blob: e07d8fe8dba1a84e5271f7bb06060d15e37793f0 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
390Visibility Styles
391-----------------
392
393All Global Variables and Functions have one of the following visibility
394styles:
395
396"``default``" - Default style
397 On targets that use the ELF object file format, default visibility
398 means that the declaration is visible to other modules and, in
399 shared libraries, means that the declared entity may be overridden.
400 On Darwin, default visibility means that the declaration is visible
401 to other modules. Default visibility corresponds to "external
402 linkage" in the language.
403"``hidden``" - Hidden style
404 Two declarations of an object with hidden visibility refer to the
405 same object if they are in the same shared object. Usually, hidden
406 visibility indicates that the symbol will not be placed into the
407 dynamic symbol table, so no other module (executable or shared
408 library) can reference it directly.
409"``protected``" - Protected style
410 On ELF, protected visibility indicates that the symbol will be
411 placed in the dynamic symbol table, but that references within the
412 defining module will bind to the local symbol. That is, the symbol
413 cannot be overridden by another module.
414
415Named Types
416-----------
417
418LLVM IR allows you to specify name aliases for certain types. This can
419make it easier to read the IR and make the IR more condensed
420(particularly when recursive types are involved). An example of a name
421specification is:
422
423.. code-block:: llvm
424
425 %mytype = type { %mytype*, i32 }
426
427You may give a name to any :ref:`type <typesystem>` except
428":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
429expected with the syntax "%mytype".
430
431Note that type names are aliases for the structural type that they
432indicate, and that you can therefore specify multiple names for the same
433type. This often leads to confusing behavior when dumping out a .ll
434file. Since LLVM IR uses structural typing, the name is not part of the
435type. When printing out LLVM IR, the printer will pick *one name* to
436render all types of a particular shape. This means that if you have code
437where two different source types end up having the same LLVM type, that
438the dumper will sometimes print the "wrong" or unexpected type. This is
439an important design point and isn't going to change.
440
441.. _globalvars:
442
443Global Variables
444----------------
445
446Global variables define regions of memory allocated at compilation time
447instead of run-time. Global variables may optionally be initialized, may
448have an explicit section to be placed in, and may have an optional
449explicit alignment specified.
450
451A variable may be defined as ``thread_local``, which means that it will
452not be shared by threads (each thread will have a separated copy of the
453variable). Not all targets support thread-local variables. Optionally, a
454TLS model may be specified:
455
456``localdynamic``
457 For variables that are only used within the current shared library.
458``initialexec``
459 For variables in modules that will not be loaded dynamically.
460``localexec``
461 For variables defined in the executable and only used within it.
462
463The models correspond to the ELF TLS models; see `ELF Handling For
464Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
465more information on under which circumstances the different models may
466be used. The target may choose a different TLS model if the specified
467model is not supported, or if a better choice of model can be made.
468
Michael Gottesmanf5735882013-01-31 05:48:48 +0000469A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000470the contents of the variable will **never** be modified (enabling better
471optimization, allowing the global data to be placed in the read-only
472section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000473initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000474variable.
475
476LLVM explicitly allows *declarations* of global variables to be marked
477constant, even if the final definition of the global is not. This
478capability can be used to enable slightly better optimization of the
479program, but requires the language definition to guarantee that
480optimizations based on the 'constantness' are valid for the translation
481units that do not include the definition.
482
483As SSA values, global variables define pointer values that are in scope
484(i.e. they dominate) all basic blocks in the program. Global variables
485always define a pointer to their "content" type because they describe a
486region of memory, and all memory objects in LLVM are accessed through
487pointers.
488
489Global variables can be marked with ``unnamed_addr`` which indicates
490that the address is not significant, only the content. Constants marked
491like this can be merged with other constants if they have the same
492initializer. Note that a constant with significant address *can* be
493merged with a ``unnamed_addr`` constant, the result being a constant
494whose address is significant.
495
496A global variable may be declared to reside in a target-specific
497numbered address space. For targets that support them, address spaces
498may affect how optimizations are performed and/or what target
499instructions are used to access the variable. The default address space
500is zero. The address space qualifier must precede any other attributes.
501
502LLVM allows an explicit section to be specified for globals. If the
503target supports it, it will emit globals to the section specified.
504
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000505By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000506variables defined within the module are not modified from their
507initial values before the start of the global initializer. This is
508true even for variables potentially accessible from outside the
509module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000510``@llvm.used``. This assumption may be suppressed by marking the
511variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000512
Sean Silvaf722b002012-12-07 10:36:55 +0000513An explicit alignment may be specified for a global, which must be a
514power of 2. If not present, or if the alignment is set to zero, the
515alignment of the global is set by the target to whatever it feels
516convenient. If an explicit alignment is specified, the global is forced
517to have exactly that alignment. Targets and optimizers are not allowed
518to over-align the global if the global has an assigned section. In this
519case, the extra alignment could be observable: for example, code could
520assume that the globals are densely packed in their section and try to
521iterate over them as an array, alignment padding would break this
522iteration.
523
524For example, the following defines a global in a numbered address space
525with an initializer, section, and alignment:
526
527.. code-block:: llvm
528
529 @G = addrspace(5) constant float 1.0, section "foo", align 4
530
531The following example defines a thread-local global with the
532``initialexec`` TLS model:
533
534.. code-block:: llvm
535
536 @G = thread_local(initialexec) global i32 0, align 4
537
538.. _functionstructure:
539
540Functions
541---------
542
543LLVM function definitions consist of the "``define``" keyword, an
544optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
545style <visibility>`, an optional :ref:`calling convention <callingconv>`,
546an optional ``unnamed_addr`` attribute, a return type, an optional
547:ref:`parameter attribute <paramattrs>` for the return type, a function
548name, a (possibly empty) argument list (each with optional :ref:`parameter
549attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
550an optional section, an optional alignment, an optional :ref:`garbage
551collector name <gc>`, an opening curly brace, a list of basic blocks,
552and a closing curly brace.
553
554LLVM function declarations consist of the "``declare``" keyword, an
555optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
556style <visibility>`, an optional :ref:`calling convention <callingconv>`,
557an optional ``unnamed_addr`` attribute, a return type, an optional
558:ref:`parameter attribute <paramattrs>` for the return type, a function
559name, a possibly empty list of arguments, an optional alignment, and an
560optional :ref:`garbage collector name <gc>`.
561
562A function definition contains a list of basic blocks, forming the CFG
563(Control Flow Graph) for the function. Each basic block may optionally
564start with a label (giving the basic block a symbol table entry),
565contains a list of instructions, and ends with a
566:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000567return). If explicit label is not provided, a block is assigned an
568implicit numbered label, using a next value from the same counter as used
569for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
570function entry block does not have explicit label, it will be assigned
571label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000572
573The first basic block in a function is special in two ways: it is
574immediately executed on entrance to the function, and it is not allowed
575to have predecessor basic blocks (i.e. there can not be any branches to
576the entry block of a function). Because the block can have no
577predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
578
579LLVM allows an explicit section to be specified for functions. If the
580target supports it, it will emit functions to the section specified.
581
582An explicit alignment may be specified for a function. If not present,
583or if the alignment is set to zero, the alignment of the function is set
584by the target to whatever it feels convenient. If an explicit alignment
585is specified, the function is forced to have at least that much
586alignment. All alignments must be a power of 2.
587
588If the ``unnamed_addr`` attribute is given, the address is know to not
589be significant and two identical functions can be merged.
590
591Syntax::
592
593 define [linkage] [visibility]
594 [cconv] [ret attrs]
595 <ResultType> @<FunctionName> ([argument list])
596 [fn Attrs] [section "name"] [align N]
597 [gc] { ... }
598
599Aliases
600-------
601
602Aliases act as "second name" for the aliasee value (which can be either
603function, global variable, another alias or bitcast of global value).
604Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
605:ref:`visibility style <visibility>`.
606
607Syntax::
608
609 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
610
611.. _namedmetadatastructure:
612
613Named Metadata
614--------------
615
616Named metadata is a collection of metadata. :ref:`Metadata
617nodes <metadata>` (but not metadata strings) are the only valid
618operands for a named metadata.
619
620Syntax::
621
622 ; Some unnamed metadata nodes, which are referenced by the named metadata.
623 !0 = metadata !{metadata !"zero"}
624 !1 = metadata !{metadata !"one"}
625 !2 = metadata !{metadata !"two"}
626 ; A named metadata.
627 !name = !{!0, !1, !2}
628
629.. _paramattrs:
630
631Parameter Attributes
632--------------------
633
634The return type and each parameter of a function type may have a set of
635*parameter attributes* associated with them. Parameter attributes are
636used to communicate additional information about the result or
637parameters of a function. Parameter attributes are considered to be part
638of the function, not of the function type, so functions with different
639parameter attributes can have the same function type.
640
641Parameter attributes are simple keywords that follow the type specified.
642If multiple parameter attributes are needed, they are space separated.
643For example:
644
645.. code-block:: llvm
646
647 declare i32 @printf(i8* noalias nocapture, ...)
648 declare i32 @atoi(i8 zeroext)
649 declare signext i8 @returns_signed_char()
650
651Note that any attributes for the function result (``nounwind``,
652``readonly``) come immediately after the argument list.
653
654Currently, only the following parameter attributes are defined:
655
656``zeroext``
657 This indicates to the code generator that the parameter or return
658 value should be zero-extended to the extent required by the target's
659 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
660 the caller (for a parameter) or the callee (for a return value).
661``signext``
662 This indicates to the code generator that the parameter or return
663 value should be sign-extended to the extent required by the target's
664 ABI (which is usually 32-bits) by the caller (for a parameter) or
665 the callee (for a return value).
666``inreg``
667 This indicates that this parameter or return value should be treated
668 in a special target-dependent fashion during while emitting code for
669 a function call or return (usually, by putting it in a register as
670 opposed to memory, though some targets use it to distinguish between
671 two different kinds of registers). Use of this attribute is
672 target-specific.
673``byval``
674 This indicates that the pointer parameter should really be passed by
675 value to the function. The attribute implies that a hidden copy of
676 the pointee is made between the caller and the callee, so the callee
677 is unable to modify the value in the caller. This attribute is only
678 valid on LLVM pointer arguments. It is generally used to pass
679 structs and arrays by value, but is also valid on pointers to
680 scalars. The copy is considered to belong to the caller not the
681 callee (for example, ``readonly`` functions should not write to
682 ``byval`` parameters). This is not a valid attribute for return
683 values.
684
685 The byval attribute also supports specifying an alignment with the
686 align attribute. It indicates the alignment of the stack slot to
687 form and the known alignment of the pointer specified to the call
688 site. If the alignment is not specified, then the code generator
689 makes a target-specific assumption.
690
691``sret``
692 This indicates that the pointer parameter specifies the address of a
693 structure that is the return value of the function in the source
694 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000695 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000696 not to trap and to be properly aligned. This may only be applied to
697 the first parameter. This is not a valid attribute for return
698 values.
699``noalias``
700 This indicates that pointer values `*based* <pointeraliasing>` on
701 the argument or return value do not alias pointer values which are
702 not *based* on it, ignoring certain "irrelevant" dependencies. For a
703 call to the parent function, dependencies between memory references
704 from before or after the call and from those during the call are
705 "irrelevant" to the ``noalias`` keyword for the arguments and return
706 value used in that call. The caller shares the responsibility with
707 the callee for ensuring that these requirements are met. For further
708 details, please see the discussion of the NoAlias response in `alias
709 analysis <AliasAnalysis.html#MustMayNo>`_.
710
711 Note that this definition of ``noalias`` is intentionally similar
712 to the definition of ``restrict`` in C99 for function arguments,
713 though it is slightly weaker.
714
715 For function return values, C99's ``restrict`` is not meaningful,
716 while LLVM's ``noalias`` is.
717``nocapture``
718 This indicates that the callee does not make any copies of the
719 pointer that outlive the callee itself. This is not a valid
720 attribute for return values.
721
722.. _nest:
723
724``nest``
725 This indicates that the pointer parameter can be excised using the
726 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000727 attribute for return values and can only be applied to one parameter.
728
729``returned``
730 This indicates that the value of the function always returns the value
731 of the parameter as its return value. This is an optimization hint to
732 the code generator when generating the caller, allowing tail call
733 optimization and omission of register saves and restores in some cases;
734 it is not checked or enforced when generating the callee. The parameter
735 and the function return type must be valid operands for the
736 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
737 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000738
739.. _gc:
740
741Garbage Collector Names
742-----------------------
743
744Each function may specify a garbage collector name, which is simply a
745string:
746
747.. code-block:: llvm
748
749 define void @f() gc "name" { ... }
750
751The compiler declares the supported values of *name*. Specifying a
752collector which will cause the compiler to alter its output in order to
753support the named garbage collection algorithm.
754
Bill Wendling95ce4c22013-02-06 06:52:58 +0000755.. _attrgrp:
756
757Attribute Groups
758----------------
759
760Attribute groups are groups of attributes that are referenced by objects within
761the IR. They are important for keeping ``.ll`` files readable, because a lot of
762functions will use the same set of attributes. In the degenerative case of a
763``.ll`` file that corresponds to a single ``.c`` file, the single attribute
764group will capture the important command line flags used to build that file.
765
766An attribute group is a module-level object. To use an attribute group, an
767object references the attribute group's ID (e.g. ``#37``). An object may refer
768to more than one attribute group. In that situation, the attributes from the
769different groups are merged.
770
771Here is an example of attribute groups for a function that should always be
772inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
773
774.. code-block:: llvm
775
776 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000777 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000778
779 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000780 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000781
782 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
783 define void @f() #0 #1 { ... }
784
Sean Silvaf722b002012-12-07 10:36:55 +0000785.. _fnattrs:
786
787Function Attributes
788-------------------
789
790Function attributes are set to communicate additional information about
791a function. Function attributes are considered to be part of the
792function, not of the function type, so functions with different function
793attributes can have the same function type.
794
795Function attributes are simple keywords that follow the type specified.
796If multiple attributes are needed, they are space separated. For
797example:
798
799.. code-block:: llvm
800
801 define void @f() noinline { ... }
802 define void @f() alwaysinline { ... }
803 define void @f() alwaysinline optsize { ... }
804 define void @f() optsize { ... }
805
Sean Silvaf722b002012-12-07 10:36:55 +0000806``alignstack(<n>)``
807 This attribute indicates that, when emitting the prologue and
808 epilogue, the backend should forcibly align the stack pointer.
809 Specify the desired alignment, which must be a power of two, in
810 parentheses.
811``alwaysinline``
812 This attribute indicates that the inliner should attempt to inline
813 this function into callers whenever possible, ignoring any active
814 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000815``cold``
816 This attribute indicates that this function is rarely called. When
817 computing edge weights, basic blocks post-dominated by a cold
818 function call are also considered to be cold; and, thus, given low
819 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000820``nonlazybind``
821 This attribute suppresses lazy symbol binding for the function. This
822 may make calls to the function faster, at the cost of extra program
823 startup time if the function is not called during program startup.
824``inlinehint``
825 This attribute indicates that the source code contained a hint that
826 inlining this function is desirable (such as the "inline" keyword in
827 C/C++). It is just a hint; it imposes no requirements on the
828 inliner.
829``naked``
830 This attribute disables prologue / epilogue emission for the
831 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000832``nobuiltin``
833 This indicates that the callee function at a call site is not
834 recognized as a built-in function. LLVM will retain the original call
835 and not replace it with equivalent code based on the semantics of the
836 built-in function. This is only valid at call sites, not on function
837 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000838``noduplicate``
839 This attribute indicates that calls to the function cannot be
840 duplicated. A call to a ``noduplicate`` function may be moved
841 within its parent function, but may not be duplicated within
842 its parent function.
843
844 A function containing a ``noduplicate`` call may still
845 be an inlining candidate, provided that the call is not
846 duplicated by inlining. That implies that the function has
847 internal linkage and only has one call site, so the original
848 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000849``noimplicitfloat``
850 This attributes disables implicit floating point instructions.
851``noinline``
852 This attribute indicates that the inliner should never inline this
853 function in any situation. This attribute may not be used together
854 with the ``alwaysinline`` attribute.
855``noredzone``
856 This attribute indicates that the code generator should not use a
857 red zone, even if the target-specific ABI normally permits it.
858``noreturn``
859 This function attribute indicates that the function never returns
860 normally. This produces undefined behavior at runtime if the
861 function ever does dynamically return.
862``nounwind``
863 This function attribute indicates that the function never returns
864 with an unwind or exceptional control flow. If the function does
865 unwind, its runtime behavior is undefined.
866``optsize``
867 This attribute suggests that optimization passes and code generator
868 passes make choices that keep the code size of this function low,
869 and otherwise do optimizations specifically to reduce code size.
870``readnone``
871 This attribute indicates that the function computes its result (or
872 decides to unwind an exception) based strictly on its arguments,
873 without dereferencing any pointer arguments or otherwise accessing
874 any mutable state (e.g. memory, control registers, etc) visible to
875 caller functions. It does not write through any pointer arguments
876 (including ``byval`` arguments) and never changes any state visible
877 to callers. This means that it cannot unwind exceptions by calling
878 the ``C++`` exception throwing methods.
879``readonly``
880 This attribute indicates that the function does not write through
881 any pointer arguments (including ``byval`` arguments) or otherwise
882 modify any state (e.g. memory, control registers, etc) visible to
883 caller functions. It may dereference pointer arguments and read
884 state that may be set in the caller. A readonly function always
885 returns the same value (or unwinds an exception identically) when
886 called with the same set of arguments and global state. It cannot
887 unwind an exception by calling the ``C++`` exception throwing
888 methods.
889``returns_twice``
890 This attribute indicates that this function can return twice. The C
891 ``setjmp`` is an example of such a function. The compiler disables
892 some optimizations (like tail calls) in the caller of these
893 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000894``sanitize_address``
895 This attribute indicates that AddressSanitizer checks
896 (dynamic address safety analysis) are enabled for this function.
897``sanitize_memory``
898 This attribute indicates that MemorySanitizer checks (dynamic detection
899 of accesses to uninitialized memory) are enabled for this function.
900``sanitize_thread``
901 This attribute indicates that ThreadSanitizer checks
902 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000903``ssp``
904 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000905 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000906 placed on the stack before the local variables that's checked upon
907 return from the function to see if it has been overwritten. A
908 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000909 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000910
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000911 - Character arrays larger than ``ssp-buffer-size`` (default 8).
912 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
913 - Calls to alloca() with variable sizes or constant sizes greater than
914 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000915
916 If a function that has an ``ssp`` attribute is inlined into a
917 function that doesn't have an ``ssp`` attribute, then the resulting
918 function will have an ``ssp`` attribute.
919``sspreq``
920 This attribute indicates that the function should *always* emit a
921 stack smashing protector. This overrides the ``ssp`` function
922 attribute.
923
924 If a function that has an ``sspreq`` attribute is inlined into a
925 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000926 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
927 an ``sspreq`` attribute.
928``sspstrong``
929 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000930 protector. This attribute causes a strong heuristic to be used when
931 determining if a function needs stack protectors. The strong heuristic
932 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000933
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000934 - Arrays of any size and type
935 - Aggregates containing an array of any size and type.
936 - Calls to alloca().
937 - Local variables that have had their address taken.
938
939 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000940
941 If a function that has an ``sspstrong`` attribute is inlined into a
942 function that doesn't have an ``sspstrong`` attribute, then the
943 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000944``uwtable``
945 This attribute indicates that the ABI being targeted requires that
946 an unwind table entry be produce for this function even if we can
947 show that no exceptions passes by it. This is normally the case for
948 the ELF x86-64 abi, but it can be disabled for some compilation
949 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000950
951.. _moduleasm:
952
953Module-Level Inline Assembly
954----------------------------
955
956Modules may contain "module-level inline asm" blocks, which corresponds
957to the GCC "file scope inline asm" blocks. These blocks are internally
958concatenated by LLVM and treated as a single unit, but may be separated
959in the ``.ll`` file if desired. The syntax is very simple:
960
961.. code-block:: llvm
962
963 module asm "inline asm code goes here"
964 module asm "more can go here"
965
966The strings can contain any character by escaping non-printable
967characters. The escape sequence used is simply "\\xx" where "xx" is the
968two digit hex code for the number.
969
970The inline asm code is simply printed to the machine code .s file when
971assembly code is generated.
972
973Data Layout
974-----------
975
976A module may specify a target specific data layout string that specifies
977how data is to be laid out in memory. The syntax for the data layout is
978simply:
979
980.. code-block:: llvm
981
982 target datalayout = "layout specification"
983
984The *layout specification* consists of a list of specifications
985separated by the minus sign character ('-'). Each specification starts
986with a letter and may include other information after the letter to
987define some aspect of the data layout. The specifications accepted are
988as follows:
989
990``E``
991 Specifies that the target lays out data in big-endian form. That is,
992 the bits with the most significance have the lowest address
993 location.
994``e``
995 Specifies that the target lays out data in little-endian form. That
996 is, the bits with the least significance have the lowest address
997 location.
998``S<size>``
999 Specifies the natural alignment of the stack in bits. Alignment
1000 promotion of stack variables is limited to the natural stack
1001 alignment to avoid dynamic stack realignment. The stack alignment
1002 must be a multiple of 8-bits. If omitted, the natural stack
1003 alignment defaults to "unspecified", which does not prevent any
1004 alignment promotions.
1005``p[n]:<size>:<abi>:<pref>``
1006 This specifies the *size* of a pointer and its ``<abi>`` and
1007 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1008 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1009 preceding ``:`` should be omitted too. The address space, ``n`` is
1010 optional, and if not specified, denotes the default address space 0.
1011 The value of ``n`` must be in the range [1,2^23).
1012``i<size>:<abi>:<pref>``
1013 This specifies the alignment for an integer type of a given bit
1014 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1015``v<size>:<abi>:<pref>``
1016 This specifies the alignment for a vector type of a given bit
1017 ``<size>``.
1018``f<size>:<abi>:<pref>``
1019 This specifies the alignment for a floating point type of a given bit
1020 ``<size>``. Only values of ``<size>`` that are supported by the target
1021 will work. 32 (float) and 64 (double) are supported on all targets; 80
1022 or 128 (different flavors of long double) are also supported on some
1023 targets.
1024``a<size>:<abi>:<pref>``
1025 This specifies the alignment for an aggregate type of a given bit
1026 ``<size>``.
1027``s<size>:<abi>:<pref>``
1028 This specifies the alignment for a stack object of a given bit
1029 ``<size>``.
1030``n<size1>:<size2>:<size3>...``
1031 This specifies a set of native integer widths for the target CPU in
1032 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1033 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1034 this set are considered to support most general arithmetic operations
1035 efficiently.
1036
1037When constructing the data layout for a given target, LLVM starts with a
1038default set of specifications which are then (possibly) overridden by
1039the specifications in the ``datalayout`` keyword. The default
1040specifications are given in this list:
1041
1042- ``E`` - big endian
1043- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001044- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001045- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1046- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1047- ``i16:16:16`` - i16 is 16-bit aligned
1048- ``i32:32:32`` - i32 is 32-bit aligned
1049- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1050 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001051- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001052- ``f32:32:32`` - float is 32-bit aligned
1053- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001054- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001055- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1056- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001057- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001058
1059When LLVM is determining the alignment for a given type, it uses the
1060following rules:
1061
1062#. If the type sought is an exact match for one of the specifications,
1063 that specification is used.
1064#. If no match is found, and the type sought is an integer type, then
1065 the smallest integer type that is larger than the bitwidth of the
1066 sought type is used. If none of the specifications are larger than
1067 the bitwidth then the largest integer type is used. For example,
1068 given the default specifications above, the i7 type will use the
1069 alignment of i8 (next largest) while both i65 and i256 will use the
1070 alignment of i64 (largest specified).
1071#. If no match is found, and the type sought is a vector type, then the
1072 largest vector type that is smaller than the sought vector type will
1073 be used as a fall back. This happens because <128 x double> can be
1074 implemented in terms of 64 <2 x double>, for example.
1075
1076The function of the data layout string may not be what you expect.
1077Notably, this is not a specification from the frontend of what alignment
1078the code generator should use.
1079
1080Instead, if specified, the target data layout is required to match what
1081the ultimate *code generator* expects. This string is used by the
1082mid-level optimizers to improve code, and this only works if it matches
1083what the ultimate code generator uses. If you would like to generate IR
1084that does not embed this target-specific detail into the IR, then you
1085don't have to specify the string. This will disable some optimizations
1086that require precise layout information, but this also prevents those
1087optimizations from introducing target specificity into the IR.
1088
1089.. _pointeraliasing:
1090
1091Pointer Aliasing Rules
1092----------------------
1093
1094Any memory access must be done through a pointer value associated with
1095an address range of the memory access, otherwise the behavior is
1096undefined. Pointer values are associated with address ranges according
1097to the following rules:
1098
1099- A pointer value is associated with the addresses associated with any
1100 value it is *based* on.
1101- An address of a global variable is associated with the address range
1102 of the variable's storage.
1103- The result value of an allocation instruction is associated with the
1104 address range of the allocated storage.
1105- A null pointer in the default address-space is associated with no
1106 address.
1107- An integer constant other than zero or a pointer value returned from
1108 a function not defined within LLVM may be associated with address
1109 ranges allocated through mechanisms other than those provided by
1110 LLVM. Such ranges shall not overlap with any ranges of addresses
1111 allocated by mechanisms provided by LLVM.
1112
1113A pointer value is *based* on another pointer value according to the
1114following rules:
1115
1116- A pointer value formed from a ``getelementptr`` operation is *based*
1117 on the first operand of the ``getelementptr``.
1118- The result value of a ``bitcast`` is *based* on the operand of the
1119 ``bitcast``.
1120- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1121 values that contribute (directly or indirectly) to the computation of
1122 the pointer's value.
1123- The "*based* on" relationship is transitive.
1124
1125Note that this definition of *"based"* is intentionally similar to the
1126definition of *"based"* in C99, though it is slightly weaker.
1127
1128LLVM IR does not associate types with memory. The result type of a
1129``load`` merely indicates the size and alignment of the memory from
1130which to load, as well as the interpretation of the value. The first
1131operand type of a ``store`` similarly only indicates the size and
1132alignment of the store.
1133
1134Consequently, type-based alias analysis, aka TBAA, aka
1135``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1136:ref:`Metadata <metadata>` may be used to encode additional information
1137which specialized optimization passes may use to implement type-based
1138alias analysis.
1139
1140.. _volatile:
1141
1142Volatile Memory Accesses
1143------------------------
1144
1145Certain memory accesses, such as :ref:`load <i_load>`'s,
1146:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1147marked ``volatile``. The optimizers must not change the number of
1148volatile operations or change their order of execution relative to other
1149volatile operations. The optimizers *may* change the order of volatile
1150operations relative to non-volatile operations. This is not Java's
1151"volatile" and has no cross-thread synchronization behavior.
1152
Andrew Trick9a6dd022013-01-30 21:19:35 +00001153IR-level volatile loads and stores cannot safely be optimized into
1154llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1155flagged volatile. Likewise, the backend should never split or merge
1156target-legal volatile load/store instructions.
1157
Andrew Trick946317d2013-01-31 00:49:39 +00001158.. admonition:: Rationale
1159
1160 Platforms may rely on volatile loads and stores of natively supported
1161 data width to be executed as single instruction. For example, in C
1162 this holds for an l-value of volatile primitive type with native
1163 hardware support, but not necessarily for aggregate types. The
1164 frontend upholds these expectations, which are intentionally
1165 unspecified in the IR. The rules above ensure that IR transformation
1166 do not violate the frontend's contract with the language.
1167
Sean Silvaf722b002012-12-07 10:36:55 +00001168.. _memmodel:
1169
1170Memory Model for Concurrent Operations
1171--------------------------------------
1172
1173The LLVM IR does not define any way to start parallel threads of
1174execution or to register signal handlers. Nonetheless, there are
1175platform-specific ways to create them, and we define LLVM IR's behavior
1176in their presence. This model is inspired by the C++0x memory model.
1177
1178For a more informal introduction to this model, see the :doc:`Atomics`.
1179
1180We define a *happens-before* partial order as the least partial order
1181that
1182
1183- Is a superset of single-thread program order, and
1184- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1185 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1186 techniques, like pthread locks, thread creation, thread joining,
1187 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1188 Constraints <ordering>`).
1189
1190Note that program order does not introduce *happens-before* edges
1191between a thread and signals executing inside that thread.
1192
1193Every (defined) read operation (load instructions, memcpy, atomic
1194loads/read-modify-writes, etc.) R reads a series of bytes written by
1195(defined) write operations (store instructions, atomic
1196stores/read-modify-writes, memcpy, etc.). For the purposes of this
1197section, initialized globals are considered to have a write of the
1198initializer which is atomic and happens before any other read or write
1199of the memory in question. For each byte of a read R, R\ :sub:`byte`
1200may see any write to the same byte, except:
1201
1202- If write\ :sub:`1` happens before write\ :sub:`2`, and
1203 write\ :sub:`2` happens before R\ :sub:`byte`, then
1204 R\ :sub:`byte` does not see write\ :sub:`1`.
1205- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1206 R\ :sub:`byte` does not see write\ :sub:`3`.
1207
1208Given that definition, R\ :sub:`byte` is defined as follows:
1209
1210- If R is volatile, the result is target-dependent. (Volatile is
1211 supposed to give guarantees which can support ``sig_atomic_t`` in
1212 C/C++, and may be used for accesses to addresses which do not behave
1213 like normal memory. It does not generally provide cross-thread
1214 synchronization.)
1215- Otherwise, if there is no write to the same byte that happens before
1216 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1217- Otherwise, if R\ :sub:`byte` may see exactly one write,
1218 R\ :sub:`byte` returns the value written by that write.
1219- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1220 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1221 Memory Ordering Constraints <ordering>` section for additional
1222 constraints on how the choice is made.
1223- Otherwise R\ :sub:`byte` returns ``undef``.
1224
1225R returns the value composed of the series of bytes it read. This
1226implies that some bytes within the value may be ``undef`` **without**
1227the entire value being ``undef``. Note that this only defines the
1228semantics of the operation; it doesn't mean that targets will emit more
1229than one instruction to read the series of bytes.
1230
1231Note that in cases where none of the atomic intrinsics are used, this
1232model places only one restriction on IR transformations on top of what
1233is required for single-threaded execution: introducing a store to a byte
1234which might not otherwise be stored is not allowed in general.
1235(Specifically, in the case where another thread might write to and read
1236from an address, introducing a store can change a load that may see
1237exactly one write into a load that may see multiple writes.)
1238
1239.. _ordering:
1240
1241Atomic Memory Ordering Constraints
1242----------------------------------
1243
1244Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1245:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1246:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1247an ordering parameter that determines which other atomic instructions on
1248the same address they *synchronize with*. These semantics are borrowed
1249from Java and C++0x, but are somewhat more colloquial. If these
1250descriptions aren't precise enough, check those specs (see spec
1251references in the :doc:`atomics guide <Atomics>`).
1252:ref:`fence <i_fence>` instructions treat these orderings somewhat
1253differently since they don't take an address. See that instruction's
1254documentation for details.
1255
1256For a simpler introduction to the ordering constraints, see the
1257:doc:`Atomics`.
1258
1259``unordered``
1260 The set of values that can be read is governed by the happens-before
1261 partial order. A value cannot be read unless some operation wrote
1262 it. This is intended to provide a guarantee strong enough to model
1263 Java's non-volatile shared variables. This ordering cannot be
1264 specified for read-modify-write operations; it is not strong enough
1265 to make them atomic in any interesting way.
1266``monotonic``
1267 In addition to the guarantees of ``unordered``, there is a single
1268 total order for modifications by ``monotonic`` operations on each
1269 address. All modification orders must be compatible with the
1270 happens-before order. There is no guarantee that the modification
1271 orders can be combined to a global total order for the whole program
1272 (and this often will not be possible). The read in an atomic
1273 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1274 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1275 order immediately before the value it writes. If one atomic read
1276 happens before another atomic read of the same address, the later
1277 read must see the same value or a later value in the address's
1278 modification order. This disallows reordering of ``monotonic`` (or
1279 stronger) operations on the same address. If an address is written
1280 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1281 read that address repeatedly, the other threads must eventually see
1282 the write. This corresponds to the C++0x/C1x
1283 ``memory_order_relaxed``.
1284``acquire``
1285 In addition to the guarantees of ``monotonic``, a
1286 *synchronizes-with* edge may be formed with a ``release`` operation.
1287 This is intended to model C++'s ``memory_order_acquire``.
1288``release``
1289 In addition to the guarantees of ``monotonic``, if this operation
1290 writes a value which is subsequently read by an ``acquire``
1291 operation, it *synchronizes-with* that operation. (This isn't a
1292 complete description; see the C++0x definition of a release
1293 sequence.) This corresponds to the C++0x/C1x
1294 ``memory_order_release``.
1295``acq_rel`` (acquire+release)
1296 Acts as both an ``acquire`` and ``release`` operation on its
1297 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1298``seq_cst`` (sequentially consistent)
1299 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1300 operation which only reads, ``release`` for an operation which only
1301 writes), there is a global total order on all
1302 sequentially-consistent operations on all addresses, which is
1303 consistent with the *happens-before* partial order and with the
1304 modification orders of all the affected addresses. Each
1305 sequentially-consistent read sees the last preceding write to the
1306 same address in this global order. This corresponds to the C++0x/C1x
1307 ``memory_order_seq_cst`` and Java volatile.
1308
1309.. _singlethread:
1310
1311If an atomic operation is marked ``singlethread``, it only *synchronizes
1312with* or participates in modification and seq\_cst total orderings with
1313other operations running in the same thread (for example, in signal
1314handlers).
1315
1316.. _fastmath:
1317
1318Fast-Math Flags
1319---------------
1320
1321LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1322:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1323:ref:`frem <i_frem>`) have the following flags that can set to enable
1324otherwise unsafe floating point operations
1325
1326``nnan``
1327 No NaNs - Allow optimizations to assume the arguments and result are not
1328 NaN. Such optimizations are required to retain defined behavior over
1329 NaNs, but the value of the result is undefined.
1330
1331``ninf``
1332 No Infs - Allow optimizations to assume the arguments and result are not
1333 +/-Inf. Such optimizations are required to retain defined behavior over
1334 +/-Inf, but the value of the result is undefined.
1335
1336``nsz``
1337 No Signed Zeros - Allow optimizations to treat the sign of a zero
1338 argument or result as insignificant.
1339
1340``arcp``
1341 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1342 argument rather than perform division.
1343
1344``fast``
1345 Fast - Allow algebraically equivalent transformations that may
1346 dramatically change results in floating point (e.g. reassociate). This
1347 flag implies all the others.
1348
1349.. _typesystem:
1350
1351Type System
1352===========
1353
1354The LLVM type system is one of the most important features of the
1355intermediate representation. Being typed enables a number of
1356optimizations to be performed on the intermediate representation
1357directly, without having to do extra analyses on the side before the
1358transformation. A strong type system makes it easier to read the
1359generated code and enables novel analyses and transformations that are
1360not feasible to perform on normal three address code representations.
1361
1362Type Classifications
1363--------------------
1364
1365The types fall into a few useful classifications:
1366
1367
1368.. list-table::
1369 :header-rows: 1
1370
1371 * - Classification
1372 - Types
1373
1374 * - :ref:`integer <t_integer>`
1375 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1376 ``i64``, ...
1377
1378 * - :ref:`floating point <t_floating>`
1379 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1380 ``ppc_fp128``
1381
1382
1383 * - first class
1384
1385 .. _t_firstclass:
1386
1387 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1388 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1389 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1390 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1391
1392 * - :ref:`primitive <t_primitive>`
1393 - :ref:`label <t_label>`,
1394 :ref:`void <t_void>`,
1395 :ref:`integer <t_integer>`,
1396 :ref:`floating point <t_floating>`,
1397 :ref:`x86mmx <t_x86mmx>`,
1398 :ref:`metadata <t_metadata>`.
1399
1400 * - :ref:`derived <t_derived>`
1401 - :ref:`array <t_array>`,
1402 :ref:`function <t_function>`,
1403 :ref:`pointer <t_pointer>`,
1404 :ref:`structure <t_struct>`,
1405 :ref:`vector <t_vector>`,
1406 :ref:`opaque <t_opaque>`.
1407
1408The :ref:`first class <t_firstclass>` types are perhaps the most important.
1409Values of these types are the only ones which can be produced by
1410instructions.
1411
1412.. _t_primitive:
1413
1414Primitive Types
1415---------------
1416
1417The primitive types are the fundamental building blocks of the LLVM
1418system.
1419
1420.. _t_integer:
1421
1422Integer Type
1423^^^^^^^^^^^^
1424
1425Overview:
1426"""""""""
1427
1428The integer type is a very simple type that simply specifies an
1429arbitrary bit width for the integer type desired. Any bit width from 1
1430bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1431
1432Syntax:
1433"""""""
1434
1435::
1436
1437 iN
1438
1439The number of bits the integer will occupy is specified by the ``N``
1440value.
1441
1442Examples:
1443"""""""""
1444
1445+----------------+------------------------------------------------+
1446| ``i1`` | a single-bit integer. |
1447+----------------+------------------------------------------------+
1448| ``i32`` | a 32-bit integer. |
1449+----------------+------------------------------------------------+
1450| ``i1942652`` | a really big integer of over 1 million bits. |
1451+----------------+------------------------------------------------+
1452
1453.. _t_floating:
1454
1455Floating Point Types
1456^^^^^^^^^^^^^^^^^^^^
1457
1458.. list-table::
1459 :header-rows: 1
1460
1461 * - Type
1462 - Description
1463
1464 * - ``half``
1465 - 16-bit floating point value
1466
1467 * - ``float``
1468 - 32-bit floating point value
1469
1470 * - ``double``
1471 - 64-bit floating point value
1472
1473 * - ``fp128``
1474 - 128-bit floating point value (112-bit mantissa)
1475
1476 * - ``x86_fp80``
1477 - 80-bit floating point value (X87)
1478
1479 * - ``ppc_fp128``
1480 - 128-bit floating point value (two 64-bits)
1481
1482.. _t_x86mmx:
1483
1484X86mmx Type
1485^^^^^^^^^^^
1486
1487Overview:
1488"""""""""
1489
1490The x86mmx type represents a value held in an MMX register on an x86
1491machine. The operations allowed on it are quite limited: parameters and
1492return values, load and store, and bitcast. User-specified MMX
1493instructions are represented as intrinsic or asm calls with arguments
1494and/or results of this type. There are no arrays, vectors or constants
1495of this type.
1496
1497Syntax:
1498"""""""
1499
1500::
1501
1502 x86mmx
1503
1504.. _t_void:
1505
1506Void Type
1507^^^^^^^^^
1508
1509Overview:
1510"""""""""
1511
1512The void type does not represent any value and has no size.
1513
1514Syntax:
1515"""""""
1516
1517::
1518
1519 void
1520
1521.. _t_label:
1522
1523Label Type
1524^^^^^^^^^^
1525
1526Overview:
1527"""""""""
1528
1529The label type represents code labels.
1530
1531Syntax:
1532"""""""
1533
1534::
1535
1536 label
1537
1538.. _t_metadata:
1539
1540Metadata Type
1541^^^^^^^^^^^^^
1542
1543Overview:
1544"""""""""
1545
1546The metadata type represents embedded metadata. No derived types may be
1547created from metadata except for :ref:`function <t_function>` arguments.
1548
1549Syntax:
1550"""""""
1551
1552::
1553
1554 metadata
1555
1556.. _t_derived:
1557
1558Derived Types
1559-------------
1560
1561The real power in LLVM comes from the derived types in the system. This
1562is what allows a programmer to represent arrays, functions, pointers,
1563and other useful types. Each of these types contain one or more element
1564types which may be a primitive type, or another derived type. For
1565example, it is possible to have a two dimensional array, using an array
1566as the element type of another array.
1567
1568.. _t_aggregate:
1569
1570Aggregate Types
1571^^^^^^^^^^^^^^^
1572
1573Aggregate Types are a subset of derived types that can contain multiple
1574member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1575aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1576aggregate types.
1577
1578.. _t_array:
1579
1580Array Type
1581^^^^^^^^^^
1582
1583Overview:
1584"""""""""
1585
1586The array type is a very simple derived type that arranges elements
1587sequentially in memory. The array type requires a size (number of
1588elements) and an underlying data type.
1589
1590Syntax:
1591"""""""
1592
1593::
1594
1595 [<# elements> x <elementtype>]
1596
1597The number of elements is a constant integer value; ``elementtype`` may
1598be any type with a size.
1599
1600Examples:
1601"""""""""
1602
1603+------------------+--------------------------------------+
1604| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1605+------------------+--------------------------------------+
1606| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1607+------------------+--------------------------------------+
1608| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1609+------------------+--------------------------------------+
1610
1611Here are some examples of multidimensional arrays:
1612
1613+-----------------------------+----------------------------------------------------------+
1614| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1615+-----------------------------+----------------------------------------------------------+
1616| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1617+-----------------------------+----------------------------------------------------------+
1618| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1619+-----------------------------+----------------------------------------------------------+
1620
1621There is no restriction on indexing beyond the end of the array implied
1622by a static type (though there are restrictions on indexing beyond the
1623bounds of an allocated object in some cases). This means that
1624single-dimension 'variable sized array' addressing can be implemented in
1625LLVM with a zero length array type. An implementation of 'pascal style
1626arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1627example.
1628
1629.. _t_function:
1630
1631Function Type
1632^^^^^^^^^^^^^
1633
1634Overview:
1635"""""""""
1636
1637The function type can be thought of as a function signature. It consists
1638of a return type and a list of formal parameter types. The return type
1639of a function type is a first class type or a void type.
1640
1641Syntax:
1642"""""""
1643
1644::
1645
1646 <returntype> (<parameter list>)
1647
1648...where '``<parameter list>``' is a comma-separated list of type
1649specifiers. Optionally, the parameter list may include a type ``...``,
1650which indicates that the function takes a variable number of arguments.
1651Variable argument functions can access their arguments with the
1652:ref:`variable argument handling intrinsic <int_varargs>` functions.
1653'``<returntype>``' is any type except :ref:`label <t_label>`.
1654
1655Examples:
1656"""""""""
1657
1658+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1659| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001661| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667
1668.. _t_struct:
1669
1670Structure Type
1671^^^^^^^^^^^^^^
1672
1673Overview:
1674"""""""""
1675
1676The structure type is used to represent a collection of data members
1677together in memory. The elements of a structure may be any type that has
1678a size.
1679
1680Structures in memory are accessed using '``load``' and '``store``' by
1681getting a pointer to a field with the '``getelementptr``' instruction.
1682Structures in registers are accessed using the '``extractvalue``' and
1683'``insertvalue``' instructions.
1684
1685Structures may optionally be "packed" structures, which indicate that
1686the alignment of the struct is one byte, and that there is no padding
1687between the elements. In non-packed structs, padding between field types
1688is inserted as defined by the DataLayout string in the module, which is
1689required to match what the underlying code generator expects.
1690
1691Structures can either be "literal" or "identified". A literal structure
1692is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1693identified types are always defined at the top level with a name.
1694Literal types are uniqued by their contents and can never be recursive
1695or opaque since there is no way to write one. Identified types can be
1696recursive, can be opaqued, and are never uniqued.
1697
1698Syntax:
1699"""""""
1700
1701::
1702
1703 %T1 = type { <type list> } ; Identified normal struct type
1704 %T2 = type <{ <type list> }> ; Identified packed struct type
1705
1706Examples:
1707"""""""""
1708
1709+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1711+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001712| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001713+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1715+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1716
1717.. _t_opaque:
1718
1719Opaque Structure Types
1720^^^^^^^^^^^^^^^^^^^^^^
1721
1722Overview:
1723"""""""""
1724
1725Opaque structure types are used to represent named structure types that
1726do not have a body specified. This corresponds (for example) to the C
1727notion of a forward declared structure.
1728
1729Syntax:
1730"""""""
1731
1732::
1733
1734 %X = type opaque
1735 %52 = type opaque
1736
1737Examples:
1738"""""""""
1739
1740+--------------+-------------------+
1741| ``opaque`` | An opaque type. |
1742+--------------+-------------------+
1743
1744.. _t_pointer:
1745
1746Pointer Type
1747^^^^^^^^^^^^
1748
1749Overview:
1750"""""""""
1751
1752The pointer type is used to specify memory locations. Pointers are
1753commonly used to reference objects in memory.
1754
1755Pointer types may have an optional address space attribute defining the
1756numbered address space where the pointed-to object resides. The default
1757address space is number zero. The semantics of non-zero address spaces
1758are target-specific.
1759
1760Note that LLVM does not permit pointers to void (``void*``) nor does it
1761permit pointers to labels (``label*``). Use ``i8*`` instead.
1762
1763Syntax:
1764"""""""
1765
1766::
1767
1768 <type> *
1769
1770Examples:
1771"""""""""
1772
1773+-------------------------+--------------------------------------------------------------------------------------------------------------+
1774| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1775+-------------------------+--------------------------------------------------------------------------------------------------------------+
1776| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1777+-------------------------+--------------------------------------------------------------------------------------------------------------+
1778| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1779+-------------------------+--------------------------------------------------------------------------------------------------------------+
1780
1781.. _t_vector:
1782
1783Vector Type
1784^^^^^^^^^^^
1785
1786Overview:
1787"""""""""
1788
1789A vector type is a simple derived type that represents a vector of
1790elements. Vector types are used when multiple primitive data are
1791operated in parallel using a single instruction (SIMD). A vector type
1792requires a size (number of elements) and an underlying primitive data
1793type. Vector types are considered :ref:`first class <t_firstclass>`.
1794
1795Syntax:
1796"""""""
1797
1798::
1799
1800 < <# elements> x <elementtype> >
1801
1802The number of elements is a constant integer value larger than 0;
1803elementtype may be any integer or floating point type, or a pointer to
1804these types. Vectors of size zero are not allowed.
1805
1806Examples:
1807"""""""""
1808
1809+-------------------+--------------------------------------------------+
1810| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1811+-------------------+--------------------------------------------------+
1812| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1813+-------------------+--------------------------------------------------+
1814| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1815+-------------------+--------------------------------------------------+
1816| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1817+-------------------+--------------------------------------------------+
1818
1819Constants
1820=========
1821
1822LLVM has several different basic types of constants. This section
1823describes them all and their syntax.
1824
1825Simple Constants
1826----------------
1827
1828**Boolean constants**
1829 The two strings '``true``' and '``false``' are both valid constants
1830 of the ``i1`` type.
1831**Integer constants**
1832 Standard integers (such as '4') are constants of the
1833 :ref:`integer <t_integer>` type. Negative numbers may be used with
1834 integer types.
1835**Floating point constants**
1836 Floating point constants use standard decimal notation (e.g.
1837 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1838 hexadecimal notation (see below). The assembler requires the exact
1839 decimal value of a floating-point constant. For example, the
1840 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1841 decimal in binary. Floating point constants must have a :ref:`floating
1842 point <t_floating>` type.
1843**Null pointer constants**
1844 The identifier '``null``' is recognized as a null pointer constant
1845 and must be of :ref:`pointer type <t_pointer>`.
1846
1847The one non-intuitive notation for constants is the hexadecimal form of
1848floating point constants. For example, the form
1849'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1850than) '``double 4.5e+15``'. The only time hexadecimal floating point
1851constants are required (and the only time that they are generated by the
1852disassembler) is when a floating point constant must be emitted but it
1853cannot be represented as a decimal floating point number in a reasonable
1854number of digits. For example, NaN's, infinities, and other special
1855values are represented in their IEEE hexadecimal format so that assembly
1856and disassembly do not cause any bits to change in the constants.
1857
1858When using the hexadecimal form, constants of types half, float, and
1859double are represented using the 16-digit form shown above (which
1860matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001861must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001862precision, respectively. Hexadecimal format is always used for long
1863double, and there are three forms of long double. The 80-bit format used
1864by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1865128-bit format used by PowerPC (two adjacent doubles) is represented by
1866``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001867represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1868will only work if they match the long double format on your target.
1869The IEEE 16-bit format (half precision) is represented by ``0xH``
1870followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1871(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001872
1873There are no constants of type x86mmx.
1874
1875Complex Constants
1876-----------------
1877
1878Complex constants are a (potentially recursive) combination of simple
1879constants and smaller complex constants.
1880
1881**Structure constants**
1882 Structure constants are represented with notation similar to
1883 structure type definitions (a comma separated list of elements,
1884 surrounded by braces (``{}``)). For example:
1885 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1886 "``@G = external global i32``". Structure constants must have
1887 :ref:`structure type <t_struct>`, and the number and types of elements
1888 must match those specified by the type.
1889**Array constants**
1890 Array constants are represented with notation similar to array type
1891 definitions (a comma separated list of elements, surrounded by
1892 square brackets (``[]``)). For example:
1893 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1894 :ref:`array type <t_array>`, and the number and types of elements must
1895 match those specified by the type.
1896**Vector constants**
1897 Vector constants are represented with notation similar to vector
1898 type definitions (a comma separated list of elements, surrounded by
1899 less-than/greater-than's (``<>``)). For example:
1900 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1901 must have :ref:`vector type <t_vector>`, and the number and types of
1902 elements must match those specified by the type.
1903**Zero initialization**
1904 The string '``zeroinitializer``' can be used to zero initialize a
1905 value to zero of *any* type, including scalar and
1906 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1907 having to print large zero initializers (e.g. for large arrays) and
1908 is always exactly equivalent to using explicit zero initializers.
1909**Metadata node**
1910 A metadata node is a structure-like constant with :ref:`metadata
1911 type <t_metadata>`. For example:
1912 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1913 constants that are meant to be interpreted as part of the
1914 instruction stream, metadata is a place to attach additional
1915 information such as debug info.
1916
1917Global Variable and Function Addresses
1918--------------------------------------
1919
1920The addresses of :ref:`global variables <globalvars>` and
1921:ref:`functions <functionstructure>` are always implicitly valid
1922(link-time) constants. These constants are explicitly referenced when
1923the :ref:`identifier for the global <identifiers>` is used and always have
1924:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1925file:
1926
1927.. code-block:: llvm
1928
1929 @X = global i32 17
1930 @Y = global i32 42
1931 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1932
1933.. _undefvalues:
1934
1935Undefined Values
1936----------------
1937
1938The string '``undef``' can be used anywhere a constant is expected, and
1939indicates that the user of the value may receive an unspecified
1940bit-pattern. Undefined values may be of any type (other than '``label``'
1941or '``void``') and be used anywhere a constant is permitted.
1942
1943Undefined values are useful because they indicate to the compiler that
1944the program is well defined no matter what value is used. This gives the
1945compiler more freedom to optimize. Here are some examples of
1946(potentially surprising) transformations that are valid (in pseudo IR):
1947
1948.. code-block:: llvm
1949
1950 %A = add %X, undef
1951 %B = sub %X, undef
1952 %C = xor %X, undef
1953 Safe:
1954 %A = undef
1955 %B = undef
1956 %C = undef
1957
1958This is safe because all of the output bits are affected by the undef
1959bits. Any output bit can have a zero or one depending on the input bits.
1960
1961.. code-block:: llvm
1962
1963 %A = or %X, undef
1964 %B = and %X, undef
1965 Safe:
1966 %A = -1
1967 %B = 0
1968 Unsafe:
1969 %A = undef
1970 %B = undef
1971
1972These logical operations have bits that are not always affected by the
1973input. For example, if ``%X`` has a zero bit, then the output of the
1974'``and``' operation will always be a zero for that bit, no matter what
1975the corresponding bit from the '``undef``' is. As such, it is unsafe to
1976optimize or assume that the result of the '``and``' is '``undef``'.
1977However, it is safe to assume that all bits of the '``undef``' could be
19780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1979all the bits of the '``undef``' operand to the '``or``' could be set,
1980allowing the '``or``' to be folded to -1.
1981
1982.. code-block:: llvm
1983
1984 %A = select undef, %X, %Y
1985 %B = select undef, 42, %Y
1986 %C = select %X, %Y, undef
1987 Safe:
1988 %A = %X (or %Y)
1989 %B = 42 (or %Y)
1990 %C = %Y
1991 Unsafe:
1992 %A = undef
1993 %B = undef
1994 %C = undef
1995
1996This set of examples shows that undefined '``select``' (and conditional
1997branch) conditions can go *either way*, but they have to come from one
1998of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1999both known to have a clear low bit, then ``%A`` would have to have a
2000cleared low bit. However, in the ``%C`` example, the optimizer is
2001allowed to assume that the '``undef``' operand could be the same as
2002``%Y``, allowing the whole '``select``' to be eliminated.
2003
2004.. code-block:: llvm
2005
2006 %A = xor undef, undef
2007
2008 %B = undef
2009 %C = xor %B, %B
2010
2011 %D = undef
2012 %E = icmp lt %D, 4
2013 %F = icmp gte %D, 4
2014
2015 Safe:
2016 %A = undef
2017 %B = undef
2018 %C = undef
2019 %D = undef
2020 %E = undef
2021 %F = undef
2022
2023This example points out that two '``undef``' operands are not
2024necessarily the same. This can be surprising to people (and also matches
2025C semantics) where they assume that "``X^X``" is always zero, even if
2026``X`` is undefined. This isn't true for a number of reasons, but the
2027short answer is that an '``undef``' "variable" can arbitrarily change
2028its value over its "live range". This is true because the variable
2029doesn't actually *have a live range*. Instead, the value is logically
2030read from arbitrary registers that happen to be around when needed, so
2031the value is not necessarily consistent over time. In fact, ``%A`` and
2032``%C`` need to have the same semantics or the core LLVM "replace all
2033uses with" concept would not hold.
2034
2035.. code-block:: llvm
2036
2037 %A = fdiv undef, %X
2038 %B = fdiv %X, undef
2039 Safe:
2040 %A = undef
2041 b: unreachable
2042
2043These examples show the crucial difference between an *undefined value*
2044and *undefined behavior*. An undefined value (like '``undef``') is
2045allowed to have an arbitrary bit-pattern. This means that the ``%A``
2046operation can be constant folded to '``undef``', because the '``undef``'
2047could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2048However, in the second example, we can make a more aggressive
2049assumption: because the ``undef`` is allowed to be an arbitrary value,
2050we are allowed to assume that it could be zero. Since a divide by zero
2051has *undefined behavior*, we are allowed to assume that the operation
2052does not execute at all. This allows us to delete the divide and all
2053code after it. Because the undefined operation "can't happen", the
2054optimizer can assume that it occurs in dead code.
2055
2056.. code-block:: llvm
2057
2058 a: store undef -> %X
2059 b: store %X -> undef
2060 Safe:
2061 a: <deleted>
2062 b: unreachable
2063
2064These examples reiterate the ``fdiv`` example: a store *of* an undefined
2065value can be assumed to not have any effect; we can assume that the
2066value is overwritten with bits that happen to match what was already
2067there. However, a store *to* an undefined location could clobber
2068arbitrary memory, therefore, it has undefined behavior.
2069
2070.. _poisonvalues:
2071
2072Poison Values
2073-------------
2074
2075Poison values are similar to :ref:`undef values <undefvalues>`, however
2076they also represent the fact that an instruction or constant expression
2077which cannot evoke side effects has nevertheless detected a condition
2078which results in undefined behavior.
2079
2080There is currently no way of representing a poison value in the IR; they
2081only exist when produced by operations such as :ref:`add <i_add>` with
2082the ``nsw`` flag.
2083
2084Poison value behavior is defined in terms of value *dependence*:
2085
2086- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2087- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2088 their dynamic predecessor basic block.
2089- Function arguments depend on the corresponding actual argument values
2090 in the dynamic callers of their functions.
2091- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2092 instructions that dynamically transfer control back to them.
2093- :ref:`Invoke <i_invoke>` instructions depend on the
2094 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2095 call instructions that dynamically transfer control back to them.
2096- Non-volatile loads and stores depend on the most recent stores to all
2097 of the referenced memory addresses, following the order in the IR
2098 (including loads and stores implied by intrinsics such as
2099 :ref:`@llvm.memcpy <int_memcpy>`.)
2100- An instruction with externally visible side effects depends on the
2101 most recent preceding instruction with externally visible side
2102 effects, following the order in the IR. (This includes :ref:`volatile
2103 operations <volatile>`.)
2104- An instruction *control-depends* on a :ref:`terminator
2105 instruction <terminators>` if the terminator instruction has
2106 multiple successors and the instruction is always executed when
2107 control transfers to one of the successors, and may not be executed
2108 when control is transferred to another.
2109- Additionally, an instruction also *control-depends* on a terminator
2110 instruction if the set of instructions it otherwise depends on would
2111 be different if the terminator had transferred control to a different
2112 successor.
2113- Dependence is transitive.
2114
2115Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2116with the additional affect that any instruction which has a *dependence*
2117on a poison value has undefined behavior.
2118
2119Here are some examples:
2120
2121.. code-block:: llvm
2122
2123 entry:
2124 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2125 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2126 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2127 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2128
2129 store i32 %poison, i32* @g ; Poison value stored to memory.
2130 %poison2 = load i32* @g ; Poison value loaded back from memory.
2131
2132 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2133
2134 %narrowaddr = bitcast i32* @g to i16*
2135 %wideaddr = bitcast i32* @g to i64*
2136 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2137 %poison4 = load i64* %wideaddr ; Returns a poison value.
2138
2139 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2140 br i1 %cmp, label %true, label %end ; Branch to either destination.
2141
2142 true:
2143 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2144 ; it has undefined behavior.
2145 br label %end
2146
2147 end:
2148 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2149 ; Both edges into this PHI are
2150 ; control-dependent on %cmp, so this
2151 ; always results in a poison value.
2152
2153 store volatile i32 0, i32* @g ; This would depend on the store in %true
2154 ; if %cmp is true, or the store in %entry
2155 ; otherwise, so this is undefined behavior.
2156
2157 br i1 %cmp, label %second_true, label %second_end
2158 ; The same branch again, but this time the
2159 ; true block doesn't have side effects.
2160
2161 second_true:
2162 ; No side effects!
2163 ret void
2164
2165 second_end:
2166 store volatile i32 0, i32* @g ; This time, the instruction always depends
2167 ; on the store in %end. Also, it is
2168 ; control-equivalent to %end, so this is
2169 ; well-defined (ignoring earlier undefined
2170 ; behavior in this example).
2171
2172.. _blockaddress:
2173
2174Addresses of Basic Blocks
2175-------------------------
2176
2177``blockaddress(@function, %block)``
2178
2179The '``blockaddress``' constant computes the address of the specified
2180basic block in the specified function, and always has an ``i8*`` type.
2181Taking the address of the entry block is illegal.
2182
2183This value only has defined behavior when used as an operand to the
2184':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2185against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002186undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002187no label is equal to the null pointer. This may be passed around as an
2188opaque pointer sized value as long as the bits are not inspected. This
2189allows ``ptrtoint`` and arithmetic to be performed on these values so
2190long as the original value is reconstituted before the ``indirectbr``
2191instruction.
2192
2193Finally, some targets may provide defined semantics when using the value
2194as the operand to an inline assembly, but that is target specific.
2195
2196Constant Expressions
2197--------------------
2198
2199Constant expressions are used to allow expressions involving other
2200constants to be used as constants. Constant expressions may be of any
2201:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2202that does not have side effects (e.g. load and call are not supported).
2203The following is the syntax for constant expressions:
2204
2205``trunc (CST to TYPE)``
2206 Truncate a constant to another type. The bit size of CST must be
2207 larger than the bit size of TYPE. Both types must be integers.
2208``zext (CST to TYPE)``
2209 Zero extend a constant to another type. The bit size of CST must be
2210 smaller than the bit size of TYPE. Both types must be integers.
2211``sext (CST to TYPE)``
2212 Sign extend a constant to another type. The bit size of CST must be
2213 smaller than the bit size of TYPE. Both types must be integers.
2214``fptrunc (CST to TYPE)``
2215 Truncate a floating point constant to another floating point type.
2216 The size of CST must be larger than the size of TYPE. Both types
2217 must be floating point.
2218``fpext (CST to TYPE)``
2219 Floating point extend a constant to another type. The size of CST
2220 must be smaller or equal to the size of TYPE. Both types must be
2221 floating point.
2222``fptoui (CST to TYPE)``
2223 Convert a floating point constant to the corresponding unsigned
2224 integer constant. TYPE must be a scalar or vector integer type. CST
2225 must be of scalar or vector floating point type. Both CST and TYPE
2226 must be scalars, or vectors of the same number of elements. If the
2227 value won't fit in the integer type, the results are undefined.
2228``fptosi (CST to TYPE)``
2229 Convert a floating point constant to the corresponding signed
2230 integer constant. TYPE must be a scalar or vector integer type. CST
2231 must be of scalar or vector floating point type. Both CST and TYPE
2232 must be scalars, or vectors of the same number of elements. If the
2233 value won't fit in the integer type, the results are undefined.
2234``uitofp (CST to TYPE)``
2235 Convert an unsigned integer constant to the corresponding floating
2236 point constant. TYPE must be a scalar or vector floating point type.
2237 CST must be of scalar or vector integer type. Both CST and TYPE must
2238 be scalars, or vectors of the same number of elements. If the value
2239 won't fit in the floating point type, the results are undefined.
2240``sitofp (CST to TYPE)``
2241 Convert a signed integer constant to the corresponding floating
2242 point constant. TYPE must be a scalar or vector floating point type.
2243 CST must be of scalar or vector integer type. Both CST and TYPE must
2244 be scalars, or vectors of the same number of elements. If the value
2245 won't fit in the floating point type, the results are undefined.
2246``ptrtoint (CST to TYPE)``
2247 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002248 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002249 pointer type. The ``CST`` value is zero extended, truncated, or
2250 unchanged to make it fit in ``TYPE``.
2251``inttoptr (CST to TYPE)``
2252 Convert an integer constant to a pointer constant. TYPE must be a
2253 pointer type. CST must be of integer type. The CST value is zero
2254 extended, truncated, or unchanged to make it fit in a pointer size.
2255 This one is *really* dangerous!
2256``bitcast (CST to TYPE)``
2257 Convert a constant, CST, to another TYPE. The constraints of the
2258 operands are the same as those for the :ref:`bitcast
2259 instruction <i_bitcast>`.
2260``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2261 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2262 constants. As with the :ref:`getelementptr <i_getelementptr>`
2263 instruction, the index list may have zero or more indexes, which are
2264 required to make sense for the type of "CSTPTR".
2265``select (COND, VAL1, VAL2)``
2266 Perform the :ref:`select operation <i_select>` on constants.
2267``icmp COND (VAL1, VAL2)``
2268 Performs the :ref:`icmp operation <i_icmp>` on constants.
2269``fcmp COND (VAL1, VAL2)``
2270 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2271``extractelement (VAL, IDX)``
2272 Perform the :ref:`extractelement operation <i_extractelement>` on
2273 constants.
2274``insertelement (VAL, ELT, IDX)``
2275 Perform the :ref:`insertelement operation <i_insertelement>` on
2276 constants.
2277``shufflevector (VEC1, VEC2, IDXMASK)``
2278 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2279 constants.
2280``extractvalue (VAL, IDX0, IDX1, ...)``
2281 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2282 constants. The index list is interpreted in a similar manner as
2283 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2284 least one index value must be specified.
2285``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2286 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2287 The index list is interpreted in a similar manner as indices in a
2288 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2289 value must be specified.
2290``OPCODE (LHS, RHS)``
2291 Perform the specified operation of the LHS and RHS constants. OPCODE
2292 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2293 binary <bitwiseops>` operations. The constraints on operands are
2294 the same as those for the corresponding instruction (e.g. no bitwise
2295 operations on floating point values are allowed).
2296
2297Other Values
2298============
2299
2300Inline Assembler Expressions
2301----------------------------
2302
2303LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2304Inline Assembly <moduleasm>`) through the use of a special value. This
2305value represents the inline assembler as a string (containing the
2306instructions to emit), a list of operand constraints (stored as a
2307string), a flag that indicates whether or not the inline asm expression
2308has side effects, and a flag indicating whether the function containing
2309the asm needs to align its stack conservatively. An example inline
2310assembler expression is:
2311
2312.. code-block:: llvm
2313
2314 i32 (i32) asm "bswap $0", "=r,r"
2315
2316Inline assembler expressions may **only** be used as the callee operand
2317of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2318Thus, typically we have:
2319
2320.. code-block:: llvm
2321
2322 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2323
2324Inline asms with side effects not visible in the constraint list must be
2325marked as having side effects. This is done through the use of the
2326'``sideeffect``' keyword, like so:
2327
2328.. code-block:: llvm
2329
2330 call void asm sideeffect "eieio", ""()
2331
2332In some cases inline asms will contain code that will not work unless
2333the stack is aligned in some way, such as calls or SSE instructions on
2334x86, yet will not contain code that does that alignment within the asm.
2335The compiler should make conservative assumptions about what the asm
2336might contain and should generate its usual stack alignment code in the
2337prologue if the '``alignstack``' keyword is present:
2338
2339.. code-block:: llvm
2340
2341 call void asm alignstack "eieio", ""()
2342
2343Inline asms also support using non-standard assembly dialects. The
2344assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2345the inline asm is using the Intel dialect. Currently, ATT and Intel are
2346the only supported dialects. An example is:
2347
2348.. code-block:: llvm
2349
2350 call void asm inteldialect "eieio", ""()
2351
2352If multiple keywords appear the '``sideeffect``' keyword must come
2353first, the '``alignstack``' keyword second and the '``inteldialect``'
2354keyword last.
2355
2356Inline Asm Metadata
2357^^^^^^^^^^^^^^^^^^^
2358
2359The call instructions that wrap inline asm nodes may have a
2360"``!srcloc``" MDNode attached to it that contains a list of constant
2361integers. If present, the code generator will use the integer as the
2362location cookie value when report errors through the ``LLVMContext``
2363error reporting mechanisms. This allows a front-end to correlate backend
2364errors that occur with inline asm back to the source code that produced
2365it. For example:
2366
2367.. code-block:: llvm
2368
2369 call void asm sideeffect "something bad", ""(), !srcloc !42
2370 ...
2371 !42 = !{ i32 1234567 }
2372
2373It is up to the front-end to make sense of the magic numbers it places
2374in the IR. If the MDNode contains multiple constants, the code generator
2375will use the one that corresponds to the line of the asm that the error
2376occurs on.
2377
2378.. _metadata:
2379
2380Metadata Nodes and Metadata Strings
2381-----------------------------------
2382
2383LLVM IR allows metadata to be attached to instructions in the program
2384that can convey extra information about the code to the optimizers and
2385code generator. One example application of metadata is source-level
2386debug information. There are two metadata primitives: strings and nodes.
2387All metadata has the ``metadata`` type and is identified in syntax by a
2388preceding exclamation point ('``!``').
2389
2390A metadata string is a string surrounded by double quotes. It can
2391contain any character by escaping non-printable characters with
2392"``\xx``" where "``xx``" is the two digit hex code. For example:
2393"``!"test\00"``".
2394
2395Metadata nodes are represented with notation similar to structure
2396constants (a comma separated list of elements, surrounded by braces and
2397preceded by an exclamation point). Metadata nodes can have any values as
2398their operand. For example:
2399
2400.. code-block:: llvm
2401
2402 !{ metadata !"test\00", i32 10}
2403
2404A :ref:`named metadata <namedmetadatastructure>` is a collection of
2405metadata nodes, which can be looked up in the module symbol table. For
2406example:
2407
2408.. code-block:: llvm
2409
2410 !foo = metadata !{!4, !3}
2411
2412Metadata can be used as function arguments. Here ``llvm.dbg.value``
2413function is using two metadata arguments:
2414
2415.. code-block:: llvm
2416
2417 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2418
2419Metadata can be attached with an instruction. Here metadata ``!21`` is
2420attached to the ``add`` instruction using the ``!dbg`` identifier:
2421
2422.. code-block:: llvm
2423
2424 %indvar.next = add i64 %indvar, 1, !dbg !21
2425
2426More information about specific metadata nodes recognized by the
2427optimizers and code generator is found below.
2428
2429'``tbaa``' Metadata
2430^^^^^^^^^^^^^^^^^^^
2431
2432In LLVM IR, memory does not have types, so LLVM's own type system is not
2433suitable for doing TBAA. Instead, metadata is added to the IR to
2434describe a type system of a higher level language. This can be used to
2435implement typical C/C++ TBAA, but it can also be used to implement
2436custom alias analysis behavior for other languages.
2437
2438The current metadata format is very simple. TBAA metadata nodes have up
2439to three fields, e.g.:
2440
2441.. code-block:: llvm
2442
2443 !0 = metadata !{ metadata !"an example type tree" }
2444 !1 = metadata !{ metadata !"int", metadata !0 }
2445 !2 = metadata !{ metadata !"float", metadata !0 }
2446 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2447
2448The first field is an identity field. It can be any value, usually a
2449metadata string, which uniquely identifies the type. The most important
2450name in the tree is the name of the root node. Two trees with different
2451root node names are entirely disjoint, even if they have leaves with
2452common names.
2453
2454The second field identifies the type's parent node in the tree, or is
2455null or omitted for a root node. A type is considered to alias all of
2456its descendants and all of its ancestors in the tree. Also, a type is
2457considered to alias all types in other trees, so that bitcode produced
2458from multiple front-ends is handled conservatively.
2459
2460If the third field is present, it's an integer which if equal to 1
2461indicates that the type is "constant" (meaning
2462``pointsToConstantMemory`` should return true; see `other useful
2463AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2464
2465'``tbaa.struct``' Metadata
2466^^^^^^^^^^^^^^^^^^^^^^^^^^
2467
2468The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2469aggregate assignment operations in C and similar languages, however it
2470is defined to copy a contiguous region of memory, which is more than
2471strictly necessary for aggregate types which contain holes due to
2472padding. Also, it doesn't contain any TBAA information about the fields
2473of the aggregate.
2474
2475``!tbaa.struct`` metadata can describe which memory subregions in a
2476memcpy are padding and what the TBAA tags of the struct are.
2477
2478The current metadata format is very simple. ``!tbaa.struct`` metadata
2479nodes are a list of operands which are in conceptual groups of three.
2480For each group of three, the first operand gives the byte offset of a
2481field in bytes, the second gives its size in bytes, and the third gives
2482its tbaa tag. e.g.:
2483
2484.. code-block:: llvm
2485
2486 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2487
2488This describes a struct with two fields. The first is at offset 0 bytes
2489with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2490and has size 4 bytes and has tbaa tag !2.
2491
2492Note that the fields need not be contiguous. In this example, there is a
24934 byte gap between the two fields. This gap represents padding which
2494does not carry useful data and need not be preserved.
2495
2496'``fpmath``' Metadata
2497^^^^^^^^^^^^^^^^^^^^^
2498
2499``fpmath`` metadata may be attached to any instruction of floating point
2500type. It can be used to express the maximum acceptable error in the
2501result of that instruction, in ULPs, thus potentially allowing the
2502compiler to use a more efficient but less accurate method of computing
2503it. ULP is defined as follows:
2504
2505 If ``x`` is a real number that lies between two finite consecutive
2506 floating-point numbers ``a`` and ``b``, without being equal to one
2507 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2508 distance between the two non-equal finite floating-point numbers
2509 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2510
2511The metadata node shall consist of a single positive floating point
2512number representing the maximum relative error, for example:
2513
2514.. code-block:: llvm
2515
2516 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2517
2518'``range``' Metadata
2519^^^^^^^^^^^^^^^^^^^^
2520
2521``range`` metadata may be attached only to loads of integer types. It
2522expresses the possible ranges the loaded value is in. The ranges are
2523represented with a flattened list of integers. The loaded value is known
2524to be in the union of the ranges defined by each consecutive pair. Each
2525pair has the following properties:
2526
2527- The type must match the type loaded by the instruction.
2528- The pair ``a,b`` represents the range ``[a,b)``.
2529- Both ``a`` and ``b`` are constants.
2530- The range is allowed to wrap.
2531- The range should not represent the full or empty set. That is,
2532 ``a!=b``.
2533
2534In addition, the pairs must be in signed order of the lower bound and
2535they must be non-contiguous.
2536
2537Examples:
2538
2539.. code-block:: llvm
2540
2541 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2542 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2543 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2544 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2545 ...
2546 !0 = metadata !{ i8 0, i8 2 }
2547 !1 = metadata !{ i8 255, i8 2 }
2548 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2549 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2550
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002551'``llvm.loop``'
2552^^^^^^^^^^^^^^^
2553
2554It is sometimes useful to attach information to loop constructs. Currently,
2555loop metadata is implemented as metadata attached to the branch instruction
2556in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002557guaranteed to be separate for each loop. The loop identifier metadata is
2558specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002559
2560The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002561itself to avoid merging it with any other identifier metadata, e.g.,
2562during module linkage or function inlining. That is, each loop should refer
2563to their own identification metadata even if they reside in separate functions.
2564The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002565constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002566
2567.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002568
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002569 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002570 !1 = metadata !{ metadata !1 }
2571
Paul Redmondee21b6f2013-05-28 20:00:34 +00002572The loop identifier metadata can be used to specify additional per-loop
2573metadata. Any operands after the first operand can be treated as user-defined
2574metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2575by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002576
Paul Redmondee21b6f2013-05-28 20:00:34 +00002577.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002578
Paul Redmondee21b6f2013-05-28 20:00:34 +00002579 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2580 ...
2581 !0 = metadata !{ metadata !0, metadata !1 }
2582 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002583
2584'``llvm.mem``'
2585^^^^^^^^^^^^^^^
2586
2587Metadata types used to annotate memory accesses with information helpful
2588for optimizations are prefixed with ``llvm.mem``.
2589
2590'``llvm.mem.parallel_loop_access``' Metadata
2591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2592
2593For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002594the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002595also all of the memory accessing instructions in the loop body need to be
2596marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2597is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002598the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002599converted to sequential loops due to optimization passes that are unaware of
2600the parallel semantics and that insert new memory instructions to the loop
2601body.
2602
2603Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002604both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002605metadata types that refer to the same loop identifier metadata.
2606
2607.. code-block:: llvm
2608
2609 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002610 ...
2611 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2612 ...
2613 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2614 ...
2615 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002616
2617 for.end:
2618 ...
2619 !0 = metadata !{ metadata !0 }
2620
2621It is also possible to have nested parallel loops. In that case the
2622memory accesses refer to a list of loop identifier metadata nodes instead of
2623the loop identifier metadata node directly:
2624
2625.. code-block:: llvm
2626
2627 outer.for.body:
2628 ...
2629
2630 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002631 ...
2632 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2633 ...
2634 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2635 ...
2636 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002637
2638 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002639 ...
2640 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2641 ...
2642 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2643 ...
2644 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002645
2646 outer.for.end: ; preds = %for.body
2647 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002648 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2649 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2650 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002651
Paul Redmondee21b6f2013-05-28 20:00:34 +00002652'``llvm.vectorizer``'
2653^^^^^^^^^^^^^^^^^^^^^
2654
2655Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2656vectorization parameters such as vectorization factor and unroll factor.
2657
2658``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2659loop identification metadata.
2660
2661'``llvm.vectorizer.unroll``' Metadata
2662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2663
2664This metadata instructs the loop vectorizer to unroll the specified
2665loop exactly ``N`` times.
2666
2667The first operand is the string ``llvm.vectorizer.unroll`` and the second
2668operand is an integer specifying the unroll factor. For example:
2669
2670.. code-block:: llvm
2671
2672 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2673
2674Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2675loop.
2676
2677If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2678determined automatically.
2679
2680'``llvm.vectorizer.width``' Metadata
2681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2682
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002683This metadata sets the target width of the vectorizer to ``N``. Without
2684this metadata, the vectorizer will choose a width automatically.
2685Regardless of this metadata, the vectorizer will only vectorize loops if
2686it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002687
2688The first operand is the string ``llvm.vectorizer.width`` and the second
2689operand is an integer specifying the width. For example:
2690
2691.. code-block:: llvm
2692
2693 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2694
2695Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2696loop.
2697
2698If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2699automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002700
Sean Silvaf722b002012-12-07 10:36:55 +00002701Module Flags Metadata
2702=====================
2703
2704Information about the module as a whole is difficult to convey to LLVM's
2705subsystems. The LLVM IR isn't sufficient to transmit this information.
2706The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002707this. These flags are in the form of key / value pairs --- much like a
2708dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002709look it up.
2710
2711The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2712Each triplet has the following form:
2713
2714- The first element is a *behavior* flag, which specifies the behavior
2715 when two (or more) modules are merged together, and it encounters two
2716 (or more) metadata with the same ID. The supported behaviors are
2717 described below.
2718- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002719 metadata. Each module may only have one flag entry for each unique ID (not
2720 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002721- The third element is the value of the flag.
2722
2723When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002724``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2725each unique metadata ID string, there will be exactly one entry in the merged
2726modules ``llvm.module.flags`` metadata table, and the value for that entry will
2727be determined by the merge behavior flag, as described below. The only exception
2728is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002729
2730The following behaviors are supported:
2731
2732.. list-table::
2733 :header-rows: 1
2734 :widths: 10 90
2735
2736 * - Value
2737 - Behavior
2738
2739 * - 1
2740 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002741 Emits an error if two values disagree, otherwise the resulting value
2742 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002743
2744 * - 2
2745 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002746 Emits a warning if two values disagree. The result value will be the
2747 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002748
2749 * - 3
2750 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002751 Adds a requirement that another module flag be present and have a
2752 specified value after linking is performed. The value must be a
2753 metadata pair, where the first element of the pair is the ID of the
2754 module flag to be restricted, and the second element of the pair is
2755 the value the module flag should be restricted to. This behavior can
2756 be used to restrict the allowable results (via triggering of an
2757 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002758
2759 * - 4
2760 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002761 Uses the specified value, regardless of the behavior or value of the
2762 other module. If both modules specify **Override**, but the values
2763 differ, an error will be emitted.
2764
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002765 * - 5
2766 - **Append**
2767 Appends the two values, which are required to be metadata nodes.
2768
2769 * - 6
2770 - **AppendUnique**
2771 Appends the two values, which are required to be metadata
2772 nodes. However, duplicate entries in the second list are dropped
2773 during the append operation.
2774
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002775It is an error for a particular unique flag ID to have multiple behaviors,
2776except in the case of **Require** (which adds restrictions on another metadata
2777value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002778
2779An example of module flags:
2780
2781.. code-block:: llvm
2782
2783 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2784 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2785 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2786 !3 = metadata !{ i32 3, metadata !"qux",
2787 metadata !{
2788 metadata !"foo", i32 1
2789 }
2790 }
2791 !llvm.module.flags = !{ !0, !1, !2, !3 }
2792
2793- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2794 if two or more ``!"foo"`` flags are seen is to emit an error if their
2795 values are not equal.
2796
2797- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2798 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002799 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002800
2801- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2802 behavior if two or more ``!"qux"`` flags are seen is to emit a
2803 warning if their values are not equal.
2804
2805- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2806
2807 ::
2808
2809 metadata !{ metadata !"foo", i32 1 }
2810
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002811 The behavior is to emit an error if the ``llvm.module.flags`` does not
2812 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2813 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002814
2815Objective-C Garbage Collection Module Flags Metadata
2816----------------------------------------------------
2817
2818On the Mach-O platform, Objective-C stores metadata about garbage
2819collection in a special section called "image info". The metadata
2820consists of a version number and a bitmask specifying what types of
2821garbage collection are supported (if any) by the file. If two or more
2822modules are linked together their garbage collection metadata needs to
2823be merged rather than appended together.
2824
2825The Objective-C garbage collection module flags metadata consists of the
2826following key-value pairs:
2827
2828.. list-table::
2829 :header-rows: 1
2830 :widths: 30 70
2831
2832 * - Key
2833 - Value
2834
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002835 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002836 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002837
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002838 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002839 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002840 always 0.
2841
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002842 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002843 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002844 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2845 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2846 Objective-C ABI version 2.
2847
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002848 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002849 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002850 not. Valid values are 0, for no garbage collection, and 2, for garbage
2851 collection supported.
2852
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002853 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002854 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002855 If present, its value must be 6. This flag requires that the
2856 ``Objective-C Garbage Collection`` flag have the value 2.
2857
2858Some important flag interactions:
2859
2860- If a module with ``Objective-C Garbage Collection`` set to 0 is
2861 merged with a module with ``Objective-C Garbage Collection`` set to
2862 2, then the resulting module has the
2863 ``Objective-C Garbage Collection`` flag set to 0.
2864- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2865 merged with a module with ``Objective-C GC Only`` set to 6.
2866
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002867Automatic Linker Flags Module Flags Metadata
2868--------------------------------------------
2869
2870Some targets support embedding flags to the linker inside individual object
2871files. Typically this is used in conjunction with language extensions which
2872allow source files to explicitly declare the libraries they depend on, and have
2873these automatically be transmitted to the linker via object files.
2874
2875These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002876using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002877to be ``AppendUnique``, and the value for the key is expected to be a metadata
2878node which should be a list of other metadata nodes, each of which should be a
2879list of metadata strings defining linker options.
2880
2881For example, the following metadata section specifies two separate sets of
2882linker options, presumably to link against ``libz`` and the ``Cocoa``
2883framework::
2884
Michael Liao2faa0f32013-03-06 18:24:34 +00002885 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002886 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002887 metadata !{ metadata !"-lz" },
2888 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002889 !llvm.module.flags = !{ !0 }
2890
2891The metadata encoding as lists of lists of options, as opposed to a collapsed
2892list of options, is chosen so that the IR encoding can use multiple option
2893strings to specify e.g., a single library, while still having that specifier be
2894preserved as an atomic element that can be recognized by a target specific
2895assembly writer or object file emitter.
2896
2897Each individual option is required to be either a valid option for the target's
2898linker, or an option that is reserved by the target specific assembly writer or
2899object file emitter. No other aspect of these options is defined by the IR.
2900
Sean Silvaf722b002012-12-07 10:36:55 +00002901Intrinsic Global Variables
2902==========================
2903
2904LLVM has a number of "magic" global variables that contain data that
2905affect code generation or other IR semantics. These are documented here.
2906All globals of this sort should have a section specified as
2907"``llvm.metadata``". This section and all globals that start with
2908"``llvm.``" are reserved for use by LLVM.
2909
2910The '``llvm.used``' Global Variable
2911-----------------------------------
2912
Rafael Espindolacde25b42013-04-22 14:58:02 +00002913The ``@llvm.used`` global is an array which has
2914 :ref:`appending linkage <linkage_appending>`. This array contains a list of
2915pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002916pointer cast formed of bitcast or getelementptr. For example, a legal
2917use of it is:
2918
2919.. code-block:: llvm
2920
2921 @X = global i8 4
2922 @Y = global i32 123
2923
2924 @llvm.used = appending global [2 x i8*] [
2925 i8* @X,
2926 i8* bitcast (i32* @Y to i8*)
2927 ], section "llvm.metadata"
2928
Rafael Espindolacde25b42013-04-22 14:58:02 +00002929If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2930and linker are required to treat the symbol as if there is a reference to the
2931symbol that it cannot see. For example, if a variable has internal linkage and
2932no references other than that from the ``@llvm.used`` list, it cannot be
2933deleted. This is commonly used to represent references from inline asms and
2934other things the compiler cannot "see", and corresponds to
2935"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002936
2937On some targets, the code generator must emit a directive to the
2938assembler or object file to prevent the assembler and linker from
2939molesting the symbol.
2940
2941The '``llvm.compiler.used``' Global Variable
2942--------------------------------------------
2943
2944The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2945directive, except that it only prevents the compiler from touching the
2946symbol. On targets that support it, this allows an intelligent linker to
2947optimize references to the symbol without being impeded as it would be
2948by ``@llvm.used``.
2949
2950This is a rare construct that should only be used in rare circumstances,
2951and should not be exposed to source languages.
2952
2953The '``llvm.global_ctors``' Global Variable
2954-------------------------------------------
2955
2956.. code-block:: llvm
2957
2958 %0 = type { i32, void ()* }
2959 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2960
2961The ``@llvm.global_ctors`` array contains a list of constructor
2962functions and associated priorities. The functions referenced by this
2963array will be called in ascending order of priority (i.e. lowest first)
2964when the module is loaded. The order of functions with the same priority
2965is not defined.
2966
2967The '``llvm.global_dtors``' Global Variable
2968-------------------------------------------
2969
2970.. code-block:: llvm
2971
2972 %0 = type { i32, void ()* }
2973 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2974
2975The ``@llvm.global_dtors`` array contains a list of destructor functions
2976and associated priorities. The functions referenced by this array will
2977be called in descending order of priority (i.e. highest first) when the
2978module is loaded. The order of functions with the same priority is not
2979defined.
2980
2981Instruction Reference
2982=====================
2983
2984The LLVM instruction set consists of several different classifications
2985of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2986instructions <binaryops>`, :ref:`bitwise binary
2987instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2988:ref:`other instructions <otherops>`.
2989
2990.. _terminators:
2991
2992Terminator Instructions
2993-----------------------
2994
2995As mentioned :ref:`previously <functionstructure>`, every basic block in a
2996program ends with a "Terminator" instruction, which indicates which
2997block should be executed after the current block is finished. These
2998terminator instructions typically yield a '``void``' value: they produce
2999control flow, not values (the one exception being the
3000':ref:`invoke <i_invoke>`' instruction).
3001
3002The terminator instructions are: ':ref:`ret <i_ret>`',
3003':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3004':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3005':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3006
3007.. _i_ret:
3008
3009'``ret``' Instruction
3010^^^^^^^^^^^^^^^^^^^^^
3011
3012Syntax:
3013"""""""
3014
3015::
3016
3017 ret <type> <value> ; Return a value from a non-void function
3018 ret void ; Return from void function
3019
3020Overview:
3021"""""""""
3022
3023The '``ret``' instruction is used to return control flow (and optionally
3024a value) from a function back to the caller.
3025
3026There are two forms of the '``ret``' instruction: one that returns a
3027value and then causes control flow, and one that just causes control
3028flow to occur.
3029
3030Arguments:
3031""""""""""
3032
3033The '``ret``' instruction optionally accepts a single argument, the
3034return value. The type of the return value must be a ':ref:`first
3035class <t_firstclass>`' type.
3036
3037A function is not :ref:`well formed <wellformed>` if it it has a non-void
3038return type and contains a '``ret``' instruction with no return value or
3039a return value with a type that does not match its type, or if it has a
3040void return type and contains a '``ret``' instruction with a return
3041value.
3042
3043Semantics:
3044""""""""""
3045
3046When the '``ret``' instruction is executed, control flow returns back to
3047the calling function's context. If the caller is a
3048":ref:`call <i_call>`" instruction, execution continues at the
3049instruction after the call. If the caller was an
3050":ref:`invoke <i_invoke>`" instruction, execution continues at the
3051beginning of the "normal" destination block. If the instruction returns
3052a value, that value shall set the call or invoke instruction's return
3053value.
3054
3055Example:
3056""""""""
3057
3058.. code-block:: llvm
3059
3060 ret i32 5 ; Return an integer value of 5
3061 ret void ; Return from a void function
3062 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3063
3064.. _i_br:
3065
3066'``br``' Instruction
3067^^^^^^^^^^^^^^^^^^^^
3068
3069Syntax:
3070"""""""
3071
3072::
3073
3074 br i1 <cond>, label <iftrue>, label <iffalse>
3075 br label <dest> ; Unconditional branch
3076
3077Overview:
3078"""""""""
3079
3080The '``br``' instruction is used to cause control flow to transfer to a
3081different basic block in the current function. There are two forms of
3082this instruction, corresponding to a conditional branch and an
3083unconditional branch.
3084
3085Arguments:
3086""""""""""
3087
3088The conditional branch form of the '``br``' instruction takes a single
3089'``i1``' value and two '``label``' values. The unconditional form of the
3090'``br``' instruction takes a single '``label``' value as a target.
3091
3092Semantics:
3093""""""""""
3094
3095Upon execution of a conditional '``br``' instruction, the '``i1``'
3096argument is evaluated. If the value is ``true``, control flows to the
3097'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3098to the '``iffalse``' ``label`` argument.
3099
3100Example:
3101""""""""
3102
3103.. code-block:: llvm
3104
3105 Test:
3106 %cond = icmp eq i32 %a, %b
3107 br i1 %cond, label %IfEqual, label %IfUnequal
3108 IfEqual:
3109 ret i32 1
3110 IfUnequal:
3111 ret i32 0
3112
3113.. _i_switch:
3114
3115'``switch``' Instruction
3116^^^^^^^^^^^^^^^^^^^^^^^^
3117
3118Syntax:
3119"""""""
3120
3121::
3122
3123 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3124
3125Overview:
3126"""""""""
3127
3128The '``switch``' instruction is used to transfer control flow to one of
3129several different places. It is a generalization of the '``br``'
3130instruction, allowing a branch to occur to one of many possible
3131destinations.
3132
3133Arguments:
3134""""""""""
3135
3136The '``switch``' instruction uses three parameters: an integer
3137comparison value '``value``', a default '``label``' destination, and an
3138array of pairs of comparison value constants and '``label``'s. The table
3139is not allowed to contain duplicate constant entries.
3140
3141Semantics:
3142""""""""""
3143
3144The ``switch`` instruction specifies a table of values and destinations.
3145When the '``switch``' instruction is executed, this table is searched
3146for the given value. If the value is found, control flow is transferred
3147to the corresponding destination; otherwise, control flow is transferred
3148to the default destination.
3149
3150Implementation:
3151"""""""""""""""
3152
3153Depending on properties of the target machine and the particular
3154``switch`` instruction, this instruction may be code generated in
3155different ways. For example, it could be generated as a series of
3156chained conditional branches or with a lookup table.
3157
3158Example:
3159""""""""
3160
3161.. code-block:: llvm
3162
3163 ; Emulate a conditional br instruction
3164 %Val = zext i1 %value to i32
3165 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3166
3167 ; Emulate an unconditional br instruction
3168 switch i32 0, label %dest [ ]
3169
3170 ; Implement a jump table:
3171 switch i32 %val, label %otherwise [ i32 0, label %onzero
3172 i32 1, label %onone
3173 i32 2, label %ontwo ]
3174
3175.. _i_indirectbr:
3176
3177'``indirectbr``' Instruction
3178^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3179
3180Syntax:
3181"""""""
3182
3183::
3184
3185 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3186
3187Overview:
3188"""""""""
3189
3190The '``indirectbr``' instruction implements an indirect branch to a
3191label within the current function, whose address is specified by
3192"``address``". Address must be derived from a
3193:ref:`blockaddress <blockaddress>` constant.
3194
3195Arguments:
3196""""""""""
3197
3198The '``address``' argument is the address of the label to jump to. The
3199rest of the arguments indicate the full set of possible destinations
3200that the address may point to. Blocks are allowed to occur multiple
3201times in the destination list, though this isn't particularly useful.
3202
3203This destination list is required so that dataflow analysis has an
3204accurate understanding of the CFG.
3205
3206Semantics:
3207""""""""""
3208
3209Control transfers to the block specified in the address argument. All
3210possible destination blocks must be listed in the label list, otherwise
3211this instruction has undefined behavior. This implies that jumps to
3212labels defined in other functions have undefined behavior as well.
3213
3214Implementation:
3215"""""""""""""""
3216
3217This is typically implemented with a jump through a register.
3218
3219Example:
3220""""""""
3221
3222.. code-block:: llvm
3223
3224 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3225
3226.. _i_invoke:
3227
3228'``invoke``' Instruction
3229^^^^^^^^^^^^^^^^^^^^^^^^
3230
3231Syntax:
3232"""""""
3233
3234::
3235
3236 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3237 to label <normal label> unwind label <exception label>
3238
3239Overview:
3240"""""""""
3241
3242The '``invoke``' instruction causes control to transfer to a specified
3243function, with the possibility of control flow transfer to either the
3244'``normal``' label or the '``exception``' label. If the callee function
3245returns with the "``ret``" instruction, control flow will return to the
3246"normal" label. If the callee (or any indirect callees) returns via the
3247":ref:`resume <i_resume>`" instruction or other exception handling
3248mechanism, control is interrupted and continued at the dynamically
3249nearest "exception" label.
3250
3251The '``exception``' label is a `landing
3252pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3253'``exception``' label is required to have the
3254":ref:`landingpad <i_landingpad>`" instruction, which contains the
3255information about the behavior of the program after unwinding happens,
3256as its first non-PHI instruction. The restrictions on the
3257"``landingpad``" instruction's tightly couples it to the "``invoke``"
3258instruction, so that the important information contained within the
3259"``landingpad``" instruction can't be lost through normal code motion.
3260
3261Arguments:
3262""""""""""
3263
3264This instruction requires several arguments:
3265
3266#. The optional "cconv" marker indicates which :ref:`calling
3267 convention <callingconv>` the call should use. If none is
3268 specified, the call defaults to using C calling conventions.
3269#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3270 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3271 are valid here.
3272#. '``ptr to function ty``': shall be the signature of the pointer to
3273 function value being invoked. In most cases, this is a direct
3274 function invocation, but indirect ``invoke``'s are just as possible,
3275 branching off an arbitrary pointer to function value.
3276#. '``function ptr val``': An LLVM value containing a pointer to a
3277 function to be invoked.
3278#. '``function args``': argument list whose types match the function
3279 signature argument types and parameter attributes. All arguments must
3280 be of :ref:`first class <t_firstclass>` type. If the function signature
3281 indicates the function accepts a variable number of arguments, the
3282 extra arguments can be specified.
3283#. '``normal label``': the label reached when the called function
3284 executes a '``ret``' instruction.
3285#. '``exception label``': the label reached when a callee returns via
3286 the :ref:`resume <i_resume>` instruction or other exception handling
3287 mechanism.
3288#. The optional :ref:`function attributes <fnattrs>` list. Only
3289 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3290 attributes are valid here.
3291
3292Semantics:
3293""""""""""
3294
3295This instruction is designed to operate as a standard '``call``'
3296instruction in most regards. The primary difference is that it
3297establishes an association with a label, which is used by the runtime
3298library to unwind the stack.
3299
3300This instruction is used in languages with destructors to ensure that
3301proper cleanup is performed in the case of either a ``longjmp`` or a
3302thrown exception. Additionally, this is important for implementation of
3303'``catch``' clauses in high-level languages that support them.
3304
3305For the purposes of the SSA form, the definition of the value returned
3306by the '``invoke``' instruction is deemed to occur on the edge from the
3307current block to the "normal" label. If the callee unwinds then no
3308return value is available.
3309
3310Example:
3311""""""""
3312
3313.. code-block:: llvm
3314
3315 %retval = invoke i32 @Test(i32 15) to label %Continue
3316 unwind label %TestCleanup ; {i32}:retval set
3317 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3318 unwind label %TestCleanup ; {i32}:retval set
3319
3320.. _i_resume:
3321
3322'``resume``' Instruction
3323^^^^^^^^^^^^^^^^^^^^^^^^
3324
3325Syntax:
3326"""""""
3327
3328::
3329
3330 resume <type> <value>
3331
3332Overview:
3333"""""""""
3334
3335The '``resume``' instruction is a terminator instruction that has no
3336successors.
3337
3338Arguments:
3339""""""""""
3340
3341The '``resume``' instruction requires one argument, which must have the
3342same type as the result of any '``landingpad``' instruction in the same
3343function.
3344
3345Semantics:
3346""""""""""
3347
3348The '``resume``' instruction resumes propagation of an existing
3349(in-flight) exception whose unwinding was interrupted with a
3350:ref:`landingpad <i_landingpad>` instruction.
3351
3352Example:
3353""""""""
3354
3355.. code-block:: llvm
3356
3357 resume { i8*, i32 } %exn
3358
3359.. _i_unreachable:
3360
3361'``unreachable``' Instruction
3362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3363
3364Syntax:
3365"""""""
3366
3367::
3368
3369 unreachable
3370
3371Overview:
3372"""""""""
3373
3374The '``unreachable``' instruction has no defined semantics. This
3375instruction is used to inform the optimizer that a particular portion of
3376the code is not reachable. This can be used to indicate that the code
3377after a no-return function cannot be reached, and other facts.
3378
3379Semantics:
3380""""""""""
3381
3382The '``unreachable``' instruction has no defined semantics.
3383
3384.. _binaryops:
3385
3386Binary Operations
3387-----------------
3388
3389Binary operators are used to do most of the computation in a program.
3390They require two operands of the same type, execute an operation on
3391them, and produce a single value. The operands might represent multiple
3392data, as is the case with the :ref:`vector <t_vector>` data type. The
3393result value has the same type as its operands.
3394
3395There are several different binary operators:
3396
3397.. _i_add:
3398
3399'``add``' Instruction
3400^^^^^^^^^^^^^^^^^^^^^
3401
3402Syntax:
3403"""""""
3404
3405::
3406
3407 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3408 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3409 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3410 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3411
3412Overview:
3413"""""""""
3414
3415The '``add``' instruction returns the sum of its two operands.
3416
3417Arguments:
3418""""""""""
3419
3420The two arguments to the '``add``' instruction must be
3421:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3422arguments must have identical types.
3423
3424Semantics:
3425""""""""""
3426
3427The value produced is the integer sum of the two operands.
3428
3429If the sum has unsigned overflow, the result returned is the
3430mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3431the result.
3432
3433Because LLVM integers use a two's complement representation, this
3434instruction is appropriate for both signed and unsigned integers.
3435
3436``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3437respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3438result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3439unsigned and/or signed overflow, respectively, occurs.
3440
3441Example:
3442""""""""
3443
3444.. code-block:: llvm
3445
3446 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3447
3448.. _i_fadd:
3449
3450'``fadd``' Instruction
3451^^^^^^^^^^^^^^^^^^^^^^
3452
3453Syntax:
3454"""""""
3455
3456::
3457
3458 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3459
3460Overview:
3461"""""""""
3462
3463The '``fadd``' instruction returns the sum of its two operands.
3464
3465Arguments:
3466""""""""""
3467
3468The two arguments to the '``fadd``' instruction must be :ref:`floating
3469point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3470Both arguments must have identical types.
3471
3472Semantics:
3473""""""""""
3474
3475The value produced is the floating point sum of the two operands. This
3476instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3477which are optimization hints to enable otherwise unsafe floating point
3478optimizations:
3479
3480Example:
3481""""""""
3482
3483.. code-block:: llvm
3484
3485 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3486
3487'``sub``' Instruction
3488^^^^^^^^^^^^^^^^^^^^^
3489
3490Syntax:
3491"""""""
3492
3493::
3494
3495 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3496 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3497 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3498 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3499
3500Overview:
3501"""""""""
3502
3503The '``sub``' instruction returns the difference of its two operands.
3504
3505Note that the '``sub``' instruction is used to represent the '``neg``'
3506instruction present in most other intermediate representations.
3507
3508Arguments:
3509""""""""""
3510
3511The two arguments to the '``sub``' instruction must be
3512:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3513arguments must have identical types.
3514
3515Semantics:
3516""""""""""
3517
3518The value produced is the integer difference of the two operands.
3519
3520If the difference has unsigned overflow, the result returned is the
3521mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3522the result.
3523
3524Because LLVM integers use a two's complement representation, this
3525instruction is appropriate for both signed and unsigned integers.
3526
3527``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3528respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3529result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3530unsigned and/or signed overflow, respectively, occurs.
3531
3532Example:
3533""""""""
3534
3535.. code-block:: llvm
3536
3537 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3538 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3539
3540.. _i_fsub:
3541
3542'``fsub``' Instruction
3543^^^^^^^^^^^^^^^^^^^^^^
3544
3545Syntax:
3546"""""""
3547
3548::
3549
3550 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3551
3552Overview:
3553"""""""""
3554
3555The '``fsub``' instruction returns the difference of its two operands.
3556
3557Note that the '``fsub``' instruction is used to represent the '``fneg``'
3558instruction present in most other intermediate representations.
3559
3560Arguments:
3561""""""""""
3562
3563The two arguments to the '``fsub``' instruction must be :ref:`floating
3564point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3565Both arguments must have identical types.
3566
3567Semantics:
3568""""""""""
3569
3570The value produced is the floating point difference of the two operands.
3571This instruction can also take any number of :ref:`fast-math
3572flags <fastmath>`, which are optimization hints to enable otherwise
3573unsafe floating point optimizations:
3574
3575Example:
3576""""""""
3577
3578.. code-block:: llvm
3579
3580 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3581 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3582
3583'``mul``' Instruction
3584^^^^^^^^^^^^^^^^^^^^^
3585
3586Syntax:
3587"""""""
3588
3589::
3590
3591 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3592 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3593 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3594 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3595
3596Overview:
3597"""""""""
3598
3599The '``mul``' instruction returns the product of its two operands.
3600
3601Arguments:
3602""""""""""
3603
3604The two arguments to the '``mul``' instruction must be
3605:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3606arguments must have identical types.
3607
3608Semantics:
3609""""""""""
3610
3611The value produced is the integer product of the two operands.
3612
3613If the result of the multiplication has unsigned overflow, the result
3614returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3615bit width of the result.
3616
3617Because LLVM integers use a two's complement representation, and the
3618result is the same width as the operands, this instruction returns the
3619correct result for both signed and unsigned integers. If a full product
3620(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3621sign-extended or zero-extended as appropriate to the width of the full
3622product.
3623
3624``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3625respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3626result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3627unsigned and/or signed overflow, respectively, occurs.
3628
3629Example:
3630""""""""
3631
3632.. code-block:: llvm
3633
3634 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3635
3636.. _i_fmul:
3637
3638'``fmul``' Instruction
3639^^^^^^^^^^^^^^^^^^^^^^
3640
3641Syntax:
3642"""""""
3643
3644::
3645
3646 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3647
3648Overview:
3649"""""""""
3650
3651The '``fmul``' instruction returns the product of its two operands.
3652
3653Arguments:
3654""""""""""
3655
3656The two arguments to the '``fmul``' instruction must be :ref:`floating
3657point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3658Both arguments must have identical types.
3659
3660Semantics:
3661""""""""""
3662
3663The value produced is the floating point product of the two operands.
3664This instruction can also take any number of :ref:`fast-math
3665flags <fastmath>`, which are optimization hints to enable otherwise
3666unsafe floating point optimizations:
3667
3668Example:
3669""""""""
3670
3671.. code-block:: llvm
3672
3673 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3674
3675'``udiv``' Instruction
3676^^^^^^^^^^^^^^^^^^^^^^
3677
3678Syntax:
3679"""""""
3680
3681::
3682
3683 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3684 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3685
3686Overview:
3687"""""""""
3688
3689The '``udiv``' instruction returns the quotient of its two operands.
3690
3691Arguments:
3692""""""""""
3693
3694The two arguments to the '``udiv``' instruction must be
3695:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3696arguments must have identical types.
3697
3698Semantics:
3699""""""""""
3700
3701The value produced is the unsigned integer quotient of the two operands.
3702
3703Note that unsigned integer division and signed integer division are
3704distinct operations; for signed integer division, use '``sdiv``'.
3705
3706Division by zero leads to undefined behavior.
3707
3708If the ``exact`` keyword is present, the result value of the ``udiv`` is
3709a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3710such, "((a udiv exact b) mul b) == a").
3711
3712Example:
3713""""""""
3714
3715.. code-block:: llvm
3716
3717 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3718
3719'``sdiv``' Instruction
3720^^^^^^^^^^^^^^^^^^^^^^
3721
3722Syntax:
3723"""""""
3724
3725::
3726
3727 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3729
3730Overview:
3731"""""""""
3732
3733The '``sdiv``' instruction returns the quotient of its two operands.
3734
3735Arguments:
3736""""""""""
3737
3738The two arguments to the '``sdiv``' instruction must be
3739:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3740arguments must have identical types.
3741
3742Semantics:
3743""""""""""
3744
3745The value produced is the signed integer quotient of the two operands
3746rounded towards zero.
3747
3748Note that signed integer division and unsigned integer division are
3749distinct operations; for unsigned integer division, use '``udiv``'.
3750
3751Division by zero leads to undefined behavior. Overflow also leads to
3752undefined behavior; this is a rare case, but can occur, for example, by
3753doing a 32-bit division of -2147483648 by -1.
3754
3755If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3756a :ref:`poison value <poisonvalues>` if the result would be rounded.
3757
3758Example:
3759""""""""
3760
3761.. code-block:: llvm
3762
3763 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3764
3765.. _i_fdiv:
3766
3767'``fdiv``' Instruction
3768^^^^^^^^^^^^^^^^^^^^^^
3769
3770Syntax:
3771"""""""
3772
3773::
3774
3775 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3776
3777Overview:
3778"""""""""
3779
3780The '``fdiv``' instruction returns the quotient of its two operands.
3781
3782Arguments:
3783""""""""""
3784
3785The two arguments to the '``fdiv``' instruction must be :ref:`floating
3786point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3787Both arguments must have identical types.
3788
3789Semantics:
3790""""""""""
3791
3792The value produced is the floating point quotient of the two operands.
3793This instruction can also take any number of :ref:`fast-math
3794flags <fastmath>`, which are optimization hints to enable otherwise
3795unsafe floating point optimizations:
3796
3797Example:
3798""""""""
3799
3800.. code-block:: llvm
3801
3802 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3803
3804'``urem``' Instruction
3805^^^^^^^^^^^^^^^^^^^^^^
3806
3807Syntax:
3808"""""""
3809
3810::
3811
3812 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3813
3814Overview:
3815"""""""""
3816
3817The '``urem``' instruction returns the remainder from the unsigned
3818division of its two arguments.
3819
3820Arguments:
3821""""""""""
3822
3823The two arguments to the '``urem``' instruction must be
3824:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3825arguments must have identical types.
3826
3827Semantics:
3828""""""""""
3829
3830This instruction returns the unsigned integer *remainder* of a division.
3831This instruction always performs an unsigned division to get the
3832remainder.
3833
3834Note that unsigned integer remainder and signed integer remainder are
3835distinct operations; for signed integer remainder, use '``srem``'.
3836
3837Taking the remainder of a division by zero leads to undefined behavior.
3838
3839Example:
3840""""""""
3841
3842.. code-block:: llvm
3843
3844 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3845
3846'``srem``' Instruction
3847^^^^^^^^^^^^^^^^^^^^^^
3848
3849Syntax:
3850"""""""
3851
3852::
3853
3854 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3855
3856Overview:
3857"""""""""
3858
3859The '``srem``' instruction returns the remainder from the signed
3860division of its two operands. This instruction can also take
3861:ref:`vector <t_vector>` versions of the values in which case the elements
3862must be integers.
3863
3864Arguments:
3865""""""""""
3866
3867The two arguments to the '``srem``' instruction must be
3868:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3869arguments must have identical types.
3870
3871Semantics:
3872""""""""""
3873
3874This instruction returns the *remainder* of a division (where the result
3875is either zero or has the same sign as the dividend, ``op1``), not the
3876*modulo* operator (where the result is either zero or has the same sign
3877as the divisor, ``op2``) of a value. For more information about the
3878difference, see `The Math
3879Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3880table of how this is implemented in various languages, please see
3881`Wikipedia: modulo
3882operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3883
3884Note that signed integer remainder and unsigned integer remainder are
3885distinct operations; for unsigned integer remainder, use '``urem``'.
3886
3887Taking the remainder of a division by zero leads to undefined behavior.
3888Overflow also leads to undefined behavior; this is a rare case, but can
3889occur, for example, by taking the remainder of a 32-bit division of
3890-2147483648 by -1. (The remainder doesn't actually overflow, but this
3891rule lets srem be implemented using instructions that return both the
3892result of the division and the remainder.)
3893
3894Example:
3895""""""""
3896
3897.. code-block:: llvm
3898
3899 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3900
3901.. _i_frem:
3902
3903'``frem``' Instruction
3904^^^^^^^^^^^^^^^^^^^^^^
3905
3906Syntax:
3907"""""""
3908
3909::
3910
3911 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3912
3913Overview:
3914"""""""""
3915
3916The '``frem``' instruction returns the remainder from the division of
3917its two operands.
3918
3919Arguments:
3920""""""""""
3921
3922The two arguments to the '``frem``' instruction must be :ref:`floating
3923point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3924Both arguments must have identical types.
3925
3926Semantics:
3927""""""""""
3928
3929This instruction returns the *remainder* of a division. The remainder
3930has the same sign as the dividend. This instruction can also take any
3931number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3932to enable otherwise unsafe floating point optimizations:
3933
3934Example:
3935""""""""
3936
3937.. code-block:: llvm
3938
3939 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3940
3941.. _bitwiseops:
3942
3943Bitwise Binary Operations
3944-------------------------
3945
3946Bitwise binary operators are used to do various forms of bit-twiddling
3947in a program. They are generally very efficient instructions and can
3948commonly be strength reduced from other instructions. They require two
3949operands of the same type, execute an operation on them, and produce a
3950single value. The resulting value is the same type as its operands.
3951
3952'``shl``' Instruction
3953^^^^^^^^^^^^^^^^^^^^^
3954
3955Syntax:
3956"""""""
3957
3958::
3959
3960 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3961 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3962 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3963 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3964
3965Overview:
3966"""""""""
3967
3968The '``shl``' instruction returns the first operand shifted to the left
3969a specified number of bits.
3970
3971Arguments:
3972""""""""""
3973
3974Both arguments to the '``shl``' instruction must be the same
3975:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3976'``op2``' is treated as an unsigned value.
3977
3978Semantics:
3979""""""""""
3980
3981The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3982where ``n`` is the width of the result. If ``op2`` is (statically or
3983dynamically) negative or equal to or larger than the number of bits in
3984``op1``, the result is undefined. If the arguments are vectors, each
3985vector element of ``op1`` is shifted by the corresponding shift amount
3986in ``op2``.
3987
3988If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3989value <poisonvalues>` if it shifts out any non-zero bits. If the
3990``nsw`` keyword is present, then the shift produces a :ref:`poison
3991value <poisonvalues>` if it shifts out any bits that disagree with the
3992resultant sign bit. As such, NUW/NSW have the same semantics as they
3993would if the shift were expressed as a mul instruction with the same
3994nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3995
3996Example:
3997""""""""
3998
3999.. code-block:: llvm
4000
4001 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4002 <result> = shl i32 4, 2 ; yields {i32}: 16
4003 <result> = shl i32 1, 10 ; yields {i32}: 1024
4004 <result> = shl i32 1, 32 ; undefined
4005 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4006
4007'``lshr``' Instruction
4008^^^^^^^^^^^^^^^^^^^^^^
4009
4010Syntax:
4011"""""""
4012
4013::
4014
4015 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4016 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4017
4018Overview:
4019"""""""""
4020
4021The '``lshr``' instruction (logical shift right) returns the first
4022operand shifted to the right a specified number of bits with zero fill.
4023
4024Arguments:
4025""""""""""
4026
4027Both arguments to the '``lshr``' instruction must be the same
4028:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4029'``op2``' is treated as an unsigned value.
4030
4031Semantics:
4032""""""""""
4033
4034This instruction always performs a logical shift right operation. The
4035most significant bits of the result will be filled with zero bits after
4036the shift. If ``op2`` is (statically or dynamically) equal to or larger
4037than the number of bits in ``op1``, the result is undefined. If the
4038arguments are vectors, each vector element of ``op1`` is shifted by the
4039corresponding shift amount in ``op2``.
4040
4041If the ``exact`` keyword is present, the result value of the ``lshr`` is
4042a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4043non-zero.
4044
4045Example:
4046""""""""
4047
4048.. code-block:: llvm
4049
4050 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4051 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4052 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004053 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004054 <result> = lshr i32 1, 32 ; undefined
4055 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4056
4057'``ashr``' Instruction
4058^^^^^^^^^^^^^^^^^^^^^^
4059
4060Syntax:
4061"""""""
4062
4063::
4064
4065 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4066 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4067
4068Overview:
4069"""""""""
4070
4071The '``ashr``' instruction (arithmetic shift right) returns the first
4072operand shifted to the right a specified number of bits with sign
4073extension.
4074
4075Arguments:
4076""""""""""
4077
4078Both arguments to the '``ashr``' instruction must be the same
4079:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4080'``op2``' is treated as an unsigned value.
4081
4082Semantics:
4083""""""""""
4084
4085This instruction always performs an arithmetic shift right operation,
4086The most significant bits of the result will be filled with the sign bit
4087of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4088than the number of bits in ``op1``, the result is undefined. If the
4089arguments are vectors, each vector element of ``op1`` is shifted by the
4090corresponding shift amount in ``op2``.
4091
4092If the ``exact`` keyword is present, the result value of the ``ashr`` is
4093a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4094non-zero.
4095
4096Example:
4097""""""""
4098
4099.. code-block:: llvm
4100
4101 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4102 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4103 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4104 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4105 <result> = ashr i32 1, 32 ; undefined
4106 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4107
4108'``and``' Instruction
4109^^^^^^^^^^^^^^^^^^^^^
4110
4111Syntax:
4112"""""""
4113
4114::
4115
4116 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4117
4118Overview:
4119"""""""""
4120
4121The '``and``' instruction returns the bitwise logical and of its two
4122operands.
4123
4124Arguments:
4125""""""""""
4126
4127The two arguments to the '``and``' instruction must be
4128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4129arguments must have identical types.
4130
4131Semantics:
4132""""""""""
4133
4134The truth table used for the '``and``' instruction is:
4135
4136+-----+-----+-----+
4137| In0 | In1 | Out |
4138+-----+-----+-----+
4139| 0 | 0 | 0 |
4140+-----+-----+-----+
4141| 0 | 1 | 0 |
4142+-----+-----+-----+
4143| 1 | 0 | 0 |
4144+-----+-----+-----+
4145| 1 | 1 | 1 |
4146+-----+-----+-----+
4147
4148Example:
4149""""""""
4150
4151.. code-block:: llvm
4152
4153 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4154 <result> = and i32 15, 40 ; yields {i32}:result = 8
4155 <result> = and i32 4, 8 ; yields {i32}:result = 0
4156
4157'``or``' Instruction
4158^^^^^^^^^^^^^^^^^^^^
4159
4160Syntax:
4161"""""""
4162
4163::
4164
4165 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4166
4167Overview:
4168"""""""""
4169
4170The '``or``' instruction returns the bitwise logical inclusive or of its
4171two operands.
4172
4173Arguments:
4174""""""""""
4175
4176The two arguments to the '``or``' instruction must be
4177:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4178arguments must have identical types.
4179
4180Semantics:
4181""""""""""
4182
4183The truth table used for the '``or``' instruction is:
4184
4185+-----+-----+-----+
4186| In0 | In1 | Out |
4187+-----+-----+-----+
4188| 0 | 0 | 0 |
4189+-----+-----+-----+
4190| 0 | 1 | 1 |
4191+-----+-----+-----+
4192| 1 | 0 | 1 |
4193+-----+-----+-----+
4194| 1 | 1 | 1 |
4195+-----+-----+-----+
4196
4197Example:
4198""""""""
4199
4200::
4201
4202 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4203 <result> = or i32 15, 40 ; yields {i32}:result = 47
4204 <result> = or i32 4, 8 ; yields {i32}:result = 12
4205
4206'``xor``' Instruction
4207^^^^^^^^^^^^^^^^^^^^^
4208
4209Syntax:
4210"""""""
4211
4212::
4213
4214 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4215
4216Overview:
4217"""""""""
4218
4219The '``xor``' instruction returns the bitwise logical exclusive or of
4220its two operands. The ``xor`` is used to implement the "one's
4221complement" operation, which is the "~" operator in C.
4222
4223Arguments:
4224""""""""""
4225
4226The two arguments to the '``xor``' instruction must be
4227:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4228arguments must have identical types.
4229
4230Semantics:
4231""""""""""
4232
4233The truth table used for the '``xor``' instruction is:
4234
4235+-----+-----+-----+
4236| In0 | In1 | Out |
4237+-----+-----+-----+
4238| 0 | 0 | 0 |
4239+-----+-----+-----+
4240| 0 | 1 | 1 |
4241+-----+-----+-----+
4242| 1 | 0 | 1 |
4243+-----+-----+-----+
4244| 1 | 1 | 0 |
4245+-----+-----+-----+
4246
4247Example:
4248""""""""
4249
4250.. code-block:: llvm
4251
4252 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4253 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4254 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4255 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4256
4257Vector Operations
4258-----------------
4259
4260LLVM supports several instructions to represent vector operations in a
4261target-independent manner. These instructions cover the element-access
4262and vector-specific operations needed to process vectors effectively.
4263While LLVM does directly support these vector operations, many
4264sophisticated algorithms will want to use target-specific intrinsics to
4265take full advantage of a specific target.
4266
4267.. _i_extractelement:
4268
4269'``extractelement``' Instruction
4270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4271
4272Syntax:
4273"""""""
4274
4275::
4276
4277 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4278
4279Overview:
4280"""""""""
4281
4282The '``extractelement``' instruction extracts a single scalar element
4283from a vector at a specified index.
4284
4285Arguments:
4286""""""""""
4287
4288The first operand of an '``extractelement``' instruction is a value of
4289:ref:`vector <t_vector>` type. The second operand is an index indicating
4290the position from which to extract the element. The index may be a
4291variable.
4292
4293Semantics:
4294""""""""""
4295
4296The result is a scalar of the same type as the element type of ``val``.
4297Its value is the value at position ``idx`` of ``val``. If ``idx``
4298exceeds the length of ``val``, the results are undefined.
4299
4300Example:
4301""""""""
4302
4303.. code-block:: llvm
4304
4305 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4306
4307.. _i_insertelement:
4308
4309'``insertelement``' Instruction
4310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4311
4312Syntax:
4313"""""""
4314
4315::
4316
4317 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4318
4319Overview:
4320"""""""""
4321
4322The '``insertelement``' instruction inserts a scalar element into a
4323vector at a specified index.
4324
4325Arguments:
4326""""""""""
4327
4328The first operand of an '``insertelement``' instruction is a value of
4329:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4330type must equal the element type of the first operand. The third operand
4331is an index indicating the position at which to insert the value. The
4332index may be a variable.
4333
4334Semantics:
4335""""""""""
4336
4337The result is a vector of the same type as ``val``. Its element values
4338are those of ``val`` except at position ``idx``, where it gets the value
4339``elt``. If ``idx`` exceeds the length of ``val``, the results are
4340undefined.
4341
4342Example:
4343""""""""
4344
4345.. code-block:: llvm
4346
4347 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4348
4349.. _i_shufflevector:
4350
4351'``shufflevector``' Instruction
4352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4353
4354Syntax:
4355"""""""
4356
4357::
4358
4359 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4360
4361Overview:
4362"""""""""
4363
4364The '``shufflevector``' instruction constructs a permutation of elements
4365from two input vectors, returning a vector with the same element type as
4366the input and length that is the same as the shuffle mask.
4367
4368Arguments:
4369""""""""""
4370
4371The first two operands of a '``shufflevector``' instruction are vectors
4372with the same type. The third argument is a shuffle mask whose element
4373type is always 'i32'. The result of the instruction is a vector whose
4374length is the same as the shuffle mask and whose element type is the
4375same as the element type of the first two operands.
4376
4377The shuffle mask operand is required to be a constant vector with either
4378constant integer or undef values.
4379
4380Semantics:
4381""""""""""
4382
4383The elements of the two input vectors are numbered from left to right
4384across both of the vectors. The shuffle mask operand specifies, for each
4385element of the result vector, which element of the two input vectors the
4386result element gets. The element selector may be undef (meaning "don't
4387care") and the second operand may be undef if performing a shuffle from
4388only one vector.
4389
4390Example:
4391""""""""
4392
4393.. code-block:: llvm
4394
4395 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4396 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4397 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4398 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4399 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4400 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4401 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4402 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4403
4404Aggregate Operations
4405--------------------
4406
4407LLVM supports several instructions for working with
4408:ref:`aggregate <t_aggregate>` values.
4409
4410.. _i_extractvalue:
4411
4412'``extractvalue``' Instruction
4413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4414
4415Syntax:
4416"""""""
4417
4418::
4419
4420 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4421
4422Overview:
4423"""""""""
4424
4425The '``extractvalue``' instruction extracts the value of a member field
4426from an :ref:`aggregate <t_aggregate>` value.
4427
4428Arguments:
4429""""""""""
4430
4431The first operand of an '``extractvalue``' instruction is a value of
4432:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4433constant indices to specify which value to extract in a similar manner
4434as indices in a '``getelementptr``' instruction.
4435
4436The major differences to ``getelementptr`` indexing are:
4437
4438- Since the value being indexed is not a pointer, the first index is
4439 omitted and assumed to be zero.
4440- At least one index must be specified.
4441- Not only struct indices but also array indices must be in bounds.
4442
4443Semantics:
4444""""""""""
4445
4446The result is the value at the position in the aggregate specified by
4447the index operands.
4448
4449Example:
4450""""""""
4451
4452.. code-block:: llvm
4453
4454 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4455
4456.. _i_insertvalue:
4457
4458'``insertvalue``' Instruction
4459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4460
4461Syntax:
4462"""""""
4463
4464::
4465
4466 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4467
4468Overview:
4469"""""""""
4470
4471The '``insertvalue``' instruction inserts a value into a member field in
4472an :ref:`aggregate <t_aggregate>` value.
4473
4474Arguments:
4475""""""""""
4476
4477The first operand of an '``insertvalue``' instruction is a value of
4478:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4479a first-class value to insert. The following operands are constant
4480indices indicating the position at which to insert the value in a
4481similar manner as indices in a '``extractvalue``' instruction. The value
4482to insert must have the same type as the value identified by the
4483indices.
4484
4485Semantics:
4486""""""""""
4487
4488The result is an aggregate of the same type as ``val``. Its value is
4489that of ``val`` except that the value at the position specified by the
4490indices is that of ``elt``.
4491
4492Example:
4493""""""""
4494
4495.. code-block:: llvm
4496
4497 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4498 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4499 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4500
4501.. _memoryops:
4502
4503Memory Access and Addressing Operations
4504---------------------------------------
4505
4506A key design point of an SSA-based representation is how it represents
4507memory. In LLVM, no memory locations are in SSA form, which makes things
4508very simple. This section describes how to read, write, and allocate
4509memory in LLVM.
4510
4511.. _i_alloca:
4512
4513'``alloca``' Instruction
4514^^^^^^^^^^^^^^^^^^^^^^^^
4515
4516Syntax:
4517"""""""
4518
4519::
4520
4521 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4522
4523Overview:
4524"""""""""
4525
4526The '``alloca``' instruction allocates memory on the stack frame of the
4527currently executing function, to be automatically released when this
4528function returns to its caller. The object is always allocated in the
4529generic address space (address space zero).
4530
4531Arguments:
4532""""""""""
4533
4534The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4535bytes of memory on the runtime stack, returning a pointer of the
4536appropriate type to the program. If "NumElements" is specified, it is
4537the number of elements allocated, otherwise "NumElements" is defaulted
4538to be one. If a constant alignment is specified, the value result of the
4539allocation is guaranteed to be aligned to at least that boundary. If not
4540specified, or if zero, the target can choose to align the allocation on
4541any convenient boundary compatible with the type.
4542
4543'``type``' may be any sized type.
4544
4545Semantics:
4546""""""""""
4547
4548Memory is allocated; a pointer is returned. The operation is undefined
4549if there is insufficient stack space for the allocation. '``alloca``'d
4550memory is automatically released when the function returns. The
4551'``alloca``' instruction is commonly used to represent automatic
4552variables that must have an address available. When the function returns
4553(either with the ``ret`` or ``resume`` instructions), the memory is
4554reclaimed. Allocating zero bytes is legal, but the result is undefined.
4555The order in which memory is allocated (ie., which way the stack grows)
4556is not specified.
4557
4558Example:
4559""""""""
4560
4561.. code-block:: llvm
4562
4563 %ptr = alloca i32 ; yields {i32*}:ptr
4564 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4565 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4566 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4567
4568.. _i_load:
4569
4570'``load``' Instruction
4571^^^^^^^^^^^^^^^^^^^^^^
4572
4573Syntax:
4574"""""""
4575
4576::
4577
4578 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4579 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4580 !<index> = !{ i32 1 }
4581
4582Overview:
4583"""""""""
4584
4585The '``load``' instruction is used to read from memory.
4586
4587Arguments:
4588""""""""""
4589
Eli Bendersky8c493382013-04-17 20:17:08 +00004590The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004591from which to load. The pointer must point to a :ref:`first
4592class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4593then the optimizer is not allowed to modify the number or order of
4594execution of this ``load`` with other :ref:`volatile
4595operations <volatile>`.
4596
4597If the ``load`` is marked as ``atomic``, it takes an extra
4598:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4599``release`` and ``acq_rel`` orderings are not valid on ``load``
4600instructions. Atomic loads produce :ref:`defined <memmodel>` results
4601when they may see multiple atomic stores. The type of the pointee must
4602be an integer type whose bit width is a power of two greater than or
4603equal to eight and less than or equal to a target-specific size limit.
4604``align`` must be explicitly specified on atomic loads, and the load has
4605undefined behavior if the alignment is not set to a value which is at
4606least the size in bytes of the pointee. ``!nontemporal`` does not have
4607any defined semantics for atomic loads.
4608
4609The optional constant ``align`` argument specifies the alignment of the
4610operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004611or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004612alignment for the target. It is the responsibility of the code emitter
4613to ensure that the alignment information is correct. Overestimating the
4614alignment results in undefined behavior. Underestimating the alignment
4615may produce less efficient code. An alignment of 1 is always safe.
4616
4617The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004618metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004619``i32`` entry of value 1. The existence of the ``!nontemporal``
4620metatadata on the instruction tells the optimizer and code generator
4621that this load is not expected to be reused in the cache. The code
4622generator may select special instructions to save cache bandwidth, such
4623as the ``MOVNT`` instruction on x86.
4624
4625The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004626metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004627entries. The existence of the ``!invariant.load`` metatadata on the
4628instruction tells the optimizer and code generator that this load
4629address points to memory which does not change value during program
4630execution. The optimizer may then move this load around, for example, by
4631hoisting it out of loops using loop invariant code motion.
4632
4633Semantics:
4634""""""""""
4635
4636The location of memory pointed to is loaded. If the value being loaded
4637is of scalar type then the number of bytes read does not exceed the
4638minimum number of bytes needed to hold all bits of the type. For
4639example, loading an ``i24`` reads at most three bytes. When loading a
4640value of a type like ``i20`` with a size that is not an integral number
4641of bytes, the result is undefined if the value was not originally
4642written using a store of the same type.
4643
4644Examples:
4645"""""""""
4646
4647.. code-block:: llvm
4648
4649 %ptr = alloca i32 ; yields {i32*}:ptr
4650 store i32 3, i32* %ptr ; yields {void}
4651 %val = load i32* %ptr ; yields {i32}:val = i32 3
4652
4653.. _i_store:
4654
4655'``store``' Instruction
4656^^^^^^^^^^^^^^^^^^^^^^^
4657
4658Syntax:
4659"""""""
4660
4661::
4662
4663 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4664 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4665
4666Overview:
4667"""""""""
4668
4669The '``store``' instruction is used to write to memory.
4670
4671Arguments:
4672""""""""""
4673
Eli Bendersky8952d902013-04-17 17:17:20 +00004674There are two arguments to the ``store`` instruction: a value to store
4675and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004676operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004677the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004678then the optimizer is not allowed to modify the number or order of
4679execution of this ``store`` with other :ref:`volatile
4680operations <volatile>`.
4681
4682If the ``store`` is marked as ``atomic``, it takes an extra
4683:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4684``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4685instructions. Atomic loads produce :ref:`defined <memmodel>` results
4686when they may see multiple atomic stores. The type of the pointee must
4687be an integer type whose bit width is a power of two greater than or
4688equal to eight and less than or equal to a target-specific size limit.
4689``align`` must be explicitly specified on atomic stores, and the store
4690has undefined behavior if the alignment is not set to a value which is
4691at least the size in bytes of the pointee. ``!nontemporal`` does not
4692have any defined semantics for atomic stores.
4693
Eli Bendersky8952d902013-04-17 17:17:20 +00004694The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004695operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004696or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004697alignment for the target. It is the responsibility of the code emitter
4698to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004699alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004700alignment may produce less efficient code. An alignment of 1 is always
4701safe.
4702
Eli Bendersky8952d902013-04-17 17:17:20 +00004703The optional ``!nontemporal`` metadata must reference a single metatadata
4704name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4705value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004706tells the optimizer and code generator that this load is not expected to
4707be reused in the cache. The code generator may select special
4708instructions to save cache bandwidth, such as the MOVNT instruction on
4709x86.
4710
4711Semantics:
4712""""""""""
4713
Eli Bendersky8952d902013-04-17 17:17:20 +00004714The contents of memory are updated to contain ``<value>`` at the
4715location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004716of scalar type then the number of bytes written does not exceed the
4717minimum number of bytes needed to hold all bits of the type. For
4718example, storing an ``i24`` writes at most three bytes. When writing a
4719value of a type like ``i20`` with a size that is not an integral number
4720of bytes, it is unspecified what happens to the extra bits that do not
4721belong to the type, but they will typically be overwritten.
4722
4723Example:
4724""""""""
4725
4726.. code-block:: llvm
4727
4728 %ptr = alloca i32 ; yields {i32*}:ptr
4729 store i32 3, i32* %ptr ; yields {void}
4730 %val = load i32* %ptr ; yields {i32}:val = i32 3
4731
4732.. _i_fence:
4733
4734'``fence``' Instruction
4735^^^^^^^^^^^^^^^^^^^^^^^
4736
4737Syntax:
4738"""""""
4739
4740::
4741
4742 fence [singlethread] <ordering> ; yields {void}
4743
4744Overview:
4745"""""""""
4746
4747The '``fence``' instruction is used to introduce happens-before edges
4748between operations.
4749
4750Arguments:
4751""""""""""
4752
4753'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4754defines what *synchronizes-with* edges they add. They can only be given
4755``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4756
4757Semantics:
4758""""""""""
4759
4760A fence A which has (at least) ``release`` ordering semantics
4761*synchronizes with* a fence B with (at least) ``acquire`` ordering
4762semantics if and only if there exist atomic operations X and Y, both
4763operating on some atomic object M, such that A is sequenced before X, X
4764modifies M (either directly or through some side effect of a sequence
4765headed by X), Y is sequenced before B, and Y observes M. This provides a
4766*happens-before* dependency between A and B. Rather than an explicit
4767``fence``, one (but not both) of the atomic operations X or Y might
4768provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4769still *synchronize-with* the explicit ``fence`` and establish the
4770*happens-before* edge.
4771
4772A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4773``acquire`` and ``release`` semantics specified above, participates in
4774the global program order of other ``seq_cst`` operations and/or fences.
4775
4776The optional ":ref:`singlethread <singlethread>`" argument specifies
4777that the fence only synchronizes with other fences in the same thread.
4778(This is useful for interacting with signal handlers.)
4779
4780Example:
4781""""""""
4782
4783.. code-block:: llvm
4784
4785 fence acquire ; yields {void}
4786 fence singlethread seq_cst ; yields {void}
4787
4788.. _i_cmpxchg:
4789
4790'``cmpxchg``' Instruction
4791^^^^^^^^^^^^^^^^^^^^^^^^^
4792
4793Syntax:
4794"""""""
4795
4796::
4797
4798 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4799
4800Overview:
4801"""""""""
4802
4803The '``cmpxchg``' instruction is used to atomically modify memory. It
4804loads a value in memory and compares it to a given value. If they are
4805equal, it stores a new value into the memory.
4806
4807Arguments:
4808""""""""""
4809
4810There are three arguments to the '``cmpxchg``' instruction: an address
4811to operate on, a value to compare to the value currently be at that
4812address, and a new value to place at that address if the compared values
4813are equal. The type of '<cmp>' must be an integer type whose bit width
4814is a power of two greater than or equal to eight and less than or equal
4815to a target-specific size limit. '<cmp>' and '<new>' must have the same
4816type, and the type of '<pointer>' must be a pointer to that type. If the
4817``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4818to modify the number or order of execution of this ``cmpxchg`` with
4819other :ref:`volatile operations <volatile>`.
4820
4821The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4822synchronizes with other atomic operations.
4823
4824The optional "``singlethread``" argument declares that the ``cmpxchg``
4825is only atomic with respect to code (usually signal handlers) running in
4826the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4827respect to all other code in the system.
4828
4829The pointer passed into cmpxchg must have alignment greater than or
4830equal to the size in memory of the operand.
4831
4832Semantics:
4833""""""""""
4834
4835The contents of memory at the location specified by the '``<pointer>``'
4836operand is read and compared to '``<cmp>``'; if the read value is the
4837equal, '``<new>``' is written. The original value at the location is
4838returned.
4839
4840A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4841of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4842atomic load with an ordering parameter determined by dropping any
4843``release`` part of the ``cmpxchg``'s ordering.
4844
4845Example:
4846""""""""
4847
4848.. code-block:: llvm
4849
4850 entry:
4851 %orig = atomic load i32* %ptr unordered ; yields {i32}
4852 br label %loop
4853
4854 loop:
4855 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4856 %squared = mul i32 %cmp, %cmp
4857 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4858 %success = icmp eq i32 %cmp, %old
4859 br i1 %success, label %done, label %loop
4860
4861 done:
4862 ...
4863
4864.. _i_atomicrmw:
4865
4866'``atomicrmw``' Instruction
4867^^^^^^^^^^^^^^^^^^^^^^^^^^^
4868
4869Syntax:
4870"""""""
4871
4872::
4873
4874 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4875
4876Overview:
4877"""""""""
4878
4879The '``atomicrmw``' instruction is used to atomically modify memory.
4880
4881Arguments:
4882""""""""""
4883
4884There are three arguments to the '``atomicrmw``' instruction: an
4885operation to apply, an address whose value to modify, an argument to the
4886operation. The operation must be one of the following keywords:
4887
4888- xchg
4889- add
4890- sub
4891- and
4892- nand
4893- or
4894- xor
4895- max
4896- min
4897- umax
4898- umin
4899
4900The type of '<value>' must be an integer type whose bit width is a power
4901of two greater than or equal to eight and less than or equal to a
4902target-specific size limit. The type of the '``<pointer>``' operand must
4903be a pointer to that type. If the ``atomicrmw`` is marked as
4904``volatile``, then the optimizer is not allowed to modify the number or
4905order of execution of this ``atomicrmw`` with other :ref:`volatile
4906operations <volatile>`.
4907
4908Semantics:
4909""""""""""
4910
4911The contents of memory at the location specified by the '``<pointer>``'
4912operand are atomically read, modified, and written back. The original
4913value at the location is returned. The modification is specified by the
4914operation argument:
4915
4916- xchg: ``*ptr = val``
4917- add: ``*ptr = *ptr + val``
4918- sub: ``*ptr = *ptr - val``
4919- and: ``*ptr = *ptr & val``
4920- nand: ``*ptr = ~(*ptr & val)``
4921- or: ``*ptr = *ptr | val``
4922- xor: ``*ptr = *ptr ^ val``
4923- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4924- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4925- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4926 comparison)
4927- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4928 comparison)
4929
4930Example:
4931""""""""
4932
4933.. code-block:: llvm
4934
4935 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4936
4937.. _i_getelementptr:
4938
4939'``getelementptr``' Instruction
4940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4941
4942Syntax:
4943"""""""
4944
4945::
4946
4947 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4948 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4949 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4950
4951Overview:
4952"""""""""
4953
4954The '``getelementptr``' instruction is used to get the address of a
4955subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4956address calculation only and does not access memory.
4957
4958Arguments:
4959""""""""""
4960
4961The first argument is always a pointer or a vector of pointers, and
4962forms the basis of the calculation. The remaining arguments are indices
4963that indicate which of the elements of the aggregate object are indexed.
4964The interpretation of each index is dependent on the type being indexed
4965into. The first index always indexes the pointer value given as the
4966first argument, the second index indexes a value of the type pointed to
4967(not necessarily the value directly pointed to, since the first index
4968can be non-zero), etc. The first type indexed into must be a pointer
4969value, subsequent types can be arrays, vectors, and structs. Note that
4970subsequent types being indexed into can never be pointers, since that
4971would require loading the pointer before continuing calculation.
4972
4973The type of each index argument depends on the type it is indexing into.
4974When indexing into a (optionally packed) structure, only ``i32`` integer
4975**constants** are allowed (when using a vector of indices they must all
4976be the **same** ``i32`` integer constant). When indexing into an array,
4977pointer or vector, integers of any width are allowed, and they are not
4978required to be constant. These integers are treated as signed values
4979where relevant.
4980
4981For example, let's consider a C code fragment and how it gets compiled
4982to LLVM:
4983
4984.. code-block:: c
4985
4986 struct RT {
4987 char A;
4988 int B[10][20];
4989 char C;
4990 };
4991 struct ST {
4992 int X;
4993 double Y;
4994 struct RT Z;
4995 };
4996
4997 int *foo(struct ST *s) {
4998 return &s[1].Z.B[5][13];
4999 }
5000
5001The LLVM code generated by Clang is:
5002
5003.. code-block:: llvm
5004
5005 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5006 %struct.ST = type { i32, double, %struct.RT }
5007
5008 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5009 entry:
5010 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5011 ret i32* %arrayidx
5012 }
5013
5014Semantics:
5015""""""""""
5016
5017In the example above, the first index is indexing into the
5018'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5019= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5020indexes into the third element of the structure, yielding a
5021'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5022structure. The third index indexes into the second element of the
5023structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5024dimensions of the array are subscripted into, yielding an '``i32``'
5025type. The '``getelementptr``' instruction returns a pointer to this
5026element, thus computing a value of '``i32*``' type.
5027
5028Note that it is perfectly legal to index partially through a structure,
5029returning a pointer to an inner element. Because of this, the LLVM code
5030for the given testcase is equivalent to:
5031
5032.. code-block:: llvm
5033
5034 define i32* @foo(%struct.ST* %s) {
5035 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5036 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5037 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5038 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5039 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5040 ret i32* %t5
5041 }
5042
5043If the ``inbounds`` keyword is present, the result value of the
5044``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5045pointer is not an *in bounds* address of an allocated object, or if any
5046of the addresses that would be formed by successive addition of the
5047offsets implied by the indices to the base address with infinitely
5048precise signed arithmetic are not an *in bounds* address of that
5049allocated object. The *in bounds* addresses for an allocated object are
5050all the addresses that point into the object, plus the address one byte
5051past the end. In cases where the base is a vector of pointers the
5052``inbounds`` keyword applies to each of the computations element-wise.
5053
5054If the ``inbounds`` keyword is not present, the offsets are added to the
5055base address with silently-wrapping two's complement arithmetic. If the
5056offsets have a different width from the pointer, they are sign-extended
5057or truncated to the width of the pointer. The result value of the
5058``getelementptr`` may be outside the object pointed to by the base
5059pointer. The result value may not necessarily be used to access memory
5060though, even if it happens to point into allocated storage. See the
5061:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5062information.
5063
5064The getelementptr instruction is often confusing. For some more insight
5065into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5066
5067Example:
5068""""""""
5069
5070.. code-block:: llvm
5071
5072 ; yields [12 x i8]*:aptr
5073 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5074 ; yields i8*:vptr
5075 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5076 ; yields i8*:eptr
5077 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5078 ; yields i32*:iptr
5079 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5080
5081In cases where the pointer argument is a vector of pointers, each index
5082must be a vector with the same number of elements. For example:
5083
5084.. code-block:: llvm
5085
5086 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5087
5088Conversion Operations
5089---------------------
5090
5091The instructions in this category are the conversion instructions
5092(casting) which all take a single operand and a type. They perform
5093various bit conversions on the operand.
5094
5095'``trunc .. to``' Instruction
5096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5097
5098Syntax:
5099"""""""
5100
5101::
5102
5103 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5104
5105Overview:
5106"""""""""
5107
5108The '``trunc``' instruction truncates its operand to the type ``ty2``.
5109
5110Arguments:
5111""""""""""
5112
5113The '``trunc``' instruction takes a value to trunc, and a type to trunc
5114it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5115of the same number of integers. The bit size of the ``value`` must be
5116larger than the bit size of the destination type, ``ty2``. Equal sized
5117types are not allowed.
5118
5119Semantics:
5120""""""""""
5121
5122The '``trunc``' instruction truncates the high order bits in ``value``
5123and converts the remaining bits to ``ty2``. Since the source size must
5124be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5125It will always truncate bits.
5126
5127Example:
5128""""""""
5129
5130.. code-block:: llvm
5131
5132 %X = trunc i32 257 to i8 ; yields i8:1
5133 %Y = trunc i32 123 to i1 ; yields i1:true
5134 %Z = trunc i32 122 to i1 ; yields i1:false
5135 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5136
5137'``zext .. to``' Instruction
5138^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5139
5140Syntax:
5141"""""""
5142
5143::
5144
5145 <result> = zext <ty> <value> to <ty2> ; yields ty2
5146
5147Overview:
5148"""""""""
5149
5150The '``zext``' instruction zero extends its operand to type ``ty2``.
5151
5152Arguments:
5153""""""""""
5154
5155The '``zext``' instruction takes a value to cast, and a type to cast it
5156to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5157the same number of integers. The bit size of the ``value`` must be
5158smaller than the bit size of the destination type, ``ty2``.
5159
5160Semantics:
5161""""""""""
5162
5163The ``zext`` fills the high order bits of the ``value`` with zero bits
5164until it reaches the size of the destination type, ``ty2``.
5165
5166When zero extending from i1, the result will always be either 0 or 1.
5167
5168Example:
5169""""""""
5170
5171.. code-block:: llvm
5172
5173 %X = zext i32 257 to i64 ; yields i64:257
5174 %Y = zext i1 true to i32 ; yields i32:1
5175 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5176
5177'``sext .. to``' Instruction
5178^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5179
5180Syntax:
5181"""""""
5182
5183::
5184
5185 <result> = sext <ty> <value> to <ty2> ; yields ty2
5186
5187Overview:
5188"""""""""
5189
5190The '``sext``' sign extends ``value`` to the type ``ty2``.
5191
5192Arguments:
5193""""""""""
5194
5195The '``sext``' instruction takes a value to cast, and a type to cast it
5196to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5197the same number of integers. The bit size of the ``value`` must be
5198smaller than the bit size of the destination type, ``ty2``.
5199
5200Semantics:
5201""""""""""
5202
5203The '``sext``' instruction performs a sign extension by copying the sign
5204bit (highest order bit) of the ``value`` until it reaches the bit size
5205of the type ``ty2``.
5206
5207When sign extending from i1, the extension always results in -1 or 0.
5208
5209Example:
5210""""""""
5211
5212.. code-block:: llvm
5213
5214 %X = sext i8 -1 to i16 ; yields i16 :65535
5215 %Y = sext i1 true to i32 ; yields i32:-1
5216 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5217
5218'``fptrunc .. to``' Instruction
5219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5220
5221Syntax:
5222"""""""
5223
5224::
5225
5226 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5227
5228Overview:
5229"""""""""
5230
5231The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5232
5233Arguments:
5234""""""""""
5235
5236The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5237value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5238The size of ``value`` must be larger than the size of ``ty2``. This
5239implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5240
5241Semantics:
5242""""""""""
5243
5244The '``fptrunc``' instruction truncates a ``value`` from a larger
5245:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5246point <t_floating>` type. If the value cannot fit within the
5247destination type, ``ty2``, then the results are undefined.
5248
5249Example:
5250""""""""
5251
5252.. code-block:: llvm
5253
5254 %X = fptrunc double 123.0 to float ; yields float:123.0
5255 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5256
5257'``fpext .. to``' Instruction
5258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5259
5260Syntax:
5261"""""""
5262
5263::
5264
5265 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5266
5267Overview:
5268"""""""""
5269
5270The '``fpext``' extends a floating point ``value`` to a larger floating
5271point value.
5272
5273Arguments:
5274""""""""""
5275
5276The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5277``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5278to. The source type must be smaller than the destination type.
5279
5280Semantics:
5281""""""""""
5282
5283The '``fpext``' instruction extends the ``value`` from a smaller
5284:ref:`floating point <t_floating>` type to a larger :ref:`floating
5285point <t_floating>` type. The ``fpext`` cannot be used to make a
5286*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5287*no-op cast* for a floating point cast.
5288
5289Example:
5290""""""""
5291
5292.. code-block:: llvm
5293
5294 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5295 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5296
5297'``fptoui .. to``' Instruction
5298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5299
5300Syntax:
5301"""""""
5302
5303::
5304
5305 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5306
5307Overview:
5308"""""""""
5309
5310The '``fptoui``' converts a floating point ``value`` to its unsigned
5311integer equivalent of type ``ty2``.
5312
5313Arguments:
5314""""""""""
5315
5316The '``fptoui``' instruction takes a value to cast, which must be a
5317scalar or vector :ref:`floating point <t_floating>` value, and a type to
5318cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5319``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5320type with the same number of elements as ``ty``
5321
5322Semantics:
5323""""""""""
5324
5325The '``fptoui``' instruction converts its :ref:`floating
5326point <t_floating>` operand into the nearest (rounding towards zero)
5327unsigned integer value. If the value cannot fit in ``ty2``, the results
5328are undefined.
5329
5330Example:
5331""""""""
5332
5333.. code-block:: llvm
5334
5335 %X = fptoui double 123.0 to i32 ; yields i32:123
5336 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5337 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5338
5339'``fptosi .. to``' Instruction
5340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5341
5342Syntax:
5343"""""""
5344
5345::
5346
5347 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5348
5349Overview:
5350"""""""""
5351
5352The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5353``value`` to type ``ty2``.
5354
5355Arguments:
5356""""""""""
5357
5358The '``fptosi``' instruction takes a value to cast, which must be a
5359scalar or vector :ref:`floating point <t_floating>` value, and a type to
5360cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5361``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5362type with the same number of elements as ``ty``
5363
5364Semantics:
5365""""""""""
5366
5367The '``fptosi``' instruction converts its :ref:`floating
5368point <t_floating>` operand into the nearest (rounding towards zero)
5369signed integer value. If the value cannot fit in ``ty2``, the results
5370are undefined.
5371
5372Example:
5373""""""""
5374
5375.. code-block:: llvm
5376
5377 %X = fptosi double -123.0 to i32 ; yields i32:-123
5378 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5379 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5380
5381'``uitofp .. to``' Instruction
5382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5383
5384Syntax:
5385"""""""
5386
5387::
5388
5389 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5390
5391Overview:
5392"""""""""
5393
5394The '``uitofp``' instruction regards ``value`` as an unsigned integer
5395and converts that value to the ``ty2`` type.
5396
5397Arguments:
5398""""""""""
5399
5400The '``uitofp``' instruction takes a value to cast, which must be a
5401scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5402``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5403``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5404type with the same number of elements as ``ty``
5405
5406Semantics:
5407""""""""""
5408
5409The '``uitofp``' instruction interprets its operand as an unsigned
5410integer quantity and converts it to the corresponding floating point
5411value. If the value cannot fit in the floating point value, the results
5412are undefined.
5413
5414Example:
5415""""""""
5416
5417.. code-block:: llvm
5418
5419 %X = uitofp i32 257 to float ; yields float:257.0
5420 %Y = uitofp i8 -1 to double ; yields double:255.0
5421
5422'``sitofp .. to``' Instruction
5423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5424
5425Syntax:
5426"""""""
5427
5428::
5429
5430 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5431
5432Overview:
5433"""""""""
5434
5435The '``sitofp``' instruction regards ``value`` as a signed integer and
5436converts that value to the ``ty2`` type.
5437
5438Arguments:
5439""""""""""
5440
5441The '``sitofp``' instruction takes a value to cast, which must be a
5442scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5443``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5444``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5445type with the same number of elements as ``ty``
5446
5447Semantics:
5448""""""""""
5449
5450The '``sitofp``' instruction interprets its operand as a signed integer
5451quantity and converts it to the corresponding floating point value. If
5452the value cannot fit in the floating point value, the results are
5453undefined.
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
5460 %X = sitofp i32 257 to float ; yields float:257.0
5461 %Y = sitofp i8 -1 to double ; yields double:-1.0
5462
5463.. _i_ptrtoint:
5464
5465'``ptrtoint .. to``' Instruction
5466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5467
5468Syntax:
5469"""""""
5470
5471::
5472
5473 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5474
5475Overview:
5476"""""""""
5477
5478The '``ptrtoint``' instruction converts the pointer or a vector of
5479pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5480
5481Arguments:
5482""""""""""
5483
5484The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5485a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5486type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5487a vector of integers type.
5488
5489Semantics:
5490""""""""""
5491
5492The '``ptrtoint``' instruction converts ``value`` to integer type
5493``ty2`` by interpreting the pointer value as an integer and either
5494truncating or zero extending that value to the size of the integer type.
5495If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5496``value`` is larger than ``ty2`` then a truncation is done. If they are
5497the same size, then nothing is done (*no-op cast*) other than a type
5498change.
5499
5500Example:
5501""""""""
5502
5503.. code-block:: llvm
5504
5505 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5506 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5507 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5508
5509.. _i_inttoptr:
5510
5511'``inttoptr .. to``' Instruction
5512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5513
5514Syntax:
5515"""""""
5516
5517::
5518
5519 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5520
5521Overview:
5522"""""""""
5523
5524The '``inttoptr``' instruction converts an integer ``value`` to a
5525pointer type, ``ty2``.
5526
5527Arguments:
5528""""""""""
5529
5530The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5531cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5532type.
5533
5534Semantics:
5535""""""""""
5536
5537The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5538applying either a zero extension or a truncation depending on the size
5539of the integer ``value``. If ``value`` is larger than the size of a
5540pointer then a truncation is done. If ``value`` is smaller than the size
5541of a pointer then a zero extension is done. If they are the same size,
5542nothing is done (*no-op cast*).
5543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
5549 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5550 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5551 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5552 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5553
5554.. _i_bitcast:
5555
5556'``bitcast .. to``' Instruction
5557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5558
5559Syntax:
5560"""""""
5561
5562::
5563
5564 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5565
5566Overview:
5567"""""""""
5568
5569The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5570changing any bits.
5571
5572Arguments:
5573""""""""""
5574
5575The '``bitcast``' instruction takes a value to cast, which must be a
5576non-aggregate first class value, and a type to cast it to, which must
5577also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5578sizes of ``value`` and the destination type, ``ty2``, must be identical.
5579If the source type is a pointer, the destination type must also be a
5580pointer. This instruction supports bitwise conversion of vectors to
5581integers and to vectors of other types (as long as they have the same
5582size).
5583
5584Semantics:
5585""""""""""
5586
5587The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5588always a *no-op cast* because no bits change with this conversion. The
5589conversion is done as if the ``value`` had been stored to memory and
5590read back as type ``ty2``. Pointer (or vector of pointers) types may
5591only be converted to other pointer (or vector of pointers) types with
5592this instruction. To convert pointers to other types, use the
5593:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5594first.
5595
5596Example:
5597""""""""
5598
5599.. code-block:: llvm
5600
5601 %X = bitcast i8 255 to i8 ; yields i8 :-1
5602 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5603 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5604 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5605
5606.. _otherops:
5607
5608Other Operations
5609----------------
5610
5611The instructions in this category are the "miscellaneous" instructions,
5612which defy better classification.
5613
5614.. _i_icmp:
5615
5616'``icmp``' Instruction
5617^^^^^^^^^^^^^^^^^^^^^^
5618
5619Syntax:
5620"""""""
5621
5622::
5623
5624 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5625
5626Overview:
5627"""""""""
5628
5629The '``icmp``' instruction returns a boolean value or a vector of
5630boolean values based on comparison of its two integer, integer vector,
5631pointer, or pointer vector operands.
5632
5633Arguments:
5634""""""""""
5635
5636The '``icmp``' instruction takes three operands. The first operand is
5637the condition code indicating the kind of comparison to perform. It is
5638not a value, just a keyword. The possible condition code are:
5639
5640#. ``eq``: equal
5641#. ``ne``: not equal
5642#. ``ugt``: unsigned greater than
5643#. ``uge``: unsigned greater or equal
5644#. ``ult``: unsigned less than
5645#. ``ule``: unsigned less or equal
5646#. ``sgt``: signed greater than
5647#. ``sge``: signed greater or equal
5648#. ``slt``: signed less than
5649#. ``sle``: signed less or equal
5650
5651The remaining two arguments must be :ref:`integer <t_integer>` or
5652:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5653must also be identical types.
5654
5655Semantics:
5656""""""""""
5657
5658The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5659code given as ``cond``. The comparison performed always yields either an
5660:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5661
5662#. ``eq``: yields ``true`` if the operands are equal, ``false``
5663 otherwise. No sign interpretation is necessary or performed.
5664#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5665 otherwise. No sign interpretation is necessary or performed.
5666#. ``ugt``: interprets the operands as unsigned values and yields
5667 ``true`` if ``op1`` is greater than ``op2``.
5668#. ``uge``: interprets the operands as unsigned values and yields
5669 ``true`` if ``op1`` is greater than or equal to ``op2``.
5670#. ``ult``: interprets the operands as unsigned values and yields
5671 ``true`` if ``op1`` is less than ``op2``.
5672#. ``ule``: interprets the operands as unsigned values and yields
5673 ``true`` if ``op1`` is less than or equal to ``op2``.
5674#. ``sgt``: interprets the operands as signed values and yields ``true``
5675 if ``op1`` is greater than ``op2``.
5676#. ``sge``: interprets the operands as signed values and yields ``true``
5677 if ``op1`` is greater than or equal to ``op2``.
5678#. ``slt``: interprets the operands as signed values and yields ``true``
5679 if ``op1`` is less than ``op2``.
5680#. ``sle``: interprets the operands as signed values and yields ``true``
5681 if ``op1`` is less than or equal to ``op2``.
5682
5683If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5684are compared as if they were integers.
5685
5686If the operands are integer vectors, then they are compared element by
5687element. The result is an ``i1`` vector with the same number of elements
5688as the values being compared. Otherwise, the result is an ``i1``.
5689
5690Example:
5691""""""""
5692
5693.. code-block:: llvm
5694
5695 <result> = icmp eq i32 4, 5 ; yields: result=false
5696 <result> = icmp ne float* %X, %X ; yields: result=false
5697 <result> = icmp ult i16 4, 5 ; yields: result=true
5698 <result> = icmp sgt i16 4, 5 ; yields: result=false
5699 <result> = icmp ule i16 -4, 5 ; yields: result=false
5700 <result> = icmp sge i16 4, 5 ; yields: result=false
5701
5702Note that the code generator does not yet support vector types with the
5703``icmp`` instruction.
5704
5705.. _i_fcmp:
5706
5707'``fcmp``' Instruction
5708^^^^^^^^^^^^^^^^^^^^^^
5709
5710Syntax:
5711"""""""
5712
5713::
5714
5715 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5716
5717Overview:
5718"""""""""
5719
5720The '``fcmp``' instruction returns a boolean value or vector of boolean
5721values based on comparison of its operands.
5722
5723If the operands are floating point scalars, then the result type is a
5724boolean (:ref:`i1 <t_integer>`).
5725
5726If the operands are floating point vectors, then the result type is a
5727vector of boolean with the same number of elements as the operands being
5728compared.
5729
5730Arguments:
5731""""""""""
5732
5733The '``fcmp``' instruction takes three operands. The first operand is
5734the condition code indicating the kind of comparison to perform. It is
5735not a value, just a keyword. The possible condition code are:
5736
5737#. ``false``: no comparison, always returns false
5738#. ``oeq``: ordered and equal
5739#. ``ogt``: ordered and greater than
5740#. ``oge``: ordered and greater than or equal
5741#. ``olt``: ordered and less than
5742#. ``ole``: ordered and less than or equal
5743#. ``one``: ordered and not equal
5744#. ``ord``: ordered (no nans)
5745#. ``ueq``: unordered or equal
5746#. ``ugt``: unordered or greater than
5747#. ``uge``: unordered or greater than or equal
5748#. ``ult``: unordered or less than
5749#. ``ule``: unordered or less than or equal
5750#. ``une``: unordered or not equal
5751#. ``uno``: unordered (either nans)
5752#. ``true``: no comparison, always returns true
5753
5754*Ordered* means that neither operand is a QNAN while *unordered* means
5755that either operand may be a QNAN.
5756
5757Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5758point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5759type. They must have identical types.
5760
5761Semantics:
5762""""""""""
5763
5764The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5765condition code given as ``cond``. If the operands are vectors, then the
5766vectors are compared element by element. Each comparison performed
5767always yields an :ref:`i1 <t_integer>` result, as follows:
5768
5769#. ``false``: always yields ``false``, regardless of operands.
5770#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5771 is equal to ``op2``.
5772#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5773 is greater than ``op2``.
5774#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5775 is greater than or equal to ``op2``.
5776#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5777 is less than ``op2``.
5778#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5779 is less than or equal to ``op2``.
5780#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5781 is not equal to ``op2``.
5782#. ``ord``: yields ``true`` if both operands are not a QNAN.
5783#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5784 equal to ``op2``.
5785#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5786 greater than ``op2``.
5787#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5788 greater than or equal to ``op2``.
5789#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5790 less than ``op2``.
5791#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5792 less than or equal to ``op2``.
5793#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5794 not equal to ``op2``.
5795#. ``uno``: yields ``true`` if either operand is a QNAN.
5796#. ``true``: always yields ``true``, regardless of operands.
5797
5798Example:
5799""""""""
5800
5801.. code-block:: llvm
5802
5803 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5804 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5805 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5806 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5807
5808Note that the code generator does not yet support vector types with the
5809``fcmp`` instruction.
5810
5811.. _i_phi:
5812
5813'``phi``' Instruction
5814^^^^^^^^^^^^^^^^^^^^^
5815
5816Syntax:
5817"""""""
5818
5819::
5820
5821 <result> = phi <ty> [ <val0>, <label0>], ...
5822
5823Overview:
5824"""""""""
5825
5826The '``phi``' instruction is used to implement the φ node in the SSA
5827graph representing the function.
5828
5829Arguments:
5830""""""""""
5831
5832The type of the incoming values is specified with the first type field.
5833After this, the '``phi``' instruction takes a list of pairs as
5834arguments, with one pair for each predecessor basic block of the current
5835block. Only values of :ref:`first class <t_firstclass>` type may be used as
5836the value arguments to the PHI node. Only labels may be used as the
5837label arguments.
5838
5839There must be no non-phi instructions between the start of a basic block
5840and the PHI instructions: i.e. PHI instructions must be first in a basic
5841block.
5842
5843For the purposes of the SSA form, the use of each incoming value is
5844deemed to occur on the edge from the corresponding predecessor block to
5845the current block (but after any definition of an '``invoke``'
5846instruction's return value on the same edge).
5847
5848Semantics:
5849""""""""""
5850
5851At runtime, the '``phi``' instruction logically takes on the value
5852specified by the pair corresponding to the predecessor basic block that
5853executed just prior to the current block.
5854
5855Example:
5856""""""""
5857
5858.. code-block:: llvm
5859
5860 Loop: ; Infinite loop that counts from 0 on up...
5861 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5862 %nextindvar = add i32 %indvar, 1
5863 br label %Loop
5864
5865.. _i_select:
5866
5867'``select``' Instruction
5868^^^^^^^^^^^^^^^^^^^^^^^^
5869
5870Syntax:
5871"""""""
5872
5873::
5874
5875 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5876
5877 selty is either i1 or {<N x i1>}
5878
5879Overview:
5880"""""""""
5881
5882The '``select``' instruction is used to choose one value based on a
5883condition, without branching.
5884
5885Arguments:
5886""""""""""
5887
5888The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5889values indicating the condition, and two values of the same :ref:`first
5890class <t_firstclass>` type. If the val1/val2 are vectors and the
5891condition is a scalar, then entire vectors are selected, not individual
5892elements.
5893
5894Semantics:
5895""""""""""
5896
5897If the condition is an i1 and it evaluates to 1, the instruction returns
5898the first value argument; otherwise, it returns the second value
5899argument.
5900
5901If the condition is a vector of i1, then the value arguments must be
5902vectors of the same size, and the selection is done element by element.
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
5909 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5910
5911.. _i_call:
5912
5913'``call``' Instruction
5914^^^^^^^^^^^^^^^^^^^^^^
5915
5916Syntax:
5917"""""""
5918
5919::
5920
5921 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5922
5923Overview:
5924"""""""""
5925
5926The '``call``' instruction represents a simple function call.
5927
5928Arguments:
5929""""""""""
5930
5931This instruction requires several arguments:
5932
5933#. The optional "tail" marker indicates that the callee function does
5934 not access any allocas or varargs in the caller. Note that calls may
5935 be marked "tail" even if they do not occur before a
5936 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5937 function call is eligible for tail call optimization, but `might not
5938 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5939 The code generator may optimize calls marked "tail" with either 1)
5940 automatic `sibling call
5941 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5942 callee have matching signatures, or 2) forced tail call optimization
5943 when the following extra requirements are met:
5944
5945 - Caller and callee both have the calling convention ``fastcc``.
5946 - The call is in tail position (ret immediately follows call and ret
5947 uses value of call or is void).
5948 - Option ``-tailcallopt`` is enabled, or
5949 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5950 - `Platform specific constraints are
5951 met. <CodeGenerator.html#tailcallopt>`_
5952
5953#. The optional "cconv" marker indicates which :ref:`calling
5954 convention <callingconv>` the call should use. If none is
5955 specified, the call defaults to using C calling conventions. The
5956 calling convention of the call must match the calling convention of
5957 the target function, or else the behavior is undefined.
5958#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5959 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5960 are valid here.
5961#. '``ty``': the type of the call instruction itself which is also the
5962 type of the return value. Functions that return no value are marked
5963 ``void``.
5964#. '``fnty``': shall be the signature of the pointer to function value
5965 being invoked. The argument types must match the types implied by
5966 this signature. This type can be omitted if the function is not
5967 varargs and if the function type does not return a pointer to a
5968 function.
5969#. '``fnptrval``': An LLVM value containing a pointer to a function to
5970 be invoked. In most cases, this is a direct function invocation, but
5971 indirect ``call``'s are just as possible, calling an arbitrary pointer
5972 to function value.
5973#. '``function args``': argument list whose types match the function
5974 signature argument types and parameter attributes. All arguments must
5975 be of :ref:`first class <t_firstclass>` type. If the function signature
5976 indicates the function accepts a variable number of arguments, the
5977 extra arguments can be specified.
5978#. The optional :ref:`function attributes <fnattrs>` list. Only
5979 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5980 attributes are valid here.
5981
5982Semantics:
5983""""""""""
5984
5985The '``call``' instruction is used to cause control flow to transfer to
5986a specified function, with its incoming arguments bound to the specified
5987values. Upon a '``ret``' instruction in the called function, control
5988flow continues with the instruction after the function call, and the
5989return value of the function is bound to the result argument.
5990
5991Example:
5992""""""""
5993
5994.. code-block:: llvm
5995
5996 %retval = call i32 @test(i32 %argc)
5997 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5998 %X = tail call i32 @foo() ; yields i32
5999 %Y = tail call fastcc i32 @foo() ; yields i32
6000 call void %foo(i8 97 signext)
6001
6002 %struct.A = type { i32, i8 }
6003 %r = call %struct.A @foo() ; yields { 32, i8 }
6004 %gr = extractvalue %struct.A %r, 0 ; yields i32
6005 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6006 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6007 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6008
6009llvm treats calls to some functions with names and arguments that match
6010the standard C99 library as being the C99 library functions, and may
6011perform optimizations or generate code for them under that assumption.
6012This is something we'd like to change in the future to provide better
6013support for freestanding environments and non-C-based languages.
6014
6015.. _i_va_arg:
6016
6017'``va_arg``' Instruction
6018^^^^^^^^^^^^^^^^^^^^^^^^
6019
6020Syntax:
6021"""""""
6022
6023::
6024
6025 <resultval> = va_arg <va_list*> <arglist>, <argty>
6026
6027Overview:
6028"""""""""
6029
6030The '``va_arg``' instruction is used to access arguments passed through
6031the "variable argument" area of a function call. It is used to implement
6032the ``va_arg`` macro in C.
6033
6034Arguments:
6035""""""""""
6036
6037This instruction takes a ``va_list*`` value and the type of the
6038argument. It returns a value of the specified argument type and
6039increments the ``va_list`` to point to the next argument. The actual
6040type of ``va_list`` is target specific.
6041
6042Semantics:
6043""""""""""
6044
6045The '``va_arg``' instruction loads an argument of the specified type
6046from the specified ``va_list`` and causes the ``va_list`` to point to
6047the next argument. For more information, see the variable argument
6048handling :ref:`Intrinsic Functions <int_varargs>`.
6049
6050It is legal for this instruction to be called in a function which does
6051not take a variable number of arguments, for example, the ``vfprintf``
6052function.
6053
6054``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6055function <intrinsics>` because it takes a type as an argument.
6056
6057Example:
6058""""""""
6059
6060See the :ref:`variable argument processing <int_varargs>` section.
6061
6062Note that the code generator does not yet fully support va\_arg on many
6063targets. Also, it does not currently support va\_arg with aggregate
6064types on any target.
6065
6066.. _i_landingpad:
6067
6068'``landingpad``' Instruction
6069^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6070
6071Syntax:
6072"""""""
6073
6074::
6075
6076 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6077 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6078
6079 <clause> := catch <type> <value>
6080 <clause> := filter <array constant type> <array constant>
6081
6082Overview:
6083"""""""""
6084
6085The '``landingpad``' instruction is used by `LLVM's exception handling
6086system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006087is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006088code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6089defines values supplied by the personality function (``pers_fn``) upon
6090re-entry to the function. The ``resultval`` has the type ``resultty``.
6091
6092Arguments:
6093""""""""""
6094
6095This instruction takes a ``pers_fn`` value. This is the personality
6096function associated with the unwinding mechanism. The optional
6097``cleanup`` flag indicates that the landing pad block is a cleanup.
6098
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006099A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006100contains the global variable representing the "type" that may be caught
6101or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6102clause takes an array constant as its argument. Use
6103"``[0 x i8**] undef``" for a filter which cannot throw. The
6104'``landingpad``' instruction must contain *at least* one ``clause`` or
6105the ``cleanup`` flag.
6106
6107Semantics:
6108""""""""""
6109
6110The '``landingpad``' instruction defines the values which are set by the
6111personality function (``pers_fn``) upon re-entry to the function, and
6112therefore the "result type" of the ``landingpad`` instruction. As with
6113calling conventions, how the personality function results are
6114represented in LLVM IR is target specific.
6115
6116The clauses are applied in order from top to bottom. If two
6117``landingpad`` instructions are merged together through inlining, the
6118clauses from the calling function are appended to the list of clauses.
6119When the call stack is being unwound due to an exception being thrown,
6120the exception is compared against each ``clause`` in turn. If it doesn't
6121match any of the clauses, and the ``cleanup`` flag is not set, then
6122unwinding continues further up the call stack.
6123
6124The ``landingpad`` instruction has several restrictions:
6125
6126- A landing pad block is a basic block which is the unwind destination
6127 of an '``invoke``' instruction.
6128- A landing pad block must have a '``landingpad``' instruction as its
6129 first non-PHI instruction.
6130- There can be only one '``landingpad``' instruction within the landing
6131 pad block.
6132- A basic block that is not a landing pad block may not include a
6133 '``landingpad``' instruction.
6134- All '``landingpad``' instructions in a function must have the same
6135 personality function.
6136
6137Example:
6138""""""""
6139
6140.. code-block:: llvm
6141
6142 ;; A landing pad which can catch an integer.
6143 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6144 catch i8** @_ZTIi
6145 ;; A landing pad that is a cleanup.
6146 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6147 cleanup
6148 ;; A landing pad which can catch an integer and can only throw a double.
6149 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6150 catch i8** @_ZTIi
6151 filter [1 x i8**] [@_ZTId]
6152
6153.. _intrinsics:
6154
6155Intrinsic Functions
6156===================
6157
6158LLVM supports the notion of an "intrinsic function". These functions
6159have well known names and semantics and are required to follow certain
6160restrictions. Overall, these intrinsics represent an extension mechanism
6161for the LLVM language that does not require changing all of the
6162transformations in LLVM when adding to the language (or the bitcode
6163reader/writer, the parser, etc...).
6164
6165Intrinsic function names must all start with an "``llvm.``" prefix. This
6166prefix is reserved in LLVM for intrinsic names; thus, function names may
6167not begin with this prefix. Intrinsic functions must always be external
6168functions: you cannot define the body of intrinsic functions. Intrinsic
6169functions may only be used in call or invoke instructions: it is illegal
6170to take the address of an intrinsic function. Additionally, because
6171intrinsic functions are part of the LLVM language, it is required if any
6172are added that they be documented here.
6173
6174Some intrinsic functions can be overloaded, i.e., the intrinsic
6175represents a family of functions that perform the same operation but on
6176different data types. Because LLVM can represent over 8 million
6177different integer types, overloading is used commonly to allow an
6178intrinsic function to operate on any integer type. One or more of the
6179argument types or the result type can be overloaded to accept any
6180integer type. Argument types may also be defined as exactly matching a
6181previous argument's type or the result type. This allows an intrinsic
6182function which accepts multiple arguments, but needs all of them to be
6183of the same type, to only be overloaded with respect to a single
6184argument or the result.
6185
6186Overloaded intrinsics will have the names of its overloaded argument
6187types encoded into its function name, each preceded by a period. Only
6188those types which are overloaded result in a name suffix. Arguments
6189whose type is matched against another type do not. For example, the
6190``llvm.ctpop`` function can take an integer of any width and returns an
6191integer of exactly the same integer width. This leads to a family of
6192functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6193``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6194overloaded, and only one type suffix is required. Because the argument's
6195type is matched against the return type, it does not require its own
6196name suffix.
6197
6198To learn how to add an intrinsic function, please see the `Extending
6199LLVM Guide <ExtendingLLVM.html>`_.
6200
6201.. _int_varargs:
6202
6203Variable Argument Handling Intrinsics
6204-------------------------------------
6205
6206Variable argument support is defined in LLVM with the
6207:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6208functions. These functions are related to the similarly named macros
6209defined in the ``<stdarg.h>`` header file.
6210
6211All of these functions operate on arguments that use a target-specific
6212value type "``va_list``". The LLVM assembly language reference manual
6213does not define what this type is, so all transformations should be
6214prepared to handle these functions regardless of the type used.
6215
6216This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6217variable argument handling intrinsic functions are used.
6218
6219.. code-block:: llvm
6220
6221 define i32 @test(i32 %X, ...) {
6222 ; Initialize variable argument processing
6223 %ap = alloca i8*
6224 %ap2 = bitcast i8** %ap to i8*
6225 call void @llvm.va_start(i8* %ap2)
6226
6227 ; Read a single integer argument
6228 %tmp = va_arg i8** %ap, i32
6229
6230 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6231 %aq = alloca i8*
6232 %aq2 = bitcast i8** %aq to i8*
6233 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6234 call void @llvm.va_end(i8* %aq2)
6235
6236 ; Stop processing of arguments.
6237 call void @llvm.va_end(i8* %ap2)
6238 ret i32 %tmp
6239 }
6240
6241 declare void @llvm.va_start(i8*)
6242 declare void @llvm.va_copy(i8*, i8*)
6243 declare void @llvm.va_end(i8*)
6244
6245.. _int_va_start:
6246
6247'``llvm.va_start``' Intrinsic
6248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6249
6250Syntax:
6251"""""""
6252
6253::
6254
6255 declare void %llvm.va_start(i8* <arglist>)
6256
6257Overview:
6258"""""""""
6259
6260The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6261subsequent use by ``va_arg``.
6262
6263Arguments:
6264""""""""""
6265
6266The argument is a pointer to a ``va_list`` element to initialize.
6267
6268Semantics:
6269""""""""""
6270
6271The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6272available in C. In a target-dependent way, it initializes the
6273``va_list`` element to which the argument points, so that the next call
6274to ``va_arg`` will produce the first variable argument passed to the
6275function. Unlike the C ``va_start`` macro, this intrinsic does not need
6276to know the last argument of the function as the compiler can figure
6277that out.
6278
6279'``llvm.va_end``' Intrinsic
6280^^^^^^^^^^^^^^^^^^^^^^^^^^^
6281
6282Syntax:
6283"""""""
6284
6285::
6286
6287 declare void @llvm.va_end(i8* <arglist>)
6288
6289Overview:
6290"""""""""
6291
6292The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6293initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6294
6295Arguments:
6296""""""""""
6297
6298The argument is a pointer to a ``va_list`` to destroy.
6299
6300Semantics:
6301""""""""""
6302
6303The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6304available in C. In a target-dependent way, it destroys the ``va_list``
6305element to which the argument points. Calls to
6306:ref:`llvm.va_start <int_va_start>` and
6307:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6308``llvm.va_end``.
6309
6310.. _int_va_copy:
6311
6312'``llvm.va_copy``' Intrinsic
6313^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6314
6315Syntax:
6316"""""""
6317
6318::
6319
6320 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6321
6322Overview:
6323"""""""""
6324
6325The '``llvm.va_copy``' intrinsic copies the current argument position
6326from the source argument list to the destination argument list.
6327
6328Arguments:
6329""""""""""
6330
6331The first argument is a pointer to a ``va_list`` element to initialize.
6332The second argument is a pointer to a ``va_list`` element to copy from.
6333
6334Semantics:
6335""""""""""
6336
6337The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6338available in C. In a target-dependent way, it copies the source
6339``va_list`` element into the destination ``va_list`` element. This
6340intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6341arbitrarily complex and require, for example, memory allocation.
6342
6343Accurate Garbage Collection Intrinsics
6344--------------------------------------
6345
6346LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6347(GC) requires the implementation and generation of these intrinsics.
6348These intrinsics allow identification of :ref:`GC roots on the
6349stack <int_gcroot>`, as well as garbage collector implementations that
6350require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6351Front-ends for type-safe garbage collected languages should generate
6352these intrinsics to make use of the LLVM garbage collectors. For more
6353details, see `Accurate Garbage Collection with
6354LLVM <GarbageCollection.html>`_.
6355
6356The garbage collection intrinsics only operate on objects in the generic
6357address space (address space zero).
6358
6359.. _int_gcroot:
6360
6361'``llvm.gcroot``' Intrinsic
6362^^^^^^^^^^^^^^^^^^^^^^^^^^^
6363
6364Syntax:
6365"""""""
6366
6367::
6368
6369 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6370
6371Overview:
6372"""""""""
6373
6374The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6375the code generator, and allows some metadata to be associated with it.
6376
6377Arguments:
6378""""""""""
6379
6380The first argument specifies the address of a stack object that contains
6381the root pointer. The second pointer (which must be either a constant or
6382a global value address) contains the meta-data to be associated with the
6383root.
6384
6385Semantics:
6386""""""""""
6387
6388At runtime, a call to this intrinsic stores a null pointer into the
6389"ptrloc" location. At compile-time, the code generator generates
6390information to allow the runtime to find the pointer at GC safe points.
6391The '``llvm.gcroot``' intrinsic may only be used in a function which
6392:ref:`specifies a GC algorithm <gc>`.
6393
6394.. _int_gcread:
6395
6396'``llvm.gcread``' Intrinsic
6397^^^^^^^^^^^^^^^^^^^^^^^^^^^
6398
6399Syntax:
6400"""""""
6401
6402::
6403
6404 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6405
6406Overview:
6407"""""""""
6408
6409The '``llvm.gcread``' intrinsic identifies reads of references from heap
6410locations, allowing garbage collector implementations that require read
6411barriers.
6412
6413Arguments:
6414""""""""""
6415
6416The second argument is the address to read from, which should be an
6417address allocated from the garbage collector. The first object is a
6418pointer to the start of the referenced object, if needed by the language
6419runtime (otherwise null).
6420
6421Semantics:
6422""""""""""
6423
6424The '``llvm.gcread``' intrinsic has the same semantics as a load
6425instruction, but may be replaced with substantially more complex code by
6426the garbage collector runtime, as needed. The '``llvm.gcread``'
6427intrinsic may only be used in a function which :ref:`specifies a GC
6428algorithm <gc>`.
6429
6430.. _int_gcwrite:
6431
6432'``llvm.gcwrite``' Intrinsic
6433^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6434
6435Syntax:
6436"""""""
6437
6438::
6439
6440 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6441
6442Overview:
6443"""""""""
6444
6445The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6446locations, allowing garbage collector implementations that require write
6447barriers (such as generational or reference counting collectors).
6448
6449Arguments:
6450""""""""""
6451
6452The first argument is the reference to store, the second is the start of
6453the object to store it to, and the third is the address of the field of
6454Obj to store to. If the runtime does not require a pointer to the
6455object, Obj may be null.
6456
6457Semantics:
6458""""""""""
6459
6460The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6461instruction, but may be replaced with substantially more complex code by
6462the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6463intrinsic may only be used in a function which :ref:`specifies a GC
6464algorithm <gc>`.
6465
6466Code Generator Intrinsics
6467-------------------------
6468
6469These intrinsics are provided by LLVM to expose special features that
6470may only be implemented with code generator support.
6471
6472'``llvm.returnaddress``' Intrinsic
6473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
6480 declare i8 *@llvm.returnaddress(i32 <level>)
6481
6482Overview:
6483"""""""""
6484
6485The '``llvm.returnaddress``' intrinsic attempts to compute a
6486target-specific value indicating the return address of the current
6487function or one of its callers.
6488
6489Arguments:
6490""""""""""
6491
6492The argument to this intrinsic indicates which function to return the
6493address for. Zero indicates the calling function, one indicates its
6494caller, etc. The argument is **required** to be a constant integer
6495value.
6496
6497Semantics:
6498""""""""""
6499
6500The '``llvm.returnaddress``' intrinsic either returns a pointer
6501indicating the return address of the specified call frame, or zero if it
6502cannot be identified. The value returned by this intrinsic is likely to
6503be incorrect or 0 for arguments other than zero, so it should only be
6504used for debugging purposes.
6505
6506Note that calling this intrinsic does not prevent function inlining or
6507other aggressive transformations, so the value returned may not be that
6508of the obvious source-language caller.
6509
6510'``llvm.frameaddress``' Intrinsic
6511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6512
6513Syntax:
6514"""""""
6515
6516::
6517
6518 declare i8* @llvm.frameaddress(i32 <level>)
6519
6520Overview:
6521"""""""""
6522
6523The '``llvm.frameaddress``' intrinsic attempts to return the
6524target-specific frame pointer value for the specified stack frame.
6525
6526Arguments:
6527""""""""""
6528
6529The argument to this intrinsic indicates which function to return the
6530frame pointer for. Zero indicates the calling function, one indicates
6531its caller, etc. The argument is **required** to be a constant integer
6532value.
6533
6534Semantics:
6535""""""""""
6536
6537The '``llvm.frameaddress``' intrinsic either returns a pointer
6538indicating the frame address of the specified call frame, or zero if it
6539cannot be identified. The value returned by this intrinsic is likely to
6540be incorrect or 0 for arguments other than zero, so it should only be
6541used for debugging purposes.
6542
6543Note that calling this intrinsic does not prevent function inlining or
6544other aggressive transformations, so the value returned may not be that
6545of the obvious source-language caller.
6546
6547.. _int_stacksave:
6548
6549'``llvm.stacksave``' Intrinsic
6550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
6557 declare i8* @llvm.stacksave()
6558
6559Overview:
6560"""""""""
6561
6562The '``llvm.stacksave``' intrinsic is used to remember the current state
6563of the function stack, for use with
6564:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6565implementing language features like scoped automatic variable sized
6566arrays in C99.
6567
6568Semantics:
6569""""""""""
6570
6571This intrinsic returns a opaque pointer value that can be passed to
6572:ref:`llvm.stackrestore <int_stackrestore>`. When an
6573``llvm.stackrestore`` intrinsic is executed with a value saved from
6574``llvm.stacksave``, it effectively restores the state of the stack to
6575the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6576practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6577were allocated after the ``llvm.stacksave`` was executed.
6578
6579.. _int_stackrestore:
6580
6581'``llvm.stackrestore``' Intrinsic
6582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6583
6584Syntax:
6585"""""""
6586
6587::
6588
6589 declare void @llvm.stackrestore(i8* %ptr)
6590
6591Overview:
6592"""""""""
6593
6594The '``llvm.stackrestore``' intrinsic is used to restore the state of
6595the function stack to the state it was in when the corresponding
6596:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6597useful for implementing language features like scoped automatic variable
6598sized arrays in C99.
6599
6600Semantics:
6601""""""""""
6602
6603See the description for :ref:`llvm.stacksave <int_stacksave>`.
6604
6605'``llvm.prefetch``' Intrinsic
6606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611::
6612
6613 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6614
6615Overview:
6616"""""""""
6617
6618The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6619insert a prefetch instruction if supported; otherwise, it is a noop.
6620Prefetches have no effect on the behavior of the program but can change
6621its performance characteristics.
6622
6623Arguments:
6624""""""""""
6625
6626``address`` is the address to be prefetched, ``rw`` is the specifier
6627determining if the fetch should be for a read (0) or write (1), and
6628``locality`` is a temporal locality specifier ranging from (0) - no
6629locality, to (3) - extremely local keep in cache. The ``cache type``
6630specifies whether the prefetch is performed on the data (1) or
6631instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6632arguments must be constant integers.
6633
6634Semantics:
6635""""""""""
6636
6637This intrinsic does not modify the behavior of the program. In
6638particular, prefetches cannot trap and do not produce a value. On
6639targets that support this intrinsic, the prefetch can provide hints to
6640the processor cache for better performance.
6641
6642'``llvm.pcmarker``' Intrinsic
6643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6644
6645Syntax:
6646"""""""
6647
6648::
6649
6650 declare void @llvm.pcmarker(i32 <id>)
6651
6652Overview:
6653"""""""""
6654
6655The '``llvm.pcmarker``' intrinsic is a method to export a Program
6656Counter (PC) in a region of code to simulators and other tools. The
6657method is target specific, but it is expected that the marker will use
6658exported symbols to transmit the PC of the marker. The marker makes no
6659guarantees that it will remain with any specific instruction after
6660optimizations. It is possible that the presence of a marker will inhibit
6661optimizations. The intended use is to be inserted after optimizations to
6662allow correlations of simulation runs.
6663
6664Arguments:
6665""""""""""
6666
6667``id`` is a numerical id identifying the marker.
6668
6669Semantics:
6670""""""""""
6671
6672This intrinsic does not modify the behavior of the program. Backends
6673that do not support this intrinsic may ignore it.
6674
6675'``llvm.readcyclecounter``' Intrinsic
6676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6677
6678Syntax:
6679"""""""
6680
6681::
6682
6683 declare i64 @llvm.readcyclecounter()
6684
6685Overview:
6686"""""""""
6687
6688The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6689counter register (or similar low latency, high accuracy clocks) on those
6690targets that support it. On X86, it should map to RDTSC. On Alpha, it
6691should map to RPCC. As the backing counters overflow quickly (on the
6692order of 9 seconds on alpha), this should only be used for small
6693timings.
6694
6695Semantics:
6696""""""""""
6697
6698When directly supported, reading the cycle counter should not modify any
6699memory. Implementations are allowed to either return a application
6700specific value or a system wide value. On backends without support, this
6701is lowered to a constant 0.
6702
Tim Northover5a02fc42013-05-23 19:11:20 +00006703Note that runtime support may be conditional on the privilege-level code is
6704running at and the host platform.
6705
Sean Silvaf722b002012-12-07 10:36:55 +00006706Standard C Library Intrinsics
6707-----------------------------
6708
6709LLVM provides intrinsics for a few important standard C library
6710functions. These intrinsics allow source-language front-ends to pass
6711information about the alignment of the pointer arguments to the code
6712generator, providing opportunity for more efficient code generation.
6713
6714.. _int_memcpy:
6715
6716'``llvm.memcpy``' Intrinsic
6717^^^^^^^^^^^^^^^^^^^^^^^^^^^
6718
6719Syntax:
6720"""""""
6721
6722This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6723integer bit width and for different address spaces. Not all targets
6724support all bit widths however.
6725
6726::
6727
6728 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6729 i32 <len>, i32 <align>, i1 <isvolatile>)
6730 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6731 i64 <len>, i32 <align>, i1 <isvolatile>)
6732
6733Overview:
6734"""""""""
6735
6736The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6737source location to the destination location.
6738
6739Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6740intrinsics do not return a value, takes extra alignment/isvolatile
6741arguments and the pointers can be in specified address spaces.
6742
6743Arguments:
6744""""""""""
6745
6746The first argument is a pointer to the destination, the second is a
6747pointer to the source. The third argument is an integer argument
6748specifying the number of bytes to copy, the fourth argument is the
6749alignment of the source and destination locations, and the fifth is a
6750boolean indicating a volatile access.
6751
6752If the call to this intrinsic has an alignment value that is not 0 or 1,
6753then the caller guarantees that both the source and destination pointers
6754are aligned to that boundary.
6755
6756If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6757a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6758very cleanly specified and it is unwise to depend on it.
6759
6760Semantics:
6761""""""""""
6762
6763The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6764source location to the destination location, which are not allowed to
6765overlap. It copies "len" bytes of memory over. If the argument is known
6766to be aligned to some boundary, this can be specified as the fourth
6767argument, otherwise it should be set to 0 or 1.
6768
6769'``llvm.memmove``' Intrinsic
6770^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6771
6772Syntax:
6773"""""""
6774
6775This is an overloaded intrinsic. You can use llvm.memmove on any integer
6776bit width and for different address space. Not all targets support all
6777bit widths however.
6778
6779::
6780
6781 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6782 i32 <len>, i32 <align>, i1 <isvolatile>)
6783 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6784 i64 <len>, i32 <align>, i1 <isvolatile>)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.memmove.*``' intrinsics move a block of memory from the
6790source location to the destination location. It is similar to the
6791'``llvm.memcpy``' intrinsic but allows the two memory locations to
6792overlap.
6793
6794Note that, unlike the standard libc function, the ``llvm.memmove.*``
6795intrinsics do not return a value, takes extra alignment/isvolatile
6796arguments and the pointers can be in specified address spaces.
6797
6798Arguments:
6799""""""""""
6800
6801The first argument is a pointer to the destination, the second is a
6802pointer to the source. The third argument is an integer argument
6803specifying the number of bytes to copy, the fourth argument is the
6804alignment of the source and destination locations, and the fifth is a
6805boolean indicating a volatile access.
6806
6807If the call to this intrinsic has an alignment value that is not 0 or 1,
6808then the caller guarantees that the source and destination pointers are
6809aligned to that boundary.
6810
6811If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6812is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6813not very cleanly specified and it is unwise to depend on it.
6814
6815Semantics:
6816""""""""""
6817
6818The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6819source location to the destination location, which may overlap. It
6820copies "len" bytes of memory over. If the argument is known to be
6821aligned to some boundary, this can be specified as the fourth argument,
6822otherwise it should be set to 0 or 1.
6823
6824'``llvm.memset.*``' Intrinsics
6825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6826
6827Syntax:
6828"""""""
6829
6830This is an overloaded intrinsic. You can use llvm.memset on any integer
6831bit width and for different address spaces. However, not all targets
6832support all bit widths.
6833
6834::
6835
6836 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6837 i32 <len>, i32 <align>, i1 <isvolatile>)
6838 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6839 i64 <len>, i32 <align>, i1 <isvolatile>)
6840
6841Overview:
6842"""""""""
6843
6844The '``llvm.memset.*``' intrinsics fill a block of memory with a
6845particular byte value.
6846
6847Note that, unlike the standard libc function, the ``llvm.memset``
6848intrinsic does not return a value and takes extra alignment/volatile
6849arguments. Also, the destination can be in an arbitrary address space.
6850
6851Arguments:
6852""""""""""
6853
6854The first argument is a pointer to the destination to fill, the second
6855is the byte value with which to fill it, the third argument is an
6856integer argument specifying the number of bytes to fill, and the fourth
6857argument is the known alignment of the destination location.
6858
6859If the call to this intrinsic has an alignment value that is not 0 or 1,
6860then the caller guarantees that the destination pointer is aligned to
6861that boundary.
6862
6863If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6864a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6865very cleanly specified and it is unwise to depend on it.
6866
6867Semantics:
6868""""""""""
6869
6870The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6871at the destination location. If the argument is known to be aligned to
6872some boundary, this can be specified as the fourth argument, otherwise
6873it should be set to 0 or 1.
6874
6875'``llvm.sqrt.*``' Intrinsic
6876^^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6882floating point or vector of floating point type. Not all targets support
6883all types however.
6884
6885::
6886
6887 declare float @llvm.sqrt.f32(float %Val)
6888 declare double @llvm.sqrt.f64(double %Val)
6889 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6890 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6891 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6892
6893Overview:
6894"""""""""
6895
6896The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6897returning the same value as the libm '``sqrt``' functions would. Unlike
6898``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6899negative numbers other than -0.0 (which allows for better optimization,
6900because there is no need to worry about errno being set).
6901``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6902
6903Arguments:
6904""""""""""
6905
6906The argument and return value are floating point numbers of the same
6907type.
6908
6909Semantics:
6910""""""""""
6911
6912This function returns the sqrt of the specified operand if it is a
6913nonnegative floating point number.
6914
6915'``llvm.powi.*``' Intrinsic
6916^^^^^^^^^^^^^^^^^^^^^^^^^^^
6917
6918Syntax:
6919"""""""
6920
6921This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6922floating point or vector of floating point type. Not all targets support
6923all types however.
6924
6925::
6926
6927 declare float @llvm.powi.f32(float %Val, i32 %power)
6928 declare double @llvm.powi.f64(double %Val, i32 %power)
6929 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6930 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6931 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6932
6933Overview:
6934"""""""""
6935
6936The '``llvm.powi.*``' intrinsics return the first operand raised to the
6937specified (positive or negative) power. The order of evaluation of
6938multiplications is not defined. When a vector of floating point type is
6939used, the second argument remains a scalar integer value.
6940
6941Arguments:
6942""""""""""
6943
6944The second argument is an integer power, and the first is a value to
6945raise to that power.
6946
6947Semantics:
6948""""""""""
6949
6950This function returns the first value raised to the second power with an
6951unspecified sequence of rounding operations.
6952
6953'``llvm.sin.*``' Intrinsic
6954^^^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6960floating point or vector of floating point type. Not all targets support
6961all types however.
6962
6963::
6964
6965 declare float @llvm.sin.f32(float %Val)
6966 declare double @llvm.sin.f64(double %Val)
6967 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6968 declare fp128 @llvm.sin.f128(fp128 %Val)
6969 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6970
6971Overview:
6972"""""""""
6973
6974The '``llvm.sin.*``' intrinsics return the sine of the operand.
6975
6976Arguments:
6977""""""""""
6978
6979The argument and return value are floating point numbers of the same
6980type.
6981
6982Semantics:
6983""""""""""
6984
6985This function returns the sine of the specified operand, returning the
6986same values as the libm ``sin`` functions would, and handles error
6987conditions in the same way.
6988
6989'``llvm.cos.*``' Intrinsic
6990^^^^^^^^^^^^^^^^^^^^^^^^^^
6991
6992Syntax:
6993"""""""
6994
6995This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6996floating point or vector of floating point type. Not all targets support
6997all types however.
6998
6999::
7000
7001 declare float @llvm.cos.f32(float %Val)
7002 declare double @llvm.cos.f64(double %Val)
7003 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7004 declare fp128 @llvm.cos.f128(fp128 %Val)
7005 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7006
7007Overview:
7008"""""""""
7009
7010The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7011
7012Arguments:
7013""""""""""
7014
7015The argument and return value are floating point numbers of the same
7016type.
7017
7018Semantics:
7019""""""""""
7020
7021This function returns the cosine of the specified operand, returning the
7022same values as the libm ``cos`` functions would, and handles error
7023conditions in the same way.
7024
7025'``llvm.pow.*``' Intrinsic
7026^^^^^^^^^^^^^^^^^^^^^^^^^^
7027
7028Syntax:
7029"""""""
7030
7031This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7032floating point or vector of floating point type. Not all targets support
7033all types however.
7034
7035::
7036
7037 declare float @llvm.pow.f32(float %Val, float %Power)
7038 declare double @llvm.pow.f64(double %Val, double %Power)
7039 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7040 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7041 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7042
7043Overview:
7044"""""""""
7045
7046The '``llvm.pow.*``' intrinsics return the first operand raised to the
7047specified (positive or negative) power.
7048
7049Arguments:
7050""""""""""
7051
7052The second argument is a floating point power, and the first is a value
7053to raise to that power.
7054
7055Semantics:
7056""""""""""
7057
7058This function returns the first value raised to the second power,
7059returning the same values as the libm ``pow`` functions would, and
7060handles error conditions in the same way.
7061
7062'``llvm.exp.*``' Intrinsic
7063^^^^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7069floating point or vector of floating point type. Not all targets support
7070all types however.
7071
7072::
7073
7074 declare float @llvm.exp.f32(float %Val)
7075 declare double @llvm.exp.f64(double %Val)
7076 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7077 declare fp128 @llvm.exp.f128(fp128 %Val)
7078 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7079
7080Overview:
7081"""""""""
7082
7083The '``llvm.exp.*``' intrinsics perform the exp function.
7084
7085Arguments:
7086""""""""""
7087
7088The argument and return value are floating point numbers of the same
7089type.
7090
7091Semantics:
7092""""""""""
7093
7094This function returns the same values as the libm ``exp`` functions
7095would, and handles error conditions in the same way.
7096
7097'``llvm.exp2.*``' Intrinsic
7098^^^^^^^^^^^^^^^^^^^^^^^^^^^
7099
7100Syntax:
7101"""""""
7102
7103This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7104floating point or vector of floating point type. Not all targets support
7105all types however.
7106
7107::
7108
7109 declare float @llvm.exp2.f32(float %Val)
7110 declare double @llvm.exp2.f64(double %Val)
7111 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7112 declare fp128 @llvm.exp2.f128(fp128 %Val)
7113 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7114
7115Overview:
7116"""""""""
7117
7118The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7119
7120Arguments:
7121""""""""""
7122
7123The argument and return value are floating point numbers of the same
7124type.
7125
7126Semantics:
7127""""""""""
7128
7129This function returns the same values as the libm ``exp2`` functions
7130would, and handles error conditions in the same way.
7131
7132'``llvm.log.*``' Intrinsic
7133^^^^^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138This is an overloaded intrinsic. You can use ``llvm.log`` on any
7139floating point or vector of floating point type. Not all targets support
7140all types however.
7141
7142::
7143
7144 declare float @llvm.log.f32(float %Val)
7145 declare double @llvm.log.f64(double %Val)
7146 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7147 declare fp128 @llvm.log.f128(fp128 %Val)
7148 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7149
7150Overview:
7151"""""""""
7152
7153The '``llvm.log.*``' intrinsics perform the log function.
7154
7155Arguments:
7156""""""""""
7157
7158The argument and return value are floating point numbers of the same
7159type.
7160
7161Semantics:
7162""""""""""
7163
7164This function returns the same values as the libm ``log`` functions
7165would, and handles error conditions in the same way.
7166
7167'``llvm.log10.*``' Intrinsic
7168^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7169
7170Syntax:
7171"""""""
7172
7173This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7174floating point or vector of floating point type. Not all targets support
7175all types however.
7176
7177::
7178
7179 declare float @llvm.log10.f32(float %Val)
7180 declare double @llvm.log10.f64(double %Val)
7181 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7182 declare fp128 @llvm.log10.f128(fp128 %Val)
7183 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7184
7185Overview:
7186"""""""""
7187
7188The '``llvm.log10.*``' intrinsics perform the log10 function.
7189
7190Arguments:
7191""""""""""
7192
7193The argument and return value are floating point numbers of the same
7194type.
7195
7196Semantics:
7197""""""""""
7198
7199This function returns the same values as the libm ``log10`` functions
7200would, and handles error conditions in the same way.
7201
7202'``llvm.log2.*``' Intrinsic
7203^^^^^^^^^^^^^^^^^^^^^^^^^^^
7204
7205Syntax:
7206"""""""
7207
7208This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7209floating point or vector of floating point type. Not all targets support
7210all types however.
7211
7212::
7213
7214 declare float @llvm.log2.f32(float %Val)
7215 declare double @llvm.log2.f64(double %Val)
7216 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7217 declare fp128 @llvm.log2.f128(fp128 %Val)
7218 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7219
7220Overview:
7221"""""""""
7222
7223The '``llvm.log2.*``' intrinsics perform the log2 function.
7224
7225Arguments:
7226""""""""""
7227
7228The argument and return value are floating point numbers of the same
7229type.
7230
7231Semantics:
7232""""""""""
7233
7234This function returns the same values as the libm ``log2`` functions
7235would, and handles error conditions in the same way.
7236
7237'``llvm.fma.*``' Intrinsic
7238^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7244floating point or vector of floating point type. Not all targets support
7245all types however.
7246
7247::
7248
7249 declare float @llvm.fma.f32(float %a, float %b, float %c)
7250 declare double @llvm.fma.f64(double %a, double %b, double %c)
7251 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7252 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7253 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7254
7255Overview:
7256"""""""""
7257
7258The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7259operation.
7260
7261Arguments:
7262""""""""""
7263
7264The argument and return value are floating point numbers of the same
7265type.
7266
7267Semantics:
7268""""""""""
7269
7270This function returns the same values as the libm ``fma`` functions
7271would.
7272
7273'``llvm.fabs.*``' Intrinsic
7274^^^^^^^^^^^^^^^^^^^^^^^^^^^
7275
7276Syntax:
7277"""""""
7278
7279This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7280floating point or vector of floating point type. Not all targets support
7281all types however.
7282
7283::
7284
7285 declare float @llvm.fabs.f32(float %Val)
7286 declare double @llvm.fabs.f64(double %Val)
7287 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7288 declare fp128 @llvm.fabs.f128(fp128 %Val)
7289 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7290
7291Overview:
7292"""""""""
7293
7294The '``llvm.fabs.*``' intrinsics return the absolute value of the
7295operand.
7296
7297Arguments:
7298""""""""""
7299
7300The argument and return value are floating point numbers of the same
7301type.
7302
7303Semantics:
7304""""""""""
7305
7306This function returns the same values as the libm ``fabs`` functions
7307would, and handles error conditions in the same way.
7308
7309'``llvm.floor.*``' Intrinsic
7310^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7316floating point or vector of floating point type. Not all targets support
7317all types however.
7318
7319::
7320
7321 declare float @llvm.floor.f32(float %Val)
7322 declare double @llvm.floor.f64(double %Val)
7323 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7324 declare fp128 @llvm.floor.f128(fp128 %Val)
7325 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7326
7327Overview:
7328"""""""""
7329
7330The '``llvm.floor.*``' intrinsics return the floor of the operand.
7331
7332Arguments:
7333""""""""""
7334
7335The argument and return value are floating point numbers of the same
7336type.
7337
7338Semantics:
7339""""""""""
7340
7341This function returns the same values as the libm ``floor`` functions
7342would, and handles error conditions in the same way.
7343
7344'``llvm.ceil.*``' Intrinsic
7345^^^^^^^^^^^^^^^^^^^^^^^^^^^
7346
7347Syntax:
7348"""""""
7349
7350This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7351floating point or vector of floating point type. Not all targets support
7352all types however.
7353
7354::
7355
7356 declare float @llvm.ceil.f32(float %Val)
7357 declare double @llvm.ceil.f64(double %Val)
7358 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7359 declare fp128 @llvm.ceil.f128(fp128 %Val)
7360 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7361
7362Overview:
7363"""""""""
7364
7365The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7366
7367Arguments:
7368""""""""""
7369
7370The argument and return value are floating point numbers of the same
7371type.
7372
7373Semantics:
7374""""""""""
7375
7376This function returns the same values as the libm ``ceil`` functions
7377would, and handles error conditions in the same way.
7378
7379'``llvm.trunc.*``' Intrinsic
7380^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7381
7382Syntax:
7383"""""""
7384
7385This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7386floating point or vector of floating point type. Not all targets support
7387all types however.
7388
7389::
7390
7391 declare float @llvm.trunc.f32(float %Val)
7392 declare double @llvm.trunc.f64(double %Val)
7393 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7394 declare fp128 @llvm.trunc.f128(fp128 %Val)
7395 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7396
7397Overview:
7398"""""""""
7399
7400The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7401nearest integer not larger in magnitude than the operand.
7402
7403Arguments:
7404""""""""""
7405
7406The argument and return value are floating point numbers of the same
7407type.
7408
7409Semantics:
7410""""""""""
7411
7412This function returns the same values as the libm ``trunc`` functions
7413would, and handles error conditions in the same way.
7414
7415'``llvm.rint.*``' Intrinsic
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7422floating point or vector of floating point type. Not all targets support
7423all types however.
7424
7425::
7426
7427 declare float @llvm.rint.f32(float %Val)
7428 declare double @llvm.rint.f64(double %Val)
7429 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7430 declare fp128 @llvm.rint.f128(fp128 %Val)
7431 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7432
7433Overview:
7434"""""""""
7435
7436The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7437nearest integer. It may raise an inexact floating-point exception if the
7438operand isn't an integer.
7439
7440Arguments:
7441""""""""""
7442
7443The argument and return value are floating point numbers of the same
7444type.
7445
7446Semantics:
7447""""""""""
7448
7449This function returns the same values as the libm ``rint`` functions
7450would, and handles error conditions in the same way.
7451
7452'``llvm.nearbyint.*``' Intrinsic
7453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7454
7455Syntax:
7456"""""""
7457
7458This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7459floating point or vector of floating point type. Not all targets support
7460all types however.
7461
7462::
7463
7464 declare float @llvm.nearbyint.f32(float %Val)
7465 declare double @llvm.nearbyint.f64(double %Val)
7466 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7467 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7468 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7469
7470Overview:
7471"""""""""
7472
7473The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7474nearest integer.
7475
7476Arguments:
7477""""""""""
7478
7479The argument and return value are floating point numbers of the same
7480type.
7481
7482Semantics:
7483""""""""""
7484
7485This function returns the same values as the libm ``nearbyint``
7486functions would, and handles error conditions in the same way.
7487
7488Bit Manipulation Intrinsics
7489---------------------------
7490
7491LLVM provides intrinsics for a few important bit manipulation
7492operations. These allow efficient code generation for some algorithms.
7493
7494'``llvm.bswap.*``' Intrinsics
7495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7496
7497Syntax:
7498"""""""
7499
7500This is an overloaded intrinsic function. You can use bswap on any
7501integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7502
7503::
7504
7505 declare i16 @llvm.bswap.i16(i16 <id>)
7506 declare i32 @llvm.bswap.i32(i32 <id>)
7507 declare i64 @llvm.bswap.i64(i64 <id>)
7508
7509Overview:
7510"""""""""
7511
7512The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7513values with an even number of bytes (positive multiple of 16 bits).
7514These are useful for performing operations on data that is not in the
7515target's native byte order.
7516
7517Semantics:
7518""""""""""
7519
7520The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7521and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7522intrinsic returns an i32 value that has the four bytes of the input i32
7523swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7524returned i32 will have its bytes in 3, 2, 1, 0 order. The
7525``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7526concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7527respectively).
7528
7529'``llvm.ctpop.*``' Intrinsic
7530^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7531
7532Syntax:
7533"""""""
7534
7535This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7536bit width, or on any vector with integer elements. Not all targets
7537support all bit widths or vector types, however.
7538
7539::
7540
7541 declare i8 @llvm.ctpop.i8(i8 <src>)
7542 declare i16 @llvm.ctpop.i16(i16 <src>)
7543 declare i32 @llvm.ctpop.i32(i32 <src>)
7544 declare i64 @llvm.ctpop.i64(i64 <src>)
7545 declare i256 @llvm.ctpop.i256(i256 <src>)
7546 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7547
7548Overview:
7549"""""""""
7550
7551The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7552in a value.
7553
7554Arguments:
7555""""""""""
7556
7557The only argument is the value to be counted. The argument may be of any
7558integer type, or a vector with integer elements. The return type must
7559match the argument type.
7560
7561Semantics:
7562""""""""""
7563
7564The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7565each element of a vector.
7566
7567'``llvm.ctlz.*``' Intrinsic
7568^^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7574integer bit width, or any vector whose elements are integers. Not all
7575targets support all bit widths or vector types, however.
7576
7577::
7578
7579 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7580 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7581 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7582 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7583 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7584 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7585
7586Overview:
7587"""""""""
7588
7589The '``llvm.ctlz``' family of intrinsic functions counts the number of
7590leading zeros in a variable.
7591
7592Arguments:
7593""""""""""
7594
7595The first argument is the value to be counted. This argument may be of
7596any integer type, or a vectory with integer element type. The return
7597type must match the first argument type.
7598
7599The second argument must be a constant and is a flag to indicate whether
7600the intrinsic should ensure that a zero as the first argument produces a
7601defined result. Historically some architectures did not provide a
7602defined result for zero values as efficiently, and many algorithms are
7603now predicated on avoiding zero-value inputs.
7604
7605Semantics:
7606""""""""""
7607
7608The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7609zeros in a variable, or within each element of the vector. If
7610``src == 0`` then the result is the size in bits of the type of ``src``
7611if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7612``llvm.ctlz(i32 2) = 30``.
7613
7614'``llvm.cttz.*``' Intrinsic
7615^^^^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7621integer bit width, or any vector of integer elements. Not all targets
7622support all bit widths or vector types, however.
7623
7624::
7625
7626 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7627 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7628 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7629 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7630 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7631 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7632
7633Overview:
7634"""""""""
7635
7636The '``llvm.cttz``' family of intrinsic functions counts the number of
7637trailing zeros.
7638
7639Arguments:
7640""""""""""
7641
7642The first argument is the value to be counted. This argument may be of
7643any integer type, or a vectory with integer element type. The return
7644type must match the first argument type.
7645
7646The second argument must be a constant and is a flag to indicate whether
7647the intrinsic should ensure that a zero as the first argument produces a
7648defined result. Historically some architectures did not provide a
7649defined result for zero values as efficiently, and many algorithms are
7650now predicated on avoiding zero-value inputs.
7651
7652Semantics:
7653""""""""""
7654
7655The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7656zeros in a variable, or within each element of a vector. If ``src == 0``
7657then the result is the size in bits of the type of ``src`` if
7658``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7659``llvm.cttz(2) = 1``.
7660
7661Arithmetic with Overflow Intrinsics
7662-----------------------------------
7663
7664LLVM provides intrinsics for some arithmetic with overflow operations.
7665
7666'``llvm.sadd.with.overflow.*``' Intrinsics
7667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7668
7669Syntax:
7670"""""""
7671
7672This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7673on any integer bit width.
7674
7675::
7676
7677 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7678 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7679 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7680
7681Overview:
7682"""""""""
7683
7684The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7685a signed addition of the two arguments, and indicate whether an overflow
7686occurred during the signed summation.
7687
7688Arguments:
7689""""""""""
7690
7691The arguments (%a and %b) and the first element of the result structure
7692may be of integer types of any bit width, but they must have the same
7693bit width. The second element of the result structure must be of type
7694``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7695addition.
7696
7697Semantics:
7698""""""""""
7699
7700The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007701a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007702first element of which is the signed summation, and the second element
7703of which is a bit specifying if the signed summation resulted in an
7704overflow.
7705
7706Examples:
7707"""""""""
7708
7709.. code-block:: llvm
7710
7711 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7712 %sum = extractvalue {i32, i1} %res, 0
7713 %obit = extractvalue {i32, i1} %res, 1
7714 br i1 %obit, label %overflow, label %normal
7715
7716'``llvm.uadd.with.overflow.*``' Intrinsics
7717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7718
7719Syntax:
7720"""""""
7721
7722This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7723on any integer bit width.
7724
7725::
7726
7727 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7728 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7729 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7730
7731Overview:
7732"""""""""
7733
7734The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7735an unsigned addition of the two arguments, and indicate whether a carry
7736occurred during the unsigned summation.
7737
7738Arguments:
7739""""""""""
7740
7741The arguments (%a and %b) and the first element of the result structure
7742may be of integer types of any bit width, but they must have the same
7743bit width. The second element of the result structure must be of type
7744``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7745addition.
7746
7747Semantics:
7748""""""""""
7749
7750The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007751an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007752first element of which is the sum, and the second element of which is a
7753bit specifying if the unsigned summation resulted in a carry.
7754
7755Examples:
7756"""""""""
7757
7758.. code-block:: llvm
7759
7760 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7761 %sum = extractvalue {i32, i1} %res, 0
7762 %obit = extractvalue {i32, i1} %res, 1
7763 br i1 %obit, label %carry, label %normal
7764
7765'``llvm.ssub.with.overflow.*``' Intrinsics
7766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7767
7768Syntax:
7769"""""""
7770
7771This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7772on any integer bit width.
7773
7774::
7775
7776 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7777 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7778 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7779
7780Overview:
7781"""""""""
7782
7783The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7784a signed subtraction of the two arguments, and indicate whether an
7785overflow occurred during the signed subtraction.
7786
7787Arguments:
7788""""""""""
7789
7790The arguments (%a and %b) and the first element of the result structure
7791may be of integer types of any bit width, but they must have the same
7792bit width. The second element of the result structure must be of type
7793``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7794subtraction.
7795
7796Semantics:
7797""""""""""
7798
7799The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007800a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007801first element of which is the subtraction, and the second element of
7802which is a bit specifying if the signed subtraction resulted in an
7803overflow.
7804
7805Examples:
7806"""""""""
7807
7808.. code-block:: llvm
7809
7810 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7811 %sum = extractvalue {i32, i1} %res, 0
7812 %obit = extractvalue {i32, i1} %res, 1
7813 br i1 %obit, label %overflow, label %normal
7814
7815'``llvm.usub.with.overflow.*``' Intrinsics
7816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7822on any integer bit width.
7823
7824::
7825
7826 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7827 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7828 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7834an unsigned subtraction of the two arguments, and indicate whether an
7835overflow occurred during the unsigned subtraction.
7836
7837Arguments:
7838""""""""""
7839
7840The arguments (%a and %b) and the first element of the result structure
7841may be of integer types of any bit width, but they must have the same
7842bit width. The second element of the result structure must be of type
7843``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7844subtraction.
7845
7846Semantics:
7847""""""""""
7848
7849The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007850an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007851the first element of which is the subtraction, and the second element of
7852which is a bit specifying if the unsigned subtraction resulted in an
7853overflow.
7854
7855Examples:
7856"""""""""
7857
7858.. code-block:: llvm
7859
7860 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7861 %sum = extractvalue {i32, i1} %res, 0
7862 %obit = extractvalue {i32, i1} %res, 1
7863 br i1 %obit, label %overflow, label %normal
7864
7865'``llvm.smul.with.overflow.*``' Intrinsics
7866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7867
7868Syntax:
7869"""""""
7870
7871This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7872on any integer bit width.
7873
7874::
7875
7876 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7877 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7878 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7879
7880Overview:
7881"""""""""
7882
7883The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7884a signed multiplication of the two arguments, and indicate whether an
7885overflow occurred during the signed multiplication.
7886
7887Arguments:
7888""""""""""
7889
7890The arguments (%a and %b) and the first element of the result structure
7891may be of integer types of any bit width, but they must have the same
7892bit width. The second element of the result structure must be of type
7893``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7894multiplication.
7895
7896Semantics:
7897""""""""""
7898
7899The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007900a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007901the first element of which is the multiplication, and the second element
7902of which is a bit specifying if the signed multiplication resulted in an
7903overflow.
7904
7905Examples:
7906"""""""""
7907
7908.. code-block:: llvm
7909
7910 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7911 %sum = extractvalue {i32, i1} %res, 0
7912 %obit = extractvalue {i32, i1} %res, 1
7913 br i1 %obit, label %overflow, label %normal
7914
7915'``llvm.umul.with.overflow.*``' Intrinsics
7916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7917
7918Syntax:
7919"""""""
7920
7921This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7922on any integer bit width.
7923
7924::
7925
7926 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7927 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7928 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7929
7930Overview:
7931"""""""""
7932
7933The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7934a unsigned multiplication of the two arguments, and indicate whether an
7935overflow occurred during the unsigned multiplication.
7936
7937Arguments:
7938""""""""""
7939
7940The arguments (%a and %b) and the first element of the result structure
7941may be of integer types of any bit width, but they must have the same
7942bit width. The second element of the result structure must be of type
7943``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7944multiplication.
7945
7946Semantics:
7947""""""""""
7948
7949The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007950an unsigned multiplication of the two arguments. They return a structure ---
7951the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007952element of which is a bit specifying if the unsigned multiplication
7953resulted in an overflow.
7954
7955Examples:
7956"""""""""
7957
7958.. code-block:: llvm
7959
7960 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7961 %sum = extractvalue {i32, i1} %res, 0
7962 %obit = extractvalue {i32, i1} %res, 1
7963 br i1 %obit, label %overflow, label %normal
7964
7965Specialised Arithmetic Intrinsics
7966---------------------------------
7967
7968'``llvm.fmuladd.*``' Intrinsic
7969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7970
7971Syntax:
7972"""""""
7973
7974::
7975
7976 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7977 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7978
7979Overview:
7980"""""""""
7981
7982The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007983expressions that can be fused if the code generator determines that (a) the
7984target instruction set has support for a fused operation, and (b) that the
7985fused operation is more efficient than the equivalent, separate pair of mul
7986and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007987
7988Arguments:
7989""""""""""
7990
7991The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7992multiplicands, a and b, and an addend c.
7993
7994Semantics:
7995""""""""""
7996
7997The expression:
7998
7999::
8000
8001 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8002
8003is equivalent to the expression a \* b + c, except that rounding will
8004not be performed between the multiplication and addition steps if the
8005code generator fuses the operations. Fusion is not guaranteed, even if
8006the target platform supports it. If a fused multiply-add is required the
8007corresponding llvm.fma.\* intrinsic function should be used instead.
8008
8009Examples:
8010"""""""""
8011
8012.. code-block:: llvm
8013
8014 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8015
8016Half Precision Floating Point Intrinsics
8017----------------------------------------
8018
8019For most target platforms, half precision floating point is a
8020storage-only format. This means that it is a dense encoding (in memory)
8021but does not support computation in the format.
8022
8023This means that code must first load the half-precision floating point
8024value as an i16, then convert it to float with
8025:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8026then be performed on the float value (including extending to double
8027etc). To store the value back to memory, it is first converted to float
8028if needed, then converted to i16 with
8029:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8030i16 value.
8031
8032.. _int_convert_to_fp16:
8033
8034'``llvm.convert.to.fp16``' Intrinsic
8035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8036
8037Syntax:
8038"""""""
8039
8040::
8041
8042 declare i16 @llvm.convert.to.fp16(f32 %a)
8043
8044Overview:
8045"""""""""
8046
8047The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8048from single precision floating point format to half precision floating
8049point format.
8050
8051Arguments:
8052""""""""""
8053
8054The intrinsic function contains single argument - the value to be
8055converted.
8056
8057Semantics:
8058""""""""""
8059
8060The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8061from single precision floating point format to half precision floating
8062point format. The return value is an ``i16`` which contains the
8063converted number.
8064
8065Examples:
8066"""""""""
8067
8068.. code-block:: llvm
8069
8070 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8071 store i16 %res, i16* @x, align 2
8072
8073.. _int_convert_from_fp16:
8074
8075'``llvm.convert.from.fp16``' Intrinsic
8076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8077
8078Syntax:
8079"""""""
8080
8081::
8082
8083 declare f32 @llvm.convert.from.fp16(i16 %a)
8084
8085Overview:
8086"""""""""
8087
8088The '``llvm.convert.from.fp16``' intrinsic function performs a
8089conversion from half precision floating point format to single precision
8090floating point format.
8091
8092Arguments:
8093""""""""""
8094
8095The intrinsic function contains single argument - the value to be
8096converted.
8097
8098Semantics:
8099""""""""""
8100
8101The '``llvm.convert.from.fp16``' intrinsic function performs a
8102conversion from half single precision floating point format to single
8103precision floating point format. The input half-float value is
8104represented by an ``i16`` value.
8105
8106Examples:
8107"""""""""
8108
8109.. code-block:: llvm
8110
8111 %a = load i16* @x, align 2
8112 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8113
8114Debugger Intrinsics
8115-------------------
8116
8117The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8118prefix), are described in the `LLVM Source Level
8119Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8120document.
8121
8122Exception Handling Intrinsics
8123-----------------------------
8124
8125The LLVM exception handling intrinsics (which all start with
8126``llvm.eh.`` prefix), are described in the `LLVM Exception
8127Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8128
8129.. _int_trampoline:
8130
8131Trampoline Intrinsics
8132---------------------
8133
8134These intrinsics make it possible to excise one parameter, marked with
8135the :ref:`nest <nest>` attribute, from a function. The result is a
8136callable function pointer lacking the nest parameter - the caller does
8137not need to provide a value for it. Instead, the value to use is stored
8138in advance in a "trampoline", a block of memory usually allocated on the
8139stack, which also contains code to splice the nest value into the
8140argument list. This is used to implement the GCC nested function address
8141extension.
8142
8143For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8144then the resulting function pointer has signature ``i32 (i32, i32)*``.
8145It can be created as follows:
8146
8147.. code-block:: llvm
8148
8149 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8150 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8151 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8152 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8153 %fp = bitcast i8* %p to i32 (i32, i32)*
8154
8155The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8156``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8157
8158.. _int_it:
8159
8160'``llvm.init.trampoline``' Intrinsic
8161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8162
8163Syntax:
8164"""""""
8165
8166::
8167
8168 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8169
8170Overview:
8171"""""""""
8172
8173This fills the memory pointed to by ``tramp`` with executable code,
8174turning it into a trampoline.
8175
8176Arguments:
8177""""""""""
8178
8179The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8180pointers. The ``tramp`` argument must point to a sufficiently large and
8181sufficiently aligned block of memory; this memory is written to by the
8182intrinsic. Note that the size and the alignment are target-specific -
8183LLVM currently provides no portable way of determining them, so a
8184front-end that generates this intrinsic needs to have some
8185target-specific knowledge. The ``func`` argument must hold a function
8186bitcast to an ``i8*``.
8187
8188Semantics:
8189""""""""""
8190
8191The block of memory pointed to by ``tramp`` is filled with target
8192dependent code, turning it into a function. Then ``tramp`` needs to be
8193passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8194be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8195function's signature is the same as that of ``func`` with any arguments
8196marked with the ``nest`` attribute removed. At most one such ``nest``
8197argument is allowed, and it must be of pointer type. Calling the new
8198function is equivalent to calling ``func`` with the same argument list,
8199but with ``nval`` used for the missing ``nest`` argument. If, after
8200calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8201modified, then the effect of any later call to the returned function
8202pointer is undefined.
8203
8204.. _int_at:
8205
8206'``llvm.adjust.trampoline``' Intrinsic
8207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8208
8209Syntax:
8210"""""""
8211
8212::
8213
8214 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8215
8216Overview:
8217"""""""""
8218
8219This performs any required machine-specific adjustment to the address of
8220a trampoline (passed as ``tramp``).
8221
8222Arguments:
8223""""""""""
8224
8225``tramp`` must point to a block of memory which already has trampoline
8226code filled in by a previous call to
8227:ref:`llvm.init.trampoline <int_it>`.
8228
8229Semantics:
8230""""""""""
8231
8232On some architectures the address of the code to be executed needs to be
8233different to the address where the trampoline is actually stored. This
8234intrinsic returns the executable address corresponding to ``tramp``
8235after performing the required machine specific adjustments. The pointer
8236returned can then be :ref:`bitcast and executed <int_trampoline>`.
8237
8238Memory Use Markers
8239------------------
8240
8241This class of intrinsics exists to information about the lifetime of
8242memory objects and ranges where variables are immutable.
8243
8244'``llvm.lifetime.start``' Intrinsic
8245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8246
8247Syntax:
8248"""""""
8249
8250::
8251
8252 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8253
8254Overview:
8255"""""""""
8256
8257The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8258object's lifetime.
8259
8260Arguments:
8261""""""""""
8262
8263The first argument is a constant integer representing the size of the
8264object, or -1 if it is variable sized. The second argument is a pointer
8265to the object.
8266
8267Semantics:
8268""""""""""
8269
8270This intrinsic indicates that before this point in the code, the value
8271of the memory pointed to by ``ptr`` is dead. This means that it is known
8272to never be used and has an undefined value. A load from the pointer
8273that precedes this intrinsic can be replaced with ``'undef'``.
8274
8275'``llvm.lifetime.end``' Intrinsic
8276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8277
8278Syntax:
8279"""""""
8280
8281::
8282
8283 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8284
8285Overview:
8286"""""""""
8287
8288The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8289object's lifetime.
8290
8291Arguments:
8292""""""""""
8293
8294The first argument is a constant integer representing the size of the
8295object, or -1 if it is variable sized. The second argument is a pointer
8296to the object.
8297
8298Semantics:
8299""""""""""
8300
8301This intrinsic indicates that after this point in the code, the value of
8302the memory pointed to by ``ptr`` is dead. This means that it is known to
8303never be used and has an undefined value. Any stores into the memory
8304object following this intrinsic may be removed as dead.
8305
8306'``llvm.invariant.start``' Intrinsic
8307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312::
8313
8314 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8315
8316Overview:
8317"""""""""
8318
8319The '``llvm.invariant.start``' intrinsic specifies that the contents of
8320a memory object will not change.
8321
8322Arguments:
8323""""""""""
8324
8325The first argument is a constant integer representing the size of the
8326object, or -1 if it is variable sized. The second argument is a pointer
8327to the object.
8328
8329Semantics:
8330""""""""""
8331
8332This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8333the return value, the referenced memory location is constant and
8334unchanging.
8335
8336'``llvm.invariant.end``' Intrinsic
8337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8338
8339Syntax:
8340"""""""
8341
8342::
8343
8344 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8345
8346Overview:
8347"""""""""
8348
8349The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8350memory object are mutable.
8351
8352Arguments:
8353""""""""""
8354
8355The first argument is the matching ``llvm.invariant.start`` intrinsic.
8356The second argument is a constant integer representing the size of the
8357object, or -1 if it is variable sized and the third argument is a
8358pointer to the object.
8359
8360Semantics:
8361""""""""""
8362
8363This intrinsic indicates that the memory is mutable again.
8364
8365General Intrinsics
8366------------------
8367
8368This class of intrinsics is designed to be generic and has no specific
8369purpose.
8370
8371'``llvm.var.annotation``' Intrinsic
8372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8373
8374Syntax:
8375"""""""
8376
8377::
8378
8379 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8380
8381Overview:
8382"""""""""
8383
8384The '``llvm.var.annotation``' intrinsic.
8385
8386Arguments:
8387""""""""""
8388
8389The first argument is a pointer to a value, the second is a pointer to a
8390global string, the third is a pointer to a global string which is the
8391source file name, and the last argument is the line number.
8392
8393Semantics:
8394""""""""""
8395
8396This intrinsic allows annotation of local variables with arbitrary
8397strings. This can be useful for special purpose optimizations that want
8398to look for these annotations. These have no other defined use; they are
8399ignored by code generation and optimization.
8400
Michael Gottesman872b4e52013-03-26 00:34:27 +00008401'``llvm.ptr.annotation.*``' Intrinsic
8402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8403
8404Syntax:
8405"""""""
8406
8407This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8408pointer to an integer of any width. *NOTE* you must specify an address space for
8409the pointer. The identifier for the default address space is the integer
8410'``0``'.
8411
8412::
8413
8414 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8415 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8416 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8417 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8418 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8419
8420Overview:
8421"""""""""
8422
8423The '``llvm.ptr.annotation``' intrinsic.
8424
8425Arguments:
8426""""""""""
8427
8428The first argument is a pointer to an integer value of arbitrary bitwidth
8429(result of some expression), the second is a pointer to a global string, the
8430third is a pointer to a global string which is the source file name, and the
8431last argument is the line number. It returns the value of the first argument.
8432
8433Semantics:
8434""""""""""
8435
8436This intrinsic allows annotation of a pointer to an integer with arbitrary
8437strings. This can be useful for special purpose optimizations that want to look
8438for these annotations. These have no other defined use; they are ignored by code
8439generation and optimization.
8440
Sean Silvaf722b002012-12-07 10:36:55 +00008441'``llvm.annotation.*``' Intrinsic
8442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8443
8444Syntax:
8445"""""""
8446
8447This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8448any integer bit width.
8449
8450::
8451
8452 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8453 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8454 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8455 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8456 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8457
8458Overview:
8459"""""""""
8460
8461The '``llvm.annotation``' intrinsic.
8462
8463Arguments:
8464""""""""""
8465
8466The first argument is an integer value (result of some expression), the
8467second is a pointer to a global string, the third is a pointer to a
8468global string which is the source file name, and the last argument is
8469the line number. It returns the value of the first argument.
8470
8471Semantics:
8472""""""""""
8473
8474This intrinsic allows annotations to be put on arbitrary expressions
8475with arbitrary strings. This can be useful for special purpose
8476optimizations that want to look for these annotations. These have no
8477other defined use; they are ignored by code generation and optimization.
8478
8479'``llvm.trap``' Intrinsic
8480^^^^^^^^^^^^^^^^^^^^^^^^^
8481
8482Syntax:
8483"""""""
8484
8485::
8486
8487 declare void @llvm.trap() noreturn nounwind
8488
8489Overview:
8490"""""""""
8491
8492The '``llvm.trap``' intrinsic.
8493
8494Arguments:
8495""""""""""
8496
8497None.
8498
8499Semantics:
8500""""""""""
8501
8502This intrinsic is lowered to the target dependent trap instruction. If
8503the target does not have a trap instruction, this intrinsic will be
8504lowered to a call of the ``abort()`` function.
8505
8506'``llvm.debugtrap``' Intrinsic
8507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8508
8509Syntax:
8510"""""""
8511
8512::
8513
8514 declare void @llvm.debugtrap() nounwind
8515
8516Overview:
8517"""""""""
8518
8519The '``llvm.debugtrap``' intrinsic.
8520
8521Arguments:
8522""""""""""
8523
8524None.
8525
8526Semantics:
8527""""""""""
8528
8529This intrinsic is lowered to code which is intended to cause an
8530execution trap with the intention of requesting the attention of a
8531debugger.
8532
8533'``llvm.stackprotector``' Intrinsic
8534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539::
8540
8541 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8542
8543Overview:
8544"""""""""
8545
8546The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8547onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8548is placed on the stack before local variables.
8549
8550Arguments:
8551""""""""""
8552
8553The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8554The first argument is the value loaded from the stack guard
8555``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8556enough space to hold the value of the guard.
8557
8558Semantics:
8559""""""""""
8560
8561This intrinsic causes the prologue/epilogue inserter to force the
8562position of the ``AllocaInst`` stack slot to be before local variables
8563on the stack. This is to ensure that if a local variable on the stack is
8564overwritten, it will destroy the value of the guard. When the function
8565exits, the guard on the stack is checked against the original guard. If
8566they are different, then the program aborts by calling the
8567``__stack_chk_fail()`` function.
8568
8569'``llvm.objectsize``' Intrinsic
8570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8571
8572Syntax:
8573"""""""
8574
8575::
8576
8577 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8578 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8579
8580Overview:
8581"""""""""
8582
8583The ``llvm.objectsize`` intrinsic is designed to provide information to
8584the optimizers to determine at compile time whether a) an operation
8585(like memcpy) will overflow a buffer that corresponds to an object, or
8586b) that a runtime check for overflow isn't necessary. An object in this
8587context means an allocation of a specific class, structure, array, or
8588other object.
8589
8590Arguments:
8591""""""""""
8592
8593The ``llvm.objectsize`` intrinsic takes two arguments. The first
8594argument is a pointer to or into the ``object``. The second argument is
8595a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8596or -1 (if false) when the object size is unknown. The second argument
8597only accepts constants.
8598
8599Semantics:
8600""""""""""
8601
8602The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8603the size of the object concerned. If the size cannot be determined at
8604compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8605on the ``min`` argument).
8606
8607'``llvm.expect``' Intrinsic
8608^^^^^^^^^^^^^^^^^^^^^^^^^^^
8609
8610Syntax:
8611"""""""
8612
8613::
8614
8615 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8616 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8617
8618Overview:
8619"""""""""
8620
8621The ``llvm.expect`` intrinsic provides information about expected (the
8622most probable) value of ``val``, which can be used by optimizers.
8623
8624Arguments:
8625""""""""""
8626
8627The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8628a value. The second argument is an expected value, this needs to be a
8629constant value, variables are not allowed.
8630
8631Semantics:
8632""""""""""
8633
8634This intrinsic is lowered to the ``val``.
8635
8636'``llvm.donothing``' Intrinsic
8637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8638
8639Syntax:
8640"""""""
8641
8642::
8643
8644 declare void @llvm.donothing() nounwind readnone
8645
8646Overview:
8647"""""""""
8648
8649The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8650only intrinsic that can be called with an invoke instruction.
8651
8652Arguments:
8653""""""""""
8654
8655None.
8656
8657Semantics:
8658""""""""""
8659
8660This intrinsic does nothing, and it's removed by optimizers and ignored
8661by codegen.