blob: 4c3a4789f72c77649a092e39170bff123b0caf21 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
736 This indicates that the value of the function always returns the value
737 of the parameter as its return value. This is an optimization hint to
738 the code generator when generating the caller, allowing tail call
739 optimization and omission of register saves and restores in some cases;
740 it is not checked or enforced when generating the callee. The parameter
741 and the function return type must be valid operands for the
742 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
743 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000744
745.. _gc:
746
747Garbage Collector Names
748-----------------------
749
750Each function may specify a garbage collector name, which is simply a
751string:
752
753.. code-block:: llvm
754
755 define void @f() gc "name" { ... }
756
757The compiler declares the supported values of *name*. Specifying a
758collector which will cause the compiler to alter its output in order to
759support the named garbage collection algorithm.
760
Bill Wendling95ce4c22013-02-06 06:52:58 +0000761.. _attrgrp:
762
763Attribute Groups
764----------------
765
766Attribute groups are groups of attributes that are referenced by objects within
767the IR. They are important for keeping ``.ll`` files readable, because a lot of
768functions will use the same set of attributes. In the degenerative case of a
769``.ll`` file that corresponds to a single ``.c`` file, the single attribute
770group will capture the important command line flags used to build that file.
771
772An attribute group is a module-level object. To use an attribute group, an
773object references the attribute group's ID (e.g. ``#37``). An object may refer
774to more than one attribute group. In that situation, the attributes from the
775different groups are merged.
776
777Here is an example of attribute groups for a function that should always be
778inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
779
780.. code-block:: llvm
781
782 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000783 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000784
785 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000786 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000787
788 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
789 define void @f() #0 #1 { ... }
790
Sean Silvaf722b002012-12-07 10:36:55 +0000791.. _fnattrs:
792
793Function Attributes
794-------------------
795
796Function attributes are set to communicate additional information about
797a function. Function attributes are considered to be part of the
798function, not of the function type, so functions with different function
799attributes can have the same function type.
800
801Function attributes are simple keywords that follow the type specified.
802If multiple attributes are needed, they are space separated. For
803example:
804
805.. code-block:: llvm
806
807 define void @f() noinline { ... }
808 define void @f() alwaysinline { ... }
809 define void @f() alwaysinline optsize { ... }
810 define void @f() optsize { ... }
811
Sean Silvaf722b002012-12-07 10:36:55 +0000812``alignstack(<n>)``
813 This attribute indicates that, when emitting the prologue and
814 epilogue, the backend should forcibly align the stack pointer.
815 Specify the desired alignment, which must be a power of two, in
816 parentheses.
817``alwaysinline``
818 This attribute indicates that the inliner should attempt to inline
819 this function into callers whenever possible, ignoring any active
820 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000821``cold``
822 This attribute indicates that this function is rarely called. When
823 computing edge weights, basic blocks post-dominated by a cold
824 function call are also considered to be cold; and, thus, given low
825 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000826``nonlazybind``
827 This attribute suppresses lazy symbol binding for the function. This
828 may make calls to the function faster, at the cost of extra program
829 startup time if the function is not called during program startup.
830``inlinehint``
831 This attribute indicates that the source code contained a hint that
832 inlining this function is desirable (such as the "inline" keyword in
833 C/C++). It is just a hint; it imposes no requirements on the
834 inliner.
835``naked``
836 This attribute disables prologue / epilogue emission for the
837 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000838``nobuiltin``
839 This indicates that the callee function at a call site is not
840 recognized as a built-in function. LLVM will retain the original call
841 and not replace it with equivalent code based on the semantics of the
842 built-in function. This is only valid at call sites, not on function
843 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000844``noduplicate``
845 This attribute indicates that calls to the function cannot be
846 duplicated. A call to a ``noduplicate`` function may be moved
847 within its parent function, but may not be duplicated within
848 its parent function.
849
850 A function containing a ``noduplicate`` call may still
851 be an inlining candidate, provided that the call is not
852 duplicated by inlining. That implies that the function has
853 internal linkage and only has one call site, so the original
854 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000855``noimplicitfloat``
856 This attributes disables implicit floating point instructions.
857``noinline``
858 This attribute indicates that the inliner should never inline this
859 function in any situation. This attribute may not be used together
860 with the ``alwaysinline`` attribute.
861``noredzone``
862 This attribute indicates that the code generator should not use a
863 red zone, even if the target-specific ABI normally permits it.
864``noreturn``
865 This function attribute indicates that the function never returns
866 normally. This produces undefined behavior at runtime if the
867 function ever does dynamically return.
868``nounwind``
869 This function attribute indicates that the function never returns
870 with an unwind or exceptional control flow. If the function does
871 unwind, its runtime behavior is undefined.
872``optsize``
873 This attribute suggests that optimization passes and code generator
874 passes make choices that keep the code size of this function low,
875 and otherwise do optimizations specifically to reduce code size.
876``readnone``
877 This attribute indicates that the function computes its result (or
878 decides to unwind an exception) based strictly on its arguments,
879 without dereferencing any pointer arguments or otherwise accessing
880 any mutable state (e.g. memory, control registers, etc) visible to
881 caller functions. It does not write through any pointer arguments
882 (including ``byval`` arguments) and never changes any state visible
883 to callers. This means that it cannot unwind exceptions by calling
884 the ``C++`` exception throwing methods.
885``readonly``
886 This attribute indicates that the function does not write through
887 any pointer arguments (including ``byval`` arguments) or otherwise
888 modify any state (e.g. memory, control registers, etc) visible to
889 caller functions. It may dereference pointer arguments and read
890 state that may be set in the caller. A readonly function always
891 returns the same value (or unwinds an exception identically) when
892 called with the same set of arguments and global state. It cannot
893 unwind an exception by calling the ``C++`` exception throwing
894 methods.
895``returns_twice``
896 This attribute indicates that this function can return twice. The C
897 ``setjmp`` is an example of such a function. The compiler disables
898 some optimizations (like tail calls) in the caller of these
899 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000900``sanitize_address``
901 This attribute indicates that AddressSanitizer checks
902 (dynamic address safety analysis) are enabled for this function.
903``sanitize_memory``
904 This attribute indicates that MemorySanitizer checks (dynamic detection
905 of accesses to uninitialized memory) are enabled for this function.
906``sanitize_thread``
907 This attribute indicates that ThreadSanitizer checks
908 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000909``ssp``
910 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000911 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000912 placed on the stack before the local variables that's checked upon
913 return from the function to see if it has been overwritten. A
914 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000915 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000916
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000917 - Character arrays larger than ``ssp-buffer-size`` (default 8).
918 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
919 - Calls to alloca() with variable sizes or constant sizes greater than
920 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000921
922 If a function that has an ``ssp`` attribute is inlined into a
923 function that doesn't have an ``ssp`` attribute, then the resulting
924 function will have an ``ssp`` attribute.
925``sspreq``
926 This attribute indicates that the function should *always* emit a
927 stack smashing protector. This overrides the ``ssp`` function
928 attribute.
929
930 If a function that has an ``sspreq`` attribute is inlined into a
931 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000932 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
933 an ``sspreq`` attribute.
934``sspstrong``
935 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000936 protector. This attribute causes a strong heuristic to be used when
937 determining if a function needs stack protectors. The strong heuristic
938 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000939
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000940 - Arrays of any size and type
941 - Aggregates containing an array of any size and type.
942 - Calls to alloca().
943 - Local variables that have had their address taken.
944
945 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000946
947 If a function that has an ``sspstrong`` attribute is inlined into a
948 function that doesn't have an ``sspstrong`` attribute, then the
949 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000950``uwtable``
951 This attribute indicates that the ABI being targeted requires that
952 an unwind table entry be produce for this function even if we can
953 show that no exceptions passes by it. This is normally the case for
954 the ELF x86-64 abi, but it can be disabled for some compilation
955 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000956
957.. _moduleasm:
958
959Module-Level Inline Assembly
960----------------------------
961
962Modules may contain "module-level inline asm" blocks, which corresponds
963to the GCC "file scope inline asm" blocks. These blocks are internally
964concatenated by LLVM and treated as a single unit, but may be separated
965in the ``.ll`` file if desired. The syntax is very simple:
966
967.. code-block:: llvm
968
969 module asm "inline asm code goes here"
970 module asm "more can go here"
971
972The strings can contain any character by escaping non-printable
973characters. The escape sequence used is simply "\\xx" where "xx" is the
974two digit hex code for the number.
975
976The inline asm code is simply printed to the machine code .s file when
977assembly code is generated.
978
Eli Bendersky1de14102013-06-07 19:40:08 +0000979.. _langref_datalayout:
980
Sean Silvaf722b002012-12-07 10:36:55 +0000981Data Layout
982-----------
983
984A module may specify a target specific data layout string that specifies
985how data is to be laid out in memory. The syntax for the data layout is
986simply:
987
988.. code-block:: llvm
989
990 target datalayout = "layout specification"
991
992The *layout specification* consists of a list of specifications
993separated by the minus sign character ('-'). Each specification starts
994with a letter and may include other information after the letter to
995define some aspect of the data layout. The specifications accepted are
996as follows:
997
998``E``
999 Specifies that the target lays out data in big-endian form. That is,
1000 the bits with the most significance have the lowest address
1001 location.
1002``e``
1003 Specifies that the target lays out data in little-endian form. That
1004 is, the bits with the least significance have the lowest address
1005 location.
1006``S<size>``
1007 Specifies the natural alignment of the stack in bits. Alignment
1008 promotion of stack variables is limited to the natural stack
1009 alignment to avoid dynamic stack realignment. The stack alignment
1010 must be a multiple of 8-bits. If omitted, the natural stack
1011 alignment defaults to "unspecified", which does not prevent any
1012 alignment promotions.
1013``p[n]:<size>:<abi>:<pref>``
1014 This specifies the *size* of a pointer and its ``<abi>`` and
1015 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1016 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1017 preceding ``:`` should be omitted too. The address space, ``n`` is
1018 optional, and if not specified, denotes the default address space 0.
1019 The value of ``n`` must be in the range [1,2^23).
1020``i<size>:<abi>:<pref>``
1021 This specifies the alignment for an integer type of a given bit
1022 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1023``v<size>:<abi>:<pref>``
1024 This specifies the alignment for a vector type of a given bit
1025 ``<size>``.
1026``f<size>:<abi>:<pref>``
1027 This specifies the alignment for a floating point type of a given bit
1028 ``<size>``. Only values of ``<size>`` that are supported by the target
1029 will work. 32 (float) and 64 (double) are supported on all targets; 80
1030 or 128 (different flavors of long double) are also supported on some
1031 targets.
1032``a<size>:<abi>:<pref>``
1033 This specifies the alignment for an aggregate type of a given bit
1034 ``<size>``.
1035``s<size>:<abi>:<pref>``
1036 This specifies the alignment for a stack object of a given bit
1037 ``<size>``.
1038``n<size1>:<size2>:<size3>...``
1039 This specifies a set of native integer widths for the target CPU in
1040 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1041 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1042 this set are considered to support most general arithmetic operations
1043 efficiently.
1044
1045When constructing the data layout for a given target, LLVM starts with a
1046default set of specifications which are then (possibly) overridden by
1047the specifications in the ``datalayout`` keyword. The default
1048specifications are given in this list:
1049
1050- ``E`` - big endian
1051- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001052- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001053- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1054- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1055- ``i16:16:16`` - i16 is 16-bit aligned
1056- ``i32:32:32`` - i32 is 32-bit aligned
1057- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1058 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001059- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001060- ``f32:32:32`` - float is 32-bit aligned
1061- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001062- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001063- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1064- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001065- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001066
1067When LLVM is determining the alignment for a given type, it uses the
1068following rules:
1069
1070#. If the type sought is an exact match for one of the specifications,
1071 that specification is used.
1072#. If no match is found, and the type sought is an integer type, then
1073 the smallest integer type that is larger than the bitwidth of the
1074 sought type is used. If none of the specifications are larger than
1075 the bitwidth then the largest integer type is used. For example,
1076 given the default specifications above, the i7 type will use the
1077 alignment of i8 (next largest) while both i65 and i256 will use the
1078 alignment of i64 (largest specified).
1079#. If no match is found, and the type sought is a vector type, then the
1080 largest vector type that is smaller than the sought vector type will
1081 be used as a fall back. This happens because <128 x double> can be
1082 implemented in terms of 64 <2 x double>, for example.
1083
1084The function of the data layout string may not be what you expect.
1085Notably, this is not a specification from the frontend of what alignment
1086the code generator should use.
1087
1088Instead, if specified, the target data layout is required to match what
1089the ultimate *code generator* expects. This string is used by the
1090mid-level optimizers to improve code, and this only works if it matches
1091what the ultimate code generator uses. If you would like to generate IR
1092that does not embed this target-specific detail into the IR, then you
1093don't have to specify the string. This will disable some optimizations
1094that require precise layout information, but this also prevents those
1095optimizations from introducing target specificity into the IR.
1096
1097.. _pointeraliasing:
1098
1099Pointer Aliasing Rules
1100----------------------
1101
1102Any memory access must be done through a pointer value associated with
1103an address range of the memory access, otherwise the behavior is
1104undefined. Pointer values are associated with address ranges according
1105to the following rules:
1106
1107- A pointer value is associated with the addresses associated with any
1108 value it is *based* on.
1109- An address of a global variable is associated with the address range
1110 of the variable's storage.
1111- The result value of an allocation instruction is associated with the
1112 address range of the allocated storage.
1113- A null pointer in the default address-space is associated with no
1114 address.
1115- An integer constant other than zero or a pointer value returned from
1116 a function not defined within LLVM may be associated with address
1117 ranges allocated through mechanisms other than those provided by
1118 LLVM. Such ranges shall not overlap with any ranges of addresses
1119 allocated by mechanisms provided by LLVM.
1120
1121A pointer value is *based* on another pointer value according to the
1122following rules:
1123
1124- A pointer value formed from a ``getelementptr`` operation is *based*
1125 on the first operand of the ``getelementptr``.
1126- The result value of a ``bitcast`` is *based* on the operand of the
1127 ``bitcast``.
1128- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1129 values that contribute (directly or indirectly) to the computation of
1130 the pointer's value.
1131- The "*based* on" relationship is transitive.
1132
1133Note that this definition of *"based"* is intentionally similar to the
1134definition of *"based"* in C99, though it is slightly weaker.
1135
1136LLVM IR does not associate types with memory. The result type of a
1137``load`` merely indicates the size and alignment of the memory from
1138which to load, as well as the interpretation of the value. The first
1139operand type of a ``store`` similarly only indicates the size and
1140alignment of the store.
1141
1142Consequently, type-based alias analysis, aka TBAA, aka
1143``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1144:ref:`Metadata <metadata>` may be used to encode additional information
1145which specialized optimization passes may use to implement type-based
1146alias analysis.
1147
1148.. _volatile:
1149
1150Volatile Memory Accesses
1151------------------------
1152
1153Certain memory accesses, such as :ref:`load <i_load>`'s,
1154:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1155marked ``volatile``. The optimizers must not change the number of
1156volatile operations or change their order of execution relative to other
1157volatile operations. The optimizers *may* change the order of volatile
1158operations relative to non-volatile operations. This is not Java's
1159"volatile" and has no cross-thread synchronization behavior.
1160
Andrew Trick9a6dd022013-01-30 21:19:35 +00001161IR-level volatile loads and stores cannot safely be optimized into
1162llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1163flagged volatile. Likewise, the backend should never split or merge
1164target-legal volatile load/store instructions.
1165
Andrew Trick946317d2013-01-31 00:49:39 +00001166.. admonition:: Rationale
1167
1168 Platforms may rely on volatile loads and stores of natively supported
1169 data width to be executed as single instruction. For example, in C
1170 this holds for an l-value of volatile primitive type with native
1171 hardware support, but not necessarily for aggregate types. The
1172 frontend upholds these expectations, which are intentionally
1173 unspecified in the IR. The rules above ensure that IR transformation
1174 do not violate the frontend's contract with the language.
1175
Sean Silvaf722b002012-12-07 10:36:55 +00001176.. _memmodel:
1177
1178Memory Model for Concurrent Operations
1179--------------------------------------
1180
1181The LLVM IR does not define any way to start parallel threads of
1182execution or to register signal handlers. Nonetheless, there are
1183platform-specific ways to create them, and we define LLVM IR's behavior
1184in their presence. This model is inspired by the C++0x memory model.
1185
1186For a more informal introduction to this model, see the :doc:`Atomics`.
1187
1188We define a *happens-before* partial order as the least partial order
1189that
1190
1191- Is a superset of single-thread program order, and
1192- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1193 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1194 techniques, like pthread locks, thread creation, thread joining,
1195 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1196 Constraints <ordering>`).
1197
1198Note that program order does not introduce *happens-before* edges
1199between a thread and signals executing inside that thread.
1200
1201Every (defined) read operation (load instructions, memcpy, atomic
1202loads/read-modify-writes, etc.) R reads a series of bytes written by
1203(defined) write operations (store instructions, atomic
1204stores/read-modify-writes, memcpy, etc.). For the purposes of this
1205section, initialized globals are considered to have a write of the
1206initializer which is atomic and happens before any other read or write
1207of the memory in question. For each byte of a read R, R\ :sub:`byte`
1208may see any write to the same byte, except:
1209
1210- If write\ :sub:`1` happens before write\ :sub:`2`, and
1211 write\ :sub:`2` happens before R\ :sub:`byte`, then
1212 R\ :sub:`byte` does not see write\ :sub:`1`.
1213- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1214 R\ :sub:`byte` does not see write\ :sub:`3`.
1215
1216Given that definition, R\ :sub:`byte` is defined as follows:
1217
1218- If R is volatile, the result is target-dependent. (Volatile is
1219 supposed to give guarantees which can support ``sig_atomic_t`` in
1220 C/C++, and may be used for accesses to addresses which do not behave
1221 like normal memory. It does not generally provide cross-thread
1222 synchronization.)
1223- Otherwise, if there is no write to the same byte that happens before
1224 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1225- Otherwise, if R\ :sub:`byte` may see exactly one write,
1226 R\ :sub:`byte` returns the value written by that write.
1227- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1228 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1229 Memory Ordering Constraints <ordering>` section for additional
1230 constraints on how the choice is made.
1231- Otherwise R\ :sub:`byte` returns ``undef``.
1232
1233R returns the value composed of the series of bytes it read. This
1234implies that some bytes within the value may be ``undef`` **without**
1235the entire value being ``undef``. Note that this only defines the
1236semantics of the operation; it doesn't mean that targets will emit more
1237than one instruction to read the series of bytes.
1238
1239Note that in cases where none of the atomic intrinsics are used, this
1240model places only one restriction on IR transformations on top of what
1241is required for single-threaded execution: introducing a store to a byte
1242which might not otherwise be stored is not allowed in general.
1243(Specifically, in the case where another thread might write to and read
1244from an address, introducing a store can change a load that may see
1245exactly one write into a load that may see multiple writes.)
1246
1247.. _ordering:
1248
1249Atomic Memory Ordering Constraints
1250----------------------------------
1251
1252Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1253:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1254:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1255an ordering parameter that determines which other atomic instructions on
1256the same address they *synchronize with*. These semantics are borrowed
1257from Java and C++0x, but are somewhat more colloquial. If these
1258descriptions aren't precise enough, check those specs (see spec
1259references in the :doc:`atomics guide <Atomics>`).
1260:ref:`fence <i_fence>` instructions treat these orderings somewhat
1261differently since they don't take an address. See that instruction's
1262documentation for details.
1263
1264For a simpler introduction to the ordering constraints, see the
1265:doc:`Atomics`.
1266
1267``unordered``
1268 The set of values that can be read is governed by the happens-before
1269 partial order. A value cannot be read unless some operation wrote
1270 it. This is intended to provide a guarantee strong enough to model
1271 Java's non-volatile shared variables. This ordering cannot be
1272 specified for read-modify-write operations; it is not strong enough
1273 to make them atomic in any interesting way.
1274``monotonic``
1275 In addition to the guarantees of ``unordered``, there is a single
1276 total order for modifications by ``monotonic`` operations on each
1277 address. All modification orders must be compatible with the
1278 happens-before order. There is no guarantee that the modification
1279 orders can be combined to a global total order for the whole program
1280 (and this often will not be possible). The read in an atomic
1281 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1282 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1283 order immediately before the value it writes. If one atomic read
1284 happens before another atomic read of the same address, the later
1285 read must see the same value or a later value in the address's
1286 modification order. This disallows reordering of ``monotonic`` (or
1287 stronger) operations on the same address. If an address is written
1288 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1289 read that address repeatedly, the other threads must eventually see
1290 the write. This corresponds to the C++0x/C1x
1291 ``memory_order_relaxed``.
1292``acquire``
1293 In addition to the guarantees of ``monotonic``, a
1294 *synchronizes-with* edge may be formed with a ``release`` operation.
1295 This is intended to model C++'s ``memory_order_acquire``.
1296``release``
1297 In addition to the guarantees of ``monotonic``, if this operation
1298 writes a value which is subsequently read by an ``acquire``
1299 operation, it *synchronizes-with* that operation. (This isn't a
1300 complete description; see the C++0x definition of a release
1301 sequence.) This corresponds to the C++0x/C1x
1302 ``memory_order_release``.
1303``acq_rel`` (acquire+release)
1304 Acts as both an ``acquire`` and ``release`` operation on its
1305 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1306``seq_cst`` (sequentially consistent)
1307 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1308 operation which only reads, ``release`` for an operation which only
1309 writes), there is a global total order on all
1310 sequentially-consistent operations on all addresses, which is
1311 consistent with the *happens-before* partial order and with the
1312 modification orders of all the affected addresses. Each
1313 sequentially-consistent read sees the last preceding write to the
1314 same address in this global order. This corresponds to the C++0x/C1x
1315 ``memory_order_seq_cst`` and Java volatile.
1316
1317.. _singlethread:
1318
1319If an atomic operation is marked ``singlethread``, it only *synchronizes
1320with* or participates in modification and seq\_cst total orderings with
1321other operations running in the same thread (for example, in signal
1322handlers).
1323
1324.. _fastmath:
1325
1326Fast-Math Flags
1327---------------
1328
1329LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1330:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1331:ref:`frem <i_frem>`) have the following flags that can set to enable
1332otherwise unsafe floating point operations
1333
1334``nnan``
1335 No NaNs - Allow optimizations to assume the arguments and result are not
1336 NaN. Such optimizations are required to retain defined behavior over
1337 NaNs, but the value of the result is undefined.
1338
1339``ninf``
1340 No Infs - Allow optimizations to assume the arguments and result are not
1341 +/-Inf. Such optimizations are required to retain defined behavior over
1342 +/-Inf, but the value of the result is undefined.
1343
1344``nsz``
1345 No Signed Zeros - Allow optimizations to treat the sign of a zero
1346 argument or result as insignificant.
1347
1348``arcp``
1349 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1350 argument rather than perform division.
1351
1352``fast``
1353 Fast - Allow algebraically equivalent transformations that may
1354 dramatically change results in floating point (e.g. reassociate). This
1355 flag implies all the others.
1356
1357.. _typesystem:
1358
1359Type System
1360===========
1361
1362The LLVM type system is one of the most important features of the
1363intermediate representation. Being typed enables a number of
1364optimizations to be performed on the intermediate representation
1365directly, without having to do extra analyses on the side before the
1366transformation. A strong type system makes it easier to read the
1367generated code and enables novel analyses and transformations that are
1368not feasible to perform on normal three address code representations.
1369
1370Type Classifications
1371--------------------
1372
1373The types fall into a few useful classifications:
1374
1375
1376.. list-table::
1377 :header-rows: 1
1378
1379 * - Classification
1380 - Types
1381
1382 * - :ref:`integer <t_integer>`
1383 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1384 ``i64``, ...
1385
1386 * - :ref:`floating point <t_floating>`
1387 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1388 ``ppc_fp128``
1389
1390
1391 * - first class
1392
1393 .. _t_firstclass:
1394
1395 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1396 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1397 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1398 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1399
1400 * - :ref:`primitive <t_primitive>`
1401 - :ref:`label <t_label>`,
1402 :ref:`void <t_void>`,
1403 :ref:`integer <t_integer>`,
1404 :ref:`floating point <t_floating>`,
1405 :ref:`x86mmx <t_x86mmx>`,
1406 :ref:`metadata <t_metadata>`.
1407
1408 * - :ref:`derived <t_derived>`
1409 - :ref:`array <t_array>`,
1410 :ref:`function <t_function>`,
1411 :ref:`pointer <t_pointer>`,
1412 :ref:`structure <t_struct>`,
1413 :ref:`vector <t_vector>`,
1414 :ref:`opaque <t_opaque>`.
1415
1416The :ref:`first class <t_firstclass>` types are perhaps the most important.
1417Values of these types are the only ones which can be produced by
1418instructions.
1419
1420.. _t_primitive:
1421
1422Primitive Types
1423---------------
1424
1425The primitive types are the fundamental building blocks of the LLVM
1426system.
1427
1428.. _t_integer:
1429
1430Integer Type
1431^^^^^^^^^^^^
1432
1433Overview:
1434"""""""""
1435
1436The integer type is a very simple type that simply specifies an
1437arbitrary bit width for the integer type desired. Any bit width from 1
1438bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1439
1440Syntax:
1441"""""""
1442
1443::
1444
1445 iN
1446
1447The number of bits the integer will occupy is specified by the ``N``
1448value.
1449
1450Examples:
1451"""""""""
1452
1453+----------------+------------------------------------------------+
1454| ``i1`` | a single-bit integer. |
1455+----------------+------------------------------------------------+
1456| ``i32`` | a 32-bit integer. |
1457+----------------+------------------------------------------------+
1458| ``i1942652`` | a really big integer of over 1 million bits. |
1459+----------------+------------------------------------------------+
1460
1461.. _t_floating:
1462
1463Floating Point Types
1464^^^^^^^^^^^^^^^^^^^^
1465
1466.. list-table::
1467 :header-rows: 1
1468
1469 * - Type
1470 - Description
1471
1472 * - ``half``
1473 - 16-bit floating point value
1474
1475 * - ``float``
1476 - 32-bit floating point value
1477
1478 * - ``double``
1479 - 64-bit floating point value
1480
1481 * - ``fp128``
1482 - 128-bit floating point value (112-bit mantissa)
1483
1484 * - ``x86_fp80``
1485 - 80-bit floating point value (X87)
1486
1487 * - ``ppc_fp128``
1488 - 128-bit floating point value (two 64-bits)
1489
1490.. _t_x86mmx:
1491
1492X86mmx Type
1493^^^^^^^^^^^
1494
1495Overview:
1496"""""""""
1497
1498The x86mmx type represents a value held in an MMX register on an x86
1499machine. The operations allowed on it are quite limited: parameters and
1500return values, load and store, and bitcast. User-specified MMX
1501instructions are represented as intrinsic or asm calls with arguments
1502and/or results of this type. There are no arrays, vectors or constants
1503of this type.
1504
1505Syntax:
1506"""""""
1507
1508::
1509
1510 x86mmx
1511
1512.. _t_void:
1513
1514Void Type
1515^^^^^^^^^
1516
1517Overview:
1518"""""""""
1519
1520The void type does not represent any value and has no size.
1521
1522Syntax:
1523"""""""
1524
1525::
1526
1527 void
1528
1529.. _t_label:
1530
1531Label Type
1532^^^^^^^^^^
1533
1534Overview:
1535"""""""""
1536
1537The label type represents code labels.
1538
1539Syntax:
1540"""""""
1541
1542::
1543
1544 label
1545
1546.. _t_metadata:
1547
1548Metadata Type
1549^^^^^^^^^^^^^
1550
1551Overview:
1552"""""""""
1553
1554The metadata type represents embedded metadata. No derived types may be
1555created from metadata except for :ref:`function <t_function>` arguments.
1556
1557Syntax:
1558"""""""
1559
1560::
1561
1562 metadata
1563
1564.. _t_derived:
1565
1566Derived Types
1567-------------
1568
1569The real power in LLVM comes from the derived types in the system. This
1570is what allows a programmer to represent arrays, functions, pointers,
1571and other useful types. Each of these types contain one or more element
1572types which may be a primitive type, or another derived type. For
1573example, it is possible to have a two dimensional array, using an array
1574as the element type of another array.
1575
1576.. _t_aggregate:
1577
1578Aggregate Types
1579^^^^^^^^^^^^^^^
1580
1581Aggregate Types are a subset of derived types that can contain multiple
1582member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1583aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1584aggregate types.
1585
1586.. _t_array:
1587
1588Array Type
1589^^^^^^^^^^
1590
1591Overview:
1592"""""""""
1593
1594The array type is a very simple derived type that arranges elements
1595sequentially in memory. The array type requires a size (number of
1596elements) and an underlying data type.
1597
1598Syntax:
1599"""""""
1600
1601::
1602
1603 [<# elements> x <elementtype>]
1604
1605The number of elements is a constant integer value; ``elementtype`` may
1606be any type with a size.
1607
1608Examples:
1609"""""""""
1610
1611+------------------+--------------------------------------+
1612| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1613+------------------+--------------------------------------+
1614| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1615+------------------+--------------------------------------+
1616| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1617+------------------+--------------------------------------+
1618
1619Here are some examples of multidimensional arrays:
1620
1621+-----------------------------+----------------------------------------------------------+
1622| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1623+-----------------------------+----------------------------------------------------------+
1624| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1625+-----------------------------+----------------------------------------------------------+
1626| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1627+-----------------------------+----------------------------------------------------------+
1628
1629There is no restriction on indexing beyond the end of the array implied
1630by a static type (though there are restrictions on indexing beyond the
1631bounds of an allocated object in some cases). This means that
1632single-dimension 'variable sized array' addressing can be implemented in
1633LLVM with a zero length array type. An implementation of 'pascal style
1634arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1635example.
1636
1637.. _t_function:
1638
1639Function Type
1640^^^^^^^^^^^^^
1641
1642Overview:
1643"""""""""
1644
1645The function type can be thought of as a function signature. It consists
1646of a return type and a list of formal parameter types. The return type
1647of a function type is a first class type or a void type.
1648
1649Syntax:
1650"""""""
1651
1652::
1653
1654 <returntype> (<parameter list>)
1655
1656...where '``<parameter list>``' is a comma-separated list of type
1657specifiers. Optionally, the parameter list may include a type ``...``,
1658which indicates that the function takes a variable number of arguments.
1659Variable argument functions can access their arguments with the
1660:ref:`variable argument handling intrinsic <int_varargs>` functions.
1661'``<returntype>``' is any type except :ref:`label <t_label>`.
1662
1663Examples:
1664"""""""""
1665
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001669| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001670+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1671| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1672+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1673| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1674+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1675
1676.. _t_struct:
1677
1678Structure Type
1679^^^^^^^^^^^^^^
1680
1681Overview:
1682"""""""""
1683
1684The structure type is used to represent a collection of data members
1685together in memory. The elements of a structure may be any type that has
1686a size.
1687
1688Structures in memory are accessed using '``load``' and '``store``' by
1689getting a pointer to a field with the '``getelementptr``' instruction.
1690Structures in registers are accessed using the '``extractvalue``' and
1691'``insertvalue``' instructions.
1692
1693Structures may optionally be "packed" structures, which indicate that
1694the alignment of the struct is one byte, and that there is no padding
1695between the elements. In non-packed structs, padding between field types
1696is inserted as defined by the DataLayout string in the module, which is
1697required to match what the underlying code generator expects.
1698
1699Structures can either be "literal" or "identified". A literal structure
1700is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1701identified types are always defined at the top level with a name.
1702Literal types are uniqued by their contents and can never be recursive
1703or opaque since there is no way to write one. Identified types can be
1704recursive, can be opaqued, and are never uniqued.
1705
1706Syntax:
1707"""""""
1708
1709::
1710
1711 %T1 = type { <type list> } ; Identified normal struct type
1712 %T2 = type <{ <type list> }> ; Identified packed struct type
1713
1714Examples:
1715"""""""""
1716
1717+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1718| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1719+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001720| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001721+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1722| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1723+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1724
1725.. _t_opaque:
1726
1727Opaque Structure Types
1728^^^^^^^^^^^^^^^^^^^^^^
1729
1730Overview:
1731"""""""""
1732
1733Opaque structure types are used to represent named structure types that
1734do not have a body specified. This corresponds (for example) to the C
1735notion of a forward declared structure.
1736
1737Syntax:
1738"""""""
1739
1740::
1741
1742 %X = type opaque
1743 %52 = type opaque
1744
1745Examples:
1746"""""""""
1747
1748+--------------+-------------------+
1749| ``opaque`` | An opaque type. |
1750+--------------+-------------------+
1751
1752.. _t_pointer:
1753
1754Pointer Type
1755^^^^^^^^^^^^
1756
1757Overview:
1758"""""""""
1759
1760The pointer type is used to specify memory locations. Pointers are
1761commonly used to reference objects in memory.
1762
1763Pointer types may have an optional address space attribute defining the
1764numbered address space where the pointed-to object resides. The default
1765address space is number zero. The semantics of non-zero address spaces
1766are target-specific.
1767
1768Note that LLVM does not permit pointers to void (``void*``) nor does it
1769permit pointers to labels (``label*``). Use ``i8*`` instead.
1770
1771Syntax:
1772"""""""
1773
1774::
1775
1776 <type> *
1777
1778Examples:
1779"""""""""
1780
1781+-------------------------+--------------------------------------------------------------------------------------------------------------+
1782| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1783+-------------------------+--------------------------------------------------------------------------------------------------------------+
1784| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1785+-------------------------+--------------------------------------------------------------------------------------------------------------+
1786| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1787+-------------------------+--------------------------------------------------------------------------------------------------------------+
1788
1789.. _t_vector:
1790
1791Vector Type
1792^^^^^^^^^^^
1793
1794Overview:
1795"""""""""
1796
1797A vector type is a simple derived type that represents a vector of
1798elements. Vector types are used when multiple primitive data are
1799operated in parallel using a single instruction (SIMD). A vector type
1800requires a size (number of elements) and an underlying primitive data
1801type. Vector types are considered :ref:`first class <t_firstclass>`.
1802
1803Syntax:
1804"""""""
1805
1806::
1807
1808 < <# elements> x <elementtype> >
1809
1810The number of elements is a constant integer value larger than 0;
1811elementtype may be any integer or floating point type, or a pointer to
1812these types. Vectors of size zero are not allowed.
1813
1814Examples:
1815"""""""""
1816
1817+-------------------+--------------------------------------------------+
1818| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1819+-------------------+--------------------------------------------------+
1820| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1821+-------------------+--------------------------------------------------+
1822| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1823+-------------------+--------------------------------------------------+
1824| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1825+-------------------+--------------------------------------------------+
1826
1827Constants
1828=========
1829
1830LLVM has several different basic types of constants. This section
1831describes them all and their syntax.
1832
1833Simple Constants
1834----------------
1835
1836**Boolean constants**
1837 The two strings '``true``' and '``false``' are both valid constants
1838 of the ``i1`` type.
1839**Integer constants**
1840 Standard integers (such as '4') are constants of the
1841 :ref:`integer <t_integer>` type. Negative numbers may be used with
1842 integer types.
1843**Floating point constants**
1844 Floating point constants use standard decimal notation (e.g.
1845 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1846 hexadecimal notation (see below). The assembler requires the exact
1847 decimal value of a floating-point constant. For example, the
1848 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1849 decimal in binary. Floating point constants must have a :ref:`floating
1850 point <t_floating>` type.
1851**Null pointer constants**
1852 The identifier '``null``' is recognized as a null pointer constant
1853 and must be of :ref:`pointer type <t_pointer>`.
1854
1855The one non-intuitive notation for constants is the hexadecimal form of
1856floating point constants. For example, the form
1857'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1858than) '``double 4.5e+15``'. The only time hexadecimal floating point
1859constants are required (and the only time that they are generated by the
1860disassembler) is when a floating point constant must be emitted but it
1861cannot be represented as a decimal floating point number in a reasonable
1862number of digits. For example, NaN's, infinities, and other special
1863values are represented in their IEEE hexadecimal format so that assembly
1864and disassembly do not cause any bits to change in the constants.
1865
1866When using the hexadecimal form, constants of types half, float, and
1867double are represented using the 16-digit form shown above (which
1868matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001869must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001870precision, respectively. Hexadecimal format is always used for long
1871double, and there are three forms of long double. The 80-bit format used
1872by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1873128-bit format used by PowerPC (two adjacent doubles) is represented by
1874``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001875represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1876will only work if they match the long double format on your target.
1877The IEEE 16-bit format (half precision) is represented by ``0xH``
1878followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1879(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001880
1881There are no constants of type x86mmx.
1882
1883Complex Constants
1884-----------------
1885
1886Complex constants are a (potentially recursive) combination of simple
1887constants and smaller complex constants.
1888
1889**Structure constants**
1890 Structure constants are represented with notation similar to
1891 structure type definitions (a comma separated list of elements,
1892 surrounded by braces (``{}``)). For example:
1893 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1894 "``@G = external global i32``". Structure constants must have
1895 :ref:`structure type <t_struct>`, and the number and types of elements
1896 must match those specified by the type.
1897**Array constants**
1898 Array constants are represented with notation similar to array type
1899 definitions (a comma separated list of elements, surrounded by
1900 square brackets (``[]``)). For example:
1901 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1902 :ref:`array type <t_array>`, and the number and types of elements must
1903 match those specified by the type.
1904**Vector constants**
1905 Vector constants are represented with notation similar to vector
1906 type definitions (a comma separated list of elements, surrounded by
1907 less-than/greater-than's (``<>``)). For example:
1908 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1909 must have :ref:`vector type <t_vector>`, and the number and types of
1910 elements must match those specified by the type.
1911**Zero initialization**
1912 The string '``zeroinitializer``' can be used to zero initialize a
1913 value to zero of *any* type, including scalar and
1914 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1915 having to print large zero initializers (e.g. for large arrays) and
1916 is always exactly equivalent to using explicit zero initializers.
1917**Metadata node**
1918 A metadata node is a structure-like constant with :ref:`metadata
1919 type <t_metadata>`. For example:
1920 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1921 constants that are meant to be interpreted as part of the
1922 instruction stream, metadata is a place to attach additional
1923 information such as debug info.
1924
1925Global Variable and Function Addresses
1926--------------------------------------
1927
1928The addresses of :ref:`global variables <globalvars>` and
1929:ref:`functions <functionstructure>` are always implicitly valid
1930(link-time) constants. These constants are explicitly referenced when
1931the :ref:`identifier for the global <identifiers>` is used and always have
1932:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1933file:
1934
1935.. code-block:: llvm
1936
1937 @X = global i32 17
1938 @Y = global i32 42
1939 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1940
1941.. _undefvalues:
1942
1943Undefined Values
1944----------------
1945
1946The string '``undef``' can be used anywhere a constant is expected, and
1947indicates that the user of the value may receive an unspecified
1948bit-pattern. Undefined values may be of any type (other than '``label``'
1949or '``void``') and be used anywhere a constant is permitted.
1950
1951Undefined values are useful because they indicate to the compiler that
1952the program is well defined no matter what value is used. This gives the
1953compiler more freedom to optimize. Here are some examples of
1954(potentially surprising) transformations that are valid (in pseudo IR):
1955
1956.. code-block:: llvm
1957
1958 %A = add %X, undef
1959 %B = sub %X, undef
1960 %C = xor %X, undef
1961 Safe:
1962 %A = undef
1963 %B = undef
1964 %C = undef
1965
1966This is safe because all of the output bits are affected by the undef
1967bits. Any output bit can have a zero or one depending on the input bits.
1968
1969.. code-block:: llvm
1970
1971 %A = or %X, undef
1972 %B = and %X, undef
1973 Safe:
1974 %A = -1
1975 %B = 0
1976 Unsafe:
1977 %A = undef
1978 %B = undef
1979
1980These logical operations have bits that are not always affected by the
1981input. For example, if ``%X`` has a zero bit, then the output of the
1982'``and``' operation will always be a zero for that bit, no matter what
1983the corresponding bit from the '``undef``' is. As such, it is unsafe to
1984optimize or assume that the result of the '``and``' is '``undef``'.
1985However, it is safe to assume that all bits of the '``undef``' could be
19860, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1987all the bits of the '``undef``' operand to the '``or``' could be set,
1988allowing the '``or``' to be folded to -1.
1989
1990.. code-block:: llvm
1991
1992 %A = select undef, %X, %Y
1993 %B = select undef, 42, %Y
1994 %C = select %X, %Y, undef
1995 Safe:
1996 %A = %X (or %Y)
1997 %B = 42 (or %Y)
1998 %C = %Y
1999 Unsafe:
2000 %A = undef
2001 %B = undef
2002 %C = undef
2003
2004This set of examples shows that undefined '``select``' (and conditional
2005branch) conditions can go *either way*, but they have to come from one
2006of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2007both known to have a clear low bit, then ``%A`` would have to have a
2008cleared low bit. However, in the ``%C`` example, the optimizer is
2009allowed to assume that the '``undef``' operand could be the same as
2010``%Y``, allowing the whole '``select``' to be eliminated.
2011
2012.. code-block:: llvm
2013
2014 %A = xor undef, undef
2015
2016 %B = undef
2017 %C = xor %B, %B
2018
2019 %D = undef
2020 %E = icmp lt %D, 4
2021 %F = icmp gte %D, 4
2022
2023 Safe:
2024 %A = undef
2025 %B = undef
2026 %C = undef
2027 %D = undef
2028 %E = undef
2029 %F = undef
2030
2031This example points out that two '``undef``' operands are not
2032necessarily the same. This can be surprising to people (and also matches
2033C semantics) where they assume that "``X^X``" is always zero, even if
2034``X`` is undefined. This isn't true for a number of reasons, but the
2035short answer is that an '``undef``' "variable" can arbitrarily change
2036its value over its "live range". This is true because the variable
2037doesn't actually *have a live range*. Instead, the value is logically
2038read from arbitrary registers that happen to be around when needed, so
2039the value is not necessarily consistent over time. In fact, ``%A`` and
2040``%C`` need to have the same semantics or the core LLVM "replace all
2041uses with" concept would not hold.
2042
2043.. code-block:: llvm
2044
2045 %A = fdiv undef, %X
2046 %B = fdiv %X, undef
2047 Safe:
2048 %A = undef
2049 b: unreachable
2050
2051These examples show the crucial difference between an *undefined value*
2052and *undefined behavior*. An undefined value (like '``undef``') is
2053allowed to have an arbitrary bit-pattern. This means that the ``%A``
2054operation can be constant folded to '``undef``', because the '``undef``'
2055could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2056However, in the second example, we can make a more aggressive
2057assumption: because the ``undef`` is allowed to be an arbitrary value,
2058we are allowed to assume that it could be zero. Since a divide by zero
2059has *undefined behavior*, we are allowed to assume that the operation
2060does not execute at all. This allows us to delete the divide and all
2061code after it. Because the undefined operation "can't happen", the
2062optimizer can assume that it occurs in dead code.
2063
2064.. code-block:: llvm
2065
2066 a: store undef -> %X
2067 b: store %X -> undef
2068 Safe:
2069 a: <deleted>
2070 b: unreachable
2071
2072These examples reiterate the ``fdiv`` example: a store *of* an undefined
2073value can be assumed to not have any effect; we can assume that the
2074value is overwritten with bits that happen to match what was already
2075there. However, a store *to* an undefined location could clobber
2076arbitrary memory, therefore, it has undefined behavior.
2077
2078.. _poisonvalues:
2079
2080Poison Values
2081-------------
2082
2083Poison values are similar to :ref:`undef values <undefvalues>`, however
2084they also represent the fact that an instruction or constant expression
2085which cannot evoke side effects has nevertheless detected a condition
2086which results in undefined behavior.
2087
2088There is currently no way of representing a poison value in the IR; they
2089only exist when produced by operations such as :ref:`add <i_add>` with
2090the ``nsw`` flag.
2091
2092Poison value behavior is defined in terms of value *dependence*:
2093
2094- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2095- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2096 their dynamic predecessor basic block.
2097- Function arguments depend on the corresponding actual argument values
2098 in the dynamic callers of their functions.
2099- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2100 instructions that dynamically transfer control back to them.
2101- :ref:`Invoke <i_invoke>` instructions depend on the
2102 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2103 call instructions that dynamically transfer control back to them.
2104- Non-volatile loads and stores depend on the most recent stores to all
2105 of the referenced memory addresses, following the order in the IR
2106 (including loads and stores implied by intrinsics such as
2107 :ref:`@llvm.memcpy <int_memcpy>`.)
2108- An instruction with externally visible side effects depends on the
2109 most recent preceding instruction with externally visible side
2110 effects, following the order in the IR. (This includes :ref:`volatile
2111 operations <volatile>`.)
2112- An instruction *control-depends* on a :ref:`terminator
2113 instruction <terminators>` if the terminator instruction has
2114 multiple successors and the instruction is always executed when
2115 control transfers to one of the successors, and may not be executed
2116 when control is transferred to another.
2117- Additionally, an instruction also *control-depends* on a terminator
2118 instruction if the set of instructions it otherwise depends on would
2119 be different if the terminator had transferred control to a different
2120 successor.
2121- Dependence is transitive.
2122
2123Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2124with the additional affect that any instruction which has a *dependence*
2125on a poison value has undefined behavior.
2126
2127Here are some examples:
2128
2129.. code-block:: llvm
2130
2131 entry:
2132 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2133 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2134 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2135 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2136
2137 store i32 %poison, i32* @g ; Poison value stored to memory.
2138 %poison2 = load i32* @g ; Poison value loaded back from memory.
2139
2140 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2141
2142 %narrowaddr = bitcast i32* @g to i16*
2143 %wideaddr = bitcast i32* @g to i64*
2144 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2145 %poison4 = load i64* %wideaddr ; Returns a poison value.
2146
2147 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2148 br i1 %cmp, label %true, label %end ; Branch to either destination.
2149
2150 true:
2151 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2152 ; it has undefined behavior.
2153 br label %end
2154
2155 end:
2156 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2157 ; Both edges into this PHI are
2158 ; control-dependent on %cmp, so this
2159 ; always results in a poison value.
2160
2161 store volatile i32 0, i32* @g ; This would depend on the store in %true
2162 ; if %cmp is true, or the store in %entry
2163 ; otherwise, so this is undefined behavior.
2164
2165 br i1 %cmp, label %second_true, label %second_end
2166 ; The same branch again, but this time the
2167 ; true block doesn't have side effects.
2168
2169 second_true:
2170 ; No side effects!
2171 ret void
2172
2173 second_end:
2174 store volatile i32 0, i32* @g ; This time, the instruction always depends
2175 ; on the store in %end. Also, it is
2176 ; control-equivalent to %end, so this is
2177 ; well-defined (ignoring earlier undefined
2178 ; behavior in this example).
2179
2180.. _blockaddress:
2181
2182Addresses of Basic Blocks
2183-------------------------
2184
2185``blockaddress(@function, %block)``
2186
2187The '``blockaddress``' constant computes the address of the specified
2188basic block in the specified function, and always has an ``i8*`` type.
2189Taking the address of the entry block is illegal.
2190
2191This value only has defined behavior when used as an operand to the
2192':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2193against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002194undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002195no label is equal to the null pointer. This may be passed around as an
2196opaque pointer sized value as long as the bits are not inspected. This
2197allows ``ptrtoint`` and arithmetic to be performed on these values so
2198long as the original value is reconstituted before the ``indirectbr``
2199instruction.
2200
2201Finally, some targets may provide defined semantics when using the value
2202as the operand to an inline assembly, but that is target specific.
2203
2204Constant Expressions
2205--------------------
2206
2207Constant expressions are used to allow expressions involving other
2208constants to be used as constants. Constant expressions may be of any
2209:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2210that does not have side effects (e.g. load and call are not supported).
2211The following is the syntax for constant expressions:
2212
2213``trunc (CST to TYPE)``
2214 Truncate a constant to another type. The bit size of CST must be
2215 larger than the bit size of TYPE. Both types must be integers.
2216``zext (CST to TYPE)``
2217 Zero extend a constant to another type. The bit size of CST must be
2218 smaller than the bit size of TYPE. Both types must be integers.
2219``sext (CST to TYPE)``
2220 Sign extend a constant to another type. The bit size of CST must be
2221 smaller than the bit size of TYPE. Both types must be integers.
2222``fptrunc (CST to TYPE)``
2223 Truncate a floating point constant to another floating point type.
2224 The size of CST must be larger than the size of TYPE. Both types
2225 must be floating point.
2226``fpext (CST to TYPE)``
2227 Floating point extend a constant to another type. The size of CST
2228 must be smaller or equal to the size of TYPE. Both types must be
2229 floating point.
2230``fptoui (CST to TYPE)``
2231 Convert a floating point constant to the corresponding unsigned
2232 integer constant. TYPE must be a scalar or vector integer type. CST
2233 must be of scalar or vector floating point type. Both CST and TYPE
2234 must be scalars, or vectors of the same number of elements. If the
2235 value won't fit in the integer type, the results are undefined.
2236``fptosi (CST to TYPE)``
2237 Convert a floating point constant to the corresponding signed
2238 integer constant. TYPE must be a scalar or vector integer type. CST
2239 must be of scalar or vector floating point type. Both CST and TYPE
2240 must be scalars, or vectors of the same number of elements. If the
2241 value won't fit in the integer type, the results are undefined.
2242``uitofp (CST to TYPE)``
2243 Convert an unsigned integer constant to the corresponding floating
2244 point constant. TYPE must be a scalar or vector floating point type.
2245 CST must be of scalar or vector integer type. Both CST and TYPE must
2246 be scalars, or vectors of the same number of elements. If the value
2247 won't fit in the floating point type, the results are undefined.
2248``sitofp (CST to TYPE)``
2249 Convert a signed integer constant to the corresponding floating
2250 point constant. TYPE must be a scalar or vector floating point type.
2251 CST must be of scalar or vector integer type. Both CST and TYPE must
2252 be scalars, or vectors of the same number of elements. If the value
2253 won't fit in the floating point type, the results are undefined.
2254``ptrtoint (CST to TYPE)``
2255 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002256 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002257 pointer type. The ``CST`` value is zero extended, truncated, or
2258 unchanged to make it fit in ``TYPE``.
2259``inttoptr (CST to TYPE)``
2260 Convert an integer constant to a pointer constant. TYPE must be a
2261 pointer type. CST must be of integer type. The CST value is zero
2262 extended, truncated, or unchanged to make it fit in a pointer size.
2263 This one is *really* dangerous!
2264``bitcast (CST to TYPE)``
2265 Convert a constant, CST, to another TYPE. The constraints of the
2266 operands are the same as those for the :ref:`bitcast
2267 instruction <i_bitcast>`.
2268``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2269 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2270 constants. As with the :ref:`getelementptr <i_getelementptr>`
2271 instruction, the index list may have zero or more indexes, which are
2272 required to make sense for the type of "CSTPTR".
2273``select (COND, VAL1, VAL2)``
2274 Perform the :ref:`select operation <i_select>` on constants.
2275``icmp COND (VAL1, VAL2)``
2276 Performs the :ref:`icmp operation <i_icmp>` on constants.
2277``fcmp COND (VAL1, VAL2)``
2278 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2279``extractelement (VAL, IDX)``
2280 Perform the :ref:`extractelement operation <i_extractelement>` on
2281 constants.
2282``insertelement (VAL, ELT, IDX)``
2283 Perform the :ref:`insertelement operation <i_insertelement>` on
2284 constants.
2285``shufflevector (VEC1, VEC2, IDXMASK)``
2286 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2287 constants.
2288``extractvalue (VAL, IDX0, IDX1, ...)``
2289 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2290 constants. The index list is interpreted in a similar manner as
2291 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2292 least one index value must be specified.
2293``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2294 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2295 The index list is interpreted in a similar manner as indices in a
2296 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2297 value must be specified.
2298``OPCODE (LHS, RHS)``
2299 Perform the specified operation of the LHS and RHS constants. OPCODE
2300 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2301 binary <bitwiseops>` operations. The constraints on operands are
2302 the same as those for the corresponding instruction (e.g. no bitwise
2303 operations on floating point values are allowed).
2304
2305Other Values
2306============
2307
2308Inline Assembler Expressions
2309----------------------------
2310
2311LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2312Inline Assembly <moduleasm>`) through the use of a special value. This
2313value represents the inline assembler as a string (containing the
2314instructions to emit), a list of operand constraints (stored as a
2315string), a flag that indicates whether or not the inline asm expression
2316has side effects, and a flag indicating whether the function containing
2317the asm needs to align its stack conservatively. An example inline
2318assembler expression is:
2319
2320.. code-block:: llvm
2321
2322 i32 (i32) asm "bswap $0", "=r,r"
2323
2324Inline assembler expressions may **only** be used as the callee operand
2325of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2326Thus, typically we have:
2327
2328.. code-block:: llvm
2329
2330 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2331
2332Inline asms with side effects not visible in the constraint list must be
2333marked as having side effects. This is done through the use of the
2334'``sideeffect``' keyword, like so:
2335
2336.. code-block:: llvm
2337
2338 call void asm sideeffect "eieio", ""()
2339
2340In some cases inline asms will contain code that will not work unless
2341the stack is aligned in some way, such as calls or SSE instructions on
2342x86, yet will not contain code that does that alignment within the asm.
2343The compiler should make conservative assumptions about what the asm
2344might contain and should generate its usual stack alignment code in the
2345prologue if the '``alignstack``' keyword is present:
2346
2347.. code-block:: llvm
2348
2349 call void asm alignstack "eieio", ""()
2350
2351Inline asms also support using non-standard assembly dialects. The
2352assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2353the inline asm is using the Intel dialect. Currently, ATT and Intel are
2354the only supported dialects. An example is:
2355
2356.. code-block:: llvm
2357
2358 call void asm inteldialect "eieio", ""()
2359
2360If multiple keywords appear the '``sideeffect``' keyword must come
2361first, the '``alignstack``' keyword second and the '``inteldialect``'
2362keyword last.
2363
2364Inline Asm Metadata
2365^^^^^^^^^^^^^^^^^^^
2366
2367The call instructions that wrap inline asm nodes may have a
2368"``!srcloc``" MDNode attached to it that contains a list of constant
2369integers. If present, the code generator will use the integer as the
2370location cookie value when report errors through the ``LLVMContext``
2371error reporting mechanisms. This allows a front-end to correlate backend
2372errors that occur with inline asm back to the source code that produced
2373it. For example:
2374
2375.. code-block:: llvm
2376
2377 call void asm sideeffect "something bad", ""(), !srcloc !42
2378 ...
2379 !42 = !{ i32 1234567 }
2380
2381It is up to the front-end to make sense of the magic numbers it places
2382in the IR. If the MDNode contains multiple constants, the code generator
2383will use the one that corresponds to the line of the asm that the error
2384occurs on.
2385
2386.. _metadata:
2387
2388Metadata Nodes and Metadata Strings
2389-----------------------------------
2390
2391LLVM IR allows metadata to be attached to instructions in the program
2392that can convey extra information about the code to the optimizers and
2393code generator. One example application of metadata is source-level
2394debug information. There are two metadata primitives: strings and nodes.
2395All metadata has the ``metadata`` type and is identified in syntax by a
2396preceding exclamation point ('``!``').
2397
2398A metadata string is a string surrounded by double quotes. It can
2399contain any character by escaping non-printable characters with
2400"``\xx``" where "``xx``" is the two digit hex code. For example:
2401"``!"test\00"``".
2402
2403Metadata nodes are represented with notation similar to structure
2404constants (a comma separated list of elements, surrounded by braces and
2405preceded by an exclamation point). Metadata nodes can have any values as
2406their operand. For example:
2407
2408.. code-block:: llvm
2409
2410 !{ metadata !"test\00", i32 10}
2411
2412A :ref:`named metadata <namedmetadatastructure>` is a collection of
2413metadata nodes, which can be looked up in the module symbol table. For
2414example:
2415
2416.. code-block:: llvm
2417
2418 !foo = metadata !{!4, !3}
2419
2420Metadata can be used as function arguments. Here ``llvm.dbg.value``
2421function is using two metadata arguments:
2422
2423.. code-block:: llvm
2424
2425 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2426
2427Metadata can be attached with an instruction. Here metadata ``!21`` is
2428attached to the ``add`` instruction using the ``!dbg`` identifier:
2429
2430.. code-block:: llvm
2431
2432 %indvar.next = add i64 %indvar, 1, !dbg !21
2433
2434More information about specific metadata nodes recognized by the
2435optimizers and code generator is found below.
2436
2437'``tbaa``' Metadata
2438^^^^^^^^^^^^^^^^^^^
2439
2440In LLVM IR, memory does not have types, so LLVM's own type system is not
2441suitable for doing TBAA. Instead, metadata is added to the IR to
2442describe a type system of a higher level language. This can be used to
2443implement typical C/C++ TBAA, but it can also be used to implement
2444custom alias analysis behavior for other languages.
2445
2446The current metadata format is very simple. TBAA metadata nodes have up
2447to three fields, e.g.:
2448
2449.. code-block:: llvm
2450
2451 !0 = metadata !{ metadata !"an example type tree" }
2452 !1 = metadata !{ metadata !"int", metadata !0 }
2453 !2 = metadata !{ metadata !"float", metadata !0 }
2454 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2455
2456The first field is an identity field. It can be any value, usually a
2457metadata string, which uniquely identifies the type. The most important
2458name in the tree is the name of the root node. Two trees with different
2459root node names are entirely disjoint, even if they have leaves with
2460common names.
2461
2462The second field identifies the type's parent node in the tree, or is
2463null or omitted for a root node. A type is considered to alias all of
2464its descendants and all of its ancestors in the tree. Also, a type is
2465considered to alias all types in other trees, so that bitcode produced
2466from multiple front-ends is handled conservatively.
2467
2468If the third field is present, it's an integer which if equal to 1
2469indicates that the type is "constant" (meaning
2470``pointsToConstantMemory`` should return true; see `other useful
2471AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2472
2473'``tbaa.struct``' Metadata
2474^^^^^^^^^^^^^^^^^^^^^^^^^^
2475
2476The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2477aggregate assignment operations in C and similar languages, however it
2478is defined to copy a contiguous region of memory, which is more than
2479strictly necessary for aggregate types which contain holes due to
2480padding. Also, it doesn't contain any TBAA information about the fields
2481of the aggregate.
2482
2483``!tbaa.struct`` metadata can describe which memory subregions in a
2484memcpy are padding and what the TBAA tags of the struct are.
2485
2486The current metadata format is very simple. ``!tbaa.struct`` metadata
2487nodes are a list of operands which are in conceptual groups of three.
2488For each group of three, the first operand gives the byte offset of a
2489field in bytes, the second gives its size in bytes, and the third gives
2490its tbaa tag. e.g.:
2491
2492.. code-block:: llvm
2493
2494 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2495
2496This describes a struct with two fields. The first is at offset 0 bytes
2497with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2498and has size 4 bytes and has tbaa tag !2.
2499
2500Note that the fields need not be contiguous. In this example, there is a
25014 byte gap between the two fields. This gap represents padding which
2502does not carry useful data and need not be preserved.
2503
2504'``fpmath``' Metadata
2505^^^^^^^^^^^^^^^^^^^^^
2506
2507``fpmath`` metadata may be attached to any instruction of floating point
2508type. It can be used to express the maximum acceptable error in the
2509result of that instruction, in ULPs, thus potentially allowing the
2510compiler to use a more efficient but less accurate method of computing
2511it. ULP is defined as follows:
2512
2513 If ``x`` is a real number that lies between two finite consecutive
2514 floating-point numbers ``a`` and ``b``, without being equal to one
2515 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2516 distance between the two non-equal finite floating-point numbers
2517 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2518
2519The metadata node shall consist of a single positive floating point
2520number representing the maximum relative error, for example:
2521
2522.. code-block:: llvm
2523
2524 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2525
2526'``range``' Metadata
2527^^^^^^^^^^^^^^^^^^^^
2528
2529``range`` metadata may be attached only to loads of integer types. It
2530expresses the possible ranges the loaded value is in. The ranges are
2531represented with a flattened list of integers. The loaded value is known
2532to be in the union of the ranges defined by each consecutive pair. Each
2533pair has the following properties:
2534
2535- The type must match the type loaded by the instruction.
2536- The pair ``a,b`` represents the range ``[a,b)``.
2537- Both ``a`` and ``b`` are constants.
2538- The range is allowed to wrap.
2539- The range should not represent the full or empty set. That is,
2540 ``a!=b``.
2541
2542In addition, the pairs must be in signed order of the lower bound and
2543they must be non-contiguous.
2544
2545Examples:
2546
2547.. code-block:: llvm
2548
2549 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2550 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2551 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2552 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2553 ...
2554 !0 = metadata !{ i8 0, i8 2 }
2555 !1 = metadata !{ i8 255, i8 2 }
2556 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2557 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2558
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002559'``llvm.loop``'
2560^^^^^^^^^^^^^^^
2561
2562It is sometimes useful to attach information to loop constructs. Currently,
2563loop metadata is implemented as metadata attached to the branch instruction
2564in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002565guaranteed to be separate for each loop. The loop identifier metadata is
2566specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002567
2568The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002569itself to avoid merging it with any other identifier metadata, e.g.,
2570during module linkage or function inlining. That is, each loop should refer
2571to their own identification metadata even if they reside in separate functions.
2572The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002573constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002574
2575.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002576
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002577 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002578 !1 = metadata !{ metadata !1 }
2579
Paul Redmondee21b6f2013-05-28 20:00:34 +00002580The loop identifier metadata can be used to specify additional per-loop
2581metadata. Any operands after the first operand can be treated as user-defined
2582metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2583by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002584
Paul Redmondee21b6f2013-05-28 20:00:34 +00002585.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002586
Paul Redmondee21b6f2013-05-28 20:00:34 +00002587 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2588 ...
2589 !0 = metadata !{ metadata !0, metadata !1 }
2590 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002591
2592'``llvm.mem``'
2593^^^^^^^^^^^^^^^
2594
2595Metadata types used to annotate memory accesses with information helpful
2596for optimizations are prefixed with ``llvm.mem``.
2597
2598'``llvm.mem.parallel_loop_access``' Metadata
2599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2600
2601For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002602the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002603also all of the memory accessing instructions in the loop body need to be
2604marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2605is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002606the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002607converted to sequential loops due to optimization passes that are unaware of
2608the parallel semantics and that insert new memory instructions to the loop
2609body.
2610
2611Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002612both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002613metadata types that refer to the same loop identifier metadata.
2614
2615.. code-block:: llvm
2616
2617 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002618 ...
2619 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2620 ...
2621 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2622 ...
2623 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002624
2625 for.end:
2626 ...
2627 !0 = metadata !{ metadata !0 }
2628
2629It is also possible to have nested parallel loops. In that case the
2630memory accesses refer to a list of loop identifier metadata nodes instead of
2631the loop identifier metadata node directly:
2632
2633.. code-block:: llvm
2634
2635 outer.for.body:
2636 ...
2637
2638 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002639 ...
2640 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2641 ...
2642 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2643 ...
2644 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002645
2646 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002647 ...
2648 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2649 ...
2650 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2651 ...
2652 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002653
2654 outer.for.end: ; preds = %for.body
2655 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002656 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2657 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2658 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002659
Paul Redmondee21b6f2013-05-28 20:00:34 +00002660'``llvm.vectorizer``'
2661^^^^^^^^^^^^^^^^^^^^^
2662
2663Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2664vectorization parameters such as vectorization factor and unroll factor.
2665
2666``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2667loop identification metadata.
2668
2669'``llvm.vectorizer.unroll``' Metadata
2670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2671
2672This metadata instructs the loop vectorizer to unroll the specified
2673loop exactly ``N`` times.
2674
2675The first operand is the string ``llvm.vectorizer.unroll`` and the second
2676operand is an integer specifying the unroll factor. For example:
2677
2678.. code-block:: llvm
2679
2680 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2681
2682Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2683loop.
2684
2685If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2686determined automatically.
2687
2688'``llvm.vectorizer.width``' Metadata
2689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2690
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002691This metadata sets the target width of the vectorizer to ``N``. Without
2692this metadata, the vectorizer will choose a width automatically.
2693Regardless of this metadata, the vectorizer will only vectorize loops if
2694it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002695
2696The first operand is the string ``llvm.vectorizer.width`` and the second
2697operand is an integer specifying the width. For example:
2698
2699.. code-block:: llvm
2700
2701 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2702
2703Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2704loop.
2705
2706If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2707automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002708
Sean Silvaf722b002012-12-07 10:36:55 +00002709Module Flags Metadata
2710=====================
2711
2712Information about the module as a whole is difficult to convey to LLVM's
2713subsystems. The LLVM IR isn't sufficient to transmit this information.
2714The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002715this. These flags are in the form of key / value pairs --- much like a
2716dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002717look it up.
2718
2719The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2720Each triplet has the following form:
2721
2722- The first element is a *behavior* flag, which specifies the behavior
2723 when two (or more) modules are merged together, and it encounters two
2724 (or more) metadata with the same ID. The supported behaviors are
2725 described below.
2726- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002727 metadata. Each module may only have one flag entry for each unique ID (not
2728 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002729- The third element is the value of the flag.
2730
2731When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002732``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2733each unique metadata ID string, there will be exactly one entry in the merged
2734modules ``llvm.module.flags`` metadata table, and the value for that entry will
2735be determined by the merge behavior flag, as described below. The only exception
2736is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002737
2738The following behaviors are supported:
2739
2740.. list-table::
2741 :header-rows: 1
2742 :widths: 10 90
2743
2744 * - Value
2745 - Behavior
2746
2747 * - 1
2748 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002749 Emits an error if two values disagree, otherwise the resulting value
2750 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002751
2752 * - 2
2753 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002754 Emits a warning if two values disagree. The result value will be the
2755 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002756
2757 * - 3
2758 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002759 Adds a requirement that another module flag be present and have a
2760 specified value after linking is performed. The value must be a
2761 metadata pair, where the first element of the pair is the ID of the
2762 module flag to be restricted, and the second element of the pair is
2763 the value the module flag should be restricted to. This behavior can
2764 be used to restrict the allowable results (via triggering of an
2765 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002766
2767 * - 4
2768 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002769 Uses the specified value, regardless of the behavior or value of the
2770 other module. If both modules specify **Override**, but the values
2771 differ, an error will be emitted.
2772
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002773 * - 5
2774 - **Append**
2775 Appends the two values, which are required to be metadata nodes.
2776
2777 * - 6
2778 - **AppendUnique**
2779 Appends the two values, which are required to be metadata
2780 nodes. However, duplicate entries in the second list are dropped
2781 during the append operation.
2782
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002783It is an error for a particular unique flag ID to have multiple behaviors,
2784except in the case of **Require** (which adds restrictions on another metadata
2785value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002786
2787An example of module flags:
2788
2789.. code-block:: llvm
2790
2791 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2792 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2793 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2794 !3 = metadata !{ i32 3, metadata !"qux",
2795 metadata !{
2796 metadata !"foo", i32 1
2797 }
2798 }
2799 !llvm.module.flags = !{ !0, !1, !2, !3 }
2800
2801- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2802 if two or more ``!"foo"`` flags are seen is to emit an error if their
2803 values are not equal.
2804
2805- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2806 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002807 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002808
2809- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2810 behavior if two or more ``!"qux"`` flags are seen is to emit a
2811 warning if their values are not equal.
2812
2813- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2814
2815 ::
2816
2817 metadata !{ metadata !"foo", i32 1 }
2818
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002819 The behavior is to emit an error if the ``llvm.module.flags`` does not
2820 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2821 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002822
2823Objective-C Garbage Collection Module Flags Metadata
2824----------------------------------------------------
2825
2826On the Mach-O platform, Objective-C stores metadata about garbage
2827collection in a special section called "image info". The metadata
2828consists of a version number and a bitmask specifying what types of
2829garbage collection are supported (if any) by the file. If two or more
2830modules are linked together their garbage collection metadata needs to
2831be merged rather than appended together.
2832
2833The Objective-C garbage collection module flags metadata consists of the
2834following key-value pairs:
2835
2836.. list-table::
2837 :header-rows: 1
2838 :widths: 30 70
2839
2840 * - Key
2841 - Value
2842
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002843 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002844 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002845
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002846 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002847 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002848 always 0.
2849
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002850 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002851 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002852 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2853 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2854 Objective-C ABI version 2.
2855
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002856 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002857 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002858 not. Valid values are 0, for no garbage collection, and 2, for garbage
2859 collection supported.
2860
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002861 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002862 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002863 If present, its value must be 6. This flag requires that the
2864 ``Objective-C Garbage Collection`` flag have the value 2.
2865
2866Some important flag interactions:
2867
2868- If a module with ``Objective-C Garbage Collection`` set to 0 is
2869 merged with a module with ``Objective-C Garbage Collection`` set to
2870 2, then the resulting module has the
2871 ``Objective-C Garbage Collection`` flag set to 0.
2872- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2873 merged with a module with ``Objective-C GC Only`` set to 6.
2874
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002875Automatic Linker Flags Module Flags Metadata
2876--------------------------------------------
2877
2878Some targets support embedding flags to the linker inside individual object
2879files. Typically this is used in conjunction with language extensions which
2880allow source files to explicitly declare the libraries they depend on, and have
2881these automatically be transmitted to the linker via object files.
2882
2883These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002884using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002885to be ``AppendUnique``, and the value for the key is expected to be a metadata
2886node which should be a list of other metadata nodes, each of which should be a
2887list of metadata strings defining linker options.
2888
2889For example, the following metadata section specifies two separate sets of
2890linker options, presumably to link against ``libz`` and the ``Cocoa``
2891framework::
2892
Michael Liao2faa0f32013-03-06 18:24:34 +00002893 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002894 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002895 metadata !{ metadata !"-lz" },
2896 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002897 !llvm.module.flags = !{ !0 }
2898
2899The metadata encoding as lists of lists of options, as opposed to a collapsed
2900list of options, is chosen so that the IR encoding can use multiple option
2901strings to specify e.g., a single library, while still having that specifier be
2902preserved as an atomic element that can be recognized by a target specific
2903assembly writer or object file emitter.
2904
2905Each individual option is required to be either a valid option for the target's
2906linker, or an option that is reserved by the target specific assembly writer or
2907object file emitter. No other aspect of these options is defined by the IR.
2908
Sean Silvaf722b002012-12-07 10:36:55 +00002909Intrinsic Global Variables
2910==========================
2911
2912LLVM has a number of "magic" global variables that contain data that
2913affect code generation or other IR semantics. These are documented here.
2914All globals of this sort should have a section specified as
2915"``llvm.metadata``". This section and all globals that start with
2916"``llvm.``" are reserved for use by LLVM.
2917
2918The '``llvm.used``' Global Variable
2919-----------------------------------
2920
Rafael Espindolacde25b42013-04-22 14:58:02 +00002921The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002922:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindolacde25b42013-04-22 14:58:02 +00002923pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002924pointer cast formed of bitcast or getelementptr. For example, a legal
2925use of it is:
2926
2927.. code-block:: llvm
2928
2929 @X = global i8 4
2930 @Y = global i32 123
2931
2932 @llvm.used = appending global [2 x i8*] [
2933 i8* @X,
2934 i8* bitcast (i32* @Y to i8*)
2935 ], section "llvm.metadata"
2936
Rafael Espindolacde25b42013-04-22 14:58:02 +00002937If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2938and linker are required to treat the symbol as if there is a reference to the
2939symbol that it cannot see. For example, if a variable has internal linkage and
2940no references other than that from the ``@llvm.used`` list, it cannot be
2941deleted. This is commonly used to represent references from inline asms and
2942other things the compiler cannot "see", and corresponds to
2943"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002944
2945On some targets, the code generator must emit a directive to the
2946assembler or object file to prevent the assembler and linker from
2947molesting the symbol.
2948
2949The '``llvm.compiler.used``' Global Variable
2950--------------------------------------------
2951
2952The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2953directive, except that it only prevents the compiler from touching the
2954symbol. On targets that support it, this allows an intelligent linker to
2955optimize references to the symbol without being impeded as it would be
2956by ``@llvm.used``.
2957
2958This is a rare construct that should only be used in rare circumstances,
2959and should not be exposed to source languages.
2960
2961The '``llvm.global_ctors``' Global Variable
2962-------------------------------------------
2963
2964.. code-block:: llvm
2965
2966 %0 = type { i32, void ()* }
2967 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2968
2969The ``@llvm.global_ctors`` array contains a list of constructor
2970functions and associated priorities. The functions referenced by this
2971array will be called in ascending order of priority (i.e. lowest first)
2972when the module is loaded. The order of functions with the same priority
2973is not defined.
2974
2975The '``llvm.global_dtors``' Global Variable
2976-------------------------------------------
2977
2978.. code-block:: llvm
2979
2980 %0 = type { i32, void ()* }
2981 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2982
2983The ``@llvm.global_dtors`` array contains a list of destructor functions
2984and associated priorities. The functions referenced by this array will
2985be called in descending order of priority (i.e. highest first) when the
2986module is loaded. The order of functions with the same priority is not
2987defined.
2988
2989Instruction Reference
2990=====================
2991
2992The LLVM instruction set consists of several different classifications
2993of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2994instructions <binaryops>`, :ref:`bitwise binary
2995instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2996:ref:`other instructions <otherops>`.
2997
2998.. _terminators:
2999
3000Terminator Instructions
3001-----------------------
3002
3003As mentioned :ref:`previously <functionstructure>`, every basic block in a
3004program ends with a "Terminator" instruction, which indicates which
3005block should be executed after the current block is finished. These
3006terminator instructions typically yield a '``void``' value: they produce
3007control flow, not values (the one exception being the
3008':ref:`invoke <i_invoke>`' instruction).
3009
3010The terminator instructions are: ':ref:`ret <i_ret>`',
3011':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3012':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3013':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3014
3015.. _i_ret:
3016
3017'``ret``' Instruction
3018^^^^^^^^^^^^^^^^^^^^^
3019
3020Syntax:
3021"""""""
3022
3023::
3024
3025 ret <type> <value> ; Return a value from a non-void function
3026 ret void ; Return from void function
3027
3028Overview:
3029"""""""""
3030
3031The '``ret``' instruction is used to return control flow (and optionally
3032a value) from a function back to the caller.
3033
3034There are two forms of the '``ret``' instruction: one that returns a
3035value and then causes control flow, and one that just causes control
3036flow to occur.
3037
3038Arguments:
3039""""""""""
3040
3041The '``ret``' instruction optionally accepts a single argument, the
3042return value. The type of the return value must be a ':ref:`first
3043class <t_firstclass>`' type.
3044
3045A function is not :ref:`well formed <wellformed>` if it it has a non-void
3046return type and contains a '``ret``' instruction with no return value or
3047a return value with a type that does not match its type, or if it has a
3048void return type and contains a '``ret``' instruction with a return
3049value.
3050
3051Semantics:
3052""""""""""
3053
3054When the '``ret``' instruction is executed, control flow returns back to
3055the calling function's context. If the caller is a
3056":ref:`call <i_call>`" instruction, execution continues at the
3057instruction after the call. If the caller was an
3058":ref:`invoke <i_invoke>`" instruction, execution continues at the
3059beginning of the "normal" destination block. If the instruction returns
3060a value, that value shall set the call or invoke instruction's return
3061value.
3062
3063Example:
3064""""""""
3065
3066.. code-block:: llvm
3067
3068 ret i32 5 ; Return an integer value of 5
3069 ret void ; Return from a void function
3070 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3071
3072.. _i_br:
3073
3074'``br``' Instruction
3075^^^^^^^^^^^^^^^^^^^^
3076
3077Syntax:
3078"""""""
3079
3080::
3081
3082 br i1 <cond>, label <iftrue>, label <iffalse>
3083 br label <dest> ; Unconditional branch
3084
3085Overview:
3086"""""""""
3087
3088The '``br``' instruction is used to cause control flow to transfer to a
3089different basic block in the current function. There are two forms of
3090this instruction, corresponding to a conditional branch and an
3091unconditional branch.
3092
3093Arguments:
3094""""""""""
3095
3096The conditional branch form of the '``br``' instruction takes a single
3097'``i1``' value and two '``label``' values. The unconditional form of the
3098'``br``' instruction takes a single '``label``' value as a target.
3099
3100Semantics:
3101""""""""""
3102
3103Upon execution of a conditional '``br``' instruction, the '``i1``'
3104argument is evaluated. If the value is ``true``, control flows to the
3105'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3106to the '``iffalse``' ``label`` argument.
3107
3108Example:
3109""""""""
3110
3111.. code-block:: llvm
3112
3113 Test:
3114 %cond = icmp eq i32 %a, %b
3115 br i1 %cond, label %IfEqual, label %IfUnequal
3116 IfEqual:
3117 ret i32 1
3118 IfUnequal:
3119 ret i32 0
3120
3121.. _i_switch:
3122
3123'``switch``' Instruction
3124^^^^^^^^^^^^^^^^^^^^^^^^
3125
3126Syntax:
3127"""""""
3128
3129::
3130
3131 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3132
3133Overview:
3134"""""""""
3135
3136The '``switch``' instruction is used to transfer control flow to one of
3137several different places. It is a generalization of the '``br``'
3138instruction, allowing a branch to occur to one of many possible
3139destinations.
3140
3141Arguments:
3142""""""""""
3143
3144The '``switch``' instruction uses three parameters: an integer
3145comparison value '``value``', a default '``label``' destination, and an
3146array of pairs of comparison value constants and '``label``'s. The table
3147is not allowed to contain duplicate constant entries.
3148
3149Semantics:
3150""""""""""
3151
3152The ``switch`` instruction specifies a table of values and destinations.
3153When the '``switch``' instruction is executed, this table is searched
3154for the given value. If the value is found, control flow is transferred
3155to the corresponding destination; otherwise, control flow is transferred
3156to the default destination.
3157
3158Implementation:
3159"""""""""""""""
3160
3161Depending on properties of the target machine and the particular
3162``switch`` instruction, this instruction may be code generated in
3163different ways. For example, it could be generated as a series of
3164chained conditional branches or with a lookup table.
3165
3166Example:
3167""""""""
3168
3169.. code-block:: llvm
3170
3171 ; Emulate a conditional br instruction
3172 %Val = zext i1 %value to i32
3173 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3174
3175 ; Emulate an unconditional br instruction
3176 switch i32 0, label %dest [ ]
3177
3178 ; Implement a jump table:
3179 switch i32 %val, label %otherwise [ i32 0, label %onzero
3180 i32 1, label %onone
3181 i32 2, label %ontwo ]
3182
3183.. _i_indirectbr:
3184
3185'``indirectbr``' Instruction
3186^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3187
3188Syntax:
3189"""""""
3190
3191::
3192
3193 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3194
3195Overview:
3196"""""""""
3197
3198The '``indirectbr``' instruction implements an indirect branch to a
3199label within the current function, whose address is specified by
3200"``address``". Address must be derived from a
3201:ref:`blockaddress <blockaddress>` constant.
3202
3203Arguments:
3204""""""""""
3205
3206The '``address``' argument is the address of the label to jump to. The
3207rest of the arguments indicate the full set of possible destinations
3208that the address may point to. Blocks are allowed to occur multiple
3209times in the destination list, though this isn't particularly useful.
3210
3211This destination list is required so that dataflow analysis has an
3212accurate understanding of the CFG.
3213
3214Semantics:
3215""""""""""
3216
3217Control transfers to the block specified in the address argument. All
3218possible destination blocks must be listed in the label list, otherwise
3219this instruction has undefined behavior. This implies that jumps to
3220labels defined in other functions have undefined behavior as well.
3221
3222Implementation:
3223"""""""""""""""
3224
3225This is typically implemented with a jump through a register.
3226
3227Example:
3228""""""""
3229
3230.. code-block:: llvm
3231
3232 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3233
3234.. _i_invoke:
3235
3236'``invoke``' Instruction
3237^^^^^^^^^^^^^^^^^^^^^^^^
3238
3239Syntax:
3240"""""""
3241
3242::
3243
3244 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3245 to label <normal label> unwind label <exception label>
3246
3247Overview:
3248"""""""""
3249
3250The '``invoke``' instruction causes control to transfer to a specified
3251function, with the possibility of control flow transfer to either the
3252'``normal``' label or the '``exception``' label. If the callee function
3253returns with the "``ret``" instruction, control flow will return to the
3254"normal" label. If the callee (or any indirect callees) returns via the
3255":ref:`resume <i_resume>`" instruction or other exception handling
3256mechanism, control is interrupted and continued at the dynamically
3257nearest "exception" label.
3258
3259The '``exception``' label is a `landing
3260pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3261'``exception``' label is required to have the
3262":ref:`landingpad <i_landingpad>`" instruction, which contains the
3263information about the behavior of the program after unwinding happens,
3264as its first non-PHI instruction. The restrictions on the
3265"``landingpad``" instruction's tightly couples it to the "``invoke``"
3266instruction, so that the important information contained within the
3267"``landingpad``" instruction can't be lost through normal code motion.
3268
3269Arguments:
3270""""""""""
3271
3272This instruction requires several arguments:
3273
3274#. The optional "cconv" marker indicates which :ref:`calling
3275 convention <callingconv>` the call should use. If none is
3276 specified, the call defaults to using C calling conventions.
3277#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3278 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3279 are valid here.
3280#. '``ptr to function ty``': shall be the signature of the pointer to
3281 function value being invoked. In most cases, this is a direct
3282 function invocation, but indirect ``invoke``'s are just as possible,
3283 branching off an arbitrary pointer to function value.
3284#. '``function ptr val``': An LLVM value containing a pointer to a
3285 function to be invoked.
3286#. '``function args``': argument list whose types match the function
3287 signature argument types and parameter attributes. All arguments must
3288 be of :ref:`first class <t_firstclass>` type. If the function signature
3289 indicates the function accepts a variable number of arguments, the
3290 extra arguments can be specified.
3291#. '``normal label``': the label reached when the called function
3292 executes a '``ret``' instruction.
3293#. '``exception label``': the label reached when a callee returns via
3294 the :ref:`resume <i_resume>` instruction or other exception handling
3295 mechanism.
3296#. The optional :ref:`function attributes <fnattrs>` list. Only
3297 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3298 attributes are valid here.
3299
3300Semantics:
3301""""""""""
3302
3303This instruction is designed to operate as a standard '``call``'
3304instruction in most regards. The primary difference is that it
3305establishes an association with a label, which is used by the runtime
3306library to unwind the stack.
3307
3308This instruction is used in languages with destructors to ensure that
3309proper cleanup is performed in the case of either a ``longjmp`` or a
3310thrown exception. Additionally, this is important for implementation of
3311'``catch``' clauses in high-level languages that support them.
3312
3313For the purposes of the SSA form, the definition of the value returned
3314by the '``invoke``' instruction is deemed to occur on the edge from the
3315current block to the "normal" label. If the callee unwinds then no
3316return value is available.
3317
3318Example:
3319""""""""
3320
3321.. code-block:: llvm
3322
3323 %retval = invoke i32 @Test(i32 15) to label %Continue
3324 unwind label %TestCleanup ; {i32}:retval set
3325 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3326 unwind label %TestCleanup ; {i32}:retval set
3327
3328.. _i_resume:
3329
3330'``resume``' Instruction
3331^^^^^^^^^^^^^^^^^^^^^^^^
3332
3333Syntax:
3334"""""""
3335
3336::
3337
3338 resume <type> <value>
3339
3340Overview:
3341"""""""""
3342
3343The '``resume``' instruction is a terminator instruction that has no
3344successors.
3345
3346Arguments:
3347""""""""""
3348
3349The '``resume``' instruction requires one argument, which must have the
3350same type as the result of any '``landingpad``' instruction in the same
3351function.
3352
3353Semantics:
3354""""""""""
3355
3356The '``resume``' instruction resumes propagation of an existing
3357(in-flight) exception whose unwinding was interrupted with a
3358:ref:`landingpad <i_landingpad>` instruction.
3359
3360Example:
3361""""""""
3362
3363.. code-block:: llvm
3364
3365 resume { i8*, i32 } %exn
3366
3367.. _i_unreachable:
3368
3369'``unreachable``' Instruction
3370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3371
3372Syntax:
3373"""""""
3374
3375::
3376
3377 unreachable
3378
3379Overview:
3380"""""""""
3381
3382The '``unreachable``' instruction has no defined semantics. This
3383instruction is used to inform the optimizer that a particular portion of
3384the code is not reachable. This can be used to indicate that the code
3385after a no-return function cannot be reached, and other facts.
3386
3387Semantics:
3388""""""""""
3389
3390The '``unreachable``' instruction has no defined semantics.
3391
3392.. _binaryops:
3393
3394Binary Operations
3395-----------------
3396
3397Binary operators are used to do most of the computation in a program.
3398They require two operands of the same type, execute an operation on
3399them, and produce a single value. The operands might represent multiple
3400data, as is the case with the :ref:`vector <t_vector>` data type. The
3401result value has the same type as its operands.
3402
3403There are several different binary operators:
3404
3405.. _i_add:
3406
3407'``add``' Instruction
3408^^^^^^^^^^^^^^^^^^^^^
3409
3410Syntax:
3411"""""""
3412
3413::
3414
3415 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3416 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3417 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3418 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3419
3420Overview:
3421"""""""""
3422
3423The '``add``' instruction returns the sum of its two operands.
3424
3425Arguments:
3426""""""""""
3427
3428The two arguments to the '``add``' instruction must be
3429:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3430arguments must have identical types.
3431
3432Semantics:
3433""""""""""
3434
3435The value produced is the integer sum of the two operands.
3436
3437If the sum has unsigned overflow, the result returned is the
3438mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3439the result.
3440
3441Because LLVM integers use a two's complement representation, this
3442instruction is appropriate for both signed and unsigned integers.
3443
3444``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3445respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3446result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3447unsigned and/or signed overflow, respectively, occurs.
3448
3449Example:
3450""""""""
3451
3452.. code-block:: llvm
3453
3454 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3455
3456.. _i_fadd:
3457
3458'``fadd``' Instruction
3459^^^^^^^^^^^^^^^^^^^^^^
3460
3461Syntax:
3462"""""""
3463
3464::
3465
3466 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3467
3468Overview:
3469"""""""""
3470
3471The '``fadd``' instruction returns the sum of its two operands.
3472
3473Arguments:
3474""""""""""
3475
3476The two arguments to the '``fadd``' instruction must be :ref:`floating
3477point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3478Both arguments must have identical types.
3479
3480Semantics:
3481""""""""""
3482
3483The value produced is the floating point sum of the two operands. This
3484instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3485which are optimization hints to enable otherwise unsafe floating point
3486optimizations:
3487
3488Example:
3489""""""""
3490
3491.. code-block:: llvm
3492
3493 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3494
3495'``sub``' Instruction
3496^^^^^^^^^^^^^^^^^^^^^
3497
3498Syntax:
3499"""""""
3500
3501::
3502
3503 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3504 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3505 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3506 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3507
3508Overview:
3509"""""""""
3510
3511The '``sub``' instruction returns the difference of its two operands.
3512
3513Note that the '``sub``' instruction is used to represent the '``neg``'
3514instruction present in most other intermediate representations.
3515
3516Arguments:
3517""""""""""
3518
3519The two arguments to the '``sub``' instruction must be
3520:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3521arguments must have identical types.
3522
3523Semantics:
3524""""""""""
3525
3526The value produced is the integer difference of the two operands.
3527
3528If the difference has unsigned overflow, the result returned is the
3529mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3530the result.
3531
3532Because LLVM integers use a two's complement representation, this
3533instruction is appropriate for both signed and unsigned integers.
3534
3535``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3536respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3537result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3538unsigned and/or signed overflow, respectively, occurs.
3539
3540Example:
3541""""""""
3542
3543.. code-block:: llvm
3544
3545 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3546 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3547
3548.. _i_fsub:
3549
3550'``fsub``' Instruction
3551^^^^^^^^^^^^^^^^^^^^^^
3552
3553Syntax:
3554"""""""
3555
3556::
3557
3558 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3559
3560Overview:
3561"""""""""
3562
3563The '``fsub``' instruction returns the difference of its two operands.
3564
3565Note that the '``fsub``' instruction is used to represent the '``fneg``'
3566instruction present in most other intermediate representations.
3567
3568Arguments:
3569""""""""""
3570
3571The two arguments to the '``fsub``' instruction must be :ref:`floating
3572point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3573Both arguments must have identical types.
3574
3575Semantics:
3576""""""""""
3577
3578The value produced is the floating point difference of the two operands.
3579This instruction can also take any number of :ref:`fast-math
3580flags <fastmath>`, which are optimization hints to enable otherwise
3581unsafe floating point optimizations:
3582
3583Example:
3584""""""""
3585
3586.. code-block:: llvm
3587
3588 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3589 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3590
3591'``mul``' Instruction
3592^^^^^^^^^^^^^^^^^^^^^
3593
3594Syntax:
3595"""""""
3596
3597::
3598
3599 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3600 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3601 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3602 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3603
3604Overview:
3605"""""""""
3606
3607The '``mul``' instruction returns the product of its two operands.
3608
3609Arguments:
3610""""""""""
3611
3612The two arguments to the '``mul``' instruction must be
3613:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3614arguments must have identical types.
3615
3616Semantics:
3617""""""""""
3618
3619The value produced is the integer product of the two operands.
3620
3621If the result of the multiplication has unsigned overflow, the result
3622returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3623bit width of the result.
3624
3625Because LLVM integers use a two's complement representation, and the
3626result is the same width as the operands, this instruction returns the
3627correct result for both signed and unsigned integers. If a full product
3628(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3629sign-extended or zero-extended as appropriate to the width of the full
3630product.
3631
3632``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3633respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3634result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3635unsigned and/or signed overflow, respectively, occurs.
3636
3637Example:
3638""""""""
3639
3640.. code-block:: llvm
3641
3642 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3643
3644.. _i_fmul:
3645
3646'``fmul``' Instruction
3647^^^^^^^^^^^^^^^^^^^^^^
3648
3649Syntax:
3650"""""""
3651
3652::
3653
3654 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3655
3656Overview:
3657"""""""""
3658
3659The '``fmul``' instruction returns the product of its two operands.
3660
3661Arguments:
3662""""""""""
3663
3664The two arguments to the '``fmul``' instruction must be :ref:`floating
3665point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3666Both arguments must have identical types.
3667
3668Semantics:
3669""""""""""
3670
3671The value produced is the floating point product of the two operands.
3672This instruction can also take any number of :ref:`fast-math
3673flags <fastmath>`, which are optimization hints to enable otherwise
3674unsafe floating point optimizations:
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3682
3683'``udiv``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3692 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3693
3694Overview:
3695"""""""""
3696
3697The '``udiv``' instruction returns the quotient of its two operands.
3698
3699Arguments:
3700""""""""""
3701
3702The two arguments to the '``udiv``' instruction must be
3703:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3704arguments must have identical types.
3705
3706Semantics:
3707""""""""""
3708
3709The value produced is the unsigned integer quotient of the two operands.
3710
3711Note that unsigned integer division and signed integer division are
3712distinct operations; for signed integer division, use '``sdiv``'.
3713
3714Division by zero leads to undefined behavior.
3715
3716If the ``exact`` keyword is present, the result value of the ``udiv`` is
3717a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3718such, "((a udiv exact b) mul b) == a").
3719
3720Example:
3721""""""""
3722
3723.. code-block:: llvm
3724
3725 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3726
3727'``sdiv``' Instruction
3728^^^^^^^^^^^^^^^^^^^^^^
3729
3730Syntax:
3731"""""""
3732
3733::
3734
3735 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3736 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3737
3738Overview:
3739"""""""""
3740
3741The '``sdiv``' instruction returns the quotient of its two operands.
3742
3743Arguments:
3744""""""""""
3745
3746The two arguments to the '``sdiv``' instruction must be
3747:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3748arguments must have identical types.
3749
3750Semantics:
3751""""""""""
3752
3753The value produced is the signed integer quotient of the two operands
3754rounded towards zero.
3755
3756Note that signed integer division and unsigned integer division are
3757distinct operations; for unsigned integer division, use '``udiv``'.
3758
3759Division by zero leads to undefined behavior. Overflow also leads to
3760undefined behavior; this is a rare case, but can occur, for example, by
3761doing a 32-bit division of -2147483648 by -1.
3762
3763If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3764a :ref:`poison value <poisonvalues>` if the result would be rounded.
3765
3766Example:
3767""""""""
3768
3769.. code-block:: llvm
3770
3771 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3772
3773.. _i_fdiv:
3774
3775'``fdiv``' Instruction
3776^^^^^^^^^^^^^^^^^^^^^^
3777
3778Syntax:
3779"""""""
3780
3781::
3782
3783 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3784
3785Overview:
3786"""""""""
3787
3788The '``fdiv``' instruction returns the quotient of its two operands.
3789
3790Arguments:
3791""""""""""
3792
3793The two arguments to the '``fdiv``' instruction must be :ref:`floating
3794point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3795Both arguments must have identical types.
3796
3797Semantics:
3798""""""""""
3799
3800The value produced is the floating point quotient of the two operands.
3801This instruction can also take any number of :ref:`fast-math
3802flags <fastmath>`, which are optimization hints to enable otherwise
3803unsafe floating point optimizations:
3804
3805Example:
3806""""""""
3807
3808.. code-block:: llvm
3809
3810 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3811
3812'``urem``' Instruction
3813^^^^^^^^^^^^^^^^^^^^^^
3814
3815Syntax:
3816"""""""
3817
3818::
3819
3820 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3821
3822Overview:
3823"""""""""
3824
3825The '``urem``' instruction returns the remainder from the unsigned
3826division of its two arguments.
3827
3828Arguments:
3829""""""""""
3830
3831The two arguments to the '``urem``' instruction must be
3832:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3833arguments must have identical types.
3834
3835Semantics:
3836""""""""""
3837
3838This instruction returns the unsigned integer *remainder* of a division.
3839This instruction always performs an unsigned division to get the
3840remainder.
3841
3842Note that unsigned integer remainder and signed integer remainder are
3843distinct operations; for signed integer remainder, use '``srem``'.
3844
3845Taking the remainder of a division by zero leads to undefined behavior.
3846
3847Example:
3848""""""""
3849
3850.. code-block:: llvm
3851
3852 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3853
3854'``srem``' Instruction
3855^^^^^^^^^^^^^^^^^^^^^^
3856
3857Syntax:
3858"""""""
3859
3860::
3861
3862 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3863
3864Overview:
3865"""""""""
3866
3867The '``srem``' instruction returns the remainder from the signed
3868division of its two operands. This instruction can also take
3869:ref:`vector <t_vector>` versions of the values in which case the elements
3870must be integers.
3871
3872Arguments:
3873""""""""""
3874
3875The two arguments to the '``srem``' instruction must be
3876:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3877arguments must have identical types.
3878
3879Semantics:
3880""""""""""
3881
3882This instruction returns the *remainder* of a division (where the result
3883is either zero or has the same sign as the dividend, ``op1``), not the
3884*modulo* operator (where the result is either zero or has the same sign
3885as the divisor, ``op2``) of a value. For more information about the
3886difference, see `The Math
3887Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3888table of how this is implemented in various languages, please see
3889`Wikipedia: modulo
3890operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3891
3892Note that signed integer remainder and unsigned integer remainder are
3893distinct operations; for unsigned integer remainder, use '``urem``'.
3894
3895Taking the remainder of a division by zero leads to undefined behavior.
3896Overflow also leads to undefined behavior; this is a rare case, but can
3897occur, for example, by taking the remainder of a 32-bit division of
3898-2147483648 by -1. (The remainder doesn't actually overflow, but this
3899rule lets srem be implemented using instructions that return both the
3900result of the division and the remainder.)
3901
3902Example:
3903""""""""
3904
3905.. code-block:: llvm
3906
3907 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3908
3909.. _i_frem:
3910
3911'``frem``' Instruction
3912^^^^^^^^^^^^^^^^^^^^^^
3913
3914Syntax:
3915"""""""
3916
3917::
3918
3919 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3920
3921Overview:
3922"""""""""
3923
3924The '``frem``' instruction returns the remainder from the division of
3925its two operands.
3926
3927Arguments:
3928""""""""""
3929
3930The two arguments to the '``frem``' instruction must be :ref:`floating
3931point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3932Both arguments must have identical types.
3933
3934Semantics:
3935""""""""""
3936
3937This instruction returns the *remainder* of a division. The remainder
3938has the same sign as the dividend. This instruction can also take any
3939number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3940to enable otherwise unsafe floating point optimizations:
3941
3942Example:
3943""""""""
3944
3945.. code-block:: llvm
3946
3947 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3948
3949.. _bitwiseops:
3950
3951Bitwise Binary Operations
3952-------------------------
3953
3954Bitwise binary operators are used to do various forms of bit-twiddling
3955in a program. They are generally very efficient instructions and can
3956commonly be strength reduced from other instructions. They require two
3957operands of the same type, execute an operation on them, and produce a
3958single value. The resulting value is the same type as its operands.
3959
3960'``shl``' Instruction
3961^^^^^^^^^^^^^^^^^^^^^
3962
3963Syntax:
3964"""""""
3965
3966::
3967
3968 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3969 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3970 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3971 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3972
3973Overview:
3974"""""""""
3975
3976The '``shl``' instruction returns the first operand shifted to the left
3977a specified number of bits.
3978
3979Arguments:
3980""""""""""
3981
3982Both arguments to the '``shl``' instruction must be the same
3983:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3984'``op2``' is treated as an unsigned value.
3985
3986Semantics:
3987""""""""""
3988
3989The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3990where ``n`` is the width of the result. If ``op2`` is (statically or
3991dynamically) negative or equal to or larger than the number of bits in
3992``op1``, the result is undefined. If the arguments are vectors, each
3993vector element of ``op1`` is shifted by the corresponding shift amount
3994in ``op2``.
3995
3996If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3997value <poisonvalues>` if it shifts out any non-zero bits. If the
3998``nsw`` keyword is present, then the shift produces a :ref:`poison
3999value <poisonvalues>` if it shifts out any bits that disagree with the
4000resultant sign bit. As such, NUW/NSW have the same semantics as they
4001would if the shift were expressed as a mul instruction with the same
4002nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4003
4004Example:
4005""""""""
4006
4007.. code-block:: llvm
4008
4009 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4010 <result> = shl i32 4, 2 ; yields {i32}: 16
4011 <result> = shl i32 1, 10 ; yields {i32}: 1024
4012 <result> = shl i32 1, 32 ; undefined
4013 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4014
4015'``lshr``' Instruction
4016^^^^^^^^^^^^^^^^^^^^^^
4017
4018Syntax:
4019"""""""
4020
4021::
4022
4023 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4024 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4025
4026Overview:
4027"""""""""
4028
4029The '``lshr``' instruction (logical shift right) returns the first
4030operand shifted to the right a specified number of bits with zero fill.
4031
4032Arguments:
4033""""""""""
4034
4035Both arguments to the '``lshr``' instruction must be the same
4036:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4037'``op2``' is treated as an unsigned value.
4038
4039Semantics:
4040""""""""""
4041
4042This instruction always performs a logical shift right operation. The
4043most significant bits of the result will be filled with zero bits after
4044the shift. If ``op2`` is (statically or dynamically) equal to or larger
4045than the number of bits in ``op1``, the result is undefined. If the
4046arguments are vectors, each vector element of ``op1`` is shifted by the
4047corresponding shift amount in ``op2``.
4048
4049If the ``exact`` keyword is present, the result value of the ``lshr`` is
4050a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4051non-zero.
4052
4053Example:
4054""""""""
4055
4056.. code-block:: llvm
4057
4058 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4059 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4060 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004061 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004062 <result> = lshr i32 1, 32 ; undefined
4063 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4064
4065'``ashr``' Instruction
4066^^^^^^^^^^^^^^^^^^^^^^
4067
4068Syntax:
4069"""""""
4070
4071::
4072
4073 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4074 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4075
4076Overview:
4077"""""""""
4078
4079The '``ashr``' instruction (arithmetic shift right) returns the first
4080operand shifted to the right a specified number of bits with sign
4081extension.
4082
4083Arguments:
4084""""""""""
4085
4086Both arguments to the '``ashr``' instruction must be the same
4087:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4088'``op2``' is treated as an unsigned value.
4089
4090Semantics:
4091""""""""""
4092
4093This instruction always performs an arithmetic shift right operation,
4094The most significant bits of the result will be filled with the sign bit
4095of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4096than the number of bits in ``op1``, the result is undefined. If the
4097arguments are vectors, each vector element of ``op1`` is shifted by the
4098corresponding shift amount in ``op2``.
4099
4100If the ``exact`` keyword is present, the result value of the ``ashr`` is
4101a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4102non-zero.
4103
4104Example:
4105""""""""
4106
4107.. code-block:: llvm
4108
4109 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4110 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4111 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4112 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4113 <result> = ashr i32 1, 32 ; undefined
4114 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4115
4116'``and``' Instruction
4117^^^^^^^^^^^^^^^^^^^^^
4118
4119Syntax:
4120"""""""
4121
4122::
4123
4124 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4125
4126Overview:
4127"""""""""
4128
4129The '``and``' instruction returns the bitwise logical and of its two
4130operands.
4131
4132Arguments:
4133""""""""""
4134
4135The two arguments to the '``and``' instruction must be
4136:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4137arguments must have identical types.
4138
4139Semantics:
4140""""""""""
4141
4142The truth table used for the '``and``' instruction is:
4143
4144+-----+-----+-----+
4145| In0 | In1 | Out |
4146+-----+-----+-----+
4147| 0 | 0 | 0 |
4148+-----+-----+-----+
4149| 0 | 1 | 0 |
4150+-----+-----+-----+
4151| 1 | 0 | 0 |
4152+-----+-----+-----+
4153| 1 | 1 | 1 |
4154+-----+-----+-----+
4155
4156Example:
4157""""""""
4158
4159.. code-block:: llvm
4160
4161 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4162 <result> = and i32 15, 40 ; yields {i32}:result = 8
4163 <result> = and i32 4, 8 ; yields {i32}:result = 0
4164
4165'``or``' Instruction
4166^^^^^^^^^^^^^^^^^^^^
4167
4168Syntax:
4169"""""""
4170
4171::
4172
4173 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4174
4175Overview:
4176"""""""""
4177
4178The '``or``' instruction returns the bitwise logical inclusive or of its
4179two operands.
4180
4181Arguments:
4182""""""""""
4183
4184The two arguments to the '``or``' instruction must be
4185:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4186arguments must have identical types.
4187
4188Semantics:
4189""""""""""
4190
4191The truth table used for the '``or``' instruction is:
4192
4193+-----+-----+-----+
4194| In0 | In1 | Out |
4195+-----+-----+-----+
4196| 0 | 0 | 0 |
4197+-----+-----+-----+
4198| 0 | 1 | 1 |
4199+-----+-----+-----+
4200| 1 | 0 | 1 |
4201+-----+-----+-----+
4202| 1 | 1 | 1 |
4203+-----+-----+-----+
4204
4205Example:
4206""""""""
4207
4208::
4209
4210 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4211 <result> = or i32 15, 40 ; yields {i32}:result = 47
4212 <result> = or i32 4, 8 ; yields {i32}:result = 12
4213
4214'``xor``' Instruction
4215^^^^^^^^^^^^^^^^^^^^^
4216
4217Syntax:
4218"""""""
4219
4220::
4221
4222 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4223
4224Overview:
4225"""""""""
4226
4227The '``xor``' instruction returns the bitwise logical exclusive or of
4228its two operands. The ``xor`` is used to implement the "one's
4229complement" operation, which is the "~" operator in C.
4230
4231Arguments:
4232""""""""""
4233
4234The two arguments to the '``xor``' instruction must be
4235:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4236arguments must have identical types.
4237
4238Semantics:
4239""""""""""
4240
4241The truth table used for the '``xor``' instruction is:
4242
4243+-----+-----+-----+
4244| In0 | In1 | Out |
4245+-----+-----+-----+
4246| 0 | 0 | 0 |
4247+-----+-----+-----+
4248| 0 | 1 | 1 |
4249+-----+-----+-----+
4250| 1 | 0 | 1 |
4251+-----+-----+-----+
4252| 1 | 1 | 0 |
4253+-----+-----+-----+
4254
4255Example:
4256""""""""
4257
4258.. code-block:: llvm
4259
4260 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4261 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4262 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4263 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4264
4265Vector Operations
4266-----------------
4267
4268LLVM supports several instructions to represent vector operations in a
4269target-independent manner. These instructions cover the element-access
4270and vector-specific operations needed to process vectors effectively.
4271While LLVM does directly support these vector operations, many
4272sophisticated algorithms will want to use target-specific intrinsics to
4273take full advantage of a specific target.
4274
4275.. _i_extractelement:
4276
4277'``extractelement``' Instruction
4278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4279
4280Syntax:
4281"""""""
4282
4283::
4284
4285 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4286
4287Overview:
4288"""""""""
4289
4290The '``extractelement``' instruction extracts a single scalar element
4291from a vector at a specified index.
4292
4293Arguments:
4294""""""""""
4295
4296The first operand of an '``extractelement``' instruction is a value of
4297:ref:`vector <t_vector>` type. The second operand is an index indicating
4298the position from which to extract the element. The index may be a
4299variable.
4300
4301Semantics:
4302""""""""""
4303
4304The result is a scalar of the same type as the element type of ``val``.
4305Its value is the value at position ``idx`` of ``val``. If ``idx``
4306exceeds the length of ``val``, the results are undefined.
4307
4308Example:
4309""""""""
4310
4311.. code-block:: llvm
4312
4313 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4314
4315.. _i_insertelement:
4316
4317'``insertelement``' Instruction
4318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4319
4320Syntax:
4321"""""""
4322
4323::
4324
4325 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4326
4327Overview:
4328"""""""""
4329
4330The '``insertelement``' instruction inserts a scalar element into a
4331vector at a specified index.
4332
4333Arguments:
4334""""""""""
4335
4336The first operand of an '``insertelement``' instruction is a value of
4337:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4338type must equal the element type of the first operand. The third operand
4339is an index indicating the position at which to insert the value. The
4340index may be a variable.
4341
4342Semantics:
4343""""""""""
4344
4345The result is a vector of the same type as ``val``. Its element values
4346are those of ``val`` except at position ``idx``, where it gets the value
4347``elt``. If ``idx`` exceeds the length of ``val``, the results are
4348undefined.
4349
4350Example:
4351""""""""
4352
4353.. code-block:: llvm
4354
4355 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4356
4357.. _i_shufflevector:
4358
4359'``shufflevector``' Instruction
4360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4361
4362Syntax:
4363"""""""
4364
4365::
4366
4367 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4368
4369Overview:
4370"""""""""
4371
4372The '``shufflevector``' instruction constructs a permutation of elements
4373from two input vectors, returning a vector with the same element type as
4374the input and length that is the same as the shuffle mask.
4375
4376Arguments:
4377""""""""""
4378
4379The first two operands of a '``shufflevector``' instruction are vectors
4380with the same type. The third argument is a shuffle mask whose element
4381type is always 'i32'. The result of the instruction is a vector whose
4382length is the same as the shuffle mask and whose element type is the
4383same as the element type of the first two operands.
4384
4385The shuffle mask operand is required to be a constant vector with either
4386constant integer or undef values.
4387
4388Semantics:
4389""""""""""
4390
4391The elements of the two input vectors are numbered from left to right
4392across both of the vectors. The shuffle mask operand specifies, for each
4393element of the result vector, which element of the two input vectors the
4394result element gets. The element selector may be undef (meaning "don't
4395care") and the second operand may be undef if performing a shuffle from
4396only one vector.
4397
4398Example:
4399""""""""
4400
4401.. code-block:: llvm
4402
4403 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4404 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4405 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4406 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4407 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4408 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4409 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4410 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4411
4412Aggregate Operations
4413--------------------
4414
4415LLVM supports several instructions for working with
4416:ref:`aggregate <t_aggregate>` values.
4417
4418.. _i_extractvalue:
4419
4420'``extractvalue``' Instruction
4421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4422
4423Syntax:
4424"""""""
4425
4426::
4427
4428 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4429
4430Overview:
4431"""""""""
4432
4433The '``extractvalue``' instruction extracts the value of a member field
4434from an :ref:`aggregate <t_aggregate>` value.
4435
4436Arguments:
4437""""""""""
4438
4439The first operand of an '``extractvalue``' instruction is a value of
4440:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4441constant indices to specify which value to extract in a similar manner
4442as indices in a '``getelementptr``' instruction.
4443
4444The major differences to ``getelementptr`` indexing are:
4445
4446- Since the value being indexed is not a pointer, the first index is
4447 omitted and assumed to be zero.
4448- At least one index must be specified.
4449- Not only struct indices but also array indices must be in bounds.
4450
4451Semantics:
4452""""""""""
4453
4454The result is the value at the position in the aggregate specified by
4455the index operands.
4456
4457Example:
4458""""""""
4459
4460.. code-block:: llvm
4461
4462 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4463
4464.. _i_insertvalue:
4465
4466'``insertvalue``' Instruction
4467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4468
4469Syntax:
4470"""""""
4471
4472::
4473
4474 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4475
4476Overview:
4477"""""""""
4478
4479The '``insertvalue``' instruction inserts a value into a member field in
4480an :ref:`aggregate <t_aggregate>` value.
4481
4482Arguments:
4483""""""""""
4484
4485The first operand of an '``insertvalue``' instruction is a value of
4486:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4487a first-class value to insert. The following operands are constant
4488indices indicating the position at which to insert the value in a
4489similar manner as indices in a '``extractvalue``' instruction. The value
4490to insert must have the same type as the value identified by the
4491indices.
4492
4493Semantics:
4494""""""""""
4495
4496The result is an aggregate of the same type as ``val``. Its value is
4497that of ``val`` except that the value at the position specified by the
4498indices is that of ``elt``.
4499
4500Example:
4501""""""""
4502
4503.. code-block:: llvm
4504
4505 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4506 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4507 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4508
4509.. _memoryops:
4510
4511Memory Access and Addressing Operations
4512---------------------------------------
4513
4514A key design point of an SSA-based representation is how it represents
4515memory. In LLVM, no memory locations are in SSA form, which makes things
4516very simple. This section describes how to read, write, and allocate
4517memory in LLVM.
4518
4519.. _i_alloca:
4520
4521'``alloca``' Instruction
4522^^^^^^^^^^^^^^^^^^^^^^^^
4523
4524Syntax:
4525"""""""
4526
4527::
4528
4529 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4530
4531Overview:
4532"""""""""
4533
4534The '``alloca``' instruction allocates memory on the stack frame of the
4535currently executing function, to be automatically released when this
4536function returns to its caller. The object is always allocated in the
4537generic address space (address space zero).
4538
4539Arguments:
4540""""""""""
4541
4542The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4543bytes of memory on the runtime stack, returning a pointer of the
4544appropriate type to the program. If "NumElements" is specified, it is
4545the number of elements allocated, otherwise "NumElements" is defaulted
4546to be one. If a constant alignment is specified, the value result of the
4547allocation is guaranteed to be aligned to at least that boundary. If not
4548specified, or if zero, the target can choose to align the allocation on
4549any convenient boundary compatible with the type.
4550
4551'``type``' may be any sized type.
4552
4553Semantics:
4554""""""""""
4555
4556Memory is allocated; a pointer is returned. The operation is undefined
4557if there is insufficient stack space for the allocation. '``alloca``'d
4558memory is automatically released when the function returns. The
4559'``alloca``' instruction is commonly used to represent automatic
4560variables that must have an address available. When the function returns
4561(either with the ``ret`` or ``resume`` instructions), the memory is
4562reclaimed. Allocating zero bytes is legal, but the result is undefined.
4563The order in which memory is allocated (ie., which way the stack grows)
4564is not specified.
4565
4566Example:
4567""""""""
4568
4569.. code-block:: llvm
4570
4571 %ptr = alloca i32 ; yields {i32*}:ptr
4572 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4573 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4574 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4575
4576.. _i_load:
4577
4578'``load``' Instruction
4579^^^^^^^^^^^^^^^^^^^^^^
4580
4581Syntax:
4582"""""""
4583
4584::
4585
4586 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4587 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4588 !<index> = !{ i32 1 }
4589
4590Overview:
4591"""""""""
4592
4593The '``load``' instruction is used to read from memory.
4594
4595Arguments:
4596""""""""""
4597
Eli Bendersky8c493382013-04-17 20:17:08 +00004598The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004599from which to load. The pointer must point to a :ref:`first
4600class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4601then the optimizer is not allowed to modify the number or order of
4602execution of this ``load`` with other :ref:`volatile
4603operations <volatile>`.
4604
4605If the ``load`` is marked as ``atomic``, it takes an extra
4606:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4607``release`` and ``acq_rel`` orderings are not valid on ``load``
4608instructions. Atomic loads produce :ref:`defined <memmodel>` results
4609when they may see multiple atomic stores. The type of the pointee must
4610be an integer type whose bit width is a power of two greater than or
4611equal to eight and less than or equal to a target-specific size limit.
4612``align`` must be explicitly specified on atomic loads, and the load has
4613undefined behavior if the alignment is not set to a value which is at
4614least the size in bytes of the pointee. ``!nontemporal`` does not have
4615any defined semantics for atomic loads.
4616
4617The optional constant ``align`` argument specifies the alignment of the
4618operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004619or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004620alignment for the target. It is the responsibility of the code emitter
4621to ensure that the alignment information is correct. Overestimating the
4622alignment results in undefined behavior. Underestimating the alignment
4623may produce less efficient code. An alignment of 1 is always safe.
4624
4625The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004626metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004627``i32`` entry of value 1. The existence of the ``!nontemporal``
4628metatadata on the instruction tells the optimizer and code generator
4629that this load is not expected to be reused in the cache. The code
4630generator may select special instructions to save cache bandwidth, such
4631as the ``MOVNT`` instruction on x86.
4632
4633The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004634metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004635entries. The existence of the ``!invariant.load`` metatadata on the
4636instruction tells the optimizer and code generator that this load
4637address points to memory which does not change value during program
4638execution. The optimizer may then move this load around, for example, by
4639hoisting it out of loops using loop invariant code motion.
4640
4641Semantics:
4642""""""""""
4643
4644The location of memory pointed to is loaded. If the value being loaded
4645is of scalar type then the number of bytes read does not exceed the
4646minimum number of bytes needed to hold all bits of the type. For
4647example, loading an ``i24`` reads at most three bytes. When loading a
4648value of a type like ``i20`` with a size that is not an integral number
4649of bytes, the result is undefined if the value was not originally
4650written using a store of the same type.
4651
4652Examples:
4653"""""""""
4654
4655.. code-block:: llvm
4656
4657 %ptr = alloca i32 ; yields {i32*}:ptr
4658 store i32 3, i32* %ptr ; yields {void}
4659 %val = load i32* %ptr ; yields {i32}:val = i32 3
4660
4661.. _i_store:
4662
4663'``store``' Instruction
4664^^^^^^^^^^^^^^^^^^^^^^^
4665
4666Syntax:
4667"""""""
4668
4669::
4670
4671 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4672 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4673
4674Overview:
4675"""""""""
4676
4677The '``store``' instruction is used to write to memory.
4678
4679Arguments:
4680""""""""""
4681
Eli Bendersky8952d902013-04-17 17:17:20 +00004682There are two arguments to the ``store`` instruction: a value to store
4683and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004684operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004685the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004686then the optimizer is not allowed to modify the number or order of
4687execution of this ``store`` with other :ref:`volatile
4688operations <volatile>`.
4689
4690If the ``store`` is marked as ``atomic``, it takes an extra
4691:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4692``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4693instructions. Atomic loads produce :ref:`defined <memmodel>` results
4694when they may see multiple atomic stores. The type of the pointee must
4695be an integer type whose bit width is a power of two greater than or
4696equal to eight and less than or equal to a target-specific size limit.
4697``align`` must be explicitly specified on atomic stores, and the store
4698has undefined behavior if the alignment is not set to a value which is
4699at least the size in bytes of the pointee. ``!nontemporal`` does not
4700have any defined semantics for atomic stores.
4701
Eli Bendersky8952d902013-04-17 17:17:20 +00004702The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004703operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004704or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004705alignment for the target. It is the responsibility of the code emitter
4706to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004707alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004708alignment may produce less efficient code. An alignment of 1 is always
4709safe.
4710
Eli Bendersky8952d902013-04-17 17:17:20 +00004711The optional ``!nontemporal`` metadata must reference a single metatadata
4712name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4713value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004714tells the optimizer and code generator that this load is not expected to
4715be reused in the cache. The code generator may select special
4716instructions to save cache bandwidth, such as the MOVNT instruction on
4717x86.
4718
4719Semantics:
4720""""""""""
4721
Eli Bendersky8952d902013-04-17 17:17:20 +00004722The contents of memory are updated to contain ``<value>`` at the
4723location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004724of scalar type then the number of bytes written does not exceed the
4725minimum number of bytes needed to hold all bits of the type. For
4726example, storing an ``i24`` writes at most three bytes. When writing a
4727value of a type like ``i20`` with a size that is not an integral number
4728of bytes, it is unspecified what happens to the extra bits that do not
4729belong to the type, but they will typically be overwritten.
4730
4731Example:
4732""""""""
4733
4734.. code-block:: llvm
4735
4736 %ptr = alloca i32 ; yields {i32*}:ptr
4737 store i32 3, i32* %ptr ; yields {void}
4738 %val = load i32* %ptr ; yields {i32}:val = i32 3
4739
4740.. _i_fence:
4741
4742'``fence``' Instruction
4743^^^^^^^^^^^^^^^^^^^^^^^
4744
4745Syntax:
4746"""""""
4747
4748::
4749
4750 fence [singlethread] <ordering> ; yields {void}
4751
4752Overview:
4753"""""""""
4754
4755The '``fence``' instruction is used to introduce happens-before edges
4756between operations.
4757
4758Arguments:
4759""""""""""
4760
4761'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4762defines what *synchronizes-with* edges they add. They can only be given
4763``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4764
4765Semantics:
4766""""""""""
4767
4768A fence A which has (at least) ``release`` ordering semantics
4769*synchronizes with* a fence B with (at least) ``acquire`` ordering
4770semantics if and only if there exist atomic operations X and Y, both
4771operating on some atomic object M, such that A is sequenced before X, X
4772modifies M (either directly or through some side effect of a sequence
4773headed by X), Y is sequenced before B, and Y observes M. This provides a
4774*happens-before* dependency between A and B. Rather than an explicit
4775``fence``, one (but not both) of the atomic operations X or Y might
4776provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4777still *synchronize-with* the explicit ``fence`` and establish the
4778*happens-before* edge.
4779
4780A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4781``acquire`` and ``release`` semantics specified above, participates in
4782the global program order of other ``seq_cst`` operations and/or fences.
4783
4784The optional ":ref:`singlethread <singlethread>`" argument specifies
4785that the fence only synchronizes with other fences in the same thread.
4786(This is useful for interacting with signal handlers.)
4787
4788Example:
4789""""""""
4790
4791.. code-block:: llvm
4792
4793 fence acquire ; yields {void}
4794 fence singlethread seq_cst ; yields {void}
4795
4796.. _i_cmpxchg:
4797
4798'``cmpxchg``' Instruction
4799^^^^^^^^^^^^^^^^^^^^^^^^^
4800
4801Syntax:
4802"""""""
4803
4804::
4805
4806 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4807
4808Overview:
4809"""""""""
4810
4811The '``cmpxchg``' instruction is used to atomically modify memory. It
4812loads a value in memory and compares it to a given value. If they are
4813equal, it stores a new value into the memory.
4814
4815Arguments:
4816""""""""""
4817
4818There are three arguments to the '``cmpxchg``' instruction: an address
4819to operate on, a value to compare to the value currently be at that
4820address, and a new value to place at that address if the compared values
4821are equal. The type of '<cmp>' must be an integer type whose bit width
4822is a power of two greater than or equal to eight and less than or equal
4823to a target-specific size limit. '<cmp>' and '<new>' must have the same
4824type, and the type of '<pointer>' must be a pointer to that type. If the
4825``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4826to modify the number or order of execution of this ``cmpxchg`` with
4827other :ref:`volatile operations <volatile>`.
4828
4829The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4830synchronizes with other atomic operations.
4831
4832The optional "``singlethread``" argument declares that the ``cmpxchg``
4833is only atomic with respect to code (usually signal handlers) running in
4834the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4835respect to all other code in the system.
4836
4837The pointer passed into cmpxchg must have alignment greater than or
4838equal to the size in memory of the operand.
4839
4840Semantics:
4841""""""""""
4842
4843The contents of memory at the location specified by the '``<pointer>``'
4844operand is read and compared to '``<cmp>``'; if the read value is the
4845equal, '``<new>``' is written. The original value at the location is
4846returned.
4847
4848A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4849of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4850atomic load with an ordering parameter determined by dropping any
4851``release`` part of the ``cmpxchg``'s ordering.
4852
4853Example:
4854""""""""
4855
4856.. code-block:: llvm
4857
4858 entry:
4859 %orig = atomic load i32* %ptr unordered ; yields {i32}
4860 br label %loop
4861
4862 loop:
4863 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4864 %squared = mul i32 %cmp, %cmp
4865 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4866 %success = icmp eq i32 %cmp, %old
4867 br i1 %success, label %done, label %loop
4868
4869 done:
4870 ...
4871
4872.. _i_atomicrmw:
4873
4874'``atomicrmw``' Instruction
4875^^^^^^^^^^^^^^^^^^^^^^^^^^^
4876
4877Syntax:
4878"""""""
4879
4880::
4881
4882 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4883
4884Overview:
4885"""""""""
4886
4887The '``atomicrmw``' instruction is used to atomically modify memory.
4888
4889Arguments:
4890""""""""""
4891
4892There are three arguments to the '``atomicrmw``' instruction: an
4893operation to apply, an address whose value to modify, an argument to the
4894operation. The operation must be one of the following keywords:
4895
4896- xchg
4897- add
4898- sub
4899- and
4900- nand
4901- or
4902- xor
4903- max
4904- min
4905- umax
4906- umin
4907
4908The type of '<value>' must be an integer type whose bit width is a power
4909of two greater than or equal to eight and less than or equal to a
4910target-specific size limit. The type of the '``<pointer>``' operand must
4911be a pointer to that type. If the ``atomicrmw`` is marked as
4912``volatile``, then the optimizer is not allowed to modify the number or
4913order of execution of this ``atomicrmw`` with other :ref:`volatile
4914operations <volatile>`.
4915
4916Semantics:
4917""""""""""
4918
4919The contents of memory at the location specified by the '``<pointer>``'
4920operand are atomically read, modified, and written back. The original
4921value at the location is returned. The modification is specified by the
4922operation argument:
4923
4924- xchg: ``*ptr = val``
4925- add: ``*ptr = *ptr + val``
4926- sub: ``*ptr = *ptr - val``
4927- and: ``*ptr = *ptr & val``
4928- nand: ``*ptr = ~(*ptr & val)``
4929- or: ``*ptr = *ptr | val``
4930- xor: ``*ptr = *ptr ^ val``
4931- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4932- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4933- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4934 comparison)
4935- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4936 comparison)
4937
4938Example:
4939""""""""
4940
4941.. code-block:: llvm
4942
4943 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4944
4945.. _i_getelementptr:
4946
4947'``getelementptr``' Instruction
4948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4949
4950Syntax:
4951"""""""
4952
4953::
4954
4955 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4956 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4957 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4958
4959Overview:
4960"""""""""
4961
4962The '``getelementptr``' instruction is used to get the address of a
4963subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4964address calculation only and does not access memory.
4965
4966Arguments:
4967""""""""""
4968
4969The first argument is always a pointer or a vector of pointers, and
4970forms the basis of the calculation. The remaining arguments are indices
4971that indicate which of the elements of the aggregate object are indexed.
4972The interpretation of each index is dependent on the type being indexed
4973into. The first index always indexes the pointer value given as the
4974first argument, the second index indexes a value of the type pointed to
4975(not necessarily the value directly pointed to, since the first index
4976can be non-zero), etc. The first type indexed into must be a pointer
4977value, subsequent types can be arrays, vectors, and structs. Note that
4978subsequent types being indexed into can never be pointers, since that
4979would require loading the pointer before continuing calculation.
4980
4981The type of each index argument depends on the type it is indexing into.
4982When indexing into a (optionally packed) structure, only ``i32`` integer
4983**constants** are allowed (when using a vector of indices they must all
4984be the **same** ``i32`` integer constant). When indexing into an array,
4985pointer or vector, integers of any width are allowed, and they are not
4986required to be constant. These integers are treated as signed values
4987where relevant.
4988
4989For example, let's consider a C code fragment and how it gets compiled
4990to LLVM:
4991
4992.. code-block:: c
4993
4994 struct RT {
4995 char A;
4996 int B[10][20];
4997 char C;
4998 };
4999 struct ST {
5000 int X;
5001 double Y;
5002 struct RT Z;
5003 };
5004
5005 int *foo(struct ST *s) {
5006 return &s[1].Z.B[5][13];
5007 }
5008
5009The LLVM code generated by Clang is:
5010
5011.. code-block:: llvm
5012
5013 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5014 %struct.ST = type { i32, double, %struct.RT }
5015
5016 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5017 entry:
5018 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5019 ret i32* %arrayidx
5020 }
5021
5022Semantics:
5023""""""""""
5024
5025In the example above, the first index is indexing into the
5026'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5027= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5028indexes into the third element of the structure, yielding a
5029'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5030structure. The third index indexes into the second element of the
5031structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5032dimensions of the array are subscripted into, yielding an '``i32``'
5033type. The '``getelementptr``' instruction returns a pointer to this
5034element, thus computing a value of '``i32*``' type.
5035
5036Note that it is perfectly legal to index partially through a structure,
5037returning a pointer to an inner element. Because of this, the LLVM code
5038for the given testcase is equivalent to:
5039
5040.. code-block:: llvm
5041
5042 define i32* @foo(%struct.ST* %s) {
5043 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5044 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5045 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5046 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5047 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5048 ret i32* %t5
5049 }
5050
5051If the ``inbounds`` keyword is present, the result value of the
5052``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5053pointer is not an *in bounds* address of an allocated object, or if any
5054of the addresses that would be formed by successive addition of the
5055offsets implied by the indices to the base address with infinitely
5056precise signed arithmetic are not an *in bounds* address of that
5057allocated object. The *in bounds* addresses for an allocated object are
5058all the addresses that point into the object, plus the address one byte
5059past the end. In cases where the base is a vector of pointers the
5060``inbounds`` keyword applies to each of the computations element-wise.
5061
5062If the ``inbounds`` keyword is not present, the offsets are added to the
5063base address with silently-wrapping two's complement arithmetic. If the
5064offsets have a different width from the pointer, they are sign-extended
5065or truncated to the width of the pointer. The result value of the
5066``getelementptr`` may be outside the object pointed to by the base
5067pointer. The result value may not necessarily be used to access memory
5068though, even if it happens to point into allocated storage. See the
5069:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5070information.
5071
5072The getelementptr instruction is often confusing. For some more insight
5073into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5074
5075Example:
5076""""""""
5077
5078.. code-block:: llvm
5079
5080 ; yields [12 x i8]*:aptr
5081 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5082 ; yields i8*:vptr
5083 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5084 ; yields i8*:eptr
5085 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5086 ; yields i32*:iptr
5087 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5088
5089In cases where the pointer argument is a vector of pointers, each index
5090must be a vector with the same number of elements. For example:
5091
5092.. code-block:: llvm
5093
5094 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5095
5096Conversion Operations
5097---------------------
5098
5099The instructions in this category are the conversion instructions
5100(casting) which all take a single operand and a type. They perform
5101various bit conversions on the operand.
5102
5103'``trunc .. to``' Instruction
5104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5105
5106Syntax:
5107"""""""
5108
5109::
5110
5111 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5112
5113Overview:
5114"""""""""
5115
5116The '``trunc``' instruction truncates its operand to the type ``ty2``.
5117
5118Arguments:
5119""""""""""
5120
5121The '``trunc``' instruction takes a value to trunc, and a type to trunc
5122it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5123of the same number of integers. The bit size of the ``value`` must be
5124larger than the bit size of the destination type, ``ty2``. Equal sized
5125types are not allowed.
5126
5127Semantics:
5128""""""""""
5129
5130The '``trunc``' instruction truncates the high order bits in ``value``
5131and converts the remaining bits to ``ty2``. Since the source size must
5132be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5133It will always truncate bits.
5134
5135Example:
5136""""""""
5137
5138.. code-block:: llvm
5139
5140 %X = trunc i32 257 to i8 ; yields i8:1
5141 %Y = trunc i32 123 to i1 ; yields i1:true
5142 %Z = trunc i32 122 to i1 ; yields i1:false
5143 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5144
5145'``zext .. to``' Instruction
5146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5147
5148Syntax:
5149"""""""
5150
5151::
5152
5153 <result> = zext <ty> <value> to <ty2> ; yields ty2
5154
5155Overview:
5156"""""""""
5157
5158The '``zext``' instruction zero extends its operand to type ``ty2``.
5159
5160Arguments:
5161""""""""""
5162
5163The '``zext``' instruction takes a value to cast, and a type to cast it
5164to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5165the same number of integers. The bit size of the ``value`` must be
5166smaller than the bit size of the destination type, ``ty2``.
5167
5168Semantics:
5169""""""""""
5170
5171The ``zext`` fills the high order bits of the ``value`` with zero bits
5172until it reaches the size of the destination type, ``ty2``.
5173
5174When zero extending from i1, the result will always be either 0 or 1.
5175
5176Example:
5177""""""""
5178
5179.. code-block:: llvm
5180
5181 %X = zext i32 257 to i64 ; yields i64:257
5182 %Y = zext i1 true to i32 ; yields i32:1
5183 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5184
5185'``sext .. to``' Instruction
5186^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5187
5188Syntax:
5189"""""""
5190
5191::
5192
5193 <result> = sext <ty> <value> to <ty2> ; yields ty2
5194
5195Overview:
5196"""""""""
5197
5198The '``sext``' sign extends ``value`` to the type ``ty2``.
5199
5200Arguments:
5201""""""""""
5202
5203The '``sext``' instruction takes a value to cast, and a type to cast it
5204to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5205the same number of integers. The bit size of the ``value`` must be
5206smaller than the bit size of the destination type, ``ty2``.
5207
5208Semantics:
5209""""""""""
5210
5211The '``sext``' instruction performs a sign extension by copying the sign
5212bit (highest order bit) of the ``value`` until it reaches the bit size
5213of the type ``ty2``.
5214
5215When sign extending from i1, the extension always results in -1 or 0.
5216
5217Example:
5218""""""""
5219
5220.. code-block:: llvm
5221
5222 %X = sext i8 -1 to i16 ; yields i16 :65535
5223 %Y = sext i1 true to i32 ; yields i32:-1
5224 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5225
5226'``fptrunc .. to``' Instruction
5227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5228
5229Syntax:
5230"""""""
5231
5232::
5233
5234 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5235
5236Overview:
5237"""""""""
5238
5239The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5240
5241Arguments:
5242""""""""""
5243
5244The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5245value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5246The size of ``value`` must be larger than the size of ``ty2``. This
5247implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5248
5249Semantics:
5250""""""""""
5251
5252The '``fptrunc``' instruction truncates a ``value`` from a larger
5253:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5254point <t_floating>` type. If the value cannot fit within the
5255destination type, ``ty2``, then the results are undefined.
5256
5257Example:
5258""""""""
5259
5260.. code-block:: llvm
5261
5262 %X = fptrunc double 123.0 to float ; yields float:123.0
5263 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5264
5265'``fpext .. to``' Instruction
5266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5267
5268Syntax:
5269"""""""
5270
5271::
5272
5273 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5274
5275Overview:
5276"""""""""
5277
5278The '``fpext``' extends a floating point ``value`` to a larger floating
5279point value.
5280
5281Arguments:
5282""""""""""
5283
5284The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5285``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5286to. The source type must be smaller than the destination type.
5287
5288Semantics:
5289""""""""""
5290
5291The '``fpext``' instruction extends the ``value`` from a smaller
5292:ref:`floating point <t_floating>` type to a larger :ref:`floating
5293point <t_floating>` type. The ``fpext`` cannot be used to make a
5294*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5295*no-op cast* for a floating point cast.
5296
5297Example:
5298""""""""
5299
5300.. code-block:: llvm
5301
5302 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5303 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5304
5305'``fptoui .. to``' Instruction
5306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5307
5308Syntax:
5309"""""""
5310
5311::
5312
5313 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5314
5315Overview:
5316"""""""""
5317
5318The '``fptoui``' converts a floating point ``value`` to its unsigned
5319integer equivalent of type ``ty2``.
5320
5321Arguments:
5322""""""""""
5323
5324The '``fptoui``' instruction takes a value to cast, which must be a
5325scalar or vector :ref:`floating point <t_floating>` value, and a type to
5326cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5327``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5328type with the same number of elements as ``ty``
5329
5330Semantics:
5331""""""""""
5332
5333The '``fptoui``' instruction converts its :ref:`floating
5334point <t_floating>` operand into the nearest (rounding towards zero)
5335unsigned integer value. If the value cannot fit in ``ty2``, the results
5336are undefined.
5337
5338Example:
5339""""""""
5340
5341.. code-block:: llvm
5342
5343 %X = fptoui double 123.0 to i32 ; yields i32:123
5344 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5345 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5346
5347'``fptosi .. to``' Instruction
5348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5349
5350Syntax:
5351"""""""
5352
5353::
5354
5355 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5356
5357Overview:
5358"""""""""
5359
5360The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5361``value`` to type ``ty2``.
5362
5363Arguments:
5364""""""""""
5365
5366The '``fptosi``' instruction takes a value to cast, which must be a
5367scalar or vector :ref:`floating point <t_floating>` value, and a type to
5368cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5369``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5370type with the same number of elements as ``ty``
5371
5372Semantics:
5373""""""""""
5374
5375The '``fptosi``' instruction converts its :ref:`floating
5376point <t_floating>` operand into the nearest (rounding towards zero)
5377signed integer value. If the value cannot fit in ``ty2``, the results
5378are undefined.
5379
5380Example:
5381""""""""
5382
5383.. code-block:: llvm
5384
5385 %X = fptosi double -123.0 to i32 ; yields i32:-123
5386 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5387 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5388
5389'``uitofp .. to``' Instruction
5390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5391
5392Syntax:
5393"""""""
5394
5395::
5396
5397 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5398
5399Overview:
5400"""""""""
5401
5402The '``uitofp``' instruction regards ``value`` as an unsigned integer
5403and converts that value to the ``ty2`` type.
5404
5405Arguments:
5406""""""""""
5407
5408The '``uitofp``' instruction takes a value to cast, which must be a
5409scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5410``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5411``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5412type with the same number of elements as ``ty``
5413
5414Semantics:
5415""""""""""
5416
5417The '``uitofp``' instruction interprets its operand as an unsigned
5418integer quantity and converts it to the corresponding floating point
5419value. If the value cannot fit in the floating point value, the results
5420are undefined.
5421
5422Example:
5423""""""""
5424
5425.. code-block:: llvm
5426
5427 %X = uitofp i32 257 to float ; yields float:257.0
5428 %Y = uitofp i8 -1 to double ; yields double:255.0
5429
5430'``sitofp .. to``' Instruction
5431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5432
5433Syntax:
5434"""""""
5435
5436::
5437
5438 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5439
5440Overview:
5441"""""""""
5442
5443The '``sitofp``' instruction regards ``value`` as a signed integer and
5444converts that value to the ``ty2`` type.
5445
5446Arguments:
5447""""""""""
5448
5449The '``sitofp``' instruction takes a value to cast, which must be a
5450scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5451``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5452``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5453type with the same number of elements as ``ty``
5454
5455Semantics:
5456""""""""""
5457
5458The '``sitofp``' instruction interprets its operand as a signed integer
5459quantity and converts it to the corresponding floating point value. If
5460the value cannot fit in the floating point value, the results are
5461undefined.
5462
5463Example:
5464""""""""
5465
5466.. code-block:: llvm
5467
5468 %X = sitofp i32 257 to float ; yields float:257.0
5469 %Y = sitofp i8 -1 to double ; yields double:-1.0
5470
5471.. _i_ptrtoint:
5472
5473'``ptrtoint .. to``' Instruction
5474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5475
5476Syntax:
5477"""""""
5478
5479::
5480
5481 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5482
5483Overview:
5484"""""""""
5485
5486The '``ptrtoint``' instruction converts the pointer or a vector of
5487pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5488
5489Arguments:
5490""""""""""
5491
5492The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5493a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5494type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5495a vector of integers type.
5496
5497Semantics:
5498""""""""""
5499
5500The '``ptrtoint``' instruction converts ``value`` to integer type
5501``ty2`` by interpreting the pointer value as an integer and either
5502truncating or zero extending that value to the size of the integer type.
5503If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5504``value`` is larger than ``ty2`` then a truncation is done. If they are
5505the same size, then nothing is done (*no-op cast*) other than a type
5506change.
5507
5508Example:
5509""""""""
5510
5511.. code-block:: llvm
5512
5513 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5514 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5515 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5516
5517.. _i_inttoptr:
5518
5519'``inttoptr .. to``' Instruction
5520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5521
5522Syntax:
5523"""""""
5524
5525::
5526
5527 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5528
5529Overview:
5530"""""""""
5531
5532The '``inttoptr``' instruction converts an integer ``value`` to a
5533pointer type, ``ty2``.
5534
5535Arguments:
5536""""""""""
5537
5538The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5539cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5540type.
5541
5542Semantics:
5543""""""""""
5544
5545The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5546applying either a zero extension or a truncation depending on the size
5547of the integer ``value``. If ``value`` is larger than the size of a
5548pointer then a truncation is done. If ``value`` is smaller than the size
5549of a pointer then a zero extension is done. If they are the same size,
5550nothing is done (*no-op cast*).
5551
5552Example:
5553""""""""
5554
5555.. code-block:: llvm
5556
5557 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5558 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5559 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5560 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5561
5562.. _i_bitcast:
5563
5564'``bitcast .. to``' Instruction
5565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5566
5567Syntax:
5568"""""""
5569
5570::
5571
5572 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5573
5574Overview:
5575"""""""""
5576
5577The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5578changing any bits.
5579
5580Arguments:
5581""""""""""
5582
5583The '``bitcast``' instruction takes a value to cast, which must be a
5584non-aggregate first class value, and a type to cast it to, which must
5585also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5586sizes of ``value`` and the destination type, ``ty2``, must be identical.
5587If the source type is a pointer, the destination type must also be a
5588pointer. This instruction supports bitwise conversion of vectors to
5589integers and to vectors of other types (as long as they have the same
5590size).
5591
5592Semantics:
5593""""""""""
5594
5595The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5596always a *no-op cast* because no bits change with this conversion. The
5597conversion is done as if the ``value`` had been stored to memory and
5598read back as type ``ty2``. Pointer (or vector of pointers) types may
5599only be converted to other pointer (or vector of pointers) types with
5600this instruction. To convert pointers to other types, use the
5601:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5602first.
5603
5604Example:
5605""""""""
5606
5607.. code-block:: llvm
5608
5609 %X = bitcast i8 255 to i8 ; yields i8 :-1
5610 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5611 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5612 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5613
5614.. _otherops:
5615
5616Other Operations
5617----------------
5618
5619The instructions in this category are the "miscellaneous" instructions,
5620which defy better classification.
5621
5622.. _i_icmp:
5623
5624'``icmp``' Instruction
5625^^^^^^^^^^^^^^^^^^^^^^
5626
5627Syntax:
5628"""""""
5629
5630::
5631
5632 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5633
5634Overview:
5635"""""""""
5636
5637The '``icmp``' instruction returns a boolean value or a vector of
5638boolean values based on comparison of its two integer, integer vector,
5639pointer, or pointer vector operands.
5640
5641Arguments:
5642""""""""""
5643
5644The '``icmp``' instruction takes three operands. The first operand is
5645the condition code indicating the kind of comparison to perform. It is
5646not a value, just a keyword. The possible condition code are:
5647
5648#. ``eq``: equal
5649#. ``ne``: not equal
5650#. ``ugt``: unsigned greater than
5651#. ``uge``: unsigned greater or equal
5652#. ``ult``: unsigned less than
5653#. ``ule``: unsigned less or equal
5654#. ``sgt``: signed greater than
5655#. ``sge``: signed greater or equal
5656#. ``slt``: signed less than
5657#. ``sle``: signed less or equal
5658
5659The remaining two arguments must be :ref:`integer <t_integer>` or
5660:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5661must also be identical types.
5662
5663Semantics:
5664""""""""""
5665
5666The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5667code given as ``cond``. The comparison performed always yields either an
5668:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5669
5670#. ``eq``: yields ``true`` if the operands are equal, ``false``
5671 otherwise. No sign interpretation is necessary or performed.
5672#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5673 otherwise. No sign interpretation is necessary or performed.
5674#. ``ugt``: interprets the operands as unsigned values and yields
5675 ``true`` if ``op1`` is greater than ``op2``.
5676#. ``uge``: interprets the operands as unsigned values and yields
5677 ``true`` if ``op1`` is greater than or equal to ``op2``.
5678#. ``ult``: interprets the operands as unsigned values and yields
5679 ``true`` if ``op1`` is less than ``op2``.
5680#. ``ule``: interprets the operands as unsigned values and yields
5681 ``true`` if ``op1`` is less than or equal to ``op2``.
5682#. ``sgt``: interprets the operands as signed values and yields ``true``
5683 if ``op1`` is greater than ``op2``.
5684#. ``sge``: interprets the operands as signed values and yields ``true``
5685 if ``op1`` is greater than or equal to ``op2``.
5686#. ``slt``: interprets the operands as signed values and yields ``true``
5687 if ``op1`` is less than ``op2``.
5688#. ``sle``: interprets the operands as signed values and yields ``true``
5689 if ``op1`` is less than or equal to ``op2``.
5690
5691If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5692are compared as if they were integers.
5693
5694If the operands are integer vectors, then they are compared element by
5695element. The result is an ``i1`` vector with the same number of elements
5696as the values being compared. Otherwise, the result is an ``i1``.
5697
5698Example:
5699""""""""
5700
5701.. code-block:: llvm
5702
5703 <result> = icmp eq i32 4, 5 ; yields: result=false
5704 <result> = icmp ne float* %X, %X ; yields: result=false
5705 <result> = icmp ult i16 4, 5 ; yields: result=true
5706 <result> = icmp sgt i16 4, 5 ; yields: result=false
5707 <result> = icmp ule i16 -4, 5 ; yields: result=false
5708 <result> = icmp sge i16 4, 5 ; yields: result=false
5709
5710Note that the code generator does not yet support vector types with the
5711``icmp`` instruction.
5712
5713.. _i_fcmp:
5714
5715'``fcmp``' Instruction
5716^^^^^^^^^^^^^^^^^^^^^^
5717
5718Syntax:
5719"""""""
5720
5721::
5722
5723 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5724
5725Overview:
5726"""""""""
5727
5728The '``fcmp``' instruction returns a boolean value or vector of boolean
5729values based on comparison of its operands.
5730
5731If the operands are floating point scalars, then the result type is a
5732boolean (:ref:`i1 <t_integer>`).
5733
5734If the operands are floating point vectors, then the result type is a
5735vector of boolean with the same number of elements as the operands being
5736compared.
5737
5738Arguments:
5739""""""""""
5740
5741The '``fcmp``' instruction takes three operands. The first operand is
5742the condition code indicating the kind of comparison to perform. It is
5743not a value, just a keyword. The possible condition code are:
5744
5745#. ``false``: no comparison, always returns false
5746#. ``oeq``: ordered and equal
5747#. ``ogt``: ordered and greater than
5748#. ``oge``: ordered and greater than or equal
5749#. ``olt``: ordered and less than
5750#. ``ole``: ordered and less than or equal
5751#. ``one``: ordered and not equal
5752#. ``ord``: ordered (no nans)
5753#. ``ueq``: unordered or equal
5754#. ``ugt``: unordered or greater than
5755#. ``uge``: unordered or greater than or equal
5756#. ``ult``: unordered or less than
5757#. ``ule``: unordered or less than or equal
5758#. ``une``: unordered or not equal
5759#. ``uno``: unordered (either nans)
5760#. ``true``: no comparison, always returns true
5761
5762*Ordered* means that neither operand is a QNAN while *unordered* means
5763that either operand may be a QNAN.
5764
5765Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5766point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5767type. They must have identical types.
5768
5769Semantics:
5770""""""""""
5771
5772The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5773condition code given as ``cond``. If the operands are vectors, then the
5774vectors are compared element by element. Each comparison performed
5775always yields an :ref:`i1 <t_integer>` result, as follows:
5776
5777#. ``false``: always yields ``false``, regardless of operands.
5778#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5779 is equal to ``op2``.
5780#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5781 is greater than ``op2``.
5782#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5783 is greater than or equal to ``op2``.
5784#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5785 is less than ``op2``.
5786#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5787 is less than or equal to ``op2``.
5788#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5789 is not equal to ``op2``.
5790#. ``ord``: yields ``true`` if both operands are not a QNAN.
5791#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5792 equal to ``op2``.
5793#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5794 greater than ``op2``.
5795#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5796 greater than or equal to ``op2``.
5797#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5798 less than ``op2``.
5799#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5800 less than or equal to ``op2``.
5801#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5802 not equal to ``op2``.
5803#. ``uno``: yields ``true`` if either operand is a QNAN.
5804#. ``true``: always yields ``true``, regardless of operands.
5805
5806Example:
5807""""""""
5808
5809.. code-block:: llvm
5810
5811 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5812 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5813 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5814 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5815
5816Note that the code generator does not yet support vector types with the
5817``fcmp`` instruction.
5818
5819.. _i_phi:
5820
5821'``phi``' Instruction
5822^^^^^^^^^^^^^^^^^^^^^
5823
5824Syntax:
5825"""""""
5826
5827::
5828
5829 <result> = phi <ty> [ <val0>, <label0>], ...
5830
5831Overview:
5832"""""""""
5833
5834The '``phi``' instruction is used to implement the φ node in the SSA
5835graph representing the function.
5836
5837Arguments:
5838""""""""""
5839
5840The type of the incoming values is specified with the first type field.
5841After this, the '``phi``' instruction takes a list of pairs as
5842arguments, with one pair for each predecessor basic block of the current
5843block. Only values of :ref:`first class <t_firstclass>` type may be used as
5844the value arguments to the PHI node. Only labels may be used as the
5845label arguments.
5846
5847There must be no non-phi instructions between the start of a basic block
5848and the PHI instructions: i.e. PHI instructions must be first in a basic
5849block.
5850
5851For the purposes of the SSA form, the use of each incoming value is
5852deemed to occur on the edge from the corresponding predecessor block to
5853the current block (but after any definition of an '``invoke``'
5854instruction's return value on the same edge).
5855
5856Semantics:
5857""""""""""
5858
5859At runtime, the '``phi``' instruction logically takes on the value
5860specified by the pair corresponding to the predecessor basic block that
5861executed just prior to the current block.
5862
5863Example:
5864""""""""
5865
5866.. code-block:: llvm
5867
5868 Loop: ; Infinite loop that counts from 0 on up...
5869 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5870 %nextindvar = add i32 %indvar, 1
5871 br label %Loop
5872
5873.. _i_select:
5874
5875'``select``' Instruction
5876^^^^^^^^^^^^^^^^^^^^^^^^
5877
5878Syntax:
5879"""""""
5880
5881::
5882
5883 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5884
5885 selty is either i1 or {<N x i1>}
5886
5887Overview:
5888"""""""""
5889
5890The '``select``' instruction is used to choose one value based on a
5891condition, without branching.
5892
5893Arguments:
5894""""""""""
5895
5896The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5897values indicating the condition, and two values of the same :ref:`first
5898class <t_firstclass>` type. If the val1/val2 are vectors and the
5899condition is a scalar, then entire vectors are selected, not individual
5900elements.
5901
5902Semantics:
5903""""""""""
5904
5905If the condition is an i1 and it evaluates to 1, the instruction returns
5906the first value argument; otherwise, it returns the second value
5907argument.
5908
5909If the condition is a vector of i1, then the value arguments must be
5910vectors of the same size, and the selection is done element by element.
5911
5912Example:
5913""""""""
5914
5915.. code-block:: llvm
5916
5917 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5918
5919.. _i_call:
5920
5921'``call``' Instruction
5922^^^^^^^^^^^^^^^^^^^^^^
5923
5924Syntax:
5925"""""""
5926
5927::
5928
5929 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5930
5931Overview:
5932"""""""""
5933
5934The '``call``' instruction represents a simple function call.
5935
5936Arguments:
5937""""""""""
5938
5939This instruction requires several arguments:
5940
5941#. The optional "tail" marker indicates that the callee function does
5942 not access any allocas or varargs in the caller. Note that calls may
5943 be marked "tail" even if they do not occur before a
5944 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5945 function call is eligible for tail call optimization, but `might not
5946 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5947 The code generator may optimize calls marked "tail" with either 1)
5948 automatic `sibling call
5949 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5950 callee have matching signatures, or 2) forced tail call optimization
5951 when the following extra requirements are met:
5952
5953 - Caller and callee both have the calling convention ``fastcc``.
5954 - The call is in tail position (ret immediately follows call and ret
5955 uses value of call or is void).
5956 - Option ``-tailcallopt`` is enabled, or
5957 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5958 - `Platform specific constraints are
5959 met. <CodeGenerator.html#tailcallopt>`_
5960
5961#. The optional "cconv" marker indicates which :ref:`calling
5962 convention <callingconv>` the call should use. If none is
5963 specified, the call defaults to using C calling conventions. The
5964 calling convention of the call must match the calling convention of
5965 the target function, or else the behavior is undefined.
5966#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5967 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5968 are valid here.
5969#. '``ty``': the type of the call instruction itself which is also the
5970 type of the return value. Functions that return no value are marked
5971 ``void``.
5972#. '``fnty``': shall be the signature of the pointer to function value
5973 being invoked. The argument types must match the types implied by
5974 this signature. This type can be omitted if the function is not
5975 varargs and if the function type does not return a pointer to a
5976 function.
5977#. '``fnptrval``': An LLVM value containing a pointer to a function to
5978 be invoked. In most cases, this is a direct function invocation, but
5979 indirect ``call``'s are just as possible, calling an arbitrary pointer
5980 to function value.
5981#. '``function args``': argument list whose types match the function
5982 signature argument types and parameter attributes. All arguments must
5983 be of :ref:`first class <t_firstclass>` type. If the function signature
5984 indicates the function accepts a variable number of arguments, the
5985 extra arguments can be specified.
5986#. The optional :ref:`function attributes <fnattrs>` list. Only
5987 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5988 attributes are valid here.
5989
5990Semantics:
5991""""""""""
5992
5993The '``call``' instruction is used to cause control flow to transfer to
5994a specified function, with its incoming arguments bound to the specified
5995values. Upon a '``ret``' instruction in the called function, control
5996flow continues with the instruction after the function call, and the
5997return value of the function is bound to the result argument.
5998
5999Example:
6000""""""""
6001
6002.. code-block:: llvm
6003
6004 %retval = call i32 @test(i32 %argc)
6005 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6006 %X = tail call i32 @foo() ; yields i32
6007 %Y = tail call fastcc i32 @foo() ; yields i32
6008 call void %foo(i8 97 signext)
6009
6010 %struct.A = type { i32, i8 }
6011 %r = call %struct.A @foo() ; yields { 32, i8 }
6012 %gr = extractvalue %struct.A %r, 0 ; yields i32
6013 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6014 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6015 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6016
6017llvm treats calls to some functions with names and arguments that match
6018the standard C99 library as being the C99 library functions, and may
6019perform optimizations or generate code for them under that assumption.
6020This is something we'd like to change in the future to provide better
6021support for freestanding environments and non-C-based languages.
6022
6023.. _i_va_arg:
6024
6025'``va_arg``' Instruction
6026^^^^^^^^^^^^^^^^^^^^^^^^
6027
6028Syntax:
6029"""""""
6030
6031::
6032
6033 <resultval> = va_arg <va_list*> <arglist>, <argty>
6034
6035Overview:
6036"""""""""
6037
6038The '``va_arg``' instruction is used to access arguments passed through
6039the "variable argument" area of a function call. It is used to implement
6040the ``va_arg`` macro in C.
6041
6042Arguments:
6043""""""""""
6044
6045This instruction takes a ``va_list*`` value and the type of the
6046argument. It returns a value of the specified argument type and
6047increments the ``va_list`` to point to the next argument. The actual
6048type of ``va_list`` is target specific.
6049
6050Semantics:
6051""""""""""
6052
6053The '``va_arg``' instruction loads an argument of the specified type
6054from the specified ``va_list`` and causes the ``va_list`` to point to
6055the next argument. For more information, see the variable argument
6056handling :ref:`Intrinsic Functions <int_varargs>`.
6057
6058It is legal for this instruction to be called in a function which does
6059not take a variable number of arguments, for example, the ``vfprintf``
6060function.
6061
6062``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6063function <intrinsics>` because it takes a type as an argument.
6064
6065Example:
6066""""""""
6067
6068See the :ref:`variable argument processing <int_varargs>` section.
6069
6070Note that the code generator does not yet fully support va\_arg on many
6071targets. Also, it does not currently support va\_arg with aggregate
6072types on any target.
6073
6074.. _i_landingpad:
6075
6076'``landingpad``' Instruction
6077^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6078
6079Syntax:
6080"""""""
6081
6082::
6083
6084 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6085 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6086
6087 <clause> := catch <type> <value>
6088 <clause> := filter <array constant type> <array constant>
6089
6090Overview:
6091"""""""""
6092
6093The '``landingpad``' instruction is used by `LLVM's exception handling
6094system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006095is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006096code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6097defines values supplied by the personality function (``pers_fn``) upon
6098re-entry to the function. The ``resultval`` has the type ``resultty``.
6099
6100Arguments:
6101""""""""""
6102
6103This instruction takes a ``pers_fn`` value. This is the personality
6104function associated with the unwinding mechanism. The optional
6105``cleanup`` flag indicates that the landing pad block is a cleanup.
6106
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006107A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006108contains the global variable representing the "type" that may be caught
6109or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6110clause takes an array constant as its argument. Use
6111"``[0 x i8**] undef``" for a filter which cannot throw. The
6112'``landingpad``' instruction must contain *at least* one ``clause`` or
6113the ``cleanup`` flag.
6114
6115Semantics:
6116""""""""""
6117
6118The '``landingpad``' instruction defines the values which are set by the
6119personality function (``pers_fn``) upon re-entry to the function, and
6120therefore the "result type" of the ``landingpad`` instruction. As with
6121calling conventions, how the personality function results are
6122represented in LLVM IR is target specific.
6123
6124The clauses are applied in order from top to bottom. If two
6125``landingpad`` instructions are merged together through inlining, the
6126clauses from the calling function are appended to the list of clauses.
6127When the call stack is being unwound due to an exception being thrown,
6128the exception is compared against each ``clause`` in turn. If it doesn't
6129match any of the clauses, and the ``cleanup`` flag is not set, then
6130unwinding continues further up the call stack.
6131
6132The ``landingpad`` instruction has several restrictions:
6133
6134- A landing pad block is a basic block which is the unwind destination
6135 of an '``invoke``' instruction.
6136- A landing pad block must have a '``landingpad``' instruction as its
6137 first non-PHI instruction.
6138- There can be only one '``landingpad``' instruction within the landing
6139 pad block.
6140- A basic block that is not a landing pad block may not include a
6141 '``landingpad``' instruction.
6142- All '``landingpad``' instructions in a function must have the same
6143 personality function.
6144
6145Example:
6146""""""""
6147
6148.. code-block:: llvm
6149
6150 ;; A landing pad which can catch an integer.
6151 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6152 catch i8** @_ZTIi
6153 ;; A landing pad that is a cleanup.
6154 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6155 cleanup
6156 ;; A landing pad which can catch an integer and can only throw a double.
6157 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6158 catch i8** @_ZTIi
6159 filter [1 x i8**] [@_ZTId]
6160
6161.. _intrinsics:
6162
6163Intrinsic Functions
6164===================
6165
6166LLVM supports the notion of an "intrinsic function". These functions
6167have well known names and semantics and are required to follow certain
6168restrictions. Overall, these intrinsics represent an extension mechanism
6169for the LLVM language that does not require changing all of the
6170transformations in LLVM when adding to the language (or the bitcode
6171reader/writer, the parser, etc...).
6172
6173Intrinsic function names must all start with an "``llvm.``" prefix. This
6174prefix is reserved in LLVM for intrinsic names; thus, function names may
6175not begin with this prefix. Intrinsic functions must always be external
6176functions: you cannot define the body of intrinsic functions. Intrinsic
6177functions may only be used in call or invoke instructions: it is illegal
6178to take the address of an intrinsic function. Additionally, because
6179intrinsic functions are part of the LLVM language, it is required if any
6180are added that they be documented here.
6181
6182Some intrinsic functions can be overloaded, i.e., the intrinsic
6183represents a family of functions that perform the same operation but on
6184different data types. Because LLVM can represent over 8 million
6185different integer types, overloading is used commonly to allow an
6186intrinsic function to operate on any integer type. One or more of the
6187argument types or the result type can be overloaded to accept any
6188integer type. Argument types may also be defined as exactly matching a
6189previous argument's type or the result type. This allows an intrinsic
6190function which accepts multiple arguments, but needs all of them to be
6191of the same type, to only be overloaded with respect to a single
6192argument or the result.
6193
6194Overloaded intrinsics will have the names of its overloaded argument
6195types encoded into its function name, each preceded by a period. Only
6196those types which are overloaded result in a name suffix. Arguments
6197whose type is matched against another type do not. For example, the
6198``llvm.ctpop`` function can take an integer of any width and returns an
6199integer of exactly the same integer width. This leads to a family of
6200functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6201``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6202overloaded, and only one type suffix is required. Because the argument's
6203type is matched against the return type, it does not require its own
6204name suffix.
6205
6206To learn how to add an intrinsic function, please see the `Extending
6207LLVM Guide <ExtendingLLVM.html>`_.
6208
6209.. _int_varargs:
6210
6211Variable Argument Handling Intrinsics
6212-------------------------------------
6213
6214Variable argument support is defined in LLVM with the
6215:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6216functions. These functions are related to the similarly named macros
6217defined in the ``<stdarg.h>`` header file.
6218
6219All of these functions operate on arguments that use a target-specific
6220value type "``va_list``". The LLVM assembly language reference manual
6221does not define what this type is, so all transformations should be
6222prepared to handle these functions regardless of the type used.
6223
6224This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6225variable argument handling intrinsic functions are used.
6226
6227.. code-block:: llvm
6228
6229 define i32 @test(i32 %X, ...) {
6230 ; Initialize variable argument processing
6231 %ap = alloca i8*
6232 %ap2 = bitcast i8** %ap to i8*
6233 call void @llvm.va_start(i8* %ap2)
6234
6235 ; Read a single integer argument
6236 %tmp = va_arg i8** %ap, i32
6237
6238 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6239 %aq = alloca i8*
6240 %aq2 = bitcast i8** %aq to i8*
6241 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6242 call void @llvm.va_end(i8* %aq2)
6243
6244 ; Stop processing of arguments.
6245 call void @llvm.va_end(i8* %ap2)
6246 ret i32 %tmp
6247 }
6248
6249 declare void @llvm.va_start(i8*)
6250 declare void @llvm.va_copy(i8*, i8*)
6251 declare void @llvm.va_end(i8*)
6252
6253.. _int_va_start:
6254
6255'``llvm.va_start``' Intrinsic
6256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
6263 declare void %llvm.va_start(i8* <arglist>)
6264
6265Overview:
6266"""""""""
6267
6268The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6269subsequent use by ``va_arg``.
6270
6271Arguments:
6272""""""""""
6273
6274The argument is a pointer to a ``va_list`` element to initialize.
6275
6276Semantics:
6277""""""""""
6278
6279The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6280available in C. In a target-dependent way, it initializes the
6281``va_list`` element to which the argument points, so that the next call
6282to ``va_arg`` will produce the first variable argument passed to the
6283function. Unlike the C ``va_start`` macro, this intrinsic does not need
6284to know the last argument of the function as the compiler can figure
6285that out.
6286
6287'``llvm.va_end``' Intrinsic
6288^^^^^^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
6295 declare void @llvm.va_end(i8* <arglist>)
6296
6297Overview:
6298"""""""""
6299
6300The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6301initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6302
6303Arguments:
6304""""""""""
6305
6306The argument is a pointer to a ``va_list`` to destroy.
6307
6308Semantics:
6309""""""""""
6310
6311The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6312available in C. In a target-dependent way, it destroys the ``va_list``
6313element to which the argument points. Calls to
6314:ref:`llvm.va_start <int_va_start>` and
6315:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6316``llvm.va_end``.
6317
6318.. _int_va_copy:
6319
6320'``llvm.va_copy``' Intrinsic
6321^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
6328 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6329
6330Overview:
6331"""""""""
6332
6333The '``llvm.va_copy``' intrinsic copies the current argument position
6334from the source argument list to the destination argument list.
6335
6336Arguments:
6337""""""""""
6338
6339The first argument is a pointer to a ``va_list`` element to initialize.
6340The second argument is a pointer to a ``va_list`` element to copy from.
6341
6342Semantics:
6343""""""""""
6344
6345The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6346available in C. In a target-dependent way, it copies the source
6347``va_list`` element into the destination ``va_list`` element. This
6348intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6349arbitrarily complex and require, for example, memory allocation.
6350
6351Accurate Garbage Collection Intrinsics
6352--------------------------------------
6353
6354LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6355(GC) requires the implementation and generation of these intrinsics.
6356These intrinsics allow identification of :ref:`GC roots on the
6357stack <int_gcroot>`, as well as garbage collector implementations that
6358require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6359Front-ends for type-safe garbage collected languages should generate
6360these intrinsics to make use of the LLVM garbage collectors. For more
6361details, see `Accurate Garbage Collection with
6362LLVM <GarbageCollection.html>`_.
6363
6364The garbage collection intrinsics only operate on objects in the generic
6365address space (address space zero).
6366
6367.. _int_gcroot:
6368
6369'``llvm.gcroot``' Intrinsic
6370^^^^^^^^^^^^^^^^^^^^^^^^^^^
6371
6372Syntax:
6373"""""""
6374
6375::
6376
6377 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6378
6379Overview:
6380"""""""""
6381
6382The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6383the code generator, and allows some metadata to be associated with it.
6384
6385Arguments:
6386""""""""""
6387
6388The first argument specifies the address of a stack object that contains
6389the root pointer. The second pointer (which must be either a constant or
6390a global value address) contains the meta-data to be associated with the
6391root.
6392
6393Semantics:
6394""""""""""
6395
6396At runtime, a call to this intrinsic stores a null pointer into the
6397"ptrloc" location. At compile-time, the code generator generates
6398information to allow the runtime to find the pointer at GC safe points.
6399The '``llvm.gcroot``' intrinsic may only be used in a function which
6400:ref:`specifies a GC algorithm <gc>`.
6401
6402.. _int_gcread:
6403
6404'``llvm.gcread``' Intrinsic
6405^^^^^^^^^^^^^^^^^^^^^^^^^^^
6406
6407Syntax:
6408"""""""
6409
6410::
6411
6412 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6413
6414Overview:
6415"""""""""
6416
6417The '``llvm.gcread``' intrinsic identifies reads of references from heap
6418locations, allowing garbage collector implementations that require read
6419barriers.
6420
6421Arguments:
6422""""""""""
6423
6424The second argument is the address to read from, which should be an
6425address allocated from the garbage collector. The first object is a
6426pointer to the start of the referenced object, if needed by the language
6427runtime (otherwise null).
6428
6429Semantics:
6430""""""""""
6431
6432The '``llvm.gcread``' intrinsic has the same semantics as a load
6433instruction, but may be replaced with substantially more complex code by
6434the garbage collector runtime, as needed. The '``llvm.gcread``'
6435intrinsic may only be used in a function which :ref:`specifies a GC
6436algorithm <gc>`.
6437
6438.. _int_gcwrite:
6439
6440'``llvm.gcwrite``' Intrinsic
6441^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6442
6443Syntax:
6444"""""""
6445
6446::
6447
6448 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6449
6450Overview:
6451"""""""""
6452
6453The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6454locations, allowing garbage collector implementations that require write
6455barriers (such as generational or reference counting collectors).
6456
6457Arguments:
6458""""""""""
6459
6460The first argument is the reference to store, the second is the start of
6461the object to store it to, and the third is the address of the field of
6462Obj to store to. If the runtime does not require a pointer to the
6463object, Obj may be null.
6464
6465Semantics:
6466""""""""""
6467
6468The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6469instruction, but may be replaced with substantially more complex code by
6470the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6471intrinsic may only be used in a function which :ref:`specifies a GC
6472algorithm <gc>`.
6473
6474Code Generator Intrinsics
6475-------------------------
6476
6477These intrinsics are provided by LLVM to expose special features that
6478may only be implemented with code generator support.
6479
6480'``llvm.returnaddress``' Intrinsic
6481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6482
6483Syntax:
6484"""""""
6485
6486::
6487
6488 declare i8 *@llvm.returnaddress(i32 <level>)
6489
6490Overview:
6491"""""""""
6492
6493The '``llvm.returnaddress``' intrinsic attempts to compute a
6494target-specific value indicating the return address of the current
6495function or one of its callers.
6496
6497Arguments:
6498""""""""""
6499
6500The argument to this intrinsic indicates which function to return the
6501address for. Zero indicates the calling function, one indicates its
6502caller, etc. The argument is **required** to be a constant integer
6503value.
6504
6505Semantics:
6506""""""""""
6507
6508The '``llvm.returnaddress``' intrinsic either returns a pointer
6509indicating the return address of the specified call frame, or zero if it
6510cannot be identified. The value returned by this intrinsic is likely to
6511be incorrect or 0 for arguments other than zero, so it should only be
6512used for debugging purposes.
6513
6514Note that calling this intrinsic does not prevent function inlining or
6515other aggressive transformations, so the value returned may not be that
6516of the obvious source-language caller.
6517
6518'``llvm.frameaddress``' Intrinsic
6519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6520
6521Syntax:
6522"""""""
6523
6524::
6525
6526 declare i8* @llvm.frameaddress(i32 <level>)
6527
6528Overview:
6529"""""""""
6530
6531The '``llvm.frameaddress``' intrinsic attempts to return the
6532target-specific frame pointer value for the specified stack frame.
6533
6534Arguments:
6535""""""""""
6536
6537The argument to this intrinsic indicates which function to return the
6538frame pointer for. Zero indicates the calling function, one indicates
6539its caller, etc. The argument is **required** to be a constant integer
6540value.
6541
6542Semantics:
6543""""""""""
6544
6545The '``llvm.frameaddress``' intrinsic either returns a pointer
6546indicating the frame address of the specified call frame, or zero if it
6547cannot be identified. The value returned by this intrinsic is likely to
6548be incorrect or 0 for arguments other than zero, so it should only be
6549used for debugging purposes.
6550
6551Note that calling this intrinsic does not prevent function inlining or
6552other aggressive transformations, so the value returned may not be that
6553of the obvious source-language caller.
6554
6555.. _int_stacksave:
6556
6557'``llvm.stacksave``' Intrinsic
6558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
6565 declare i8* @llvm.stacksave()
6566
6567Overview:
6568"""""""""
6569
6570The '``llvm.stacksave``' intrinsic is used to remember the current state
6571of the function stack, for use with
6572:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6573implementing language features like scoped automatic variable sized
6574arrays in C99.
6575
6576Semantics:
6577""""""""""
6578
6579This intrinsic returns a opaque pointer value that can be passed to
6580:ref:`llvm.stackrestore <int_stackrestore>`. When an
6581``llvm.stackrestore`` intrinsic is executed with a value saved from
6582``llvm.stacksave``, it effectively restores the state of the stack to
6583the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6584practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6585were allocated after the ``llvm.stacksave`` was executed.
6586
6587.. _int_stackrestore:
6588
6589'``llvm.stackrestore``' Intrinsic
6590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6591
6592Syntax:
6593"""""""
6594
6595::
6596
6597 declare void @llvm.stackrestore(i8* %ptr)
6598
6599Overview:
6600"""""""""
6601
6602The '``llvm.stackrestore``' intrinsic is used to restore the state of
6603the function stack to the state it was in when the corresponding
6604:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6605useful for implementing language features like scoped automatic variable
6606sized arrays in C99.
6607
6608Semantics:
6609""""""""""
6610
6611See the description for :ref:`llvm.stacksave <int_stacksave>`.
6612
6613'``llvm.prefetch``' Intrinsic
6614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6615
6616Syntax:
6617"""""""
6618
6619::
6620
6621 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6622
6623Overview:
6624"""""""""
6625
6626The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6627insert a prefetch instruction if supported; otherwise, it is a noop.
6628Prefetches have no effect on the behavior of the program but can change
6629its performance characteristics.
6630
6631Arguments:
6632""""""""""
6633
6634``address`` is the address to be prefetched, ``rw`` is the specifier
6635determining if the fetch should be for a read (0) or write (1), and
6636``locality`` is a temporal locality specifier ranging from (0) - no
6637locality, to (3) - extremely local keep in cache. The ``cache type``
6638specifies whether the prefetch is performed on the data (1) or
6639instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6640arguments must be constant integers.
6641
6642Semantics:
6643""""""""""
6644
6645This intrinsic does not modify the behavior of the program. In
6646particular, prefetches cannot trap and do not produce a value. On
6647targets that support this intrinsic, the prefetch can provide hints to
6648the processor cache for better performance.
6649
6650'``llvm.pcmarker``' Intrinsic
6651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6652
6653Syntax:
6654"""""""
6655
6656::
6657
6658 declare void @llvm.pcmarker(i32 <id>)
6659
6660Overview:
6661"""""""""
6662
6663The '``llvm.pcmarker``' intrinsic is a method to export a Program
6664Counter (PC) in a region of code to simulators and other tools. The
6665method is target specific, but it is expected that the marker will use
6666exported symbols to transmit the PC of the marker. The marker makes no
6667guarantees that it will remain with any specific instruction after
6668optimizations. It is possible that the presence of a marker will inhibit
6669optimizations. The intended use is to be inserted after optimizations to
6670allow correlations of simulation runs.
6671
6672Arguments:
6673""""""""""
6674
6675``id`` is a numerical id identifying the marker.
6676
6677Semantics:
6678""""""""""
6679
6680This intrinsic does not modify the behavior of the program. Backends
6681that do not support this intrinsic may ignore it.
6682
6683'``llvm.readcyclecounter``' Intrinsic
6684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6685
6686Syntax:
6687"""""""
6688
6689::
6690
6691 declare i64 @llvm.readcyclecounter()
6692
6693Overview:
6694"""""""""
6695
6696The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6697counter register (or similar low latency, high accuracy clocks) on those
6698targets that support it. On X86, it should map to RDTSC. On Alpha, it
6699should map to RPCC. As the backing counters overflow quickly (on the
6700order of 9 seconds on alpha), this should only be used for small
6701timings.
6702
6703Semantics:
6704""""""""""
6705
6706When directly supported, reading the cycle counter should not modify any
6707memory. Implementations are allowed to either return a application
6708specific value or a system wide value. On backends without support, this
6709is lowered to a constant 0.
6710
Tim Northover5a02fc42013-05-23 19:11:20 +00006711Note that runtime support may be conditional on the privilege-level code is
6712running at and the host platform.
6713
Sean Silvaf722b002012-12-07 10:36:55 +00006714Standard C Library Intrinsics
6715-----------------------------
6716
6717LLVM provides intrinsics for a few important standard C library
6718functions. These intrinsics allow source-language front-ends to pass
6719information about the alignment of the pointer arguments to the code
6720generator, providing opportunity for more efficient code generation.
6721
6722.. _int_memcpy:
6723
6724'``llvm.memcpy``' Intrinsic
6725^^^^^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6731integer bit width and for different address spaces. Not all targets
6732support all bit widths however.
6733
6734::
6735
6736 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6737 i32 <len>, i32 <align>, i1 <isvolatile>)
6738 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6739 i64 <len>, i32 <align>, i1 <isvolatile>)
6740
6741Overview:
6742"""""""""
6743
6744The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6745source location to the destination location.
6746
6747Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6748intrinsics do not return a value, takes extra alignment/isvolatile
6749arguments and the pointers can be in specified address spaces.
6750
6751Arguments:
6752""""""""""
6753
6754The first argument is a pointer to the destination, the second is a
6755pointer to the source. The third argument is an integer argument
6756specifying the number of bytes to copy, the fourth argument is the
6757alignment of the source and destination locations, and the fifth is a
6758boolean indicating a volatile access.
6759
6760If the call to this intrinsic has an alignment value that is not 0 or 1,
6761then the caller guarantees that both the source and destination pointers
6762are aligned to that boundary.
6763
6764If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6765a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6766very cleanly specified and it is unwise to depend on it.
6767
6768Semantics:
6769""""""""""
6770
6771The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6772source location to the destination location, which are not allowed to
6773overlap. It copies "len" bytes of memory over. If the argument is known
6774to be aligned to some boundary, this can be specified as the fourth
6775argument, otherwise it should be set to 0 or 1.
6776
6777'``llvm.memmove``' Intrinsic
6778^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6779
6780Syntax:
6781"""""""
6782
6783This is an overloaded intrinsic. You can use llvm.memmove on any integer
6784bit width and for different address space. Not all targets support all
6785bit widths however.
6786
6787::
6788
6789 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6790 i32 <len>, i32 <align>, i1 <isvolatile>)
6791 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6792 i64 <len>, i32 <align>, i1 <isvolatile>)
6793
6794Overview:
6795"""""""""
6796
6797The '``llvm.memmove.*``' intrinsics move a block of memory from the
6798source location to the destination location. It is similar to the
6799'``llvm.memcpy``' intrinsic but allows the two memory locations to
6800overlap.
6801
6802Note that, unlike the standard libc function, the ``llvm.memmove.*``
6803intrinsics do not return a value, takes extra alignment/isvolatile
6804arguments and the pointers can be in specified address spaces.
6805
6806Arguments:
6807""""""""""
6808
6809The first argument is a pointer to the destination, the second is a
6810pointer to the source. The third argument is an integer argument
6811specifying the number of bytes to copy, the fourth argument is the
6812alignment of the source and destination locations, and the fifth is a
6813boolean indicating a volatile access.
6814
6815If the call to this intrinsic has an alignment value that is not 0 or 1,
6816then the caller guarantees that the source and destination pointers are
6817aligned to that boundary.
6818
6819If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6820is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6821not very cleanly specified and it is unwise to depend on it.
6822
6823Semantics:
6824""""""""""
6825
6826The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6827source location to the destination location, which may overlap. It
6828copies "len" bytes of memory over. If the argument is known to be
6829aligned to some boundary, this can be specified as the fourth argument,
6830otherwise it should be set to 0 or 1.
6831
6832'``llvm.memset.*``' Intrinsics
6833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6834
6835Syntax:
6836"""""""
6837
6838This is an overloaded intrinsic. You can use llvm.memset on any integer
6839bit width and for different address spaces. However, not all targets
6840support all bit widths.
6841
6842::
6843
6844 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6845 i32 <len>, i32 <align>, i1 <isvolatile>)
6846 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6847 i64 <len>, i32 <align>, i1 <isvolatile>)
6848
6849Overview:
6850"""""""""
6851
6852The '``llvm.memset.*``' intrinsics fill a block of memory with a
6853particular byte value.
6854
6855Note that, unlike the standard libc function, the ``llvm.memset``
6856intrinsic does not return a value and takes extra alignment/volatile
6857arguments. Also, the destination can be in an arbitrary address space.
6858
6859Arguments:
6860""""""""""
6861
6862The first argument is a pointer to the destination to fill, the second
6863is the byte value with which to fill it, the third argument is an
6864integer argument specifying the number of bytes to fill, and the fourth
6865argument is the known alignment of the destination location.
6866
6867If the call to this intrinsic has an alignment value that is not 0 or 1,
6868then the caller guarantees that the destination pointer is aligned to
6869that boundary.
6870
6871If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6872a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6873very cleanly specified and it is unwise to depend on it.
6874
6875Semantics:
6876""""""""""
6877
6878The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6879at the destination location. If the argument is known to be aligned to
6880some boundary, this can be specified as the fourth argument, otherwise
6881it should be set to 0 or 1.
6882
6883'``llvm.sqrt.*``' Intrinsic
6884^^^^^^^^^^^^^^^^^^^^^^^^^^^
6885
6886Syntax:
6887"""""""
6888
6889This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6890floating point or vector of floating point type. Not all targets support
6891all types however.
6892
6893::
6894
6895 declare float @llvm.sqrt.f32(float %Val)
6896 declare double @llvm.sqrt.f64(double %Val)
6897 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6898 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6899 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6900
6901Overview:
6902"""""""""
6903
6904The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6905returning the same value as the libm '``sqrt``' functions would. Unlike
6906``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6907negative numbers other than -0.0 (which allows for better optimization,
6908because there is no need to worry about errno being set).
6909``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6910
6911Arguments:
6912""""""""""
6913
6914The argument and return value are floating point numbers of the same
6915type.
6916
6917Semantics:
6918""""""""""
6919
6920This function returns the sqrt of the specified operand if it is a
6921nonnegative floating point number.
6922
6923'``llvm.powi.*``' Intrinsic
6924^^^^^^^^^^^^^^^^^^^^^^^^^^^
6925
6926Syntax:
6927"""""""
6928
6929This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6930floating point or vector of floating point type. Not all targets support
6931all types however.
6932
6933::
6934
6935 declare float @llvm.powi.f32(float %Val, i32 %power)
6936 declare double @llvm.powi.f64(double %Val, i32 %power)
6937 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6938 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6939 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6940
6941Overview:
6942"""""""""
6943
6944The '``llvm.powi.*``' intrinsics return the first operand raised to the
6945specified (positive or negative) power. The order of evaluation of
6946multiplications is not defined. When a vector of floating point type is
6947used, the second argument remains a scalar integer value.
6948
6949Arguments:
6950""""""""""
6951
6952The second argument is an integer power, and the first is a value to
6953raise to that power.
6954
6955Semantics:
6956""""""""""
6957
6958This function returns the first value raised to the second power with an
6959unspecified sequence of rounding operations.
6960
6961'``llvm.sin.*``' Intrinsic
6962^^^^^^^^^^^^^^^^^^^^^^^^^^
6963
6964Syntax:
6965"""""""
6966
6967This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6968floating point or vector of floating point type. Not all targets support
6969all types however.
6970
6971::
6972
6973 declare float @llvm.sin.f32(float %Val)
6974 declare double @llvm.sin.f64(double %Val)
6975 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6976 declare fp128 @llvm.sin.f128(fp128 %Val)
6977 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6978
6979Overview:
6980"""""""""
6981
6982The '``llvm.sin.*``' intrinsics return the sine of the operand.
6983
6984Arguments:
6985""""""""""
6986
6987The argument and return value are floating point numbers of the same
6988type.
6989
6990Semantics:
6991""""""""""
6992
6993This function returns the sine of the specified operand, returning the
6994same values as the libm ``sin`` functions would, and handles error
6995conditions in the same way.
6996
6997'``llvm.cos.*``' Intrinsic
6998^^^^^^^^^^^^^^^^^^^^^^^^^^
6999
7000Syntax:
7001"""""""
7002
7003This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7004floating point or vector of floating point type. Not all targets support
7005all types however.
7006
7007::
7008
7009 declare float @llvm.cos.f32(float %Val)
7010 declare double @llvm.cos.f64(double %Val)
7011 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7012 declare fp128 @llvm.cos.f128(fp128 %Val)
7013 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7014
7015Overview:
7016"""""""""
7017
7018The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7019
7020Arguments:
7021""""""""""
7022
7023The argument and return value are floating point numbers of the same
7024type.
7025
7026Semantics:
7027""""""""""
7028
7029This function returns the cosine of the specified operand, returning the
7030same values as the libm ``cos`` functions would, and handles error
7031conditions in the same way.
7032
7033'``llvm.pow.*``' Intrinsic
7034^^^^^^^^^^^^^^^^^^^^^^^^^^
7035
7036Syntax:
7037"""""""
7038
7039This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7040floating point or vector of floating point type. Not all targets support
7041all types however.
7042
7043::
7044
7045 declare float @llvm.pow.f32(float %Val, float %Power)
7046 declare double @llvm.pow.f64(double %Val, double %Power)
7047 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7048 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7049 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7050
7051Overview:
7052"""""""""
7053
7054The '``llvm.pow.*``' intrinsics return the first operand raised to the
7055specified (positive or negative) power.
7056
7057Arguments:
7058""""""""""
7059
7060The second argument is a floating point power, and the first is a value
7061to raise to that power.
7062
7063Semantics:
7064""""""""""
7065
7066This function returns the first value raised to the second power,
7067returning the same values as the libm ``pow`` functions would, and
7068handles error conditions in the same way.
7069
7070'``llvm.exp.*``' Intrinsic
7071^^^^^^^^^^^^^^^^^^^^^^^^^^
7072
7073Syntax:
7074"""""""
7075
7076This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7077floating point or vector of floating point type. Not all targets support
7078all types however.
7079
7080::
7081
7082 declare float @llvm.exp.f32(float %Val)
7083 declare double @llvm.exp.f64(double %Val)
7084 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7085 declare fp128 @llvm.exp.f128(fp128 %Val)
7086 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7087
7088Overview:
7089"""""""""
7090
7091The '``llvm.exp.*``' intrinsics perform the exp function.
7092
7093Arguments:
7094""""""""""
7095
7096The argument and return value are floating point numbers of the same
7097type.
7098
7099Semantics:
7100""""""""""
7101
7102This function returns the same values as the libm ``exp`` functions
7103would, and handles error conditions in the same way.
7104
7105'``llvm.exp2.*``' Intrinsic
7106^^^^^^^^^^^^^^^^^^^^^^^^^^^
7107
7108Syntax:
7109"""""""
7110
7111This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7112floating point or vector of floating point type. Not all targets support
7113all types however.
7114
7115::
7116
7117 declare float @llvm.exp2.f32(float %Val)
7118 declare double @llvm.exp2.f64(double %Val)
7119 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7120 declare fp128 @llvm.exp2.f128(fp128 %Val)
7121 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7122
7123Overview:
7124"""""""""
7125
7126The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7127
7128Arguments:
7129""""""""""
7130
7131The argument and return value are floating point numbers of the same
7132type.
7133
7134Semantics:
7135""""""""""
7136
7137This function returns the same values as the libm ``exp2`` functions
7138would, and handles error conditions in the same way.
7139
7140'``llvm.log.*``' Intrinsic
7141^^^^^^^^^^^^^^^^^^^^^^^^^^
7142
7143Syntax:
7144"""""""
7145
7146This is an overloaded intrinsic. You can use ``llvm.log`` on any
7147floating point or vector of floating point type. Not all targets support
7148all types however.
7149
7150::
7151
7152 declare float @llvm.log.f32(float %Val)
7153 declare double @llvm.log.f64(double %Val)
7154 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7155 declare fp128 @llvm.log.f128(fp128 %Val)
7156 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.log.*``' intrinsics perform the log function.
7162
7163Arguments:
7164""""""""""
7165
7166The argument and return value are floating point numbers of the same
7167type.
7168
7169Semantics:
7170""""""""""
7171
7172This function returns the same values as the libm ``log`` functions
7173would, and handles error conditions in the same way.
7174
7175'``llvm.log10.*``' Intrinsic
7176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7177
7178Syntax:
7179"""""""
7180
7181This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7182floating point or vector of floating point type. Not all targets support
7183all types however.
7184
7185::
7186
7187 declare float @llvm.log10.f32(float %Val)
7188 declare double @llvm.log10.f64(double %Val)
7189 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7190 declare fp128 @llvm.log10.f128(fp128 %Val)
7191 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7192
7193Overview:
7194"""""""""
7195
7196The '``llvm.log10.*``' intrinsics perform the log10 function.
7197
7198Arguments:
7199""""""""""
7200
7201The argument and return value are floating point numbers of the same
7202type.
7203
7204Semantics:
7205""""""""""
7206
7207This function returns the same values as the libm ``log10`` functions
7208would, and handles error conditions in the same way.
7209
7210'``llvm.log2.*``' Intrinsic
7211^^^^^^^^^^^^^^^^^^^^^^^^^^^
7212
7213Syntax:
7214"""""""
7215
7216This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7217floating point or vector of floating point type. Not all targets support
7218all types however.
7219
7220::
7221
7222 declare float @llvm.log2.f32(float %Val)
7223 declare double @llvm.log2.f64(double %Val)
7224 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7225 declare fp128 @llvm.log2.f128(fp128 %Val)
7226 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7227
7228Overview:
7229"""""""""
7230
7231The '``llvm.log2.*``' intrinsics perform the log2 function.
7232
7233Arguments:
7234""""""""""
7235
7236The argument and return value are floating point numbers of the same
7237type.
7238
7239Semantics:
7240""""""""""
7241
7242This function returns the same values as the libm ``log2`` functions
7243would, and handles error conditions in the same way.
7244
7245'``llvm.fma.*``' Intrinsic
7246^^^^^^^^^^^^^^^^^^^^^^^^^^
7247
7248Syntax:
7249"""""""
7250
7251This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7252floating point or vector of floating point type. Not all targets support
7253all types however.
7254
7255::
7256
7257 declare float @llvm.fma.f32(float %a, float %b, float %c)
7258 declare double @llvm.fma.f64(double %a, double %b, double %c)
7259 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7260 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7261 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7262
7263Overview:
7264"""""""""
7265
7266The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7267operation.
7268
7269Arguments:
7270""""""""""
7271
7272The argument and return value are floating point numbers of the same
7273type.
7274
7275Semantics:
7276""""""""""
7277
7278This function returns the same values as the libm ``fma`` functions
7279would.
7280
7281'``llvm.fabs.*``' Intrinsic
7282^^^^^^^^^^^^^^^^^^^^^^^^^^^
7283
7284Syntax:
7285"""""""
7286
7287This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7288floating point or vector of floating point type. Not all targets support
7289all types however.
7290
7291::
7292
7293 declare float @llvm.fabs.f32(float %Val)
7294 declare double @llvm.fabs.f64(double %Val)
7295 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7296 declare fp128 @llvm.fabs.f128(fp128 %Val)
7297 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7298
7299Overview:
7300"""""""""
7301
7302The '``llvm.fabs.*``' intrinsics return the absolute value of the
7303operand.
7304
7305Arguments:
7306""""""""""
7307
7308The argument and return value are floating point numbers of the same
7309type.
7310
7311Semantics:
7312""""""""""
7313
7314This function returns the same values as the libm ``fabs`` functions
7315would, and handles error conditions in the same way.
7316
7317'``llvm.floor.*``' Intrinsic
7318^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7319
7320Syntax:
7321"""""""
7322
7323This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7324floating point or vector of floating point type. Not all targets support
7325all types however.
7326
7327::
7328
7329 declare float @llvm.floor.f32(float %Val)
7330 declare double @llvm.floor.f64(double %Val)
7331 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7332 declare fp128 @llvm.floor.f128(fp128 %Val)
7333 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7334
7335Overview:
7336"""""""""
7337
7338The '``llvm.floor.*``' intrinsics return the floor of the operand.
7339
7340Arguments:
7341""""""""""
7342
7343The argument and return value are floating point numbers of the same
7344type.
7345
7346Semantics:
7347""""""""""
7348
7349This function returns the same values as the libm ``floor`` functions
7350would, and handles error conditions in the same way.
7351
7352'``llvm.ceil.*``' Intrinsic
7353^^^^^^^^^^^^^^^^^^^^^^^^^^^
7354
7355Syntax:
7356"""""""
7357
7358This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7359floating point or vector of floating point type. Not all targets support
7360all types however.
7361
7362::
7363
7364 declare float @llvm.ceil.f32(float %Val)
7365 declare double @llvm.ceil.f64(double %Val)
7366 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7367 declare fp128 @llvm.ceil.f128(fp128 %Val)
7368 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7369
7370Overview:
7371"""""""""
7372
7373The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7374
7375Arguments:
7376""""""""""
7377
7378The argument and return value are floating point numbers of the same
7379type.
7380
7381Semantics:
7382""""""""""
7383
7384This function returns the same values as the libm ``ceil`` functions
7385would, and handles error conditions in the same way.
7386
7387'``llvm.trunc.*``' Intrinsic
7388^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7389
7390Syntax:
7391"""""""
7392
7393This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7394floating point or vector of floating point type. Not all targets support
7395all types however.
7396
7397::
7398
7399 declare float @llvm.trunc.f32(float %Val)
7400 declare double @llvm.trunc.f64(double %Val)
7401 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7402 declare fp128 @llvm.trunc.f128(fp128 %Val)
7403 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7404
7405Overview:
7406"""""""""
7407
7408The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7409nearest integer not larger in magnitude than the operand.
7410
7411Arguments:
7412""""""""""
7413
7414The argument and return value are floating point numbers of the same
7415type.
7416
7417Semantics:
7418""""""""""
7419
7420This function returns the same values as the libm ``trunc`` functions
7421would, and handles error conditions in the same way.
7422
7423'``llvm.rint.*``' Intrinsic
7424^^^^^^^^^^^^^^^^^^^^^^^^^^^
7425
7426Syntax:
7427"""""""
7428
7429This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7430floating point or vector of floating point type. Not all targets support
7431all types however.
7432
7433::
7434
7435 declare float @llvm.rint.f32(float %Val)
7436 declare double @llvm.rint.f64(double %Val)
7437 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7438 declare fp128 @llvm.rint.f128(fp128 %Val)
7439 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7440
7441Overview:
7442"""""""""
7443
7444The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7445nearest integer. It may raise an inexact floating-point exception if the
7446operand isn't an integer.
7447
7448Arguments:
7449""""""""""
7450
7451The argument and return value are floating point numbers of the same
7452type.
7453
7454Semantics:
7455""""""""""
7456
7457This function returns the same values as the libm ``rint`` functions
7458would, and handles error conditions in the same way.
7459
7460'``llvm.nearbyint.*``' Intrinsic
7461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7462
7463Syntax:
7464"""""""
7465
7466This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7467floating point or vector of floating point type. Not all targets support
7468all types however.
7469
7470::
7471
7472 declare float @llvm.nearbyint.f32(float %Val)
7473 declare double @llvm.nearbyint.f64(double %Val)
7474 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7475 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7476 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7477
7478Overview:
7479"""""""""
7480
7481The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7482nearest integer.
7483
7484Arguments:
7485""""""""""
7486
7487The argument and return value are floating point numbers of the same
7488type.
7489
7490Semantics:
7491""""""""""
7492
7493This function returns the same values as the libm ``nearbyint``
7494functions would, and handles error conditions in the same way.
7495
7496Bit Manipulation Intrinsics
7497---------------------------
7498
7499LLVM provides intrinsics for a few important bit manipulation
7500operations. These allow efficient code generation for some algorithms.
7501
7502'``llvm.bswap.*``' Intrinsics
7503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7504
7505Syntax:
7506"""""""
7507
7508This is an overloaded intrinsic function. You can use bswap on any
7509integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7510
7511::
7512
7513 declare i16 @llvm.bswap.i16(i16 <id>)
7514 declare i32 @llvm.bswap.i32(i32 <id>)
7515 declare i64 @llvm.bswap.i64(i64 <id>)
7516
7517Overview:
7518"""""""""
7519
7520The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7521values with an even number of bytes (positive multiple of 16 bits).
7522These are useful for performing operations on data that is not in the
7523target's native byte order.
7524
7525Semantics:
7526""""""""""
7527
7528The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7529and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7530intrinsic returns an i32 value that has the four bytes of the input i32
7531swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7532returned i32 will have its bytes in 3, 2, 1, 0 order. The
7533``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7534concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7535respectively).
7536
7537'``llvm.ctpop.*``' Intrinsic
7538^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7539
7540Syntax:
7541"""""""
7542
7543This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7544bit width, or on any vector with integer elements. Not all targets
7545support all bit widths or vector types, however.
7546
7547::
7548
7549 declare i8 @llvm.ctpop.i8(i8 <src>)
7550 declare i16 @llvm.ctpop.i16(i16 <src>)
7551 declare i32 @llvm.ctpop.i32(i32 <src>)
7552 declare i64 @llvm.ctpop.i64(i64 <src>)
7553 declare i256 @llvm.ctpop.i256(i256 <src>)
7554 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7555
7556Overview:
7557"""""""""
7558
7559The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7560in a value.
7561
7562Arguments:
7563""""""""""
7564
7565The only argument is the value to be counted. The argument may be of any
7566integer type, or a vector with integer elements. The return type must
7567match the argument type.
7568
7569Semantics:
7570""""""""""
7571
7572The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7573each element of a vector.
7574
7575'``llvm.ctlz.*``' Intrinsic
7576^^^^^^^^^^^^^^^^^^^^^^^^^^^
7577
7578Syntax:
7579"""""""
7580
7581This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7582integer bit width, or any vector whose elements are integers. Not all
7583targets support all bit widths or vector types, however.
7584
7585::
7586
7587 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7588 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7589 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7590 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7591 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7592 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7593
7594Overview:
7595"""""""""
7596
7597The '``llvm.ctlz``' family of intrinsic functions counts the number of
7598leading zeros in a variable.
7599
7600Arguments:
7601""""""""""
7602
7603The first argument is the value to be counted. This argument may be of
7604any integer type, or a vectory with integer element type. The return
7605type must match the first argument type.
7606
7607The second argument must be a constant and is a flag to indicate whether
7608the intrinsic should ensure that a zero as the first argument produces a
7609defined result. Historically some architectures did not provide a
7610defined result for zero values as efficiently, and many algorithms are
7611now predicated on avoiding zero-value inputs.
7612
7613Semantics:
7614""""""""""
7615
7616The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7617zeros in a variable, or within each element of the vector. If
7618``src == 0`` then the result is the size in bits of the type of ``src``
7619if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7620``llvm.ctlz(i32 2) = 30``.
7621
7622'``llvm.cttz.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7629integer bit width, or any vector of integer elements. Not all targets
7630support all bit widths or vector types, however.
7631
7632::
7633
7634 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7635 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7636 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7637 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7638 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7639 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7640
7641Overview:
7642"""""""""
7643
7644The '``llvm.cttz``' family of intrinsic functions counts the number of
7645trailing zeros.
7646
7647Arguments:
7648""""""""""
7649
7650The first argument is the value to be counted. This argument may be of
7651any integer type, or a vectory with integer element type. The return
7652type must match the first argument type.
7653
7654The second argument must be a constant and is a flag to indicate whether
7655the intrinsic should ensure that a zero as the first argument produces a
7656defined result. Historically some architectures did not provide a
7657defined result for zero values as efficiently, and many algorithms are
7658now predicated on avoiding zero-value inputs.
7659
7660Semantics:
7661""""""""""
7662
7663The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7664zeros in a variable, or within each element of a vector. If ``src == 0``
7665then the result is the size in bits of the type of ``src`` if
7666``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7667``llvm.cttz(2) = 1``.
7668
7669Arithmetic with Overflow Intrinsics
7670-----------------------------------
7671
7672LLVM provides intrinsics for some arithmetic with overflow operations.
7673
7674'``llvm.sadd.with.overflow.*``' Intrinsics
7675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7676
7677Syntax:
7678"""""""
7679
7680This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7681on any integer bit width.
7682
7683::
7684
7685 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7686 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7687 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7688
7689Overview:
7690"""""""""
7691
7692The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7693a signed addition of the two arguments, and indicate whether an overflow
7694occurred during the signed summation.
7695
7696Arguments:
7697""""""""""
7698
7699The arguments (%a and %b) and the first element of the result structure
7700may be of integer types of any bit width, but they must have the same
7701bit width. The second element of the result structure must be of type
7702``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7703addition.
7704
7705Semantics:
7706""""""""""
7707
7708The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007709a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007710first element of which is the signed summation, and the second element
7711of which is a bit specifying if the signed summation resulted in an
7712overflow.
7713
7714Examples:
7715"""""""""
7716
7717.. code-block:: llvm
7718
7719 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7720 %sum = extractvalue {i32, i1} %res, 0
7721 %obit = extractvalue {i32, i1} %res, 1
7722 br i1 %obit, label %overflow, label %normal
7723
7724'``llvm.uadd.with.overflow.*``' Intrinsics
7725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7726
7727Syntax:
7728"""""""
7729
7730This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7731on any integer bit width.
7732
7733::
7734
7735 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7736 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7737 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7738
7739Overview:
7740"""""""""
7741
7742The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7743an unsigned addition of the two arguments, and indicate whether a carry
7744occurred during the unsigned summation.
7745
7746Arguments:
7747""""""""""
7748
7749The arguments (%a and %b) and the first element of the result structure
7750may be of integer types of any bit width, but they must have the same
7751bit width. The second element of the result structure must be of type
7752``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7753addition.
7754
7755Semantics:
7756""""""""""
7757
7758The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007759an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007760first element of which is the sum, and the second element of which is a
7761bit specifying if the unsigned summation resulted in a carry.
7762
7763Examples:
7764"""""""""
7765
7766.. code-block:: llvm
7767
7768 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7769 %sum = extractvalue {i32, i1} %res, 0
7770 %obit = extractvalue {i32, i1} %res, 1
7771 br i1 %obit, label %carry, label %normal
7772
7773'``llvm.ssub.with.overflow.*``' Intrinsics
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7780on any integer bit width.
7781
7782::
7783
7784 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7785 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7786 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7787
7788Overview:
7789"""""""""
7790
7791The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7792a signed subtraction of the two arguments, and indicate whether an
7793overflow occurred during the signed subtraction.
7794
7795Arguments:
7796""""""""""
7797
7798The arguments (%a and %b) and the first element of the result structure
7799may be of integer types of any bit width, but they must have the same
7800bit width. The second element of the result structure must be of type
7801``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7802subtraction.
7803
7804Semantics:
7805""""""""""
7806
7807The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007808a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007809first element of which is the subtraction, and the second element of
7810which is a bit specifying if the signed subtraction resulted in an
7811overflow.
7812
7813Examples:
7814"""""""""
7815
7816.. code-block:: llvm
7817
7818 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7819 %sum = extractvalue {i32, i1} %res, 0
7820 %obit = extractvalue {i32, i1} %res, 1
7821 br i1 %obit, label %overflow, label %normal
7822
7823'``llvm.usub.with.overflow.*``' Intrinsics
7824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7825
7826Syntax:
7827"""""""
7828
7829This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7830on any integer bit width.
7831
7832::
7833
7834 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7835 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7836 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7837
7838Overview:
7839"""""""""
7840
7841The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7842an unsigned subtraction of the two arguments, and indicate whether an
7843overflow occurred during the unsigned subtraction.
7844
7845Arguments:
7846""""""""""
7847
7848The arguments (%a and %b) and the first element of the result structure
7849may be of integer types of any bit width, but they must have the same
7850bit width. The second element of the result structure must be of type
7851``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7852subtraction.
7853
7854Semantics:
7855""""""""""
7856
7857The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007858an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007859the first element of which is the subtraction, and the second element of
7860which is a bit specifying if the unsigned subtraction resulted in an
7861overflow.
7862
7863Examples:
7864"""""""""
7865
7866.. code-block:: llvm
7867
7868 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7869 %sum = extractvalue {i32, i1} %res, 0
7870 %obit = extractvalue {i32, i1} %res, 1
7871 br i1 %obit, label %overflow, label %normal
7872
7873'``llvm.smul.with.overflow.*``' Intrinsics
7874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7880on any integer bit width.
7881
7882::
7883
7884 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7885 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7886 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7887
7888Overview:
7889"""""""""
7890
7891The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7892a signed multiplication of the two arguments, and indicate whether an
7893overflow occurred during the signed multiplication.
7894
7895Arguments:
7896""""""""""
7897
7898The arguments (%a and %b) and the first element of the result structure
7899may be of integer types of any bit width, but they must have the same
7900bit width. The second element of the result structure must be of type
7901``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7902multiplication.
7903
7904Semantics:
7905""""""""""
7906
7907The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007908a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007909the first element of which is the multiplication, and the second element
7910of which is a bit specifying if the signed multiplication resulted in an
7911overflow.
7912
7913Examples:
7914"""""""""
7915
7916.. code-block:: llvm
7917
7918 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7919 %sum = extractvalue {i32, i1} %res, 0
7920 %obit = extractvalue {i32, i1} %res, 1
7921 br i1 %obit, label %overflow, label %normal
7922
7923'``llvm.umul.with.overflow.*``' Intrinsics
7924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7925
7926Syntax:
7927"""""""
7928
7929This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7930on any integer bit width.
7931
7932::
7933
7934 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7935 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7936 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7937
7938Overview:
7939"""""""""
7940
7941The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7942a unsigned multiplication of the two arguments, and indicate whether an
7943overflow occurred during the unsigned multiplication.
7944
7945Arguments:
7946""""""""""
7947
7948The arguments (%a and %b) and the first element of the result structure
7949may be of integer types of any bit width, but they must have the same
7950bit width. The second element of the result structure must be of type
7951``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7952multiplication.
7953
7954Semantics:
7955""""""""""
7956
7957The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007958an unsigned multiplication of the two arguments. They return a structure ---
7959the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007960element of which is a bit specifying if the unsigned multiplication
7961resulted in an overflow.
7962
7963Examples:
7964"""""""""
7965
7966.. code-block:: llvm
7967
7968 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7969 %sum = extractvalue {i32, i1} %res, 0
7970 %obit = extractvalue {i32, i1} %res, 1
7971 br i1 %obit, label %overflow, label %normal
7972
7973Specialised Arithmetic Intrinsics
7974---------------------------------
7975
7976'``llvm.fmuladd.*``' Intrinsic
7977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7978
7979Syntax:
7980"""""""
7981
7982::
7983
7984 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7985 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7986
7987Overview:
7988"""""""""
7989
7990The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007991expressions that can be fused if the code generator determines that (a) the
7992target instruction set has support for a fused operation, and (b) that the
7993fused operation is more efficient than the equivalent, separate pair of mul
7994and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007995
7996Arguments:
7997""""""""""
7998
7999The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8000multiplicands, a and b, and an addend c.
8001
8002Semantics:
8003""""""""""
8004
8005The expression:
8006
8007::
8008
8009 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8010
8011is equivalent to the expression a \* b + c, except that rounding will
8012not be performed between the multiplication and addition steps if the
8013code generator fuses the operations. Fusion is not guaranteed, even if
8014the target platform supports it. If a fused multiply-add is required the
8015corresponding llvm.fma.\* intrinsic function should be used instead.
8016
8017Examples:
8018"""""""""
8019
8020.. code-block:: llvm
8021
8022 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8023
8024Half Precision Floating Point Intrinsics
8025----------------------------------------
8026
8027For most target platforms, half precision floating point is a
8028storage-only format. This means that it is a dense encoding (in memory)
8029but does not support computation in the format.
8030
8031This means that code must first load the half-precision floating point
8032value as an i16, then convert it to float with
8033:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8034then be performed on the float value (including extending to double
8035etc). To store the value back to memory, it is first converted to float
8036if needed, then converted to i16 with
8037:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8038i16 value.
8039
8040.. _int_convert_to_fp16:
8041
8042'``llvm.convert.to.fp16``' Intrinsic
8043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8044
8045Syntax:
8046"""""""
8047
8048::
8049
8050 declare i16 @llvm.convert.to.fp16(f32 %a)
8051
8052Overview:
8053"""""""""
8054
8055The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8056from single precision floating point format to half precision floating
8057point format.
8058
8059Arguments:
8060""""""""""
8061
8062The intrinsic function contains single argument - the value to be
8063converted.
8064
8065Semantics:
8066""""""""""
8067
8068The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8069from single precision floating point format to half precision floating
8070point format. The return value is an ``i16`` which contains the
8071converted number.
8072
8073Examples:
8074"""""""""
8075
8076.. code-block:: llvm
8077
8078 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8079 store i16 %res, i16* @x, align 2
8080
8081.. _int_convert_from_fp16:
8082
8083'``llvm.convert.from.fp16``' Intrinsic
8084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8085
8086Syntax:
8087"""""""
8088
8089::
8090
8091 declare f32 @llvm.convert.from.fp16(i16 %a)
8092
8093Overview:
8094"""""""""
8095
8096The '``llvm.convert.from.fp16``' intrinsic function performs a
8097conversion from half precision floating point format to single precision
8098floating point format.
8099
8100Arguments:
8101""""""""""
8102
8103The intrinsic function contains single argument - the value to be
8104converted.
8105
8106Semantics:
8107""""""""""
8108
8109The '``llvm.convert.from.fp16``' intrinsic function performs a
8110conversion from half single precision floating point format to single
8111precision floating point format. The input half-float value is
8112represented by an ``i16`` value.
8113
8114Examples:
8115"""""""""
8116
8117.. code-block:: llvm
8118
8119 %a = load i16* @x, align 2
8120 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8121
8122Debugger Intrinsics
8123-------------------
8124
8125The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8126prefix), are described in the `LLVM Source Level
8127Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8128document.
8129
8130Exception Handling Intrinsics
8131-----------------------------
8132
8133The LLVM exception handling intrinsics (which all start with
8134``llvm.eh.`` prefix), are described in the `LLVM Exception
8135Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8136
8137.. _int_trampoline:
8138
8139Trampoline Intrinsics
8140---------------------
8141
8142These intrinsics make it possible to excise one parameter, marked with
8143the :ref:`nest <nest>` attribute, from a function. The result is a
8144callable function pointer lacking the nest parameter - the caller does
8145not need to provide a value for it. Instead, the value to use is stored
8146in advance in a "trampoline", a block of memory usually allocated on the
8147stack, which also contains code to splice the nest value into the
8148argument list. This is used to implement the GCC nested function address
8149extension.
8150
8151For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8152then the resulting function pointer has signature ``i32 (i32, i32)*``.
8153It can be created as follows:
8154
8155.. code-block:: llvm
8156
8157 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8158 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8159 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8160 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8161 %fp = bitcast i8* %p to i32 (i32, i32)*
8162
8163The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8164``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8165
8166.. _int_it:
8167
8168'``llvm.init.trampoline``' Intrinsic
8169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8170
8171Syntax:
8172"""""""
8173
8174::
8175
8176 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8177
8178Overview:
8179"""""""""
8180
8181This fills the memory pointed to by ``tramp`` with executable code,
8182turning it into a trampoline.
8183
8184Arguments:
8185""""""""""
8186
8187The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8188pointers. The ``tramp`` argument must point to a sufficiently large and
8189sufficiently aligned block of memory; this memory is written to by the
8190intrinsic. Note that the size and the alignment are target-specific -
8191LLVM currently provides no portable way of determining them, so a
8192front-end that generates this intrinsic needs to have some
8193target-specific knowledge. The ``func`` argument must hold a function
8194bitcast to an ``i8*``.
8195
8196Semantics:
8197""""""""""
8198
8199The block of memory pointed to by ``tramp`` is filled with target
8200dependent code, turning it into a function. Then ``tramp`` needs to be
8201passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8202be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8203function's signature is the same as that of ``func`` with any arguments
8204marked with the ``nest`` attribute removed. At most one such ``nest``
8205argument is allowed, and it must be of pointer type. Calling the new
8206function is equivalent to calling ``func`` with the same argument list,
8207but with ``nval`` used for the missing ``nest`` argument. If, after
8208calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8209modified, then the effect of any later call to the returned function
8210pointer is undefined.
8211
8212.. _int_at:
8213
8214'``llvm.adjust.trampoline``' Intrinsic
8215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8216
8217Syntax:
8218"""""""
8219
8220::
8221
8222 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8223
8224Overview:
8225"""""""""
8226
8227This performs any required machine-specific adjustment to the address of
8228a trampoline (passed as ``tramp``).
8229
8230Arguments:
8231""""""""""
8232
8233``tramp`` must point to a block of memory which already has trampoline
8234code filled in by a previous call to
8235:ref:`llvm.init.trampoline <int_it>`.
8236
8237Semantics:
8238""""""""""
8239
8240On some architectures the address of the code to be executed needs to be
8241different to the address where the trampoline is actually stored. This
8242intrinsic returns the executable address corresponding to ``tramp``
8243after performing the required machine specific adjustments. The pointer
8244returned can then be :ref:`bitcast and executed <int_trampoline>`.
8245
8246Memory Use Markers
8247------------------
8248
8249This class of intrinsics exists to information about the lifetime of
8250memory objects and ranges where variables are immutable.
8251
8252'``llvm.lifetime.start``' Intrinsic
8253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8254
8255Syntax:
8256"""""""
8257
8258::
8259
8260 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8261
8262Overview:
8263"""""""""
8264
8265The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8266object's lifetime.
8267
8268Arguments:
8269""""""""""
8270
8271The first argument is a constant integer representing the size of the
8272object, or -1 if it is variable sized. The second argument is a pointer
8273to the object.
8274
8275Semantics:
8276""""""""""
8277
8278This intrinsic indicates that before this point in the code, the value
8279of the memory pointed to by ``ptr`` is dead. This means that it is known
8280to never be used and has an undefined value. A load from the pointer
8281that precedes this intrinsic can be replaced with ``'undef'``.
8282
8283'``llvm.lifetime.end``' Intrinsic
8284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286Syntax:
8287"""""""
8288
8289::
8290
8291 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8292
8293Overview:
8294"""""""""
8295
8296The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8297object's lifetime.
8298
8299Arguments:
8300""""""""""
8301
8302The first argument is a constant integer representing the size of the
8303object, or -1 if it is variable sized. The second argument is a pointer
8304to the object.
8305
8306Semantics:
8307""""""""""
8308
8309This intrinsic indicates that after this point in the code, the value of
8310the memory pointed to by ``ptr`` is dead. This means that it is known to
8311never be used and has an undefined value. Any stores into the memory
8312object following this intrinsic may be removed as dead.
8313
8314'``llvm.invariant.start``' Intrinsic
8315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8323
8324Overview:
8325"""""""""
8326
8327The '``llvm.invariant.start``' intrinsic specifies that the contents of
8328a memory object will not change.
8329
8330Arguments:
8331""""""""""
8332
8333The first argument is a constant integer representing the size of the
8334object, or -1 if it is variable sized. The second argument is a pointer
8335to the object.
8336
8337Semantics:
8338""""""""""
8339
8340This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8341the return value, the referenced memory location is constant and
8342unchanging.
8343
8344'``llvm.invariant.end``' Intrinsic
8345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8346
8347Syntax:
8348"""""""
8349
8350::
8351
8352 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8353
8354Overview:
8355"""""""""
8356
8357The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8358memory object are mutable.
8359
8360Arguments:
8361""""""""""
8362
8363The first argument is the matching ``llvm.invariant.start`` intrinsic.
8364The second argument is a constant integer representing the size of the
8365object, or -1 if it is variable sized and the third argument is a
8366pointer to the object.
8367
8368Semantics:
8369""""""""""
8370
8371This intrinsic indicates that the memory is mutable again.
8372
8373General Intrinsics
8374------------------
8375
8376This class of intrinsics is designed to be generic and has no specific
8377purpose.
8378
8379'``llvm.var.annotation``' Intrinsic
8380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8381
8382Syntax:
8383"""""""
8384
8385::
8386
8387 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8388
8389Overview:
8390"""""""""
8391
8392The '``llvm.var.annotation``' intrinsic.
8393
8394Arguments:
8395""""""""""
8396
8397The first argument is a pointer to a value, the second is a pointer to a
8398global string, the third is a pointer to a global string which is the
8399source file name, and the last argument is the line number.
8400
8401Semantics:
8402""""""""""
8403
8404This intrinsic allows annotation of local variables with arbitrary
8405strings. This can be useful for special purpose optimizations that want
8406to look for these annotations. These have no other defined use; they are
8407ignored by code generation and optimization.
8408
Michael Gottesman872b4e52013-03-26 00:34:27 +00008409'``llvm.ptr.annotation.*``' Intrinsic
8410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8411
8412Syntax:
8413"""""""
8414
8415This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8416pointer to an integer of any width. *NOTE* you must specify an address space for
8417the pointer. The identifier for the default address space is the integer
8418'``0``'.
8419
8420::
8421
8422 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8423 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8424 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8425 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8426 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8427
8428Overview:
8429"""""""""
8430
8431The '``llvm.ptr.annotation``' intrinsic.
8432
8433Arguments:
8434""""""""""
8435
8436The first argument is a pointer to an integer value of arbitrary bitwidth
8437(result of some expression), the second is a pointer to a global string, the
8438third is a pointer to a global string which is the source file name, and the
8439last argument is the line number. It returns the value of the first argument.
8440
8441Semantics:
8442""""""""""
8443
8444This intrinsic allows annotation of a pointer to an integer with arbitrary
8445strings. This can be useful for special purpose optimizations that want to look
8446for these annotations. These have no other defined use; they are ignored by code
8447generation and optimization.
8448
Sean Silvaf722b002012-12-07 10:36:55 +00008449'``llvm.annotation.*``' Intrinsic
8450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8456any integer bit width.
8457
8458::
8459
8460 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8461 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8462 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8463 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8464 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8465
8466Overview:
8467"""""""""
8468
8469The '``llvm.annotation``' intrinsic.
8470
8471Arguments:
8472""""""""""
8473
8474The first argument is an integer value (result of some expression), the
8475second is a pointer to a global string, the third is a pointer to a
8476global string which is the source file name, and the last argument is
8477the line number. It returns the value of the first argument.
8478
8479Semantics:
8480""""""""""
8481
8482This intrinsic allows annotations to be put on arbitrary expressions
8483with arbitrary strings. This can be useful for special purpose
8484optimizations that want to look for these annotations. These have no
8485other defined use; they are ignored by code generation and optimization.
8486
8487'``llvm.trap``' Intrinsic
8488^^^^^^^^^^^^^^^^^^^^^^^^^
8489
8490Syntax:
8491"""""""
8492
8493::
8494
8495 declare void @llvm.trap() noreturn nounwind
8496
8497Overview:
8498"""""""""
8499
8500The '``llvm.trap``' intrinsic.
8501
8502Arguments:
8503""""""""""
8504
8505None.
8506
8507Semantics:
8508""""""""""
8509
8510This intrinsic is lowered to the target dependent trap instruction. If
8511the target does not have a trap instruction, this intrinsic will be
8512lowered to a call of the ``abort()`` function.
8513
8514'``llvm.debugtrap``' Intrinsic
8515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8516
8517Syntax:
8518"""""""
8519
8520::
8521
8522 declare void @llvm.debugtrap() nounwind
8523
8524Overview:
8525"""""""""
8526
8527The '``llvm.debugtrap``' intrinsic.
8528
8529Arguments:
8530""""""""""
8531
8532None.
8533
8534Semantics:
8535""""""""""
8536
8537This intrinsic is lowered to code which is intended to cause an
8538execution trap with the intention of requesting the attention of a
8539debugger.
8540
8541'``llvm.stackprotector``' Intrinsic
8542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8543
8544Syntax:
8545"""""""
8546
8547::
8548
8549 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8550
8551Overview:
8552"""""""""
8553
8554The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8555onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8556is placed on the stack before local variables.
8557
8558Arguments:
8559""""""""""
8560
8561The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8562The first argument is the value loaded from the stack guard
8563``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8564enough space to hold the value of the guard.
8565
8566Semantics:
8567""""""""""
8568
8569This intrinsic causes the prologue/epilogue inserter to force the
8570position of the ``AllocaInst`` stack slot to be before local variables
8571on the stack. This is to ensure that if a local variable on the stack is
8572overwritten, it will destroy the value of the guard. When the function
8573exits, the guard on the stack is checked against the original guard. If
8574they are different, then the program aborts by calling the
8575``__stack_chk_fail()`` function.
8576
8577'``llvm.objectsize``' Intrinsic
8578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580Syntax:
8581"""""""
8582
8583::
8584
8585 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8586 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8587
8588Overview:
8589"""""""""
8590
8591The ``llvm.objectsize`` intrinsic is designed to provide information to
8592the optimizers to determine at compile time whether a) an operation
8593(like memcpy) will overflow a buffer that corresponds to an object, or
8594b) that a runtime check for overflow isn't necessary. An object in this
8595context means an allocation of a specific class, structure, array, or
8596other object.
8597
8598Arguments:
8599""""""""""
8600
8601The ``llvm.objectsize`` intrinsic takes two arguments. The first
8602argument is a pointer to or into the ``object``. The second argument is
8603a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8604or -1 (if false) when the object size is unknown. The second argument
8605only accepts constants.
8606
8607Semantics:
8608""""""""""
8609
8610The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8611the size of the object concerned. If the size cannot be determined at
8612compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8613on the ``min`` argument).
8614
8615'``llvm.expect``' Intrinsic
8616^^^^^^^^^^^^^^^^^^^^^^^^^^^
8617
8618Syntax:
8619"""""""
8620
8621::
8622
8623 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8624 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8625
8626Overview:
8627"""""""""
8628
8629The ``llvm.expect`` intrinsic provides information about expected (the
8630most probable) value of ``val``, which can be used by optimizers.
8631
8632Arguments:
8633""""""""""
8634
8635The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8636a value. The second argument is an expected value, this needs to be a
8637constant value, variables are not allowed.
8638
8639Semantics:
8640""""""""""
8641
8642This intrinsic is lowered to the ``val``.
8643
8644'``llvm.donothing``' Intrinsic
8645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8646
8647Syntax:
8648"""""""
8649
8650::
8651
8652 declare void @llvm.donothing() nounwind readnone
8653
8654Overview:
8655"""""""""
8656
8657The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8658only intrinsic that can be called with an invoke instruction.
8659
8660Arguments:
8661""""""""""
8662
8663None.
8664
8665Semantics:
8666""""""""""
8667
8668This intrinsic does nothing, and it's removed by optimizers and ignored
8669by codegen.