan) finally update live
774// variable analysis, we can keep floating point values in registers across
775// portions of the CFG that do not involve critical edges. This will be a big
776// win, but we are waiting on the global allocators before we can do this.
777//
778// With a bit of work, the floating point stackifier pass can be enhanced to
779// break critical edges as needed (to make a place to put compensation code),
780// but this will require some infrastructure improvements as well.
781//
782void ISel::InsertFPRegKills() {
783 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000784
785 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000786 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000787 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
788 MachineOperand& MO = I->getOperand(i);
789 if (MO.isRegister() && MO.getReg()) {
790 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000791 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000792 if (RegMap.getRegClass(Reg)->getSize() == 10)
793 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000794 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000795 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000796 // If we haven't found an FP register use or def in this basic block, check
797 // to see if any of our successors has an FP PHI node, which will cause a
798 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000799 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
800 SE = BB->succ_end(); SI != SE; ++SI) {
801 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000802 for (MachineBasicBlock::iterator I = SBB->begin();
803 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
804 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
805 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000806 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000807 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000808 continue;
809 UsesFPReg:
810 // Okay, this block uses an FP register. If the block has successors (ie,
811 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000812 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000813 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000814 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000815 }
816 }
817}
818
819
Chris Lattner9f1b5312004-05-13 15:12:43 +0000820void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
821 unsigned &IndexReg, unsigned &Disp) {
822 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
823 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
824 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
825 BaseReg, Scale, IndexReg, Disp))
826 return;
827 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
828 if (CE->getOpcode() == Instruction::GetElementPtr)
829 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
830 BaseReg, Scale, IndexReg, Disp))
831 return;
832 }
833
834 // If it's not foldable, reset addr mode.
835 BaseReg = getReg(Addr);
836 Scale = 1; IndexReg = 0; Disp = 0;
837}
838
Chris Lattner307ecba2004-03-30 22:39:09 +0000839// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
840// it into the conditional branch or select instruction which is the only user
841// of the cc instruction. This is the case if the conditional branch is the
Chris Lattnera6f9fe62004-06-18 00:29:22 +0000842// only user of the setcc. We also don't handle long arguments below, so we
843// reject them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000844//
Chris Lattner307ecba2004-03-30 22:39:09 +0000845static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000846 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000847 if (SCI->hasOneUse()) {
848 Instruction *User = cast<Instruction>(SCI->use_back());
849 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000850 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
851 SCI->getOpcode() == Instruction::SetEQ ||
852 SCI->getOpcode() == Instruction::SetNE))
Chris Lattner6d40c192003-01-16 16:43:00 +0000853 return SCI;
854 }
855 return 0;
856}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000857
Chris Lattner6d40c192003-01-16 16:43:00 +0000858// Return a fixed numbering for setcc instructions which does not depend on the
859// order of the opcodes.
860//
861static unsigned getSetCCNumber(unsigned Opcode) {
862 switch(Opcode) {
863 default: assert(0 && "Unknown setcc instruction!");
864 case Instruction::SetEQ: return 0;
865 case Instruction::SetNE: return 1;
866 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000867 case Instruction::SetGE: return 3;
868 case Instruction::SetGT: return 4;
869 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000870 }
871}
Chris Lattner06925362002-11-17 21:56:38 +0000872
Chris Lattner6d40c192003-01-16 16:43:00 +0000873// LLVM -> X86 signed X86 unsigned
874// ----- ---------- ------------
875// seteq -> sete sete
876// setne -> setne setne
877// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000878// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000879// setgt -> setg seta
880// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000881// ----
882// sets // Used by comparison with 0 optimization
883// setns
884static const unsigned SetCCOpcodeTab[2][8] = {
885 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
886 0, 0 },
887 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
888 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000889};
890
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000891/// emitUCOMr - In the future when we support processors before the P6, this
892/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
893void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
894 unsigned LHS, unsigned RHS) {
895 if (0) { // for processors prior to the P6
896 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
897 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
898 BuildMI(*MBB, IP, X86::SAHF, 1);
899 } else {
900 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
901 }
902}
903
Chris Lattnerb2acc512003-10-19 21:09:10 +0000904// EmitComparison - This function emits a comparison of the two operands,
905// returning the extended setcc code to use.
906unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
907 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000908 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000909 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000910 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000911 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000912 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000913
914 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000915 if (isa<ConstantPointerNull>(Op1)) {
916 if (OpNum < 2) // seteq/setne -> test
917 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
918 else
919 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
920 return OpNum;
921
922 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000923 if (Class == cByte || Class == cShort || Class == cInt) {
924 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000925
Chris Lattner333864d2003-06-05 19:30:30 +0000926 // Mask off any upper bits of the constant, if there are any...
927 Op1v &= (1ULL << (8 << Class)) - 1;
928
Chris Lattnerb2acc512003-10-19 21:09:10 +0000929 // If this is a comparison against zero, emit more efficient code. We
930 // can't handle unsigned comparisons against zero unless they are == or
931 // !=. These should have been strength reduced already anyway.
932 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
933 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000934 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000935 };
Chris Lattneree352852004-02-29 07:22:16 +0000936 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000937
938 if (OpNum == 2) return 6; // Map jl -> js
939 if (OpNum == 3) return 7; // Map jg -> jns
940 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000941 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000942
943 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000944 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000945 };
946
Chris Lattneree352852004-02-29 07:22:16 +0000947 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000948 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000949 } else {
950 assert(Class == cLong && "Unknown integer class!");
951 unsigned LowCst = CI->getRawValue();
952 unsigned HiCst = CI->getRawValue() >> 32;
953 if (OpNum < 2) { // seteq, setne
954 unsigned LoTmp = Op0r;
955 if (LowCst != 0) {
956 LoTmp = makeAnotherReg(Type::IntTy);
957 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
958 }
959 unsigned HiTmp = Op0r+1;
960 if (HiCst != 0) {
961 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000962 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000963 }
964 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
965 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
966 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000967 } else {
968 // Emit a sequence of code which compares the high and low parts once
969 // each, then uses a conditional move to handle the overflow case. For
970 // example, a setlt for long would generate code like this:
971 //
Chris Lattner9984fd02004-05-09 23:16:33 +0000972 // AL = lo(op1) < lo(op2) // Always unsigned comparison
973 // BL = hi(op1) < hi(op2) // Signedness depends on operands
974 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +0000975 //
976
977 // FIXME: This would be much better if we had hierarchical register
978 // classes! Until then, hardcode registers so that we can deal with
979 // their aliases (because we don't have conditional byte moves).
980 //
981 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
982 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
983 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
984 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
985 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
986 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
987 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
988 .addReg(X86::AX);
989 // NOTE: visitSetCondInst knows that the value is dumped into the BL
990 // register at this point for long values...
991 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000992 }
Chris Lattner333864d2003-06-05 19:30:30 +0000993 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000994 }
Chris Lattner333864d2003-06-05 19:30:30 +0000995
Chris Lattner9f08a922004-02-03 18:54:04 +0000996 // Special case handling of comparison against +/- 0.0
997 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
998 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +0000999 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001000 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001001 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001002 return OpNum;
1003 }
1004
Chris Lattner58c41fe2003-08-24 19:19:47 +00001005 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001006 switch (Class) {
1007 default: assert(0 && "Unknown type class!");
1008 // Emit: cmp <var1>, <var2> (do the comparison). We can
1009 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1010 // 32-bit.
1011 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001012 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001013 break;
1014 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001015 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001016 break;
1017 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001018 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001019 break;
1020 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001021 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001022 break;
1023
1024 case cLong:
1025 if (OpNum < 2) { // seteq, setne
1026 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1027 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1028 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001029 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1030 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1031 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001032 break; // Allow the sete or setne to be generated from flags set by OR
1033 } else {
1034 // Emit a sequence of code which compares the high and low parts once
1035 // each, then uses a conditional move to handle the overflow case. For
1036 // example, a setlt for long would generate code like this:
1037 //
1038 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1039 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001040 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001041 //
1042
Chris Lattner6d40c192003-01-16 16:43:00 +00001043 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001044 // classes! Until then, hardcode registers so that we can deal with their
1045 // aliases (because we don't have conditional byte moves).
1046 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001047 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001048 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001049 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001050 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1051 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1052 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001053 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001054 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001055 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1056 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001057 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001058 }
1059 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001060 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001061}
Chris Lattner3e130a22003-01-13 00:32:26 +00001062
Chris Lattner6d40c192003-01-16 16:43:00 +00001063/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1064/// register, then move it to wherever the result should be.
1065///
1066void ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001067 if (canFoldSetCCIntoBranchOrSelect(&I))
1068 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001069
Chris Lattner6d40c192003-01-16 16:43:00 +00001070 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001071 MachineBasicBlock::iterator MII = BB->end();
1072 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1073 DestReg);
1074}
Chris Lattner6d40c192003-01-16 16:43:00 +00001075
Chris Lattner58c41fe2003-08-24 19:19:47 +00001076/// emitSetCCOperation - Common code shared between visitSetCondInst and
1077/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001078///
Chris Lattner58c41fe2003-08-24 19:19:47 +00001079void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001080 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +00001081 Value *Op0, Value *Op1, unsigned Opcode,
1082 unsigned TargetReg) {
1083 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001084 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001085
Chris Lattnerb2acc512003-10-19 21:09:10 +00001086 const Type *CompTy = Op0->getType();
1087 unsigned CompClass = getClassB(CompTy);
1088 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1089
1090 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001091 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001092 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001093 } else {
1094 // Handle long comparisons by copying the value which is already in BL into
1095 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001096 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001097 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001098}
Chris Lattner51b49a92002-11-02 19:45:49 +00001099
Chris Lattner12d96a02004-03-30 21:22:00 +00001100void ISel::visitSelectInst(SelectInst &SI) {
1101 unsigned DestReg = getReg(SI);
1102 MachineBasicBlock::iterator MII = BB->end();
1103 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1104 SI.getFalseValue(), DestReg);
1105}
1106
1107/// emitSelect - Common code shared between visitSelectInst and the constant
1108/// expression support.
1109void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1110 MachineBasicBlock::iterator IP,
1111 Value *Cond, Value *TrueVal, Value *FalseVal,
1112 unsigned DestReg) {
1113 unsigned SelectClass = getClassB(TrueVal->getType());
1114
1115 // We don't support 8-bit conditional moves. If we have incoming constants,
1116 // transform them into 16-bit constants to avoid having a run-time conversion.
1117 if (SelectClass == cByte) {
1118 if (Constant *T = dyn_cast<Constant>(TrueVal))
1119 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1120 if (Constant *F = dyn_cast<Constant>(FalseVal))
1121 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1122 }
1123
Chris Lattner82c5a992004-04-13 21:56:09 +00001124 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1125 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1126 if (TrueReg == FalseReg) {
1127 static const unsigned Opcode[] = {
1128 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1129 };
1130 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1131 if (SelectClass == cLong)
1132 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1133 return;
1134 }
1135
Chris Lattner307ecba2004-03-30 22:39:09 +00001136 unsigned Opcode;
1137 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1138 // We successfully folded the setcc into the select instruction.
1139
1140 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1141 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1142 IP);
1143
1144 const Type *CompTy = SCI->getOperand(0)->getType();
1145 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1146
1147 // LLVM -> X86 signed X86 unsigned
1148 // ----- ---------- ------------
1149 // seteq -> cmovNE cmovNE
1150 // setne -> cmovE cmovE
1151 // setlt -> cmovGE cmovAE
1152 // setge -> cmovL cmovB
1153 // setgt -> cmovLE cmovBE
1154 // setle -> cmovG cmovA
1155 // ----
1156 // cmovNS // Used by comparison with 0 optimization
1157 // cmovS
1158
1159 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001160 default: assert(0 && "Unknown value class!");
1161 case cFP: {
1162 // Annoyingly, we don't have a full set of floating point conditional
1163 // moves. :(
1164 static const unsigned OpcodeTab[2][8] = {
1165 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1166 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1167 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1168 };
1169 Opcode = OpcodeTab[isSigned][OpNum];
1170
1171 // If opcode == 0, we hit a case that we don't support. Output a setcc
1172 // and compare the result against zero.
1173 if (Opcode == 0) {
1174 unsigned CompClass = getClassB(CompTy);
1175 unsigned CondReg;
1176 if (CompClass != cLong || OpNum < 2) {
1177 CondReg = makeAnotherReg(Type::BoolTy);
1178 // Handle normal comparisons with a setcc instruction...
1179 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1180 } else {
1181 // Long comparisons end up in the BL register.
1182 CondReg = X86::BL;
1183 }
1184
Chris Lattner68626c22004-03-31 22:22:36 +00001185 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001186 Opcode = X86::FCMOVE;
1187 }
1188 break;
1189 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001190 case cByte:
1191 case cShort: {
1192 static const unsigned OpcodeTab[2][8] = {
1193 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1194 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1195 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1196 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1197 };
1198 Opcode = OpcodeTab[isSigned][OpNum];
1199 break;
1200 }
1201 case cInt:
1202 case cLong: {
1203 static const unsigned OpcodeTab[2][8] = {
1204 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1205 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1206 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1207 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1208 };
1209 Opcode = OpcodeTab[isSigned][OpNum];
1210 break;
1211 }
1212 }
1213 } else {
1214 // Get the value being branched on, and use it to set the condition codes.
1215 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001216 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001217 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001218 default: assert(0 && "Unknown value class!");
1219 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001220 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001221 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001222 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001223 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001224 }
1225 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001226
Chris Lattner12d96a02004-03-30 21:22:00 +00001227 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001228
Chris Lattner12d96a02004-03-30 21:22:00 +00001229
1230 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1231 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1232 // cmove, then truncate the result.
1233 if (SelectClass == cByte) {
1234 DestReg = makeAnotherReg(Type::ShortTy);
1235 if (getClassB(TrueVal->getType()) == cByte) {
1236 // Promote the true value, by storing it into AL, and reading from AX.
1237 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1238 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1239 TrueReg = makeAnotherReg(Type::ShortTy);
1240 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1241 }
1242 if (getClassB(FalseVal->getType()) == cByte) {
1243 // Promote the true value, by storing it into CL, and reading from CX.
1244 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1245 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1246 FalseReg = makeAnotherReg(Type::ShortTy);
1247 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1248 }
1249 }
1250
1251 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1252
1253 switch (SelectClass) {
1254 case cByte:
1255 // We did the computation with 16-bit registers. Truncate back to our
1256 // result by copying into AX then copying out AL.
1257 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1258 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1259 break;
1260 case cLong:
1261 // Move the upper half of the value as well.
1262 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1263 break;
1264 }
1265}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001266
1267
1268
Brian Gaekec2505982002-11-30 11:57:28 +00001269/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1270/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001271///
Chris Lattner3e130a22003-01-13 00:32:26 +00001272void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001273 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001274
Chris Lattner29bf0622004-04-06 01:21:00 +00001275 Value *Val = VR.Val;
1276 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001277 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001278 if (Constant *C = dyn_cast<Constant>(Val)) {
1279 Val = ConstantExpr::getCast(C, Type::IntTy);
1280 Ty = Type::IntTy;
1281 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001282
Chris Lattner502e36c2004-04-06 01:25:33 +00001283 // If this is a simple constant, just emit a MOVri directly to avoid the
1284 // copy.
1285 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1286 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001287 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001288 return;
1289 }
1290 }
1291
Chris Lattner29bf0622004-04-06 01:21:00 +00001292 // Make sure we have the register number for this value...
1293 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1294
1295 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001296 case cByte:
1297 // Extend value into target register (8->32)
1298 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001299 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001300 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001301 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001302 break;
1303 case cShort:
1304 // Extend value into target register (16->32)
1305 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001306 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001307 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001308 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001309 break;
1310 case cInt:
1311 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001312 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001313 break;
1314 default:
1315 assert(0 && "Unpromotable operand class in promote32");
1316 }
Brian Gaekec2505982002-11-30 11:57:28 +00001317}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001318
Chris Lattner72614082002-10-25 22:55:53 +00001319/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1320/// we have the following possibilities:
1321///
1322/// ret void: No return value, simply emit a 'ret' instruction
1323/// ret sbyte, ubyte : Extend value into EAX and return
1324/// ret short, ushort: Extend value into EAX and return
1325/// ret int, uint : Move value into EAX and return
1326/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001327/// ret long, ulong : Move value into EAX/EDX and return
1328/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001329///
Chris Lattner3e130a22003-01-13 00:32:26 +00001330void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001331 if (I.getNumOperands() == 0) {
1332 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1333 return;
1334 }
1335
1336 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001337 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001338 case cByte: // integral return values: extend or move into EAX and return
1339 case cShort:
1340 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001341 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001342 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001343 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001344 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001345 case cFP: { // Floats & Doubles: Return in ST(0)
1346 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001347 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001348 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001349 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001350 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001351 }
1352 case cLong: {
1353 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001354 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1355 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001356 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001357 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1358 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001359 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001360 }
Chris Lattner94af4142002-12-25 05:13:53 +00001361 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001362 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001363 }
Chris Lattner43189d12002-11-17 20:07:45 +00001364 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001365 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001366}
1367
Chris Lattner55f6fab2003-01-16 18:07:23 +00001368// getBlockAfter - Return the basic block which occurs lexically after the
1369// specified one.
1370static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1371 Function::iterator I = BB; ++I; // Get iterator to next block
1372 return I != BB->getParent()->end() ? &*I : 0;
1373}
1374
Chris Lattner51b49a92002-11-02 19:45:49 +00001375/// visitBranchInst - Handle conditional and unconditional branches here. Note
1376/// that since code layout is frozen at this point, that if we are trying to
1377/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001378/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001379///
Chris Lattner94af4142002-12-25 05:13:53 +00001380void ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001381 // Update machine-CFG edges
1382 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1383 if (BI.isConditional())
1384 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1385
Chris Lattner55f6fab2003-01-16 18:07:23 +00001386 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1387
1388 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001389 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001390 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001391 return;
1392 }
1393
1394 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001395 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001396 if (SCI == 0) {
1397 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1398 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001399 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001400 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001401 if (BI.getSuccessor(1) == NextBB) {
1402 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001403 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001404 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001405 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001406
1407 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001408 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001409 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001410 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001411 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001412
1413 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001414 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001415 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001416
1417 const Type *CompTy = SCI->getOperand(0)->getType();
1418 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001419
Chris Lattnerb2acc512003-10-19 21:09:10 +00001420
Chris Lattner6d40c192003-01-16 16:43:00 +00001421 // LLVM -> X86 signed X86 unsigned
1422 // ----- ---------- ------------
1423 // seteq -> je je
1424 // setne -> jne jne
1425 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001426 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001427 // setgt -> jg ja
1428 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001429 // ----
1430 // js // Used by comparison with 0 optimization
1431 // jns
1432
1433 static const unsigned OpcodeTab[2][8] = {
1434 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1435 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1436 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001437 };
1438
Chris Lattner55f6fab2003-01-16 18:07:23 +00001439 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001440 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1441 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001442 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001443 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001444 } else {
1445 // Change to the inverse condition...
1446 if (BI.getSuccessor(1) != NextBB) {
1447 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001448 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1449 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001450 }
1451 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001452}
1453
Chris Lattner3e130a22003-01-13 00:32:26 +00001454
1455/// doCall - This emits an abstract call instruction, setting up the arguments
1456/// and the return value as appropriate. For the actual function call itself,
1457/// it inserts the specified CallMI instruction into the stream.
1458///
1459void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001460 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001461
Chris Lattner065faeb2002-12-28 20:24:02 +00001462 // Count how many bytes are to be pushed on the stack...
1463 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001464
Chris Lattner3e130a22003-01-13 00:32:26 +00001465 if (!Args.empty()) {
1466 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1467 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001468 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001469 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001470 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001471 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001472 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001473 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1474 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001475 default: assert(0 && "Unknown class!");
1476 }
1477
1478 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001479 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001480
1481 // Arguments go on the stack in reverse order, as specified by the ABI.
1482 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001483 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001484 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001485 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001486 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001487 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1488 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1489 .addImm(Args[i].Val == ConstantBool::True);
1490 break;
1491 }
1492 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001493 case cShort:
1494 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1495 // Zero/Sign extend constant, then stuff into memory.
1496 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1497 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1498 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1499 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1500 } else {
1501 // Promote arg to 32 bits wide into a temporary register...
1502 ArgReg = makeAnotherReg(Type::UIntTy);
1503 promote32(ArgReg, Args[i]);
1504 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1505 X86::ESP, ArgOffset).addReg(ArgReg);
1506 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001507 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001508 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001509 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1510 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1511 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1512 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001513 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1514 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1515 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001516 } else {
1517 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1518 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1519 X86::ESP, ArgOffset).addReg(ArgReg);
1520 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001521 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001522 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001523 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1524 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1525 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1526 X86::ESP, ArgOffset).addImm(Val & ~0U);
1527 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1528 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1529 } else {
1530 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1531 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1532 X86::ESP, ArgOffset).addReg(ArgReg);
1533 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1534 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1535 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001536 ArgOffset += 4; // 8 byte entry, not 4.
1537 break;
1538
Chris Lattner065faeb2002-12-28 20:24:02 +00001539 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001540 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001541 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001542 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001543 X86::ESP, ArgOffset).addReg(ArgReg);
1544 } else {
1545 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001546 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001547 X86::ESP, ArgOffset).addReg(ArgReg);
1548 ArgOffset += 4; // 8 byte entry, not 4.
1549 }
1550 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001551
Chris Lattner3e130a22003-01-13 00:32:26 +00001552 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001553 }
1554 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001555 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001556 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001557 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001558 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001559
Chris Lattner3e130a22003-01-13 00:32:26 +00001560 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001561
Chris Lattneree352852004-02-29 07:22:16 +00001562 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001563
1564 // If there is a return value, scavenge the result from the location the call
1565 // leaves it in...
1566 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001567 if (Ret.Ty != Type::VoidTy) {
1568 unsigned DestClass = getClassB(Ret.Ty);
1569 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001570 case cByte:
1571 case cShort:
1572 case cInt: {
1573 // Integral results are in %eax, or the appropriate portion
1574 // thereof.
1575 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001576 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001577 };
1578 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001579 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001580 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001581 }
Chris Lattner94af4142002-12-25 05:13:53 +00001582 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001583 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001584 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001586 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1587 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001588 break;
1589 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001590 }
Chris Lattnera3243642002-12-04 23:45:28 +00001591 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001592}
Chris Lattner2df035b2002-11-02 19:27:56 +00001593
Chris Lattner3e130a22003-01-13 00:32:26 +00001594
1595/// visitCallInst - Push args on stack and do a procedure call instruction.
1596void ISel::visitCallInst(CallInst &CI) {
1597 MachineInstr *TheCall;
1598 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001599 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001600 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001601 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1602 return;
1603 }
1604
Chris Lattner3e130a22003-01-13 00:32:26 +00001605 // Emit a CALL instruction with PC-relative displacement.
1606 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1607 } else { // Emit an indirect call...
1608 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001609 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001610 }
1611
1612 std::vector<ValueRecord> Args;
1613 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001614 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001615
1616 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1617 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001618}
Chris Lattner3e130a22003-01-13 00:32:26 +00001619
Chris Lattner44827152003-12-28 09:47:19 +00001620/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1621/// function, lowering any calls to unknown intrinsic functions into the
1622/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001623///
Chris Lattner44827152003-12-28 09:47:19 +00001624void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1625 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1626 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1627 if (CallInst *CI = dyn_cast<CallInst>(I++))
1628 if (Function *F = CI->getCalledFunction())
1629 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001630 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001631 case Intrinsic::vastart:
1632 case Intrinsic::vacopy:
1633 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001634 case Intrinsic::returnaddress:
1635 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001636 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001637 case Intrinsic::memset:
Chris Lattnerdc572442004-06-15 21:36:44 +00001638 case Intrinsic::isunordered:
John Criswell4ffff9e2004-04-08 20:31:47 +00001639 case Intrinsic::readport:
1640 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001641 // We directly implement these intrinsics
1642 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001643 case Intrinsic::readio: {
1644 // On X86, memory operations are in-order. Lower this intrinsic
1645 // into a volatile load.
1646 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001647 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1648 CI->replaceAllUsesWith(LI);
1649 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001650 break;
1651 }
1652 case Intrinsic::writeio: {
1653 // On X86, memory operations are in-order. Lower this intrinsic
1654 // into a volatile store.
1655 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001656 StoreInst *LI = new StoreInst(CI->getOperand(1),
1657 CI->getOperand(2), true, CI);
1658 CI->replaceAllUsesWith(LI);
1659 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001660 break;
1661 }
Chris Lattner44827152003-12-28 09:47:19 +00001662 default:
1663 // All other intrinsic calls we must lower.
1664 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001665 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001666 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001667 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001668 } else {
1669 I = BB->begin();
1670 }
1671 }
Chris Lattner44827152003-12-28 09:47:19 +00001672}
1673
Brian Gaeked0fde302003-11-11 22:41:34 +00001674void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001675 unsigned TmpReg1, TmpReg2;
1676 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001677 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001678 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001679 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001680 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001681 return;
1682
Chris Lattner5634b9f2004-03-13 00:24:52 +00001683 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001684 TmpReg1 = getReg(CI);
1685 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001686 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001687 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001688 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001689
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001690 case Intrinsic::returnaddress:
1691 case Intrinsic::frameaddress:
1692 TmpReg1 = getReg(CI);
1693 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1694 if (ID == Intrinsic::returnaddress) {
1695 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001696 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001697 ReturnAddressIndex);
1698 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001699 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001700 ReturnAddressIndex, -4);
1701 }
1702 } else {
1703 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001704 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001705 }
1706 return;
1707
Chris Lattnerdc572442004-06-15 21:36:44 +00001708 case Intrinsic::isunordered:
1709 TmpReg1 = getReg(CI.getOperand(1));
1710 TmpReg2 = getReg(CI.getOperand(2));
1711 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1712 TmpReg2 = getReg(CI);
1713 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1714 return;
1715
Chris Lattner915e5e52004-02-12 17:53:22 +00001716 case Intrinsic::memcpy: {
1717 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1718 unsigned Align = 1;
1719 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1720 Align = AlignC->getRawValue();
1721 if (Align == 0) Align = 1;
1722 }
1723
1724 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001725 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001726 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001727 switch (Align & 3) {
1728 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001729 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1730 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1731 } else {
1732 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001733 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001734 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001735 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001736 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001737 break;
1738 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001739 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1740 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1741 } else {
1742 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001743 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001744 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001745 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001746 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001747 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001748 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001749 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001750 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001751 break;
1752 }
1753
1754 // No matter what the alignment is, we put the source in ESI, the
1755 // destination in EDI, and the count in ECX.
1756 TmpReg1 = getReg(CI.getOperand(1));
1757 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001758 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1759 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1760 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001761 BuildMI(BB, Opcode, 0);
1762 return;
1763 }
1764 case Intrinsic::memset: {
1765 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1766 unsigned Align = 1;
1767 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1768 Align = AlignC->getRawValue();
1769 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001770 }
1771
Chris Lattner2a0f2242004-02-14 04:46:05 +00001772 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001773 unsigned CountReg;
1774 unsigned Opcode;
1775 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1776 unsigned Val = ValC->getRawValue() & 255;
1777
1778 // If the value is a constant, then we can potentially use larger copies.
1779 switch (Align & 3) {
1780 case 2: // WORD aligned
1781 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001782 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001783 } else {
1784 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001785 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001786 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001787 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001788 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001789 Opcode = X86::REP_STOSW;
1790 break;
1791 case 0: // DWORD aligned
1792 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001793 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001794 } else {
1795 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001796 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001797 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001798 }
1799 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001800 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001801 Opcode = X86::REP_STOSD;
1802 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001803 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001804 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001805 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001806 Opcode = X86::REP_STOSB;
1807 break;
1808 }
1809 } else {
1810 // If it's not a constant value we are storing, just fall back. We could
1811 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1812 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001813 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001814 CountReg = getReg(CI.getOperand(3));
1815 Opcode = X86::REP_STOSB;
1816 }
1817
1818 // No matter what the alignment is, we put the source in ESI, the
1819 // destination in EDI, and the count in ECX.
1820 TmpReg1 = getReg(CI.getOperand(1));
1821 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001822 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1823 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001824 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001825 return;
1826 }
1827
Chris Lattner87e18de2004-04-13 17:20:37 +00001828 case Intrinsic::readport: {
1829 // First, determine that the size of the operand falls within the acceptable
1830 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001831 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001832 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001833 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001834 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001835 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001836
John Criswell4ffff9e2004-04-08 20:31:47 +00001837 // Now, move the I/O port address into the DX register and use the IN
1838 // instruction to get the input data.
1839 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001840 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1841 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001842
Chris Lattner87e18de2004-04-13 17:20:37 +00001843 // If the port is a single-byte constant, use the immediate form.
1844 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1845 if ((C->getRawValue() & 255) == C->getRawValue()) {
1846 switch (Class) {
1847 case cByte:
1848 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1849 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1850 return;
1851 case cShort:
1852 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1853 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1854 return;
1855 case cInt:
1856 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1857 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1858 return;
1859 }
1860 }
1861
1862 unsigned Reg = getReg(CI.getOperand(1));
1863 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1864 switch (Class) {
1865 case cByte:
1866 BuildMI(BB, X86::IN8rr, 0);
1867 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1868 break;
1869 case cShort:
1870 BuildMI(BB, X86::IN16rr, 0);
1871 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1872 break;
1873 case cInt:
1874 BuildMI(BB, X86::IN32rr, 0);
1875 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1876 break;
1877 default:
1878 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001879 exit (1);
1880 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001881 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001882 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001883
Chris Lattner87e18de2004-04-13 17:20:37 +00001884 case Intrinsic::writeport: {
1885 // First, determine that the size of the operand falls within the
1886 // acceptable range for this architecture.
1887 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1888 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1889 exit(1);
1890 }
1891
1892 unsigned Class = getClassB(CI.getOperand(1)->getType());
1893 unsigned ValReg = getReg(CI.getOperand(1));
1894 switch (Class) {
1895 case cByte:
1896 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1897 break;
1898 case cShort:
1899 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1900 break;
1901 case cInt:
1902 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1903 break;
1904 default:
1905 std::cerr << "llvm.writeport: invalid data type for X86 target";
1906 exit(1);
1907 }
1908
1909
1910 // If the port is a single-byte constant, use the immediate form.
1911 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1912 if ((C->getRawValue() & 255) == C->getRawValue()) {
1913 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1914 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1915 return;
1916 }
1917
1918 // Otherwise, move the I/O port address into the DX register and the value
1919 // to write into the AL/AX/EAX register.
1920 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1921 unsigned Reg = getReg(CI.getOperand(2));
1922 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1923 BuildMI(BB, Opc[Class], 0);
1924 return;
1925 }
1926
Chris Lattner44827152003-12-28 09:47:19 +00001927 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001928 }
1929}
1930
Chris Lattner7dee5da2004-03-08 01:58:35 +00001931static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1932 if (LI.getParent() != User.getParent())
1933 return false;
1934 BasicBlock::iterator It = &LI;
1935 // Check all of the instructions between the load and the user. We should
1936 // really use alias analysis here, but for now we just do something simple.
1937 for (++It; It != BasicBlock::iterator(&User); ++It) {
1938 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001939 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001940 case Instruction::Store:
1941 case Instruction::Call:
1942 case Instruction::Invoke:
1943 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001944 case Instruction::Load:
1945 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1946 return false;
1947 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001948 }
1949 }
1950 return true;
1951}
1952
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001953/// visitSimpleBinary - Implement simple binary operators for integral types...
1954/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1955/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001956///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001957void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1958 unsigned DestReg = getReg(B);
1959 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001960 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001961 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00001962
Chris Lattner7dee5da2004-03-08 01:58:35 +00001963 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001964 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattnerccd97962004-06-17 22:15:25 +00001965 Op0->hasOneUse() &&
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001966 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00001967 if (!B.swapOperands())
1968 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1969
Chris Lattnerccd97962004-06-17 22:15:25 +00001970 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00001971 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1972
Chris Lattner95157f72004-04-11 22:05:45 +00001973 unsigned Opcode;
1974 if (Class != cFP) {
1975 static const unsigned OpcodeTab[][3] = {
1976 // Arithmetic operators
1977 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1978 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1979
1980 // Bitwise operators
1981 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1982 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1983 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1984 };
1985 Opcode = OpcodeTab[OperatorClass][Class];
1986 } else {
1987 static const unsigned OpcodeTab[][2] = {
1988 { X86::FADD32m, X86::FADD64m }, // ADD
1989 { X86::FSUB32m, X86::FSUB64m }, // SUB
1990 };
1991 const Type *Ty = Op0->getType();
1992 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1993 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
1994 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00001995
Chris Lattner7dee5da2004-03-08 01:58:35 +00001996 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00001997 if (AllocaInst *AI =
1998 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
1999 unsigned FI = getFixedSizedAllocaFI(AI);
2000 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2001
2002 } else {
2003 unsigned BaseReg, Scale, IndexReg, Disp;
2004 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
2005 Scale, IndexReg, Disp);
2006
2007 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r),
2008 BaseReg, Scale, IndexReg, Disp);
2009 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002010 return;
2011 }
2012
Chris Lattner95157f72004-04-11 22:05:45 +00002013 // If this is a floating point subtract, check to see if we can fold the first
2014 // operand in.
2015 if (Class == cFP && OperatorClass == 1 &&
2016 isa<LoadInst>(Op0) &&
2017 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2018 const Type *Ty = Op0->getType();
2019 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2020 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2021
Chris Lattner95157f72004-04-11 22:05:45 +00002022 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002023 if (AllocaInst *AI =
2024 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2025 unsigned FI = getFixedSizedAllocaFI(AI);
2026 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2027 } else {
2028 unsigned BaseReg, Scale, IndexReg, Disp;
2029 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
2030 Scale, IndexReg, Disp);
2031
2032 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r),
2033 BaseReg, Scale, IndexReg, Disp);
2034 }
Chris Lattner95157f72004-04-11 22:05:45 +00002035 return;
2036 }
2037
Chris Lattner721d2d42004-03-08 01:18:36 +00002038 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002039}
Chris Lattner3e130a22003-01-13 00:32:26 +00002040
Chris Lattner6621ed92004-04-11 21:23:56 +00002041
2042/// emitBinaryFPOperation - This method handles emission of floating point
2043/// Add (0), Sub (1), Mul (2), and Div (3) operations.
2044void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2045 MachineBasicBlock::iterator IP,
2046 Value *Op0, Value *Op1,
2047 unsigned OperatorClass, unsigned DestReg) {
2048
2049 // Special case: op Reg, <const fp>
2050 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2051 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2052 // Create a constant pool entry for this constant.
2053 MachineConstantPool *CP = F->getConstantPool();
2054 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2055 const Type *Ty = Op1->getType();
2056
2057 static const unsigned OpcodeTab[][4] = {
2058 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2059 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2060 };
2061
2062 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2063 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2064 unsigned Op0r = getReg(Op0, BB, IP);
2065 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2066 DestReg).addReg(Op0r), CPI);
2067 return;
2068 }
2069
Chris Lattner13c07fe2004-04-12 00:12:04 +00002070 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002071 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2072 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2073 // -0.0 - X === -X
2074 unsigned op1Reg = getReg(Op1, BB, IP);
2075 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2076 return;
2077 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002078 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002079
2080 // Create a constant pool entry for this constant.
2081 MachineConstantPool *CP = F->getConstantPool();
2082 unsigned CPI = CP->getConstantPoolIndex(CFP);
2083 const Type *Ty = CFP->getType();
2084
2085 static const unsigned OpcodeTab[][4] = {
2086 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2087 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2088 };
2089
2090 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2091 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2092 unsigned Op1r = getReg(Op1, BB, IP);
2093 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2094 DestReg).addReg(Op1r), CPI);
2095 return;
2096 }
2097
2098 // General case.
2099 static const unsigned OpcodeTab[4] = {
2100 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2101 };
2102
2103 unsigned Opcode = OpcodeTab[OperatorClass];
2104 unsigned Op0r = getReg(Op0, BB, IP);
2105 unsigned Op1r = getReg(Op1, BB, IP);
2106 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2107}
2108
Chris Lattnerb2acc512003-10-19 21:09:10 +00002109/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2110/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2111/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002112///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002113/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2114/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002115///
2116void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002117 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002118 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002119 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002120 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002121
Chris Lattner6621ed92004-04-11 21:23:56 +00002122 if (Class == cFP) {
2123 assert(OperatorClass < 2 && "No logical ops for FP!");
2124 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2125 return;
2126 }
2127
Chris Lattner48b0c972004-04-11 20:26:20 +00002128 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
Chris Lattner667ea022004-06-18 00:50:37 +00002129 if (OperatorClass == 1) {
Chris Lattner48b0c972004-04-11 20:26:20 +00002130 static unsigned const NEGTab[] = {
2131 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2132 };
Chris Lattner667ea022004-06-18 00:50:37 +00002133
2134 // sub 0, X -> neg X
2135 if (CI->isNullValue()) {
2136 unsigned op1Reg = getReg(Op1, MBB, IP);
2137 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
Chris Lattner48b0c972004-04-11 20:26:20 +00002138
Chris Lattner667ea022004-06-18 00:50:37 +00002139 if (Class == cLong) {
2140 // We just emitted: Dl = neg Sl
2141 // Now emit : T = addc Sh, 0
2142 // : Dh = neg T
2143 unsigned T = makeAnotherReg(Type::IntTy);
2144 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2145 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2146 }
2147 return;
2148 } else if (Op1->hasOneUse() && Class != cLong) {
2149 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2150 // than copying C into a temporary register, because of register
2151 // pressure (tmp and destreg can share a register.
2152 static unsigned const ADDRITab[] = {
2153 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2154 };
2155 unsigned op1Reg = getReg(Op1, MBB, IP);
2156 unsigned Tmp = makeAnotherReg(Op0->getType());
2157 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
2158 BuildMI(*MBB, IP, ADDRITab[Class], 2, DestReg).addReg(Tmp).addImm(CI->getRawValue());
2159 return;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002160 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002161 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002162
Chris Lattner48b0c972004-04-11 20:26:20 +00002163 // Special case: op Reg, <const int>
2164 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002165 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002166
Chris Lattner721d2d42004-03-08 01:18:36 +00002167 // xor X, -1 -> not X
2168 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002169 static unsigned const NOTTab[] = {
2170 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2171 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002172 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002173 if (Class == cLong) // Invert the top part too
2174 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002175 return;
2176 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002177
Chris Lattner721d2d42004-03-08 01:18:36 +00002178 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002179 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2180 // Note that we can't use dec for 64-bit decrements, because it does not
2181 // set the carry flag!
2182 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002183 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2184 return;
2185 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002186
Chris Lattner721d2d42004-03-08 01:18:36 +00002187 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002188 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2189 // Note that we can't use inc for 64-bit increments, because it does not
2190 // set the carry flag!
2191 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002192 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002193 return;
2194 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002195
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002196 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002197 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002198 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2199 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002200
Chris Lattner721d2d42004-03-08 01:18:36 +00002201 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002202 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2203 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2204 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002205 };
2206
Chris Lattner721d2d42004-03-08 01:18:36 +00002207 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002208 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002209
Chris Lattner33f7fa32004-04-06 03:15:53 +00002210 if (Class != cLong) {
2211 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2212 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002213 }
2214
2215 // If this is a long value and the high or low bits have a special
2216 // property, emit some special cases.
2217 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2218
2219 // If the constant is zero in the low 32-bits, just copy the low part
2220 // across and apply the normal 32-bit operation to the high parts. There
2221 // will be no carry or borrow into the top.
2222 if (Op1l == 0) {
2223 if (OperatorClass != 2) // All but and...
2224 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2225 else
2226 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2227 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2228 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002229 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002230 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002231
2232 // If this is a logical operation and the top 32-bits are zero, just
2233 // operate on the lower 32.
2234 if (Op1h == 0 && OperatorClass > 1) {
2235 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2236 .addReg(Op0r).addImm(Op1l);
2237 if (OperatorClass != 2) // All but and
2238 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2239 else
2240 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2241 return;
2242 }
2243
2244 // TODO: We could handle lots of other special cases here, such as AND'ing
2245 // with 0xFFFFFFFF00000000 -> noop, etc.
2246
2247 // Otherwise, code generate the full operation with a constant.
2248 static const unsigned TopTab[] = {
2249 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2250 };
2251
2252 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2253 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2254 .addReg(Op0r+1).addImm(Op1h);
2255 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002256 }
2257
2258 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002259 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002260 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002261 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2262 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002263
Chris Lattnerb2acc512003-10-19 21:09:10 +00002264 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002265 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2266 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2267 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002268 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002269
Chris Lattnerb2acc512003-10-19 21:09:10 +00002270 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002271 unsigned Op0r = getReg(Op0, MBB, IP);
2272 unsigned Op1r = getReg(Op1, MBB, IP);
2273 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2274
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002275 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002276 static const unsigned TopTab[] = {
2277 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2278 };
2279 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2280 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2281 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002282}
2283
Chris Lattner3e130a22003-01-13 00:32:26 +00002284/// doMultiply - Emit appropriate instructions to multiply together the
2285/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2286/// result should be given as DestTy.
2287///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002288void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00002289 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00002290 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002291 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002292 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002293 case cInt:
2294 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002295 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002296 .addReg(op0Reg).addReg(op1Reg);
2297 return;
2298 case cByte:
2299 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002300 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2301 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2302 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002303 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002304 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002305 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002306 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002307}
2308
Chris Lattnerb2acc512003-10-19 21:09:10 +00002309// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2310// returns zero when the input is not exactly a power of two.
2311static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002312 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002313 unsigned Count = 0;
2314 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002315 Val >>= 1;
2316 ++Count;
2317 }
2318 return Count+1;
2319}
2320
Chris Lattner462fa822004-04-11 20:56:28 +00002321
2322/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2323/// 16, or 32-bit integer multiply by a constant.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002324void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002325 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002326 unsigned DestReg, const Type *DestTy,
2327 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002328 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2329 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002330 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner6ab06d52004-04-06 04:55:43 +00002331
Chris Lattnerb2acc512003-10-19 21:09:10 +00002332 unsigned Class = getClass(DestTy);
2333
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002334 // Handle special cases here.
2335 switch (ConstRHS) {
2336 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002337 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2338 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002339 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002340 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2341 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002342 case 2:
2343 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2344 return;
2345 case 3:
2346 case 5:
2347 case 9:
2348 if (Class == cInt) {
2349 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
2350 op0Reg, ConstRHS-1, op0Reg, 0);
2351 return;
2352 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002353 }
2354
Chris Lattnerb2acc512003-10-19 21:09:10 +00002355 // If the element size is exactly a power of 2, use a shift to get it.
2356 if (unsigned Shift = ExactLog2(ConstRHS)) {
2357 switch (Class) {
2358 default: assert(0 && "Unknown class for this function!");
2359 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002360 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002361 return;
2362 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002363 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002364 return;
2365 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002366 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002367 return;
2368 }
2369 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002370
2371 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002372 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002373 return;
2374 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002375 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002376 return;
2377 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002378
2379 // Most general case, emit a normal multiply...
Chris Lattnerb2acc512003-10-19 21:09:10 +00002380 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002381 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002382
2383 // Emit a MUL to multiply the register holding the index by
2384 // elementSize, putting the result in OffsetReg.
2385 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2386}
2387
Chris Lattnerca9671d2002-11-02 20:28:58 +00002388/// visitMul - Multiplies are not simple binary operators because they must deal
2389/// with the EAX register explicitly.
2390///
2391void ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002392 unsigned ResultReg = getReg(I);
2393
Chris Lattner95157f72004-04-11 22:05:45 +00002394 Value *Op0 = I.getOperand(0);
2395 Value *Op1 = I.getOperand(1);
2396
2397 // Fold loads into floating point multiplies.
2398 if (getClass(Op0->getType()) == cFP) {
2399 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2400 if (!I.swapOperands())
2401 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2402 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2403 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2404 const Type *Ty = Op0->getType();
2405 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2406 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2407
Chris Lattner95157f72004-04-11 22:05:45 +00002408 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002409 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2410 unsigned FI = getFixedSizedAllocaFI(AI);
2411 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2412 } else {
2413 unsigned BaseReg, Scale, IndexReg, Disp;
2414 getAddressingMode(LI->getOperand(0), BaseReg,
2415 Scale, IndexReg, Disp);
2416
2417 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2418 BaseReg, Scale, IndexReg, Disp);
2419 }
Chris Lattner95157f72004-04-11 22:05:45 +00002420 return;
2421 }
2422 }
2423
Chris Lattner462fa822004-04-11 20:56:28 +00002424 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002425 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002426}
2427
2428void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2429 Value *Op0, Value *Op1, unsigned DestReg) {
2430 MachineBasicBlock &BB = *MBB;
2431 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002432
2433 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002434 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002435 switch (Class) {
2436 case cByte:
2437 case cShort:
2438 case cInt:
2439 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002440 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2441 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002442 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002443 unsigned Op1Reg = getReg(Op1, &BB, IP);
2444 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002445 }
Chris Lattner462fa822004-04-11 20:56:28 +00002446 return;
2447 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002448 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2449 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002450 case cLong:
2451 break;
2452 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002453
Chris Lattner462fa822004-04-11 20:56:28 +00002454 // Long value. We have to do things the hard way...
2455 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2456 unsigned CLow = CI->getRawValue();
2457 unsigned CHi = CI->getRawValue() >> 32;
2458
2459 if (CLow == 0) {
2460 // If the low part of the constant is all zeros, things are simple.
2461 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2462 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2463 return;
2464 }
2465
2466 // Multiply the two low parts... capturing carry into EDX
2467 unsigned OverflowReg = 0;
2468 if (CLow == 1) {
2469 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002470 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002471 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2472 OverflowReg = makeAnotherReg(Type::UIntTy);
2473 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2474 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2475 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002476
Chris Lattner462fa822004-04-11 20:56:28 +00002477 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2478 BuildMI(BB, IP, X86::MOV32rr, 1,
2479 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2480 }
2481
2482 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2483 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2484
2485 unsigned AHBLplusOverflowReg;
2486 if (OverflowReg) {
2487 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2488 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002489 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002490 } else {
2491 AHBLplusOverflowReg = AHBLReg;
2492 }
2493
2494 if (CHi == 0) {
2495 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2496 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002497 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002498 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002499
Chris Lattner462fa822004-04-11 20:56:28 +00002500 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002501 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2502 }
Chris Lattner462fa822004-04-11 20:56:28 +00002503 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002504 }
Chris Lattner462fa822004-04-11 20:56:28 +00002505
2506 // General 64x64 multiply
2507
2508 unsigned Op1Reg = getReg(Op1, &BB, IP);
2509 // Multiply the two low parts... capturing carry into EDX
2510 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2511 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2512
2513 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2514 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2515 BuildMI(BB, IP, X86::MOV32rr, 1,
2516 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2517
2518 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2519 BuildMI(BB, IP, X86::IMUL32rr, 2,
2520 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2521
2522 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2523 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2524 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2525
2526 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2527 BuildMI(BB, IP, X86::IMUL32rr, 2,
2528 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2529
2530 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2531 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002532}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002533
Chris Lattner06925362002-11-17 21:56:38 +00002534
Chris Lattnerf01729e2002-11-02 20:54:46 +00002535/// visitDivRem - Handle division and remainder instructions... these
2536/// instruction both require the same instructions to be generated, they just
2537/// select the result from a different register. Note that both of these
2538/// instructions work differently for signed and unsigned operands.
2539///
2540void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002541 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002542 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2543
2544 // Fold loads into floating point divides.
2545 if (getClass(Op0->getType()) == cFP) {
2546 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2547 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2548 const Type *Ty = Op0->getType();
2549 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2550 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2551
Chris Lattner95157f72004-04-11 22:05:45 +00002552 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002553 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2554 unsigned FI = getFixedSizedAllocaFI(AI);
2555 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2556 } else {
2557 unsigned BaseReg, Scale, IndexReg, Disp;
2558 getAddressingMode(LI->getOperand(0), BaseReg,
2559 Scale, IndexReg, Disp);
2560
2561 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2562 BaseReg, Scale, IndexReg, Disp);
2563 }
Chris Lattner95157f72004-04-11 22:05:45 +00002564 return;
2565 }
2566
2567 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2568 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2569 const Type *Ty = Op0->getType();
2570 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2571 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2572
Chris Lattner95157f72004-04-11 22:05:45 +00002573 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002574 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2575 unsigned FI = getFixedSizedAllocaFI(AI);
2576 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2577 } else {
2578 unsigned BaseReg, Scale, IndexReg, Disp;
2579 getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp);
2580 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r),
2581 BaseReg, Scale, IndexReg, Disp);
2582 }
Chris Lattner95157f72004-04-11 22:05:45 +00002583 return;
2584 }
2585 }
2586
Chris Lattner94af4142002-12-25 05:13:53 +00002587
Chris Lattnercadff442003-10-23 17:21:43 +00002588 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002589 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002590 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002591}
2592
2593void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002594 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +00002595 Value *Op0, Value *Op1, bool isDiv,
2596 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002597 const Type *Ty = Op0->getType();
2598 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002599 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002600 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002601 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002602 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2603 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002604 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002605 unsigned Op0Reg = getReg(Op0, BB, IP);
2606 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002607 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002608 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002609 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002610 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2611 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002612 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2613 }
Chris Lattner94af4142002-12-25 05:13:53 +00002614 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002615 case cLong: {
2616 static const char *FnName[] =
2617 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002618 unsigned Op0Reg = getReg(Op0, BB, IP);
2619 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002620 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002621 MachineInstr *TheCall =
2622 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2623
2624 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002625 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2626 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002627 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2628 return;
2629 }
2630 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002631 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002632 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002633 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002634
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002635 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002636 static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
2637 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2638 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2639 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2640
2641 // Special case signed division by power of 2.
2642 if (isDiv)
2643 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2644 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2645 int V = CI->getValue();
2646
2647 if (V == 1) { // X /s 1 => X
2648 unsigned Op0Reg = getReg(Op0, BB, IP);
2649 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2650 return;
2651 }
2652
2653 if (V == -1) { // X /s -1 => -X
2654 unsigned Op0Reg = getReg(Op0, BB, IP);
2655 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2656 return;
2657 }
2658
2659 bool isNeg = false;
2660 if (V < 0) { // Not a positive power of 2?
2661 V = -V;
2662 isNeg = true; // Maybe it's a negative power of 2.
2663 }
2664 if (unsigned Log = ExactLog2(V)) {
2665 --Log;
2666 unsigned Op0Reg = getReg(Op0, BB, IP);
2667 unsigned TmpReg = makeAnotherReg(Op0->getType());
2668 if (Log != 1)
2669 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2670 .addReg(Op0Reg).addImm(Log-1);
2671 else
2672 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
2673 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2674 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2675 .addReg(TmpReg).addImm(32-Log);
2676 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2677 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2678 .addReg(Op0Reg).addReg(TmpReg2);
2679
2680 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2681 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2682 .addReg(Op0Reg).addImm(Log);
2683 if (isNeg)
2684 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2685 return;
2686 }
2687 }
2688
2689 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002690 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002691 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2692
2693 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002694 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2695 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002696 };
2697
Chris Lattnerf01729e2002-11-02 20:54:46 +00002698 unsigned Reg = Regs[Class];
2699 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002700
2701 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002702 unsigned Op0Reg = getReg(Op0, BB, IP);
2703 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002704 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002705
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002706 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002707 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002708 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002709 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002710 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002711
2712 // Emit the appropriate divide or remainder instruction...
2713 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002714 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002715 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002716 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002717
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002718 // Emit the appropriate divide or remainder instruction...
2719 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2720 }
Chris Lattner06925362002-11-17 21:56:38 +00002721
Chris Lattnerf01729e2002-11-02 20:54:46 +00002722 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002723 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002724
Chris Lattnerf01729e2002-11-02 20:54:46 +00002725 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002726 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002727}
Chris Lattnere2954c82002-11-02 20:04:26 +00002728
Chris Lattner06925362002-11-17 21:56:38 +00002729
Brian Gaekea1719c92002-10-31 23:03:59 +00002730/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2731/// for constant immediate shift values, and for constant immediate
2732/// shift values equal to 1. Even the general case is sort of special,
2733/// because the shift amount has to be in CL, not just any old register.
2734///
Chris Lattner3e130a22003-01-13 00:32:26 +00002735void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002736 MachineBasicBlock::iterator IP = BB->end ();
2737 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2738 I.getOpcode () == Instruction::Shl, I.getType (),
2739 getReg (I));
2740}
2741
2742/// emitShiftOperation - Common code shared between visitShiftInst and
2743/// constant expression support.
2744void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002745 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002746 Value *Op, Value *ShiftAmount, bool isLeftShift,
2747 const Type *ResultTy, unsigned DestReg) {
2748 unsigned SrcReg = getReg (Op, MBB, IP);
2749 bool isSigned = ResultTy->isSigned ();
2750 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002751
2752 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002753 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2754 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2755 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2756 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002757 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002758
Chris Lattner3e130a22003-01-13 00:32:26 +00002759 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002760 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2761 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2762 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2763 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002764 };
Chris Lattner796df732002-11-02 00:44:25 +00002765
Chris Lattner3e130a22003-01-13 00:32:26 +00002766 // Longs, as usual, are handled specially...
2767 if (Class == cLong) {
2768 // If we have a constant shift, we can generate much more efficient code
2769 // than otherwise...
2770 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002771 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002772 unsigned Amount = CUI->getValue();
2773 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002774 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2775 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002776 BuildMI(*MBB, IP, Opc[3], 3,
2777 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2778 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002779 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002780 BuildMI(*MBB, IP, Opc[3], 3,
2781 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2782 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002783 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002784 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002785 Amount -= 32;
2786 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002787 if (Amount != 0) {
2788 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2789 DestReg + 1).addReg(SrcReg).addImm(Amount);
2790 } else {
2791 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2792 }
2793 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002794 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002795 if (Amount != 0) {
2796 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2797 DestReg).addReg(SrcReg+1).addImm(Amount);
2798 } else {
2799 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2800 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002801 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002802 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002803 }
2804 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002805 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2806
2807 if (!isLeftShift && isSigned) {
2808 // If this is a SHR of a Long, then we need to do funny sign extension
2809 // stuff. TmpReg gets the value to use as the high-part if we are
2810 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002811 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002812 } else {
2813 // Other shifts use a fixed zero value if the shift is more than 32
2814 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002815 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002816 }
2817
2818 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002819 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002820 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002821
2822 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2823 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2824 if (isLeftShift) {
2825 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002826 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002827 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002828 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002829 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002830
2831 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002832 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002833
2834 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002835 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002836 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2837 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002838 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002839 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002840 } else {
2841 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002842 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002843 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002844 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002845 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002846 .addReg(SrcReg+1);
2847
2848 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002849 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002850
2851 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002852 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002853 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2854
2855 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002856 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002857 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2858 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002859 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002860 return;
2861 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002862
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002863 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002864 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2865 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002866
Chris Lattner3e130a22003-01-13 00:32:26 +00002867 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002868 BuildMI(*MBB, IP, Opc[Class], 2,
2869 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002870 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002871 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002872 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002873
Chris Lattner3e130a22003-01-13 00:32:26 +00002874 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002875 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002876 }
2877}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002878
Chris Lattner3e130a22003-01-13 00:32:26 +00002879
Chris Lattner6fc3c522002-11-17 21:11:55 +00002880/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002881/// instruction. The load and store instructions are the only place where we
2882/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002883///
2884void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002885 // Check to see if this load instruction is going to be folded into a binary
2886 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2887 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00002888 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002889 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002890 Instruction *User = cast<Instruction>(I.use_back());
2891 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002892 case Instruction::Cast:
2893 // If this is a cast from a signed-integer type to a floating point type,
2894 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00002895 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002896 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2897 I.getType() == Type::LongTy)) {
2898 unsigned DestReg = getReg(User);
2899 static const unsigned Opcode[] = {
2900 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2901 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00002902
2903 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2904 unsigned FI = getFixedSizedAllocaFI(AI);
2905 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
2906 } else {
2907 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2908 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2909 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg),
2910 BaseReg, Scale, IndexReg, Disp);
2911 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002912 return;
2913 } else {
2914 User = 0;
2915 }
2916 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00002917
Chris Lattner7dee5da2004-03-08 01:58:35 +00002918 case Instruction::Add:
2919 case Instruction::Sub:
2920 case Instruction::And:
2921 case Instruction::Or:
2922 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002923 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002924 break;
Chris Lattner95157f72004-04-11 22:05:45 +00002925 case Instruction::Mul:
2926 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00002927 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002928 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00002929 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002930 }
2931
2932 if (User) {
2933 // Okay, we found a user. If the load is the first operand and there is
2934 // no second operand load, reverse the operand ordering. Note that this
2935 // can fail for a subtract (ie, no change will be made).
2936 if (!isa<LoadInst>(User->getOperand(1)))
2937 cast<BinaryOperator>(User)->swapOperands();
2938
2939 // Okay, now that everything is set up, if this load is used by the second
2940 // operand, and if there are no instructions that invalidate the load
2941 // before the binary operator, eliminate the load.
2942 if (User->getOperand(1) == &I &&
2943 isSafeToFoldLoadIntoInstruction(I, *User))
2944 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00002945
2946 // If this is a floating point sub or div, we won't be able to swap the
2947 // operands, but we will still be able to eliminate the load.
2948 if (Class == cFP && User->getOperand(0) == &I &&
2949 !isa<LoadInst>(User->getOperand(1)) &&
2950 (User->getOpcode() == Instruction::Sub ||
2951 User->getOpcode() == Instruction::Div) &&
2952 isSafeToFoldLoadIntoInstruction(I, *User))
2953 return; // Eliminate the load!
Chris Lattner7dee5da2004-03-08 01:58:35 +00002954 }
2955 }
2956
Chris Lattner6ac1d712003-10-20 04:48:06 +00002957 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002958 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00002959 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00002960 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002961 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00002962
2963 unsigned DestReg = getReg(I);
2964
2965 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2966 unsigned FI = getFixedSizedAllocaFI(AI);
2967 if (Class == cLong) {
2968 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
2969 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
2970 } else {
2971 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
2972 }
2973 } else {
2974 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2975 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2976
2977 if (Class == cLong) {
2978 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
2979 BaseReg, Scale, IndexReg, Disp);
2980 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
2981 BaseReg, Scale, IndexReg, Disp+4);
2982 } else {
2983 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
2984 BaseReg, Scale, IndexReg, Disp);
2985 }
2986 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002987}
2988
Chris Lattner6fc3c522002-11-17 21:11:55 +00002989/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
2990/// instruction.
2991///
2992void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002993 unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U;
2994 unsigned AllocaFrameIdx = ~0U;
2995
2996 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1)))
2997 AllocaFrameIdx = getFixedSizedAllocaFI(AI);
2998 else
2999 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003000
Chris Lattner6c09db22003-10-20 04:11:23 +00003001 const Type *ValTy = I.getOperand(0)->getType();
3002 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003003
Chris Lattner5a830962004-02-25 02:56:58 +00003004 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3005 uint64_t Val = CI->getRawValue();
3006 if (Class == cLong) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003007 if (AllocaFrameIdx != ~0U) {
3008 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3009 AllocaFrameIdx).addImm(Val & ~0U);
3010 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3011 AllocaFrameIdx, 4).addImm(Val>>32);
3012 } else {
3013 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3014 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
3015 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3016 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
3017 }
Chris Lattner5a830962004-02-25 02:56:58 +00003018 } else {
3019 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003020 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003021 };
3022 unsigned Opcode = Opcodes[Class];
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003023 if (AllocaFrameIdx != ~0U)
Chris Lattner9f1b5312004-05-13 15:12:43 +00003024 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003025 else
Chris Lattner9f1b5312004-05-13 15:12:43 +00003026 addFullAddress(BuildMI(BB, Opcode, 5),
3027 BaseReg, Scale, IndexReg, Disp).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003028 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003029 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
3030 if (AllocaFrameIdx != ~0U)
3031 addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0);
3032 else
3033 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3034 BaseReg, Scale, IndexReg, Disp).addImm(0);
3035
Chris Lattner5a830962004-02-25 02:56:58 +00003036 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003037 if (AllocaFrameIdx != ~0U)
3038 addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
3039 AllocaFrameIdx).addImm(CB->getValue());
3040 else
3041 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
3042 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003043 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3044 // Store constant FP values with integer instructions to avoid having to
3045 // load the constants from the constant pool then do a store.
3046 if (CFP->getType() == Type::FloatTy) {
3047 union {
3048 unsigned I;
3049 float F;
3050 } V;
3051 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003052 if (AllocaFrameIdx != ~0U)
3053 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3054 AllocaFrameIdx).addImm(V.I);
3055 else
3056 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3057 BaseReg, Scale, IndexReg, Disp).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003058 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003059 union {
3060 uint64_t I;
3061 double F;
3062 } V;
3063 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003064 if (AllocaFrameIdx != ~0U) {
3065 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3066 AllocaFrameIdx).addImm((unsigned)V.I);
3067 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3068 AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32));
3069 } else {
3070 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3071 BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
3072 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3073 BaseReg, Scale, IndexReg, Disp+4).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003074 unsigned(V.I >> 32));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003075 }
Chris Lattner5a830962004-02-25 02:56:58 +00003076 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003077
3078 } else if (Class == cLong) {
3079 unsigned ValReg = getReg(I.getOperand(0));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003080 if (AllocaFrameIdx != ~0U) {
3081 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3082 AllocaFrameIdx).addReg(ValReg);
3083 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3084 AllocaFrameIdx, 4).addReg(ValReg+1);
3085 } else {
3086 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3087 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
3088 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3089 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
3090 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003091 } else {
3092 unsigned ValReg = getReg(I.getOperand(0));
3093 static const unsigned Opcodes[] = {
3094 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3095 };
3096 unsigned Opcode = Opcodes[Class];
3097 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003098
3099 if (AllocaFrameIdx != ~0U)
3100 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg);
3101 else
3102 addFullAddress(BuildMI(BB, Opcode, 1+4),
3103 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003104 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003105}
3106
3107
Misha Brukman538607f2004-03-01 23:53:11 +00003108/// visitCastInst - Here we have various kinds of copying with or without sign
3109/// extension going on.
3110///
Chris Lattner3e130a22003-01-13 00:32:26 +00003111void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003112 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003113
Chris Lattner99382862004-04-12 00:23:04 +00003114 unsigned SrcClass = getClassB(Op->getType());
3115 unsigned DestClass = getClassB(CI.getType());
3116 // Noop casts are not emitted: getReg will return the source operand as the
3117 // register to use for any uses of the noop cast.
3118 if (DestClass == SrcClass)
Chris Lattner427aeb42004-04-11 19:21:59 +00003119 return;
3120
Chris Lattnerf5854472003-06-21 16:01:24 +00003121 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3122 // of the case are GEP instructions, then the cast does not need to be
3123 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003124 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003125 bool AllUsesAreGEPs = true;
3126 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3127 if (!isa<GetElementPtrInst>(*I)) {
3128 AllUsesAreGEPs = false;
3129 break;
3130 }
3131
3132 // No need to codegen this cast if all users are getelementptr instrs...
3133 if (AllUsesAreGEPs) return;
3134 }
3135
Chris Lattner99382862004-04-12 00:23:04 +00003136 // If this cast converts a load from a short,int, or long integer to a FP
3137 // value, we will have folded this cast away.
3138 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3139 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3140 Op->getType() == Type::LongTy))
3141 return;
3142
3143
Chris Lattner548f61d2003-04-23 17:22:12 +00003144 unsigned DestReg = getReg(CI);
3145 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003146 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003147}
3148
Misha Brukman538607f2004-03-01 23:53:11 +00003149/// emitCastOperation - Common code shared between visitCastInst and constant
3150/// expression cast support.
3151///
Chris Lattner548f61d2003-04-23 17:22:12 +00003152void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003153 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00003154 Value *Src, const Type *DestTy,
3155 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003156 const Type *SrcTy = Src->getType();
3157 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003158 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003159 unsigned SrcReg = getReg(Src, BB, IP);
3160
Chris Lattner3e130a22003-01-13 00:32:26 +00003161 // Implement casts to bool by using compare on the operand followed by set if
3162 // not zero on the result.
3163 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003164 switch (SrcClass) {
3165 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003166 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003167 break;
3168 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003169 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003170 break;
3171 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003172 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003173 break;
3174 case cLong: {
3175 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003176 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003177 break;
3178 }
3179 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003180 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003181 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003182 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003183 break;
Chris Lattner20772542003-06-01 03:38:24 +00003184 }
3185
3186 // If the zero flag is not set, then the value is true, set the byte to
3187 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003188 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003189 return;
3190 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003191
3192 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003193 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003194 };
3195
3196 // Implement casts between values of the same type class (as determined by
3197 // getClass) by using a register-to-register move.
3198 if (SrcClass == DestClass) {
3199 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003200 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003201 } else if (SrcClass == cFP) {
3202 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003203 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003204 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003205 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003206 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3207 "Unknown cFP member!");
3208 // Truncate from double to float by storing to memory as short, then
3209 // reading it back.
3210 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003211 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003212 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3213 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003214 }
3215 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003216 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3217 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003218 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003219 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003220 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003221 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003222 return;
3223 }
3224
3225 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3226 // or zero extension, depending on whether the source type was signed.
3227 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3228 SrcClass < DestClass) {
3229 bool isLong = DestClass == cLong;
3230 if (isLong) DestClass = cInt;
3231
3232 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003233 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3234 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003235 };
3236
Chris Lattner96e3b422004-05-09 22:28:45 +00003237 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003238 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003239 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003240
3241 if (isLong) { // Handle upper 32 bits as appropriate...
3242 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003243 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003244 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003245 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003246 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003247 return;
3248 }
3249
3250 // Special case long -> int ...
3251 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003252 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003253 return;
3254 }
3255
3256 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3257 // move out of AX or AL.
3258 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3259 && SrcClass > DestClass) {
3260 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003261 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3262 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003263 return;
3264 }
3265
3266 // Handle casts from integer to floating point now...
3267 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003268 // Promote the integer to a type supported by FLD. We do this because there
3269 // are no unsigned FLD instructions, so we must promote an unsigned value to
3270 // a larger signed value, then use FLD on the larger value.
3271 //
3272 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003273 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003274 unsigned RealDestReg = DestReg;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003275 switch (SrcTy->getTypeID()) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003276 case Type::BoolTyID:
3277 case Type::SByteTyID:
3278 // We don't have the facilities for directly loading byte sized data from
3279 // memory (even signed). Promote it to 16 bits.
3280 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003281 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003282 break;
3283 case Type::UByteTyID:
3284 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003285 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003286 break;
3287 case Type::UShortTyID:
3288 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003289 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003290 break;
3291 case Type::UIntTyID: {
3292 // Make a 64 bit temporary... and zero out the top of it...
3293 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003294 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3295 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003296 SrcTy = Type::LongTy;
3297 SrcClass = cLong;
3298 SrcReg = TmpReg;
3299 break;
3300 }
3301 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003302 // Don't fild into the read destination.
3303 DestReg = makeAnotherReg(Type::DoubleTy);
3304 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003305 default: // No promotion needed...
3306 break;
3307 }
3308
3309 if (PromoteType) {
3310 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003311 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003312 SrcTy = PromoteType;
3313 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003314 SrcReg = TmpReg;
3315 }
3316
3317 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003318 int FrameIdx =
3319 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003320
3321 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003322 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003323 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003324 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003325 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003326 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003327 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003328 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3329 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003330 }
3331
3332 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003333 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003334 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003335
3336 // We need special handling for unsigned 64-bit integer sources. If the
3337 // input number has the "sign bit" set, then we loaded it incorrectly as a
3338 // negative 64-bit number. In this case, add an offset value.
3339 if (SrcTy == Type::ULongTy) {
3340 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003341 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003342
Chris Lattnerb6bac512004-02-25 06:13:04 +00003343 // If the sign bit is set, get a pointer to an offset, otherwise get a
3344 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003345 MachineConstantPool *CP = F->getConstantPool();
3346 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003347 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003348 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003349 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003350 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003351 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3352
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003353 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003354 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003355 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003356 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003357
3358 // Load the constant for an add. FIXME: this could make an 'fadd' that
3359 // reads directly from memory, but we don't support these yet.
3360 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003361 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003362
Chris Lattneree352852004-02-29 07:22:16 +00003363 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3364 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003365 }
3366
Chris Lattner3e130a22003-01-13 00:32:26 +00003367 return;
3368 }
3369
3370 // Handle casts from floating point to integer now...
3371 if (SrcClass == cFP) {
3372 // Change the floating point control register to use "round towards zero"
3373 // mode when truncating to an integer value.
3374 //
3375 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003376 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003377
3378 // Load the old value of the high byte of the control word...
3379 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003380 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003381 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003382
3383 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003384 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003385 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003386
3387 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003388 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003389
3390 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003391 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003392 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003393
3394 // We don't have the facilities for directly storing byte sized data to
3395 // memory. Promote it to 16 bits. We also must promote unsigned values to
3396 // larger classes because we only have signed FP stores.
3397 unsigned StoreClass = DestClass;
3398 const Type *StoreTy = DestTy;
3399 if (StoreClass == cByte || DestTy->isUnsigned())
3400 switch (StoreClass) {
3401 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3402 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3403 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003404 // The following treatment of cLong may not be perfectly right,
3405 // but it survives chains of casts of the form
3406 // double->ulong->double.
3407 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003408 default: assert(0 && "Unknown store class!");
3409 }
3410
3411 // Spill the integer to memory and reload it from there...
3412 int FrameIdx =
3413 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3414
3415 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003416 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003417 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3418 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003419
3420 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003421 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3422 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003423 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003424 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003425 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003426 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003427 }
3428
3429 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003430 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003431 return;
3432 }
3433
Brian Gaeked474e9c2002-12-06 10:49:33 +00003434 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003435 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003436 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003437}
Brian Gaekea1719c92002-10-31 23:03:59 +00003438
Chris Lattner73815062003-10-18 05:56:40 +00003439/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003440///
Chris Lattner73815062003-10-18 05:56:40 +00003441void ISel::visitVANextInst(VANextInst &I) {
3442 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003443 unsigned DestReg = getReg(I);
3444
Chris Lattnereca195e2003-05-08 19:44:13 +00003445 unsigned Size;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003446 switch (I.getArgType()->getTypeID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003447 default:
3448 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003449 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003450 return;
3451 case Type::PointerTyID:
3452 case Type::UIntTyID:
3453 case Type::IntTyID:
3454 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003455 break;
3456 case Type::ULongTyID:
3457 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003458 case Type::DoubleTyID:
3459 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003460 break;
3461 }
3462
3463 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003464 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003465}
Chris Lattnereca195e2003-05-08 19:44:13 +00003466
Chris Lattner73815062003-10-18 05:56:40 +00003467void ISel::visitVAArgInst(VAArgInst &I) {
3468 unsigned VAList = getReg(I.getOperand(0));
3469 unsigned DestReg = getReg(I);
3470
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003471 switch (I.getType()->getTypeID()) {
Chris Lattner73815062003-10-18 05:56:40 +00003472 default:
3473 std::cerr << I;
3474 assert(0 && "Error: bad type for va_next instruction!");
3475 return;
3476 case Type::PointerTyID:
3477 case Type::UIntTyID:
3478 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003479 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003480 break;
3481 case Type::ULongTyID:
3482 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003483 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3484 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003485 break;
3486 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003487 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003488 break;
3489 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003490}
3491
Misha Brukman538607f2004-03-01 23:53:11 +00003492/// visitGetElementPtrInst - instruction-select GEP instructions
3493///
Chris Lattner3e130a22003-01-13 00:32:26 +00003494void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003495 // If this GEP instruction will be folded into all of its users, we don't need
3496 // to explicitly calculate it!
3497 unsigned A, B, C, D;
3498 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3499 // Check all of the users of the instruction to see if they are loads and
3500 // stores.
3501 bool AllWillFold = true;
3502 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3503 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3504 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3505 cast<Instruction>(*UI)->getOperand(0) == &I) {
3506 AllWillFold = false;
3507 break;
3508 }
3509
3510 // If the instruction is foldable, and will be folded into all users, don't
3511 // emit it!
3512 if (AllWillFold) return;
3513 }
3514
Chris Lattner3e130a22003-01-13 00:32:26 +00003515 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003516 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003517 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003518}
3519
Chris Lattner985fe3d2004-02-25 03:45:50 +00003520/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3521/// GEPTypes (the derived types being stepped through at each level). On return
3522/// from this function, if some indexes of the instruction are representable as
3523/// an X86 lea instruction, the machine operands are put into the Ops
3524/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3525/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3526/// addressing mode that only partially consumes the input, the BaseReg input of
3527/// the addressing mode must be left free.
3528///
3529/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3530///
Chris Lattnerb6bac512004-02-25 06:13:04 +00003531void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3532 std::vector<Value*> &GEPOps,
3533 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3534 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3535 const TargetData &TD = TM.getTargetData();
3536
Chris Lattner985fe3d2004-02-25 03:45:50 +00003537 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003538 BaseReg = 0; // No base register
3539 Scale = 1; // Unit scale
3540 IndexReg = 0; // No index register
3541 Disp = 0; // No displacement
3542
Chris Lattner985fe3d2004-02-25 03:45:50 +00003543 // While there are GEP indexes that can be folded into the current address,
3544 // keep processing them.
3545 while (!GEPTypes.empty()) {
3546 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3547 // It's a struct access. CUI is the index into the structure,
3548 // which names the field. This index must have unsigned type.
3549 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3550
3551 // Use the TargetData structure to pick out what the layout of the
3552 // structure is in memory. Since the structure index must be constant, we
3553 // can get its value and use it to find the right byte offset from the
3554 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003555 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003556 GEPOps.pop_back(); // Consume a GEP operand
3557 GEPTypes.pop_back();
3558 } else {
3559 // It's an array or pointer access: [ArraySize x ElementType].
3560 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3561 Value *idx = GEPOps.back();
3562
3563 // idx is the index into the array. Unlike with structure
3564 // indices, we may not know its actual value at code-generation
3565 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003566
3567 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003568 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003569 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003570 Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003571 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3572 Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003573 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003574 // If the index reg is already taken, we can't handle this index.
3575 if (IndexReg) return;
3576
3577 // If this is a size that we can handle, then add the index as
3578 switch (TypeSize) {
3579 case 1: case 2: case 4: case 8:
3580 // These are all acceptable scales on X86.
3581 Scale = TypeSize;
3582 break;
3583 default:
3584 // Otherwise, we can't handle this scale
3585 return;
3586 }
3587
3588 if (CastInst *CI = dyn_cast<CastInst>(idx))
3589 if (CI->getOperand(0)->getType() == Type::IntTy ||
3590 CI->getOperand(0)->getType() == Type::UIntTy)
3591 idx = CI->getOperand(0);
3592
3593 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003594 }
3595
3596 GEPOps.pop_back(); // Consume a GEP operand
3597 GEPTypes.pop_back();
3598 }
3599 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003600
Chris Lattnerdf040972004-05-23 21:23:12 +00003601 // GEPTypes is empty, which means we have a single operand left. Set it as
3602 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003603 //
Chris Lattnerb6bac512004-02-25 06:13:04 +00003604 assert(BaseReg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003605
3606#if 0 // FIXME: TODO!
3607 if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
3608 // FIXME: When we can add FrameIndex values as the first operand, we can
3609 // make GEP's of allocas MUCH more efficient!
3610 unsigned FI = getFixedSizedAllocaFI(AI);
3611 GEPOps.pop_back();
3612 return;
3613 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
3614 // FIXME: When addressing modes are more powerful/correct, we could load
3615 // global addresses directly as 32-bit immediates.
3616 }
3617#endif
3618
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003619 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003620 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003621}
3622
3623
Chris Lattnerb6bac512004-02-25 06:13:04 +00003624/// isGEPFoldable - Return true if the specified GEP can be completely
3625/// folded into the addressing mode of a load/store or lea instruction.
3626bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3627 Value *Src, User::op_iterator IdxBegin,
3628 User::op_iterator IdxEnd, unsigned &BaseReg,
3629 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003630 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3631 Src = CPR->getValue();
3632
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003633 std::vector<Value*> GEPOps;
3634 GEPOps.resize(IdxEnd-IdxBegin+1);
3635 GEPOps[0] = Src;
3636 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3637
Chris Lattnerdf040972004-05-23 21:23:12 +00003638 std::vector<const Type*>
3639 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3640 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003641
Chris Lattnerb6bac512004-02-25 06:13:04 +00003642 MachineBasicBlock::iterator IP;
3643 if (MBB) IP = MBB->end();
3644 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3645
3646 // We can fold it away iff the getGEPIndex call eliminated all operands.
3647 return GEPOps.empty();
3648}
3649
3650void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3651 MachineBasicBlock::iterator IP,
3652 Value *Src, User::op_iterator IdxBegin,
3653 User::op_iterator IdxEnd, unsigned TargetReg) {
3654 const TargetData &TD = TM.getTargetData();
3655 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3656 Src = CPR->getValue();
3657
3658 std::vector<Value*> GEPOps;
3659 GEPOps.resize(IdxEnd-IdxBegin+1);
3660 GEPOps[0] = Src;
3661 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3662
3663 std::vector<const Type*> GEPTypes;
3664 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3665 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003666
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003667 // Keep emitting instructions until we consume the entire GEP instruction.
3668 while (!GEPOps.empty()) {
3669 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003670 unsigned BaseReg, Scale, IndexReg, Disp;
3671 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003672
Chris Lattner985fe3d2004-02-25 03:45:50 +00003673 if (GEPOps.size() != OldSize) {
3674 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003675 unsigned NextTarget = 0;
3676 if (!GEPOps.empty()) {
3677 assert(BaseReg == 0 &&
3678 "getGEPIndex should have left the base register open for chaining!");
3679 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003680 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003681
3682 if (IndexReg == 0 && Disp == 0)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003683 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003684 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003685 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003686 BaseReg, Scale, IndexReg, Disp);
3687 --IP;
3688 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003689 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003690 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3691 // all operands are consumed but the base pointer. If so, just load it
3692 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003693 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003694 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003695 } else {
3696 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003697 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003698 }
3699 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003700
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003701 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003702 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003703 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3704 Value *idx = GEPOps.back();
3705 GEPOps.pop_back(); // Consume a GEP operand
3706 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003707
Chris Lattner28977af2004-04-05 01:30:19 +00003708 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003709 // operand on X86. Handle this case directly now...
3710 if (CastInst *CI = dyn_cast<CastInst>(idx))
3711 if (CI->getOperand(0)->getType() == Type::IntTy ||
3712 CI->getOperand(0)->getType() == Type::UIntTy)
3713 idx = CI->getOperand(0);
3714
Chris Lattner3e130a22003-01-13 00:32:26 +00003715 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003716 // must find the size of the pointed-to type (Not coincidentally, the next
3717 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003718 const Type *ElTy = SqTy->getElementType();
3719 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003720
3721 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003722 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003723 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003724 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003725 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003726 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003727 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003728 --IP; // Insert the next instruction before this one.
3729 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003730 }
3731 } else if (elementSize == 1) {
3732 // If the element size is 1, we don't have to multiply, just add
3733 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003734 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003735 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003736 --IP; // Insert the next instruction before this one.
3737 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003738 } else {
3739 unsigned idxReg = getReg(idx, MBB, IP);
3740 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003741
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003742 // Make sure we can back the iterator up to point to the first
3743 // instruction emitted.
3744 MachineBasicBlock::iterator BeforeIt = IP;
3745 if (IP == MBB->begin())
3746 BeforeIt = MBB->end();
3747 else
3748 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003749 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3750
Chris Lattner8a307e82002-12-16 19:32:50 +00003751 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003752 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003753 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003754 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003755
3756 // Step to the first instruction of the multiply.
3757 if (BeforeIt == MBB->end())
3758 IP = MBB->begin();
3759 else
3760 IP = ++BeforeIt;
3761
3762 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003763 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003764 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003765 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003766}
3767
Chris Lattner065faeb2002-12-28 20:24:02 +00003768/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3769/// frame manager, otherwise do it the hard way.
3770///
3771void ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003772 // If this is a fixed size alloca in the entry block for the function, we
3773 // statically stack allocate the space, so we don't need to do anything here.
3774 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003775 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003776
Brian Gaekee48ec012002-12-13 06:46:31 +00003777 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003778 const Type *Ty = I.getAllocatedType();
3779 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3780
Chris Lattner065faeb2002-12-28 20:24:02 +00003781 // Create a register to hold the temporary result of multiplying the type size
3782 // constant by the variable amount.
3783 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3784 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003785
3786 // TotalSizeReg = mul <numelements>, <TypeSize>
3787 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003788 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003789
3790 // AddedSize = add <TotalSizeReg>, 15
3791 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003792 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003793
3794 // AlignedSize = and <AddedSize>, ~15
3795 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003796 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003797
Brian Gaekee48ec012002-12-13 06:46:31 +00003798 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003799 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003800
Brian Gaekee48ec012002-12-13 06:46:31 +00003801 // Put a pointer to the space into the result register, by copying
3802 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003803 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003804
Misha Brukman48196b32003-05-03 02:18:17 +00003805 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003806 // object.
3807 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003808}
Chris Lattner3e130a22003-01-13 00:32:26 +00003809
3810/// visitMallocInst - Malloc instructions are code generated into direct calls
3811/// to the library malloc.
3812///
3813void ISel::visitMallocInst(MallocInst &I) {
3814 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3815 unsigned Arg;
3816
3817 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3818 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3819 } else {
3820 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003821 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003822 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003823 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003824 }
3825
3826 std::vector<ValueRecord> Args;
3827 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3828 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003829 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003830 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3831}
3832
3833
3834/// visitFreeInst - Free instructions are code gen'd to call the free libc
3835/// function.
3836///
3837void ISel::visitFreeInst(FreeInst &I) {
3838 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003839 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003840 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003841 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003842 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3843}
3844
Chris Lattnerd281de22003-07-26 23:49:58 +00003845/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003846/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003847/// generated code sucks but the implementation is nice and simple.
3848///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003849FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3850 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003851}