blob: 5d745d24bdfb42ae014b65b0dbc7f0b4455a4a06 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000026 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
27 reloc_pcrel_1byte // 8-bit pcrel, e.g. branch_1
Chris Lattner5dccfad2010-02-10 06:52:12 +000028};
29}
30}
31
Chris Lattner45762472010-02-03 21:24:49 +000032namespace {
33class X86MCCodeEmitter : public MCCodeEmitter {
34 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
35 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000036 const TargetMachine &TM;
37 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000038 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000039public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000040 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000042 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
44
45 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000046
47 unsigned getNumFixupKinds() const {
Chris Lattner8d31de62010-02-11 21:27:18 +000048 return 2;
Daniel Dunbar73c55742010-02-09 22:59:55 +000049 }
50
Chris Lattner8d31de62010-02-11 21:27:18 +000051 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
52 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000053 { "reloc_pcrel_4byte", 0, 4 * 8 },
54 { "reloc_pcrel_1byte", 0, 1 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000055 };
Chris Lattner8d31de62010-02-11 21:27:18 +000056
57 if (Kind < FirstTargetFixupKind)
58 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000059
Chris Lattner8d31de62010-02-11 21:27:18 +000060 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000061 "Invalid kind!");
62 return Infos[Kind - FirstTargetFixupKind];
63 }
Chris Lattner45762472010-02-03 21:24:49 +000064
Chris Lattner28249d92010-02-05 01:53:19 +000065 static unsigned GetX86RegNum(const MCOperand &MO) {
66 return X86RegisterInfo::getX86RegNum(MO.getReg());
67 }
68
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000070 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000072 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
75 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000076 // Output the constant in little endian byte order.
77 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000078 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000079 Val >>= 8;
80 }
81 }
Chris Lattner0e73c392010-02-05 06:16:07 +000082
Chris Lattnera38c7072010-02-11 06:54:23 +000083 void EmitImmediate(const MCOperand &Disp, unsigned ImmSize,
84 unsigned &CurByte, raw_ostream &OS,
85 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000086
87 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
88 unsigned RM) {
89 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
90 return RM | (RegOpcode << 3) | (Mod << 6);
91 }
92
93 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000094 unsigned &CurByte, raw_ostream &OS) const {
95 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000096 }
97
Chris Lattner0e73c392010-02-05 06:16:07 +000098 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000099 unsigned &CurByte, raw_ostream &OS) const {
100 // SIB byte is in the same format as the ModRMByte.
101 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000102 }
103
104
Chris Lattner1ac23b12010-02-05 02:18:40 +0000105 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000106 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000107 unsigned &CurByte, raw_ostream &OS,
108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000109
Daniel Dunbar73c55742010-02-09 22:59:55 +0000110 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112
Chris Lattner45762472010-02-03 21:24:49 +0000113};
114
115} // end anonymous namespace
116
117
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000118MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
119 TargetMachine &TM) {
120 return new X86MCCodeEmitter(TM, false);
121}
122
123MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
124 TargetMachine &TM) {
125 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000126}
127
128
Chris Lattner1ac23b12010-02-05 02:18:40 +0000129/// isDisp8 - Return true if this signed displacement fits in a 8-bit
130/// sign-extended field.
131static bool isDisp8(int Value) {
132 return Value == (signed char)Value;
133}
134
Chris Lattner0e73c392010-02-05 06:16:07 +0000135void X86MCCodeEmitter::
Chris Lattnera38c7072010-02-11 06:54:23 +0000136EmitImmediate(const MCOperand &DispOp, unsigned Size,
137 unsigned &CurByte, raw_ostream &OS,
138 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000139 // If this is a simple integer displacement that doesn't require a relocation,
140 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000141 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000142 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000143 return;
144 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000145
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000146 // FIXME: Pass in the relocation type, this is just a hack..
147 unsigned FixupKind;
148 if (Size == 1)
Chris Lattner11eafa82010-02-11 21:17:54 +0000149 FixupKind = FK_Data_1;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000150 else if (Size == 2)
Chris Lattner11eafa82010-02-11 21:17:54 +0000151 FixupKind = FK_Data_2;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000152 else if (Size == 4)
Chris Lattner11eafa82010-02-11 21:17:54 +0000153 FixupKind = FK_Data_4;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000154 else {
155 assert(Size == 8 && "Unknown immediate size");
Chris Lattner11eafa82010-02-11 21:17:54 +0000156 FixupKind = FK_Data_8;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000157 }
Chris Lattner5dccfad2010-02-10 06:52:12 +0000158
159 // Emit a symbolic constant as a fixup and 4 zeros.
160 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000161 MCFixupKind(FixupKind)));
Chris Lattnera38c7072010-02-11 06:54:23 +0000162 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000163}
164
165
Chris Lattner1ac23b12010-02-05 02:18:40 +0000166void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
167 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000168 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000169 raw_ostream &OS,
170 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000171 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000172 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000173 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000174 const MCOperand &IndexReg = MI.getOperand(Op+2);
175 unsigned BaseReg = Base.getReg();
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000176 unsigned BaseRegNo = -1U;
177 if (BaseReg != 0 && BaseReg != X86::RIP)
178 BaseRegNo = GetX86RegNum(Base);
179
Chris Lattnera8168ec2010-02-09 21:57:34 +0000180 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000181 // If no BaseReg, issue a RIP relative instruction only if the MCE can
182 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
183 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000184
Chris Lattnera8168ec2010-02-09 21:57:34 +0000185 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000186 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000187 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
188 // encode to an R/M value of 4, which indicates that a SIB byte is
189 // present.
190 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000191 // If there is no base register and we're in 64-bit mode, we need a SIB
192 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
193 (!Is64BitMode || BaseReg != 0)) {
194
195 if (BaseReg == 0 || // [disp32] in X86-32 mode
196 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000197 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000198 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000199 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000200 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000201
Chris Lattnera8168ec2010-02-09 21:57:34 +0000202 // If the base is not EBP/ESP and there is no displacement, use simple
203 // indirect register encoding, this handles addresses like [EAX]. The
204 // encoding for [EBP] with no displacement means [disp32] so we handle it
205 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000206 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000207 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000208 return;
209 }
210
211 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000212 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000213 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000214 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000215 return;
216 }
217
218 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000219 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000220 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000221 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000222 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000223
224 // We need a SIB byte, so start by outputting the ModR/M byte first
225 assert(IndexReg.getReg() != X86::ESP &&
226 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
227
228 bool ForceDisp32 = false;
229 bool ForceDisp8 = false;
230 if (BaseReg == 0) {
231 // If there is no base register, we emit the special case SIB byte with
232 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000233 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000234 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000235 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000236 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000237 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000238 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000239 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000240 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000241 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000242 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000244 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000245 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
246 } else {
247 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000248 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000249 }
250
251 // Calculate what the SS field value should be...
252 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
253 unsigned SS = SSTable[Scale.getImm()];
254
255 if (BaseReg == 0) {
256 // Handle the SIB byte for the case where there is no base, see Intel
257 // Manual 2A, table 2-7. The displacement has already been output.
258 unsigned IndexRegNo;
259 if (IndexReg.getReg())
260 IndexRegNo = GetX86RegNum(IndexReg);
261 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
262 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000263 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000264 } else {
265 unsigned IndexRegNo;
266 if (IndexReg.getReg())
267 IndexRegNo = GetX86RegNum(IndexReg);
268 else
269 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000270 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000271 }
272
273 // Do we need to output a displacement?
274 if (ForceDisp8)
Chris Lattnera38c7072010-02-11 06:54:23 +0000275 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000276 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnera38c7072010-02-11 06:54:23 +0000277 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000278}
279
Chris Lattner39a612e2010-02-05 22:10:22 +0000280/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
281/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
282/// size, and 3) use of X86-64 extended registers.
283static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
284 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000285 // Pseudo instructions shouldn't get here.
286 assert((TSFlags & X86II::FormMask) != X86II::Pseudo &&
287 "Can't encode pseudo instrs");
Chris Lattner39a612e2010-02-05 22:10:22 +0000288
Chris Lattner7e851802010-02-11 22:39:10 +0000289 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000290 if (TSFlags & X86II::REX_W)
291 REX |= 1 << 3;
292
293 if (MI.getNumOperands() == 0) return REX;
294
295 unsigned NumOps = MI.getNumOperands();
296 // FIXME: MCInst should explicitize the two-addrness.
297 bool isTwoAddr = NumOps > 1 &&
298 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
299
300 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
301 unsigned i = isTwoAddr ? 1 : 0;
302 for (; i != NumOps; ++i) {
303 const MCOperand &MO = MI.getOperand(i);
304 if (!MO.isReg()) continue;
305 unsigned Reg = MO.getReg();
306 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000307 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
308 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000309 REX |= 0x40;
310 break;
311 }
312
313 switch (TSFlags & X86II::FormMask) {
314 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
315 case X86II::MRMSrcReg:
316 if (MI.getOperand(0).isReg() &&
317 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
318 REX |= 1 << 2;
319 i = isTwoAddr ? 2 : 1;
320 for (; i != NumOps; ++i) {
321 const MCOperand &MO = MI.getOperand(i);
322 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
323 REX |= 1 << 0;
324 }
325 break;
326 case X86II::MRMSrcMem: {
327 if (MI.getOperand(0).isReg() &&
328 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
329 REX |= 1 << 2;
330 unsigned Bit = 0;
331 i = isTwoAddr ? 2 : 1;
332 for (; i != NumOps; ++i) {
333 const MCOperand &MO = MI.getOperand(i);
334 if (MO.isReg()) {
335 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
336 REX |= 1 << Bit;
337 Bit++;
338 }
339 }
340 break;
341 }
342 case X86II::MRM0m: case X86II::MRM1m:
343 case X86II::MRM2m: case X86II::MRM3m:
344 case X86II::MRM4m: case X86II::MRM5m:
345 case X86II::MRM6m: case X86II::MRM7m:
346 case X86II::MRMDestMem: {
347 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
348 i = isTwoAddr ? 1 : 0;
349 if (NumOps > e && MI.getOperand(e).isReg() &&
350 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
351 REX |= 1 << 2;
352 unsigned Bit = 0;
353 for (; i != e; ++i) {
354 const MCOperand &MO = MI.getOperand(i);
355 if (MO.isReg()) {
356 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
357 REX |= 1 << Bit;
358 Bit++;
359 }
360 }
361 break;
362 }
363 default:
364 if (MI.getOperand(0).isReg() &&
365 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
366 REX |= 1 << 0;
367 i = isTwoAddr ? 2 : 1;
368 for (unsigned e = NumOps; i != e; ++i) {
369 const MCOperand &MO = MI.getOperand(i);
370 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
371 REX |= 1 << 2;
372 }
373 break;
374 }
375 return REX;
376}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000377
378void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000379EncodeInstruction(const MCInst &MI, raw_ostream &OS,
380 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000381 unsigned Opcode = MI.getOpcode();
382 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000383 unsigned TSFlags = Desc.TSFlags;
384
Chris Lattner37ce80e2010-02-10 06:41:02 +0000385 // Keep track of the current byte being emitted.
386 unsigned CurByte = 0;
387
Chris Lattner1e80f402010-02-03 21:57:59 +0000388 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
389 // in order to provide diffability.
390
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000391 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000392 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000393 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000394
395 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000396 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000397 default: assert(0 && "Invalid segment!");
398 case 0: break; // No segment override!
399 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000400 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000401 break;
402 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000403 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000404 break;
405 }
406
Chris Lattner1e80f402010-02-03 21:57:59 +0000407 // Emit the repeat opcode prefix as needed.
408 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000409 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000410
Chris Lattner1e80f402010-02-03 21:57:59 +0000411 // Emit the operand size opcode prefix as needed.
412 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000413 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000414
415 // Emit the address size opcode prefix as needed.
416 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000417 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000418
419 bool Need0FPrefix = false;
420 switch (TSFlags & X86II::Op0Mask) {
421 default: assert(0 && "Invalid prefix!");
422 case 0: break; // No prefix!
423 case X86II::REP: break; // already handled.
424 case X86II::TB: // Two-byte opcode prefix
425 case X86II::T8: // 0F 38
426 case X86II::TA: // 0F 3A
427 Need0FPrefix = true;
428 break;
429 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000430 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000431 Need0FPrefix = true;
432 break;
433 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000434 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000435 Need0FPrefix = true;
436 break;
437 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000438 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000439 Need0FPrefix = true;
440 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000441 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
442 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
443 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
444 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
445 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
446 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
447 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
448 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000449 }
450
451 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000452 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000453 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000454 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000455 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000456 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000457
458 // 0x0F escape code must be emitted just before the opcode.
459 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000460 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000461
462 // FIXME: Pull this up into previous switch if REX can be moved earlier.
463 switch (TSFlags & X86II::Op0Mask) {
464 case X86II::TF: // F2 0F 38
465 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000466 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000467 break;
468 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000469 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000470 break;
471 }
472
473 // If this is a two-address instruction, skip one of the register operands.
474 unsigned NumOps = Desc.getNumOperands();
475 unsigned CurOp = 0;
476 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
477 ++CurOp;
478 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
479 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
480 --NumOps;
481
Chris Lattner74a21512010-02-05 19:24:13 +0000482 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000483 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000484 case X86II::MRMInitReg:
485 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000486 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000487 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
488 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000489 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000490 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000491
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000492 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000493 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000494 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000495
496 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000497 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000498 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000499 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000500 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000501 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000502
503 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000504 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000505 EmitMemModRMByte(MI, CurOp,
506 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000507 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000508 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000509 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000510
511 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000512 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000513 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000514 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000515 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000516 break;
517
518 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000519 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000520
521 // FIXME: Maybe lea should have its own form? This is a horrible hack.
522 int AddrOperands;
523 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
524 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
525 AddrOperands = X86AddrNumOperands - 1; // No segment register
526 else
527 AddrOperands = X86AddrNumOperands;
528
Chris Lattnerdaa45552010-02-05 19:04:37 +0000529 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000530 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000531 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000532 break;
533 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000534
535 case X86II::MRM0r: case X86II::MRM1r:
536 case X86II::MRM2r: case X86II::MRM3r:
537 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000538 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000539 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000540
541 // Special handling of lfence, mfence, monitor, and mwait.
542 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
543 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
544 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000545 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
546 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000547
548 switch (Opcode) {
549 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000550 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
551 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000552 }
553 } else {
554 EmitRegModRMByte(MI.getOperand(CurOp++),
555 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000556 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000557 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000558 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000559 case X86II::MRM0m: case X86II::MRM1m:
560 case X86II::MRM2m: case X86II::MRM3m:
561 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000562 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000563 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000564 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000565 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000566 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000567 break;
568 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000569
570 // If there is a remaining operand, it must be a trailing immediate. Emit it
571 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000572 // FIXME: This should pass in whether the value is pc relative or not. This
573 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000574 if (CurOp != NumOps)
575 EmitImmediate(MI.getOperand(CurOp++), X86II::getSizeOfImm(TSFlags),
576 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000577
578#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000579 // FIXME: Verify.
580 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000581 errs() << "Cannot encode all operands of: ";
582 MI.dump();
583 errs() << '\n';
584 abort();
585 }
586#endif
Chris Lattner45762472010-02-03 21:24:49 +0000587}