blob: 72648edbcb28e36648af3f1803fe6eeaf73a9b78 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
390Visibility Styles
391-----------------
392
393All Global Variables and Functions have one of the following visibility
394styles:
395
396"``default``" - Default style
397 On targets that use the ELF object file format, default visibility
398 means that the declaration is visible to other modules and, in
399 shared libraries, means that the declared entity may be overridden.
400 On Darwin, default visibility means that the declaration is visible
401 to other modules. Default visibility corresponds to "external
402 linkage" in the language.
403"``hidden``" - Hidden style
404 Two declarations of an object with hidden visibility refer to the
405 same object if they are in the same shared object. Usually, hidden
406 visibility indicates that the symbol will not be placed into the
407 dynamic symbol table, so no other module (executable or shared
408 library) can reference it directly.
409"``protected``" - Protected style
410 On ELF, protected visibility indicates that the symbol will be
411 placed in the dynamic symbol table, but that references within the
412 defining module will bind to the local symbol. That is, the symbol
413 cannot be overridden by another module.
414
415Named Types
416-----------
417
418LLVM IR allows you to specify name aliases for certain types. This can
419make it easier to read the IR and make the IR more condensed
420(particularly when recursive types are involved). An example of a name
421specification is:
422
423.. code-block:: llvm
424
425 %mytype = type { %mytype*, i32 }
426
427You may give a name to any :ref:`type <typesystem>` except
428":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
429expected with the syntax "%mytype".
430
431Note that type names are aliases for the structural type that they
432indicate, and that you can therefore specify multiple names for the same
433type. This often leads to confusing behavior when dumping out a .ll
434file. Since LLVM IR uses structural typing, the name is not part of the
435type. When printing out LLVM IR, the printer will pick *one name* to
436render all types of a particular shape. This means that if you have code
437where two different source types end up having the same LLVM type, that
438the dumper will sometimes print the "wrong" or unexpected type. This is
439an important design point and isn't going to change.
440
441.. _globalvars:
442
443Global Variables
444----------------
445
446Global variables define regions of memory allocated at compilation time
447instead of run-time. Global variables may optionally be initialized, may
448have an explicit section to be placed in, and may have an optional
449explicit alignment specified.
450
451A variable may be defined as ``thread_local``, which means that it will
452not be shared by threads (each thread will have a separated copy of the
453variable). Not all targets support thread-local variables. Optionally, a
454TLS model may be specified:
455
456``localdynamic``
457 For variables that are only used within the current shared library.
458``initialexec``
459 For variables in modules that will not be loaded dynamically.
460``localexec``
461 For variables defined in the executable and only used within it.
462
463The models correspond to the ELF TLS models; see `ELF Handling For
464Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
465more information on under which circumstances the different models may
466be used. The target may choose a different TLS model if the specified
467model is not supported, or if a better choice of model can be made.
468
Michael Gottesmanf5735882013-01-31 05:48:48 +0000469A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000470the contents of the variable will **never** be modified (enabling better
471optimization, allowing the global data to be placed in the read-only
472section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000473initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000474variable.
475
476LLVM explicitly allows *declarations* of global variables to be marked
477constant, even if the final definition of the global is not. This
478capability can be used to enable slightly better optimization of the
479program, but requires the language definition to guarantee that
480optimizations based on the 'constantness' are valid for the translation
481units that do not include the definition.
482
483As SSA values, global variables define pointer values that are in scope
484(i.e. they dominate) all basic blocks in the program. Global variables
485always define a pointer to their "content" type because they describe a
486region of memory, and all memory objects in LLVM are accessed through
487pointers.
488
489Global variables can be marked with ``unnamed_addr`` which indicates
490that the address is not significant, only the content. Constants marked
491like this can be merged with other constants if they have the same
492initializer. Note that a constant with significant address *can* be
493merged with a ``unnamed_addr`` constant, the result being a constant
494whose address is significant.
495
496A global variable may be declared to reside in a target-specific
497numbered address space. For targets that support them, address spaces
498may affect how optimizations are performed and/or what target
499instructions are used to access the variable. The default address space
500is zero. The address space qualifier must precede any other attributes.
501
502LLVM allows an explicit section to be specified for globals. If the
503target supports it, it will emit globals to the section specified.
504
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000505By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000506variables defined within the module are not modified from their
507initial values before the start of the global initializer. This is
508true even for variables potentially accessible from outside the
509module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000510``@llvm.used``. This assumption may be suppressed by marking the
511variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000512
Sean Silvaf722b002012-12-07 10:36:55 +0000513An explicit alignment may be specified for a global, which must be a
514power of 2. If not present, or if the alignment is set to zero, the
515alignment of the global is set by the target to whatever it feels
516convenient. If an explicit alignment is specified, the global is forced
517to have exactly that alignment. Targets and optimizers are not allowed
518to over-align the global if the global has an assigned section. In this
519case, the extra alignment could be observable: for example, code could
520assume that the globals are densely packed in their section and try to
521iterate over them as an array, alignment padding would break this
522iteration.
523
524For example, the following defines a global in a numbered address space
525with an initializer, section, and alignment:
526
527.. code-block:: llvm
528
529 @G = addrspace(5) constant float 1.0, section "foo", align 4
530
531The following example defines a thread-local global with the
532``initialexec`` TLS model:
533
534.. code-block:: llvm
535
536 @G = thread_local(initialexec) global i32 0, align 4
537
538.. _functionstructure:
539
540Functions
541---------
542
543LLVM function definitions consist of the "``define``" keyword, an
544optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
545style <visibility>`, an optional :ref:`calling convention <callingconv>`,
546an optional ``unnamed_addr`` attribute, a return type, an optional
547:ref:`parameter attribute <paramattrs>` for the return type, a function
548name, a (possibly empty) argument list (each with optional :ref:`parameter
549attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
550an optional section, an optional alignment, an optional :ref:`garbage
551collector name <gc>`, an opening curly brace, a list of basic blocks,
552and a closing curly brace.
553
554LLVM function declarations consist of the "``declare``" keyword, an
555optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
556style <visibility>`, an optional :ref:`calling convention <callingconv>`,
557an optional ``unnamed_addr`` attribute, a return type, an optional
558:ref:`parameter attribute <paramattrs>` for the return type, a function
559name, a possibly empty list of arguments, an optional alignment, and an
560optional :ref:`garbage collector name <gc>`.
561
562A function definition contains a list of basic blocks, forming the CFG
563(Control Flow Graph) for the function. Each basic block may optionally
564start with a label (giving the basic block a symbol table entry),
565contains a list of instructions, and ends with a
566:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000567return). If explicit label is not provided, a block is assigned an
568implicit numbered label, using a next value from the same counter as used
569for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
570function entry block does not have explicit label, it will be assigned
571label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000572
573The first basic block in a function is special in two ways: it is
574immediately executed on entrance to the function, and it is not allowed
575to have predecessor basic blocks (i.e. there can not be any branches to
576the entry block of a function). Because the block can have no
577predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
578
579LLVM allows an explicit section to be specified for functions. If the
580target supports it, it will emit functions to the section specified.
581
582An explicit alignment may be specified for a function. If not present,
583or if the alignment is set to zero, the alignment of the function is set
584by the target to whatever it feels convenient. If an explicit alignment
585is specified, the function is forced to have at least that much
586alignment. All alignments must be a power of 2.
587
588If the ``unnamed_addr`` attribute is given, the address is know to not
589be significant and two identical functions can be merged.
590
591Syntax::
592
593 define [linkage] [visibility]
594 [cconv] [ret attrs]
595 <ResultType> @<FunctionName> ([argument list])
596 [fn Attrs] [section "name"] [align N]
597 [gc] { ... }
598
599Aliases
600-------
601
602Aliases act as "second name" for the aliasee value (which can be either
603function, global variable, another alias or bitcast of global value).
604Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
605:ref:`visibility style <visibility>`.
606
607Syntax::
608
609 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
610
611.. _namedmetadatastructure:
612
613Named Metadata
614--------------
615
616Named metadata is a collection of metadata. :ref:`Metadata
617nodes <metadata>` (but not metadata strings) are the only valid
618operands for a named metadata.
619
620Syntax::
621
622 ; Some unnamed metadata nodes, which are referenced by the named metadata.
623 !0 = metadata !{metadata !"zero"}
624 !1 = metadata !{metadata !"one"}
625 !2 = metadata !{metadata !"two"}
626 ; A named metadata.
627 !name = !{!0, !1, !2}
628
629.. _paramattrs:
630
631Parameter Attributes
632--------------------
633
634The return type and each parameter of a function type may have a set of
635*parameter attributes* associated with them. Parameter attributes are
636used to communicate additional information about the result or
637parameters of a function. Parameter attributes are considered to be part
638of the function, not of the function type, so functions with different
639parameter attributes can have the same function type.
640
641Parameter attributes are simple keywords that follow the type specified.
642If multiple parameter attributes are needed, they are space separated.
643For example:
644
645.. code-block:: llvm
646
647 declare i32 @printf(i8* noalias nocapture, ...)
648 declare i32 @atoi(i8 zeroext)
649 declare signext i8 @returns_signed_char()
650
651Note that any attributes for the function result (``nounwind``,
652``readonly``) come immediately after the argument list.
653
654Currently, only the following parameter attributes are defined:
655
656``zeroext``
657 This indicates to the code generator that the parameter or return
658 value should be zero-extended to the extent required by the target's
659 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
660 the caller (for a parameter) or the callee (for a return value).
661``signext``
662 This indicates to the code generator that the parameter or return
663 value should be sign-extended to the extent required by the target's
664 ABI (which is usually 32-bits) by the caller (for a parameter) or
665 the callee (for a return value).
666``inreg``
667 This indicates that this parameter or return value should be treated
668 in a special target-dependent fashion during while emitting code for
669 a function call or return (usually, by putting it in a register as
670 opposed to memory, though some targets use it to distinguish between
671 two different kinds of registers). Use of this attribute is
672 target-specific.
673``byval``
674 This indicates that the pointer parameter should really be passed by
675 value to the function. The attribute implies that a hidden copy of
676 the pointee is made between the caller and the callee, so the callee
677 is unable to modify the value in the caller. This attribute is only
678 valid on LLVM pointer arguments. It is generally used to pass
679 structs and arrays by value, but is also valid on pointers to
680 scalars. The copy is considered to belong to the caller not the
681 callee (for example, ``readonly`` functions should not write to
682 ``byval`` parameters). This is not a valid attribute for return
683 values.
684
685 The byval attribute also supports specifying an alignment with the
686 align attribute. It indicates the alignment of the stack slot to
687 form and the known alignment of the pointer specified to the call
688 site. If the alignment is not specified, then the code generator
689 makes a target-specific assumption.
690
691``sret``
692 This indicates that the pointer parameter specifies the address of a
693 structure that is the return value of the function in the source
694 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000695 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000696 not to trap and to be properly aligned. This may only be applied to
697 the first parameter. This is not a valid attribute for return
698 values.
699``noalias``
700 This indicates that pointer values `*based* <pointeraliasing>` on
701 the argument or return value do not alias pointer values which are
702 not *based* on it, ignoring certain "irrelevant" dependencies. For a
703 call to the parent function, dependencies between memory references
704 from before or after the call and from those during the call are
705 "irrelevant" to the ``noalias`` keyword for the arguments and return
706 value used in that call. The caller shares the responsibility with
707 the callee for ensuring that these requirements are met. For further
708 details, please see the discussion of the NoAlias response in `alias
709 analysis <AliasAnalysis.html#MustMayNo>`_.
710
711 Note that this definition of ``noalias`` is intentionally similar
712 to the definition of ``restrict`` in C99 for function arguments,
713 though it is slightly weaker.
714
715 For function return values, C99's ``restrict`` is not meaningful,
716 while LLVM's ``noalias`` is.
717``nocapture``
718 This indicates that the callee does not make any copies of the
719 pointer that outlive the callee itself. This is not a valid
720 attribute for return values.
721
722.. _nest:
723
724``nest``
725 This indicates that the pointer parameter can be excised using the
726 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000727 attribute for return values and can only be applied to one parameter.
728
729``returned``
730 This indicates that the value of the function always returns the value
731 of the parameter as its return value. This is an optimization hint to
732 the code generator when generating the caller, allowing tail call
733 optimization and omission of register saves and restores in some cases;
734 it is not checked or enforced when generating the callee. The parameter
735 and the function return type must be valid operands for the
736 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
737 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000738
739.. _gc:
740
741Garbage Collector Names
742-----------------------
743
744Each function may specify a garbage collector name, which is simply a
745string:
746
747.. code-block:: llvm
748
749 define void @f() gc "name" { ... }
750
751The compiler declares the supported values of *name*. Specifying a
752collector which will cause the compiler to alter its output in order to
753support the named garbage collection algorithm.
754
Bill Wendling95ce4c22013-02-06 06:52:58 +0000755.. _attrgrp:
756
757Attribute Groups
758----------------
759
760Attribute groups are groups of attributes that are referenced by objects within
761the IR. They are important for keeping ``.ll`` files readable, because a lot of
762functions will use the same set of attributes. In the degenerative case of a
763``.ll`` file that corresponds to a single ``.c`` file, the single attribute
764group will capture the important command line flags used to build that file.
765
766An attribute group is a module-level object. To use an attribute group, an
767object references the attribute group's ID (e.g. ``#37``). An object may refer
768to more than one attribute group. In that situation, the attributes from the
769different groups are merged.
770
771Here is an example of attribute groups for a function that should always be
772inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
773
774.. code-block:: llvm
775
776 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000777 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000778
779 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000780 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000781
782 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
783 define void @f() #0 #1 { ... }
784
Sean Silvaf722b002012-12-07 10:36:55 +0000785.. _fnattrs:
786
787Function Attributes
788-------------------
789
790Function attributes are set to communicate additional information about
791a function. Function attributes are considered to be part of the
792function, not of the function type, so functions with different function
793attributes can have the same function type.
794
795Function attributes are simple keywords that follow the type specified.
796If multiple attributes are needed, they are space separated. For
797example:
798
799.. code-block:: llvm
800
801 define void @f() noinline { ... }
802 define void @f() alwaysinline { ... }
803 define void @f() alwaysinline optsize { ... }
804 define void @f() optsize { ... }
805
Sean Silvaf722b002012-12-07 10:36:55 +0000806``alignstack(<n>)``
807 This attribute indicates that, when emitting the prologue and
808 epilogue, the backend should forcibly align the stack pointer.
809 Specify the desired alignment, which must be a power of two, in
810 parentheses.
811``alwaysinline``
812 This attribute indicates that the inliner should attempt to inline
813 this function into callers whenever possible, ignoring any active
814 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000815``cold``
816 This attribute indicates that this function is rarely called. When
817 computing edge weights, basic blocks post-dominated by a cold
818 function call are also considered to be cold; and, thus, given low
819 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000820``nonlazybind``
821 This attribute suppresses lazy symbol binding for the function. This
822 may make calls to the function faster, at the cost of extra program
823 startup time if the function is not called during program startup.
824``inlinehint``
825 This attribute indicates that the source code contained a hint that
826 inlining this function is desirable (such as the "inline" keyword in
827 C/C++). It is just a hint; it imposes no requirements on the
828 inliner.
829``naked``
830 This attribute disables prologue / epilogue emission for the
831 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000832``nobuiltin``
833 This indicates that the callee function at a call site is not
834 recognized as a built-in function. LLVM will retain the original call
835 and not replace it with equivalent code based on the semantics of the
836 built-in function. This is only valid at call sites, not on function
837 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000838``noduplicate``
839 This attribute indicates that calls to the function cannot be
840 duplicated. A call to a ``noduplicate`` function may be moved
841 within its parent function, but may not be duplicated within
842 its parent function.
843
844 A function containing a ``noduplicate`` call may still
845 be an inlining candidate, provided that the call is not
846 duplicated by inlining. That implies that the function has
847 internal linkage and only has one call site, so the original
848 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000849``noimplicitfloat``
850 This attributes disables implicit floating point instructions.
851``noinline``
852 This attribute indicates that the inliner should never inline this
853 function in any situation. This attribute may not be used together
854 with the ``alwaysinline`` attribute.
855``noredzone``
856 This attribute indicates that the code generator should not use a
857 red zone, even if the target-specific ABI normally permits it.
858``noreturn``
859 This function attribute indicates that the function never returns
860 normally. This produces undefined behavior at runtime if the
861 function ever does dynamically return.
862``nounwind``
863 This function attribute indicates that the function never returns
864 with an unwind or exceptional control flow. If the function does
865 unwind, its runtime behavior is undefined.
866``optsize``
867 This attribute suggests that optimization passes and code generator
868 passes make choices that keep the code size of this function low,
869 and otherwise do optimizations specifically to reduce code size.
870``readnone``
871 This attribute indicates that the function computes its result (or
872 decides to unwind an exception) based strictly on its arguments,
873 without dereferencing any pointer arguments or otherwise accessing
874 any mutable state (e.g. memory, control registers, etc) visible to
875 caller functions. It does not write through any pointer arguments
876 (including ``byval`` arguments) and never changes any state visible
877 to callers. This means that it cannot unwind exceptions by calling
878 the ``C++`` exception throwing methods.
879``readonly``
880 This attribute indicates that the function does not write through
881 any pointer arguments (including ``byval`` arguments) or otherwise
882 modify any state (e.g. memory, control registers, etc) visible to
883 caller functions. It may dereference pointer arguments and read
884 state that may be set in the caller. A readonly function always
885 returns the same value (or unwinds an exception identically) when
886 called with the same set of arguments and global state. It cannot
887 unwind an exception by calling the ``C++`` exception throwing
888 methods.
889``returns_twice``
890 This attribute indicates that this function can return twice. The C
891 ``setjmp`` is an example of such a function. The compiler disables
892 some optimizations (like tail calls) in the caller of these
893 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000894``sanitize_address``
895 This attribute indicates that AddressSanitizer checks
896 (dynamic address safety analysis) are enabled for this function.
897``sanitize_memory``
898 This attribute indicates that MemorySanitizer checks (dynamic detection
899 of accesses to uninitialized memory) are enabled for this function.
900``sanitize_thread``
901 This attribute indicates that ThreadSanitizer checks
902 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000903``ssp``
904 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000905 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000906 placed on the stack before the local variables that's checked upon
907 return from the function to see if it has been overwritten. A
908 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000909 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000910
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000911 - Character arrays larger than ``ssp-buffer-size`` (default 8).
912 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
913 - Calls to alloca() with variable sizes or constant sizes greater than
914 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000915
916 If a function that has an ``ssp`` attribute is inlined into a
917 function that doesn't have an ``ssp`` attribute, then the resulting
918 function will have an ``ssp`` attribute.
919``sspreq``
920 This attribute indicates that the function should *always* emit a
921 stack smashing protector. This overrides the ``ssp`` function
922 attribute.
923
924 If a function that has an ``sspreq`` attribute is inlined into a
925 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000926 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
927 an ``sspreq`` attribute.
928``sspstrong``
929 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000930 protector. This attribute causes a strong heuristic to be used when
931 determining if a function needs stack protectors. The strong heuristic
932 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000933
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000934 - Arrays of any size and type
935 - Aggregates containing an array of any size and type.
936 - Calls to alloca().
937 - Local variables that have had their address taken.
938
939 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000940
941 If a function that has an ``sspstrong`` attribute is inlined into a
942 function that doesn't have an ``sspstrong`` attribute, then the
943 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000944``uwtable``
945 This attribute indicates that the ABI being targeted requires that
946 an unwind table entry be produce for this function even if we can
947 show that no exceptions passes by it. This is normally the case for
948 the ELF x86-64 abi, but it can be disabled for some compilation
949 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000950
951.. _moduleasm:
952
953Module-Level Inline Assembly
954----------------------------
955
956Modules may contain "module-level inline asm" blocks, which corresponds
957to the GCC "file scope inline asm" blocks. These blocks are internally
958concatenated by LLVM and treated as a single unit, but may be separated
959in the ``.ll`` file if desired. The syntax is very simple:
960
961.. code-block:: llvm
962
963 module asm "inline asm code goes here"
964 module asm "more can go here"
965
966The strings can contain any character by escaping non-printable
967characters. The escape sequence used is simply "\\xx" where "xx" is the
968two digit hex code for the number.
969
970The inline asm code is simply printed to the machine code .s file when
971assembly code is generated.
972
973Data Layout
974-----------
975
976A module may specify a target specific data layout string that specifies
977how data is to be laid out in memory. The syntax for the data layout is
978simply:
979
980.. code-block:: llvm
981
982 target datalayout = "layout specification"
983
984The *layout specification* consists of a list of specifications
985separated by the minus sign character ('-'). Each specification starts
986with a letter and may include other information after the letter to
987define some aspect of the data layout. The specifications accepted are
988as follows:
989
990``E``
991 Specifies that the target lays out data in big-endian form. That is,
992 the bits with the most significance have the lowest address
993 location.
994``e``
995 Specifies that the target lays out data in little-endian form. That
996 is, the bits with the least significance have the lowest address
997 location.
998``S<size>``
999 Specifies the natural alignment of the stack in bits. Alignment
1000 promotion of stack variables is limited to the natural stack
1001 alignment to avoid dynamic stack realignment. The stack alignment
1002 must be a multiple of 8-bits. If omitted, the natural stack
1003 alignment defaults to "unspecified", which does not prevent any
1004 alignment promotions.
1005``p[n]:<size>:<abi>:<pref>``
1006 This specifies the *size* of a pointer and its ``<abi>`` and
1007 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1008 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1009 preceding ``:`` should be omitted too. The address space, ``n`` is
1010 optional, and if not specified, denotes the default address space 0.
1011 The value of ``n`` must be in the range [1,2^23).
1012``i<size>:<abi>:<pref>``
1013 This specifies the alignment for an integer type of a given bit
1014 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1015``v<size>:<abi>:<pref>``
1016 This specifies the alignment for a vector type of a given bit
1017 ``<size>``.
1018``f<size>:<abi>:<pref>``
1019 This specifies the alignment for a floating point type of a given bit
1020 ``<size>``. Only values of ``<size>`` that are supported by the target
1021 will work. 32 (float) and 64 (double) are supported on all targets; 80
1022 or 128 (different flavors of long double) are also supported on some
1023 targets.
1024``a<size>:<abi>:<pref>``
1025 This specifies the alignment for an aggregate type of a given bit
1026 ``<size>``.
1027``s<size>:<abi>:<pref>``
1028 This specifies the alignment for a stack object of a given bit
1029 ``<size>``.
1030``n<size1>:<size2>:<size3>...``
1031 This specifies a set of native integer widths for the target CPU in
1032 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1033 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1034 this set are considered to support most general arithmetic operations
1035 efficiently.
1036
1037When constructing the data layout for a given target, LLVM starts with a
1038default set of specifications which are then (possibly) overridden by
1039the specifications in the ``datalayout`` keyword. The default
1040specifications are given in this list:
1041
1042- ``E`` - big endian
1043- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001044- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001045- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1046- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1047- ``i16:16:16`` - i16 is 16-bit aligned
1048- ``i32:32:32`` - i32 is 32-bit aligned
1049- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1050 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001051- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001052- ``f32:32:32`` - float is 32-bit aligned
1053- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001054- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001055- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1056- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001057- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001058
1059When LLVM is determining the alignment for a given type, it uses the
1060following rules:
1061
1062#. If the type sought is an exact match for one of the specifications,
1063 that specification is used.
1064#. If no match is found, and the type sought is an integer type, then
1065 the smallest integer type that is larger than the bitwidth of the
1066 sought type is used. If none of the specifications are larger than
1067 the bitwidth then the largest integer type is used. For example,
1068 given the default specifications above, the i7 type will use the
1069 alignment of i8 (next largest) while both i65 and i256 will use the
1070 alignment of i64 (largest specified).
1071#. If no match is found, and the type sought is a vector type, then the
1072 largest vector type that is smaller than the sought vector type will
1073 be used as a fall back. This happens because <128 x double> can be
1074 implemented in terms of 64 <2 x double>, for example.
1075
1076The function of the data layout string may not be what you expect.
1077Notably, this is not a specification from the frontend of what alignment
1078the code generator should use.
1079
1080Instead, if specified, the target data layout is required to match what
1081the ultimate *code generator* expects. This string is used by the
1082mid-level optimizers to improve code, and this only works if it matches
1083what the ultimate code generator uses. If you would like to generate IR
1084that does not embed this target-specific detail into the IR, then you
1085don't have to specify the string. This will disable some optimizations
1086that require precise layout information, but this also prevents those
1087optimizations from introducing target specificity into the IR.
1088
1089.. _pointeraliasing:
1090
1091Pointer Aliasing Rules
1092----------------------
1093
1094Any memory access must be done through a pointer value associated with
1095an address range of the memory access, otherwise the behavior is
1096undefined. Pointer values are associated with address ranges according
1097to the following rules:
1098
1099- A pointer value is associated with the addresses associated with any
1100 value it is *based* on.
1101- An address of a global variable is associated with the address range
1102 of the variable's storage.
1103- The result value of an allocation instruction is associated with the
1104 address range of the allocated storage.
1105- A null pointer in the default address-space is associated with no
1106 address.
1107- An integer constant other than zero or a pointer value returned from
1108 a function not defined within LLVM may be associated with address
1109 ranges allocated through mechanisms other than those provided by
1110 LLVM. Such ranges shall not overlap with any ranges of addresses
1111 allocated by mechanisms provided by LLVM.
1112
1113A pointer value is *based* on another pointer value according to the
1114following rules:
1115
1116- A pointer value formed from a ``getelementptr`` operation is *based*
1117 on the first operand of the ``getelementptr``.
1118- The result value of a ``bitcast`` is *based* on the operand of the
1119 ``bitcast``.
1120- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1121 values that contribute (directly or indirectly) to the computation of
1122 the pointer's value.
1123- The "*based* on" relationship is transitive.
1124
1125Note that this definition of *"based"* is intentionally similar to the
1126definition of *"based"* in C99, though it is slightly weaker.
1127
1128LLVM IR does not associate types with memory. The result type of a
1129``load`` merely indicates the size and alignment of the memory from
1130which to load, as well as the interpretation of the value. The first
1131operand type of a ``store`` similarly only indicates the size and
1132alignment of the store.
1133
1134Consequently, type-based alias analysis, aka TBAA, aka
1135``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1136:ref:`Metadata <metadata>` may be used to encode additional information
1137which specialized optimization passes may use to implement type-based
1138alias analysis.
1139
1140.. _volatile:
1141
1142Volatile Memory Accesses
1143------------------------
1144
1145Certain memory accesses, such as :ref:`load <i_load>`'s,
1146:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1147marked ``volatile``. The optimizers must not change the number of
1148volatile operations or change their order of execution relative to other
1149volatile operations. The optimizers *may* change the order of volatile
1150operations relative to non-volatile operations. This is not Java's
1151"volatile" and has no cross-thread synchronization behavior.
1152
Andrew Trick9a6dd022013-01-30 21:19:35 +00001153IR-level volatile loads and stores cannot safely be optimized into
1154llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1155flagged volatile. Likewise, the backend should never split or merge
1156target-legal volatile load/store instructions.
1157
Andrew Trick946317d2013-01-31 00:49:39 +00001158.. admonition:: Rationale
1159
1160 Platforms may rely on volatile loads and stores of natively supported
1161 data width to be executed as single instruction. For example, in C
1162 this holds for an l-value of volatile primitive type with native
1163 hardware support, but not necessarily for aggregate types. The
1164 frontend upholds these expectations, which are intentionally
1165 unspecified in the IR. The rules above ensure that IR transformation
1166 do not violate the frontend's contract with the language.
1167
Sean Silvaf722b002012-12-07 10:36:55 +00001168.. _memmodel:
1169
1170Memory Model for Concurrent Operations
1171--------------------------------------
1172
1173The LLVM IR does not define any way to start parallel threads of
1174execution or to register signal handlers. Nonetheless, there are
1175platform-specific ways to create them, and we define LLVM IR's behavior
1176in their presence. This model is inspired by the C++0x memory model.
1177
1178For a more informal introduction to this model, see the :doc:`Atomics`.
1179
1180We define a *happens-before* partial order as the least partial order
1181that
1182
1183- Is a superset of single-thread program order, and
1184- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1185 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1186 techniques, like pthread locks, thread creation, thread joining,
1187 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1188 Constraints <ordering>`).
1189
1190Note that program order does not introduce *happens-before* edges
1191between a thread and signals executing inside that thread.
1192
1193Every (defined) read operation (load instructions, memcpy, atomic
1194loads/read-modify-writes, etc.) R reads a series of bytes written by
1195(defined) write operations (store instructions, atomic
1196stores/read-modify-writes, memcpy, etc.). For the purposes of this
1197section, initialized globals are considered to have a write of the
1198initializer which is atomic and happens before any other read or write
1199of the memory in question. For each byte of a read R, R\ :sub:`byte`
1200may see any write to the same byte, except:
1201
1202- If write\ :sub:`1` happens before write\ :sub:`2`, and
1203 write\ :sub:`2` happens before R\ :sub:`byte`, then
1204 R\ :sub:`byte` does not see write\ :sub:`1`.
1205- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1206 R\ :sub:`byte` does not see write\ :sub:`3`.
1207
1208Given that definition, R\ :sub:`byte` is defined as follows:
1209
1210- If R is volatile, the result is target-dependent. (Volatile is
1211 supposed to give guarantees which can support ``sig_atomic_t`` in
1212 C/C++, and may be used for accesses to addresses which do not behave
1213 like normal memory. It does not generally provide cross-thread
1214 synchronization.)
1215- Otherwise, if there is no write to the same byte that happens before
1216 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1217- Otherwise, if R\ :sub:`byte` may see exactly one write,
1218 R\ :sub:`byte` returns the value written by that write.
1219- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1220 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1221 Memory Ordering Constraints <ordering>` section for additional
1222 constraints on how the choice is made.
1223- Otherwise R\ :sub:`byte` returns ``undef``.
1224
1225R returns the value composed of the series of bytes it read. This
1226implies that some bytes within the value may be ``undef`` **without**
1227the entire value being ``undef``. Note that this only defines the
1228semantics of the operation; it doesn't mean that targets will emit more
1229than one instruction to read the series of bytes.
1230
1231Note that in cases where none of the atomic intrinsics are used, this
1232model places only one restriction on IR transformations on top of what
1233is required for single-threaded execution: introducing a store to a byte
1234which might not otherwise be stored is not allowed in general.
1235(Specifically, in the case where another thread might write to and read
1236from an address, introducing a store can change a load that may see
1237exactly one write into a load that may see multiple writes.)
1238
1239.. _ordering:
1240
1241Atomic Memory Ordering Constraints
1242----------------------------------
1243
1244Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1245:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1246:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1247an ordering parameter that determines which other atomic instructions on
1248the same address they *synchronize with*. These semantics are borrowed
1249from Java and C++0x, but are somewhat more colloquial. If these
1250descriptions aren't precise enough, check those specs (see spec
1251references in the :doc:`atomics guide <Atomics>`).
1252:ref:`fence <i_fence>` instructions treat these orderings somewhat
1253differently since they don't take an address. See that instruction's
1254documentation for details.
1255
1256For a simpler introduction to the ordering constraints, see the
1257:doc:`Atomics`.
1258
1259``unordered``
1260 The set of values that can be read is governed by the happens-before
1261 partial order. A value cannot be read unless some operation wrote
1262 it. This is intended to provide a guarantee strong enough to model
1263 Java's non-volatile shared variables. This ordering cannot be
1264 specified for read-modify-write operations; it is not strong enough
1265 to make them atomic in any interesting way.
1266``monotonic``
1267 In addition to the guarantees of ``unordered``, there is a single
1268 total order for modifications by ``monotonic`` operations on each
1269 address. All modification orders must be compatible with the
1270 happens-before order. There is no guarantee that the modification
1271 orders can be combined to a global total order for the whole program
1272 (and this often will not be possible). The read in an atomic
1273 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1274 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1275 order immediately before the value it writes. If one atomic read
1276 happens before another atomic read of the same address, the later
1277 read must see the same value or a later value in the address's
1278 modification order. This disallows reordering of ``monotonic`` (or
1279 stronger) operations on the same address. If an address is written
1280 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1281 read that address repeatedly, the other threads must eventually see
1282 the write. This corresponds to the C++0x/C1x
1283 ``memory_order_relaxed``.
1284``acquire``
1285 In addition to the guarantees of ``monotonic``, a
1286 *synchronizes-with* edge may be formed with a ``release`` operation.
1287 This is intended to model C++'s ``memory_order_acquire``.
1288``release``
1289 In addition to the guarantees of ``monotonic``, if this operation
1290 writes a value which is subsequently read by an ``acquire``
1291 operation, it *synchronizes-with* that operation. (This isn't a
1292 complete description; see the C++0x definition of a release
1293 sequence.) This corresponds to the C++0x/C1x
1294 ``memory_order_release``.
1295``acq_rel`` (acquire+release)
1296 Acts as both an ``acquire`` and ``release`` operation on its
1297 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1298``seq_cst`` (sequentially consistent)
1299 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1300 operation which only reads, ``release`` for an operation which only
1301 writes), there is a global total order on all
1302 sequentially-consistent operations on all addresses, which is
1303 consistent with the *happens-before* partial order and with the
1304 modification orders of all the affected addresses. Each
1305 sequentially-consistent read sees the last preceding write to the
1306 same address in this global order. This corresponds to the C++0x/C1x
1307 ``memory_order_seq_cst`` and Java volatile.
1308
1309.. _singlethread:
1310
1311If an atomic operation is marked ``singlethread``, it only *synchronizes
1312with* or participates in modification and seq\_cst total orderings with
1313other operations running in the same thread (for example, in signal
1314handlers).
1315
1316.. _fastmath:
1317
1318Fast-Math Flags
1319---------------
1320
1321LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1322:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1323:ref:`frem <i_frem>`) have the following flags that can set to enable
1324otherwise unsafe floating point operations
1325
1326``nnan``
1327 No NaNs - Allow optimizations to assume the arguments and result are not
1328 NaN. Such optimizations are required to retain defined behavior over
1329 NaNs, but the value of the result is undefined.
1330
1331``ninf``
1332 No Infs - Allow optimizations to assume the arguments and result are not
1333 +/-Inf. Such optimizations are required to retain defined behavior over
1334 +/-Inf, but the value of the result is undefined.
1335
1336``nsz``
1337 No Signed Zeros - Allow optimizations to treat the sign of a zero
1338 argument or result as insignificant.
1339
1340``arcp``
1341 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1342 argument rather than perform division.
1343
1344``fast``
1345 Fast - Allow algebraically equivalent transformations that may
1346 dramatically change results in floating point (e.g. reassociate). This
1347 flag implies all the others.
1348
1349.. _typesystem:
1350
1351Type System
1352===========
1353
1354The LLVM type system is one of the most important features of the
1355intermediate representation. Being typed enables a number of
1356optimizations to be performed on the intermediate representation
1357directly, without having to do extra analyses on the side before the
1358transformation. A strong type system makes it easier to read the
1359generated code and enables novel analyses and transformations that are
1360not feasible to perform on normal three address code representations.
1361
1362Type Classifications
1363--------------------
1364
1365The types fall into a few useful classifications:
1366
1367
1368.. list-table::
1369 :header-rows: 1
1370
1371 * - Classification
1372 - Types
1373
1374 * - :ref:`integer <t_integer>`
1375 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1376 ``i64``, ...
1377
1378 * - :ref:`floating point <t_floating>`
1379 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1380 ``ppc_fp128``
1381
1382
1383 * - first class
1384
1385 .. _t_firstclass:
1386
1387 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1388 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1389 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1390 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1391
1392 * - :ref:`primitive <t_primitive>`
1393 - :ref:`label <t_label>`,
1394 :ref:`void <t_void>`,
1395 :ref:`integer <t_integer>`,
1396 :ref:`floating point <t_floating>`,
1397 :ref:`x86mmx <t_x86mmx>`,
1398 :ref:`metadata <t_metadata>`.
1399
1400 * - :ref:`derived <t_derived>`
1401 - :ref:`array <t_array>`,
1402 :ref:`function <t_function>`,
1403 :ref:`pointer <t_pointer>`,
1404 :ref:`structure <t_struct>`,
1405 :ref:`vector <t_vector>`,
1406 :ref:`opaque <t_opaque>`.
1407
1408The :ref:`first class <t_firstclass>` types are perhaps the most important.
1409Values of these types are the only ones which can be produced by
1410instructions.
1411
1412.. _t_primitive:
1413
1414Primitive Types
1415---------------
1416
1417The primitive types are the fundamental building blocks of the LLVM
1418system.
1419
1420.. _t_integer:
1421
1422Integer Type
1423^^^^^^^^^^^^
1424
1425Overview:
1426"""""""""
1427
1428The integer type is a very simple type that simply specifies an
1429arbitrary bit width for the integer type desired. Any bit width from 1
1430bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1431
1432Syntax:
1433"""""""
1434
1435::
1436
1437 iN
1438
1439The number of bits the integer will occupy is specified by the ``N``
1440value.
1441
1442Examples:
1443"""""""""
1444
1445+----------------+------------------------------------------------+
1446| ``i1`` | a single-bit integer. |
1447+----------------+------------------------------------------------+
1448| ``i32`` | a 32-bit integer. |
1449+----------------+------------------------------------------------+
1450| ``i1942652`` | a really big integer of over 1 million bits. |
1451+----------------+------------------------------------------------+
1452
1453.. _t_floating:
1454
1455Floating Point Types
1456^^^^^^^^^^^^^^^^^^^^
1457
1458.. list-table::
1459 :header-rows: 1
1460
1461 * - Type
1462 - Description
1463
1464 * - ``half``
1465 - 16-bit floating point value
1466
1467 * - ``float``
1468 - 32-bit floating point value
1469
1470 * - ``double``
1471 - 64-bit floating point value
1472
1473 * - ``fp128``
1474 - 128-bit floating point value (112-bit mantissa)
1475
1476 * - ``x86_fp80``
1477 - 80-bit floating point value (X87)
1478
1479 * - ``ppc_fp128``
1480 - 128-bit floating point value (two 64-bits)
1481
1482.. _t_x86mmx:
1483
1484X86mmx Type
1485^^^^^^^^^^^
1486
1487Overview:
1488"""""""""
1489
1490The x86mmx type represents a value held in an MMX register on an x86
1491machine. The operations allowed on it are quite limited: parameters and
1492return values, load and store, and bitcast. User-specified MMX
1493instructions are represented as intrinsic or asm calls with arguments
1494and/or results of this type. There are no arrays, vectors or constants
1495of this type.
1496
1497Syntax:
1498"""""""
1499
1500::
1501
1502 x86mmx
1503
1504.. _t_void:
1505
1506Void Type
1507^^^^^^^^^
1508
1509Overview:
1510"""""""""
1511
1512The void type does not represent any value and has no size.
1513
1514Syntax:
1515"""""""
1516
1517::
1518
1519 void
1520
1521.. _t_label:
1522
1523Label Type
1524^^^^^^^^^^
1525
1526Overview:
1527"""""""""
1528
1529The label type represents code labels.
1530
1531Syntax:
1532"""""""
1533
1534::
1535
1536 label
1537
1538.. _t_metadata:
1539
1540Metadata Type
1541^^^^^^^^^^^^^
1542
1543Overview:
1544"""""""""
1545
1546The metadata type represents embedded metadata. No derived types may be
1547created from metadata except for :ref:`function <t_function>` arguments.
1548
1549Syntax:
1550"""""""
1551
1552::
1553
1554 metadata
1555
1556.. _t_derived:
1557
1558Derived Types
1559-------------
1560
1561The real power in LLVM comes from the derived types in the system. This
1562is what allows a programmer to represent arrays, functions, pointers,
1563and other useful types. Each of these types contain one or more element
1564types which may be a primitive type, or another derived type. For
1565example, it is possible to have a two dimensional array, using an array
1566as the element type of another array.
1567
1568.. _t_aggregate:
1569
1570Aggregate Types
1571^^^^^^^^^^^^^^^
1572
1573Aggregate Types are a subset of derived types that can contain multiple
1574member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1575aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1576aggregate types.
1577
1578.. _t_array:
1579
1580Array Type
1581^^^^^^^^^^
1582
1583Overview:
1584"""""""""
1585
1586The array type is a very simple derived type that arranges elements
1587sequentially in memory. The array type requires a size (number of
1588elements) and an underlying data type.
1589
1590Syntax:
1591"""""""
1592
1593::
1594
1595 [<# elements> x <elementtype>]
1596
1597The number of elements is a constant integer value; ``elementtype`` may
1598be any type with a size.
1599
1600Examples:
1601"""""""""
1602
1603+------------------+--------------------------------------+
1604| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1605+------------------+--------------------------------------+
1606| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1607+------------------+--------------------------------------+
1608| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1609+------------------+--------------------------------------+
1610
1611Here are some examples of multidimensional arrays:
1612
1613+-----------------------------+----------------------------------------------------------+
1614| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1615+-----------------------------+----------------------------------------------------------+
1616| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1617+-----------------------------+----------------------------------------------------------+
1618| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1619+-----------------------------+----------------------------------------------------------+
1620
1621There is no restriction on indexing beyond the end of the array implied
1622by a static type (though there are restrictions on indexing beyond the
1623bounds of an allocated object in some cases). This means that
1624single-dimension 'variable sized array' addressing can be implemented in
1625LLVM with a zero length array type. An implementation of 'pascal style
1626arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1627example.
1628
1629.. _t_function:
1630
1631Function Type
1632^^^^^^^^^^^^^
1633
1634Overview:
1635"""""""""
1636
1637The function type can be thought of as a function signature. It consists
1638of a return type and a list of formal parameter types. The return type
1639of a function type is a first class type or a void type.
1640
1641Syntax:
1642"""""""
1643
1644::
1645
1646 <returntype> (<parameter list>)
1647
1648...where '``<parameter list>``' is a comma-separated list of type
1649specifiers. Optionally, the parameter list may include a type ``...``,
1650which indicates that the function takes a variable number of arguments.
1651Variable argument functions can access their arguments with the
1652:ref:`variable argument handling intrinsic <int_varargs>` functions.
1653'``<returntype>``' is any type except :ref:`label <t_label>`.
1654
1655Examples:
1656"""""""""
1657
1658+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1659| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001661| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667
1668.. _t_struct:
1669
1670Structure Type
1671^^^^^^^^^^^^^^
1672
1673Overview:
1674"""""""""
1675
1676The structure type is used to represent a collection of data members
1677together in memory. The elements of a structure may be any type that has
1678a size.
1679
1680Structures in memory are accessed using '``load``' and '``store``' by
1681getting a pointer to a field with the '``getelementptr``' instruction.
1682Structures in registers are accessed using the '``extractvalue``' and
1683'``insertvalue``' instructions.
1684
1685Structures may optionally be "packed" structures, which indicate that
1686the alignment of the struct is one byte, and that there is no padding
1687between the elements. In non-packed structs, padding between field types
1688is inserted as defined by the DataLayout string in the module, which is
1689required to match what the underlying code generator expects.
1690
1691Structures can either be "literal" or "identified". A literal structure
1692is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1693identified types are always defined at the top level with a name.
1694Literal types are uniqued by their contents and can never be recursive
1695or opaque since there is no way to write one. Identified types can be
1696recursive, can be opaqued, and are never uniqued.
1697
1698Syntax:
1699"""""""
1700
1701::
1702
1703 %T1 = type { <type list> } ; Identified normal struct type
1704 %T2 = type <{ <type list> }> ; Identified packed struct type
1705
1706Examples:
1707"""""""""
1708
1709+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1711+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001712| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001713+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1715+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1716
1717.. _t_opaque:
1718
1719Opaque Structure Types
1720^^^^^^^^^^^^^^^^^^^^^^
1721
1722Overview:
1723"""""""""
1724
1725Opaque structure types are used to represent named structure types that
1726do not have a body specified. This corresponds (for example) to the C
1727notion of a forward declared structure.
1728
1729Syntax:
1730"""""""
1731
1732::
1733
1734 %X = type opaque
1735 %52 = type opaque
1736
1737Examples:
1738"""""""""
1739
1740+--------------+-------------------+
1741| ``opaque`` | An opaque type. |
1742+--------------+-------------------+
1743
1744.. _t_pointer:
1745
1746Pointer Type
1747^^^^^^^^^^^^
1748
1749Overview:
1750"""""""""
1751
1752The pointer type is used to specify memory locations. Pointers are
1753commonly used to reference objects in memory.
1754
1755Pointer types may have an optional address space attribute defining the
1756numbered address space where the pointed-to object resides. The default
1757address space is number zero. The semantics of non-zero address spaces
1758are target-specific.
1759
1760Note that LLVM does not permit pointers to void (``void*``) nor does it
1761permit pointers to labels (``label*``). Use ``i8*`` instead.
1762
1763Syntax:
1764"""""""
1765
1766::
1767
1768 <type> *
1769
1770Examples:
1771"""""""""
1772
1773+-------------------------+--------------------------------------------------------------------------------------------------------------+
1774| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1775+-------------------------+--------------------------------------------------------------------------------------------------------------+
1776| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1777+-------------------------+--------------------------------------------------------------------------------------------------------------+
1778| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1779+-------------------------+--------------------------------------------------------------------------------------------------------------+
1780
1781.. _t_vector:
1782
1783Vector Type
1784^^^^^^^^^^^
1785
1786Overview:
1787"""""""""
1788
1789A vector type is a simple derived type that represents a vector of
1790elements. Vector types are used when multiple primitive data are
1791operated in parallel using a single instruction (SIMD). A vector type
1792requires a size (number of elements) and an underlying primitive data
1793type. Vector types are considered :ref:`first class <t_firstclass>`.
1794
1795Syntax:
1796"""""""
1797
1798::
1799
1800 < <# elements> x <elementtype> >
1801
1802The number of elements is a constant integer value larger than 0;
1803elementtype may be any integer or floating point type, or a pointer to
1804these types. Vectors of size zero are not allowed.
1805
1806Examples:
1807"""""""""
1808
1809+-------------------+--------------------------------------------------+
1810| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1811+-------------------+--------------------------------------------------+
1812| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1813+-------------------+--------------------------------------------------+
1814| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1815+-------------------+--------------------------------------------------+
1816| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1817+-------------------+--------------------------------------------------+
1818
1819Constants
1820=========
1821
1822LLVM has several different basic types of constants. This section
1823describes them all and their syntax.
1824
1825Simple Constants
1826----------------
1827
1828**Boolean constants**
1829 The two strings '``true``' and '``false``' are both valid constants
1830 of the ``i1`` type.
1831**Integer constants**
1832 Standard integers (such as '4') are constants of the
1833 :ref:`integer <t_integer>` type. Negative numbers may be used with
1834 integer types.
1835**Floating point constants**
1836 Floating point constants use standard decimal notation (e.g.
1837 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1838 hexadecimal notation (see below). The assembler requires the exact
1839 decimal value of a floating-point constant. For example, the
1840 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1841 decimal in binary. Floating point constants must have a :ref:`floating
1842 point <t_floating>` type.
1843**Null pointer constants**
1844 The identifier '``null``' is recognized as a null pointer constant
1845 and must be of :ref:`pointer type <t_pointer>`.
1846
1847The one non-intuitive notation for constants is the hexadecimal form of
1848floating point constants. For example, the form
1849'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1850than) '``double 4.5e+15``'. The only time hexadecimal floating point
1851constants are required (and the only time that they are generated by the
1852disassembler) is when a floating point constant must be emitted but it
1853cannot be represented as a decimal floating point number in a reasonable
1854number of digits. For example, NaN's, infinities, and other special
1855values are represented in their IEEE hexadecimal format so that assembly
1856and disassembly do not cause any bits to change in the constants.
1857
1858When using the hexadecimal form, constants of types half, float, and
1859double are represented using the 16-digit form shown above (which
1860matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001861must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001862precision, respectively. Hexadecimal format is always used for long
1863double, and there are three forms of long double. The 80-bit format used
1864by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1865128-bit format used by PowerPC (two adjacent doubles) is represented by
1866``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001867represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1868will only work if they match the long double format on your target.
1869The IEEE 16-bit format (half precision) is represented by ``0xH``
1870followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1871(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001872
1873There are no constants of type x86mmx.
1874
1875Complex Constants
1876-----------------
1877
1878Complex constants are a (potentially recursive) combination of simple
1879constants and smaller complex constants.
1880
1881**Structure constants**
1882 Structure constants are represented with notation similar to
1883 structure type definitions (a comma separated list of elements,
1884 surrounded by braces (``{}``)). For example:
1885 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1886 "``@G = external global i32``". Structure constants must have
1887 :ref:`structure type <t_struct>`, and the number and types of elements
1888 must match those specified by the type.
1889**Array constants**
1890 Array constants are represented with notation similar to array type
1891 definitions (a comma separated list of elements, surrounded by
1892 square brackets (``[]``)). For example:
1893 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1894 :ref:`array type <t_array>`, and the number and types of elements must
1895 match those specified by the type.
1896**Vector constants**
1897 Vector constants are represented with notation similar to vector
1898 type definitions (a comma separated list of elements, surrounded by
1899 less-than/greater-than's (``<>``)). For example:
1900 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1901 must have :ref:`vector type <t_vector>`, and the number and types of
1902 elements must match those specified by the type.
1903**Zero initialization**
1904 The string '``zeroinitializer``' can be used to zero initialize a
1905 value to zero of *any* type, including scalar and
1906 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1907 having to print large zero initializers (e.g. for large arrays) and
1908 is always exactly equivalent to using explicit zero initializers.
1909**Metadata node**
1910 A metadata node is a structure-like constant with :ref:`metadata
1911 type <t_metadata>`. For example:
1912 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1913 constants that are meant to be interpreted as part of the
1914 instruction stream, metadata is a place to attach additional
1915 information such as debug info.
1916
1917Global Variable and Function Addresses
1918--------------------------------------
1919
1920The addresses of :ref:`global variables <globalvars>` and
1921:ref:`functions <functionstructure>` are always implicitly valid
1922(link-time) constants. These constants are explicitly referenced when
1923the :ref:`identifier for the global <identifiers>` is used and always have
1924:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1925file:
1926
1927.. code-block:: llvm
1928
1929 @X = global i32 17
1930 @Y = global i32 42
1931 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1932
1933.. _undefvalues:
1934
1935Undefined Values
1936----------------
1937
1938The string '``undef``' can be used anywhere a constant is expected, and
1939indicates that the user of the value may receive an unspecified
1940bit-pattern. Undefined values may be of any type (other than '``label``'
1941or '``void``') and be used anywhere a constant is permitted.
1942
1943Undefined values are useful because they indicate to the compiler that
1944the program is well defined no matter what value is used. This gives the
1945compiler more freedom to optimize. Here are some examples of
1946(potentially surprising) transformations that are valid (in pseudo IR):
1947
1948.. code-block:: llvm
1949
1950 %A = add %X, undef
1951 %B = sub %X, undef
1952 %C = xor %X, undef
1953 Safe:
1954 %A = undef
1955 %B = undef
1956 %C = undef
1957
1958This is safe because all of the output bits are affected by the undef
1959bits. Any output bit can have a zero or one depending on the input bits.
1960
1961.. code-block:: llvm
1962
1963 %A = or %X, undef
1964 %B = and %X, undef
1965 Safe:
1966 %A = -1
1967 %B = 0
1968 Unsafe:
1969 %A = undef
1970 %B = undef
1971
1972These logical operations have bits that are not always affected by the
1973input. For example, if ``%X`` has a zero bit, then the output of the
1974'``and``' operation will always be a zero for that bit, no matter what
1975the corresponding bit from the '``undef``' is. As such, it is unsafe to
1976optimize or assume that the result of the '``and``' is '``undef``'.
1977However, it is safe to assume that all bits of the '``undef``' could be
19780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1979all the bits of the '``undef``' operand to the '``or``' could be set,
1980allowing the '``or``' to be folded to -1.
1981
1982.. code-block:: llvm
1983
1984 %A = select undef, %X, %Y
1985 %B = select undef, 42, %Y
1986 %C = select %X, %Y, undef
1987 Safe:
1988 %A = %X (or %Y)
1989 %B = 42 (or %Y)
1990 %C = %Y
1991 Unsafe:
1992 %A = undef
1993 %B = undef
1994 %C = undef
1995
1996This set of examples shows that undefined '``select``' (and conditional
1997branch) conditions can go *either way*, but they have to come from one
1998of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1999both known to have a clear low bit, then ``%A`` would have to have a
2000cleared low bit. However, in the ``%C`` example, the optimizer is
2001allowed to assume that the '``undef``' operand could be the same as
2002``%Y``, allowing the whole '``select``' to be eliminated.
2003
2004.. code-block:: llvm
2005
2006 %A = xor undef, undef
2007
2008 %B = undef
2009 %C = xor %B, %B
2010
2011 %D = undef
2012 %E = icmp lt %D, 4
2013 %F = icmp gte %D, 4
2014
2015 Safe:
2016 %A = undef
2017 %B = undef
2018 %C = undef
2019 %D = undef
2020 %E = undef
2021 %F = undef
2022
2023This example points out that two '``undef``' operands are not
2024necessarily the same. This can be surprising to people (and also matches
2025C semantics) where they assume that "``X^X``" is always zero, even if
2026``X`` is undefined. This isn't true for a number of reasons, but the
2027short answer is that an '``undef``' "variable" can arbitrarily change
2028its value over its "live range". This is true because the variable
2029doesn't actually *have a live range*. Instead, the value is logically
2030read from arbitrary registers that happen to be around when needed, so
2031the value is not necessarily consistent over time. In fact, ``%A`` and
2032``%C`` need to have the same semantics or the core LLVM "replace all
2033uses with" concept would not hold.
2034
2035.. code-block:: llvm
2036
2037 %A = fdiv undef, %X
2038 %B = fdiv %X, undef
2039 Safe:
2040 %A = undef
2041 b: unreachable
2042
2043These examples show the crucial difference between an *undefined value*
2044and *undefined behavior*. An undefined value (like '``undef``') is
2045allowed to have an arbitrary bit-pattern. This means that the ``%A``
2046operation can be constant folded to '``undef``', because the '``undef``'
2047could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2048However, in the second example, we can make a more aggressive
2049assumption: because the ``undef`` is allowed to be an arbitrary value,
2050we are allowed to assume that it could be zero. Since a divide by zero
2051has *undefined behavior*, we are allowed to assume that the operation
2052does not execute at all. This allows us to delete the divide and all
2053code after it. Because the undefined operation "can't happen", the
2054optimizer can assume that it occurs in dead code.
2055
2056.. code-block:: llvm
2057
2058 a: store undef -> %X
2059 b: store %X -> undef
2060 Safe:
2061 a: <deleted>
2062 b: unreachable
2063
2064These examples reiterate the ``fdiv`` example: a store *of* an undefined
2065value can be assumed to not have any effect; we can assume that the
2066value is overwritten with bits that happen to match what was already
2067there. However, a store *to* an undefined location could clobber
2068arbitrary memory, therefore, it has undefined behavior.
2069
2070.. _poisonvalues:
2071
2072Poison Values
2073-------------
2074
2075Poison values are similar to :ref:`undef values <undefvalues>`, however
2076they also represent the fact that an instruction or constant expression
2077which cannot evoke side effects has nevertheless detected a condition
2078which results in undefined behavior.
2079
2080There is currently no way of representing a poison value in the IR; they
2081only exist when produced by operations such as :ref:`add <i_add>` with
2082the ``nsw`` flag.
2083
2084Poison value behavior is defined in terms of value *dependence*:
2085
2086- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2087- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2088 their dynamic predecessor basic block.
2089- Function arguments depend on the corresponding actual argument values
2090 in the dynamic callers of their functions.
2091- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2092 instructions that dynamically transfer control back to them.
2093- :ref:`Invoke <i_invoke>` instructions depend on the
2094 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2095 call instructions that dynamically transfer control back to them.
2096- Non-volatile loads and stores depend on the most recent stores to all
2097 of the referenced memory addresses, following the order in the IR
2098 (including loads and stores implied by intrinsics such as
2099 :ref:`@llvm.memcpy <int_memcpy>`.)
2100- An instruction with externally visible side effects depends on the
2101 most recent preceding instruction with externally visible side
2102 effects, following the order in the IR. (This includes :ref:`volatile
2103 operations <volatile>`.)
2104- An instruction *control-depends* on a :ref:`terminator
2105 instruction <terminators>` if the terminator instruction has
2106 multiple successors and the instruction is always executed when
2107 control transfers to one of the successors, and may not be executed
2108 when control is transferred to another.
2109- Additionally, an instruction also *control-depends* on a terminator
2110 instruction if the set of instructions it otherwise depends on would
2111 be different if the terminator had transferred control to a different
2112 successor.
2113- Dependence is transitive.
2114
2115Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2116with the additional affect that any instruction which has a *dependence*
2117on a poison value has undefined behavior.
2118
2119Here are some examples:
2120
2121.. code-block:: llvm
2122
2123 entry:
2124 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2125 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2126 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2127 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2128
2129 store i32 %poison, i32* @g ; Poison value stored to memory.
2130 %poison2 = load i32* @g ; Poison value loaded back from memory.
2131
2132 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2133
2134 %narrowaddr = bitcast i32* @g to i16*
2135 %wideaddr = bitcast i32* @g to i64*
2136 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2137 %poison4 = load i64* %wideaddr ; Returns a poison value.
2138
2139 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2140 br i1 %cmp, label %true, label %end ; Branch to either destination.
2141
2142 true:
2143 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2144 ; it has undefined behavior.
2145 br label %end
2146
2147 end:
2148 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2149 ; Both edges into this PHI are
2150 ; control-dependent on %cmp, so this
2151 ; always results in a poison value.
2152
2153 store volatile i32 0, i32* @g ; This would depend on the store in %true
2154 ; if %cmp is true, or the store in %entry
2155 ; otherwise, so this is undefined behavior.
2156
2157 br i1 %cmp, label %second_true, label %second_end
2158 ; The same branch again, but this time the
2159 ; true block doesn't have side effects.
2160
2161 second_true:
2162 ; No side effects!
2163 ret void
2164
2165 second_end:
2166 store volatile i32 0, i32* @g ; This time, the instruction always depends
2167 ; on the store in %end. Also, it is
2168 ; control-equivalent to %end, so this is
2169 ; well-defined (ignoring earlier undefined
2170 ; behavior in this example).
2171
2172.. _blockaddress:
2173
2174Addresses of Basic Blocks
2175-------------------------
2176
2177``blockaddress(@function, %block)``
2178
2179The '``blockaddress``' constant computes the address of the specified
2180basic block in the specified function, and always has an ``i8*`` type.
2181Taking the address of the entry block is illegal.
2182
2183This value only has defined behavior when used as an operand to the
2184':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2185against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002186undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002187no label is equal to the null pointer. This may be passed around as an
2188opaque pointer sized value as long as the bits are not inspected. This
2189allows ``ptrtoint`` and arithmetic to be performed on these values so
2190long as the original value is reconstituted before the ``indirectbr``
2191instruction.
2192
2193Finally, some targets may provide defined semantics when using the value
2194as the operand to an inline assembly, but that is target specific.
2195
2196Constant Expressions
2197--------------------
2198
2199Constant expressions are used to allow expressions involving other
2200constants to be used as constants. Constant expressions may be of any
2201:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2202that does not have side effects (e.g. load and call are not supported).
2203The following is the syntax for constant expressions:
2204
2205``trunc (CST to TYPE)``
2206 Truncate a constant to another type. The bit size of CST must be
2207 larger than the bit size of TYPE. Both types must be integers.
2208``zext (CST to TYPE)``
2209 Zero extend a constant to another type. The bit size of CST must be
2210 smaller than the bit size of TYPE. Both types must be integers.
2211``sext (CST to TYPE)``
2212 Sign extend a constant to another type. The bit size of CST must be
2213 smaller than the bit size of TYPE. Both types must be integers.
2214``fptrunc (CST to TYPE)``
2215 Truncate a floating point constant to another floating point type.
2216 The size of CST must be larger than the size of TYPE. Both types
2217 must be floating point.
2218``fpext (CST to TYPE)``
2219 Floating point extend a constant to another type. The size of CST
2220 must be smaller or equal to the size of TYPE. Both types must be
2221 floating point.
2222``fptoui (CST to TYPE)``
2223 Convert a floating point constant to the corresponding unsigned
2224 integer constant. TYPE must be a scalar or vector integer type. CST
2225 must be of scalar or vector floating point type. Both CST and TYPE
2226 must be scalars, or vectors of the same number of elements. If the
2227 value won't fit in the integer type, the results are undefined.
2228``fptosi (CST to TYPE)``
2229 Convert a floating point constant to the corresponding signed
2230 integer constant. TYPE must be a scalar or vector integer type. CST
2231 must be of scalar or vector floating point type. Both CST and TYPE
2232 must be scalars, or vectors of the same number of elements. If the
2233 value won't fit in the integer type, the results are undefined.
2234``uitofp (CST to TYPE)``
2235 Convert an unsigned integer constant to the corresponding floating
2236 point constant. TYPE must be a scalar or vector floating point type.
2237 CST must be of scalar or vector integer type. Both CST and TYPE must
2238 be scalars, or vectors of the same number of elements. If the value
2239 won't fit in the floating point type, the results are undefined.
2240``sitofp (CST to TYPE)``
2241 Convert a signed integer constant to the corresponding floating
2242 point constant. TYPE must be a scalar or vector floating point type.
2243 CST must be of scalar or vector integer type. Both CST and TYPE must
2244 be scalars, or vectors of the same number of elements. If the value
2245 won't fit in the floating point type, the results are undefined.
2246``ptrtoint (CST to TYPE)``
2247 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002248 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002249 pointer type. The ``CST`` value is zero extended, truncated, or
2250 unchanged to make it fit in ``TYPE``.
2251``inttoptr (CST to TYPE)``
2252 Convert an integer constant to a pointer constant. TYPE must be a
2253 pointer type. CST must be of integer type. The CST value is zero
2254 extended, truncated, or unchanged to make it fit in a pointer size.
2255 This one is *really* dangerous!
2256``bitcast (CST to TYPE)``
2257 Convert a constant, CST, to another TYPE. The constraints of the
2258 operands are the same as those for the :ref:`bitcast
2259 instruction <i_bitcast>`.
2260``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2261 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2262 constants. As with the :ref:`getelementptr <i_getelementptr>`
2263 instruction, the index list may have zero or more indexes, which are
2264 required to make sense for the type of "CSTPTR".
2265``select (COND, VAL1, VAL2)``
2266 Perform the :ref:`select operation <i_select>` on constants.
2267``icmp COND (VAL1, VAL2)``
2268 Performs the :ref:`icmp operation <i_icmp>` on constants.
2269``fcmp COND (VAL1, VAL2)``
2270 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2271``extractelement (VAL, IDX)``
2272 Perform the :ref:`extractelement operation <i_extractelement>` on
2273 constants.
2274``insertelement (VAL, ELT, IDX)``
2275 Perform the :ref:`insertelement operation <i_insertelement>` on
2276 constants.
2277``shufflevector (VEC1, VEC2, IDXMASK)``
2278 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2279 constants.
2280``extractvalue (VAL, IDX0, IDX1, ...)``
2281 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2282 constants. The index list is interpreted in a similar manner as
2283 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2284 least one index value must be specified.
2285``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2286 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2287 The index list is interpreted in a similar manner as indices in a
2288 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2289 value must be specified.
2290``OPCODE (LHS, RHS)``
2291 Perform the specified operation of the LHS and RHS constants. OPCODE
2292 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2293 binary <bitwiseops>` operations. The constraints on operands are
2294 the same as those for the corresponding instruction (e.g. no bitwise
2295 operations on floating point values are allowed).
2296
2297Other Values
2298============
2299
2300Inline Assembler Expressions
2301----------------------------
2302
2303LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2304Inline Assembly <moduleasm>`) through the use of a special value. This
2305value represents the inline assembler as a string (containing the
2306instructions to emit), a list of operand constraints (stored as a
2307string), a flag that indicates whether or not the inline asm expression
2308has side effects, and a flag indicating whether the function containing
2309the asm needs to align its stack conservatively. An example inline
2310assembler expression is:
2311
2312.. code-block:: llvm
2313
2314 i32 (i32) asm "bswap $0", "=r,r"
2315
2316Inline assembler expressions may **only** be used as the callee operand
2317of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2318Thus, typically we have:
2319
2320.. code-block:: llvm
2321
2322 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2323
2324Inline asms with side effects not visible in the constraint list must be
2325marked as having side effects. This is done through the use of the
2326'``sideeffect``' keyword, like so:
2327
2328.. code-block:: llvm
2329
2330 call void asm sideeffect "eieio", ""()
2331
2332In some cases inline asms will contain code that will not work unless
2333the stack is aligned in some way, such as calls or SSE instructions on
2334x86, yet will not contain code that does that alignment within the asm.
2335The compiler should make conservative assumptions about what the asm
2336might contain and should generate its usual stack alignment code in the
2337prologue if the '``alignstack``' keyword is present:
2338
2339.. code-block:: llvm
2340
2341 call void asm alignstack "eieio", ""()
2342
2343Inline asms also support using non-standard assembly dialects. The
2344assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2345the inline asm is using the Intel dialect. Currently, ATT and Intel are
2346the only supported dialects. An example is:
2347
2348.. code-block:: llvm
2349
2350 call void asm inteldialect "eieio", ""()
2351
2352If multiple keywords appear the '``sideeffect``' keyword must come
2353first, the '``alignstack``' keyword second and the '``inteldialect``'
2354keyword last.
2355
2356Inline Asm Metadata
2357^^^^^^^^^^^^^^^^^^^
2358
2359The call instructions that wrap inline asm nodes may have a
2360"``!srcloc``" MDNode attached to it that contains a list of constant
2361integers. If present, the code generator will use the integer as the
2362location cookie value when report errors through the ``LLVMContext``
2363error reporting mechanisms. This allows a front-end to correlate backend
2364errors that occur with inline asm back to the source code that produced
2365it. For example:
2366
2367.. code-block:: llvm
2368
2369 call void asm sideeffect "something bad", ""(), !srcloc !42
2370 ...
2371 !42 = !{ i32 1234567 }
2372
2373It is up to the front-end to make sense of the magic numbers it places
2374in the IR. If the MDNode contains multiple constants, the code generator
2375will use the one that corresponds to the line of the asm that the error
2376occurs on.
2377
2378.. _metadata:
2379
2380Metadata Nodes and Metadata Strings
2381-----------------------------------
2382
2383LLVM IR allows metadata to be attached to instructions in the program
2384that can convey extra information about the code to the optimizers and
2385code generator. One example application of metadata is source-level
2386debug information. There are two metadata primitives: strings and nodes.
2387All metadata has the ``metadata`` type and is identified in syntax by a
2388preceding exclamation point ('``!``').
2389
2390A metadata string is a string surrounded by double quotes. It can
2391contain any character by escaping non-printable characters with
2392"``\xx``" where "``xx``" is the two digit hex code. For example:
2393"``!"test\00"``".
2394
2395Metadata nodes are represented with notation similar to structure
2396constants (a comma separated list of elements, surrounded by braces and
2397preceded by an exclamation point). Metadata nodes can have any values as
2398their operand. For example:
2399
2400.. code-block:: llvm
2401
2402 !{ metadata !"test\00", i32 10}
2403
2404A :ref:`named metadata <namedmetadatastructure>` is a collection of
2405metadata nodes, which can be looked up in the module symbol table. For
2406example:
2407
2408.. code-block:: llvm
2409
2410 !foo = metadata !{!4, !3}
2411
2412Metadata can be used as function arguments. Here ``llvm.dbg.value``
2413function is using two metadata arguments:
2414
2415.. code-block:: llvm
2416
2417 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2418
2419Metadata can be attached with an instruction. Here metadata ``!21`` is
2420attached to the ``add`` instruction using the ``!dbg`` identifier:
2421
2422.. code-block:: llvm
2423
2424 %indvar.next = add i64 %indvar, 1, !dbg !21
2425
2426More information about specific metadata nodes recognized by the
2427optimizers and code generator is found below.
2428
2429'``tbaa``' Metadata
2430^^^^^^^^^^^^^^^^^^^
2431
2432In LLVM IR, memory does not have types, so LLVM's own type system is not
2433suitable for doing TBAA. Instead, metadata is added to the IR to
2434describe a type system of a higher level language. This can be used to
2435implement typical C/C++ TBAA, but it can also be used to implement
2436custom alias analysis behavior for other languages.
2437
2438The current metadata format is very simple. TBAA metadata nodes have up
2439to three fields, e.g.:
2440
2441.. code-block:: llvm
2442
2443 !0 = metadata !{ metadata !"an example type tree" }
2444 !1 = metadata !{ metadata !"int", metadata !0 }
2445 !2 = metadata !{ metadata !"float", metadata !0 }
2446 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2447
2448The first field is an identity field. It can be any value, usually a
2449metadata string, which uniquely identifies the type. The most important
2450name in the tree is the name of the root node. Two trees with different
2451root node names are entirely disjoint, even if they have leaves with
2452common names.
2453
2454The second field identifies the type's parent node in the tree, or is
2455null or omitted for a root node. A type is considered to alias all of
2456its descendants and all of its ancestors in the tree. Also, a type is
2457considered to alias all types in other trees, so that bitcode produced
2458from multiple front-ends is handled conservatively.
2459
2460If the third field is present, it's an integer which if equal to 1
2461indicates that the type is "constant" (meaning
2462``pointsToConstantMemory`` should return true; see `other useful
2463AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2464
2465'``tbaa.struct``' Metadata
2466^^^^^^^^^^^^^^^^^^^^^^^^^^
2467
2468The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2469aggregate assignment operations in C and similar languages, however it
2470is defined to copy a contiguous region of memory, which is more than
2471strictly necessary for aggregate types which contain holes due to
2472padding. Also, it doesn't contain any TBAA information about the fields
2473of the aggregate.
2474
2475``!tbaa.struct`` metadata can describe which memory subregions in a
2476memcpy are padding and what the TBAA tags of the struct are.
2477
2478The current metadata format is very simple. ``!tbaa.struct`` metadata
2479nodes are a list of operands which are in conceptual groups of three.
2480For each group of three, the first operand gives the byte offset of a
2481field in bytes, the second gives its size in bytes, and the third gives
2482its tbaa tag. e.g.:
2483
2484.. code-block:: llvm
2485
2486 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2487
2488This describes a struct with two fields. The first is at offset 0 bytes
2489with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2490and has size 4 bytes and has tbaa tag !2.
2491
2492Note that the fields need not be contiguous. In this example, there is a
24934 byte gap between the two fields. This gap represents padding which
2494does not carry useful data and need not be preserved.
2495
2496'``fpmath``' Metadata
2497^^^^^^^^^^^^^^^^^^^^^
2498
2499``fpmath`` metadata may be attached to any instruction of floating point
2500type. It can be used to express the maximum acceptable error in the
2501result of that instruction, in ULPs, thus potentially allowing the
2502compiler to use a more efficient but less accurate method of computing
2503it. ULP is defined as follows:
2504
2505 If ``x`` is a real number that lies between two finite consecutive
2506 floating-point numbers ``a`` and ``b``, without being equal to one
2507 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2508 distance between the two non-equal finite floating-point numbers
2509 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2510
2511The metadata node shall consist of a single positive floating point
2512number representing the maximum relative error, for example:
2513
2514.. code-block:: llvm
2515
2516 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2517
2518'``range``' Metadata
2519^^^^^^^^^^^^^^^^^^^^
2520
2521``range`` metadata may be attached only to loads of integer types. It
2522expresses the possible ranges the loaded value is in. The ranges are
2523represented with a flattened list of integers. The loaded value is known
2524to be in the union of the ranges defined by each consecutive pair. Each
2525pair has the following properties:
2526
2527- The type must match the type loaded by the instruction.
2528- The pair ``a,b`` represents the range ``[a,b)``.
2529- Both ``a`` and ``b`` are constants.
2530- The range is allowed to wrap.
2531- The range should not represent the full or empty set. That is,
2532 ``a!=b``.
2533
2534In addition, the pairs must be in signed order of the lower bound and
2535they must be non-contiguous.
2536
2537Examples:
2538
2539.. code-block:: llvm
2540
2541 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2542 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2543 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2544 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2545 ...
2546 !0 = metadata !{ i8 0, i8 2 }
2547 !1 = metadata !{ i8 255, i8 2 }
2548 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2549 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2550
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002551'``llvm.loop``'
2552^^^^^^^^^^^^^^^
2553
2554It is sometimes useful to attach information to loop constructs. Currently,
2555loop metadata is implemented as metadata attached to the branch instruction
2556in the loop latch block. This type of metadata refer to a metadata node that is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002557guaranteed to be separate for each loop. The loop identifier metadata is
2558specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002559
2560The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002561itself to avoid merging it with any other identifier metadata, e.g.,
2562during module linkage or function inlining. That is, each loop should refer
2563to their own identification metadata even if they reside in separate functions.
2564The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002565constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002566
2567.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002568
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002569 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002570 !1 = metadata !{ metadata !1 }
2571
Paul Redmondee21b6f2013-05-28 20:00:34 +00002572The loop identifier metadata can be used to specify additional per-loop
2573metadata. Any operands after the first operand can be treated as user-defined
2574metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2575by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002576
Paul Redmondee21b6f2013-05-28 20:00:34 +00002577.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002578
Paul Redmondee21b6f2013-05-28 20:00:34 +00002579 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2580 ...
2581 !0 = metadata !{ metadata !0, metadata !1 }
2582 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002583
2584'``llvm.mem``'
2585^^^^^^^^^^^^^^^
2586
2587Metadata types used to annotate memory accesses with information helpful
2588for optimizations are prefixed with ``llvm.mem``.
2589
2590'``llvm.mem.parallel_loop_access``' Metadata
2591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2592
2593For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002594the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002595also all of the memory accessing instructions in the loop body need to be
2596marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2597is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002598the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002599converted to sequential loops due to optimization passes that are unaware of
2600the parallel semantics and that insert new memory instructions to the loop
2601body.
2602
2603Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002604both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002605metadata types that refer to the same loop identifier metadata.
2606
2607.. code-block:: llvm
2608
2609 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002610 ...
2611 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2612 ...
2613 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2614 ...
2615 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002616
2617 for.end:
2618 ...
2619 !0 = metadata !{ metadata !0 }
2620
2621It is also possible to have nested parallel loops. In that case the
2622memory accesses refer to a list of loop identifier metadata nodes instead of
2623the loop identifier metadata node directly:
2624
2625.. code-block:: llvm
2626
2627 outer.for.body:
2628 ...
2629
2630 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002631 ...
2632 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2633 ...
2634 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2635 ...
2636 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002637
2638 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002639 ...
2640 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2641 ...
2642 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2643 ...
2644 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002645
2646 outer.for.end: ; preds = %for.body
2647 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002648 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2649 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2650 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002651
Paul Redmondee21b6f2013-05-28 20:00:34 +00002652'``llvm.vectorizer``'
2653^^^^^^^^^^^^^^^^^^^^^
2654
2655Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2656vectorization parameters such as vectorization factor and unroll factor.
2657
2658``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2659loop identification metadata.
2660
2661'``llvm.vectorizer.unroll``' Metadata
2662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2663
2664This metadata instructs the loop vectorizer to unroll the specified
2665loop exactly ``N`` times.
2666
2667The first operand is the string ``llvm.vectorizer.unroll`` and the second
2668operand is an integer specifying the unroll factor. For example:
2669
2670.. code-block:: llvm
2671
2672 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2673
2674Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2675loop.
2676
2677If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2678determined automatically.
2679
2680'``llvm.vectorizer.width``' Metadata
2681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2682
2683This metadata forces the loop vectorizer to widen scalar values to a vector
2684width of ``N`` rather than computing the width using a cost model.
2685
2686The first operand is the string ``llvm.vectorizer.width`` and the second
2687operand is an integer specifying the width. For example:
2688
2689.. code-block:: llvm
2690
2691 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2692
2693Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2694loop.
2695
2696If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2697automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002698
Sean Silvaf722b002012-12-07 10:36:55 +00002699Module Flags Metadata
2700=====================
2701
2702Information about the module as a whole is difficult to convey to LLVM's
2703subsystems. The LLVM IR isn't sufficient to transmit this information.
2704The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002705this. These flags are in the form of key / value pairs --- much like a
2706dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002707look it up.
2708
2709The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2710Each triplet has the following form:
2711
2712- The first element is a *behavior* flag, which specifies the behavior
2713 when two (or more) modules are merged together, and it encounters two
2714 (or more) metadata with the same ID. The supported behaviors are
2715 described below.
2716- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002717 metadata. Each module may only have one flag entry for each unique ID (not
2718 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002719- The third element is the value of the flag.
2720
2721When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002722``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2723each unique metadata ID string, there will be exactly one entry in the merged
2724modules ``llvm.module.flags`` metadata table, and the value for that entry will
2725be determined by the merge behavior flag, as described below. The only exception
2726is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002727
2728The following behaviors are supported:
2729
2730.. list-table::
2731 :header-rows: 1
2732 :widths: 10 90
2733
2734 * - Value
2735 - Behavior
2736
2737 * - 1
2738 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002739 Emits an error if two values disagree, otherwise the resulting value
2740 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002741
2742 * - 2
2743 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002744 Emits a warning if two values disagree. The result value will be the
2745 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002746
2747 * - 3
2748 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002749 Adds a requirement that another module flag be present and have a
2750 specified value after linking is performed. The value must be a
2751 metadata pair, where the first element of the pair is the ID of the
2752 module flag to be restricted, and the second element of the pair is
2753 the value the module flag should be restricted to. This behavior can
2754 be used to restrict the allowable results (via triggering of an
2755 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002756
2757 * - 4
2758 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002759 Uses the specified value, regardless of the behavior or value of the
2760 other module. If both modules specify **Override**, but the values
2761 differ, an error will be emitted.
2762
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002763 * - 5
2764 - **Append**
2765 Appends the two values, which are required to be metadata nodes.
2766
2767 * - 6
2768 - **AppendUnique**
2769 Appends the two values, which are required to be metadata
2770 nodes. However, duplicate entries in the second list are dropped
2771 during the append operation.
2772
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002773It is an error for a particular unique flag ID to have multiple behaviors,
2774except in the case of **Require** (which adds restrictions on another metadata
2775value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002776
2777An example of module flags:
2778
2779.. code-block:: llvm
2780
2781 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2782 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2783 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2784 !3 = metadata !{ i32 3, metadata !"qux",
2785 metadata !{
2786 metadata !"foo", i32 1
2787 }
2788 }
2789 !llvm.module.flags = !{ !0, !1, !2, !3 }
2790
2791- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2792 if two or more ``!"foo"`` flags are seen is to emit an error if their
2793 values are not equal.
2794
2795- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2796 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002797 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002798
2799- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2800 behavior if two or more ``!"qux"`` flags are seen is to emit a
2801 warning if their values are not equal.
2802
2803- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2804
2805 ::
2806
2807 metadata !{ metadata !"foo", i32 1 }
2808
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002809 The behavior is to emit an error if the ``llvm.module.flags`` does not
2810 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2811 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002812
2813Objective-C Garbage Collection Module Flags Metadata
2814----------------------------------------------------
2815
2816On the Mach-O platform, Objective-C stores metadata about garbage
2817collection in a special section called "image info". The metadata
2818consists of a version number and a bitmask specifying what types of
2819garbage collection are supported (if any) by the file. If two or more
2820modules are linked together their garbage collection metadata needs to
2821be merged rather than appended together.
2822
2823The Objective-C garbage collection module flags metadata consists of the
2824following key-value pairs:
2825
2826.. list-table::
2827 :header-rows: 1
2828 :widths: 30 70
2829
2830 * - Key
2831 - Value
2832
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002833 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002834 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002835
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002836 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002837 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002838 always 0.
2839
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002840 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002841 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002842 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2843 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2844 Objective-C ABI version 2.
2845
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002846 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002847 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002848 not. Valid values are 0, for no garbage collection, and 2, for garbage
2849 collection supported.
2850
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002851 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002852 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002853 If present, its value must be 6. This flag requires that the
2854 ``Objective-C Garbage Collection`` flag have the value 2.
2855
2856Some important flag interactions:
2857
2858- If a module with ``Objective-C Garbage Collection`` set to 0 is
2859 merged with a module with ``Objective-C Garbage Collection`` set to
2860 2, then the resulting module has the
2861 ``Objective-C Garbage Collection`` flag set to 0.
2862- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2863 merged with a module with ``Objective-C GC Only`` set to 6.
2864
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002865Automatic Linker Flags Module Flags Metadata
2866--------------------------------------------
2867
2868Some targets support embedding flags to the linker inside individual object
2869files. Typically this is used in conjunction with language extensions which
2870allow source files to explicitly declare the libraries they depend on, and have
2871these automatically be transmitted to the linker via object files.
2872
2873These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002874using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002875to be ``AppendUnique``, and the value for the key is expected to be a metadata
2876node which should be a list of other metadata nodes, each of which should be a
2877list of metadata strings defining linker options.
2878
2879For example, the following metadata section specifies two separate sets of
2880linker options, presumably to link against ``libz`` and the ``Cocoa``
2881framework::
2882
Michael Liao2faa0f32013-03-06 18:24:34 +00002883 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002884 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002885 metadata !{ metadata !"-lz" },
2886 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002887 !llvm.module.flags = !{ !0 }
2888
2889The metadata encoding as lists of lists of options, as opposed to a collapsed
2890list of options, is chosen so that the IR encoding can use multiple option
2891strings to specify e.g., a single library, while still having that specifier be
2892preserved as an atomic element that can be recognized by a target specific
2893assembly writer or object file emitter.
2894
2895Each individual option is required to be either a valid option for the target's
2896linker, or an option that is reserved by the target specific assembly writer or
2897object file emitter. No other aspect of these options is defined by the IR.
2898
Sean Silvaf722b002012-12-07 10:36:55 +00002899Intrinsic Global Variables
2900==========================
2901
2902LLVM has a number of "magic" global variables that contain data that
2903affect code generation or other IR semantics. These are documented here.
2904All globals of this sort should have a section specified as
2905"``llvm.metadata``". This section and all globals that start with
2906"``llvm.``" are reserved for use by LLVM.
2907
2908The '``llvm.used``' Global Variable
2909-----------------------------------
2910
Rafael Espindolacde25b42013-04-22 14:58:02 +00002911The ``@llvm.used`` global is an array which has
2912 :ref:`appending linkage <linkage_appending>`. This array contains a list of
2913pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002914pointer cast formed of bitcast or getelementptr. For example, a legal
2915use of it is:
2916
2917.. code-block:: llvm
2918
2919 @X = global i8 4
2920 @Y = global i32 123
2921
2922 @llvm.used = appending global [2 x i8*] [
2923 i8* @X,
2924 i8* bitcast (i32* @Y to i8*)
2925 ], section "llvm.metadata"
2926
Rafael Espindolacde25b42013-04-22 14:58:02 +00002927If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2928and linker are required to treat the symbol as if there is a reference to the
2929symbol that it cannot see. For example, if a variable has internal linkage and
2930no references other than that from the ``@llvm.used`` list, it cannot be
2931deleted. This is commonly used to represent references from inline asms and
2932other things the compiler cannot "see", and corresponds to
2933"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002934
2935On some targets, the code generator must emit a directive to the
2936assembler or object file to prevent the assembler and linker from
2937molesting the symbol.
2938
2939The '``llvm.compiler.used``' Global Variable
2940--------------------------------------------
2941
2942The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2943directive, except that it only prevents the compiler from touching the
2944symbol. On targets that support it, this allows an intelligent linker to
2945optimize references to the symbol without being impeded as it would be
2946by ``@llvm.used``.
2947
2948This is a rare construct that should only be used in rare circumstances,
2949and should not be exposed to source languages.
2950
2951The '``llvm.global_ctors``' Global Variable
2952-------------------------------------------
2953
2954.. code-block:: llvm
2955
2956 %0 = type { i32, void ()* }
2957 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2958
2959The ``@llvm.global_ctors`` array contains a list of constructor
2960functions and associated priorities. The functions referenced by this
2961array will be called in ascending order of priority (i.e. lowest first)
2962when the module is loaded. The order of functions with the same priority
2963is not defined.
2964
2965The '``llvm.global_dtors``' Global Variable
2966-------------------------------------------
2967
2968.. code-block:: llvm
2969
2970 %0 = type { i32, void ()* }
2971 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2972
2973The ``@llvm.global_dtors`` array contains a list of destructor functions
2974and associated priorities. The functions referenced by this array will
2975be called in descending order of priority (i.e. highest first) when the
2976module is loaded. The order of functions with the same priority is not
2977defined.
2978
2979Instruction Reference
2980=====================
2981
2982The LLVM instruction set consists of several different classifications
2983of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2984instructions <binaryops>`, :ref:`bitwise binary
2985instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2986:ref:`other instructions <otherops>`.
2987
2988.. _terminators:
2989
2990Terminator Instructions
2991-----------------------
2992
2993As mentioned :ref:`previously <functionstructure>`, every basic block in a
2994program ends with a "Terminator" instruction, which indicates which
2995block should be executed after the current block is finished. These
2996terminator instructions typically yield a '``void``' value: they produce
2997control flow, not values (the one exception being the
2998':ref:`invoke <i_invoke>`' instruction).
2999
3000The terminator instructions are: ':ref:`ret <i_ret>`',
3001':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3002':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3003':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3004
3005.. _i_ret:
3006
3007'``ret``' Instruction
3008^^^^^^^^^^^^^^^^^^^^^
3009
3010Syntax:
3011"""""""
3012
3013::
3014
3015 ret <type> <value> ; Return a value from a non-void function
3016 ret void ; Return from void function
3017
3018Overview:
3019"""""""""
3020
3021The '``ret``' instruction is used to return control flow (and optionally
3022a value) from a function back to the caller.
3023
3024There are two forms of the '``ret``' instruction: one that returns a
3025value and then causes control flow, and one that just causes control
3026flow to occur.
3027
3028Arguments:
3029""""""""""
3030
3031The '``ret``' instruction optionally accepts a single argument, the
3032return value. The type of the return value must be a ':ref:`first
3033class <t_firstclass>`' type.
3034
3035A function is not :ref:`well formed <wellformed>` if it it has a non-void
3036return type and contains a '``ret``' instruction with no return value or
3037a return value with a type that does not match its type, or if it has a
3038void return type and contains a '``ret``' instruction with a return
3039value.
3040
3041Semantics:
3042""""""""""
3043
3044When the '``ret``' instruction is executed, control flow returns back to
3045the calling function's context. If the caller is a
3046":ref:`call <i_call>`" instruction, execution continues at the
3047instruction after the call. If the caller was an
3048":ref:`invoke <i_invoke>`" instruction, execution continues at the
3049beginning of the "normal" destination block. If the instruction returns
3050a value, that value shall set the call or invoke instruction's return
3051value.
3052
3053Example:
3054""""""""
3055
3056.. code-block:: llvm
3057
3058 ret i32 5 ; Return an integer value of 5
3059 ret void ; Return from a void function
3060 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3061
3062.. _i_br:
3063
3064'``br``' Instruction
3065^^^^^^^^^^^^^^^^^^^^
3066
3067Syntax:
3068"""""""
3069
3070::
3071
3072 br i1 <cond>, label <iftrue>, label <iffalse>
3073 br label <dest> ; Unconditional branch
3074
3075Overview:
3076"""""""""
3077
3078The '``br``' instruction is used to cause control flow to transfer to a
3079different basic block in the current function. There are two forms of
3080this instruction, corresponding to a conditional branch and an
3081unconditional branch.
3082
3083Arguments:
3084""""""""""
3085
3086The conditional branch form of the '``br``' instruction takes a single
3087'``i1``' value and two '``label``' values. The unconditional form of the
3088'``br``' instruction takes a single '``label``' value as a target.
3089
3090Semantics:
3091""""""""""
3092
3093Upon execution of a conditional '``br``' instruction, the '``i1``'
3094argument is evaluated. If the value is ``true``, control flows to the
3095'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3096to the '``iffalse``' ``label`` argument.
3097
3098Example:
3099""""""""
3100
3101.. code-block:: llvm
3102
3103 Test:
3104 %cond = icmp eq i32 %a, %b
3105 br i1 %cond, label %IfEqual, label %IfUnequal
3106 IfEqual:
3107 ret i32 1
3108 IfUnequal:
3109 ret i32 0
3110
3111.. _i_switch:
3112
3113'``switch``' Instruction
3114^^^^^^^^^^^^^^^^^^^^^^^^
3115
3116Syntax:
3117"""""""
3118
3119::
3120
3121 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3122
3123Overview:
3124"""""""""
3125
3126The '``switch``' instruction is used to transfer control flow to one of
3127several different places. It is a generalization of the '``br``'
3128instruction, allowing a branch to occur to one of many possible
3129destinations.
3130
3131Arguments:
3132""""""""""
3133
3134The '``switch``' instruction uses three parameters: an integer
3135comparison value '``value``', a default '``label``' destination, and an
3136array of pairs of comparison value constants and '``label``'s. The table
3137is not allowed to contain duplicate constant entries.
3138
3139Semantics:
3140""""""""""
3141
3142The ``switch`` instruction specifies a table of values and destinations.
3143When the '``switch``' instruction is executed, this table is searched
3144for the given value. If the value is found, control flow is transferred
3145to the corresponding destination; otherwise, control flow is transferred
3146to the default destination.
3147
3148Implementation:
3149"""""""""""""""
3150
3151Depending on properties of the target machine and the particular
3152``switch`` instruction, this instruction may be code generated in
3153different ways. For example, it could be generated as a series of
3154chained conditional branches or with a lookup table.
3155
3156Example:
3157""""""""
3158
3159.. code-block:: llvm
3160
3161 ; Emulate a conditional br instruction
3162 %Val = zext i1 %value to i32
3163 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3164
3165 ; Emulate an unconditional br instruction
3166 switch i32 0, label %dest [ ]
3167
3168 ; Implement a jump table:
3169 switch i32 %val, label %otherwise [ i32 0, label %onzero
3170 i32 1, label %onone
3171 i32 2, label %ontwo ]
3172
3173.. _i_indirectbr:
3174
3175'``indirectbr``' Instruction
3176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3177
3178Syntax:
3179"""""""
3180
3181::
3182
3183 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3184
3185Overview:
3186"""""""""
3187
3188The '``indirectbr``' instruction implements an indirect branch to a
3189label within the current function, whose address is specified by
3190"``address``". Address must be derived from a
3191:ref:`blockaddress <blockaddress>` constant.
3192
3193Arguments:
3194""""""""""
3195
3196The '``address``' argument is the address of the label to jump to. The
3197rest of the arguments indicate the full set of possible destinations
3198that the address may point to. Blocks are allowed to occur multiple
3199times in the destination list, though this isn't particularly useful.
3200
3201This destination list is required so that dataflow analysis has an
3202accurate understanding of the CFG.
3203
3204Semantics:
3205""""""""""
3206
3207Control transfers to the block specified in the address argument. All
3208possible destination blocks must be listed in the label list, otherwise
3209this instruction has undefined behavior. This implies that jumps to
3210labels defined in other functions have undefined behavior as well.
3211
3212Implementation:
3213"""""""""""""""
3214
3215This is typically implemented with a jump through a register.
3216
3217Example:
3218""""""""
3219
3220.. code-block:: llvm
3221
3222 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3223
3224.. _i_invoke:
3225
3226'``invoke``' Instruction
3227^^^^^^^^^^^^^^^^^^^^^^^^
3228
3229Syntax:
3230"""""""
3231
3232::
3233
3234 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3235 to label <normal label> unwind label <exception label>
3236
3237Overview:
3238"""""""""
3239
3240The '``invoke``' instruction causes control to transfer to a specified
3241function, with the possibility of control flow transfer to either the
3242'``normal``' label or the '``exception``' label. If the callee function
3243returns with the "``ret``" instruction, control flow will return to the
3244"normal" label. If the callee (or any indirect callees) returns via the
3245":ref:`resume <i_resume>`" instruction or other exception handling
3246mechanism, control is interrupted and continued at the dynamically
3247nearest "exception" label.
3248
3249The '``exception``' label is a `landing
3250pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3251'``exception``' label is required to have the
3252":ref:`landingpad <i_landingpad>`" instruction, which contains the
3253information about the behavior of the program after unwinding happens,
3254as its first non-PHI instruction. The restrictions on the
3255"``landingpad``" instruction's tightly couples it to the "``invoke``"
3256instruction, so that the important information contained within the
3257"``landingpad``" instruction can't be lost through normal code motion.
3258
3259Arguments:
3260""""""""""
3261
3262This instruction requires several arguments:
3263
3264#. The optional "cconv" marker indicates which :ref:`calling
3265 convention <callingconv>` the call should use. If none is
3266 specified, the call defaults to using C calling conventions.
3267#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3268 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3269 are valid here.
3270#. '``ptr to function ty``': shall be the signature of the pointer to
3271 function value being invoked. In most cases, this is a direct
3272 function invocation, but indirect ``invoke``'s are just as possible,
3273 branching off an arbitrary pointer to function value.
3274#. '``function ptr val``': An LLVM value containing a pointer to a
3275 function to be invoked.
3276#. '``function args``': argument list whose types match the function
3277 signature argument types and parameter attributes. All arguments must
3278 be of :ref:`first class <t_firstclass>` type. If the function signature
3279 indicates the function accepts a variable number of arguments, the
3280 extra arguments can be specified.
3281#. '``normal label``': the label reached when the called function
3282 executes a '``ret``' instruction.
3283#. '``exception label``': the label reached when a callee returns via
3284 the :ref:`resume <i_resume>` instruction or other exception handling
3285 mechanism.
3286#. The optional :ref:`function attributes <fnattrs>` list. Only
3287 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3288 attributes are valid here.
3289
3290Semantics:
3291""""""""""
3292
3293This instruction is designed to operate as a standard '``call``'
3294instruction in most regards. The primary difference is that it
3295establishes an association with a label, which is used by the runtime
3296library to unwind the stack.
3297
3298This instruction is used in languages with destructors to ensure that
3299proper cleanup is performed in the case of either a ``longjmp`` or a
3300thrown exception. Additionally, this is important for implementation of
3301'``catch``' clauses in high-level languages that support them.
3302
3303For the purposes of the SSA form, the definition of the value returned
3304by the '``invoke``' instruction is deemed to occur on the edge from the
3305current block to the "normal" label. If the callee unwinds then no
3306return value is available.
3307
3308Example:
3309""""""""
3310
3311.. code-block:: llvm
3312
3313 %retval = invoke i32 @Test(i32 15) to label %Continue
3314 unwind label %TestCleanup ; {i32}:retval set
3315 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3316 unwind label %TestCleanup ; {i32}:retval set
3317
3318.. _i_resume:
3319
3320'``resume``' Instruction
3321^^^^^^^^^^^^^^^^^^^^^^^^
3322
3323Syntax:
3324"""""""
3325
3326::
3327
3328 resume <type> <value>
3329
3330Overview:
3331"""""""""
3332
3333The '``resume``' instruction is a terminator instruction that has no
3334successors.
3335
3336Arguments:
3337""""""""""
3338
3339The '``resume``' instruction requires one argument, which must have the
3340same type as the result of any '``landingpad``' instruction in the same
3341function.
3342
3343Semantics:
3344""""""""""
3345
3346The '``resume``' instruction resumes propagation of an existing
3347(in-flight) exception whose unwinding was interrupted with a
3348:ref:`landingpad <i_landingpad>` instruction.
3349
3350Example:
3351""""""""
3352
3353.. code-block:: llvm
3354
3355 resume { i8*, i32 } %exn
3356
3357.. _i_unreachable:
3358
3359'``unreachable``' Instruction
3360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3361
3362Syntax:
3363"""""""
3364
3365::
3366
3367 unreachable
3368
3369Overview:
3370"""""""""
3371
3372The '``unreachable``' instruction has no defined semantics. This
3373instruction is used to inform the optimizer that a particular portion of
3374the code is not reachable. This can be used to indicate that the code
3375after a no-return function cannot be reached, and other facts.
3376
3377Semantics:
3378""""""""""
3379
3380The '``unreachable``' instruction has no defined semantics.
3381
3382.. _binaryops:
3383
3384Binary Operations
3385-----------------
3386
3387Binary operators are used to do most of the computation in a program.
3388They require two operands of the same type, execute an operation on
3389them, and produce a single value. The operands might represent multiple
3390data, as is the case with the :ref:`vector <t_vector>` data type. The
3391result value has the same type as its operands.
3392
3393There are several different binary operators:
3394
3395.. _i_add:
3396
3397'``add``' Instruction
3398^^^^^^^^^^^^^^^^^^^^^
3399
3400Syntax:
3401"""""""
3402
3403::
3404
3405 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3406 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3407 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3408 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3409
3410Overview:
3411"""""""""
3412
3413The '``add``' instruction returns the sum of its two operands.
3414
3415Arguments:
3416""""""""""
3417
3418The two arguments to the '``add``' instruction must be
3419:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3420arguments must have identical types.
3421
3422Semantics:
3423""""""""""
3424
3425The value produced is the integer sum of the two operands.
3426
3427If the sum has unsigned overflow, the result returned is the
3428mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3429the result.
3430
3431Because LLVM integers use a two's complement representation, this
3432instruction is appropriate for both signed and unsigned integers.
3433
3434``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3435respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3436result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3437unsigned and/or signed overflow, respectively, occurs.
3438
3439Example:
3440""""""""
3441
3442.. code-block:: llvm
3443
3444 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3445
3446.. _i_fadd:
3447
3448'``fadd``' Instruction
3449^^^^^^^^^^^^^^^^^^^^^^
3450
3451Syntax:
3452"""""""
3453
3454::
3455
3456 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3457
3458Overview:
3459"""""""""
3460
3461The '``fadd``' instruction returns the sum of its two operands.
3462
3463Arguments:
3464""""""""""
3465
3466The two arguments to the '``fadd``' instruction must be :ref:`floating
3467point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3468Both arguments must have identical types.
3469
3470Semantics:
3471""""""""""
3472
3473The value produced is the floating point sum of the two operands. This
3474instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3475which are optimization hints to enable otherwise unsafe floating point
3476optimizations:
3477
3478Example:
3479""""""""
3480
3481.. code-block:: llvm
3482
3483 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3484
3485'``sub``' Instruction
3486^^^^^^^^^^^^^^^^^^^^^
3487
3488Syntax:
3489"""""""
3490
3491::
3492
3493 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3494 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3495 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3496 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3497
3498Overview:
3499"""""""""
3500
3501The '``sub``' instruction returns the difference of its two operands.
3502
3503Note that the '``sub``' instruction is used to represent the '``neg``'
3504instruction present in most other intermediate representations.
3505
3506Arguments:
3507""""""""""
3508
3509The two arguments to the '``sub``' instruction must be
3510:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3511arguments must have identical types.
3512
3513Semantics:
3514""""""""""
3515
3516The value produced is the integer difference of the two operands.
3517
3518If the difference has unsigned overflow, the result returned is the
3519mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3520the result.
3521
3522Because LLVM integers use a two's complement representation, this
3523instruction is appropriate for both signed and unsigned integers.
3524
3525``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3526respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3527result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3528unsigned and/or signed overflow, respectively, occurs.
3529
3530Example:
3531""""""""
3532
3533.. code-block:: llvm
3534
3535 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3536 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3537
3538.. _i_fsub:
3539
3540'``fsub``' Instruction
3541^^^^^^^^^^^^^^^^^^^^^^
3542
3543Syntax:
3544"""""""
3545
3546::
3547
3548 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3549
3550Overview:
3551"""""""""
3552
3553The '``fsub``' instruction returns the difference of its two operands.
3554
3555Note that the '``fsub``' instruction is used to represent the '``fneg``'
3556instruction present in most other intermediate representations.
3557
3558Arguments:
3559""""""""""
3560
3561The two arguments to the '``fsub``' instruction must be :ref:`floating
3562point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3563Both arguments must have identical types.
3564
3565Semantics:
3566""""""""""
3567
3568The value produced is the floating point difference of the two operands.
3569This instruction can also take any number of :ref:`fast-math
3570flags <fastmath>`, which are optimization hints to enable otherwise
3571unsafe floating point optimizations:
3572
3573Example:
3574""""""""
3575
3576.. code-block:: llvm
3577
3578 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3579 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3580
3581'``mul``' Instruction
3582^^^^^^^^^^^^^^^^^^^^^
3583
3584Syntax:
3585"""""""
3586
3587::
3588
3589 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3590 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3591 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3592 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3593
3594Overview:
3595"""""""""
3596
3597The '``mul``' instruction returns the product of its two operands.
3598
3599Arguments:
3600""""""""""
3601
3602The two arguments to the '``mul``' instruction must be
3603:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3604arguments must have identical types.
3605
3606Semantics:
3607""""""""""
3608
3609The value produced is the integer product of the two operands.
3610
3611If the result of the multiplication has unsigned overflow, the result
3612returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3613bit width of the result.
3614
3615Because LLVM integers use a two's complement representation, and the
3616result is the same width as the operands, this instruction returns the
3617correct result for both signed and unsigned integers. If a full product
3618(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3619sign-extended or zero-extended as appropriate to the width of the full
3620product.
3621
3622``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3623respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3624result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3625unsigned and/or signed overflow, respectively, occurs.
3626
3627Example:
3628""""""""
3629
3630.. code-block:: llvm
3631
3632 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3633
3634.. _i_fmul:
3635
3636'``fmul``' Instruction
3637^^^^^^^^^^^^^^^^^^^^^^
3638
3639Syntax:
3640"""""""
3641
3642::
3643
3644 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3645
3646Overview:
3647"""""""""
3648
3649The '``fmul``' instruction returns the product of its two operands.
3650
3651Arguments:
3652""""""""""
3653
3654The two arguments to the '``fmul``' instruction must be :ref:`floating
3655point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3656Both arguments must have identical types.
3657
3658Semantics:
3659""""""""""
3660
3661The value produced is the floating point product of the two operands.
3662This instruction can also take any number of :ref:`fast-math
3663flags <fastmath>`, which are optimization hints to enable otherwise
3664unsafe floating point optimizations:
3665
3666Example:
3667""""""""
3668
3669.. code-block:: llvm
3670
3671 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3672
3673'``udiv``' Instruction
3674^^^^^^^^^^^^^^^^^^^^^^
3675
3676Syntax:
3677"""""""
3678
3679::
3680
3681 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3682 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3683
3684Overview:
3685"""""""""
3686
3687The '``udiv``' instruction returns the quotient of its two operands.
3688
3689Arguments:
3690""""""""""
3691
3692The two arguments to the '``udiv``' instruction must be
3693:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3694arguments must have identical types.
3695
3696Semantics:
3697""""""""""
3698
3699The value produced is the unsigned integer quotient of the two operands.
3700
3701Note that unsigned integer division and signed integer division are
3702distinct operations; for signed integer division, use '``sdiv``'.
3703
3704Division by zero leads to undefined behavior.
3705
3706If the ``exact`` keyword is present, the result value of the ``udiv`` is
3707a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3708such, "((a udiv exact b) mul b) == a").
3709
3710Example:
3711""""""""
3712
3713.. code-block:: llvm
3714
3715 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3716
3717'``sdiv``' Instruction
3718^^^^^^^^^^^^^^^^^^^^^^
3719
3720Syntax:
3721"""""""
3722
3723::
3724
3725 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3726 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3727
3728Overview:
3729"""""""""
3730
3731The '``sdiv``' instruction returns the quotient of its two operands.
3732
3733Arguments:
3734""""""""""
3735
3736The two arguments to the '``sdiv``' instruction must be
3737:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3738arguments must have identical types.
3739
3740Semantics:
3741""""""""""
3742
3743The value produced is the signed integer quotient of the two operands
3744rounded towards zero.
3745
3746Note that signed integer division and unsigned integer division are
3747distinct operations; for unsigned integer division, use '``udiv``'.
3748
3749Division by zero leads to undefined behavior. Overflow also leads to
3750undefined behavior; this is a rare case, but can occur, for example, by
3751doing a 32-bit division of -2147483648 by -1.
3752
3753If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3754a :ref:`poison value <poisonvalues>` if the result would be rounded.
3755
3756Example:
3757""""""""
3758
3759.. code-block:: llvm
3760
3761 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3762
3763.. _i_fdiv:
3764
3765'``fdiv``' Instruction
3766^^^^^^^^^^^^^^^^^^^^^^
3767
3768Syntax:
3769"""""""
3770
3771::
3772
3773 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3774
3775Overview:
3776"""""""""
3777
3778The '``fdiv``' instruction returns the quotient of its two operands.
3779
3780Arguments:
3781""""""""""
3782
3783The two arguments to the '``fdiv``' instruction must be :ref:`floating
3784point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3785Both arguments must have identical types.
3786
3787Semantics:
3788""""""""""
3789
3790The value produced is the floating point quotient of the two operands.
3791This instruction can also take any number of :ref:`fast-math
3792flags <fastmath>`, which are optimization hints to enable otherwise
3793unsafe floating point optimizations:
3794
3795Example:
3796""""""""
3797
3798.. code-block:: llvm
3799
3800 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3801
3802'``urem``' Instruction
3803^^^^^^^^^^^^^^^^^^^^^^
3804
3805Syntax:
3806"""""""
3807
3808::
3809
3810 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3811
3812Overview:
3813"""""""""
3814
3815The '``urem``' instruction returns the remainder from the unsigned
3816division of its two arguments.
3817
3818Arguments:
3819""""""""""
3820
3821The two arguments to the '``urem``' instruction must be
3822:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3823arguments must have identical types.
3824
3825Semantics:
3826""""""""""
3827
3828This instruction returns the unsigned integer *remainder* of a division.
3829This instruction always performs an unsigned division to get the
3830remainder.
3831
3832Note that unsigned integer remainder and signed integer remainder are
3833distinct operations; for signed integer remainder, use '``srem``'.
3834
3835Taking the remainder of a division by zero leads to undefined behavior.
3836
3837Example:
3838""""""""
3839
3840.. code-block:: llvm
3841
3842 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3843
3844'``srem``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
3852 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3853
3854Overview:
3855"""""""""
3856
3857The '``srem``' instruction returns the remainder from the signed
3858division of its two operands. This instruction can also take
3859:ref:`vector <t_vector>` versions of the values in which case the elements
3860must be integers.
3861
3862Arguments:
3863""""""""""
3864
3865The two arguments to the '``srem``' instruction must be
3866:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3867arguments must have identical types.
3868
3869Semantics:
3870""""""""""
3871
3872This instruction returns the *remainder* of a division (where the result
3873is either zero or has the same sign as the dividend, ``op1``), not the
3874*modulo* operator (where the result is either zero or has the same sign
3875as the divisor, ``op2``) of a value. For more information about the
3876difference, see `The Math
3877Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3878table of how this is implemented in various languages, please see
3879`Wikipedia: modulo
3880operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3881
3882Note that signed integer remainder and unsigned integer remainder are
3883distinct operations; for unsigned integer remainder, use '``urem``'.
3884
3885Taking the remainder of a division by zero leads to undefined behavior.
3886Overflow also leads to undefined behavior; this is a rare case, but can
3887occur, for example, by taking the remainder of a 32-bit division of
3888-2147483648 by -1. (The remainder doesn't actually overflow, but this
3889rule lets srem be implemented using instructions that return both the
3890result of the division and the remainder.)
3891
3892Example:
3893""""""""
3894
3895.. code-block:: llvm
3896
3897 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3898
3899.. _i_frem:
3900
3901'``frem``' Instruction
3902^^^^^^^^^^^^^^^^^^^^^^
3903
3904Syntax:
3905"""""""
3906
3907::
3908
3909 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3910
3911Overview:
3912"""""""""
3913
3914The '``frem``' instruction returns the remainder from the division of
3915its two operands.
3916
3917Arguments:
3918""""""""""
3919
3920The two arguments to the '``frem``' instruction must be :ref:`floating
3921point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3922Both arguments must have identical types.
3923
3924Semantics:
3925""""""""""
3926
3927This instruction returns the *remainder* of a division. The remainder
3928has the same sign as the dividend. This instruction can also take any
3929number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3930to enable otherwise unsafe floating point optimizations:
3931
3932Example:
3933""""""""
3934
3935.. code-block:: llvm
3936
3937 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3938
3939.. _bitwiseops:
3940
3941Bitwise Binary Operations
3942-------------------------
3943
3944Bitwise binary operators are used to do various forms of bit-twiddling
3945in a program. They are generally very efficient instructions and can
3946commonly be strength reduced from other instructions. They require two
3947operands of the same type, execute an operation on them, and produce a
3948single value. The resulting value is the same type as its operands.
3949
3950'``shl``' Instruction
3951^^^^^^^^^^^^^^^^^^^^^
3952
3953Syntax:
3954"""""""
3955
3956::
3957
3958 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3959 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3960 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3961 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3962
3963Overview:
3964"""""""""
3965
3966The '``shl``' instruction returns the first operand shifted to the left
3967a specified number of bits.
3968
3969Arguments:
3970""""""""""
3971
3972Both arguments to the '``shl``' instruction must be the same
3973:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3974'``op2``' is treated as an unsigned value.
3975
3976Semantics:
3977""""""""""
3978
3979The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3980where ``n`` is the width of the result. If ``op2`` is (statically or
3981dynamically) negative or equal to or larger than the number of bits in
3982``op1``, the result is undefined. If the arguments are vectors, each
3983vector element of ``op1`` is shifted by the corresponding shift amount
3984in ``op2``.
3985
3986If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3987value <poisonvalues>` if it shifts out any non-zero bits. If the
3988``nsw`` keyword is present, then the shift produces a :ref:`poison
3989value <poisonvalues>` if it shifts out any bits that disagree with the
3990resultant sign bit. As such, NUW/NSW have the same semantics as they
3991would if the shift were expressed as a mul instruction with the same
3992nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3993
3994Example:
3995""""""""
3996
3997.. code-block:: llvm
3998
3999 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4000 <result> = shl i32 4, 2 ; yields {i32}: 16
4001 <result> = shl i32 1, 10 ; yields {i32}: 1024
4002 <result> = shl i32 1, 32 ; undefined
4003 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4004
4005'``lshr``' Instruction
4006^^^^^^^^^^^^^^^^^^^^^^
4007
4008Syntax:
4009"""""""
4010
4011::
4012
4013 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4014 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4015
4016Overview:
4017"""""""""
4018
4019The '``lshr``' instruction (logical shift right) returns the first
4020operand shifted to the right a specified number of bits with zero fill.
4021
4022Arguments:
4023""""""""""
4024
4025Both arguments to the '``lshr``' instruction must be the same
4026:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4027'``op2``' is treated as an unsigned value.
4028
4029Semantics:
4030""""""""""
4031
4032This instruction always performs a logical shift right operation. The
4033most significant bits of the result will be filled with zero bits after
4034the shift. If ``op2`` is (statically or dynamically) equal to or larger
4035than the number of bits in ``op1``, the result is undefined. If the
4036arguments are vectors, each vector element of ``op1`` is shifted by the
4037corresponding shift amount in ``op2``.
4038
4039If the ``exact`` keyword is present, the result value of the ``lshr`` is
4040a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4041non-zero.
4042
4043Example:
4044""""""""
4045
4046.. code-block:: llvm
4047
4048 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4049 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4050 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004051 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004052 <result> = lshr i32 1, 32 ; undefined
4053 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4054
4055'``ashr``' Instruction
4056^^^^^^^^^^^^^^^^^^^^^^
4057
4058Syntax:
4059"""""""
4060
4061::
4062
4063 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4064 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4065
4066Overview:
4067"""""""""
4068
4069The '``ashr``' instruction (arithmetic shift right) returns the first
4070operand shifted to the right a specified number of bits with sign
4071extension.
4072
4073Arguments:
4074""""""""""
4075
4076Both arguments to the '``ashr``' instruction must be the same
4077:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4078'``op2``' is treated as an unsigned value.
4079
4080Semantics:
4081""""""""""
4082
4083This instruction always performs an arithmetic shift right operation,
4084The most significant bits of the result will be filled with the sign bit
4085of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4086than the number of bits in ``op1``, the result is undefined. If the
4087arguments are vectors, each vector element of ``op1`` is shifted by the
4088corresponding shift amount in ``op2``.
4089
4090If the ``exact`` keyword is present, the result value of the ``ashr`` is
4091a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4092non-zero.
4093
4094Example:
4095""""""""
4096
4097.. code-block:: llvm
4098
4099 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4100 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4101 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4102 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4103 <result> = ashr i32 1, 32 ; undefined
4104 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4105
4106'``and``' Instruction
4107^^^^^^^^^^^^^^^^^^^^^
4108
4109Syntax:
4110"""""""
4111
4112::
4113
4114 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4115
4116Overview:
4117"""""""""
4118
4119The '``and``' instruction returns the bitwise logical and of its two
4120operands.
4121
4122Arguments:
4123""""""""""
4124
4125The two arguments to the '``and``' instruction must be
4126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4127arguments must have identical types.
4128
4129Semantics:
4130""""""""""
4131
4132The truth table used for the '``and``' instruction is:
4133
4134+-----+-----+-----+
4135| In0 | In1 | Out |
4136+-----+-----+-----+
4137| 0 | 0 | 0 |
4138+-----+-----+-----+
4139| 0 | 1 | 0 |
4140+-----+-----+-----+
4141| 1 | 0 | 0 |
4142+-----+-----+-----+
4143| 1 | 1 | 1 |
4144+-----+-----+-----+
4145
4146Example:
4147""""""""
4148
4149.. code-block:: llvm
4150
4151 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4152 <result> = and i32 15, 40 ; yields {i32}:result = 8
4153 <result> = and i32 4, 8 ; yields {i32}:result = 0
4154
4155'``or``' Instruction
4156^^^^^^^^^^^^^^^^^^^^
4157
4158Syntax:
4159"""""""
4160
4161::
4162
4163 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4164
4165Overview:
4166"""""""""
4167
4168The '``or``' instruction returns the bitwise logical inclusive or of its
4169two operands.
4170
4171Arguments:
4172""""""""""
4173
4174The two arguments to the '``or``' instruction must be
4175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4176arguments must have identical types.
4177
4178Semantics:
4179""""""""""
4180
4181The truth table used for the '``or``' instruction is:
4182
4183+-----+-----+-----+
4184| In0 | In1 | Out |
4185+-----+-----+-----+
4186| 0 | 0 | 0 |
4187+-----+-----+-----+
4188| 0 | 1 | 1 |
4189+-----+-----+-----+
4190| 1 | 0 | 1 |
4191+-----+-----+-----+
4192| 1 | 1 | 1 |
4193+-----+-----+-----+
4194
4195Example:
4196""""""""
4197
4198::
4199
4200 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4201 <result> = or i32 15, 40 ; yields {i32}:result = 47
4202 <result> = or i32 4, 8 ; yields {i32}:result = 12
4203
4204'``xor``' Instruction
4205^^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
4212 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4213
4214Overview:
4215"""""""""
4216
4217The '``xor``' instruction returns the bitwise logical exclusive or of
4218its two operands. The ``xor`` is used to implement the "one's
4219complement" operation, which is the "~" operator in C.
4220
4221Arguments:
4222""""""""""
4223
4224The two arguments to the '``xor``' instruction must be
4225:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4226arguments must have identical types.
4227
4228Semantics:
4229""""""""""
4230
4231The truth table used for the '``xor``' instruction is:
4232
4233+-----+-----+-----+
4234| In0 | In1 | Out |
4235+-----+-----+-----+
4236| 0 | 0 | 0 |
4237+-----+-----+-----+
4238| 0 | 1 | 1 |
4239+-----+-----+-----+
4240| 1 | 0 | 1 |
4241+-----+-----+-----+
4242| 1 | 1 | 0 |
4243+-----+-----+-----+
4244
4245Example:
4246""""""""
4247
4248.. code-block:: llvm
4249
4250 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4251 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4252 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4253 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4254
4255Vector Operations
4256-----------------
4257
4258LLVM supports several instructions to represent vector operations in a
4259target-independent manner. These instructions cover the element-access
4260and vector-specific operations needed to process vectors effectively.
4261While LLVM does directly support these vector operations, many
4262sophisticated algorithms will want to use target-specific intrinsics to
4263take full advantage of a specific target.
4264
4265.. _i_extractelement:
4266
4267'``extractelement``' Instruction
4268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4269
4270Syntax:
4271"""""""
4272
4273::
4274
4275 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4276
4277Overview:
4278"""""""""
4279
4280The '``extractelement``' instruction extracts a single scalar element
4281from a vector at a specified index.
4282
4283Arguments:
4284""""""""""
4285
4286The first operand of an '``extractelement``' instruction is a value of
4287:ref:`vector <t_vector>` type. The second operand is an index indicating
4288the position from which to extract the element. The index may be a
4289variable.
4290
4291Semantics:
4292""""""""""
4293
4294The result is a scalar of the same type as the element type of ``val``.
4295Its value is the value at position ``idx`` of ``val``. If ``idx``
4296exceeds the length of ``val``, the results are undefined.
4297
4298Example:
4299""""""""
4300
4301.. code-block:: llvm
4302
4303 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4304
4305.. _i_insertelement:
4306
4307'``insertelement``' Instruction
4308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4309
4310Syntax:
4311"""""""
4312
4313::
4314
4315 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4316
4317Overview:
4318"""""""""
4319
4320The '``insertelement``' instruction inserts a scalar element into a
4321vector at a specified index.
4322
4323Arguments:
4324""""""""""
4325
4326The first operand of an '``insertelement``' instruction is a value of
4327:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4328type must equal the element type of the first operand. The third operand
4329is an index indicating the position at which to insert the value. The
4330index may be a variable.
4331
4332Semantics:
4333""""""""""
4334
4335The result is a vector of the same type as ``val``. Its element values
4336are those of ``val`` except at position ``idx``, where it gets the value
4337``elt``. If ``idx`` exceeds the length of ``val``, the results are
4338undefined.
4339
4340Example:
4341""""""""
4342
4343.. code-block:: llvm
4344
4345 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4346
4347.. _i_shufflevector:
4348
4349'``shufflevector``' Instruction
4350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4351
4352Syntax:
4353"""""""
4354
4355::
4356
4357 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4358
4359Overview:
4360"""""""""
4361
4362The '``shufflevector``' instruction constructs a permutation of elements
4363from two input vectors, returning a vector with the same element type as
4364the input and length that is the same as the shuffle mask.
4365
4366Arguments:
4367""""""""""
4368
4369The first two operands of a '``shufflevector``' instruction are vectors
4370with the same type. The third argument is a shuffle mask whose element
4371type is always 'i32'. The result of the instruction is a vector whose
4372length is the same as the shuffle mask and whose element type is the
4373same as the element type of the first two operands.
4374
4375The shuffle mask operand is required to be a constant vector with either
4376constant integer or undef values.
4377
4378Semantics:
4379""""""""""
4380
4381The elements of the two input vectors are numbered from left to right
4382across both of the vectors. The shuffle mask operand specifies, for each
4383element of the result vector, which element of the two input vectors the
4384result element gets. The element selector may be undef (meaning "don't
4385care") and the second operand may be undef if performing a shuffle from
4386only one vector.
4387
4388Example:
4389""""""""
4390
4391.. code-block:: llvm
4392
4393 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4394 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4395 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4396 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4397 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4398 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4399 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4400 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4401
4402Aggregate Operations
4403--------------------
4404
4405LLVM supports several instructions for working with
4406:ref:`aggregate <t_aggregate>` values.
4407
4408.. _i_extractvalue:
4409
4410'``extractvalue``' Instruction
4411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4412
4413Syntax:
4414"""""""
4415
4416::
4417
4418 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4419
4420Overview:
4421"""""""""
4422
4423The '``extractvalue``' instruction extracts the value of a member field
4424from an :ref:`aggregate <t_aggregate>` value.
4425
4426Arguments:
4427""""""""""
4428
4429The first operand of an '``extractvalue``' instruction is a value of
4430:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4431constant indices to specify which value to extract in a similar manner
4432as indices in a '``getelementptr``' instruction.
4433
4434The major differences to ``getelementptr`` indexing are:
4435
4436- Since the value being indexed is not a pointer, the first index is
4437 omitted and assumed to be zero.
4438- At least one index must be specified.
4439- Not only struct indices but also array indices must be in bounds.
4440
4441Semantics:
4442""""""""""
4443
4444The result is the value at the position in the aggregate specified by
4445the index operands.
4446
4447Example:
4448""""""""
4449
4450.. code-block:: llvm
4451
4452 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4453
4454.. _i_insertvalue:
4455
4456'``insertvalue``' Instruction
4457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4458
4459Syntax:
4460"""""""
4461
4462::
4463
4464 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4465
4466Overview:
4467"""""""""
4468
4469The '``insertvalue``' instruction inserts a value into a member field in
4470an :ref:`aggregate <t_aggregate>` value.
4471
4472Arguments:
4473""""""""""
4474
4475The first operand of an '``insertvalue``' instruction is a value of
4476:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4477a first-class value to insert. The following operands are constant
4478indices indicating the position at which to insert the value in a
4479similar manner as indices in a '``extractvalue``' instruction. The value
4480to insert must have the same type as the value identified by the
4481indices.
4482
4483Semantics:
4484""""""""""
4485
4486The result is an aggregate of the same type as ``val``. Its value is
4487that of ``val`` except that the value at the position specified by the
4488indices is that of ``elt``.
4489
4490Example:
4491""""""""
4492
4493.. code-block:: llvm
4494
4495 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4496 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4497 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4498
4499.. _memoryops:
4500
4501Memory Access and Addressing Operations
4502---------------------------------------
4503
4504A key design point of an SSA-based representation is how it represents
4505memory. In LLVM, no memory locations are in SSA form, which makes things
4506very simple. This section describes how to read, write, and allocate
4507memory in LLVM.
4508
4509.. _i_alloca:
4510
4511'``alloca``' Instruction
4512^^^^^^^^^^^^^^^^^^^^^^^^
4513
4514Syntax:
4515"""""""
4516
4517::
4518
4519 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4520
4521Overview:
4522"""""""""
4523
4524The '``alloca``' instruction allocates memory on the stack frame of the
4525currently executing function, to be automatically released when this
4526function returns to its caller. The object is always allocated in the
4527generic address space (address space zero).
4528
4529Arguments:
4530""""""""""
4531
4532The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4533bytes of memory on the runtime stack, returning a pointer of the
4534appropriate type to the program. If "NumElements" is specified, it is
4535the number of elements allocated, otherwise "NumElements" is defaulted
4536to be one. If a constant alignment is specified, the value result of the
4537allocation is guaranteed to be aligned to at least that boundary. If not
4538specified, or if zero, the target can choose to align the allocation on
4539any convenient boundary compatible with the type.
4540
4541'``type``' may be any sized type.
4542
4543Semantics:
4544""""""""""
4545
4546Memory is allocated; a pointer is returned. The operation is undefined
4547if there is insufficient stack space for the allocation. '``alloca``'d
4548memory is automatically released when the function returns. The
4549'``alloca``' instruction is commonly used to represent automatic
4550variables that must have an address available. When the function returns
4551(either with the ``ret`` or ``resume`` instructions), the memory is
4552reclaimed. Allocating zero bytes is legal, but the result is undefined.
4553The order in which memory is allocated (ie., which way the stack grows)
4554is not specified.
4555
4556Example:
4557""""""""
4558
4559.. code-block:: llvm
4560
4561 %ptr = alloca i32 ; yields {i32*}:ptr
4562 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4563 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4564 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4565
4566.. _i_load:
4567
4568'``load``' Instruction
4569^^^^^^^^^^^^^^^^^^^^^^
4570
4571Syntax:
4572"""""""
4573
4574::
4575
4576 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4577 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4578 !<index> = !{ i32 1 }
4579
4580Overview:
4581"""""""""
4582
4583The '``load``' instruction is used to read from memory.
4584
4585Arguments:
4586""""""""""
4587
Eli Bendersky8c493382013-04-17 20:17:08 +00004588The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004589from which to load. The pointer must point to a :ref:`first
4590class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4591then the optimizer is not allowed to modify the number or order of
4592execution of this ``load`` with other :ref:`volatile
4593operations <volatile>`.
4594
4595If the ``load`` is marked as ``atomic``, it takes an extra
4596:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4597``release`` and ``acq_rel`` orderings are not valid on ``load``
4598instructions. Atomic loads produce :ref:`defined <memmodel>` results
4599when they may see multiple atomic stores. The type of the pointee must
4600be an integer type whose bit width is a power of two greater than or
4601equal to eight and less than or equal to a target-specific size limit.
4602``align`` must be explicitly specified on atomic loads, and the load has
4603undefined behavior if the alignment is not set to a value which is at
4604least the size in bytes of the pointee. ``!nontemporal`` does not have
4605any defined semantics for atomic loads.
4606
4607The optional constant ``align`` argument specifies the alignment of the
4608operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004609or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004610alignment for the target. It is the responsibility of the code emitter
4611to ensure that the alignment information is correct. Overestimating the
4612alignment results in undefined behavior. Underestimating the alignment
4613may produce less efficient code. An alignment of 1 is always safe.
4614
4615The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004616metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004617``i32`` entry of value 1. The existence of the ``!nontemporal``
4618metatadata on the instruction tells the optimizer and code generator
4619that this load is not expected to be reused in the cache. The code
4620generator may select special instructions to save cache bandwidth, such
4621as the ``MOVNT`` instruction on x86.
4622
4623The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004624metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004625entries. The existence of the ``!invariant.load`` metatadata on the
4626instruction tells the optimizer and code generator that this load
4627address points to memory which does not change value during program
4628execution. The optimizer may then move this load around, for example, by
4629hoisting it out of loops using loop invariant code motion.
4630
4631Semantics:
4632""""""""""
4633
4634The location of memory pointed to is loaded. If the value being loaded
4635is of scalar type then the number of bytes read does not exceed the
4636minimum number of bytes needed to hold all bits of the type. For
4637example, loading an ``i24`` reads at most three bytes. When loading a
4638value of a type like ``i20`` with a size that is not an integral number
4639of bytes, the result is undefined if the value was not originally
4640written using a store of the same type.
4641
4642Examples:
4643"""""""""
4644
4645.. code-block:: llvm
4646
4647 %ptr = alloca i32 ; yields {i32*}:ptr
4648 store i32 3, i32* %ptr ; yields {void}
4649 %val = load i32* %ptr ; yields {i32}:val = i32 3
4650
4651.. _i_store:
4652
4653'``store``' Instruction
4654^^^^^^^^^^^^^^^^^^^^^^^
4655
4656Syntax:
4657"""""""
4658
4659::
4660
4661 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4662 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4663
4664Overview:
4665"""""""""
4666
4667The '``store``' instruction is used to write to memory.
4668
4669Arguments:
4670""""""""""
4671
Eli Bendersky8952d902013-04-17 17:17:20 +00004672There are two arguments to the ``store`` instruction: a value to store
4673and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004674operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004675the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004676then the optimizer is not allowed to modify the number or order of
4677execution of this ``store`` with other :ref:`volatile
4678operations <volatile>`.
4679
4680If the ``store`` is marked as ``atomic``, it takes an extra
4681:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4682``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4683instructions. Atomic loads produce :ref:`defined <memmodel>` results
4684when they may see multiple atomic stores. The type of the pointee must
4685be an integer type whose bit width is a power of two greater than or
4686equal to eight and less than or equal to a target-specific size limit.
4687``align`` must be explicitly specified on atomic stores, and the store
4688has undefined behavior if the alignment is not set to a value which is
4689at least the size in bytes of the pointee. ``!nontemporal`` does not
4690have any defined semantics for atomic stores.
4691
Eli Bendersky8952d902013-04-17 17:17:20 +00004692The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004693operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004694or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004695alignment for the target. It is the responsibility of the code emitter
4696to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004697alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004698alignment may produce less efficient code. An alignment of 1 is always
4699safe.
4700
Eli Bendersky8952d902013-04-17 17:17:20 +00004701The optional ``!nontemporal`` metadata must reference a single metatadata
4702name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4703value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004704tells the optimizer and code generator that this load is not expected to
4705be reused in the cache. The code generator may select special
4706instructions to save cache bandwidth, such as the MOVNT instruction on
4707x86.
4708
4709Semantics:
4710""""""""""
4711
Eli Bendersky8952d902013-04-17 17:17:20 +00004712The contents of memory are updated to contain ``<value>`` at the
4713location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004714of scalar type then the number of bytes written does not exceed the
4715minimum number of bytes needed to hold all bits of the type. For
4716example, storing an ``i24`` writes at most three bytes. When writing a
4717value of a type like ``i20`` with a size that is not an integral number
4718of bytes, it is unspecified what happens to the extra bits that do not
4719belong to the type, but they will typically be overwritten.
4720
4721Example:
4722""""""""
4723
4724.. code-block:: llvm
4725
4726 %ptr = alloca i32 ; yields {i32*}:ptr
4727 store i32 3, i32* %ptr ; yields {void}
4728 %val = load i32* %ptr ; yields {i32}:val = i32 3
4729
4730.. _i_fence:
4731
4732'``fence``' Instruction
4733^^^^^^^^^^^^^^^^^^^^^^^
4734
4735Syntax:
4736"""""""
4737
4738::
4739
4740 fence [singlethread] <ordering> ; yields {void}
4741
4742Overview:
4743"""""""""
4744
4745The '``fence``' instruction is used to introduce happens-before edges
4746between operations.
4747
4748Arguments:
4749""""""""""
4750
4751'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4752defines what *synchronizes-with* edges they add. They can only be given
4753``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4754
4755Semantics:
4756""""""""""
4757
4758A fence A which has (at least) ``release`` ordering semantics
4759*synchronizes with* a fence B with (at least) ``acquire`` ordering
4760semantics if and only if there exist atomic operations X and Y, both
4761operating on some atomic object M, such that A is sequenced before X, X
4762modifies M (either directly or through some side effect of a sequence
4763headed by X), Y is sequenced before B, and Y observes M. This provides a
4764*happens-before* dependency between A and B. Rather than an explicit
4765``fence``, one (but not both) of the atomic operations X or Y might
4766provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4767still *synchronize-with* the explicit ``fence`` and establish the
4768*happens-before* edge.
4769
4770A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4771``acquire`` and ``release`` semantics specified above, participates in
4772the global program order of other ``seq_cst`` operations and/or fences.
4773
4774The optional ":ref:`singlethread <singlethread>`" argument specifies
4775that the fence only synchronizes with other fences in the same thread.
4776(This is useful for interacting with signal handlers.)
4777
4778Example:
4779""""""""
4780
4781.. code-block:: llvm
4782
4783 fence acquire ; yields {void}
4784 fence singlethread seq_cst ; yields {void}
4785
4786.. _i_cmpxchg:
4787
4788'``cmpxchg``' Instruction
4789^^^^^^^^^^^^^^^^^^^^^^^^^
4790
4791Syntax:
4792"""""""
4793
4794::
4795
4796 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4797
4798Overview:
4799"""""""""
4800
4801The '``cmpxchg``' instruction is used to atomically modify memory. It
4802loads a value in memory and compares it to a given value. If they are
4803equal, it stores a new value into the memory.
4804
4805Arguments:
4806""""""""""
4807
4808There are three arguments to the '``cmpxchg``' instruction: an address
4809to operate on, a value to compare to the value currently be at that
4810address, and a new value to place at that address if the compared values
4811are equal. The type of '<cmp>' must be an integer type whose bit width
4812is a power of two greater than or equal to eight and less than or equal
4813to a target-specific size limit. '<cmp>' and '<new>' must have the same
4814type, and the type of '<pointer>' must be a pointer to that type. If the
4815``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4816to modify the number or order of execution of this ``cmpxchg`` with
4817other :ref:`volatile operations <volatile>`.
4818
4819The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4820synchronizes with other atomic operations.
4821
4822The optional "``singlethread``" argument declares that the ``cmpxchg``
4823is only atomic with respect to code (usually signal handlers) running in
4824the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4825respect to all other code in the system.
4826
4827The pointer passed into cmpxchg must have alignment greater than or
4828equal to the size in memory of the operand.
4829
4830Semantics:
4831""""""""""
4832
4833The contents of memory at the location specified by the '``<pointer>``'
4834operand is read and compared to '``<cmp>``'; if the read value is the
4835equal, '``<new>``' is written. The original value at the location is
4836returned.
4837
4838A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4839of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4840atomic load with an ordering parameter determined by dropping any
4841``release`` part of the ``cmpxchg``'s ordering.
4842
4843Example:
4844""""""""
4845
4846.. code-block:: llvm
4847
4848 entry:
4849 %orig = atomic load i32* %ptr unordered ; yields {i32}
4850 br label %loop
4851
4852 loop:
4853 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4854 %squared = mul i32 %cmp, %cmp
4855 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4856 %success = icmp eq i32 %cmp, %old
4857 br i1 %success, label %done, label %loop
4858
4859 done:
4860 ...
4861
4862.. _i_atomicrmw:
4863
4864'``atomicrmw``' Instruction
4865^^^^^^^^^^^^^^^^^^^^^^^^^^^
4866
4867Syntax:
4868"""""""
4869
4870::
4871
4872 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4873
4874Overview:
4875"""""""""
4876
4877The '``atomicrmw``' instruction is used to atomically modify memory.
4878
4879Arguments:
4880""""""""""
4881
4882There are three arguments to the '``atomicrmw``' instruction: an
4883operation to apply, an address whose value to modify, an argument to the
4884operation. The operation must be one of the following keywords:
4885
4886- xchg
4887- add
4888- sub
4889- and
4890- nand
4891- or
4892- xor
4893- max
4894- min
4895- umax
4896- umin
4897
4898The type of '<value>' must be an integer type whose bit width is a power
4899of two greater than or equal to eight and less than or equal to a
4900target-specific size limit. The type of the '``<pointer>``' operand must
4901be a pointer to that type. If the ``atomicrmw`` is marked as
4902``volatile``, then the optimizer is not allowed to modify the number or
4903order of execution of this ``atomicrmw`` with other :ref:`volatile
4904operations <volatile>`.
4905
4906Semantics:
4907""""""""""
4908
4909The contents of memory at the location specified by the '``<pointer>``'
4910operand are atomically read, modified, and written back. The original
4911value at the location is returned. The modification is specified by the
4912operation argument:
4913
4914- xchg: ``*ptr = val``
4915- add: ``*ptr = *ptr + val``
4916- sub: ``*ptr = *ptr - val``
4917- and: ``*ptr = *ptr & val``
4918- nand: ``*ptr = ~(*ptr & val)``
4919- or: ``*ptr = *ptr | val``
4920- xor: ``*ptr = *ptr ^ val``
4921- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4922- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4923- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4924 comparison)
4925- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4926 comparison)
4927
4928Example:
4929""""""""
4930
4931.. code-block:: llvm
4932
4933 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4934
4935.. _i_getelementptr:
4936
4937'``getelementptr``' Instruction
4938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4939
4940Syntax:
4941"""""""
4942
4943::
4944
4945 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4946 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4947 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4948
4949Overview:
4950"""""""""
4951
4952The '``getelementptr``' instruction is used to get the address of a
4953subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4954address calculation only and does not access memory.
4955
4956Arguments:
4957""""""""""
4958
4959The first argument is always a pointer or a vector of pointers, and
4960forms the basis of the calculation. The remaining arguments are indices
4961that indicate which of the elements of the aggregate object are indexed.
4962The interpretation of each index is dependent on the type being indexed
4963into. The first index always indexes the pointer value given as the
4964first argument, the second index indexes a value of the type pointed to
4965(not necessarily the value directly pointed to, since the first index
4966can be non-zero), etc. The first type indexed into must be a pointer
4967value, subsequent types can be arrays, vectors, and structs. Note that
4968subsequent types being indexed into can never be pointers, since that
4969would require loading the pointer before continuing calculation.
4970
4971The type of each index argument depends on the type it is indexing into.
4972When indexing into a (optionally packed) structure, only ``i32`` integer
4973**constants** are allowed (when using a vector of indices they must all
4974be the **same** ``i32`` integer constant). When indexing into an array,
4975pointer or vector, integers of any width are allowed, and they are not
4976required to be constant. These integers are treated as signed values
4977where relevant.
4978
4979For example, let's consider a C code fragment and how it gets compiled
4980to LLVM:
4981
4982.. code-block:: c
4983
4984 struct RT {
4985 char A;
4986 int B[10][20];
4987 char C;
4988 };
4989 struct ST {
4990 int X;
4991 double Y;
4992 struct RT Z;
4993 };
4994
4995 int *foo(struct ST *s) {
4996 return &s[1].Z.B[5][13];
4997 }
4998
4999The LLVM code generated by Clang is:
5000
5001.. code-block:: llvm
5002
5003 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5004 %struct.ST = type { i32, double, %struct.RT }
5005
5006 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5007 entry:
5008 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5009 ret i32* %arrayidx
5010 }
5011
5012Semantics:
5013""""""""""
5014
5015In the example above, the first index is indexing into the
5016'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5017= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5018indexes into the third element of the structure, yielding a
5019'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5020structure. The third index indexes into the second element of the
5021structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5022dimensions of the array are subscripted into, yielding an '``i32``'
5023type. The '``getelementptr``' instruction returns a pointer to this
5024element, thus computing a value of '``i32*``' type.
5025
5026Note that it is perfectly legal to index partially through a structure,
5027returning a pointer to an inner element. Because of this, the LLVM code
5028for the given testcase is equivalent to:
5029
5030.. code-block:: llvm
5031
5032 define i32* @foo(%struct.ST* %s) {
5033 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5034 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5035 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5036 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5037 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5038 ret i32* %t5
5039 }
5040
5041If the ``inbounds`` keyword is present, the result value of the
5042``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5043pointer is not an *in bounds* address of an allocated object, or if any
5044of the addresses that would be formed by successive addition of the
5045offsets implied by the indices to the base address with infinitely
5046precise signed arithmetic are not an *in bounds* address of that
5047allocated object. The *in bounds* addresses for an allocated object are
5048all the addresses that point into the object, plus the address one byte
5049past the end. In cases where the base is a vector of pointers the
5050``inbounds`` keyword applies to each of the computations element-wise.
5051
5052If the ``inbounds`` keyword is not present, the offsets are added to the
5053base address with silently-wrapping two's complement arithmetic. If the
5054offsets have a different width from the pointer, they are sign-extended
5055or truncated to the width of the pointer. The result value of the
5056``getelementptr`` may be outside the object pointed to by the base
5057pointer. The result value may not necessarily be used to access memory
5058though, even if it happens to point into allocated storage. See the
5059:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5060information.
5061
5062The getelementptr instruction is often confusing. For some more insight
5063into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5064
5065Example:
5066""""""""
5067
5068.. code-block:: llvm
5069
5070 ; yields [12 x i8]*:aptr
5071 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5072 ; yields i8*:vptr
5073 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5074 ; yields i8*:eptr
5075 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5076 ; yields i32*:iptr
5077 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5078
5079In cases where the pointer argument is a vector of pointers, each index
5080must be a vector with the same number of elements. For example:
5081
5082.. code-block:: llvm
5083
5084 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5085
5086Conversion Operations
5087---------------------
5088
5089The instructions in this category are the conversion instructions
5090(casting) which all take a single operand and a type. They perform
5091various bit conversions on the operand.
5092
5093'``trunc .. to``' Instruction
5094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5095
5096Syntax:
5097"""""""
5098
5099::
5100
5101 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5102
5103Overview:
5104"""""""""
5105
5106The '``trunc``' instruction truncates its operand to the type ``ty2``.
5107
5108Arguments:
5109""""""""""
5110
5111The '``trunc``' instruction takes a value to trunc, and a type to trunc
5112it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5113of the same number of integers. The bit size of the ``value`` must be
5114larger than the bit size of the destination type, ``ty2``. Equal sized
5115types are not allowed.
5116
5117Semantics:
5118""""""""""
5119
5120The '``trunc``' instruction truncates the high order bits in ``value``
5121and converts the remaining bits to ``ty2``. Since the source size must
5122be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5123It will always truncate bits.
5124
5125Example:
5126""""""""
5127
5128.. code-block:: llvm
5129
5130 %X = trunc i32 257 to i8 ; yields i8:1
5131 %Y = trunc i32 123 to i1 ; yields i1:true
5132 %Z = trunc i32 122 to i1 ; yields i1:false
5133 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5134
5135'``zext .. to``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
5143 <result> = zext <ty> <value> to <ty2> ; yields ty2
5144
5145Overview:
5146"""""""""
5147
5148The '``zext``' instruction zero extends its operand to type ``ty2``.
5149
5150Arguments:
5151""""""""""
5152
5153The '``zext``' instruction takes a value to cast, and a type to cast it
5154to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5155the same number of integers. The bit size of the ``value`` must be
5156smaller than the bit size of the destination type, ``ty2``.
5157
5158Semantics:
5159""""""""""
5160
5161The ``zext`` fills the high order bits of the ``value`` with zero bits
5162until it reaches the size of the destination type, ``ty2``.
5163
5164When zero extending from i1, the result will always be either 0 or 1.
5165
5166Example:
5167""""""""
5168
5169.. code-block:: llvm
5170
5171 %X = zext i32 257 to i64 ; yields i64:257
5172 %Y = zext i1 true to i32 ; yields i32:1
5173 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5174
5175'``sext .. to``' Instruction
5176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5177
5178Syntax:
5179"""""""
5180
5181::
5182
5183 <result> = sext <ty> <value> to <ty2> ; yields ty2
5184
5185Overview:
5186"""""""""
5187
5188The '``sext``' sign extends ``value`` to the type ``ty2``.
5189
5190Arguments:
5191""""""""""
5192
5193The '``sext``' instruction takes a value to cast, and a type to cast it
5194to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5195the same number of integers. The bit size of the ``value`` must be
5196smaller than the bit size of the destination type, ``ty2``.
5197
5198Semantics:
5199""""""""""
5200
5201The '``sext``' instruction performs a sign extension by copying the sign
5202bit (highest order bit) of the ``value`` until it reaches the bit size
5203of the type ``ty2``.
5204
5205When sign extending from i1, the extension always results in -1 or 0.
5206
5207Example:
5208""""""""
5209
5210.. code-block:: llvm
5211
5212 %X = sext i8 -1 to i16 ; yields i16 :65535
5213 %Y = sext i1 true to i32 ; yields i32:-1
5214 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5215
5216'``fptrunc .. to``' Instruction
5217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5218
5219Syntax:
5220"""""""
5221
5222::
5223
5224 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5225
5226Overview:
5227"""""""""
5228
5229The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5230
5231Arguments:
5232""""""""""
5233
5234The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5235value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5236The size of ``value`` must be larger than the size of ``ty2``. This
5237implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5238
5239Semantics:
5240""""""""""
5241
5242The '``fptrunc``' instruction truncates a ``value`` from a larger
5243:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5244point <t_floating>` type. If the value cannot fit within the
5245destination type, ``ty2``, then the results are undefined.
5246
5247Example:
5248""""""""
5249
5250.. code-block:: llvm
5251
5252 %X = fptrunc double 123.0 to float ; yields float:123.0
5253 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5254
5255'``fpext .. to``' Instruction
5256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5257
5258Syntax:
5259"""""""
5260
5261::
5262
5263 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5264
5265Overview:
5266"""""""""
5267
5268The '``fpext``' extends a floating point ``value`` to a larger floating
5269point value.
5270
5271Arguments:
5272""""""""""
5273
5274The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5275``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5276to. The source type must be smaller than the destination type.
5277
5278Semantics:
5279""""""""""
5280
5281The '``fpext``' instruction extends the ``value`` from a smaller
5282:ref:`floating point <t_floating>` type to a larger :ref:`floating
5283point <t_floating>` type. The ``fpext`` cannot be used to make a
5284*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5285*no-op cast* for a floating point cast.
5286
5287Example:
5288""""""""
5289
5290.. code-block:: llvm
5291
5292 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5293 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5294
5295'``fptoui .. to``' Instruction
5296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5297
5298Syntax:
5299"""""""
5300
5301::
5302
5303 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5304
5305Overview:
5306"""""""""
5307
5308The '``fptoui``' converts a floating point ``value`` to its unsigned
5309integer equivalent of type ``ty2``.
5310
5311Arguments:
5312""""""""""
5313
5314The '``fptoui``' instruction takes a value to cast, which must be a
5315scalar or vector :ref:`floating point <t_floating>` value, and a type to
5316cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5317``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5318type with the same number of elements as ``ty``
5319
5320Semantics:
5321""""""""""
5322
5323The '``fptoui``' instruction converts its :ref:`floating
5324point <t_floating>` operand into the nearest (rounding towards zero)
5325unsigned integer value. If the value cannot fit in ``ty2``, the results
5326are undefined.
5327
5328Example:
5329""""""""
5330
5331.. code-block:: llvm
5332
5333 %X = fptoui double 123.0 to i32 ; yields i32:123
5334 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5335 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5336
5337'``fptosi .. to``' Instruction
5338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5339
5340Syntax:
5341"""""""
5342
5343::
5344
5345 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5346
5347Overview:
5348"""""""""
5349
5350The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5351``value`` to type ``ty2``.
5352
5353Arguments:
5354""""""""""
5355
5356The '``fptosi``' instruction takes a value to cast, which must be a
5357scalar or vector :ref:`floating point <t_floating>` value, and a type to
5358cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5359``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5360type with the same number of elements as ``ty``
5361
5362Semantics:
5363""""""""""
5364
5365The '``fptosi``' instruction converts its :ref:`floating
5366point <t_floating>` operand into the nearest (rounding towards zero)
5367signed integer value. If the value cannot fit in ``ty2``, the results
5368are undefined.
5369
5370Example:
5371""""""""
5372
5373.. code-block:: llvm
5374
5375 %X = fptosi double -123.0 to i32 ; yields i32:-123
5376 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5377 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5378
5379'``uitofp .. to``' Instruction
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Syntax:
5383"""""""
5384
5385::
5386
5387 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5388
5389Overview:
5390"""""""""
5391
5392The '``uitofp``' instruction regards ``value`` as an unsigned integer
5393and converts that value to the ``ty2`` type.
5394
5395Arguments:
5396""""""""""
5397
5398The '``uitofp``' instruction takes a value to cast, which must be a
5399scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5400``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5401``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5402type with the same number of elements as ``ty``
5403
5404Semantics:
5405""""""""""
5406
5407The '``uitofp``' instruction interprets its operand as an unsigned
5408integer quantity and converts it to the corresponding floating point
5409value. If the value cannot fit in the floating point value, the results
5410are undefined.
5411
5412Example:
5413""""""""
5414
5415.. code-block:: llvm
5416
5417 %X = uitofp i32 257 to float ; yields float:257.0
5418 %Y = uitofp i8 -1 to double ; yields double:255.0
5419
5420'``sitofp .. to``' Instruction
5421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5422
5423Syntax:
5424"""""""
5425
5426::
5427
5428 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5429
5430Overview:
5431"""""""""
5432
5433The '``sitofp``' instruction regards ``value`` as a signed integer and
5434converts that value to the ``ty2`` type.
5435
5436Arguments:
5437""""""""""
5438
5439The '``sitofp``' instruction takes a value to cast, which must be a
5440scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5441``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5442``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5443type with the same number of elements as ``ty``
5444
5445Semantics:
5446""""""""""
5447
5448The '``sitofp``' instruction interprets its operand as a signed integer
5449quantity and converts it to the corresponding floating point value. If
5450the value cannot fit in the floating point value, the results are
5451undefined.
5452
5453Example:
5454""""""""
5455
5456.. code-block:: llvm
5457
5458 %X = sitofp i32 257 to float ; yields float:257.0
5459 %Y = sitofp i8 -1 to double ; yields double:-1.0
5460
5461.. _i_ptrtoint:
5462
5463'``ptrtoint .. to``' Instruction
5464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5465
5466Syntax:
5467"""""""
5468
5469::
5470
5471 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5472
5473Overview:
5474"""""""""
5475
5476The '``ptrtoint``' instruction converts the pointer or a vector of
5477pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5478
5479Arguments:
5480""""""""""
5481
5482The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5483a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5484type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5485a vector of integers type.
5486
5487Semantics:
5488""""""""""
5489
5490The '``ptrtoint``' instruction converts ``value`` to integer type
5491``ty2`` by interpreting the pointer value as an integer and either
5492truncating or zero extending that value to the size of the integer type.
5493If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5494``value`` is larger than ``ty2`` then a truncation is done. If they are
5495the same size, then nothing is done (*no-op cast*) other than a type
5496change.
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
5503 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5504 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5505 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5506
5507.. _i_inttoptr:
5508
5509'``inttoptr .. to``' Instruction
5510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5511
5512Syntax:
5513"""""""
5514
5515::
5516
5517 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5518
5519Overview:
5520"""""""""
5521
5522The '``inttoptr``' instruction converts an integer ``value`` to a
5523pointer type, ``ty2``.
5524
5525Arguments:
5526""""""""""
5527
5528The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5529cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5530type.
5531
5532Semantics:
5533""""""""""
5534
5535The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5536applying either a zero extension or a truncation depending on the size
5537of the integer ``value``. If ``value`` is larger than the size of a
5538pointer then a truncation is done. If ``value`` is smaller than the size
5539of a pointer then a zero extension is done. If they are the same size,
5540nothing is done (*no-op cast*).
5541
5542Example:
5543""""""""
5544
5545.. code-block:: llvm
5546
5547 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5548 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5549 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5550 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5551
5552.. _i_bitcast:
5553
5554'``bitcast .. to``' Instruction
5555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5556
5557Syntax:
5558"""""""
5559
5560::
5561
5562 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5563
5564Overview:
5565"""""""""
5566
5567The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5568changing any bits.
5569
5570Arguments:
5571""""""""""
5572
5573The '``bitcast``' instruction takes a value to cast, which must be a
5574non-aggregate first class value, and a type to cast it to, which must
5575also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5576sizes of ``value`` and the destination type, ``ty2``, must be identical.
5577If the source type is a pointer, the destination type must also be a
5578pointer. This instruction supports bitwise conversion of vectors to
5579integers and to vectors of other types (as long as they have the same
5580size).
5581
5582Semantics:
5583""""""""""
5584
5585The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5586always a *no-op cast* because no bits change with this conversion. The
5587conversion is done as if the ``value`` had been stored to memory and
5588read back as type ``ty2``. Pointer (or vector of pointers) types may
5589only be converted to other pointer (or vector of pointers) types with
5590this instruction. To convert pointers to other types, use the
5591:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5592first.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 %X = bitcast i8 255 to i8 ; yields i8 :-1
5600 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5601 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5602 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5603
5604.. _otherops:
5605
5606Other Operations
5607----------------
5608
5609The instructions in this category are the "miscellaneous" instructions,
5610which defy better classification.
5611
5612.. _i_icmp:
5613
5614'``icmp``' Instruction
5615^^^^^^^^^^^^^^^^^^^^^^
5616
5617Syntax:
5618"""""""
5619
5620::
5621
5622 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5623
5624Overview:
5625"""""""""
5626
5627The '``icmp``' instruction returns a boolean value or a vector of
5628boolean values based on comparison of its two integer, integer vector,
5629pointer, or pointer vector operands.
5630
5631Arguments:
5632""""""""""
5633
5634The '``icmp``' instruction takes three operands. The first operand is
5635the condition code indicating the kind of comparison to perform. It is
5636not a value, just a keyword. The possible condition code are:
5637
5638#. ``eq``: equal
5639#. ``ne``: not equal
5640#. ``ugt``: unsigned greater than
5641#. ``uge``: unsigned greater or equal
5642#. ``ult``: unsigned less than
5643#. ``ule``: unsigned less or equal
5644#. ``sgt``: signed greater than
5645#. ``sge``: signed greater or equal
5646#. ``slt``: signed less than
5647#. ``sle``: signed less or equal
5648
5649The remaining two arguments must be :ref:`integer <t_integer>` or
5650:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5651must also be identical types.
5652
5653Semantics:
5654""""""""""
5655
5656The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5657code given as ``cond``. The comparison performed always yields either an
5658:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5659
5660#. ``eq``: yields ``true`` if the operands are equal, ``false``
5661 otherwise. No sign interpretation is necessary or performed.
5662#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5663 otherwise. No sign interpretation is necessary or performed.
5664#. ``ugt``: interprets the operands as unsigned values and yields
5665 ``true`` if ``op1`` is greater than ``op2``.
5666#. ``uge``: interprets the operands as unsigned values and yields
5667 ``true`` if ``op1`` is greater than or equal to ``op2``.
5668#. ``ult``: interprets the operands as unsigned values and yields
5669 ``true`` if ``op1`` is less than ``op2``.
5670#. ``ule``: interprets the operands as unsigned values and yields
5671 ``true`` if ``op1`` is less than or equal to ``op2``.
5672#. ``sgt``: interprets the operands as signed values and yields ``true``
5673 if ``op1`` is greater than ``op2``.
5674#. ``sge``: interprets the operands as signed values and yields ``true``
5675 if ``op1`` is greater than or equal to ``op2``.
5676#. ``slt``: interprets the operands as signed values and yields ``true``
5677 if ``op1`` is less than ``op2``.
5678#. ``sle``: interprets the operands as signed values and yields ``true``
5679 if ``op1`` is less than or equal to ``op2``.
5680
5681If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5682are compared as if they were integers.
5683
5684If the operands are integer vectors, then they are compared element by
5685element. The result is an ``i1`` vector with the same number of elements
5686as the values being compared. Otherwise, the result is an ``i1``.
5687
5688Example:
5689""""""""
5690
5691.. code-block:: llvm
5692
5693 <result> = icmp eq i32 4, 5 ; yields: result=false
5694 <result> = icmp ne float* %X, %X ; yields: result=false
5695 <result> = icmp ult i16 4, 5 ; yields: result=true
5696 <result> = icmp sgt i16 4, 5 ; yields: result=false
5697 <result> = icmp ule i16 -4, 5 ; yields: result=false
5698 <result> = icmp sge i16 4, 5 ; yields: result=false
5699
5700Note that the code generator does not yet support vector types with the
5701``icmp`` instruction.
5702
5703.. _i_fcmp:
5704
5705'``fcmp``' Instruction
5706^^^^^^^^^^^^^^^^^^^^^^
5707
5708Syntax:
5709"""""""
5710
5711::
5712
5713 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5714
5715Overview:
5716"""""""""
5717
5718The '``fcmp``' instruction returns a boolean value or vector of boolean
5719values based on comparison of its operands.
5720
5721If the operands are floating point scalars, then the result type is a
5722boolean (:ref:`i1 <t_integer>`).
5723
5724If the operands are floating point vectors, then the result type is a
5725vector of boolean with the same number of elements as the operands being
5726compared.
5727
5728Arguments:
5729""""""""""
5730
5731The '``fcmp``' instruction takes three operands. The first operand is
5732the condition code indicating the kind of comparison to perform. It is
5733not a value, just a keyword. The possible condition code are:
5734
5735#. ``false``: no comparison, always returns false
5736#. ``oeq``: ordered and equal
5737#. ``ogt``: ordered and greater than
5738#. ``oge``: ordered and greater than or equal
5739#. ``olt``: ordered and less than
5740#. ``ole``: ordered and less than or equal
5741#. ``one``: ordered and not equal
5742#. ``ord``: ordered (no nans)
5743#. ``ueq``: unordered or equal
5744#. ``ugt``: unordered or greater than
5745#. ``uge``: unordered or greater than or equal
5746#. ``ult``: unordered or less than
5747#. ``ule``: unordered or less than or equal
5748#. ``une``: unordered or not equal
5749#. ``uno``: unordered (either nans)
5750#. ``true``: no comparison, always returns true
5751
5752*Ordered* means that neither operand is a QNAN while *unordered* means
5753that either operand may be a QNAN.
5754
5755Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5756point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5757type. They must have identical types.
5758
5759Semantics:
5760""""""""""
5761
5762The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5763condition code given as ``cond``. If the operands are vectors, then the
5764vectors are compared element by element. Each comparison performed
5765always yields an :ref:`i1 <t_integer>` result, as follows:
5766
5767#. ``false``: always yields ``false``, regardless of operands.
5768#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5769 is equal to ``op2``.
5770#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5771 is greater than ``op2``.
5772#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5773 is greater than or equal to ``op2``.
5774#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5775 is less than ``op2``.
5776#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5777 is less than or equal to ``op2``.
5778#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5779 is not equal to ``op2``.
5780#. ``ord``: yields ``true`` if both operands are not a QNAN.
5781#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5782 equal to ``op2``.
5783#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5784 greater than ``op2``.
5785#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5786 greater than or equal to ``op2``.
5787#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5788 less than ``op2``.
5789#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5790 less than or equal to ``op2``.
5791#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5792 not equal to ``op2``.
5793#. ``uno``: yields ``true`` if either operand is a QNAN.
5794#. ``true``: always yields ``true``, regardless of operands.
5795
5796Example:
5797""""""""
5798
5799.. code-block:: llvm
5800
5801 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5802 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5803 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5804 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5805
5806Note that the code generator does not yet support vector types with the
5807``fcmp`` instruction.
5808
5809.. _i_phi:
5810
5811'``phi``' Instruction
5812^^^^^^^^^^^^^^^^^^^^^
5813
5814Syntax:
5815"""""""
5816
5817::
5818
5819 <result> = phi <ty> [ <val0>, <label0>], ...
5820
5821Overview:
5822"""""""""
5823
5824The '``phi``' instruction is used to implement the φ node in the SSA
5825graph representing the function.
5826
5827Arguments:
5828""""""""""
5829
5830The type of the incoming values is specified with the first type field.
5831After this, the '``phi``' instruction takes a list of pairs as
5832arguments, with one pair for each predecessor basic block of the current
5833block. Only values of :ref:`first class <t_firstclass>` type may be used as
5834the value arguments to the PHI node. Only labels may be used as the
5835label arguments.
5836
5837There must be no non-phi instructions between the start of a basic block
5838and the PHI instructions: i.e. PHI instructions must be first in a basic
5839block.
5840
5841For the purposes of the SSA form, the use of each incoming value is
5842deemed to occur on the edge from the corresponding predecessor block to
5843the current block (but after any definition of an '``invoke``'
5844instruction's return value on the same edge).
5845
5846Semantics:
5847""""""""""
5848
5849At runtime, the '``phi``' instruction logically takes on the value
5850specified by the pair corresponding to the predecessor basic block that
5851executed just prior to the current block.
5852
5853Example:
5854""""""""
5855
5856.. code-block:: llvm
5857
5858 Loop: ; Infinite loop that counts from 0 on up...
5859 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5860 %nextindvar = add i32 %indvar, 1
5861 br label %Loop
5862
5863.. _i_select:
5864
5865'``select``' Instruction
5866^^^^^^^^^^^^^^^^^^^^^^^^
5867
5868Syntax:
5869"""""""
5870
5871::
5872
5873 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5874
5875 selty is either i1 or {<N x i1>}
5876
5877Overview:
5878"""""""""
5879
5880The '``select``' instruction is used to choose one value based on a
5881condition, without branching.
5882
5883Arguments:
5884""""""""""
5885
5886The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5887values indicating the condition, and two values of the same :ref:`first
5888class <t_firstclass>` type. If the val1/val2 are vectors and the
5889condition is a scalar, then entire vectors are selected, not individual
5890elements.
5891
5892Semantics:
5893""""""""""
5894
5895If the condition is an i1 and it evaluates to 1, the instruction returns
5896the first value argument; otherwise, it returns the second value
5897argument.
5898
5899If the condition is a vector of i1, then the value arguments must be
5900vectors of the same size, and the selection is done element by element.
5901
5902Example:
5903""""""""
5904
5905.. code-block:: llvm
5906
5907 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5908
5909.. _i_call:
5910
5911'``call``' Instruction
5912^^^^^^^^^^^^^^^^^^^^^^
5913
5914Syntax:
5915"""""""
5916
5917::
5918
5919 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5920
5921Overview:
5922"""""""""
5923
5924The '``call``' instruction represents a simple function call.
5925
5926Arguments:
5927""""""""""
5928
5929This instruction requires several arguments:
5930
5931#. The optional "tail" marker indicates that the callee function does
5932 not access any allocas or varargs in the caller. Note that calls may
5933 be marked "tail" even if they do not occur before a
5934 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5935 function call is eligible for tail call optimization, but `might not
5936 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5937 The code generator may optimize calls marked "tail" with either 1)
5938 automatic `sibling call
5939 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5940 callee have matching signatures, or 2) forced tail call optimization
5941 when the following extra requirements are met:
5942
5943 - Caller and callee both have the calling convention ``fastcc``.
5944 - The call is in tail position (ret immediately follows call and ret
5945 uses value of call or is void).
5946 - Option ``-tailcallopt`` is enabled, or
5947 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5948 - `Platform specific constraints are
5949 met. <CodeGenerator.html#tailcallopt>`_
5950
5951#. The optional "cconv" marker indicates which :ref:`calling
5952 convention <callingconv>` the call should use. If none is
5953 specified, the call defaults to using C calling conventions. The
5954 calling convention of the call must match the calling convention of
5955 the target function, or else the behavior is undefined.
5956#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5957 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5958 are valid here.
5959#. '``ty``': the type of the call instruction itself which is also the
5960 type of the return value. Functions that return no value are marked
5961 ``void``.
5962#. '``fnty``': shall be the signature of the pointer to function value
5963 being invoked. The argument types must match the types implied by
5964 this signature. This type can be omitted if the function is not
5965 varargs and if the function type does not return a pointer to a
5966 function.
5967#. '``fnptrval``': An LLVM value containing a pointer to a function to
5968 be invoked. In most cases, this is a direct function invocation, but
5969 indirect ``call``'s are just as possible, calling an arbitrary pointer
5970 to function value.
5971#. '``function args``': argument list whose types match the function
5972 signature argument types and parameter attributes. All arguments must
5973 be of :ref:`first class <t_firstclass>` type. If the function signature
5974 indicates the function accepts a variable number of arguments, the
5975 extra arguments can be specified.
5976#. The optional :ref:`function attributes <fnattrs>` list. Only
5977 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5978 attributes are valid here.
5979
5980Semantics:
5981""""""""""
5982
5983The '``call``' instruction is used to cause control flow to transfer to
5984a specified function, with its incoming arguments bound to the specified
5985values. Upon a '``ret``' instruction in the called function, control
5986flow continues with the instruction after the function call, and the
5987return value of the function is bound to the result argument.
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
5994 %retval = call i32 @test(i32 %argc)
5995 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5996 %X = tail call i32 @foo() ; yields i32
5997 %Y = tail call fastcc i32 @foo() ; yields i32
5998 call void %foo(i8 97 signext)
5999
6000 %struct.A = type { i32, i8 }
6001 %r = call %struct.A @foo() ; yields { 32, i8 }
6002 %gr = extractvalue %struct.A %r, 0 ; yields i32
6003 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6004 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6005 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6006
6007llvm treats calls to some functions with names and arguments that match
6008the standard C99 library as being the C99 library functions, and may
6009perform optimizations or generate code for them under that assumption.
6010This is something we'd like to change in the future to provide better
6011support for freestanding environments and non-C-based languages.
6012
6013.. _i_va_arg:
6014
6015'``va_arg``' Instruction
6016^^^^^^^^^^^^^^^^^^^^^^^^
6017
6018Syntax:
6019"""""""
6020
6021::
6022
6023 <resultval> = va_arg <va_list*> <arglist>, <argty>
6024
6025Overview:
6026"""""""""
6027
6028The '``va_arg``' instruction is used to access arguments passed through
6029the "variable argument" area of a function call. It is used to implement
6030the ``va_arg`` macro in C.
6031
6032Arguments:
6033""""""""""
6034
6035This instruction takes a ``va_list*`` value and the type of the
6036argument. It returns a value of the specified argument type and
6037increments the ``va_list`` to point to the next argument. The actual
6038type of ``va_list`` is target specific.
6039
6040Semantics:
6041""""""""""
6042
6043The '``va_arg``' instruction loads an argument of the specified type
6044from the specified ``va_list`` and causes the ``va_list`` to point to
6045the next argument. For more information, see the variable argument
6046handling :ref:`Intrinsic Functions <int_varargs>`.
6047
6048It is legal for this instruction to be called in a function which does
6049not take a variable number of arguments, for example, the ``vfprintf``
6050function.
6051
6052``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6053function <intrinsics>` because it takes a type as an argument.
6054
6055Example:
6056""""""""
6057
6058See the :ref:`variable argument processing <int_varargs>` section.
6059
6060Note that the code generator does not yet fully support va\_arg on many
6061targets. Also, it does not currently support va\_arg with aggregate
6062types on any target.
6063
6064.. _i_landingpad:
6065
6066'``landingpad``' Instruction
6067^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6068
6069Syntax:
6070"""""""
6071
6072::
6073
6074 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6075 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6076
6077 <clause> := catch <type> <value>
6078 <clause> := filter <array constant type> <array constant>
6079
6080Overview:
6081"""""""""
6082
6083The '``landingpad``' instruction is used by `LLVM's exception handling
6084system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006085is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006086code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6087defines values supplied by the personality function (``pers_fn``) upon
6088re-entry to the function. The ``resultval`` has the type ``resultty``.
6089
6090Arguments:
6091""""""""""
6092
6093This instruction takes a ``pers_fn`` value. This is the personality
6094function associated with the unwinding mechanism. The optional
6095``cleanup`` flag indicates that the landing pad block is a cleanup.
6096
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006097A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006098contains the global variable representing the "type" that may be caught
6099or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6100clause takes an array constant as its argument. Use
6101"``[0 x i8**] undef``" for a filter which cannot throw. The
6102'``landingpad``' instruction must contain *at least* one ``clause`` or
6103the ``cleanup`` flag.
6104
6105Semantics:
6106""""""""""
6107
6108The '``landingpad``' instruction defines the values which are set by the
6109personality function (``pers_fn``) upon re-entry to the function, and
6110therefore the "result type" of the ``landingpad`` instruction. As with
6111calling conventions, how the personality function results are
6112represented in LLVM IR is target specific.
6113
6114The clauses are applied in order from top to bottom. If two
6115``landingpad`` instructions are merged together through inlining, the
6116clauses from the calling function are appended to the list of clauses.
6117When the call stack is being unwound due to an exception being thrown,
6118the exception is compared against each ``clause`` in turn. If it doesn't
6119match any of the clauses, and the ``cleanup`` flag is not set, then
6120unwinding continues further up the call stack.
6121
6122The ``landingpad`` instruction has several restrictions:
6123
6124- A landing pad block is a basic block which is the unwind destination
6125 of an '``invoke``' instruction.
6126- A landing pad block must have a '``landingpad``' instruction as its
6127 first non-PHI instruction.
6128- There can be only one '``landingpad``' instruction within the landing
6129 pad block.
6130- A basic block that is not a landing pad block may not include a
6131 '``landingpad``' instruction.
6132- All '``landingpad``' instructions in a function must have the same
6133 personality function.
6134
6135Example:
6136""""""""
6137
6138.. code-block:: llvm
6139
6140 ;; A landing pad which can catch an integer.
6141 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6142 catch i8** @_ZTIi
6143 ;; A landing pad that is a cleanup.
6144 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6145 cleanup
6146 ;; A landing pad which can catch an integer and can only throw a double.
6147 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6148 catch i8** @_ZTIi
6149 filter [1 x i8**] [@_ZTId]
6150
6151.. _intrinsics:
6152
6153Intrinsic Functions
6154===================
6155
6156LLVM supports the notion of an "intrinsic function". These functions
6157have well known names and semantics and are required to follow certain
6158restrictions. Overall, these intrinsics represent an extension mechanism
6159for the LLVM language that does not require changing all of the
6160transformations in LLVM when adding to the language (or the bitcode
6161reader/writer, the parser, etc...).
6162
6163Intrinsic function names must all start with an "``llvm.``" prefix. This
6164prefix is reserved in LLVM for intrinsic names; thus, function names may
6165not begin with this prefix. Intrinsic functions must always be external
6166functions: you cannot define the body of intrinsic functions. Intrinsic
6167functions may only be used in call or invoke instructions: it is illegal
6168to take the address of an intrinsic function. Additionally, because
6169intrinsic functions are part of the LLVM language, it is required if any
6170are added that they be documented here.
6171
6172Some intrinsic functions can be overloaded, i.e., the intrinsic
6173represents a family of functions that perform the same operation but on
6174different data types. Because LLVM can represent over 8 million
6175different integer types, overloading is used commonly to allow an
6176intrinsic function to operate on any integer type. One or more of the
6177argument types or the result type can be overloaded to accept any
6178integer type. Argument types may also be defined as exactly matching a
6179previous argument's type or the result type. This allows an intrinsic
6180function which accepts multiple arguments, but needs all of them to be
6181of the same type, to only be overloaded with respect to a single
6182argument or the result.
6183
6184Overloaded intrinsics will have the names of its overloaded argument
6185types encoded into its function name, each preceded by a period. Only
6186those types which are overloaded result in a name suffix. Arguments
6187whose type is matched against another type do not. For example, the
6188``llvm.ctpop`` function can take an integer of any width and returns an
6189integer of exactly the same integer width. This leads to a family of
6190functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6191``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6192overloaded, and only one type suffix is required. Because the argument's
6193type is matched against the return type, it does not require its own
6194name suffix.
6195
6196To learn how to add an intrinsic function, please see the `Extending
6197LLVM Guide <ExtendingLLVM.html>`_.
6198
6199.. _int_varargs:
6200
6201Variable Argument Handling Intrinsics
6202-------------------------------------
6203
6204Variable argument support is defined in LLVM with the
6205:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6206functions. These functions are related to the similarly named macros
6207defined in the ``<stdarg.h>`` header file.
6208
6209All of these functions operate on arguments that use a target-specific
6210value type "``va_list``". The LLVM assembly language reference manual
6211does not define what this type is, so all transformations should be
6212prepared to handle these functions regardless of the type used.
6213
6214This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6215variable argument handling intrinsic functions are used.
6216
6217.. code-block:: llvm
6218
6219 define i32 @test(i32 %X, ...) {
6220 ; Initialize variable argument processing
6221 %ap = alloca i8*
6222 %ap2 = bitcast i8** %ap to i8*
6223 call void @llvm.va_start(i8* %ap2)
6224
6225 ; Read a single integer argument
6226 %tmp = va_arg i8** %ap, i32
6227
6228 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6229 %aq = alloca i8*
6230 %aq2 = bitcast i8** %aq to i8*
6231 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6232 call void @llvm.va_end(i8* %aq2)
6233
6234 ; Stop processing of arguments.
6235 call void @llvm.va_end(i8* %ap2)
6236 ret i32 %tmp
6237 }
6238
6239 declare void @llvm.va_start(i8*)
6240 declare void @llvm.va_copy(i8*, i8*)
6241 declare void @llvm.va_end(i8*)
6242
6243.. _int_va_start:
6244
6245'``llvm.va_start``' Intrinsic
6246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6247
6248Syntax:
6249"""""""
6250
6251::
6252
6253 declare void %llvm.va_start(i8* <arglist>)
6254
6255Overview:
6256"""""""""
6257
6258The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6259subsequent use by ``va_arg``.
6260
6261Arguments:
6262""""""""""
6263
6264The argument is a pointer to a ``va_list`` element to initialize.
6265
6266Semantics:
6267""""""""""
6268
6269The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6270available in C. In a target-dependent way, it initializes the
6271``va_list`` element to which the argument points, so that the next call
6272to ``va_arg`` will produce the first variable argument passed to the
6273function. Unlike the C ``va_start`` macro, this intrinsic does not need
6274to know the last argument of the function as the compiler can figure
6275that out.
6276
6277'``llvm.va_end``' Intrinsic
6278^^^^^^^^^^^^^^^^^^^^^^^^^^^
6279
6280Syntax:
6281"""""""
6282
6283::
6284
6285 declare void @llvm.va_end(i8* <arglist>)
6286
6287Overview:
6288"""""""""
6289
6290The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6291initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6292
6293Arguments:
6294""""""""""
6295
6296The argument is a pointer to a ``va_list`` to destroy.
6297
6298Semantics:
6299""""""""""
6300
6301The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6302available in C. In a target-dependent way, it destroys the ``va_list``
6303element to which the argument points. Calls to
6304:ref:`llvm.va_start <int_va_start>` and
6305:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6306``llvm.va_end``.
6307
6308.. _int_va_copy:
6309
6310'``llvm.va_copy``' Intrinsic
6311^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6312
6313Syntax:
6314"""""""
6315
6316::
6317
6318 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6319
6320Overview:
6321"""""""""
6322
6323The '``llvm.va_copy``' intrinsic copies the current argument position
6324from the source argument list to the destination argument list.
6325
6326Arguments:
6327""""""""""
6328
6329The first argument is a pointer to a ``va_list`` element to initialize.
6330The second argument is a pointer to a ``va_list`` element to copy from.
6331
6332Semantics:
6333""""""""""
6334
6335The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6336available in C. In a target-dependent way, it copies the source
6337``va_list`` element into the destination ``va_list`` element. This
6338intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6339arbitrarily complex and require, for example, memory allocation.
6340
6341Accurate Garbage Collection Intrinsics
6342--------------------------------------
6343
6344LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6345(GC) requires the implementation and generation of these intrinsics.
6346These intrinsics allow identification of :ref:`GC roots on the
6347stack <int_gcroot>`, as well as garbage collector implementations that
6348require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6349Front-ends for type-safe garbage collected languages should generate
6350these intrinsics to make use of the LLVM garbage collectors. For more
6351details, see `Accurate Garbage Collection with
6352LLVM <GarbageCollection.html>`_.
6353
6354The garbage collection intrinsics only operate on objects in the generic
6355address space (address space zero).
6356
6357.. _int_gcroot:
6358
6359'``llvm.gcroot``' Intrinsic
6360^^^^^^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
6367 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6368
6369Overview:
6370"""""""""
6371
6372The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6373the code generator, and allows some metadata to be associated with it.
6374
6375Arguments:
6376""""""""""
6377
6378The first argument specifies the address of a stack object that contains
6379the root pointer. The second pointer (which must be either a constant or
6380a global value address) contains the meta-data to be associated with the
6381root.
6382
6383Semantics:
6384""""""""""
6385
6386At runtime, a call to this intrinsic stores a null pointer into the
6387"ptrloc" location. At compile-time, the code generator generates
6388information to allow the runtime to find the pointer at GC safe points.
6389The '``llvm.gcroot``' intrinsic may only be used in a function which
6390:ref:`specifies a GC algorithm <gc>`.
6391
6392.. _int_gcread:
6393
6394'``llvm.gcread``' Intrinsic
6395^^^^^^^^^^^^^^^^^^^^^^^^^^^
6396
6397Syntax:
6398"""""""
6399
6400::
6401
6402 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6403
6404Overview:
6405"""""""""
6406
6407The '``llvm.gcread``' intrinsic identifies reads of references from heap
6408locations, allowing garbage collector implementations that require read
6409barriers.
6410
6411Arguments:
6412""""""""""
6413
6414The second argument is the address to read from, which should be an
6415address allocated from the garbage collector. The first object is a
6416pointer to the start of the referenced object, if needed by the language
6417runtime (otherwise null).
6418
6419Semantics:
6420""""""""""
6421
6422The '``llvm.gcread``' intrinsic has the same semantics as a load
6423instruction, but may be replaced with substantially more complex code by
6424the garbage collector runtime, as needed. The '``llvm.gcread``'
6425intrinsic may only be used in a function which :ref:`specifies a GC
6426algorithm <gc>`.
6427
6428.. _int_gcwrite:
6429
6430'``llvm.gcwrite``' Intrinsic
6431^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6432
6433Syntax:
6434"""""""
6435
6436::
6437
6438 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6439
6440Overview:
6441"""""""""
6442
6443The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6444locations, allowing garbage collector implementations that require write
6445barriers (such as generational or reference counting collectors).
6446
6447Arguments:
6448""""""""""
6449
6450The first argument is the reference to store, the second is the start of
6451the object to store it to, and the third is the address of the field of
6452Obj to store to. If the runtime does not require a pointer to the
6453object, Obj may be null.
6454
6455Semantics:
6456""""""""""
6457
6458The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6459instruction, but may be replaced with substantially more complex code by
6460the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6461intrinsic may only be used in a function which :ref:`specifies a GC
6462algorithm <gc>`.
6463
6464Code Generator Intrinsics
6465-------------------------
6466
6467These intrinsics are provided by LLVM to expose special features that
6468may only be implemented with code generator support.
6469
6470'``llvm.returnaddress``' Intrinsic
6471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6472
6473Syntax:
6474"""""""
6475
6476::
6477
6478 declare i8 *@llvm.returnaddress(i32 <level>)
6479
6480Overview:
6481"""""""""
6482
6483The '``llvm.returnaddress``' intrinsic attempts to compute a
6484target-specific value indicating the return address of the current
6485function or one of its callers.
6486
6487Arguments:
6488""""""""""
6489
6490The argument to this intrinsic indicates which function to return the
6491address for. Zero indicates the calling function, one indicates its
6492caller, etc. The argument is **required** to be a constant integer
6493value.
6494
6495Semantics:
6496""""""""""
6497
6498The '``llvm.returnaddress``' intrinsic either returns a pointer
6499indicating the return address of the specified call frame, or zero if it
6500cannot be identified. The value returned by this intrinsic is likely to
6501be incorrect or 0 for arguments other than zero, so it should only be
6502used for debugging purposes.
6503
6504Note that calling this intrinsic does not prevent function inlining or
6505other aggressive transformations, so the value returned may not be that
6506of the obvious source-language caller.
6507
6508'``llvm.frameaddress``' Intrinsic
6509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6510
6511Syntax:
6512"""""""
6513
6514::
6515
6516 declare i8* @llvm.frameaddress(i32 <level>)
6517
6518Overview:
6519"""""""""
6520
6521The '``llvm.frameaddress``' intrinsic attempts to return the
6522target-specific frame pointer value for the specified stack frame.
6523
6524Arguments:
6525""""""""""
6526
6527The argument to this intrinsic indicates which function to return the
6528frame pointer for. Zero indicates the calling function, one indicates
6529its caller, etc. The argument is **required** to be a constant integer
6530value.
6531
6532Semantics:
6533""""""""""
6534
6535The '``llvm.frameaddress``' intrinsic either returns a pointer
6536indicating the frame address of the specified call frame, or zero if it
6537cannot be identified. The value returned by this intrinsic is likely to
6538be incorrect or 0 for arguments other than zero, so it should only be
6539used for debugging purposes.
6540
6541Note that calling this intrinsic does not prevent function inlining or
6542other aggressive transformations, so the value returned may not be that
6543of the obvious source-language caller.
6544
6545.. _int_stacksave:
6546
6547'``llvm.stacksave``' Intrinsic
6548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6549
6550Syntax:
6551"""""""
6552
6553::
6554
6555 declare i8* @llvm.stacksave()
6556
6557Overview:
6558"""""""""
6559
6560The '``llvm.stacksave``' intrinsic is used to remember the current state
6561of the function stack, for use with
6562:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6563implementing language features like scoped automatic variable sized
6564arrays in C99.
6565
6566Semantics:
6567""""""""""
6568
6569This intrinsic returns a opaque pointer value that can be passed to
6570:ref:`llvm.stackrestore <int_stackrestore>`. When an
6571``llvm.stackrestore`` intrinsic is executed with a value saved from
6572``llvm.stacksave``, it effectively restores the state of the stack to
6573the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6574practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6575were allocated after the ``llvm.stacksave`` was executed.
6576
6577.. _int_stackrestore:
6578
6579'``llvm.stackrestore``' Intrinsic
6580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6581
6582Syntax:
6583"""""""
6584
6585::
6586
6587 declare void @llvm.stackrestore(i8* %ptr)
6588
6589Overview:
6590"""""""""
6591
6592The '``llvm.stackrestore``' intrinsic is used to restore the state of
6593the function stack to the state it was in when the corresponding
6594:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6595useful for implementing language features like scoped automatic variable
6596sized arrays in C99.
6597
6598Semantics:
6599""""""""""
6600
6601See the description for :ref:`llvm.stacksave <int_stacksave>`.
6602
6603'``llvm.prefetch``' Intrinsic
6604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
6611 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6612
6613Overview:
6614"""""""""
6615
6616The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6617insert a prefetch instruction if supported; otherwise, it is a noop.
6618Prefetches have no effect on the behavior of the program but can change
6619its performance characteristics.
6620
6621Arguments:
6622""""""""""
6623
6624``address`` is the address to be prefetched, ``rw`` is the specifier
6625determining if the fetch should be for a read (0) or write (1), and
6626``locality`` is a temporal locality specifier ranging from (0) - no
6627locality, to (3) - extremely local keep in cache. The ``cache type``
6628specifies whether the prefetch is performed on the data (1) or
6629instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6630arguments must be constant integers.
6631
6632Semantics:
6633""""""""""
6634
6635This intrinsic does not modify the behavior of the program. In
6636particular, prefetches cannot trap and do not produce a value. On
6637targets that support this intrinsic, the prefetch can provide hints to
6638the processor cache for better performance.
6639
6640'``llvm.pcmarker``' Intrinsic
6641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6642
6643Syntax:
6644"""""""
6645
6646::
6647
6648 declare void @llvm.pcmarker(i32 <id>)
6649
6650Overview:
6651"""""""""
6652
6653The '``llvm.pcmarker``' intrinsic is a method to export a Program
6654Counter (PC) in a region of code to simulators and other tools. The
6655method is target specific, but it is expected that the marker will use
6656exported symbols to transmit the PC of the marker. The marker makes no
6657guarantees that it will remain with any specific instruction after
6658optimizations. It is possible that the presence of a marker will inhibit
6659optimizations. The intended use is to be inserted after optimizations to
6660allow correlations of simulation runs.
6661
6662Arguments:
6663""""""""""
6664
6665``id`` is a numerical id identifying the marker.
6666
6667Semantics:
6668""""""""""
6669
6670This intrinsic does not modify the behavior of the program. Backends
6671that do not support this intrinsic may ignore it.
6672
6673'``llvm.readcyclecounter``' Intrinsic
6674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6675
6676Syntax:
6677"""""""
6678
6679::
6680
6681 declare i64 @llvm.readcyclecounter()
6682
6683Overview:
6684"""""""""
6685
6686The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6687counter register (or similar low latency, high accuracy clocks) on those
6688targets that support it. On X86, it should map to RDTSC. On Alpha, it
6689should map to RPCC. As the backing counters overflow quickly (on the
6690order of 9 seconds on alpha), this should only be used for small
6691timings.
6692
6693Semantics:
6694""""""""""
6695
6696When directly supported, reading the cycle counter should not modify any
6697memory. Implementations are allowed to either return a application
6698specific value or a system wide value. On backends without support, this
6699is lowered to a constant 0.
6700
Tim Northover5a02fc42013-05-23 19:11:20 +00006701Note that runtime support may be conditional on the privilege-level code is
6702running at and the host platform.
6703
Sean Silvaf722b002012-12-07 10:36:55 +00006704Standard C Library Intrinsics
6705-----------------------------
6706
6707LLVM provides intrinsics for a few important standard C library
6708functions. These intrinsics allow source-language front-ends to pass
6709information about the alignment of the pointer arguments to the code
6710generator, providing opportunity for more efficient code generation.
6711
6712.. _int_memcpy:
6713
6714'``llvm.memcpy``' Intrinsic
6715^^^^^^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6721integer bit width and for different address spaces. Not all targets
6722support all bit widths however.
6723
6724::
6725
6726 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6727 i32 <len>, i32 <align>, i1 <isvolatile>)
6728 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6729 i64 <len>, i32 <align>, i1 <isvolatile>)
6730
6731Overview:
6732"""""""""
6733
6734The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6735source location to the destination location.
6736
6737Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6738intrinsics do not return a value, takes extra alignment/isvolatile
6739arguments and the pointers can be in specified address spaces.
6740
6741Arguments:
6742""""""""""
6743
6744The first argument is a pointer to the destination, the second is a
6745pointer to the source. The third argument is an integer argument
6746specifying the number of bytes to copy, the fourth argument is the
6747alignment of the source and destination locations, and the fifth is a
6748boolean indicating a volatile access.
6749
6750If the call to this intrinsic has an alignment value that is not 0 or 1,
6751then the caller guarantees that both the source and destination pointers
6752are aligned to that boundary.
6753
6754If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6755a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6756very cleanly specified and it is unwise to depend on it.
6757
6758Semantics:
6759""""""""""
6760
6761The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6762source location to the destination location, which are not allowed to
6763overlap. It copies "len" bytes of memory over. If the argument is known
6764to be aligned to some boundary, this can be specified as the fourth
6765argument, otherwise it should be set to 0 or 1.
6766
6767'``llvm.memmove``' Intrinsic
6768^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6769
6770Syntax:
6771"""""""
6772
6773This is an overloaded intrinsic. You can use llvm.memmove on any integer
6774bit width and for different address space. Not all targets support all
6775bit widths however.
6776
6777::
6778
6779 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6780 i32 <len>, i32 <align>, i1 <isvolatile>)
6781 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6782 i64 <len>, i32 <align>, i1 <isvolatile>)
6783
6784Overview:
6785"""""""""
6786
6787The '``llvm.memmove.*``' intrinsics move a block of memory from the
6788source location to the destination location. It is similar to the
6789'``llvm.memcpy``' intrinsic but allows the two memory locations to
6790overlap.
6791
6792Note that, unlike the standard libc function, the ``llvm.memmove.*``
6793intrinsics do not return a value, takes extra alignment/isvolatile
6794arguments and the pointers can be in specified address spaces.
6795
6796Arguments:
6797""""""""""
6798
6799The first argument is a pointer to the destination, the second is a
6800pointer to the source. The third argument is an integer argument
6801specifying the number of bytes to copy, the fourth argument is the
6802alignment of the source and destination locations, and the fifth is a
6803boolean indicating a volatile access.
6804
6805If the call to this intrinsic has an alignment value that is not 0 or 1,
6806then the caller guarantees that the source and destination pointers are
6807aligned to that boundary.
6808
6809If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6810is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6811not very cleanly specified and it is unwise to depend on it.
6812
6813Semantics:
6814""""""""""
6815
6816The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6817source location to the destination location, which may overlap. It
6818copies "len" bytes of memory over. If the argument is known to be
6819aligned to some boundary, this can be specified as the fourth argument,
6820otherwise it should be set to 0 or 1.
6821
6822'``llvm.memset.*``' Intrinsics
6823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828This is an overloaded intrinsic. You can use llvm.memset on any integer
6829bit width and for different address spaces. However, not all targets
6830support all bit widths.
6831
6832::
6833
6834 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6835 i32 <len>, i32 <align>, i1 <isvolatile>)
6836 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6837 i64 <len>, i32 <align>, i1 <isvolatile>)
6838
6839Overview:
6840"""""""""
6841
6842The '``llvm.memset.*``' intrinsics fill a block of memory with a
6843particular byte value.
6844
6845Note that, unlike the standard libc function, the ``llvm.memset``
6846intrinsic does not return a value and takes extra alignment/volatile
6847arguments. Also, the destination can be in an arbitrary address space.
6848
6849Arguments:
6850""""""""""
6851
6852The first argument is a pointer to the destination to fill, the second
6853is the byte value with which to fill it, the third argument is an
6854integer argument specifying the number of bytes to fill, and the fourth
6855argument is the known alignment of the destination location.
6856
6857If the call to this intrinsic has an alignment value that is not 0 or 1,
6858then the caller guarantees that the destination pointer is aligned to
6859that boundary.
6860
6861If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6862a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6863very cleanly specified and it is unwise to depend on it.
6864
6865Semantics:
6866""""""""""
6867
6868The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6869at the destination location. If the argument is known to be aligned to
6870some boundary, this can be specified as the fourth argument, otherwise
6871it should be set to 0 or 1.
6872
6873'``llvm.sqrt.*``' Intrinsic
6874^^^^^^^^^^^^^^^^^^^^^^^^^^^
6875
6876Syntax:
6877"""""""
6878
6879This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6880floating point or vector of floating point type. Not all targets support
6881all types however.
6882
6883::
6884
6885 declare float @llvm.sqrt.f32(float %Val)
6886 declare double @llvm.sqrt.f64(double %Val)
6887 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6888 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6889 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6890
6891Overview:
6892"""""""""
6893
6894The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6895returning the same value as the libm '``sqrt``' functions would. Unlike
6896``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6897negative numbers other than -0.0 (which allows for better optimization,
6898because there is no need to worry about errno being set).
6899``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6900
6901Arguments:
6902""""""""""
6903
6904The argument and return value are floating point numbers of the same
6905type.
6906
6907Semantics:
6908""""""""""
6909
6910This function returns the sqrt of the specified operand if it is a
6911nonnegative floating point number.
6912
6913'``llvm.powi.*``' Intrinsic
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6920floating point or vector of floating point type. Not all targets support
6921all types however.
6922
6923::
6924
6925 declare float @llvm.powi.f32(float %Val, i32 %power)
6926 declare double @llvm.powi.f64(double %Val, i32 %power)
6927 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6928 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6929 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6930
6931Overview:
6932"""""""""
6933
6934The '``llvm.powi.*``' intrinsics return the first operand raised to the
6935specified (positive or negative) power. The order of evaluation of
6936multiplications is not defined. When a vector of floating point type is
6937used, the second argument remains a scalar integer value.
6938
6939Arguments:
6940""""""""""
6941
6942The second argument is an integer power, and the first is a value to
6943raise to that power.
6944
6945Semantics:
6946""""""""""
6947
6948This function returns the first value raised to the second power with an
6949unspecified sequence of rounding operations.
6950
6951'``llvm.sin.*``' Intrinsic
6952^^^^^^^^^^^^^^^^^^^^^^^^^^
6953
6954Syntax:
6955"""""""
6956
6957This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6958floating point or vector of floating point type. Not all targets support
6959all types however.
6960
6961::
6962
6963 declare float @llvm.sin.f32(float %Val)
6964 declare double @llvm.sin.f64(double %Val)
6965 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6966 declare fp128 @llvm.sin.f128(fp128 %Val)
6967 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6968
6969Overview:
6970"""""""""
6971
6972The '``llvm.sin.*``' intrinsics return the sine of the operand.
6973
6974Arguments:
6975""""""""""
6976
6977The argument and return value are floating point numbers of the same
6978type.
6979
6980Semantics:
6981""""""""""
6982
6983This function returns the sine of the specified operand, returning the
6984same values as the libm ``sin`` functions would, and handles error
6985conditions in the same way.
6986
6987'``llvm.cos.*``' Intrinsic
6988^^^^^^^^^^^^^^^^^^^^^^^^^^
6989
6990Syntax:
6991"""""""
6992
6993This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6994floating point or vector of floating point type. Not all targets support
6995all types however.
6996
6997::
6998
6999 declare float @llvm.cos.f32(float %Val)
7000 declare double @llvm.cos.f64(double %Val)
7001 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7002 declare fp128 @llvm.cos.f128(fp128 %Val)
7003 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7004
7005Overview:
7006"""""""""
7007
7008The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7009
7010Arguments:
7011""""""""""
7012
7013The argument and return value are floating point numbers of the same
7014type.
7015
7016Semantics:
7017""""""""""
7018
7019This function returns the cosine of the specified operand, returning the
7020same values as the libm ``cos`` functions would, and handles error
7021conditions in the same way.
7022
7023'``llvm.pow.*``' Intrinsic
7024^^^^^^^^^^^^^^^^^^^^^^^^^^
7025
7026Syntax:
7027"""""""
7028
7029This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7030floating point or vector of floating point type. Not all targets support
7031all types however.
7032
7033::
7034
7035 declare float @llvm.pow.f32(float %Val, float %Power)
7036 declare double @llvm.pow.f64(double %Val, double %Power)
7037 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7038 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7039 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7040
7041Overview:
7042"""""""""
7043
7044The '``llvm.pow.*``' intrinsics return the first operand raised to the
7045specified (positive or negative) power.
7046
7047Arguments:
7048""""""""""
7049
7050The second argument is a floating point power, and the first is a value
7051to raise to that power.
7052
7053Semantics:
7054""""""""""
7055
7056This function returns the first value raised to the second power,
7057returning the same values as the libm ``pow`` functions would, and
7058handles error conditions in the same way.
7059
7060'``llvm.exp.*``' Intrinsic
7061^^^^^^^^^^^^^^^^^^^^^^^^^^
7062
7063Syntax:
7064"""""""
7065
7066This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7067floating point or vector of floating point type. Not all targets support
7068all types however.
7069
7070::
7071
7072 declare float @llvm.exp.f32(float %Val)
7073 declare double @llvm.exp.f64(double %Val)
7074 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7075 declare fp128 @llvm.exp.f128(fp128 %Val)
7076 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7077
7078Overview:
7079"""""""""
7080
7081The '``llvm.exp.*``' intrinsics perform the exp function.
7082
7083Arguments:
7084""""""""""
7085
7086The argument and return value are floating point numbers of the same
7087type.
7088
7089Semantics:
7090""""""""""
7091
7092This function returns the same values as the libm ``exp`` functions
7093would, and handles error conditions in the same way.
7094
7095'``llvm.exp2.*``' Intrinsic
7096^^^^^^^^^^^^^^^^^^^^^^^^^^^
7097
7098Syntax:
7099"""""""
7100
7101This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7102floating point or vector of floating point type. Not all targets support
7103all types however.
7104
7105::
7106
7107 declare float @llvm.exp2.f32(float %Val)
7108 declare double @llvm.exp2.f64(double %Val)
7109 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7110 declare fp128 @llvm.exp2.f128(fp128 %Val)
7111 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7112
7113Overview:
7114"""""""""
7115
7116The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7117
7118Arguments:
7119""""""""""
7120
7121The argument and return value are floating point numbers of the same
7122type.
7123
7124Semantics:
7125""""""""""
7126
7127This function returns the same values as the libm ``exp2`` functions
7128would, and handles error conditions in the same way.
7129
7130'``llvm.log.*``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136This is an overloaded intrinsic. You can use ``llvm.log`` on any
7137floating point or vector of floating point type. Not all targets support
7138all types however.
7139
7140::
7141
7142 declare float @llvm.log.f32(float %Val)
7143 declare double @llvm.log.f64(double %Val)
7144 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7145 declare fp128 @llvm.log.f128(fp128 %Val)
7146 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7147
7148Overview:
7149"""""""""
7150
7151The '``llvm.log.*``' intrinsics perform the log function.
7152
7153Arguments:
7154""""""""""
7155
7156The argument and return value are floating point numbers of the same
7157type.
7158
7159Semantics:
7160""""""""""
7161
7162This function returns the same values as the libm ``log`` functions
7163would, and handles error conditions in the same way.
7164
7165'``llvm.log10.*``' Intrinsic
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7172floating point or vector of floating point type. Not all targets support
7173all types however.
7174
7175::
7176
7177 declare float @llvm.log10.f32(float %Val)
7178 declare double @llvm.log10.f64(double %Val)
7179 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7180 declare fp128 @llvm.log10.f128(fp128 %Val)
7181 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7182
7183Overview:
7184"""""""""
7185
7186The '``llvm.log10.*``' intrinsics perform the log10 function.
7187
7188Arguments:
7189""""""""""
7190
7191The argument and return value are floating point numbers of the same
7192type.
7193
7194Semantics:
7195""""""""""
7196
7197This function returns the same values as the libm ``log10`` functions
7198would, and handles error conditions in the same way.
7199
7200'``llvm.log2.*``' Intrinsic
7201^^^^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7207floating point or vector of floating point type. Not all targets support
7208all types however.
7209
7210::
7211
7212 declare float @llvm.log2.f32(float %Val)
7213 declare double @llvm.log2.f64(double %Val)
7214 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7215 declare fp128 @llvm.log2.f128(fp128 %Val)
7216 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.log2.*``' intrinsics perform the log2 function.
7222
7223Arguments:
7224""""""""""
7225
7226The argument and return value are floating point numbers of the same
7227type.
7228
7229Semantics:
7230""""""""""
7231
7232This function returns the same values as the libm ``log2`` functions
7233would, and handles error conditions in the same way.
7234
7235'``llvm.fma.*``' Intrinsic
7236^^^^^^^^^^^^^^^^^^^^^^^^^^
7237
7238Syntax:
7239"""""""
7240
7241This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7242floating point or vector of floating point type. Not all targets support
7243all types however.
7244
7245::
7246
7247 declare float @llvm.fma.f32(float %a, float %b, float %c)
7248 declare double @llvm.fma.f64(double %a, double %b, double %c)
7249 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7250 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7251 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7252
7253Overview:
7254"""""""""
7255
7256The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7257operation.
7258
7259Arguments:
7260""""""""""
7261
7262The argument and return value are floating point numbers of the same
7263type.
7264
7265Semantics:
7266""""""""""
7267
7268This function returns the same values as the libm ``fma`` functions
7269would.
7270
7271'``llvm.fabs.*``' Intrinsic
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7278floating point or vector of floating point type. Not all targets support
7279all types however.
7280
7281::
7282
7283 declare float @llvm.fabs.f32(float %Val)
7284 declare double @llvm.fabs.f64(double %Val)
7285 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7286 declare fp128 @llvm.fabs.f128(fp128 %Val)
7287 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7288
7289Overview:
7290"""""""""
7291
7292The '``llvm.fabs.*``' intrinsics return the absolute value of the
7293operand.
7294
7295Arguments:
7296""""""""""
7297
7298The argument and return value are floating point numbers of the same
7299type.
7300
7301Semantics:
7302""""""""""
7303
7304This function returns the same values as the libm ``fabs`` functions
7305would, and handles error conditions in the same way.
7306
7307'``llvm.floor.*``' Intrinsic
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7314floating point or vector of floating point type. Not all targets support
7315all types however.
7316
7317::
7318
7319 declare float @llvm.floor.f32(float %Val)
7320 declare double @llvm.floor.f64(double %Val)
7321 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7322 declare fp128 @llvm.floor.f128(fp128 %Val)
7323 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7324
7325Overview:
7326"""""""""
7327
7328The '``llvm.floor.*``' intrinsics return the floor of the operand.
7329
7330Arguments:
7331""""""""""
7332
7333The argument and return value are floating point numbers of the same
7334type.
7335
7336Semantics:
7337""""""""""
7338
7339This function returns the same values as the libm ``floor`` functions
7340would, and handles error conditions in the same way.
7341
7342'``llvm.ceil.*``' Intrinsic
7343^^^^^^^^^^^^^^^^^^^^^^^^^^^
7344
7345Syntax:
7346"""""""
7347
7348This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7349floating point or vector of floating point type. Not all targets support
7350all types however.
7351
7352::
7353
7354 declare float @llvm.ceil.f32(float %Val)
7355 declare double @llvm.ceil.f64(double %Val)
7356 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7357 declare fp128 @llvm.ceil.f128(fp128 %Val)
7358 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7359
7360Overview:
7361"""""""""
7362
7363The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7364
7365Arguments:
7366""""""""""
7367
7368The argument and return value are floating point numbers of the same
7369type.
7370
7371Semantics:
7372""""""""""
7373
7374This function returns the same values as the libm ``ceil`` functions
7375would, and handles error conditions in the same way.
7376
7377'``llvm.trunc.*``' Intrinsic
7378^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7379
7380Syntax:
7381"""""""
7382
7383This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7384floating point or vector of floating point type. Not all targets support
7385all types however.
7386
7387::
7388
7389 declare float @llvm.trunc.f32(float %Val)
7390 declare double @llvm.trunc.f64(double %Val)
7391 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7392 declare fp128 @llvm.trunc.f128(fp128 %Val)
7393 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7394
7395Overview:
7396"""""""""
7397
7398The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7399nearest integer not larger in magnitude than the operand.
7400
7401Arguments:
7402""""""""""
7403
7404The argument and return value are floating point numbers of the same
7405type.
7406
7407Semantics:
7408""""""""""
7409
7410This function returns the same values as the libm ``trunc`` functions
7411would, and handles error conditions in the same way.
7412
7413'``llvm.rint.*``' Intrinsic
7414^^^^^^^^^^^^^^^^^^^^^^^^^^^
7415
7416Syntax:
7417"""""""
7418
7419This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7420floating point or vector of floating point type. Not all targets support
7421all types however.
7422
7423::
7424
7425 declare float @llvm.rint.f32(float %Val)
7426 declare double @llvm.rint.f64(double %Val)
7427 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7428 declare fp128 @llvm.rint.f128(fp128 %Val)
7429 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7430
7431Overview:
7432"""""""""
7433
7434The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7435nearest integer. It may raise an inexact floating-point exception if the
7436operand isn't an integer.
7437
7438Arguments:
7439""""""""""
7440
7441The argument and return value are floating point numbers of the same
7442type.
7443
7444Semantics:
7445""""""""""
7446
7447This function returns the same values as the libm ``rint`` functions
7448would, and handles error conditions in the same way.
7449
7450'``llvm.nearbyint.*``' Intrinsic
7451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7452
7453Syntax:
7454"""""""
7455
7456This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7457floating point or vector of floating point type. Not all targets support
7458all types however.
7459
7460::
7461
7462 declare float @llvm.nearbyint.f32(float %Val)
7463 declare double @llvm.nearbyint.f64(double %Val)
7464 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7465 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7466 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7467
7468Overview:
7469"""""""""
7470
7471The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7472nearest integer.
7473
7474Arguments:
7475""""""""""
7476
7477The argument and return value are floating point numbers of the same
7478type.
7479
7480Semantics:
7481""""""""""
7482
7483This function returns the same values as the libm ``nearbyint``
7484functions would, and handles error conditions in the same way.
7485
7486Bit Manipulation Intrinsics
7487---------------------------
7488
7489LLVM provides intrinsics for a few important bit manipulation
7490operations. These allow efficient code generation for some algorithms.
7491
7492'``llvm.bswap.*``' Intrinsics
7493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498This is an overloaded intrinsic function. You can use bswap on any
7499integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7500
7501::
7502
7503 declare i16 @llvm.bswap.i16(i16 <id>)
7504 declare i32 @llvm.bswap.i32(i32 <id>)
7505 declare i64 @llvm.bswap.i64(i64 <id>)
7506
7507Overview:
7508"""""""""
7509
7510The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7511values with an even number of bytes (positive multiple of 16 bits).
7512These are useful for performing operations on data that is not in the
7513target's native byte order.
7514
7515Semantics:
7516""""""""""
7517
7518The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7519and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7520intrinsic returns an i32 value that has the four bytes of the input i32
7521swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7522returned i32 will have its bytes in 3, 2, 1, 0 order. The
7523``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7524concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7525respectively).
7526
7527'``llvm.ctpop.*``' Intrinsic
7528^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7529
7530Syntax:
7531"""""""
7532
7533This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7534bit width, or on any vector with integer elements. Not all targets
7535support all bit widths or vector types, however.
7536
7537::
7538
7539 declare i8 @llvm.ctpop.i8(i8 <src>)
7540 declare i16 @llvm.ctpop.i16(i16 <src>)
7541 declare i32 @llvm.ctpop.i32(i32 <src>)
7542 declare i64 @llvm.ctpop.i64(i64 <src>)
7543 declare i256 @llvm.ctpop.i256(i256 <src>)
7544 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7545
7546Overview:
7547"""""""""
7548
7549The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7550in a value.
7551
7552Arguments:
7553""""""""""
7554
7555The only argument is the value to be counted. The argument may be of any
7556integer type, or a vector with integer elements. The return type must
7557match the argument type.
7558
7559Semantics:
7560""""""""""
7561
7562The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7563each element of a vector.
7564
7565'``llvm.ctlz.*``' Intrinsic
7566^^^^^^^^^^^^^^^^^^^^^^^^^^^
7567
7568Syntax:
7569"""""""
7570
7571This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7572integer bit width, or any vector whose elements are integers. Not all
7573targets support all bit widths or vector types, however.
7574
7575::
7576
7577 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7578 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7579 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7580 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7581 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7582 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7583
7584Overview:
7585"""""""""
7586
7587The '``llvm.ctlz``' family of intrinsic functions counts the number of
7588leading zeros in a variable.
7589
7590Arguments:
7591""""""""""
7592
7593The first argument is the value to be counted. This argument may be of
7594any integer type, or a vectory with integer element type. The return
7595type must match the first argument type.
7596
7597The second argument must be a constant and is a flag to indicate whether
7598the intrinsic should ensure that a zero as the first argument produces a
7599defined result. Historically some architectures did not provide a
7600defined result for zero values as efficiently, and many algorithms are
7601now predicated on avoiding zero-value inputs.
7602
7603Semantics:
7604""""""""""
7605
7606The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7607zeros in a variable, or within each element of the vector. If
7608``src == 0`` then the result is the size in bits of the type of ``src``
7609if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7610``llvm.ctlz(i32 2) = 30``.
7611
7612'``llvm.cttz.*``' Intrinsic
7613^^^^^^^^^^^^^^^^^^^^^^^^^^^
7614
7615Syntax:
7616"""""""
7617
7618This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7619integer bit width, or any vector of integer elements. Not all targets
7620support all bit widths or vector types, however.
7621
7622::
7623
7624 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7625 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7626 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7627 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7628 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7629 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7630
7631Overview:
7632"""""""""
7633
7634The '``llvm.cttz``' family of intrinsic functions counts the number of
7635trailing zeros.
7636
7637Arguments:
7638""""""""""
7639
7640The first argument is the value to be counted. This argument may be of
7641any integer type, or a vectory with integer element type. The return
7642type must match the first argument type.
7643
7644The second argument must be a constant and is a flag to indicate whether
7645the intrinsic should ensure that a zero as the first argument produces a
7646defined result. Historically some architectures did not provide a
7647defined result for zero values as efficiently, and many algorithms are
7648now predicated on avoiding zero-value inputs.
7649
7650Semantics:
7651""""""""""
7652
7653The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7654zeros in a variable, or within each element of a vector. If ``src == 0``
7655then the result is the size in bits of the type of ``src`` if
7656``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7657``llvm.cttz(2) = 1``.
7658
7659Arithmetic with Overflow Intrinsics
7660-----------------------------------
7661
7662LLVM provides intrinsics for some arithmetic with overflow operations.
7663
7664'``llvm.sadd.with.overflow.*``' Intrinsics
7665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7666
7667Syntax:
7668"""""""
7669
7670This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7671on any integer bit width.
7672
7673::
7674
7675 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7676 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7677 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7678
7679Overview:
7680"""""""""
7681
7682The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7683a signed addition of the two arguments, and indicate whether an overflow
7684occurred during the signed summation.
7685
7686Arguments:
7687""""""""""
7688
7689The arguments (%a and %b) and the first element of the result structure
7690may be of integer types of any bit width, but they must have the same
7691bit width. The second element of the result structure must be of type
7692``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7693addition.
7694
7695Semantics:
7696""""""""""
7697
7698The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007699a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007700first element of which is the signed summation, and the second element
7701of which is a bit specifying if the signed summation resulted in an
7702overflow.
7703
7704Examples:
7705"""""""""
7706
7707.. code-block:: llvm
7708
7709 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7710 %sum = extractvalue {i32, i1} %res, 0
7711 %obit = extractvalue {i32, i1} %res, 1
7712 br i1 %obit, label %overflow, label %normal
7713
7714'``llvm.uadd.with.overflow.*``' Intrinsics
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7721on any integer bit width.
7722
7723::
7724
7725 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7726 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7727 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7728
7729Overview:
7730"""""""""
7731
7732The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7733an unsigned addition of the two arguments, and indicate whether a carry
7734occurred during the unsigned summation.
7735
7736Arguments:
7737""""""""""
7738
7739The arguments (%a and %b) and the first element of the result structure
7740may be of integer types of any bit width, but they must have the same
7741bit width. The second element of the result structure must be of type
7742``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7743addition.
7744
7745Semantics:
7746""""""""""
7747
7748The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007749an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007750first element of which is the sum, and the second element of which is a
7751bit specifying if the unsigned summation resulted in a carry.
7752
7753Examples:
7754"""""""""
7755
7756.. code-block:: llvm
7757
7758 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7759 %sum = extractvalue {i32, i1} %res, 0
7760 %obit = extractvalue {i32, i1} %res, 1
7761 br i1 %obit, label %carry, label %normal
7762
7763'``llvm.ssub.with.overflow.*``' Intrinsics
7764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7765
7766Syntax:
7767"""""""
7768
7769This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7770on any integer bit width.
7771
7772::
7773
7774 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7775 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7776 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7777
7778Overview:
7779"""""""""
7780
7781The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7782a signed subtraction of the two arguments, and indicate whether an
7783overflow occurred during the signed subtraction.
7784
7785Arguments:
7786""""""""""
7787
7788The arguments (%a and %b) and the first element of the result structure
7789may be of integer types of any bit width, but they must have the same
7790bit width. The second element of the result structure must be of type
7791``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7792subtraction.
7793
7794Semantics:
7795""""""""""
7796
7797The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007798a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007799first element of which is the subtraction, and the second element of
7800which is a bit specifying if the signed subtraction resulted in an
7801overflow.
7802
7803Examples:
7804"""""""""
7805
7806.. code-block:: llvm
7807
7808 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7809 %sum = extractvalue {i32, i1} %res, 0
7810 %obit = extractvalue {i32, i1} %res, 1
7811 br i1 %obit, label %overflow, label %normal
7812
7813'``llvm.usub.with.overflow.*``' Intrinsics
7814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7815
7816Syntax:
7817"""""""
7818
7819This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7820on any integer bit width.
7821
7822::
7823
7824 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7825 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7826 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7827
7828Overview:
7829"""""""""
7830
7831The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7832an unsigned subtraction of the two arguments, and indicate whether an
7833overflow occurred during the unsigned subtraction.
7834
7835Arguments:
7836""""""""""
7837
7838The arguments (%a and %b) and the first element of the result structure
7839may be of integer types of any bit width, but they must have the same
7840bit width. The second element of the result structure must be of type
7841``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7842subtraction.
7843
7844Semantics:
7845""""""""""
7846
7847The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007848an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007849the first element of which is the subtraction, and the second element of
7850which is a bit specifying if the unsigned subtraction resulted in an
7851overflow.
7852
7853Examples:
7854"""""""""
7855
7856.. code-block:: llvm
7857
7858 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7859 %sum = extractvalue {i32, i1} %res, 0
7860 %obit = extractvalue {i32, i1} %res, 1
7861 br i1 %obit, label %overflow, label %normal
7862
7863'``llvm.smul.with.overflow.*``' Intrinsics
7864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7865
7866Syntax:
7867"""""""
7868
7869This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7870on any integer bit width.
7871
7872::
7873
7874 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7875 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7876 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7877
7878Overview:
7879"""""""""
7880
7881The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7882a signed multiplication of the two arguments, and indicate whether an
7883overflow occurred during the signed multiplication.
7884
7885Arguments:
7886""""""""""
7887
7888The arguments (%a and %b) and the first element of the result structure
7889may be of integer types of any bit width, but they must have the same
7890bit width. The second element of the result structure must be of type
7891``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7892multiplication.
7893
7894Semantics:
7895""""""""""
7896
7897The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007898a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007899the first element of which is the multiplication, and the second element
7900of which is a bit specifying if the signed multiplication resulted in an
7901overflow.
7902
7903Examples:
7904"""""""""
7905
7906.. code-block:: llvm
7907
7908 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7909 %sum = extractvalue {i32, i1} %res, 0
7910 %obit = extractvalue {i32, i1} %res, 1
7911 br i1 %obit, label %overflow, label %normal
7912
7913'``llvm.umul.with.overflow.*``' Intrinsics
7914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7915
7916Syntax:
7917"""""""
7918
7919This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7920on any integer bit width.
7921
7922::
7923
7924 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7925 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7926 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7927
7928Overview:
7929"""""""""
7930
7931The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7932a unsigned multiplication of the two arguments, and indicate whether an
7933overflow occurred during the unsigned multiplication.
7934
7935Arguments:
7936""""""""""
7937
7938The arguments (%a and %b) and the first element of the result structure
7939may be of integer types of any bit width, but they must have the same
7940bit width. The second element of the result structure must be of type
7941``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7942multiplication.
7943
7944Semantics:
7945""""""""""
7946
7947The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007948an unsigned multiplication of the two arguments. They return a structure ---
7949the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007950element of which is a bit specifying if the unsigned multiplication
7951resulted in an overflow.
7952
7953Examples:
7954"""""""""
7955
7956.. code-block:: llvm
7957
7958 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7959 %sum = extractvalue {i32, i1} %res, 0
7960 %obit = extractvalue {i32, i1} %res, 1
7961 br i1 %obit, label %overflow, label %normal
7962
7963Specialised Arithmetic Intrinsics
7964---------------------------------
7965
7966'``llvm.fmuladd.*``' Intrinsic
7967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7968
7969Syntax:
7970"""""""
7971
7972::
7973
7974 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7975 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7976
7977Overview:
7978"""""""""
7979
7980The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007981expressions that can be fused if the code generator determines that (a) the
7982target instruction set has support for a fused operation, and (b) that the
7983fused operation is more efficient than the equivalent, separate pair of mul
7984and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007985
7986Arguments:
7987""""""""""
7988
7989The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7990multiplicands, a and b, and an addend c.
7991
7992Semantics:
7993""""""""""
7994
7995The expression:
7996
7997::
7998
7999 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8000
8001is equivalent to the expression a \* b + c, except that rounding will
8002not be performed between the multiplication and addition steps if the
8003code generator fuses the operations. Fusion is not guaranteed, even if
8004the target platform supports it. If a fused multiply-add is required the
8005corresponding llvm.fma.\* intrinsic function should be used instead.
8006
8007Examples:
8008"""""""""
8009
8010.. code-block:: llvm
8011
8012 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8013
8014Half Precision Floating Point Intrinsics
8015----------------------------------------
8016
8017For most target platforms, half precision floating point is a
8018storage-only format. This means that it is a dense encoding (in memory)
8019but does not support computation in the format.
8020
8021This means that code must first load the half-precision floating point
8022value as an i16, then convert it to float with
8023:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8024then be performed on the float value (including extending to double
8025etc). To store the value back to memory, it is first converted to float
8026if needed, then converted to i16 with
8027:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8028i16 value.
8029
8030.. _int_convert_to_fp16:
8031
8032'``llvm.convert.to.fp16``' Intrinsic
8033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8034
8035Syntax:
8036"""""""
8037
8038::
8039
8040 declare i16 @llvm.convert.to.fp16(f32 %a)
8041
8042Overview:
8043"""""""""
8044
8045The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8046from single precision floating point format to half precision floating
8047point format.
8048
8049Arguments:
8050""""""""""
8051
8052The intrinsic function contains single argument - the value to be
8053converted.
8054
8055Semantics:
8056""""""""""
8057
8058The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8059from single precision floating point format to half precision floating
8060point format. The return value is an ``i16`` which contains the
8061converted number.
8062
8063Examples:
8064"""""""""
8065
8066.. code-block:: llvm
8067
8068 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8069 store i16 %res, i16* @x, align 2
8070
8071.. _int_convert_from_fp16:
8072
8073'``llvm.convert.from.fp16``' Intrinsic
8074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8075
8076Syntax:
8077"""""""
8078
8079::
8080
8081 declare f32 @llvm.convert.from.fp16(i16 %a)
8082
8083Overview:
8084"""""""""
8085
8086The '``llvm.convert.from.fp16``' intrinsic function performs a
8087conversion from half precision floating point format to single precision
8088floating point format.
8089
8090Arguments:
8091""""""""""
8092
8093The intrinsic function contains single argument - the value to be
8094converted.
8095
8096Semantics:
8097""""""""""
8098
8099The '``llvm.convert.from.fp16``' intrinsic function performs a
8100conversion from half single precision floating point format to single
8101precision floating point format. The input half-float value is
8102represented by an ``i16`` value.
8103
8104Examples:
8105"""""""""
8106
8107.. code-block:: llvm
8108
8109 %a = load i16* @x, align 2
8110 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8111
8112Debugger Intrinsics
8113-------------------
8114
8115The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8116prefix), are described in the `LLVM Source Level
8117Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8118document.
8119
8120Exception Handling Intrinsics
8121-----------------------------
8122
8123The LLVM exception handling intrinsics (which all start with
8124``llvm.eh.`` prefix), are described in the `LLVM Exception
8125Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8126
8127.. _int_trampoline:
8128
8129Trampoline Intrinsics
8130---------------------
8131
8132These intrinsics make it possible to excise one parameter, marked with
8133the :ref:`nest <nest>` attribute, from a function. The result is a
8134callable function pointer lacking the nest parameter - the caller does
8135not need to provide a value for it. Instead, the value to use is stored
8136in advance in a "trampoline", a block of memory usually allocated on the
8137stack, which also contains code to splice the nest value into the
8138argument list. This is used to implement the GCC nested function address
8139extension.
8140
8141For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8142then the resulting function pointer has signature ``i32 (i32, i32)*``.
8143It can be created as follows:
8144
8145.. code-block:: llvm
8146
8147 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8148 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8149 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8150 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8151 %fp = bitcast i8* %p to i32 (i32, i32)*
8152
8153The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8154``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8155
8156.. _int_it:
8157
8158'``llvm.init.trampoline``' Intrinsic
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164::
8165
8166 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8167
8168Overview:
8169"""""""""
8170
8171This fills the memory pointed to by ``tramp`` with executable code,
8172turning it into a trampoline.
8173
8174Arguments:
8175""""""""""
8176
8177The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8178pointers. The ``tramp`` argument must point to a sufficiently large and
8179sufficiently aligned block of memory; this memory is written to by the
8180intrinsic. Note that the size and the alignment are target-specific -
8181LLVM currently provides no portable way of determining them, so a
8182front-end that generates this intrinsic needs to have some
8183target-specific knowledge. The ``func`` argument must hold a function
8184bitcast to an ``i8*``.
8185
8186Semantics:
8187""""""""""
8188
8189The block of memory pointed to by ``tramp`` is filled with target
8190dependent code, turning it into a function. Then ``tramp`` needs to be
8191passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8192be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8193function's signature is the same as that of ``func`` with any arguments
8194marked with the ``nest`` attribute removed. At most one such ``nest``
8195argument is allowed, and it must be of pointer type. Calling the new
8196function is equivalent to calling ``func`` with the same argument list,
8197but with ``nval`` used for the missing ``nest`` argument. If, after
8198calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8199modified, then the effect of any later call to the returned function
8200pointer is undefined.
8201
8202.. _int_at:
8203
8204'``llvm.adjust.trampoline``' Intrinsic
8205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210::
8211
8212 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8213
8214Overview:
8215"""""""""
8216
8217This performs any required machine-specific adjustment to the address of
8218a trampoline (passed as ``tramp``).
8219
8220Arguments:
8221""""""""""
8222
8223``tramp`` must point to a block of memory which already has trampoline
8224code filled in by a previous call to
8225:ref:`llvm.init.trampoline <int_it>`.
8226
8227Semantics:
8228""""""""""
8229
8230On some architectures the address of the code to be executed needs to be
8231different to the address where the trampoline is actually stored. This
8232intrinsic returns the executable address corresponding to ``tramp``
8233after performing the required machine specific adjustments. The pointer
8234returned can then be :ref:`bitcast and executed <int_trampoline>`.
8235
8236Memory Use Markers
8237------------------
8238
8239This class of intrinsics exists to information about the lifetime of
8240memory objects and ranges where variables are immutable.
8241
8242'``llvm.lifetime.start``' Intrinsic
8243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8244
8245Syntax:
8246"""""""
8247
8248::
8249
8250 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8251
8252Overview:
8253"""""""""
8254
8255The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8256object's lifetime.
8257
8258Arguments:
8259""""""""""
8260
8261The first argument is a constant integer representing the size of the
8262object, or -1 if it is variable sized. The second argument is a pointer
8263to the object.
8264
8265Semantics:
8266""""""""""
8267
8268This intrinsic indicates that before this point in the code, the value
8269of the memory pointed to by ``ptr`` is dead. This means that it is known
8270to never be used and has an undefined value. A load from the pointer
8271that precedes this intrinsic can be replaced with ``'undef'``.
8272
8273'``llvm.lifetime.end``' Intrinsic
8274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8275
8276Syntax:
8277"""""""
8278
8279::
8280
8281 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8282
8283Overview:
8284"""""""""
8285
8286The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8287object's lifetime.
8288
8289Arguments:
8290""""""""""
8291
8292The first argument is a constant integer representing the size of the
8293object, or -1 if it is variable sized. The second argument is a pointer
8294to the object.
8295
8296Semantics:
8297""""""""""
8298
8299This intrinsic indicates that after this point in the code, the value of
8300the memory pointed to by ``ptr`` is dead. This means that it is known to
8301never be used and has an undefined value. Any stores into the memory
8302object following this intrinsic may be removed as dead.
8303
8304'``llvm.invariant.start``' Intrinsic
8305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310::
8311
8312 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8313
8314Overview:
8315"""""""""
8316
8317The '``llvm.invariant.start``' intrinsic specifies that the contents of
8318a memory object will not change.
8319
8320Arguments:
8321""""""""""
8322
8323The first argument is a constant integer representing the size of the
8324object, or -1 if it is variable sized. The second argument is a pointer
8325to the object.
8326
8327Semantics:
8328""""""""""
8329
8330This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8331the return value, the referenced memory location is constant and
8332unchanging.
8333
8334'``llvm.invariant.end``' Intrinsic
8335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8336
8337Syntax:
8338"""""""
8339
8340::
8341
8342 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8343
8344Overview:
8345"""""""""
8346
8347The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8348memory object are mutable.
8349
8350Arguments:
8351""""""""""
8352
8353The first argument is the matching ``llvm.invariant.start`` intrinsic.
8354The second argument is a constant integer representing the size of the
8355object, or -1 if it is variable sized and the third argument is a
8356pointer to the object.
8357
8358Semantics:
8359""""""""""
8360
8361This intrinsic indicates that the memory is mutable again.
8362
8363General Intrinsics
8364------------------
8365
8366This class of intrinsics is designed to be generic and has no specific
8367purpose.
8368
8369'``llvm.var.annotation``' Intrinsic
8370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8371
8372Syntax:
8373"""""""
8374
8375::
8376
8377 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8378
8379Overview:
8380"""""""""
8381
8382The '``llvm.var.annotation``' intrinsic.
8383
8384Arguments:
8385""""""""""
8386
8387The first argument is a pointer to a value, the second is a pointer to a
8388global string, the third is a pointer to a global string which is the
8389source file name, and the last argument is the line number.
8390
8391Semantics:
8392""""""""""
8393
8394This intrinsic allows annotation of local variables with arbitrary
8395strings. This can be useful for special purpose optimizations that want
8396to look for these annotations. These have no other defined use; they are
8397ignored by code generation and optimization.
8398
Michael Gottesman872b4e52013-03-26 00:34:27 +00008399'``llvm.ptr.annotation.*``' Intrinsic
8400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8401
8402Syntax:
8403"""""""
8404
8405This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8406pointer to an integer of any width. *NOTE* you must specify an address space for
8407the pointer. The identifier for the default address space is the integer
8408'``0``'.
8409
8410::
8411
8412 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8413 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8414 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8415 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8416 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8417
8418Overview:
8419"""""""""
8420
8421The '``llvm.ptr.annotation``' intrinsic.
8422
8423Arguments:
8424""""""""""
8425
8426The first argument is a pointer to an integer value of arbitrary bitwidth
8427(result of some expression), the second is a pointer to a global string, the
8428third is a pointer to a global string which is the source file name, and the
8429last argument is the line number. It returns the value of the first argument.
8430
8431Semantics:
8432""""""""""
8433
8434This intrinsic allows annotation of a pointer to an integer with arbitrary
8435strings. This can be useful for special purpose optimizations that want to look
8436for these annotations. These have no other defined use; they are ignored by code
8437generation and optimization.
8438
Sean Silvaf722b002012-12-07 10:36:55 +00008439'``llvm.annotation.*``' Intrinsic
8440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8441
8442Syntax:
8443"""""""
8444
8445This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8446any integer bit width.
8447
8448::
8449
8450 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8451 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8452 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8453 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8454 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8455
8456Overview:
8457"""""""""
8458
8459The '``llvm.annotation``' intrinsic.
8460
8461Arguments:
8462""""""""""
8463
8464The first argument is an integer value (result of some expression), the
8465second is a pointer to a global string, the third is a pointer to a
8466global string which is the source file name, and the last argument is
8467the line number. It returns the value of the first argument.
8468
8469Semantics:
8470""""""""""
8471
8472This intrinsic allows annotations to be put on arbitrary expressions
8473with arbitrary strings. This can be useful for special purpose
8474optimizations that want to look for these annotations. These have no
8475other defined use; they are ignored by code generation and optimization.
8476
8477'``llvm.trap``' Intrinsic
8478^^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483::
8484
8485 declare void @llvm.trap() noreturn nounwind
8486
8487Overview:
8488"""""""""
8489
8490The '``llvm.trap``' intrinsic.
8491
8492Arguments:
8493""""""""""
8494
8495None.
8496
8497Semantics:
8498""""""""""
8499
8500This intrinsic is lowered to the target dependent trap instruction. If
8501the target does not have a trap instruction, this intrinsic will be
8502lowered to a call of the ``abort()`` function.
8503
8504'``llvm.debugtrap``' Intrinsic
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510::
8511
8512 declare void @llvm.debugtrap() nounwind
8513
8514Overview:
8515"""""""""
8516
8517The '``llvm.debugtrap``' intrinsic.
8518
8519Arguments:
8520""""""""""
8521
8522None.
8523
8524Semantics:
8525""""""""""
8526
8527This intrinsic is lowered to code which is intended to cause an
8528execution trap with the intention of requesting the attention of a
8529debugger.
8530
8531'``llvm.stackprotector``' Intrinsic
8532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8533
8534Syntax:
8535"""""""
8536
8537::
8538
8539 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8540
8541Overview:
8542"""""""""
8543
8544The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8545onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8546is placed on the stack before local variables.
8547
8548Arguments:
8549""""""""""
8550
8551The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8552The first argument is the value loaded from the stack guard
8553``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8554enough space to hold the value of the guard.
8555
8556Semantics:
8557""""""""""
8558
8559This intrinsic causes the prologue/epilogue inserter to force the
8560position of the ``AllocaInst`` stack slot to be before local variables
8561on the stack. This is to ensure that if a local variable on the stack is
8562overwritten, it will destroy the value of the guard. When the function
8563exits, the guard on the stack is checked against the original guard. If
8564they are different, then the program aborts by calling the
8565``__stack_chk_fail()`` function.
8566
8567'``llvm.objectsize``' Intrinsic
8568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8569
8570Syntax:
8571"""""""
8572
8573::
8574
8575 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8576 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8577
8578Overview:
8579"""""""""
8580
8581The ``llvm.objectsize`` intrinsic is designed to provide information to
8582the optimizers to determine at compile time whether a) an operation
8583(like memcpy) will overflow a buffer that corresponds to an object, or
8584b) that a runtime check for overflow isn't necessary. An object in this
8585context means an allocation of a specific class, structure, array, or
8586other object.
8587
8588Arguments:
8589""""""""""
8590
8591The ``llvm.objectsize`` intrinsic takes two arguments. The first
8592argument is a pointer to or into the ``object``. The second argument is
8593a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8594or -1 (if false) when the object size is unknown. The second argument
8595only accepts constants.
8596
8597Semantics:
8598""""""""""
8599
8600The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8601the size of the object concerned. If the size cannot be determined at
8602compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8603on the ``min`` argument).
8604
8605'``llvm.expect``' Intrinsic
8606^^^^^^^^^^^^^^^^^^^^^^^^^^^
8607
8608Syntax:
8609"""""""
8610
8611::
8612
8613 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8614 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8615
8616Overview:
8617"""""""""
8618
8619The ``llvm.expect`` intrinsic provides information about expected (the
8620most probable) value of ``val``, which can be used by optimizers.
8621
8622Arguments:
8623""""""""""
8624
8625The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8626a value. The second argument is an expected value, this needs to be a
8627constant value, variables are not allowed.
8628
8629Semantics:
8630""""""""""
8631
8632This intrinsic is lowered to the ``val``.
8633
8634'``llvm.donothing``' Intrinsic
8635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8636
8637Syntax:
8638"""""""
8639
8640::
8641
8642 declare void @llvm.donothing() nounwind readnone
8643
8644Overview:
8645"""""""""
8646
8647The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8648only intrinsic that can be called with an invoke instruction.
8649
8650Arguments:
8651""""""""""
8652
8653None.
8654
8655Semantics:
8656""""""""""
8657
8658This intrinsic does nothing, and it's removed by optimizers and ignored
8659by codegen.