blob: 553568007f24e5abd11bdfa7f7e14e78f75e1500 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000027 <li><a href="#aliasstructure">Aliases</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel008cd3e2008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000061 <li><a href="#simpleconstants">Simple Constants</a></li>
62 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
64 <li><a href="#undefvalues">Undefined Values</a></li>
65 <li><a href="#constantexprs">Constant Expressions</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000070 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +0000146 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147 <li><a href="#otherops">Other Operations</a>
148 <ol>
149 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
150 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000151 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
152 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
154 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
155 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
156 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Bill Wendling9127adb2008-11-18 22:10:53 +0000217 <li><a href="#int_stackprotect">Stack Protector Intrinsic</a>
218 <ol>
219 <li><a href="#int_ssp">'<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
220 </ol>
221 </li>
222 <li><a href="#int_atomics">Atomic intrinsics</a>
223 <ol>
224 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
225 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
226 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
227 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
228 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
229 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
230 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
231 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
232 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
233 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
234 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
235 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
236 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
237 </ol>
238 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000239 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000241 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000242 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000243 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000244 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000245 <li><a href="#int_trap">
246 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000247 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248 </li>
249 </ol>
250 </li>
251</ol>
252
253<div class="doc_author">
254 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
255 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
256</div>
257
258<!-- *********************************************************************** -->
259<div class="doc_section"> <a name="abstract">Abstract </a></div>
260<!-- *********************************************************************** -->
261
262<div class="doc_text">
263<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000264LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000265type safety, low-level operations, flexibility, and the capability of
266representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267representation used throughout all phases of the LLVM compilation
268strategy.</p>
269</div>
270
271<!-- *********************************************************************** -->
272<div class="doc_section"> <a name="introduction">Introduction</a> </div>
273<!-- *********************************************************************** -->
274
275<div class="doc_text">
276
277<p>The LLVM code representation is designed to be used in three
278different forms: as an in-memory compiler IR, as an on-disk bitcode
279representation (suitable for fast loading by a Just-In-Time compiler),
280and as a human readable assembly language representation. This allows
281LLVM to provide a powerful intermediate representation for efficient
282compiler transformations and analysis, while providing a natural means
283to debug and visualize the transformations. The three different forms
284of LLVM are all equivalent. This document describes the human readable
285representation and notation.</p>
286
287<p>The LLVM representation aims to be light-weight and low-level
288while being expressive, typed, and extensible at the same time. It
289aims to be a "universal IR" of sorts, by being at a low enough level
290that high-level ideas may be cleanly mapped to it (similar to how
291microprocessors are "universal IR's", allowing many source languages to
292be mapped to them). By providing type information, LLVM can be used as
293the target of optimizations: for example, through pointer analysis, it
294can be proven that a C automatic variable is never accessed outside of
295the current function... allowing it to be promoted to a simple SSA
296value instead of a memory location.</p>
297
298</div>
299
300<!-- _______________________________________________________________________ -->
301<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
302
303<div class="doc_text">
304
305<p>It is important to note that this document describes 'well formed'
306LLVM assembly language. There is a difference between what the parser
307accepts and what is considered 'well formed'. For example, the
308following instruction is syntactically okay, but not well formed:</p>
309
310<div class="doc_code">
311<pre>
312%x = <a href="#i_add">add</a> i32 1, %x
313</pre>
314</div>
315
316<p>...because the definition of <tt>%x</tt> does not dominate all of
317its uses. The LLVM infrastructure provides a verification pass that may
318be used to verify that an LLVM module is well formed. This pass is
319automatically run by the parser after parsing input assembly and by
320the optimizer before it outputs bitcode. The violations pointed out
321by the verifier pass indicate bugs in transformation passes or input to
322the parser.</p>
323</div>
324
Chris Lattnera83fdc02007-10-03 17:34:29 +0000325<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326
327<!-- *********************************************************************** -->
328<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
329<!-- *********************************************************************** -->
330
331<div class="doc_text">
332
Reid Spencerc8245b02007-08-07 14:34:28 +0000333 <p>LLVM identifiers come in two basic types: global and local. Global
334 identifiers (functions, global variables) begin with the @ character. Local
335 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman2672f3e2008-10-14 16:51:45 +0000336 there are three different formats for identifiers, for different purposes:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337
338<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000339 <li>Named values are represented as a string of characters with their prefix.
340 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
341 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar73f9a772008-10-14 23:51:43 +0000343 with quotes. Special characters may be escaped using "\xx" where xx is the
344 ASCII code for the character in hexadecimal. In this way, any character can
345 be used in a name value, even quotes themselves.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346
Reid Spencerc8245b02007-08-07 14:34:28 +0000347 <li>Unnamed values are represented as an unsigned numeric value with their
348 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 <li>Constants, which are described in a <a href="#constants">section about
351 constants</a>, below.</li>
352</ol>
353
Reid Spencerc8245b02007-08-07 14:34:28 +0000354<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355don't need to worry about name clashes with reserved words, and the set of
356reserved words may be expanded in the future without penalty. Additionally,
357unnamed identifiers allow a compiler to quickly come up with a temporary
358variable without having to avoid symbol table conflicts.</p>
359
360<p>Reserved words in LLVM are very similar to reserved words in other
361languages. There are keywords for different opcodes
362('<tt><a href="#i_add">add</a></tt>',
363 '<tt><a href="#i_bitcast">bitcast</a></tt>',
364 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
365href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
366and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000367none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368
369<p>Here is an example of LLVM code to multiply the integer variable
370'<tt>%X</tt>' by 8:</p>
371
372<p>The easy way:</p>
373
374<div class="doc_code">
375<pre>
376%result = <a href="#i_mul">mul</a> i32 %X, 8
377</pre>
378</div>
379
380<p>After strength reduction:</p>
381
382<div class="doc_code">
383<pre>
384%result = <a href="#i_shl">shl</a> i32 %X, i8 3
385</pre>
386</div>
387
388<p>And the hard way:</p>
389
390<div class="doc_code">
391<pre>
392<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
393<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
394%result = <a href="#i_add">add</a> i32 %1, %1
395</pre>
396</div>
397
398<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
399important lexical features of LLVM:</p>
400
401<ol>
402
403 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
404 line.</li>
405
406 <li>Unnamed temporaries are created when the result of a computation is not
407 assigned to a named value.</li>
408
409 <li>Unnamed temporaries are numbered sequentially</li>
410
411</ol>
412
413<p>...and it also shows a convention that we follow in this document. When
414demonstrating instructions, we will follow an instruction with a comment that
415defines the type and name of value produced. Comments are shown in italic
416text.</p>
417
418</div>
419
420<!-- *********************************************************************** -->
421<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
422<!-- *********************************************************************** -->
423
424<!-- ======================================================================= -->
425<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
426</div>
427
428<div class="doc_text">
429
430<p>LLVM programs are composed of "Module"s, each of which is a
431translation unit of the input programs. Each module consists of
432functions, global variables, and symbol table entries. Modules may be
433combined together with the LLVM linker, which merges function (and
434global variable) definitions, resolves forward declarations, and merges
435symbol table entries. Here is an example of the "hello world" module:</p>
436
437<div class="doc_code">
438<pre><i>; Declare the string constant as a global constant...</i>
439<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
440 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
441
442<i>; External declaration of the puts function</i>
443<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
444
445<i>; Definition of main function</i>
446define i32 @main() { <i>; i32()* </i>
447 <i>; Convert [13x i8 ]* to i8 *...</i>
448 %cast210 = <a
449 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
450
451 <i>; Call puts function to write out the string to stdout...</i>
452 <a
453 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
454 <a
455 href="#i_ret">ret</a> i32 0<br>}<br>
456</pre>
457</div>
458
459<p>This example is made up of a <a href="#globalvars">global variable</a>
460named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
461function, and a <a href="#functionstructure">function definition</a>
462for "<tt>main</tt>".</p>
463
464<p>In general, a module is made up of a list of global values,
465where both functions and global variables are global values. Global values are
466represented by a pointer to a memory location (in this case, a pointer to an
467array of char, and a pointer to a function), and have one of the following <a
468href="#linkage">linkage types</a>.</p>
469
470</div>
471
472<!-- ======================================================================= -->
473<div class="doc_subsection">
474 <a name="linkage">Linkage Types</a>
475</div>
476
477<div class="doc_text">
478
479<p>
480All Global Variables and Functions have one of the following types of linkage:
481</p>
482
483<dl>
484
Dale Johannesen96e7e092008-05-23 23:13:41 +0000485 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486
487 <dd>Global values with internal linkage are only directly accessible by
488 objects in the current module. In particular, linking code into a module with
489 an internal global value may cause the internal to be renamed as necessary to
490 avoid collisions. Because the symbol is internal to the module, all
491 references can be updated. This corresponds to the notion of the
492 '<tt>static</tt>' keyword in C.
493 </dd>
494
495 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
496
497 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
498 the same name when linkage occurs. This is typically used to implement
499 inline functions, templates, or other code which must be generated in each
500 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
501 allowed to be discarded.
502 </dd>
503
Dale Johannesen96e7e092008-05-23 23:13:41 +0000504 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
505
506 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
507 linkage, except that unreferenced <tt>common</tt> globals may not be
508 discarded. This is used for globals that may be emitted in multiple
509 translation units, but that are not guaranteed to be emitted into every
510 translation unit that uses them. One example of this is tentative
511 definitions in C, such as "<tt>int X;</tt>" at global scope.
512 </dd>
513
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
515
Dale Johannesen96e7e092008-05-23 23:13:41 +0000516 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
517 that some targets may choose to emit different assembly sequences for them
518 for target-dependent reasons. This is used for globals that are declared
519 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520 </dd>
521
522 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
523
524 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
525 pointer to array type. When two global variables with appending linkage are
526 linked together, the two global arrays are appended together. This is the
527 LLVM, typesafe, equivalent of having the system linker append together
528 "sections" with identical names when .o files are linked.
529 </dd>
530
531 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000532 <dd>The semantics of this linkage follow the ELF object file model: the
533 symbol is weak until linked, if not linked, the symbol becomes null instead
534 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000535 </dd>
536
537 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
538
539 <dd>If none of the above identifiers are used, the global is externally
540 visible, meaning that it participates in linkage and can be used to resolve
541 external symbol references.
542 </dd>
543</dl>
544
545 <p>
546 The next two types of linkage are targeted for Microsoft Windows platform
547 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000548 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000549 </p>
550
551 <dl>
552 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
553
554 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
555 or variable via a global pointer to a pointer that is set up by the DLL
556 exporting the symbol. On Microsoft Windows targets, the pointer name is
557 formed by combining <code>_imp__</code> and the function or variable name.
558 </dd>
559
560 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
561
562 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
563 pointer to a pointer in a DLL, so that it can be referenced with the
564 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
565 name is formed by combining <code>_imp__</code> and the function or variable
566 name.
567 </dd>
568
569</dl>
570
571<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
572variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
573variable and was linked with this one, one of the two would be renamed,
574preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
575external (i.e., lacking any linkage declarations), they are accessible
576outside of the current module.</p>
577<p>It is illegal for a function <i>declaration</i>
578to have any linkage type other than "externally visible", <tt>dllimport</tt>,
579or <tt>extern_weak</tt>.</p>
580<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman2672f3e2008-10-14 16:51:45 +0000581linkages.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000582</div>
583
584<!-- ======================================================================= -->
585<div class="doc_subsection">
586 <a name="callingconv">Calling Conventions</a>
587</div>
588
589<div class="doc_text">
590
591<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
592and <a href="#i_invoke">invokes</a> can all have an optional calling convention
593specified for the call. The calling convention of any pair of dynamic
594caller/callee must match, or the behavior of the program is undefined. The
595following calling conventions are supported by LLVM, and more may be added in
596the future:</p>
597
598<dl>
599 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
600
601 <dd>This calling convention (the default if no other calling convention is
602 specified) matches the target C calling conventions. This calling convention
603 supports varargs function calls and tolerates some mismatch in the declared
604 prototype and implemented declaration of the function (as does normal C).
605 </dd>
606
607 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
608
609 <dd>This calling convention attempts to make calls as fast as possible
610 (e.g. by passing things in registers). This calling convention allows the
611 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000612 without having to conform to an externally specified ABI (Application Binary
613 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000614 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
615 supported. This calling convention does not support varargs and requires the
616 prototype of all callees to exactly match the prototype of the function
617 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618 </dd>
619
620 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
621
622 <dd>This calling convention attempts to make code in the caller as efficient
623 as possible under the assumption that the call is not commonly executed. As
624 such, these calls often preserve all registers so that the call does not break
625 any live ranges in the caller side. This calling convention does not support
626 varargs and requires the prototype of all callees to exactly match the
627 prototype of the function definition.
628 </dd>
629
630 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
631
632 <dd>Any calling convention may be specified by number, allowing
633 target-specific calling conventions to be used. Target specific calling
634 conventions start at 64.
635 </dd>
636</dl>
637
638<p>More calling conventions can be added/defined on an as-needed basis, to
639support pascal conventions or any other well-known target-independent
640convention.</p>
641
642</div>
643
644<!-- ======================================================================= -->
645<div class="doc_subsection">
646 <a name="visibility">Visibility Styles</a>
647</div>
648
649<div class="doc_text">
650
651<p>
652All Global Variables and Functions have one of the following visibility styles:
653</p>
654
655<dl>
656 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
657
Chris Lattner96451482008-08-05 18:29:16 +0000658 <dd>On targets that use the ELF object file format, default visibility means
659 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 modules and, in shared libraries, means that the declared entity may be
661 overridden. On Darwin, default visibility means that the declaration is
662 visible to other modules. Default visibility corresponds to "external
663 linkage" in the language.
664 </dd>
665
666 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
667
668 <dd>Two declarations of an object with hidden visibility refer to the same
669 object if they are in the same shared object. Usually, hidden visibility
670 indicates that the symbol will not be placed into the dynamic symbol table,
671 so no other module (executable or shared library) can reference it
672 directly.
673 </dd>
674
675 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
676
677 <dd>On ELF, protected visibility indicates that the symbol will be placed in
678 the dynamic symbol table, but that references within the defining module will
679 bind to the local symbol. That is, the symbol cannot be overridden by another
680 module.
681 </dd>
682</dl>
683
684</div>
685
686<!-- ======================================================================= -->
687<div class="doc_subsection">
688 <a name="globalvars">Global Variables</a>
689</div>
690
691<div class="doc_text">
692
693<p>Global variables define regions of memory allocated at compilation time
694instead of run-time. Global variables may optionally be initialized, may have
695an explicit section to be placed in, and may have an optional explicit alignment
696specified. A variable may be defined as "thread_local", which means that it
697will not be shared by threads (each thread will have a separated copy of the
698variable). A variable may be defined as a global "constant," which indicates
699that the contents of the variable will <b>never</b> be modified (enabling better
700optimization, allowing the global data to be placed in the read-only section of
701an executable, etc). Note that variables that need runtime initialization
702cannot be marked "constant" as there is a store to the variable.</p>
703
704<p>
705LLVM explicitly allows <em>declarations</em> of global variables to be marked
706constant, even if the final definition of the global is not. This capability
707can be used to enable slightly better optimization of the program, but requires
708the language definition to guarantee that optimizations based on the
709'constantness' are valid for the translation units that do not include the
710definition.
711</p>
712
713<p>As SSA values, global variables define pointer values that are in
714scope (i.e. they dominate) all basic blocks in the program. Global
715variables always define a pointer to their "content" type because they
716describe a region of memory, and all memory objects in LLVM are
717accessed through pointers.</p>
718
Christopher Lambdd0049d2007-12-11 09:31:00 +0000719<p>A global variable may be declared to reside in a target-specifc numbered
720address space. For targets that support them, address spaces may affect how
721optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000722the variable. The default address space is zero. The address space qualifier
723must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000724
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725<p>LLVM allows an explicit section to be specified for globals. If the target
726supports it, it will emit globals to the section specified.</p>
727
728<p>An explicit alignment may be specified for a global. If not present, or if
729the alignment is set to zero, the alignment of the global is set by the target
730to whatever it feels convenient. If an explicit alignment is specified, the
731global is forced to have at least that much alignment. All alignments must be
732a power of 2.</p>
733
Christopher Lambdd0049d2007-12-11 09:31:00 +0000734<p>For example, the following defines a global in a numbered address space with
735an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736
737<div class="doc_code">
738<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000739@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740</pre>
741</div>
742
743</div>
744
745
746<!-- ======================================================================= -->
747<div class="doc_subsection">
748 <a name="functionstructure">Functions</a>
749</div>
750
751<div class="doc_text">
752
753<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
754an optional <a href="#linkage">linkage type</a>, an optional
755<a href="#visibility">visibility style</a>, an optional
756<a href="#callingconv">calling convention</a>, a return type, an optional
757<a href="#paramattrs">parameter attribute</a> for the return type, a function
758name, a (possibly empty) argument list (each with optional
Devang Patelac2fc272008-10-06 18:50:38 +0000759<a href="#paramattrs">parameter attributes</a>), optional
760<a href="#fnattrs">function attributes</a>, an optional section,
761an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattneree202542008-10-04 18:10:21 +0000762an opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763
764LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
765optional <a href="#linkage">linkage type</a>, an optional
766<a href="#visibility">visibility style</a>, an optional
767<a href="#callingconv">calling convention</a>, a return type, an optional
768<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000769name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000770<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771
Chris Lattner96451482008-08-05 18:29:16 +0000772<p>A function definition contains a list of basic blocks, forming the CFG
773(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774the function. Each basic block may optionally start with a label (giving the
775basic block a symbol table entry), contains a list of instructions, and ends
776with a <a href="#terminators">terminator</a> instruction (such as a branch or
777function return).</p>
778
779<p>The first basic block in a function is special in two ways: it is immediately
780executed on entrance to the function, and it is not allowed to have predecessor
781basic blocks (i.e. there can not be any branches to the entry block of a
782function). Because the block can have no predecessors, it also cannot have any
783<a href="#i_phi">PHI nodes</a>.</p>
784
785<p>LLVM allows an explicit section to be specified for functions. If the target
786supports it, it will emit functions to the section specified.</p>
787
788<p>An explicit alignment may be specified for a function. If not present, or if
789the alignment is set to zero, the alignment of the function is set by the target
790to whatever it feels convenient. If an explicit alignment is specified, the
791function is forced to have at least that much alignment. All alignments must be
792a power of 2.</p>
793
Devang Pateld0bfcc72008-10-07 17:48:33 +0000794 <h5>Syntax:</h5>
795
796<div class="doc_code">
Chris Lattner1e5c5cd02008-10-13 16:55:18 +0000797<tt>
798define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
799 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
800 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
801 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
802 [<a href="#gc">gc</a>] { ... }
803</tt>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000804</div>
805
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000806</div>
807
808
809<!-- ======================================================================= -->
810<div class="doc_subsection">
811 <a name="aliasstructure">Aliases</a>
812</div>
813<div class="doc_text">
814 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000815 function, global variable, another alias or bitcast of global value). Aliases
816 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 optional <a href="#visibility">visibility style</a>.</p>
818
819 <h5>Syntax:</h5>
820
821<div class="doc_code">
822<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000823@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000824</pre>
825</div>
826
827</div>
828
829
830
831<!-- ======================================================================= -->
832<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
833<div class="doc_text">
834 <p>The return type and each parameter of a function type may have a set of
835 <i>parameter attributes</i> associated with them. Parameter attributes are
836 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000837 a function. Parameter attributes are considered to be part of the function,
838 not of the function type, so functions with different parameter attributes
839 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840
841 <p>Parameter attributes are simple keywords that follow the type specified. If
842 multiple parameter attributes are needed, they are space separated. For
843 example:</p>
844
845<div class="doc_code">
846<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +0000847declare i32 @printf(i8* noalias , ...)
Chris Lattnerf33b8452008-10-04 18:33:34 +0000848declare i32 @atoi(i8 zeroext)
849declare signext i8 @returns_signed_char()
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000850</pre>
851</div>
852
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000853 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
854 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000855
856 <p>Currently, only the following parameter attributes are defined:</p>
857 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000858 <dt><tt>zeroext</tt></dt>
Chris Lattnerf33b8452008-10-04 18:33:34 +0000859 <dd>This indicates to the code generator that the parameter or return value
860 should be zero-extended to a 32-bit value by the caller (for a parameter)
861 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000862
Reid Spencerf234bed2007-07-19 23:13:04 +0000863 <dt><tt>signext</tt></dt>
Chris Lattnerf33b8452008-10-04 18:33:34 +0000864 <dd>This indicates to the code generator that the parameter or return value
865 should be sign-extended to a 32-bit value by the caller (for a parameter)
866 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000867
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868 <dt><tt>inreg</tt></dt>
Dale Johannesenc08a0e22008-09-25 20:47:45 +0000869 <dd>This indicates that this parameter or return value should be treated
870 in a special target-dependent fashion during while emitting code for a
871 function call or return (usually, by putting it in a register as opposed
Chris Lattnerf33b8452008-10-04 18:33:34 +0000872 to memory, though some targets use it to distinguish between two different
873 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000874
Duncan Sands7d94e5a2008-10-06 08:14:18 +0000875 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000876 <dd>This indicates that the pointer parameter should really be passed by
877 value to the function. The attribute implies that a hidden copy of the
878 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000879 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000880 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands7d94e5a2008-10-06 08:14:18 +0000881 value, but is also valid on pointers to scalars. The copy is considered to
882 belong to the caller not the callee (for example,
883 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelac2fc272008-10-06 18:50:38 +0000884 <tt>byval</tt> parameters). This is not a valid attribute for return
885 values. </dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000886
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000888 <dd>This indicates that the pointer parameter specifies the address of a
889 structure that is the return value of the function in the source program.
Chris Lattnerf33b8452008-10-04 18:33:34 +0000890 This pointer must be guaranteed by the caller to be valid: loads and stores
891 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelac2fc272008-10-06 18:50:38 +0000892 be applied to the first parameter. This is not a valid attribute for
893 return values. </dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000894
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000896 <dd>This indicates that the parameter does not alias any global or any other
897 parameter. The caller is responsible for ensuring that this is the case,
Devang Patelac2fc272008-10-06 18:50:38 +0000898 usually by placing the value in a stack allocation. This is not a valid
899 attribute for return values.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000900
Duncan Sands4ee46812007-07-27 19:57:41 +0000901 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000902 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelac2fc272008-10-06 18:50:38 +0000903 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
904 attribute for return values.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000905 </dl>
906
907</div>
908
909<!-- ======================================================================= -->
910<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000911 <a name="gc">Garbage Collector Names</a>
912</div>
913
914<div class="doc_text">
915<p>Each function may specify a garbage collector name, which is simply a
916string.</p>
917
918<div class="doc_code"><pre
919>define void @f() gc "name" { ...</pre></div>
920
921<p>The compiler declares the supported values of <i>name</i>. Specifying a
922collector which will cause the compiler to alter its output in order to support
923the named garbage collection algorithm.</p>
924</div>
925
926<!-- ======================================================================= -->
927<div class="doc_subsection">
Devang Patel008cd3e2008-09-26 23:51:19 +0000928 <a name="fnattrs">Function Attributes</a>
Devang Pateld468f1c2008-09-04 23:05:13 +0000929</div>
930
931<div class="doc_text">
Devang Patel008cd3e2008-09-26 23:51:19 +0000932
933<p>Function attributes are set to communicate additional information about
934 a function. Function attributes are considered to be part of the function,
935 not of the function type, so functions with different parameter attributes
936 can have the same function type.</p>
937
938 <p>Function attributes are simple keywords that follow the type specified. If
939 multiple attributes are needed, they are space separated. For
940 example:</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000941
942<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +0000943<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +0000944define void @f() noinline { ... }
945define void @f() alwaysinline { ... }
946define void @f() alwaysinline optsize { ... }
947define void @f() optsize
Bill Wendling74d3eac2008-09-07 10:26:33 +0000948</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +0000949</div>
950
Bill Wendling74d3eac2008-09-07 10:26:33 +0000951<dl>
Devang Patel008cd3e2008-09-26 23:51:19 +0000952<dt><tt>alwaysinline</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000953<dd>This attribute indicates that the inliner should attempt to inline this
954function into callers whenever possible, ignoring any active inlining size
955threshold for this caller.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000956
Devang Patel008cd3e2008-09-26 23:51:19 +0000957<dt><tt>noinline</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000958<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner377f3ae2008-10-05 17:14:59 +0000959in any situation. This attribute may not be used together with the
Chris Lattner82d70f92008-10-04 18:23:17 +0000960<tt>alwaysinline</tt> attribute.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000961
Devang Patel008cd3e2008-09-26 23:51:19 +0000962<dt><tt>optsize</tt></dt>
Devang Patelc29099b2008-09-29 18:34:44 +0000963<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner82d70f92008-10-04 18:23:17 +0000964make choices that keep the code size of this function low, and otherwise do
965optimizations specifically to reduce code size.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +0000966
Devang Patel008cd3e2008-09-26 23:51:19 +0000967<dt><tt>noreturn</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000968<dd>This function attribute indicates that the function never returns normally.
969This produces undefined behavior at runtime if the function ever does
970dynamically return.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +0000971
972<dt><tt>nounwind</tt></dt>
Chris Lattner82d70f92008-10-04 18:23:17 +0000973<dd>This function attribute indicates that the function never returns with an
974unwind or exceptional control flow. If the function does unwind, its runtime
975behavior is undefined.</dd>
976
977<dt><tt>readnone</tt></dt>
Duncan Sands7d94e5a2008-10-06 08:14:18 +0000978<dd>This attribute indicates that the function computes its result (or the
979exception it throws) based strictly on its arguments, without dereferencing any
980pointer arguments or otherwise accessing any mutable state (e.g. memory, control
981registers, etc) visible to caller functions. It does not write through any
982pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
983never changes any state visible to callers.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +0000984
Duncan Sands7d94e5a2008-10-06 08:14:18 +0000985<dt><tt><a name="readonly">readonly</a></tt></dt>
986<dd>This attribute indicates that the function does not write through any
987pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
988or otherwise modify any state (e.g. memory, control registers, etc) visible to
989caller functions. It may dereference pointer arguments and read state that may
990be set in the caller. A readonly function always returns the same value (or
991throws the same exception) when called with the same set of arguments and global
992state.</dd>
Bill Wendlingdfaabba2008-11-13 01:02:51 +0000993
994<dt><tt><a name="ssp">ssp</a></tt></dt>
995<dd>This attribute indicates that the function should emit a stack smashing
996protector. It is in the form of a "canary"&mdash;a random value placed on the
997stack before the local variables that's checked upon return from the function to
998see if it has been overwritten. A heuristic is used to determine if a function
999needs stack protectors or not.</dd>
1000
1001<dt><tt>ssp-req</tt></dt>
1002<dd>This attribute indicates that the function should <em>always</em> emit a
1003stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
1004function attribute.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001005</dl>
1006
Devang Pateld468f1c2008-09-04 23:05:13 +00001007</div>
1008
1009<!-- ======================================================================= -->
1010<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 <a name="moduleasm">Module-Level Inline Assembly</a>
1012</div>
1013
1014<div class="doc_text">
1015<p>
1016Modules may contain "module-level inline asm" blocks, which corresponds to the
1017GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1018LLVM and treated as a single unit, but may be separated in the .ll file if
1019desired. The syntax is very simple:
1020</p>
1021
1022<div class="doc_code">
1023<pre>
1024module asm "inline asm code goes here"
1025module asm "more can go here"
1026</pre>
1027</div>
1028
1029<p>The strings can contain any character by escaping non-printable characters.
1030 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1031 for the number.
1032</p>
1033
1034<p>
1035 The inline asm code is simply printed to the machine code .s file when
1036 assembly code is generated.
1037</p>
1038</div>
1039
1040<!-- ======================================================================= -->
1041<div class="doc_subsection">
1042 <a name="datalayout">Data Layout</a>
1043</div>
1044
1045<div class="doc_text">
1046<p>A module may specify a target specific data layout string that specifies how
1047data is to be laid out in memory. The syntax for the data layout is simply:</p>
1048<pre> target datalayout = "<i>layout specification</i>"</pre>
1049<p>The <i>layout specification</i> consists of a list of specifications
1050separated by the minus sign character ('-'). Each specification starts with a
1051letter and may include other information after the letter to define some
1052aspect of the data layout. The specifications accepted are as follows: </p>
1053<dl>
1054 <dt><tt>E</tt></dt>
1055 <dd>Specifies that the target lays out data in big-endian form. That is, the
1056 bits with the most significance have the lowest address location.</dd>
1057 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001058 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 the bits with the least significance have the lowest address location.</dd>
1060 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1061 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1062 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1063 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1064 too.</dd>
1065 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1066 <dd>This specifies the alignment for an integer type of a given bit
1067 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1068 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1069 <dd>This specifies the alignment for a vector type of a given bit
1070 <i>size</i>.</dd>
1071 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1072 <dd>This specifies the alignment for a floating point type of a given bit
1073 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1074 (double).</dd>
1075 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1076 <dd>This specifies the alignment for an aggregate type of a given bit
1077 <i>size</i>.</dd>
1078</dl>
1079<p>When constructing the data layout for a given target, LLVM starts with a
1080default set of specifications which are then (possibly) overriden by the
1081specifications in the <tt>datalayout</tt> keyword. The default specifications
1082are given in this list:</p>
1083<ul>
1084 <li><tt>E</tt> - big endian</li>
1085 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1086 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1087 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1088 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1089 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001090 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 alignment of 64-bits</li>
1092 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1093 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1094 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1095 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1096 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1097</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001098<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman2672f3e2008-10-14 16:51:45 +00001099following rules:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100<ol>
1101 <li>If the type sought is an exact match for one of the specifications, that
1102 specification is used.</li>
1103 <li>If no match is found, and the type sought is an integer type, then the
1104 smallest integer type that is larger than the bitwidth of the sought type is
1105 used. If none of the specifications are larger than the bitwidth then the the
1106 largest integer type is used. For example, given the default specifications
1107 above, the i7 type will use the alignment of i8 (next largest) while both
1108 i65 and i256 will use the alignment of i64 (largest specified).</li>
1109 <li>If no match is found, and the type sought is a vector type, then the
1110 largest vector type that is smaller than the sought vector type will be used
Dan Gohman2672f3e2008-10-14 16:51:45 +00001111 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1112 in terms of 64 &lt;2 x double&gt;, for example.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001113</ol>
1114</div>
1115
1116<!-- *********************************************************************** -->
1117<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1118<!-- *********************************************************************** -->
1119
1120<div class="doc_text">
1121
1122<p>The LLVM type system is one of the most important features of the
1123intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001124optimizations to be performed on the intermediate representation directly,
1125without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001126extra analyses on the side before the transformation. A strong type
1127system makes it easier to read the generated code and enables novel
1128analyses and transformations that are not feasible to perform on normal
1129three address code representations.</p>
1130
1131</div>
1132
1133<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001134<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135Classifications</a> </div>
1136<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001137<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001138classifications:</p>
1139
1140<table border="1" cellspacing="0" cellpadding="4">
1141 <tbody>
1142 <tr><th>Classification</th><th>Types</th></tr>
1143 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001144 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001145 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1146 </tr>
1147 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001148 <td><a href="#t_floating">floating point</a></td>
1149 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001150 </tr>
1151 <tr>
1152 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001153 <td><a href="#t_integer">integer</a>,
1154 <a href="#t_floating">floating point</a>,
1155 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001156 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001157 <a href="#t_struct">structure</a>,
1158 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001159 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 </td>
1161 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001162 <tr>
1163 <td><a href="#t_primitive">primitive</a></td>
1164 <td><a href="#t_label">label</a>,
1165 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001166 <a href="#t_floating">floating point</a>.</td>
1167 </tr>
1168 <tr>
1169 <td><a href="#t_derived">derived</a></td>
1170 <td><a href="#t_integer">integer</a>,
1171 <a href="#t_array">array</a>,
1172 <a href="#t_function">function</a>,
1173 <a href="#t_pointer">pointer</a>,
1174 <a href="#t_struct">structure</a>,
1175 <a href="#t_pstruct">packed structure</a>,
1176 <a href="#t_vector">vector</a>,
1177 <a href="#t_opaque">opaque</a>.
Dan Gohman032ba852008-10-14 16:32:04 +00001178 </td>
Chris Lattner488772f2008-01-04 04:32:38 +00001179 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 </tbody>
1181</table>
1182
1183<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1184most important. Values of these types are the only ones which can be
1185produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001186instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001187</div>
1188
1189<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001190<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001191
Chris Lattner488772f2008-01-04 04:32:38 +00001192<div class="doc_text">
1193<p>The primitive types are the fundamental building blocks of the LLVM
1194system.</p>
1195
Chris Lattner86437612008-01-04 04:34:14 +00001196</div>
1197
Chris Lattner488772f2008-01-04 04:32:38 +00001198<!-- _______________________________________________________________________ -->
1199<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1200
1201<div class="doc_text">
1202 <table>
1203 <tbody>
1204 <tr><th>Type</th><th>Description</th></tr>
1205 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1206 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1207 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1208 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1209 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1210 </tbody>
1211 </table>
1212</div>
1213
1214<!-- _______________________________________________________________________ -->
1215<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1216
1217<div class="doc_text">
1218<h5>Overview:</h5>
1219<p>The void type does not represent any value and has no size.</p>
1220
1221<h5>Syntax:</h5>
1222
1223<pre>
1224 void
1225</pre>
1226</div>
1227
1228<!-- _______________________________________________________________________ -->
1229<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1230
1231<div class="doc_text">
1232<h5>Overview:</h5>
1233<p>The label type represents code labels.</p>
1234
1235<h5>Syntax:</h5>
1236
1237<pre>
1238 label
1239</pre>
1240</div>
1241
1242
1243<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1245
1246<div class="doc_text">
1247
1248<p>The real power in LLVM comes from the derived types in the system.
1249This is what allows a programmer to represent arrays, functions,
1250pointers, and other useful types. Note that these derived types may be
1251recursive: For example, it is possible to have a two dimensional array.</p>
1252
1253</div>
1254
1255<!-- _______________________________________________________________________ -->
1256<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1257
1258<div class="doc_text">
1259
1260<h5>Overview:</h5>
1261<p>The integer type is a very simple derived type that simply specifies an
1262arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12632^23-1 (about 8 million) can be specified.</p>
1264
1265<h5>Syntax:</h5>
1266
1267<pre>
1268 iN
1269</pre>
1270
1271<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1272value.</p>
1273
1274<h5>Examples:</h5>
1275<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001276 <tbody>
1277 <tr>
1278 <td><tt>i1</tt></td>
1279 <td>a single-bit integer.</td>
1280 </tr><tr>
1281 <td><tt>i32</tt></td>
1282 <td>a 32-bit integer.</td>
1283 </tr><tr>
1284 <td><tt>i1942652</tt></td>
1285 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001286 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001287 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001288</table>
1289</div>
1290
1291<!-- _______________________________________________________________________ -->
1292<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1293
1294<div class="doc_text">
1295
1296<h5>Overview:</h5>
1297
1298<p>The array type is a very simple derived type that arranges elements
1299sequentially in memory. The array type requires a size (number of
1300elements) and an underlying data type.</p>
1301
1302<h5>Syntax:</h5>
1303
1304<pre>
1305 [&lt;# elements&gt; x &lt;elementtype&gt;]
1306</pre>
1307
1308<p>The number of elements is a constant integer value; elementtype may
1309be any type with a size.</p>
1310
1311<h5>Examples:</h5>
1312<table class="layout">
1313 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001314 <td class="left"><tt>[40 x i32]</tt></td>
1315 <td class="left">Array of 40 32-bit integer values.</td>
1316 </tr>
1317 <tr class="layout">
1318 <td class="left"><tt>[41 x i32]</tt></td>
1319 <td class="left">Array of 41 32-bit integer values.</td>
1320 </tr>
1321 <tr class="layout">
1322 <td class="left"><tt>[4 x i8]</tt></td>
1323 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001324 </tr>
1325</table>
1326<p>Here are some examples of multidimensional arrays:</p>
1327<table class="layout">
1328 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001329 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1330 <td class="left">3x4 array of 32-bit integer values.</td>
1331 </tr>
1332 <tr class="layout">
1333 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1334 <td class="left">12x10 array of single precision floating point values.</td>
1335 </tr>
1336 <tr class="layout">
1337 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1338 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339 </tr>
1340</table>
1341
1342<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1343length array. Normally, accesses past the end of an array are undefined in
1344LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1345As a special case, however, zero length arrays are recognized to be variable
1346length. This allows implementation of 'pascal style arrays' with the LLVM
1347type "{ i32, [0 x float]}", for example.</p>
1348
1349</div>
1350
1351<!-- _______________________________________________________________________ -->
1352<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1353<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001355<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001357<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001358consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001359return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001360If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001361class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001363<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001364
1365<pre>
1366 &lt;returntype list&gt; (&lt;parameter list&gt;)
1367</pre>
1368
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1370specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1371which indicates that the function takes a variable number of arguments.
1372Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001373 href="#int_varargs">variable argument handling intrinsic</a> functions.
1374'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1375<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001376
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001377<h5>Examples:</h5>
1378<table class="layout">
1379 <tr class="layout">
1380 <td class="left"><tt>i32 (i32)</tt></td>
1381 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1382 </td>
1383 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001384 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385 </tt></td>
1386 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1387 an <tt>i16</tt> that should be sign extended and a
1388 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1389 <tt>float</tt>.
1390 </td>
1391 </tr><tr class="layout">
1392 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1393 <td class="left">A vararg function that takes at least one
1394 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1395 which returns an integer. This is the signature for <tt>printf</tt> in
1396 LLVM.
1397 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001398 </tr><tr class="layout">
1399 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001400 <td class="left">A function taking an <tt>i32></tt>, returning two
1401 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001402 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 </tr>
1404</table>
1405
1406</div>
1407<!-- _______________________________________________________________________ -->
1408<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1409<div class="doc_text">
1410<h5>Overview:</h5>
1411<p>The structure type is used to represent a collection of data members
1412together in memory. The packing of the field types is defined to match
1413the ABI of the underlying processor. The elements of a structure may
1414be any type that has a size.</p>
1415<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1416and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1417field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1418instruction.</p>
1419<h5>Syntax:</h5>
1420<pre> { &lt;type list&gt; }<br></pre>
1421<h5>Examples:</h5>
1422<table class="layout">
1423 <tr class="layout">
1424 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1425 <td class="left">A triple of three <tt>i32</tt> values</td>
1426 </tr><tr class="layout">
1427 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1428 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1429 second element is a <a href="#t_pointer">pointer</a> to a
1430 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1431 an <tt>i32</tt>.</td>
1432 </tr>
1433</table>
1434</div>
1435
1436<!-- _______________________________________________________________________ -->
1437<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1438</div>
1439<div class="doc_text">
1440<h5>Overview:</h5>
1441<p>The packed structure type is used to represent a collection of data members
1442together in memory. There is no padding between fields. Further, the alignment
1443of a packed structure is 1 byte. The elements of a packed structure may
1444be any type that has a size.</p>
1445<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1446and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1447field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1448instruction.</p>
1449<h5>Syntax:</h5>
1450<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1451<h5>Examples:</h5>
1452<table class="layout">
1453 <tr class="layout">
1454 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1455 <td class="left">A triple of three <tt>i32</tt> values</td>
1456 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001457 <td class="left">
1458<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1460 second element is a <a href="#t_pointer">pointer</a> to a
1461 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1462 an <tt>i32</tt>.</td>
1463 </tr>
1464</table>
1465</div>
1466
1467<!-- _______________________________________________________________________ -->
1468<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1469<div class="doc_text">
1470<h5>Overview:</h5>
1471<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001472reference to another object, which must live in memory. Pointer types may have
1473an optional address space attribute defining the target-specific numbered
1474address space where the pointed-to object resides. The default address space is
1475zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476<h5>Syntax:</h5>
1477<pre> &lt;type&gt; *<br></pre>
1478<h5>Examples:</h5>
1479<table class="layout">
1480 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001481 <td class="left"><tt>[4x i32]*</tt></td>
1482 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1483 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1484 </tr>
1485 <tr class="layout">
1486 <td class="left"><tt>i32 (i32 *) *</tt></td>
1487 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001488 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001489 <tt>i32</tt>.</td>
1490 </tr>
1491 <tr class="layout">
1492 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1493 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1494 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 </tr>
1496</table>
1497</div>
1498
1499<!-- _______________________________________________________________________ -->
1500<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1501<div class="doc_text">
1502
1503<h5>Overview:</h5>
1504
1505<p>A vector type is a simple derived type that represents a vector
1506of elements. Vector types are used when multiple primitive data
1507are operated in parallel using a single instruction (SIMD).
1508A vector type requires a size (number of
1509elements) and an underlying primitive data type. Vectors must have a power
1510of two length (1, 2, 4, 8, 16 ...). Vector types are
1511considered <a href="#t_firstclass">first class</a>.</p>
1512
1513<h5>Syntax:</h5>
1514
1515<pre>
1516 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1517</pre>
1518
1519<p>The number of elements is a constant integer value; elementtype may
1520be any integer or floating point type.</p>
1521
1522<h5>Examples:</h5>
1523
1524<table class="layout">
1525 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001526 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1527 <td class="left">Vector of 4 32-bit integer values.</td>
1528 </tr>
1529 <tr class="layout">
1530 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1531 <td class="left">Vector of 8 32-bit floating-point values.</td>
1532 </tr>
1533 <tr class="layout">
1534 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1535 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 </tr>
1537</table>
1538</div>
1539
1540<!-- _______________________________________________________________________ -->
1541<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1542<div class="doc_text">
1543
1544<h5>Overview:</h5>
1545
1546<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001547corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001548In LLVM, opaque types can eventually be resolved to any type (not just a
1549structure type).</p>
1550
1551<h5>Syntax:</h5>
1552
1553<pre>
1554 opaque
1555</pre>
1556
1557<h5>Examples:</h5>
1558
1559<table class="layout">
1560 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001561 <td class="left"><tt>opaque</tt></td>
1562 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001563 </tr>
1564</table>
1565</div>
1566
1567
1568<!-- *********************************************************************** -->
1569<div class="doc_section"> <a name="constants">Constants</a> </div>
1570<!-- *********************************************************************** -->
1571
1572<div class="doc_text">
1573
1574<p>LLVM has several different basic types of constants. This section describes
1575them all and their syntax.</p>
1576
1577</div>
1578
1579<!-- ======================================================================= -->
1580<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1581
1582<div class="doc_text">
1583
1584<dl>
1585 <dt><b>Boolean constants</b></dt>
1586
1587 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1588 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1589 </dd>
1590
1591 <dt><b>Integer constants</b></dt>
1592
1593 <dd>Standard integers (such as '4') are constants of the <a
1594 href="#t_integer">integer</a> type. Negative numbers may be used with
1595 integer types.
1596 </dd>
1597
1598 <dt><b>Floating point constants</b></dt>
1599
1600 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1601 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001602 notation (see below). The assembler requires the exact decimal value of
1603 a floating-point constant. For example, the assembler accepts 1.25 but
1604 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1605 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001606
1607 <dt><b>Null pointer constants</b></dt>
1608
1609 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1610 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1611
1612</dl>
1613
1614<p>The one non-intuitive notation for constants is the optional hexadecimal form
1615of floating point constants. For example, the form '<tt>double
16160x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16174.5e+15</tt>'. The only time hexadecimal floating point constants are required
1618(and the only time that they are generated by the disassembler) is when a
1619floating point constant must be emitted but it cannot be represented as a
1620decimal floating point number. For example, NaN's, infinities, and other
1621special values are represented in their IEEE hexadecimal format so that
1622assembly and disassembly do not cause any bits to change in the constants.</p>
1623
1624</div>
1625
1626<!-- ======================================================================= -->
1627<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1628</div>
1629
1630<div class="doc_text">
1631<p>Aggregate constants arise from aggregation of simple constants
1632and smaller aggregate constants.</p>
1633
1634<dl>
1635 <dt><b>Structure constants</b></dt>
1636
1637 <dd>Structure constants are represented with notation similar to structure
1638 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001639 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1640 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001641 must have <a href="#t_struct">structure type</a>, and the number and
1642 types of elements must match those specified by the type.
1643 </dd>
1644
1645 <dt><b>Array constants</b></dt>
1646
1647 <dd>Array constants are represented with notation similar to array type
1648 definitions (a comma separated list of elements, surrounded by square brackets
1649 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1650 constants must have <a href="#t_array">array type</a>, and the number and
1651 types of elements must match those specified by the type.
1652 </dd>
1653
1654 <dt><b>Vector constants</b></dt>
1655
1656 <dd>Vector constants are represented with notation similar to vector type
1657 definitions (a comma separated list of elements, surrounded by
1658 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1659 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1660 href="#t_vector">vector type</a>, and the number and types of elements must
1661 match those specified by the type.
1662 </dd>
1663
1664 <dt><b>Zero initialization</b></dt>
1665
1666 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1667 value to zero of <em>any</em> type, including scalar and aggregate types.
1668 This is often used to avoid having to print large zero initializers (e.g. for
1669 large arrays) and is always exactly equivalent to using explicit zero
1670 initializers.
1671 </dd>
1672</dl>
1673
1674</div>
1675
1676<!-- ======================================================================= -->
1677<div class="doc_subsection">
1678 <a name="globalconstants">Global Variable and Function Addresses</a>
1679</div>
1680
1681<div class="doc_text">
1682
1683<p>The addresses of <a href="#globalvars">global variables</a> and <a
1684href="#functionstructure">functions</a> are always implicitly valid (link-time)
1685constants. These constants are explicitly referenced when the <a
1686href="#identifiers">identifier for the global</a> is used and always have <a
1687href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1688file:</p>
1689
1690<div class="doc_code">
1691<pre>
1692@X = global i32 17
1693@Y = global i32 42
1694@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1695</pre>
1696</div>
1697
1698</div>
1699
1700<!-- ======================================================================= -->
1701<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1702<div class="doc_text">
1703 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1704 no specific value. Undefined values may be of any type and be used anywhere
1705 a constant is permitted.</p>
1706
1707 <p>Undefined values indicate to the compiler that the program is well defined
1708 no matter what value is used, giving the compiler more freedom to optimize.
1709 </p>
1710</div>
1711
1712<!-- ======================================================================= -->
1713<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1714</div>
1715
1716<div class="doc_text">
1717
1718<p>Constant expressions are used to allow expressions involving other constants
1719to be used as constants. Constant expressions may be of any <a
1720href="#t_firstclass">first class</a> type and may involve any LLVM operation
1721that does not have side effects (e.g. load and call are not supported). The
1722following is the syntax for constant expressions:</p>
1723
1724<dl>
1725 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1726 <dd>Truncate a constant to another type. The bit size of CST must be larger
1727 than the bit size of TYPE. Both types must be integers.</dd>
1728
1729 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1730 <dd>Zero extend a constant to another type. The bit size of CST must be
1731 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1732
1733 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1734 <dd>Sign extend a constant to another type. The bit size of CST must be
1735 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1736
1737 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1738 <dd>Truncate a floating point constant to another floating point type. The
1739 size of CST must be larger than the size of TYPE. Both types must be
1740 floating point.</dd>
1741
1742 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1743 <dd>Floating point extend a constant to another type. The size of CST must be
1744 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1745
Reid Spencere6adee82007-07-31 14:40:14 +00001746 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001748 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1749 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1750 of the same number of elements. If the value won't fit in the integer type,
1751 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752
1753 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1754 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001755 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1756 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1757 of the same number of elements. If the value won't fit in the integer type,
1758 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759
1760 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1761 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001762 constant. TYPE must be a scalar or vector floating point type. CST must be of
1763 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1764 of the same number of elements. If the value won't fit in the floating point
1765 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766
1767 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1768 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001769 constant. TYPE must be a scalar or vector floating point type. CST must be of
1770 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1771 of the same number of elements. If the value won't fit in the floating point
1772 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001773
1774 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1775 <dd>Convert a pointer typed constant to the corresponding integer constant
1776 TYPE must be an integer type. CST must be of pointer type. The CST value is
1777 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1778
1779 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1780 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1781 pointer type. CST must be of integer type. The CST value is zero extended,
1782 truncated, or unchanged to make it fit in a pointer size. This one is
1783 <i>really</i> dangerous!</dd>
1784
1785 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1786 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1787 identical (same number of bits). The conversion is done as if the CST value
1788 was stored to memory and read back as TYPE. In other words, no bits change
1789 with this operator, just the type. This can be used for conversion of
1790 vector types to any other type, as long as they have the same bit width. For
Dan Gohman7305fa02008-09-08 16:45:59 +00001791 pointers it is only valid to cast to another pointer type. It is not valid
1792 to bitcast to or from an aggregate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001793 </dd>
1794
1795 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1796
1797 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1798 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1799 instruction, the index list may have zero or more indexes, which are required
1800 to make sense for the type of "CSTPTR".</dd>
1801
1802 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1803
1804 <dd>Perform the <a href="#i_select">select operation</a> on
1805 constants.</dd>
1806
1807 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1808 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1809
1810 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1811 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1812
Nate Begeman646fa482008-05-12 19:01:56 +00001813 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1814 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1815
1816 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1817 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1818
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1820
1821 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman2672f3e2008-10-14 16:51:45 +00001822 operation</a> on constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823
1824 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1825
1826 <dd>Perform the <a href="#i_insertelement">insertelement
1827 operation</a> on constants.</dd>
1828
1829
1830 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1831
1832 <dd>Perform the <a href="#i_shufflevector">shufflevector
1833 operation</a> on constants.</dd>
1834
1835 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1836
1837 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1838 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1839 binary</a> operations. The constraints on operands are the same as those for
1840 the corresponding instruction (e.g. no bitwise operations on floating point
1841 values are allowed).</dd>
1842</dl>
1843</div>
1844
1845<!-- *********************************************************************** -->
1846<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1847<!-- *********************************************************************** -->
1848
1849<!-- ======================================================================= -->
1850<div class="doc_subsection">
1851<a name="inlineasm">Inline Assembler Expressions</a>
1852</div>
1853
1854<div class="doc_text">
1855
1856<p>
1857LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1858Module-Level Inline Assembly</a>) through the use of a special value. This
1859value represents the inline assembler as a string (containing the instructions
1860to emit), a list of operand constraints (stored as a string), and a flag that
1861indicates whether or not the inline asm expression has side effects. An example
1862inline assembler expression is:
1863</p>
1864
1865<div class="doc_code">
1866<pre>
1867i32 (i32) asm "bswap $0", "=r,r"
1868</pre>
1869</div>
1870
1871<p>
1872Inline assembler expressions may <b>only</b> be used as the callee operand of
1873a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1874</p>
1875
1876<div class="doc_code">
1877<pre>
1878%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1879</pre>
1880</div>
1881
1882<p>
1883Inline asms with side effects not visible in the constraint list must be marked
1884as having side effects. This is done through the use of the
1885'<tt>sideeffect</tt>' keyword, like so:
1886</p>
1887
1888<div class="doc_code">
1889<pre>
1890call void asm sideeffect "eieio", ""()
1891</pre>
1892</div>
1893
1894<p>TODO: The format of the asm and constraints string still need to be
1895documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner1cdd64e2008-10-04 18:36:02 +00001896need to be documented). This is probably best done by reference to another
1897document that covers inline asm from a holistic perspective.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898</p>
1899
1900</div>
1901
1902<!-- *********************************************************************** -->
1903<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1904<!-- *********************************************************************** -->
1905
1906<div class="doc_text">
1907
1908<p>The LLVM instruction set consists of several different
1909classifications of instructions: <a href="#terminators">terminator
1910instructions</a>, <a href="#binaryops">binary instructions</a>,
1911<a href="#bitwiseops">bitwise binary instructions</a>, <a
1912 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1913instructions</a>.</p>
1914
1915</div>
1916
1917<!-- ======================================================================= -->
1918<div class="doc_subsection"> <a name="terminators">Terminator
1919Instructions</a> </div>
1920
1921<div class="doc_text">
1922
1923<p>As mentioned <a href="#functionstructure">previously</a>, every
1924basic block in a program ends with a "Terminator" instruction, which
1925indicates which block should be executed after the current block is
1926finished. These terminator instructions typically yield a '<tt>void</tt>'
1927value: they produce control flow, not values (the one exception being
1928the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1929<p>There are six different terminator instructions: the '<a
1930 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1931instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1932the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1933 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1934 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1935
1936</div>
1937
1938<!-- _______________________________________________________________________ -->
1939<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1940Instruction</a> </div>
1941<div class="doc_text">
1942<h5>Syntax:</h5>
Dan Gohman3e700032008-10-04 19:00:07 +00001943<pre>
1944 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001945 ret void <i>; Return from void function</i>
1946</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001947
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001949
Dan Gohman3e700032008-10-04 19:00:07 +00001950<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1951optionally a value) from a function back to the caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohman3e700032008-10-04 19:00:07 +00001953returns a value and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001955
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001956<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001957
Dan Gohman3e700032008-10-04 19:00:07 +00001958<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1959the return value. The type of the return value must be a
1960'<a href="#t_firstclass">first class</a>' type.</p>
1961
1962<p>A function is not <a href="#wellformed">well formed</a> if
1963it it has a non-void return type and contains a '<tt>ret</tt>'
1964instruction with no return value or a return value with a type that
1965does not match its type, or if it has a void return type and contains
1966a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001967
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001968<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970<p>When the '<tt>ret</tt>' instruction is executed, control flow
1971returns back to the calling function's context. If the caller is a "<a
1972 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1973the instruction after the call. If the caller was an "<a
1974 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1975at the beginning of the "normal" destination block. If the instruction
1976returns a value, that value shall set the call or invoke instruction's
Dan Gohman2672f3e2008-10-14 16:51:45 +00001977return value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001978
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001979<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001980
1981<pre>
1982 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001983 ret void <i>; Return from a void function</i>
Dan Gohman3e700032008-10-04 19:00:07 +00001984 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985</pre>
1986</div>
1987<!-- _______________________________________________________________________ -->
1988<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1989<div class="doc_text">
1990<h5>Syntax:</h5>
1991<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1992</pre>
1993<h5>Overview:</h5>
1994<p>The '<tt>br</tt>' instruction is used to cause control flow to
1995transfer to a different basic block in the current function. There are
1996two forms of this instruction, corresponding to a conditional branch
1997and an unconditional branch.</p>
1998<h5>Arguments:</h5>
1999<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
2000single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
2001unconditional form of the '<tt>br</tt>' instruction takes a single
2002'<tt>label</tt>' value as a target.</p>
2003<h5>Semantics:</h5>
2004<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2005argument is evaluated. If the value is <tt>true</tt>, control flows
2006to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2007control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2008<h5>Example:</h5>
2009<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
2010 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
2011</div>
2012<!-- _______________________________________________________________________ -->
2013<div class="doc_subsubsection">
2014 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2015</div>
2016
2017<div class="doc_text">
2018<h5>Syntax:</h5>
2019
2020<pre>
2021 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2022</pre>
2023
2024<h5>Overview:</h5>
2025
2026<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2027several different places. It is a generalization of the '<tt>br</tt>'
2028instruction, allowing a branch to occur to one of many possible
2029destinations.</p>
2030
2031
2032<h5>Arguments:</h5>
2033
2034<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2035comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2036an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2037table is not allowed to contain duplicate constant entries.</p>
2038
2039<h5>Semantics:</h5>
2040
2041<p>The <tt>switch</tt> instruction specifies a table of values and
2042destinations. When the '<tt>switch</tt>' instruction is executed, this
2043table is searched for the given value. If the value is found, control flow is
2044transfered to the corresponding destination; otherwise, control flow is
2045transfered to the default destination.</p>
2046
2047<h5>Implementation:</h5>
2048
2049<p>Depending on properties of the target machine and the particular
2050<tt>switch</tt> instruction, this instruction may be code generated in different
2051ways. For example, it could be generated as a series of chained conditional
2052branches or with a lookup table.</p>
2053
2054<h5>Example:</h5>
2055
2056<pre>
2057 <i>; Emulate a conditional br instruction</i>
2058 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2059 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
2060
2061 <i>; Emulate an unconditional br instruction</i>
2062 switch i32 0, label %dest [ ]
2063
2064 <i>; Implement a jump table:</i>
2065 switch i32 %val, label %otherwise [ i32 0, label %onzero
2066 i32 1, label %onone
2067 i32 2, label %ontwo ]
2068</pre>
2069</div>
2070
2071<!-- _______________________________________________________________________ -->
2072<div class="doc_subsubsection">
2073 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2074</div>
2075
2076<div class="doc_text">
2077
2078<h5>Syntax:</h5>
2079
2080<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00002081 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002082 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2083</pre>
2084
2085<h5>Overview:</h5>
2086
2087<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2088function, with the possibility of control flow transfer to either the
2089'<tt>normal</tt>' label or the
2090'<tt>exception</tt>' label. If the callee function returns with the
2091"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2092"normal" label. If the callee (or any indirect callees) returns with the "<a
2093href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman2672f3e2008-10-14 16:51:45 +00002094continued at the dynamically nearest "exception" label.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002095
2096<h5>Arguments:</h5>
2097
2098<p>This instruction requires several arguments:</p>
2099
2100<ol>
2101 <li>
2102 The optional "cconv" marker indicates which <a href="#callingconv">calling
2103 convention</a> the call should use. If none is specified, the call defaults
2104 to using C calling conventions.
2105 </li>
Devang Patelac2fc272008-10-06 18:50:38 +00002106
2107 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2108 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2109 and '<tt>inreg</tt>' attributes are valid here.</li>
2110
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002111 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2112 function value being invoked. In most cases, this is a direct function
2113 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2114 an arbitrary pointer to function value.
2115 </li>
2116
2117 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2118 function to be invoked. </li>
2119
2120 <li>'<tt>function args</tt>': argument list whose types match the function
2121 signature argument types. If the function signature indicates the function
2122 accepts a variable number of arguments, the extra arguments can be
2123 specified. </li>
2124
2125 <li>'<tt>normal label</tt>': the label reached when the called function
2126 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2127
2128 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2129 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2130
Devang Pateld0bfcc72008-10-07 17:48:33 +00002131 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelac2fc272008-10-06 18:50:38 +00002132 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2133 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002134</ol>
2135
2136<h5>Semantics:</h5>
2137
2138<p>This instruction is designed to operate as a standard '<tt><a
2139href="#i_call">call</a></tt>' instruction in most regards. The primary
2140difference is that it establishes an association with a label, which is used by
2141the runtime library to unwind the stack.</p>
2142
2143<p>This instruction is used in languages with destructors to ensure that proper
2144cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2145exception. Additionally, this is important for implementation of
2146'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2147
2148<h5>Example:</h5>
2149<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002150 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002151 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002152 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 unwind label %TestCleanup <i>; {i32}:retval set</i>
2154</pre>
2155</div>
2156
2157
2158<!-- _______________________________________________________________________ -->
2159
2160<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2161Instruction</a> </div>
2162
2163<div class="doc_text">
2164
2165<h5>Syntax:</h5>
2166<pre>
2167 unwind
2168</pre>
2169
2170<h5>Overview:</h5>
2171
2172<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2173at the first callee in the dynamic call stack which used an <a
2174href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2175primarily used to implement exception handling.</p>
2176
2177<h5>Semantics:</h5>
2178
Chris Lattner8b094fc2008-04-19 21:01:16 +00002179<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002180immediately halt. The dynamic call stack is then searched for the first <a
2181href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2182execution continues at the "exceptional" destination block specified by the
2183<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2184dynamic call chain, undefined behavior results.</p>
2185</div>
2186
2187<!-- _______________________________________________________________________ -->
2188
2189<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2190Instruction</a> </div>
2191
2192<div class="doc_text">
2193
2194<h5>Syntax:</h5>
2195<pre>
2196 unreachable
2197</pre>
2198
2199<h5>Overview:</h5>
2200
2201<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2202instruction is used to inform the optimizer that a particular portion of the
2203code is not reachable. This can be used to indicate that the code after a
2204no-return function cannot be reached, and other facts.</p>
2205
2206<h5>Semantics:</h5>
2207
2208<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2209</div>
2210
2211
2212
2213<!-- ======================================================================= -->
2214<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2215<div class="doc_text">
2216<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002217program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002218produce a single value. The operands might represent
2219multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002220The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221<p>There are several different binary operators:</p>
2222</div>
2223<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002224<div class="doc_subsubsection">
2225 <a name="i_add">'<tt>add</tt>' Instruction</a>
2226</div>
2227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002228<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002229
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002230<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002231
2232<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002233 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002234</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002235
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002236<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002237
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002238<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002240<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002241
2242<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2243 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2244 <a href="#t_vector">vector</a> values. Both arguments must have identical
2245 types.</p>
2246
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002247<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002248
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002249<p>The value produced is the integer or floating point sum of the two
2250operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002251
Chris Lattner9aba1e22008-01-28 00:36:27 +00002252<p>If an integer sum has unsigned overflow, the result returned is the
2253mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2254the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002255
Chris Lattner9aba1e22008-01-28 00:36:27 +00002256<p>Because LLVM integers use a two's complement representation, this
2257instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002259<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002260
2261<pre>
2262 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002263</pre>
2264</div>
2265<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002266<div class="doc_subsubsection">
2267 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2268</div>
2269
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002271
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002272<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002273
2274<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002275 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002276</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002277
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002278<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002279
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002280<p>The '<tt>sub</tt>' instruction returns the difference of its two
2281operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002282
2283<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2284'<tt>neg</tt>' instruction present in most other intermediate
2285representations.</p>
2286
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002287<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002288
2289<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2290 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2291 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2292 types.</p>
2293
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002294<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002295
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002296<p>The value produced is the integer or floating point difference of
2297the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002298
Chris Lattner9aba1e22008-01-28 00:36:27 +00002299<p>If an integer difference has unsigned overflow, the result returned is the
2300mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2301the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002302
Chris Lattner9aba1e22008-01-28 00:36:27 +00002303<p>Because LLVM integers use a two's complement representation, this
2304instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002305
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306<h5>Example:</h5>
2307<pre>
2308 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2309 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2310</pre>
2311</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002313<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002314<div class="doc_subsubsection">
2315 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2316</div>
2317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002318<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002320<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002321<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002322</pre>
2323<h5>Overview:</h5>
2324<p>The '<tt>mul</tt>' instruction returns the product of its two
2325operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002326
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002327<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002328
2329<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2330href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2331or <a href="#t_vector">vector</a> values. Both arguments must have identical
2332types.</p>
2333
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002335
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002336<p>The value produced is the integer or floating point product of the
2337two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002338
Chris Lattner9aba1e22008-01-28 00:36:27 +00002339<p>If the result of an integer multiplication has unsigned overflow,
2340the result returned is the mathematical result modulo
23412<sup>n</sup>, where n is the bit width of the result.</p>
2342<p>Because LLVM integers use a two's complement representation, and the
2343result is the same width as the operands, this instruction returns the
2344correct result for both signed and unsigned integers. If a full product
2345(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2346should be sign-extended or zero-extended as appropriate to the
2347width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002348<h5>Example:</h5>
2349<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2350</pre>
2351</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353<!-- _______________________________________________________________________ -->
2354<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2355</a></div>
2356<div class="doc_text">
2357<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002358<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002359</pre>
2360<h5>Overview:</h5>
2361<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2362operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002363
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002364<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002365
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002367<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2368values. Both arguments must have identical types.</p>
2369
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002371
Chris Lattner9aba1e22008-01-28 00:36:27 +00002372<p>The value produced is the unsigned integer quotient of the two operands.</p>
2373<p>Note that unsigned integer division and signed integer division are distinct
2374operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2375<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376<h5>Example:</h5>
2377<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2378</pre>
2379</div>
2380<!-- _______________________________________________________________________ -->
2381<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2382</a> </div>
2383<div class="doc_text">
2384<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002385<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002386 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002389<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002391<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2392operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002393
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002395
2396<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2397<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2398values. Both arguments must have identical types.</p>
2399
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002400<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002401<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002402<p>Note that signed integer division and unsigned integer division are distinct
2403operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2404<p>Division by zero leads to undefined behavior. Overflow also leads to
2405undefined behavior; this is a rare case, but can occur, for example,
2406by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002407<h5>Example:</h5>
2408<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2409</pre>
2410</div>
2411<!-- _______________________________________________________________________ -->
2412<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2413Instruction</a> </div>
2414<div class="doc_text">
2415<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002416<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002417 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418</pre>
2419<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002420
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2422operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002427<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2428of floating point values. Both arguments must have identical types.</p>
2429
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002431
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002433
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002435
2436<pre>
2437 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438</pre>
2439</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002440
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441<!-- _______________________________________________________________________ -->
2442<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2443</div>
2444<div class="doc_text">
2445<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002446<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002447</pre>
2448<h5>Overview:</h5>
2449<p>The '<tt>urem</tt>' instruction returns the remainder from the
2450unsigned division of its two arguments.</p>
2451<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002452<p>The two arguments to the '<tt>urem</tt>' instruction must be
2453<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2454values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002455<h5>Semantics:</h5>
2456<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002457This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002458<p>Note that unsigned integer remainder and signed integer remainder are
2459distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2460<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002461<h5>Example:</h5>
2462<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2463</pre>
2464
2465</div>
2466<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002467<div class="doc_subsubsection">
2468 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2469</div>
2470
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002474
2475<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002476 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002477</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002480
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002481<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002482signed division of its two operands. This instruction can also take
2483<a href="#t_vector">vector</a> versions of the values in which case
2484the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002486<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002489<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2490values. Both arguments must have identical types.</p>
2491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002495has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2496operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497a value. For more information about the difference, see <a
2498 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2499Math Forum</a>. For a table of how this is implemented in various languages,
2500please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2501Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002502<p>Note that signed integer remainder and unsigned integer remainder are
2503distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2504<p>Taking the remainder of a division by zero leads to undefined behavior.
2505Overflow also leads to undefined behavior; this is a rare case, but can occur,
2506for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2507(The remainder doesn't actually overflow, but this rule lets srem be
2508implemented using instructions that return both the result of the division
2509and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002510<h5>Example:</h5>
2511<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2512</pre>
2513
2514</div>
2515<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002516<div class="doc_subsubsection">
2517 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2518
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002520
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002522<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002523</pre>
2524<h5>Overview:</h5>
2525<p>The '<tt>frem</tt>' instruction returns the remainder from the
2526division of its two operands.</p>
2527<h5>Arguments:</h5>
2528<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002529<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2530of floating point values. Both arguments must have identical types.</p>
2531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002532<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002533
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002534<p>This instruction returns the <i>remainder</i> of a division.
2535The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002536
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002537<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002538
2539<pre>
2540 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002541</pre>
2542</div>
2543
2544<!-- ======================================================================= -->
2545<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2546Operations</a> </div>
2547<div class="doc_text">
2548<p>Bitwise binary operators are used to do various forms of
2549bit-twiddling in a program. They are generally very efficient
2550instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002551instructions. They require two operands of the same type, execute an operation on them,
2552and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002553</div>
2554
2555<!-- _______________________________________________________________________ -->
2556<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2557Instruction</a> </div>
2558<div class="doc_text">
2559<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002560<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002561</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002562
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002564
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002565<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2566the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002567
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002569
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002570<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002571 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002572type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002573
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002574<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002575
Gabor Greifd9068fe2008-08-07 21:46:00 +00002576<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2577where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2578equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002579
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580<h5>Example:</h5><pre>
2581 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2582 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2583 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002584 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585</pre>
2586</div>
2587<!-- _______________________________________________________________________ -->
2588<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2589Instruction</a> </div>
2590<div class="doc_text">
2591<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002592<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593</pre>
2594
2595<h5>Overview:</h5>
2596<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2597operand shifted to the right a specified number of bits with zero fill.</p>
2598
2599<h5>Arguments:</h5>
2600<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002601<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002602type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603
2604<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606<p>This instruction always performs a logical shift right operation. The most
2607significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002608shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2609the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610
2611<h5>Example:</h5>
2612<pre>
2613 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2614 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2615 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2616 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002617 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002618</pre>
2619</div>
2620
2621<!-- _______________________________________________________________________ -->
2622<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2623Instruction</a> </div>
2624<div class="doc_text">
2625
2626<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002627<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002628</pre>
2629
2630<h5>Overview:</h5>
2631<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2632operand shifted to the right a specified number of bits with sign extension.</p>
2633
2634<h5>Arguments:</h5>
2635<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002636<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002637type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002638
2639<h5>Semantics:</h5>
2640<p>This instruction always performs an arithmetic shift right operation,
2641The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002642of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2643larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002644</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645
2646<h5>Example:</h5>
2647<pre>
2648 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2649 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2650 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2651 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002652 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002653</pre>
2654</div>
2655
2656<!-- _______________________________________________________________________ -->
2657<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2658Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002659
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002661
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002662<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002663
2664<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002665 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002667
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002668<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2671its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002672
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002674
2675<p>The two arguments to the '<tt>and</tt>' instruction must be
2676<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2677values. Both arguments must have identical types.</p>
2678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679<h5>Semantics:</h5>
2680<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2681<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002682<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002683<table border="1" cellspacing="0" cellpadding="4">
2684 <tbody>
2685 <tr>
2686 <td>In0</td>
2687 <td>In1</td>
2688 <td>Out</td>
2689 </tr>
2690 <tr>
2691 <td>0</td>
2692 <td>0</td>
2693 <td>0</td>
2694 </tr>
2695 <tr>
2696 <td>0</td>
2697 <td>1</td>
2698 <td>0</td>
2699 </tr>
2700 <tr>
2701 <td>1</td>
2702 <td>0</td>
2703 <td>0</td>
2704 </tr>
2705 <tr>
2706 <td>1</td>
2707 <td>1</td>
2708 <td>1</td>
2709 </tr>
2710 </tbody>
2711</table>
2712</div>
2713<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002714<pre>
2715 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002716 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2717 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2718</pre>
2719</div>
2720<!-- _______________________________________________________________________ -->
2721<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2722<div class="doc_text">
2723<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002724<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725</pre>
2726<h5>Overview:</h5>
2727<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2728or of its two operands.</p>
2729<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002730
2731<p>The two arguments to the '<tt>or</tt>' instruction must be
2732<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2733values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002734<h5>Semantics:</h5>
2735<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2736<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002737<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002738<table border="1" cellspacing="0" cellpadding="4">
2739 <tbody>
2740 <tr>
2741 <td>In0</td>
2742 <td>In1</td>
2743 <td>Out</td>
2744 </tr>
2745 <tr>
2746 <td>0</td>
2747 <td>0</td>
2748 <td>0</td>
2749 </tr>
2750 <tr>
2751 <td>0</td>
2752 <td>1</td>
2753 <td>1</td>
2754 </tr>
2755 <tr>
2756 <td>1</td>
2757 <td>0</td>
2758 <td>1</td>
2759 </tr>
2760 <tr>
2761 <td>1</td>
2762 <td>1</td>
2763 <td>1</td>
2764 </tr>
2765 </tbody>
2766</table>
2767</div>
2768<h5>Example:</h5>
2769<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2770 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2771 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2772</pre>
2773</div>
2774<!-- _______________________________________________________________________ -->
2775<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2776Instruction</a> </div>
2777<div class="doc_text">
2778<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002779<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780</pre>
2781<h5>Overview:</h5>
2782<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2783or of its two operands. The <tt>xor</tt> is used to implement the
2784"one's complement" operation, which is the "~" operator in C.</p>
2785<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002786<p>The two arguments to the '<tt>xor</tt>' instruction must be
2787<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2788values. Both arguments must have identical types.</p>
2789
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002790<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002791
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002792<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2793<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002794<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002795<table border="1" cellspacing="0" cellpadding="4">
2796 <tbody>
2797 <tr>
2798 <td>In0</td>
2799 <td>In1</td>
2800 <td>Out</td>
2801 </tr>
2802 <tr>
2803 <td>0</td>
2804 <td>0</td>
2805 <td>0</td>
2806 </tr>
2807 <tr>
2808 <td>0</td>
2809 <td>1</td>
2810 <td>1</td>
2811 </tr>
2812 <tr>
2813 <td>1</td>
2814 <td>0</td>
2815 <td>1</td>
2816 </tr>
2817 <tr>
2818 <td>1</td>
2819 <td>1</td>
2820 <td>0</td>
2821 </tr>
2822 </tbody>
2823</table>
2824</div>
2825<p> </p>
2826<h5>Example:</h5>
2827<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2828 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2829 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2830 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2831</pre>
2832</div>
2833
2834<!-- ======================================================================= -->
2835<div class="doc_subsection">
2836 <a name="vectorops">Vector Operations</a>
2837</div>
2838
2839<div class="doc_text">
2840
2841<p>LLVM supports several instructions to represent vector operations in a
2842target-independent manner. These instructions cover the element-access and
2843vector-specific operations needed to process vectors effectively. While LLVM
2844does directly support these vector operations, many sophisticated algorithms
2845will want to use target-specific intrinsics to take full advantage of a specific
2846target.</p>
2847
2848</div>
2849
2850<!-- _______________________________________________________________________ -->
2851<div class="doc_subsubsection">
2852 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2853</div>
2854
2855<div class="doc_text">
2856
2857<h5>Syntax:</h5>
2858
2859<pre>
2860 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2861</pre>
2862
2863<h5>Overview:</h5>
2864
2865<p>
2866The '<tt>extractelement</tt>' instruction extracts a single scalar
2867element from a vector at a specified index.
2868</p>
2869
2870
2871<h5>Arguments:</h5>
2872
2873<p>
2874The first operand of an '<tt>extractelement</tt>' instruction is a
2875value of <a href="#t_vector">vector</a> type. The second operand is
2876an index indicating the position from which to extract the element.
2877The index may be a variable.</p>
2878
2879<h5>Semantics:</h5>
2880
2881<p>
2882The result is a scalar of the same type as the element type of
2883<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2884<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2885results are undefined.
2886</p>
2887
2888<h5>Example:</h5>
2889
2890<pre>
2891 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2892</pre>
2893</div>
2894
2895
2896<!-- _______________________________________________________________________ -->
2897<div class="doc_subsubsection">
2898 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2899</div>
2900
2901<div class="doc_text">
2902
2903<h5>Syntax:</h5>
2904
2905<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002906 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002907</pre>
2908
2909<h5>Overview:</h5>
2910
2911<p>
2912The '<tt>insertelement</tt>' instruction inserts a scalar
2913element into a vector at a specified index.
2914</p>
2915
2916
2917<h5>Arguments:</h5>
2918
2919<p>
2920The first operand of an '<tt>insertelement</tt>' instruction is a
2921value of <a href="#t_vector">vector</a> type. The second operand is a
2922scalar value whose type must equal the element type of the first
2923operand. The third operand is an index indicating the position at
2924which to insert the value. The index may be a variable.</p>
2925
2926<h5>Semantics:</h5>
2927
2928<p>
2929The result is a vector of the same type as <tt>val</tt>. Its
2930element values are those of <tt>val</tt> except at position
2931<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2932exceeds the length of <tt>val</tt>, the results are undefined.
2933</p>
2934
2935<h5>Example:</h5>
2936
2937<pre>
2938 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2939</pre>
2940</div>
2941
2942<!-- _______________________________________________________________________ -->
2943<div class="doc_subsubsection">
2944 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2945</div>
2946
2947<div class="doc_text">
2948
2949<h5>Syntax:</h5>
2950
2951<pre>
Mon P Wangbff5d9c2008-11-10 04:46:22 +00002952 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953</pre>
2954
2955<h5>Overview:</h5>
2956
2957<p>
2958The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangbff5d9c2008-11-10 04:46:22 +00002959from two input vectors, returning a vector with the same element type as
2960the input and length that is the same as the shuffle mask.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961</p>
2962
2963<h5>Arguments:</h5>
2964
2965<p>
Mon P Wangbff5d9c2008-11-10 04:46:22 +00002966The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2967with types that match each other. The third argument is a shuffle mask whose
2968element type is always 'i32'. The result of the instruction is a vector whose
2969length is the same as the shuffle mask and whose element type is the same as
2970the element type of the first two operands.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002971</p>
2972
2973<p>
2974The shuffle mask operand is required to be a constant vector with either
2975constant integer or undef values.
2976</p>
2977
2978<h5>Semantics:</h5>
2979
2980<p>
2981The elements of the two input vectors are numbered from left to right across
2982both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangbff5d9c2008-11-10 04:46:22 +00002983the result vector, which element of the two input vectors the result element
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984gets. The element selector may be undef (meaning "don't care") and the second
2985operand may be undef if performing a shuffle from only one vector.
2986</p>
2987
2988<h5>Example:</h5>
2989
2990<pre>
2991 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2992 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2993 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2994 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangbff5d9c2008-11-10 04:46:22 +00002995 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
2996 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
2997 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2998 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002999</pre>
3000</div>
3001
3002
3003<!-- ======================================================================= -->
3004<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00003005 <a name="aggregateops">Aggregate Operations</a>
3006</div>
3007
3008<div class="doc_text">
3009
3010<p>LLVM supports several instructions for working with aggregate values.
3011</p>
3012
3013</div>
3014
3015<!-- _______________________________________________________________________ -->
3016<div class="doc_subsubsection">
3017 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3018</div>
3019
3020<div class="doc_text">
3021
3022<h5>Syntax:</h5>
3023
3024<pre>
3025 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3026</pre>
3027
3028<h5>Overview:</h5>
3029
3030<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00003031The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3032or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003033</p>
3034
3035
3036<h5>Arguments:</h5>
3037
3038<p>
3039The first operand of an '<tt>extractvalue</tt>' instruction is a
3040value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00003041type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00003042in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003043'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3044</p>
3045
3046<h5>Semantics:</h5>
3047
3048<p>
3049The result is the value at the position in the aggregate specified by
3050the index operands.
3051</p>
3052
3053<h5>Example:</h5>
3054
3055<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003056 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003057</pre>
3058</div>
3059
3060
3061<!-- _______________________________________________________________________ -->
3062<div class="doc_subsubsection">
3063 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3064</div>
3065
3066<div class="doc_text">
3067
3068<h5>Syntax:</h5>
3069
3070<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003071 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003072</pre>
3073
3074<h5>Overview:</h5>
3075
3076<p>
3077The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003078into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003079</p>
3080
3081
3082<h5>Arguments:</h5>
3083
3084<p>
3085The first operand of an '<tt>insertvalue</tt>' instruction is a
3086value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3087The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003088The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003089indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003090indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003091'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3092The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003093by the indices.
Dan Gohman2672f3e2008-10-14 16:51:45 +00003094</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003095
3096<h5>Semantics:</h5>
3097
3098<p>
3099The result is an aggregate of the same type as <tt>val</tt>. Its
3100value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003101specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003102</p>
3103
3104<h5>Example:</h5>
3105
3106<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003107 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003108</pre>
3109</div>
3110
3111
3112<!-- ======================================================================= -->
3113<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114 <a name="memoryops">Memory Access and Addressing Operations</a>
3115</div>
3116
3117<div class="doc_text">
3118
3119<p>A key design point of an SSA-based representation is how it
3120represents memory. In LLVM, no memory locations are in SSA form, which
3121makes things very simple. This section describes how to read, write,
3122allocate, and free memory in LLVM.</p>
3123
3124</div>
3125
3126<!-- _______________________________________________________________________ -->
3127<div class="doc_subsubsection">
3128 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3129</div>
3130
3131<div class="doc_text">
3132
3133<h5>Syntax:</h5>
3134
3135<pre>
3136 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3137</pre>
3138
3139<h5>Overview:</h5>
3140
3141<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003142heap and returns a pointer to it. The object is always allocated in the generic
3143address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144
3145<h5>Arguments:</h5>
3146
3147<p>The '<tt>malloc</tt>' instruction allocates
3148<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3149bytes of memory from the operating system and returns a pointer of the
3150appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003151number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003152If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003153be aligned to at least that boundary. If not specified, or if zero, the target can
3154choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003155
3156<p>'<tt>type</tt>' must be a sized type.</p>
3157
3158<h5>Semantics:</h5>
3159
3160<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003161a pointer is returned. The result of a zero byte allocattion is undefined. The
3162result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163
3164<h5>Example:</h5>
3165
3166<pre>
3167 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3168
3169 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3170 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3171 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3172 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3173 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3174</pre>
3175</div>
3176
3177<!-- _______________________________________________________________________ -->
3178<div class="doc_subsubsection">
3179 <a name="i_free">'<tt>free</tt>' Instruction</a>
3180</div>
3181
3182<div class="doc_text">
3183
3184<h5>Syntax:</h5>
3185
3186<pre>
3187 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3188</pre>
3189
3190<h5>Overview:</h5>
3191
3192<p>The '<tt>free</tt>' instruction returns memory back to the unused
3193memory heap to be reallocated in the future.</p>
3194
3195<h5>Arguments:</h5>
3196
3197<p>'<tt>value</tt>' shall be a pointer value that points to a value
3198that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3199instruction.</p>
3200
3201<h5>Semantics:</h5>
3202
3203<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003204after this instruction executes. If the pointer is null, the operation
3205is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003206
3207<h5>Example:</h5>
3208
3209<pre>
3210 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3211 free [4 x i8]* %array
3212</pre>
3213</div>
3214
3215<!-- _______________________________________________________________________ -->
3216<div class="doc_subsubsection">
3217 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3218</div>
3219
3220<div class="doc_text">
3221
3222<h5>Syntax:</h5>
3223
3224<pre>
3225 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3226</pre>
3227
3228<h5>Overview:</h5>
3229
3230<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3231currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003232returns to its caller. The object is always allocated in the generic address
3233space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003234
3235<h5>Arguments:</h5>
3236
3237<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3238bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003239appropriate type to the program. If "NumElements" is specified, it is the
3240number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003241If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003242to be aligned to at least that boundary. If not specified, or if zero, the target
3243can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244
3245<p>'<tt>type</tt>' may be any sized type.</p>
3246
3247<h5>Semantics:</h5>
3248
Chris Lattner8b094fc2008-04-19 21:01:16 +00003249<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3250there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003251memory is automatically released when the function returns. The '<tt>alloca</tt>'
3252instruction is commonly used to represent automatic variables that must
3253have an address available. When the function returns (either with the <tt><a
3254 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003255instructions), the memory is reclaimed. Allocating zero bytes
3256is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003257
3258<h5>Example:</h5>
3259
3260<pre>
3261 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3262 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3263 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3264 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3265</pre>
3266</div>
3267
3268<!-- _______________________________________________________________________ -->
3269<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3270Instruction</a> </div>
3271<div class="doc_text">
3272<h5>Syntax:</h5>
3273<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3274<h5>Overview:</h5>
3275<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3276<h5>Arguments:</h5>
3277<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3278address from which to load. The pointer must point to a <a
3279 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3280marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3281the number or order of execution of this <tt>load</tt> with other
3282volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3283instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003284<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003285The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003286(that is, the alignment of the memory address). A value of 0 or an
3287omitted "align" argument means that the operation has the preferential
3288alignment for the target. It is the responsibility of the code emitter
3289to ensure that the alignment information is correct. Overestimating
3290the alignment results in an undefined behavior. Underestimating the
3291alignment may produce less efficient code. An alignment of 1 is always
3292safe.
3293</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003294<h5>Semantics:</h5>
3295<p>The location of memory pointed to is loaded.</p>
3296<h5>Examples:</h5>
3297<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3298 <a
3299 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3300 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3301</pre>
3302</div>
3303<!-- _______________________________________________________________________ -->
3304<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3305Instruction</a> </div>
3306<div class="doc_text">
3307<h5>Syntax:</h5>
3308<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3309 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3310</pre>
3311<h5>Overview:</h5>
3312<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3313<h5>Arguments:</h5>
3314<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3315to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003316operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3317of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3319optimizer is not allowed to modify the number or order of execution of
3320this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3321 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003322<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003323The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003324(that is, the alignment of the memory address). A value of 0 or an
3325omitted "align" argument means that the operation has the preferential
3326alignment for the target. It is the responsibility of the code emitter
3327to ensure that the alignment information is correct. Overestimating
3328the alignment results in an undefined behavior. Underestimating the
3329alignment may produce less efficient code. An alignment of 1 is always
3330safe.
3331</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003332<h5>Semantics:</h5>
3333<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3334at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3335<h5>Example:</h5>
3336<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003337 store i32 3, i32* %ptr <i>; yields {void}</i>
3338 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003339</pre>
3340</div>
3341
3342<!-- _______________________________________________________________________ -->
3343<div class="doc_subsubsection">
3344 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3345</div>
3346
3347<div class="doc_text">
3348<h5>Syntax:</h5>
3349<pre>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003350 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003351</pre>
3352
3353<h5>Overview:</h5>
3354
3355<p>
3356The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003357subelement of an aggregate data structure. It performs address calculation only
3358and does not access memory.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359
3360<h5>Arguments:</h5>
3361
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003362<p>The first argument is always a pointer, and forms the basis of the
3363calculation. The remaining arguments are indices, that indicate which of the
3364elements of the aggregate object are indexed. The interpretation of each index
3365is dependent on the type being indexed into. The first index always indexes the
3366pointer value given as the first argument, the second index indexes a value of
3367the type pointed to (not necessarily the value directly pointed to, since the
3368first index can be non-zero), etc. The first type indexed into must be a pointer
3369value, subsequent types can be arrays, vectors and structs. Note that subsequent
3370types being indexed into can never be pointers, since that would require loading
3371the pointer before continuing calculation.</p>
3372
3373<p>The type of each index argument depends on the type it is indexing into.
3374When indexing into a (packed) structure, only <tt>i32</tt> integer
3375<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3376only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3377will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003378
3379<p>For example, let's consider a C code fragment and how it gets
3380compiled to LLVM:</p>
3381
3382<div class="doc_code">
3383<pre>
3384struct RT {
3385 char A;
3386 int B[10][20];
3387 char C;
3388};
3389struct ST {
3390 int X;
3391 double Y;
3392 struct RT Z;
3393};
3394
3395int *foo(struct ST *s) {
3396 return &amp;s[1].Z.B[5][13];
3397}
3398</pre>
3399</div>
3400
3401<p>The LLVM code generated by the GCC frontend is:</p>
3402
3403<div class="doc_code">
3404<pre>
3405%RT = type { i8 , [10 x [20 x i32]], i8 }
3406%ST = type { i32, double, %RT }
3407
3408define i32* %foo(%ST* %s) {
3409entry:
3410 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3411 ret i32* %reg
3412}
3413</pre>
3414</div>
3415
3416<h5>Semantics:</h5>
3417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3419type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3420}</tt>' type, a structure. The second index indexes into the third element of
3421the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3422i8 }</tt>' type, another structure. The third index indexes into the second
3423element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3424array. The two dimensions of the array are subscripted into, yielding an
3425'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3426to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3427
3428<p>Note that it is perfectly legal to index partially through a
3429structure, returning a pointer to an inner element. Because of this,
3430the LLVM code for the given testcase is equivalent to:</p>
3431
3432<pre>
3433 define i32* %foo(%ST* %s) {
3434 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3435 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3436 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3437 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3438 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3439 ret i32* %t5
3440 }
3441</pre>
3442
3443<p>Note that it is undefined to access an array out of bounds: array and
3444pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003445The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003446defined to be accessible as variable length arrays, which requires access
3447beyond the zero'th element.</p>
3448
3449<p>The getelementptr instruction is often confusing. For some more insight
3450into how it works, see <a href="GetElementPtr.html">the getelementptr
3451FAQ</a>.</p>
3452
3453<h5>Example:</h5>
3454
3455<pre>
3456 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003457 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3458 <i>; yields i8*:vptr</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00003459 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003460 <i>; yields i8*:eptr</i>
3461 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462</pre>
3463</div>
3464
3465<!-- ======================================================================= -->
3466<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3467</div>
3468<div class="doc_text">
3469<p>The instructions in this category are the conversion instructions (casting)
3470which all take a single operand and a type. They perform various bit conversions
3471on the operand.</p>
3472</div>
3473
3474<!-- _______________________________________________________________________ -->
3475<div class="doc_subsubsection">
3476 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3477</div>
3478<div class="doc_text">
3479
3480<h5>Syntax:</h5>
3481<pre>
3482 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3483</pre>
3484
3485<h5>Overview:</h5>
3486<p>
3487The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3488</p>
3489
3490<h5>Arguments:</h5>
3491<p>
3492The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3493be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3494and type of the result, which must be an <a href="#t_integer">integer</a>
3495type. The bit size of <tt>value</tt> must be larger than the bit size of
3496<tt>ty2</tt>. Equal sized types are not allowed.</p>
3497
3498<h5>Semantics:</h5>
3499<p>
3500The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3501and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3502larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3503It will always truncate bits.</p>
3504
3505<h5>Example:</h5>
3506<pre>
3507 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3508 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3509 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3510</pre>
3511</div>
3512
3513<!-- _______________________________________________________________________ -->
3514<div class="doc_subsubsection">
3515 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3516</div>
3517<div class="doc_text">
3518
3519<h5>Syntax:</h5>
3520<pre>
3521 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3522</pre>
3523
3524<h5>Overview:</h5>
3525<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3526<tt>ty2</tt>.</p>
3527
3528
3529<h5>Arguments:</h5>
3530<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3531<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3532also be of <a href="#t_integer">integer</a> type. The bit size of the
3533<tt>value</tt> must be smaller than the bit size of the destination type,
3534<tt>ty2</tt>.</p>
3535
3536<h5>Semantics:</h5>
3537<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3538bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3539
3540<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3541
3542<h5>Example:</h5>
3543<pre>
3544 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3545 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3546</pre>
3547</div>
3548
3549<!-- _______________________________________________________________________ -->
3550<div class="doc_subsubsection">
3551 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3552</div>
3553<div class="doc_text">
3554
3555<h5>Syntax:</h5>
3556<pre>
3557 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3558</pre>
3559
3560<h5>Overview:</h5>
3561<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3562
3563<h5>Arguments:</h5>
3564<p>
3565The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3566<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3567also be of <a href="#t_integer">integer</a> type. The bit size of the
3568<tt>value</tt> must be smaller than the bit size of the destination type,
3569<tt>ty2</tt>.</p>
3570
3571<h5>Semantics:</h5>
3572<p>
3573The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3574bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3575the type <tt>ty2</tt>.</p>
3576
3577<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3578
3579<h5>Example:</h5>
3580<pre>
3581 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3582 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3583</pre>
3584</div>
3585
3586<!-- _______________________________________________________________________ -->
3587<div class="doc_subsubsection">
3588 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3589</div>
3590
3591<div class="doc_text">
3592
3593<h5>Syntax:</h5>
3594
3595<pre>
3596 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3597</pre>
3598
3599<h5>Overview:</h5>
3600<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3601<tt>ty2</tt>.</p>
3602
3603
3604<h5>Arguments:</h5>
3605<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3606 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3607cast it to. The size of <tt>value</tt> must be larger than the size of
3608<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3609<i>no-op cast</i>.</p>
3610
3611<h5>Semantics:</h5>
3612<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3613<a href="#t_floating">floating point</a> type to a smaller
3614<a href="#t_floating">floating point</a> type. If the value cannot fit within
3615the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3616
3617<h5>Example:</h5>
3618<pre>
3619 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3620 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3621</pre>
3622</div>
3623
3624<!-- _______________________________________________________________________ -->
3625<div class="doc_subsubsection">
3626 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3627</div>
3628<div class="doc_text">
3629
3630<h5>Syntax:</h5>
3631<pre>
3632 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3633</pre>
3634
3635<h5>Overview:</h5>
3636<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3637floating point value.</p>
3638
3639<h5>Arguments:</h5>
3640<p>The '<tt>fpext</tt>' instruction takes a
3641<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3642and a <a href="#t_floating">floating point</a> type to cast it to. The source
3643type must be smaller than the destination type.</p>
3644
3645<h5>Semantics:</h5>
3646<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3647<a href="#t_floating">floating point</a> type to a larger
3648<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3649used to make a <i>no-op cast</i> because it always changes bits. Use
3650<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3651
3652<h5>Example:</h5>
3653<pre>
3654 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3655 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3656</pre>
3657</div>
3658
3659<!-- _______________________________________________________________________ -->
3660<div class="doc_subsubsection">
3661 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3662</div>
3663<div class="doc_text">
3664
3665<h5>Syntax:</h5>
3666<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003667 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003668</pre>
3669
3670<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003671<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003672unsigned integer equivalent of type <tt>ty2</tt>.
3673</p>
3674
3675<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003676<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003677scalar or vector <a href="#t_floating">floating point</a> value, and a type
3678to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3679type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3680vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003681
3682<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003683<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003684<a href="#t_floating">floating point</a> operand into the nearest (rounding
3685towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3686the results are undefined.</p>
3687
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003688<h5>Example:</h5>
3689<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003690 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003691 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003692 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003693</pre>
3694</div>
3695
3696<!-- _______________________________________________________________________ -->
3697<div class="doc_subsubsection">
3698 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3699</div>
3700<div class="doc_text">
3701
3702<h5>Syntax:</h5>
3703<pre>
3704 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3705</pre>
3706
3707<h5>Overview:</h5>
3708<p>The '<tt>fptosi</tt>' instruction converts
3709<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3710</p>
3711
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712<h5>Arguments:</h5>
3713<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003714scalar or vector <a href="#t_floating">floating point</a> value, and a type
3715to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3716type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3717vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003718
3719<h5>Semantics:</h5>
3720<p>The '<tt>fptosi</tt>' instruction converts its
3721<a href="#t_floating">floating point</a> operand into the nearest (rounding
3722towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3723the results are undefined.</p>
3724
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003725<h5>Example:</h5>
3726<pre>
3727 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003728 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3730</pre>
3731</div>
3732
3733<!-- _______________________________________________________________________ -->
3734<div class="doc_subsubsection">
3735 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3736</div>
3737<div class="doc_text">
3738
3739<h5>Syntax:</h5>
3740<pre>
3741 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3742</pre>
3743
3744<h5>Overview:</h5>
3745<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3746integer and converts that value to the <tt>ty2</tt> type.</p>
3747
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003749<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3750scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3751to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3752type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3753floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003754
3755<h5>Semantics:</h5>
3756<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3757integer quantity and converts it to the corresponding floating point value. If
3758the value cannot fit in the floating point value, the results are undefined.</p>
3759
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003760<h5>Example:</h5>
3761<pre>
3762 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00003763 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003764</pre>
3765</div>
3766
3767<!-- _______________________________________________________________________ -->
3768<div class="doc_subsubsection">
3769 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3770</div>
3771<div class="doc_text">
3772
3773<h5>Syntax:</h5>
3774<pre>
3775 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3776</pre>
3777
3778<h5>Overview:</h5>
3779<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3780integer and converts that value to the <tt>ty2</tt> type.</p>
3781
3782<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003783<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3784scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3785to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3786type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3787floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788
3789<h5>Semantics:</h5>
3790<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3791integer quantity and converts it to the corresponding floating point value. If
3792the value cannot fit in the floating point value, the results are undefined.</p>
3793
3794<h5>Example:</h5>
3795<pre>
3796 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00003797 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798</pre>
3799</div>
3800
3801<!-- _______________________________________________________________________ -->
3802<div class="doc_subsubsection">
3803 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3804</div>
3805<div class="doc_text">
3806
3807<h5>Syntax:</h5>
3808<pre>
3809 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3810</pre>
3811
3812<h5>Overview:</h5>
3813<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3814the integer type <tt>ty2</tt>.</p>
3815
3816<h5>Arguments:</h5>
3817<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3818must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman2672f3e2008-10-14 16:51:45 +00003819<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003820
3821<h5>Semantics:</h5>
3822<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3823<tt>ty2</tt> by interpreting the pointer value as an integer and either
3824truncating or zero extending that value to the size of the integer type. If
3825<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3826<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3827are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3828change.</p>
3829
3830<h5>Example:</h5>
3831<pre>
3832 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3833 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3834</pre>
3835</div>
3836
3837<!-- _______________________________________________________________________ -->
3838<div class="doc_subsubsection">
3839 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3840</div>
3841<div class="doc_text">
3842
3843<h5>Syntax:</h5>
3844<pre>
3845 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3846</pre>
3847
3848<h5>Overview:</h5>
3849<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3850a pointer type, <tt>ty2</tt>.</p>
3851
3852<h5>Arguments:</h5>
3853<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3854value to cast, and a type to cast it to, which must be a
Dan Gohman2672f3e2008-10-14 16:51:45 +00003855<a href="#t_pointer">pointer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003856
3857<h5>Semantics:</h5>
3858<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3859<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3860the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3861size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3862the size of a pointer then a zero extension is done. If they are the same size,
3863nothing is done (<i>no-op cast</i>).</p>
3864
3865<h5>Example:</h5>
3866<pre>
3867 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3868 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3869 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3870</pre>
3871</div>
3872
3873<!-- _______________________________________________________________________ -->
3874<div class="doc_subsubsection">
3875 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3876</div>
3877<div class="doc_text">
3878
3879<h5>Syntax:</h5>
3880<pre>
3881 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3882</pre>
3883
3884<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003885
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003886<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3887<tt>ty2</tt> without changing any bits.</p>
3888
3889<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003890
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman7305fa02008-09-08 16:45:59 +00003892a non-aggregate first class value, and a type to cast it to, which must also be
3893a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3894<tt>value</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003895and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003896type is a pointer, the destination type must also be a pointer. This
3897instruction supports bitwise conversion of vectors to integers and to vectors
3898of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899
3900<h5>Semantics:</h5>
3901<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3902<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3903this conversion. The conversion is done as if the <tt>value</tt> had been
3904stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3905converted to other pointer types with this instruction. To convert pointers to
3906other types, use the <a href="#i_inttoptr">inttoptr</a> or
3907<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3908
3909<h5>Example:</h5>
3910<pre>
3911 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3912 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00003913 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003914</pre>
3915</div>
3916
3917<!-- ======================================================================= -->
3918<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3919<div class="doc_text">
3920<p>The instructions in this category are the "miscellaneous"
3921instructions, which defy better classification.</p>
3922</div>
3923
3924<!-- _______________________________________________________________________ -->
3925<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3926</div>
3927<div class="doc_text">
3928<h5>Syntax:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00003929<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003930</pre>
3931<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003932<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3933a vector of boolean values based on comparison
3934of its two integer, integer vector, or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003935<h5>Arguments:</h5>
3936<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3937the condition code indicating the kind of comparison to perform. It is not
3938a value, just a keyword. The possible condition code are:
Dan Gohman2672f3e2008-10-14 16:51:45 +00003939</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003940<ol>
3941 <li><tt>eq</tt>: equal</li>
3942 <li><tt>ne</tt>: not equal </li>
3943 <li><tt>ugt</tt>: unsigned greater than</li>
3944 <li><tt>uge</tt>: unsigned greater or equal</li>
3945 <li><tt>ult</tt>: unsigned less than</li>
3946 <li><tt>ule</tt>: unsigned less or equal</li>
3947 <li><tt>sgt</tt>: signed greater than</li>
3948 <li><tt>sge</tt>: signed greater or equal</li>
3949 <li><tt>slt</tt>: signed less than</li>
3950 <li><tt>sle</tt>: signed less or equal</li>
3951</ol>
3952<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003953<a href="#t_pointer">pointer</a>
3954or integer <a href="#t_vector">vector</a> typed.
3955They must also be identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003957<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003958the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003959yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman2672f3e2008-10-14 16:51:45 +00003960</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003961<ol>
3962 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3963 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3964 </li>
3965 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman2672f3e2008-10-14 16:51:45 +00003966 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003968 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003969 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003970 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003972 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003974 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003975 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003976 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003977 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003978 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003980 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003982 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003983</ol>
3984<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3985values are compared as if they were integers.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00003986<p>If the operands are integer vectors, then they are compared
3987element by element. The result is an <tt>i1</tt> vector with
3988the same number of elements as the values being compared.
3989Otherwise, the result is an <tt>i1</tt>.
3990</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991
3992<h5>Example:</h5>
3993<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3994 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3995 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3996 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3997 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3998 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3999</pre>
4000</div>
4001
4002<!-- _______________________________________________________________________ -->
4003<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4004</div>
4005<div class="doc_text">
4006<h5>Syntax:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004007<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008</pre>
4009<h5>Overview:</h5>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004010<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4011or vector of boolean values based on comparison
Dan Gohman2672f3e2008-10-14 16:51:45 +00004012of its operands.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004013<p>
4014If the operands are floating point scalars, then the result
4015type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4016</p>
4017<p>If the operands are floating point vectors, then the result type
4018is a vector of boolean with the same number of elements as the
4019operands being compared.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004020<h5>Arguments:</h5>
4021<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
4022the condition code indicating the kind of comparison to perform. It is not
Dan Gohman2672f3e2008-10-14 16:51:45 +00004023a value, just a keyword. The possible condition code are:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004024<ol>
4025 <li><tt>false</tt>: no comparison, always returns false</li>
4026 <li><tt>oeq</tt>: ordered and equal</li>
4027 <li><tt>ogt</tt>: ordered and greater than </li>
4028 <li><tt>oge</tt>: ordered and greater than or equal</li>
4029 <li><tt>olt</tt>: ordered and less than </li>
4030 <li><tt>ole</tt>: ordered and less than or equal</li>
4031 <li><tt>one</tt>: ordered and not equal</li>
4032 <li><tt>ord</tt>: ordered (no nans)</li>
4033 <li><tt>ueq</tt>: unordered or equal</li>
4034 <li><tt>ugt</tt>: unordered or greater than </li>
4035 <li><tt>uge</tt>: unordered or greater than or equal</li>
4036 <li><tt>ult</tt>: unordered or less than </li>
4037 <li><tt>ule</tt>: unordered or less than or equal</li>
4038 <li><tt>une</tt>: unordered or not equal</li>
4039 <li><tt>uno</tt>: unordered (either nans)</li>
4040 <li><tt>true</tt>: no comparison, always returns true</li>
4041</ol>
4042<p><i>Ordered</i> means that neither operand is a QNAN while
4043<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004044<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4045either a <a href="#t_floating">floating point</a> type
4046or a <a href="#t_vector">vector</a> of floating point type.
4047They must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004048<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004049<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004050according to the condition code given as <tt>cond</tt>.
4051If the operands are vectors, then the vectors are compared
4052element by element.
4053Each comparison performed
Dan Gohman2672f3e2008-10-14 16:51:45 +00004054always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004055<ol>
4056 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
4057 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004058 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004059 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004060 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004061 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004062 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004063 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004064 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004065 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004066 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004067 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00004068 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004069 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4070 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004071 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004072 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004073 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004074 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004075 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004076 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004077 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004078 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004079 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004080 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00004081 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004082 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4083 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4084</ol>
4085
4086<h5>Example:</h5>
4087<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004088 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4089 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4090 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091</pre>
4092</div>
4093
4094<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00004095<div class="doc_subsubsection">
4096 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4097</div>
4098<div class="doc_text">
4099<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004100<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004101</pre>
4102<h5>Overview:</h5>
4103<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4104element-wise comparison of its two integer vector operands.</p>
4105<h5>Arguments:</h5>
4106<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4107the condition code indicating the kind of comparison to perform. It is not
Dan Gohman2672f3e2008-10-14 16:51:45 +00004108a value, just a keyword. The possible condition code are:</p>
Nate Begeman646fa482008-05-12 19:01:56 +00004109<ol>
4110 <li><tt>eq</tt>: equal</li>
4111 <li><tt>ne</tt>: not equal </li>
4112 <li><tt>ugt</tt>: unsigned greater than</li>
4113 <li><tt>uge</tt>: unsigned greater or equal</li>
4114 <li><tt>ult</tt>: unsigned less than</li>
4115 <li><tt>ule</tt>: unsigned less or equal</li>
4116 <li><tt>sgt</tt>: signed greater than</li>
4117 <li><tt>sge</tt>: signed greater or equal</li>
4118 <li><tt>slt</tt>: signed less than</li>
4119 <li><tt>sle</tt>: signed less or equal</li>
4120</ol>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004121<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begeman646fa482008-05-12 19:01:56 +00004122<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4123<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004124<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004125according to the condition code given as <tt>cond</tt>. The comparison yields a
4126<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4127identical type as the values being compared. The most significant bit in each
4128element is 1 if the element-wise comparison evaluates to true, and is 0
4129otherwise. All other bits of the result are undefined. The condition codes
4130are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman2672f3e2008-10-14 16:51:45 +00004131instruction</a>.</p>
Nate Begeman646fa482008-05-12 19:01:56 +00004132
4133<h5>Example:</h5>
4134<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004135 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4136 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004137</pre>
4138</div>
4139
4140<!-- _______________________________________________________________________ -->
4141<div class="doc_subsubsection">
4142 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4143</div>
4144<div class="doc_text">
4145<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004146<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004147<h5>Overview:</h5>
4148<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4149element-wise comparison of its two floating point vector operands. The output
4150elements have the same width as the input elements.</p>
4151<h5>Arguments:</h5>
4152<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4153the condition code indicating the kind of comparison to perform. It is not
Dan Gohman2672f3e2008-10-14 16:51:45 +00004154a value, just a keyword. The possible condition code are:</p>
Nate Begeman646fa482008-05-12 19:01:56 +00004155<ol>
4156 <li><tt>false</tt>: no comparison, always returns false</li>
4157 <li><tt>oeq</tt>: ordered and equal</li>
4158 <li><tt>ogt</tt>: ordered and greater than </li>
4159 <li><tt>oge</tt>: ordered and greater than or equal</li>
4160 <li><tt>olt</tt>: ordered and less than </li>
4161 <li><tt>ole</tt>: ordered and less than or equal</li>
4162 <li><tt>one</tt>: ordered and not equal</li>
4163 <li><tt>ord</tt>: ordered (no nans)</li>
4164 <li><tt>ueq</tt>: unordered or equal</li>
4165 <li><tt>ugt</tt>: unordered or greater than </li>
4166 <li><tt>uge</tt>: unordered or greater than or equal</li>
4167 <li><tt>ult</tt>: unordered or less than </li>
4168 <li><tt>ule</tt>: unordered or less than or equal</li>
4169 <li><tt>une</tt>: unordered or not equal</li>
4170 <li><tt>uno</tt>: unordered (either nans)</li>
4171 <li><tt>true</tt>: no comparison, always returns true</li>
4172</ol>
4173<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4174<a href="#t_floating">floating point</a> typed. They must also be identical
4175types.</p>
4176<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004177<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004178according to the condition code given as <tt>cond</tt>. The comparison yields a
4179<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4180an identical number of elements as the values being compared, and each element
4181having identical with to the width of the floating point elements. The most
4182significant bit in each element is 1 if the element-wise comparison evaluates to
4183true, and is 0 otherwise. All other bits of the result are undefined. The
4184condition codes are evaluated identically to the
Dan Gohman2672f3e2008-10-14 16:51:45 +00004185<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begeman646fa482008-05-12 19:01:56 +00004186
4187<h5>Example:</h5>
4188<pre>
Chris Lattner1e5c5cd02008-10-13 16:55:18 +00004189 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4190 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4191
4192 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4193 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begeman646fa482008-05-12 19:01:56 +00004194</pre>
4195</div>
4196
4197<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004198<div class="doc_subsubsection">
4199 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4200</div>
4201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004202<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004205
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004206<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4207<h5>Overview:</h5>
4208<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4209the SSA graph representing the function.</p>
4210<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004211
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004212<p>The type of the incoming values is specified with the first type
4213field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4214as arguments, with one pair for each predecessor basic block of the
4215current block. Only values of <a href="#t_firstclass">first class</a>
4216type may be used as the value arguments to the PHI node. Only labels
4217may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004218
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004219<p>There must be no non-phi instructions between the start of a basic
4220block and the PHI instructions: i.e. PHI instructions must be first in
4221a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004222
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004223<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004225<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4226specified by the pair corresponding to the predecessor basic block that executed
4227just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004230<pre>
4231Loop: ; Infinite loop that counts from 0 on up...
4232 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4233 %nextindvar = add i32 %indvar, 1
4234 br label %Loop
4235</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004236</div>
4237
4238<!-- _______________________________________________________________________ -->
4239<div class="doc_subsubsection">
4240 <a name="i_select">'<tt>select</tt>' Instruction</a>
4241</div>
4242
4243<div class="doc_text">
4244
4245<h5>Syntax:</h5>
4246
4247<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004248 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4249
Dan Gohman2672f3e2008-10-14 16:51:45 +00004250 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004251</pre>
4252
4253<h5>Overview:</h5>
4254
4255<p>
4256The '<tt>select</tt>' instruction is used to choose one value based on a
4257condition, without branching.
4258</p>
4259
4260
4261<h5>Arguments:</h5>
4262
4263<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004264The '<tt>select</tt>' instruction requires an 'i1' value or
4265a vector of 'i1' values indicating the
Chris Lattner6704c212008-05-20 20:48:21 +00004266condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004267type. If the val1/val2 are vectors and
4268the condition is a scalar, then entire vectors are selected, not
Chris Lattner6704c212008-05-20 20:48:21 +00004269individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004270</p>
4271
4272<h5>Semantics:</h5>
4273
4274<p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004275If the condition is an i1 and it evaluates to 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004276value argument; otherwise, it returns the second value argument.
4277</p>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004278<p>
4279If the condition is a vector of i1, then the value arguments must
4280be vectors of the same size, and the selection is done element
4281by element.
4282</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004283
4284<h5>Example:</h5>
4285
4286<pre>
4287 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4288</pre>
4289</div>
4290
4291
4292<!-- _______________________________________________________________________ -->
4293<div class="doc_subsubsection">
4294 <a name="i_call">'<tt>call</tt>' Instruction</a>
4295</div>
4296
4297<div class="doc_text">
4298
4299<h5>Syntax:</h5>
4300<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00004301 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004302</pre>
4303
4304<h5>Overview:</h5>
4305
4306<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4307
4308<h5>Arguments:</h5>
4309
4310<p>This instruction requires several arguments:</p>
4311
4312<ol>
4313 <li>
4314 <p>The optional "tail" marker indicates whether the callee function accesses
4315 any allocas or varargs in the caller. If the "tail" marker is present, the
4316 function call is eligible for tail call optimization. Note that calls may
4317 be marked "tail" even if they do not occur before a <a
Dan Gohman2672f3e2008-10-14 16:51:45 +00004318 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004319 </li>
4320 <li>
4321 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4322 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman2672f3e2008-10-14 16:51:45 +00004323 to using C calling conventions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004324 </li>
Devang Patelac2fc272008-10-06 18:50:38 +00004325
4326 <li>
4327 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4328 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4329 and '<tt>inreg</tt>' attributes are valid here.</p>
4330 </li>
4331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004332 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004333 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4334 the type of the return value. Functions that return no value are marked
4335 <tt><a href="#t_void">void</a></tt>.</p>
4336 </li>
4337 <li>
4338 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4339 value being invoked. The argument types must match the types implied by
4340 this signature. This type can be omitted if the function is not varargs
4341 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004342 </li>
4343 <li>
4344 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4345 be invoked. In most cases, this is a direct function invocation, but
4346 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4347 to function value.</p>
4348 </li>
4349 <li>
4350 <p>'<tt>function args</tt>': argument list whose types match the
4351 function signature argument types. All arguments must be of
4352 <a href="#t_firstclass">first class</a> type. If the function signature
4353 indicates the function accepts a variable number of arguments, the extra
4354 arguments can be specified.</p>
4355 </li>
Devang Patelac2fc272008-10-06 18:50:38 +00004356 <li>
Devang Pateld0bfcc72008-10-07 17:48:33 +00004357 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelac2fc272008-10-06 18:50:38 +00004358 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4359 '<tt>readnone</tt>' attributes are valid here.</p>
4360 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004361</ol>
4362
4363<h5>Semantics:</h5>
4364
4365<p>The '<tt>call</tt>' instruction is used to cause control flow to
4366transfer to a specified function, with its incoming arguments bound to
4367the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4368instruction in the called function, control flow continues with the
4369instruction after the function call, and the return value of the
Dan Gohman2672f3e2008-10-14 16:51:45 +00004370function is bound to the result argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004371
4372<h5>Example:</h5>
4373
4374<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004375 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004376 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4377 %X = tail call i32 @foo() <i>; yields i32</i>
4378 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4379 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004380
4381 %struct.A = type { i32, i8 }
Devang Patelac2fc272008-10-06 18:50:38 +00004382 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohman3e700032008-10-04 19:00:07 +00004383 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4384 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattnerac454b32008-10-08 06:26:11 +00004385 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijman2c4e05a2008-10-07 10:03:45 +00004386 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004387</pre>
4388
4389</div>
4390
4391<!-- _______________________________________________________________________ -->
4392<div class="doc_subsubsection">
4393 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4394</div>
4395
4396<div class="doc_text">
4397
4398<h5>Syntax:</h5>
4399
4400<pre>
4401 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4402</pre>
4403
4404<h5>Overview:</h5>
4405
4406<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4407the "variable argument" area of a function call. It is used to implement the
4408<tt>va_arg</tt> macro in C.</p>
4409
4410<h5>Arguments:</h5>
4411
4412<p>This instruction takes a <tt>va_list*</tt> value and the type of
4413the argument. It returns a value of the specified argument type and
4414increments the <tt>va_list</tt> to point to the next argument. The
4415actual type of <tt>va_list</tt> is target specific.</p>
4416
4417<h5>Semantics:</h5>
4418
4419<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4420type from the specified <tt>va_list</tt> and causes the
4421<tt>va_list</tt> to point to the next argument. For more information,
4422see the variable argument handling <a href="#int_varargs">Intrinsic
4423Functions</a>.</p>
4424
4425<p>It is legal for this instruction to be called in a function which does not
4426take a variable number of arguments, for example, the <tt>vfprintf</tt>
4427function.</p>
4428
4429<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4430href="#intrinsics">intrinsic function</a> because it takes a type as an
4431argument.</p>
4432
4433<h5>Example:</h5>
4434
4435<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4436
4437</div>
4438
4439<!-- *********************************************************************** -->
4440<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4441<!-- *********************************************************************** -->
4442
4443<div class="doc_text">
4444
4445<p>LLVM supports the notion of an "intrinsic function". These functions have
4446well known names and semantics and are required to follow certain restrictions.
4447Overall, these intrinsics represent an extension mechanism for the LLVM
4448language that does not require changing all of the transformations in LLVM when
4449adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4450
4451<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4452prefix is reserved in LLVM for intrinsic names; thus, function names may not
4453begin with this prefix. Intrinsic functions must always be external functions:
4454you cannot define the body of intrinsic functions. Intrinsic functions may
4455only be used in call or invoke instructions: it is illegal to take the address
4456of an intrinsic function. Additionally, because intrinsic functions are part
4457of the LLVM language, it is required if any are added that they be documented
4458here.</p>
4459
Chandler Carrutha228e392007-08-04 01:51:18 +00004460<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4461a family of functions that perform the same operation but on different data
4462types. Because LLVM can represent over 8 million different integer types,
4463overloading is used commonly to allow an intrinsic function to operate on any
4464integer type. One or more of the argument types or the result type can be
4465overloaded to accept any integer type. Argument types may also be defined as
4466exactly matching a previous argument's type or the result type. This allows an
4467intrinsic function which accepts multiple arguments, but needs all of them to
4468be of the same type, to only be overloaded with respect to a single argument or
4469the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004470
Chandler Carrutha228e392007-08-04 01:51:18 +00004471<p>Overloaded intrinsics will have the names of its overloaded argument types
4472encoded into its function name, each preceded by a period. Only those types
4473which are overloaded result in a name suffix. Arguments whose type is matched
4474against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4475take an integer of any width and returns an integer of exactly the same integer
4476width. This leads to a family of functions such as
4477<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4478Only one type, the return type, is overloaded, and only one type suffix is
4479required. Because the argument's type is matched against the return type, it
4480does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004481
4482<p>To learn how to add an intrinsic function, please see the
4483<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4484</p>
4485
4486</div>
4487
4488<!-- ======================================================================= -->
4489<div class="doc_subsection">
4490 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4491</div>
4492
4493<div class="doc_text">
4494
4495<p>Variable argument support is defined in LLVM with the <a
4496 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4497intrinsic functions. These functions are related to the similarly
4498named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4499
4500<p>All of these functions operate on arguments that use a
4501target-specific value type "<tt>va_list</tt>". The LLVM assembly
4502language reference manual does not define what this type is, so all
4503transformations should be prepared to handle these functions regardless of
4504the type used.</p>
4505
4506<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4507instruction and the variable argument handling intrinsic functions are
4508used.</p>
4509
4510<div class="doc_code">
4511<pre>
4512define i32 @test(i32 %X, ...) {
4513 ; Initialize variable argument processing
4514 %ap = alloca i8*
4515 %ap2 = bitcast i8** %ap to i8*
4516 call void @llvm.va_start(i8* %ap2)
4517
4518 ; Read a single integer argument
4519 %tmp = va_arg i8** %ap, i32
4520
4521 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4522 %aq = alloca i8*
4523 %aq2 = bitcast i8** %aq to i8*
4524 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4525 call void @llvm.va_end(i8* %aq2)
4526
4527 ; Stop processing of arguments.
4528 call void @llvm.va_end(i8* %ap2)
4529 ret i32 %tmp
4530}
4531
4532declare void @llvm.va_start(i8*)
4533declare void @llvm.va_copy(i8*, i8*)
4534declare void @llvm.va_end(i8*)
4535</pre>
4536</div>
4537
4538</div>
4539
4540<!-- _______________________________________________________________________ -->
4541<div class="doc_subsubsection">
4542 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4543</div>
4544
4545
4546<div class="doc_text">
4547<h5>Syntax:</h5>
4548<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4549<h5>Overview:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004550<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004551<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4552href="#i_va_arg">va_arg</a></tt>.</p>
4553
4554<h5>Arguments:</h5>
4555
Dan Gohman2672f3e2008-10-14 16:51:45 +00004556<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557
4558<h5>Semantics:</h5>
4559
Dan Gohman2672f3e2008-10-14 16:51:45 +00004560<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004561macro available in C. In a target-dependent way, it initializes the
4562<tt>va_list</tt> element to which the argument points, so that the next call to
4563<tt>va_arg</tt> will produce the first variable argument passed to the function.
4564Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4565last argument of the function as the compiler can figure that out.</p>
4566
4567</div>
4568
4569<!-- _______________________________________________________________________ -->
4570<div class="doc_subsubsection">
4571 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4572</div>
4573
4574<div class="doc_text">
4575<h5>Syntax:</h5>
4576<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4577<h5>Overview:</h5>
4578
4579<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4580which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4581or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4582
4583<h5>Arguments:</h5>
4584
4585<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4586
4587<h5>Semantics:</h5>
4588
4589<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4590macro available in C. In a target-dependent way, it destroys the
4591<tt>va_list</tt> element to which the argument points. Calls to <a
4592href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4593<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4594<tt>llvm.va_end</tt>.</p>
4595
4596</div>
4597
4598<!-- _______________________________________________________________________ -->
4599<div class="doc_subsubsection">
4600 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4601</div>
4602
4603<div class="doc_text">
4604
4605<h5>Syntax:</h5>
4606
4607<pre>
4608 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4609</pre>
4610
4611<h5>Overview:</h5>
4612
4613<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4614from the source argument list to the destination argument list.</p>
4615
4616<h5>Arguments:</h5>
4617
4618<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4619The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4620
4621
4622<h5>Semantics:</h5>
4623
4624<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4625macro available in C. In a target-dependent way, it copies the source
4626<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4627intrinsic is necessary because the <tt><a href="#int_va_start">
4628llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4629example, memory allocation.</p>
4630
4631</div>
4632
4633<!-- ======================================================================= -->
4634<div class="doc_subsection">
4635 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4636</div>
4637
4638<div class="doc_text">
4639
4640<p>
4641LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004642Collection</a> (GC) requires the implementation and generation of these
4643intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004644These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4645stack</a>, as well as garbage collector implementations that require <a
4646href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4647Front-ends for type-safe garbage collected languages should generate these
4648intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4649href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4650</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004651
4652<p>The garbage collection intrinsics only operate on objects in the generic
4653 address space (address space zero).</p>
4654
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004655</div>
4656
4657<!-- _______________________________________________________________________ -->
4658<div class="doc_subsubsection">
4659 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4660</div>
4661
4662<div class="doc_text">
4663
4664<h5>Syntax:</h5>
4665
4666<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004667 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004668</pre>
4669
4670<h5>Overview:</h5>
4671
4672<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4673the code generator, and allows some metadata to be associated with it.</p>
4674
4675<h5>Arguments:</h5>
4676
4677<p>The first argument specifies the address of a stack object that contains the
4678root pointer. The second pointer (which must be either a constant or a global
4679value address) contains the meta-data to be associated with the root.</p>
4680
4681<h5>Semantics:</h5>
4682
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004683<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004684location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004685the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4686intrinsic may only be used in a function which <a href="#gc">specifies a GC
4687algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004688
4689</div>
4690
4691
4692<!-- _______________________________________________________________________ -->
4693<div class="doc_subsubsection">
4694 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4695</div>
4696
4697<div class="doc_text">
4698
4699<h5>Syntax:</h5>
4700
4701<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004702 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004703</pre>
4704
4705<h5>Overview:</h5>
4706
4707<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4708locations, allowing garbage collector implementations that require read
4709barriers.</p>
4710
4711<h5>Arguments:</h5>
4712
4713<p>The second argument is the address to read from, which should be an address
4714allocated from the garbage collector. The first object is a pointer to the
4715start of the referenced object, if needed by the language runtime (otherwise
4716null).</p>
4717
4718<h5>Semantics:</h5>
4719
4720<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4721instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004722garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4723may only be used in a function which <a href="#gc">specifies a GC
4724algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004725
4726</div>
4727
4728
4729<!-- _______________________________________________________________________ -->
4730<div class="doc_subsubsection">
4731 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4732</div>
4733
4734<div class="doc_text">
4735
4736<h5>Syntax:</h5>
4737
4738<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004739 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004740</pre>
4741
4742<h5>Overview:</h5>
4743
4744<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4745locations, allowing garbage collector implementations that require write
4746barriers (such as generational or reference counting collectors).</p>
4747
4748<h5>Arguments:</h5>
4749
4750<p>The first argument is the reference to store, the second is the start of the
4751object to store it to, and the third is the address of the field of Obj to
4752store to. If the runtime does not require a pointer to the object, Obj may be
4753null.</p>
4754
4755<h5>Semantics:</h5>
4756
4757<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4758instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004759garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4760may only be used in a function which <a href="#gc">specifies a GC
4761algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004762
4763</div>
4764
4765
4766
4767<!-- ======================================================================= -->
4768<div class="doc_subsection">
4769 <a name="int_codegen">Code Generator Intrinsics</a>
4770</div>
4771
4772<div class="doc_text">
4773<p>
4774These intrinsics are provided by LLVM to expose special features that may only
4775be implemented with code generator support.
4776</p>
4777
4778</div>
4779
4780<!-- _______________________________________________________________________ -->
4781<div class="doc_subsubsection">
4782 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4783</div>
4784
4785<div class="doc_text">
4786
4787<h5>Syntax:</h5>
4788<pre>
4789 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4790</pre>
4791
4792<h5>Overview:</h5>
4793
4794<p>
4795The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4796target-specific value indicating the return address of the current function
4797or one of its callers.
4798</p>
4799
4800<h5>Arguments:</h5>
4801
4802<p>
4803The argument to this intrinsic indicates which function to return the address
4804for. Zero indicates the calling function, one indicates its caller, etc. The
4805argument is <b>required</b> to be a constant integer value.
4806</p>
4807
4808<h5>Semantics:</h5>
4809
4810<p>
4811The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4812the return address of the specified call frame, or zero if it cannot be
4813identified. The value returned by this intrinsic is likely to be incorrect or 0
4814for arguments other than zero, so it should only be used for debugging purposes.
4815</p>
4816
4817<p>
4818Note that calling this intrinsic does not prevent function inlining or other
4819aggressive transformations, so the value returned may not be that of the obvious
4820source-language caller.
4821</p>
4822</div>
4823
4824
4825<!-- _______________________________________________________________________ -->
4826<div class="doc_subsubsection">
4827 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4828</div>
4829
4830<div class="doc_text">
4831
4832<h5>Syntax:</h5>
4833<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004834 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835</pre>
4836
4837<h5>Overview:</h5>
4838
4839<p>
4840The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4841target-specific frame pointer value for the specified stack frame.
4842</p>
4843
4844<h5>Arguments:</h5>
4845
4846<p>
4847The argument to this intrinsic indicates which function to return the frame
4848pointer for. Zero indicates the calling function, one indicates its caller,
4849etc. The argument is <b>required</b> to be a constant integer value.
4850</p>
4851
4852<h5>Semantics:</h5>
4853
4854<p>
4855The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4856the frame address of the specified call frame, or zero if it cannot be
4857identified. The value returned by this intrinsic is likely to be incorrect or 0
4858for arguments other than zero, so it should only be used for debugging purposes.
4859</p>
4860
4861<p>
4862Note that calling this intrinsic does not prevent function inlining or other
4863aggressive transformations, so the value returned may not be that of the obvious
4864source-language caller.
4865</p>
4866</div>
4867
4868<!-- _______________________________________________________________________ -->
4869<div class="doc_subsubsection">
4870 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4871</div>
4872
4873<div class="doc_text">
4874
4875<h5>Syntax:</h5>
4876<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004877 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004878</pre>
4879
4880<h5>Overview:</h5>
4881
4882<p>
4883The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4884the function stack, for use with <a href="#int_stackrestore">
4885<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4886features like scoped automatic variable sized arrays in C99.
4887</p>
4888
4889<h5>Semantics:</h5>
4890
4891<p>
4892This intrinsic returns a opaque pointer value that can be passed to <a
4893href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4894<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4895<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4896state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4897practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4898that were allocated after the <tt>llvm.stacksave</tt> was executed.
4899</p>
4900
4901</div>
4902
4903<!-- _______________________________________________________________________ -->
4904<div class="doc_subsubsection">
4905 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4906</div>
4907
4908<div class="doc_text">
4909
4910<h5>Syntax:</h5>
4911<pre>
4912 declare void @llvm.stackrestore(i8 * %ptr)
4913</pre>
4914
4915<h5>Overview:</h5>
4916
4917<p>
4918The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4919the function stack to the state it was in when the corresponding <a
4920href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4921useful for implementing language features like scoped automatic variable sized
4922arrays in C99.
4923</p>
4924
4925<h5>Semantics:</h5>
4926
4927<p>
4928See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4929</p>
4930
4931</div>
4932
4933
4934<!-- _______________________________________________________________________ -->
4935<div class="doc_subsubsection">
4936 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4937</div>
4938
4939<div class="doc_text">
4940
4941<h5>Syntax:</h5>
4942<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004943 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004944</pre>
4945
4946<h5>Overview:</h5>
4947
4948
4949<p>
4950The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4951a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4952no
4953effect on the behavior of the program but can change its performance
4954characteristics.
4955</p>
4956
4957<h5>Arguments:</h5>
4958
4959<p>
4960<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4961determining if the fetch should be for a read (0) or write (1), and
4962<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4963locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4964<tt>locality</tt> arguments must be constant integers.
4965</p>
4966
4967<h5>Semantics:</h5>
4968
4969<p>
4970This intrinsic does not modify the behavior of the program. In particular,
4971prefetches cannot trap and do not produce a value. On targets that support this
4972intrinsic, the prefetch can provide hints to the processor cache for better
4973performance.
4974</p>
4975
4976</div>
4977
4978<!-- _______________________________________________________________________ -->
4979<div class="doc_subsubsection">
4980 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4981</div>
4982
4983<div class="doc_text">
4984
4985<h5>Syntax:</h5>
4986<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004987 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004988</pre>
4989
4990<h5>Overview:</h5>
4991
4992
4993<p>
4994The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004995(PC) in a region of
4996code to simulators and other tools. The method is target specific, but it is
4997expected that the marker will use exported symbols to transmit the PC of the
4998marker.
4999The marker makes no guarantees that it will remain with any specific instruction
5000after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005001optimizations. The intended use is to be inserted after optimizations to allow
5002correlations of simulation runs.
5003</p>
5004
5005<h5>Arguments:</h5>
5006
5007<p>
5008<tt>id</tt> is a numerical id identifying the marker.
5009</p>
5010
5011<h5>Semantics:</h5>
5012
5013<p>
5014This intrinsic does not modify the behavior of the program. Backends that do not
5015support this intrinisic may ignore it.
5016</p>
5017
5018</div>
5019
5020<!-- _______________________________________________________________________ -->
5021<div class="doc_subsubsection">
5022 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5023</div>
5024
5025<div class="doc_text">
5026
5027<h5>Syntax:</h5>
5028<pre>
5029 declare i64 @llvm.readcyclecounter( )
5030</pre>
5031
5032<h5>Overview:</h5>
5033
5034
5035<p>
5036The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5037counter register (or similar low latency, high accuracy clocks) on those targets
5038that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5039As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5040should only be used for small timings.
5041</p>
5042
5043<h5>Semantics:</h5>
5044
5045<p>
5046When directly supported, reading the cycle counter should not modify any memory.
5047Implementations are allowed to either return a application specific value or a
5048system wide value. On backends without support, this is lowered to a constant 0.
5049</p>
5050
5051</div>
5052
5053<!-- ======================================================================= -->
5054<div class="doc_subsection">
5055 <a name="int_libc">Standard C Library Intrinsics</a>
5056</div>
5057
5058<div class="doc_text">
5059<p>
5060LLVM provides intrinsics for a few important standard C library functions.
5061These intrinsics allow source-language front-ends to pass information about the
5062alignment of the pointer arguments to the code generator, providing opportunity
5063for more efficient code generation.
5064</p>
5065
5066</div>
5067
5068<!-- _______________________________________________________________________ -->
5069<div class="doc_subsubsection">
5070 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5071</div>
5072
5073<div class="doc_text">
5074
5075<h5>Syntax:</h5>
5076<pre>
5077 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5078 i32 &lt;len&gt;, i32 &lt;align&gt;)
5079 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5080 i64 &lt;len&gt;, i32 &lt;align&gt;)
5081</pre>
5082
5083<h5>Overview:</h5>
5084
5085<p>
5086The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5087location to the destination location.
5088</p>
5089
5090<p>
5091Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5092intrinsics do not return a value, and takes an extra alignment argument.
5093</p>
5094
5095<h5>Arguments:</h5>
5096
5097<p>
5098The first argument is a pointer to the destination, the second is a pointer to
5099the source. The third argument is an integer argument
5100specifying the number of bytes to copy, and the fourth argument is the alignment
5101of the source and destination locations.
5102</p>
5103
5104<p>
5105If the call to this intrinisic has an alignment value that is not 0 or 1, then
5106the caller guarantees that both the source and destination pointers are aligned
5107to that boundary.
5108</p>
5109
5110<h5>Semantics:</h5>
5111
5112<p>
5113The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5114location to the destination location, which are not allowed to overlap. It
5115copies "len" bytes of memory over. If the argument is known to be aligned to
5116some boundary, this can be specified as the fourth argument, otherwise it should
5117be set to 0 or 1.
5118</p>
5119</div>
5120
5121
5122<!-- _______________________________________________________________________ -->
5123<div class="doc_subsubsection">
5124 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5125</div>
5126
5127<div class="doc_text">
5128
5129<h5>Syntax:</h5>
5130<pre>
5131 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5132 i32 &lt;len&gt;, i32 &lt;align&gt;)
5133 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5134 i64 &lt;len&gt;, i32 &lt;align&gt;)
5135</pre>
5136
5137<h5>Overview:</h5>
5138
5139<p>
5140The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5141location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005142'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005143</p>
5144
5145<p>
5146Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5147intrinsics do not return a value, and takes an extra alignment argument.
5148</p>
5149
5150<h5>Arguments:</h5>
5151
5152<p>
5153The first argument is a pointer to the destination, the second is a pointer to
5154the source. The third argument is an integer argument
5155specifying the number of bytes to copy, and the fourth argument is the alignment
5156of the source and destination locations.
5157</p>
5158
5159<p>
5160If the call to this intrinisic has an alignment value that is not 0 or 1, then
5161the caller guarantees that the source and destination pointers are aligned to
5162that boundary.
5163</p>
5164
5165<h5>Semantics:</h5>
5166
5167<p>
5168The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5169location to the destination location, which may overlap. It
5170copies "len" bytes of memory over. If the argument is known to be aligned to
5171some boundary, this can be specified as the fourth argument, otherwise it should
5172be set to 0 or 1.
5173</p>
5174</div>
5175
5176
5177<!-- _______________________________________________________________________ -->
5178<div class="doc_subsubsection">
5179 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5180</div>
5181
5182<div class="doc_text">
5183
5184<h5>Syntax:</h5>
5185<pre>
5186 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5187 i32 &lt;len&gt;, i32 &lt;align&gt;)
5188 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5189 i64 &lt;len&gt;, i32 &lt;align&gt;)
5190</pre>
5191
5192<h5>Overview:</h5>
5193
5194<p>
5195The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5196byte value.
5197</p>
5198
5199<p>
5200Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5201does not return a value, and takes an extra alignment argument.
5202</p>
5203
5204<h5>Arguments:</h5>
5205
5206<p>
5207The first argument is a pointer to the destination to fill, the second is the
5208byte value to fill it with, the third argument is an integer
5209argument specifying the number of bytes to fill, and the fourth argument is the
5210known alignment of destination location.
5211</p>
5212
5213<p>
5214If the call to this intrinisic has an alignment value that is not 0 or 1, then
5215the caller guarantees that the destination pointer is aligned to that boundary.
5216</p>
5217
5218<h5>Semantics:</h5>
5219
5220<p>
5221The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5222the
5223destination location. If the argument is known to be aligned to some boundary,
5224this can be specified as the fourth argument, otherwise it should be set to 0 or
52251.
5226</p>
5227</div>
5228
5229
5230<!-- _______________________________________________________________________ -->
5231<div class="doc_subsubsection">
5232 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5233</div>
5234
5235<div class="doc_text">
5236
5237<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005238<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005239floating point or vector of floating point type. Not all targets support all
Dan Gohman2672f3e2008-10-14 16:51:45 +00005240types however.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005241<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005242 declare float @llvm.sqrt.f32(float %Val)
5243 declare double @llvm.sqrt.f64(double %Val)
5244 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5245 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5246 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005247</pre>
5248
5249<h5>Overview:</h5>
5250
5251<p>
5252The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005253returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005254<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005255negative numbers other than -0.0 (which allows for better optimization, because
5256there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5257defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005258</p>
5259
5260<h5>Arguments:</h5>
5261
5262<p>
5263The argument and return value are floating point numbers of the same type.
5264</p>
5265
5266<h5>Semantics:</h5>
5267
5268<p>
5269This function returns the sqrt of the specified operand if it is a nonnegative
5270floating point number.
5271</p>
5272</div>
5273
5274<!-- _______________________________________________________________________ -->
5275<div class="doc_subsubsection">
5276 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5277</div>
5278
5279<div class="doc_text">
5280
5281<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005282<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005283floating point or vector of floating point type. Not all targets support all
Dan Gohman2672f3e2008-10-14 16:51:45 +00005284types however.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005285<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005286 declare float @llvm.powi.f32(float %Val, i32 %power)
5287 declare double @llvm.powi.f64(double %Val, i32 %power)
5288 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5289 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5290 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005291</pre>
5292
5293<h5>Overview:</h5>
5294
5295<p>
5296The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5297specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005298multiplications is not defined. When a vector of floating point type is
5299used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005300</p>
5301
5302<h5>Arguments:</h5>
5303
5304<p>
5305The second argument is an integer power, and the first is a value to raise to
5306that power.
5307</p>
5308
5309<h5>Semantics:</h5>
5310
5311<p>
5312This function returns the first value raised to the second power with an
5313unspecified sequence of rounding operations.</p>
5314</div>
5315
Dan Gohman361079c2007-10-15 20:30:11 +00005316<!-- _______________________________________________________________________ -->
5317<div class="doc_subsubsection">
5318 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5319</div>
5320
5321<div class="doc_text">
5322
5323<h5>Syntax:</h5>
5324<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5325floating point or vector of floating point type. Not all targets support all
Dan Gohman2672f3e2008-10-14 16:51:45 +00005326types however.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005327<pre>
5328 declare float @llvm.sin.f32(float %Val)
5329 declare double @llvm.sin.f64(double %Val)
5330 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5331 declare fp128 @llvm.sin.f128(fp128 %Val)
5332 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5333</pre>
5334
5335<h5>Overview:</h5>
5336
5337<p>
5338The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5339</p>
5340
5341<h5>Arguments:</h5>
5342
5343<p>
5344The argument and return value are floating point numbers of the same type.
5345</p>
5346
5347<h5>Semantics:</h5>
5348
5349<p>
5350This function returns the sine of the specified operand, returning the
5351same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005352conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005353</div>
5354
5355<!-- _______________________________________________________________________ -->
5356<div class="doc_subsubsection">
5357 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5358</div>
5359
5360<div class="doc_text">
5361
5362<h5>Syntax:</h5>
5363<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5364floating point or vector of floating point type. Not all targets support all
Dan Gohman2672f3e2008-10-14 16:51:45 +00005365types however.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005366<pre>
5367 declare float @llvm.cos.f32(float %Val)
5368 declare double @llvm.cos.f64(double %Val)
5369 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5370 declare fp128 @llvm.cos.f128(fp128 %Val)
5371 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5372</pre>
5373
5374<h5>Overview:</h5>
5375
5376<p>
5377The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5378</p>
5379
5380<h5>Arguments:</h5>
5381
5382<p>
5383The argument and return value are floating point numbers of the same type.
5384</p>
5385
5386<h5>Semantics:</h5>
5387
5388<p>
5389This function returns the cosine of the specified operand, returning the
5390same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005391conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005392</div>
5393
5394<!-- _______________________________________________________________________ -->
5395<div class="doc_subsubsection">
5396 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5397</div>
5398
5399<div class="doc_text">
5400
5401<h5>Syntax:</h5>
5402<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5403floating point or vector of floating point type. Not all targets support all
Dan Gohman2672f3e2008-10-14 16:51:45 +00005404types however.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005405<pre>
5406 declare float @llvm.pow.f32(float %Val, float %Power)
5407 declare double @llvm.pow.f64(double %Val, double %Power)
5408 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5409 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5410 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5411</pre>
5412
5413<h5>Overview:</h5>
5414
5415<p>
5416The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5417specified (positive or negative) power.
5418</p>
5419
5420<h5>Arguments:</h5>
5421
5422<p>
5423The second argument is a floating point power, and the first is a value to
5424raise to that power.
5425</p>
5426
5427<h5>Semantics:</h5>
5428
5429<p>
5430This function returns the first value raised to the second power,
5431returning the
5432same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005433conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005434</div>
5435
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005436
5437<!-- ======================================================================= -->
5438<div class="doc_subsection">
5439 <a name="int_manip">Bit Manipulation Intrinsics</a>
5440</div>
5441
5442<div class="doc_text">
5443<p>
5444LLVM provides intrinsics for a few important bit manipulation operations.
5445These allow efficient code generation for some algorithms.
5446</p>
5447
5448</div>
5449
5450<!-- _______________________________________________________________________ -->
5451<div class="doc_subsubsection">
5452 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5453</div>
5454
5455<div class="doc_text">
5456
5457<h5>Syntax:</h5>
5458<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman2672f3e2008-10-14 16:51:45 +00005459type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005460<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005461 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5462 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5463 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005464</pre>
5465
5466<h5>Overview:</h5>
5467
5468<p>
5469The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5470values with an even number of bytes (positive multiple of 16 bits). These are
5471useful for performing operations on data that is not in the target's native
5472byte order.
5473</p>
5474
5475<h5>Semantics:</h5>
5476
5477<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005478The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005479and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5480intrinsic returns an i32 value that has the four bytes of the input i32
5481swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005482i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5483<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005484additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5485</p>
5486
5487</div>
5488
5489<!-- _______________________________________________________________________ -->
5490<div class="doc_subsubsection">
5491 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5492</div>
5493
5494<div class="doc_text">
5495
5496<h5>Syntax:</h5>
5497<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman2672f3e2008-10-14 16:51:45 +00005498width. Not all targets support all bit widths however.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005499<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005500 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5501 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005502 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005503 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5504 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005505</pre>
5506
5507<h5>Overview:</h5>
5508
5509<p>
5510The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5511value.
5512</p>
5513
5514<h5>Arguments:</h5>
5515
5516<p>
5517The only argument is the value to be counted. The argument may be of any
5518integer type. The return type must match the argument type.
5519</p>
5520
5521<h5>Semantics:</h5>
5522
5523<p>
5524The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5525</p>
5526</div>
5527
5528<!-- _______________________________________________________________________ -->
5529<div class="doc_subsubsection">
5530 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5531</div>
5532
5533<div class="doc_text">
5534
5535<h5>Syntax:</h5>
5536<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman2672f3e2008-10-14 16:51:45 +00005537integer bit width. Not all targets support all bit widths however.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005538<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005539 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5540 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005541 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005542 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5543 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544</pre>
5545
5546<h5>Overview:</h5>
5547
5548<p>
5549The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5550leading zeros in a variable.
5551</p>
5552
5553<h5>Arguments:</h5>
5554
5555<p>
5556The only argument is the value to be counted. The argument may be of any
5557integer type. The return type must match the argument type.
5558</p>
5559
5560<h5>Semantics:</h5>
5561
5562<p>
5563The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5564in a variable. If the src == 0 then the result is the size in bits of the type
5565of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5566</p>
5567</div>
5568
5569
5570
5571<!-- _______________________________________________________________________ -->
5572<div class="doc_subsubsection">
5573 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5574</div>
5575
5576<div class="doc_text">
5577
5578<h5>Syntax:</h5>
5579<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman2672f3e2008-10-14 16:51:45 +00005580integer bit width. Not all targets support all bit widths however.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005581<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005582 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5583 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005584 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005585 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5586 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005587</pre>
5588
5589<h5>Overview:</h5>
5590
5591<p>
5592The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5593trailing zeros.
5594</p>
5595
5596<h5>Arguments:</h5>
5597
5598<p>
5599The only argument is the value to be counted. The argument may be of any
5600integer type. The return type must match the argument type.
5601</p>
5602
5603<h5>Semantics:</h5>
5604
5605<p>
5606The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5607in a variable. If the src == 0 then the result is the size in bits of the type
5608of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5609</p>
5610</div>
5611
5612<!-- _______________________________________________________________________ -->
5613<div class="doc_subsubsection">
5614 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5615</div>
5616
5617<div class="doc_text">
5618
5619<h5>Syntax:</h5>
5620<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005621on any integer bit width.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005622<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005623 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5624 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005625</pre>
5626
5627<h5>Overview:</h5>
5628<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5629range of bits from an integer value and returns them in the same bit width as
5630the original value.</p>
5631
5632<h5>Arguments:</h5>
5633<p>The first argument, <tt>%val</tt> and the result may be integer types of
5634any bit width but they must have the same bit width. The second and third
5635arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5636
5637<h5>Semantics:</h5>
5638<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5639of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5640<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5641operates in forward mode.</p>
5642<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5643right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5644only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5645<ol>
5646 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5647 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5648 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5649 to determine the number of bits to retain.</li>
5650 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005651 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005652</ol>
5653<p>In reverse mode, a similar computation is made except that the bits are
5654returned in the reverse order. So, for example, if <tt>X</tt> has the value
5655<tt>i16 0x0ACF (101011001111)</tt> and we apply
5656<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5657<tt>i16 0x0026 (000000100110)</tt>.</p>
5658</div>
5659
5660<div class="doc_subsubsection">
5661 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5662</div>
5663
5664<div class="doc_text">
5665
5666<h5>Syntax:</h5>
5667<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005668on any integer bit width.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005669<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005670 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5671 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005672</pre>
5673
5674<h5>Overview:</h5>
5675<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5676of bits in an integer value with another integer value. It returns the integer
5677with the replaced bits.</p>
5678
5679<h5>Arguments:</h5>
5680<p>The first argument, <tt>%val</tt> and the result may be integer types of
5681any bit width but they must have the same bit width. <tt>%val</tt> is the value
5682whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5683integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5684type since they specify only a bit index.</p>
5685
5686<h5>Semantics:</h5>
5687<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5688of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5689<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5690operates in forward mode.</p>
5691<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5692truncating it down to the size of the replacement area or zero extending it
5693up to that size.</p>
5694<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5695are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5696in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman2672f3e2008-10-14 16:51:45 +00005697to the <tt>%hi</tt>th bit.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005698<p>In reverse mode, a similar computation is made except that the bits are
5699reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman2672f3e2008-10-14 16:51:45 +00005700<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005701<h5>Examples:</h5>
5702<pre>
5703 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5704 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5705 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5706 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5707 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5708</pre>
5709</div>
5710
5711<!-- ======================================================================= -->
5712<div class="doc_subsection">
5713 <a name="int_debugger">Debugger Intrinsics</a>
5714</div>
5715
5716<div class="doc_text">
5717<p>
5718The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5719are described in the <a
5720href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5721Debugging</a> document.
5722</p>
5723</div>
5724
5725
5726<!-- ======================================================================= -->
5727<div class="doc_subsection">
5728 <a name="int_eh">Exception Handling Intrinsics</a>
5729</div>
5730
5731<div class="doc_text">
5732<p> The LLVM exception handling intrinsics (which all start with
5733<tt>llvm.eh.</tt> prefix), are described in the <a
5734href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5735Handling</a> document. </p>
5736</div>
5737
5738<!-- ======================================================================= -->
5739<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005740 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005741</div>
5742
5743<div class="doc_text">
5744<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005745 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005746 the <tt>nest</tt> attribute, from a function. The result is a callable
5747 function pointer lacking the nest parameter - the caller does not need
5748 to provide a value for it. Instead, the value to use is stored in
5749 advance in a "trampoline", a block of memory usually allocated
5750 on the stack, which also contains code to splice the nest value into the
5751 argument list. This is used to implement the GCC nested function address
5752 extension.
5753</p>
5754<p>
5755 For example, if the function is
5756 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005757 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005758<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005759 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5760 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5761 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5762 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005763</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005764 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5765 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005766</div>
5767
5768<!-- _______________________________________________________________________ -->
5769<div class="doc_subsubsection">
5770 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5771</div>
5772<div class="doc_text">
5773<h5>Syntax:</h5>
5774<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005775declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005776</pre>
5777<h5>Overview:</h5>
5778<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005779 This fills the memory pointed to by <tt>tramp</tt> with code
5780 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005781</p>
5782<h5>Arguments:</h5>
5783<p>
5784 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5785 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5786 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005787 intrinsic. Note that the size and the alignment are target-specific - LLVM
5788 currently provides no portable way of determining them, so a front-end that
5789 generates this intrinsic needs to have some target-specific knowledge.
5790 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005791</p>
5792<h5>Semantics:</h5>
5793<p>
5794 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005795 dependent code, turning it into a function. A pointer to this function is
5796 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005797 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005798 before being called. The new function's signature is the same as that of
5799 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5800 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5801 of pointer type. Calling the new function is equivalent to calling
5802 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5803 missing <tt>nest</tt> argument. If, after calling
5804 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5805 modified, then the effect of any later call to the returned function pointer is
5806 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005807</p>
5808</div>
5809
5810<!-- ======================================================================= -->
5811<div class="doc_subsection">
Bill Wendling9127adb2008-11-18 22:10:53 +00005812 <a name="int_stackprotect">Stack Protector Intrinsic</a>
5813</div>
5814
5815<div class="doc_text">
5816<p>
5817 This intrinsic is used when stack protectors are required. LLVM generates a
5818 call to load the randomized stack protector guard's value. The intrinsic is
5819 used so that LLVM can ensure that the stack guard is placed onto the stack in
5820 the appropriate place&mdash;before local variables are allocated on the stack.
5821</p>
5822</div>
5823
5824<!-- _______________________________________________________________________ -->
5825<div class="doc_subsubsection">
5826 <a name="int_ssp">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
5827</div>
5828<div class="doc_text">
5829<h5>Syntax:</h5>
5830<pre>
5831declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
5832
5833</pre>
5834<h5>Overview:</h5>
5835<p>
5836 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
5837 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
5838 it's before local variables are allocated on the stack.
5839</p>
5840<h5>Arguments:</h5>
5841<p>
5842 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
5843 first argument is the value loaded from the stack guard
5844 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
5845 has enough space to hold the value of the guard.
5846</p>
5847<h5>Semantics:</h5>
5848<p>
5849 This intrinsic causes the prologue/epilogue inserter to force the position of
5850 the <tt>AllocaInst</tt> stack slot to be before local variables on the
5851 stack. This is to ensure that if a local variable on the stack is overwritten,
5852 it will destroy the value of the guard. When the function exits, the guard on
5853 the stack is checked against the original guard. If they're different, then
5854 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
5855</p>
5856</div>
5857
5858<!-- ======================================================================= -->
5859<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005860 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5861</div>
5862
5863<div class="doc_text">
5864<p>
5865 These intrinsic functions expand the "universal IR" of LLVM to represent
5866 hardware constructs for atomic operations and memory synchronization. This
5867 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005868 is aimed at a low enough level to allow any programming models or APIs
5869 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005870 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5871 hardware behavior. Just as hardware provides a "universal IR" for source
5872 languages, it also provides a starting point for developing a "universal"
5873 atomic operation and synchronization IR.
5874</p>
5875<p>
5876 These do <em>not</em> form an API such as high-level threading libraries,
5877 software transaction memory systems, atomic primitives, and intrinsic
5878 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5879 application libraries. The hardware interface provided by LLVM should allow
5880 a clean implementation of all of these APIs and parallel programming models.
5881 No one model or paradigm should be selected above others unless the hardware
5882 itself ubiquitously does so.
5883
5884</p>
5885</div>
5886
5887<!-- _______________________________________________________________________ -->
5888<div class="doc_subsubsection">
5889 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5890</div>
5891<div class="doc_text">
5892<h5>Syntax:</h5>
5893<pre>
5894declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5895i1 &lt;device&gt; )
5896
5897</pre>
5898<h5>Overview:</h5>
5899<p>
5900 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5901 specific pairs of memory access types.
5902</p>
5903<h5>Arguments:</h5>
5904<p>
5905 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5906 The first four arguments enables a specific barrier as listed below. The fith
5907 argument specifies that the barrier applies to io or device or uncached memory.
5908
5909</p>
5910 <ul>
5911 <li><tt>ll</tt>: load-load barrier</li>
5912 <li><tt>ls</tt>: load-store barrier</li>
5913 <li><tt>sl</tt>: store-load barrier</li>
5914 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005915 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth785610d2008-02-16 01:24:58 +00005916 </ul>
5917<h5>Semantics:</h5>
5918<p>
5919 This intrinsic causes the system to enforce some ordering constraints upon
5920 the loads and stores of the program. This barrier does not indicate
5921 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5922 which they occur. For any of the specified pairs of load and store operations
5923 (f.ex. load-load, or store-load), all of the first operations preceding the
5924 barrier will complete before any of the second operations succeeding the
5925 barrier begin. Specifically the semantics for each pairing is as follows:
5926</p>
5927 <ul>
5928 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5929 after the barrier begins.</li>
5930
5931 <li><tt>ls</tt>: All loads before the barrier must complete before any
5932 store after the barrier begins.</li>
5933 <li><tt>ss</tt>: All stores before the barrier must complete before any
5934 store after the barrier begins.</li>
5935 <li><tt>sl</tt>: All stores before the barrier must complete before any
5936 load after the barrier begins.</li>
5937 </ul>
5938<p>
5939 These semantics are applied with a logical "and" behavior when more than one
5940 is enabled in a single memory barrier intrinsic.
5941</p>
5942<p>
5943 Backends may implement stronger barriers than those requested when they do not
5944 support as fine grained a barrier as requested. Some architectures do not
5945 need all types of barriers and on such architectures, these become noops.
5946</p>
5947<h5>Example:</h5>
5948<pre>
5949%ptr = malloc i32
5950 store i32 4, %ptr
5951
5952%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5953 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5954 <i>; guarantee the above finishes</i>
5955 store i32 8, %ptr <i>; before this begins</i>
5956</pre>
5957</div>
5958
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005959<!-- _______________________________________________________________________ -->
5960<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005961 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005962</div>
5963<div class="doc_text">
5964<h5>Syntax:</h5>
5965<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005966 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5967 any integer bit width and for different address spaces. Not all targets
5968 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005969
5970<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005971declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5972declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5973declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5974declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005975
5976</pre>
5977<h5>Overview:</h5>
5978<p>
5979 This loads a value in memory and compares it to a given value. If they are
5980 equal, it stores a new value into the memory.
5981</p>
5982<h5>Arguments:</h5>
5983<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005984 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005985 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5986 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5987 this integer type. While any bit width integer may be used, targets may only
5988 lower representations they support in hardware.
5989
5990</p>
5991<h5>Semantics:</h5>
5992<p>
5993 This entire intrinsic must be executed atomically. It first loads the value
5994 in memory pointed to by <tt>ptr</tt> and compares it with the value
5995 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5996 loaded value is yielded in all cases. This provides the equivalent of an
5997 atomic compare-and-swap operation within the SSA framework.
5998</p>
5999<h5>Examples:</h5>
6000
6001<pre>
6002%ptr = malloc i32
6003 store i32 4, %ptr
6004
6005%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006006%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006007 <i>; yields {i32}:result1 = 4</i>
6008%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6009%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6010
6011%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006012%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006013 <i>; yields {i32}:result2 = 8</i>
6014%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6015
6016%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6017</pre>
6018</div>
6019
6020<!-- _______________________________________________________________________ -->
6021<div class="doc_subsubsection">
6022 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6023</div>
6024<div class="doc_text">
6025<h5>Syntax:</h5>
6026
6027<p>
6028 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6029 integer bit width. Not all targets support all bit widths however.</p>
6030<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006031declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6032declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6033declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6034declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006035
6036</pre>
6037<h5>Overview:</h5>
6038<p>
6039 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6040 the value from memory. It then stores the value in <tt>val</tt> in the memory
6041 at <tt>ptr</tt>.
6042</p>
6043<h5>Arguments:</h5>
6044
6045<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006046 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006047 <tt>val</tt> argument and the result must be integers of the same bit width.
6048 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6049 integer type. The targets may only lower integer representations they
6050 support.
6051</p>
6052<h5>Semantics:</h5>
6053<p>
6054 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6055 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6056 equivalent of an atomic swap operation within the SSA framework.
6057
6058</p>
6059<h5>Examples:</h5>
6060<pre>
6061%ptr = malloc i32
6062 store i32 4, %ptr
6063
6064%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006065%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006066 <i>; yields {i32}:result1 = 4</i>
6067%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6068%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6069
6070%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006071%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006072 <i>; yields {i32}:result2 = 8</i>
6073
6074%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6075%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6076</pre>
6077</div>
6078
6079<!-- _______________________________________________________________________ -->
6080<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006081 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006082
6083</div>
6084<div class="doc_text">
6085<h5>Syntax:</h5>
6086<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006087 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006088 integer bit width. Not all targets support all bit widths however.</p>
6089<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006090declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6091declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6092declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6093declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006094
6095</pre>
6096<h5>Overview:</h5>
6097<p>
6098 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6099 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6100</p>
6101<h5>Arguments:</h5>
6102<p>
6103
6104 The intrinsic takes two arguments, the first a pointer to an integer value
6105 and the second an integer value. The result is also an integer value. These
6106 integer types can have any bit width, but they must all have the same bit
6107 width. The targets may only lower integer representations they support.
6108</p>
6109<h5>Semantics:</h5>
6110<p>
6111 This intrinsic does a series of operations atomically. It first loads the
6112 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6113 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6114</p>
6115
6116<h5>Examples:</h5>
6117<pre>
6118%ptr = malloc i32
6119 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006120%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006121 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006122%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006123 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006124%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006125 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006126%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006127</pre>
6128</div>
6129
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006130<!-- _______________________________________________________________________ -->
6131<div class="doc_subsubsection">
6132 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6133
6134</div>
6135<div class="doc_text">
6136<h5>Syntax:</h5>
6137<p>
6138 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006139 any integer bit width and for different address spaces. Not all targets
6140 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006141<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006142declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6143declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6144declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6145declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006146
6147</pre>
6148<h5>Overview:</h5>
6149<p>
6150 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6151 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6152</p>
6153<h5>Arguments:</h5>
6154<p>
6155
6156 The intrinsic takes two arguments, the first a pointer to an integer value
6157 and the second an integer value. The result is also an integer value. These
6158 integer types can have any bit width, but they must all have the same bit
6159 width. The targets may only lower integer representations they support.
6160</p>
6161<h5>Semantics:</h5>
6162<p>
6163 This intrinsic does a series of operations atomically. It first loads the
6164 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6165 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6166</p>
6167
6168<h5>Examples:</h5>
6169<pre>
6170%ptr = malloc i32
6171 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006172%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006173 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006174%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006175 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006176%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006177 <i>; yields {i32}:result3 = 2</i>
6178%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6179</pre>
6180</div>
6181
6182<!-- _______________________________________________________________________ -->
6183<div class="doc_subsubsection">
6184 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6185 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6186 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6187 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6188
6189</div>
6190<div class="doc_text">
6191<h5>Syntax:</h5>
6192<p>
6193 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6194 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006195 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6196 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006197<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006198declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6199declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6200declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6201declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006202
6203</pre>
6204
6205<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006206declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6207declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6208declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6209declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006210
6211</pre>
6212
6213<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006214declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6215declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6216declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6217declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006218
6219</pre>
6220
6221<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006222declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6223declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6224declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6225declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006226
6227</pre>
6228<h5>Overview:</h5>
6229<p>
6230 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6231 the value stored in memory at <tt>ptr</tt>. It yields the original value
6232 at <tt>ptr</tt>.
6233</p>
6234<h5>Arguments:</h5>
6235<p>
6236
6237 These intrinsics take two arguments, the first a pointer to an integer value
6238 and the second an integer value. The result is also an integer value. These
6239 integer types can have any bit width, but they must all have the same bit
6240 width. The targets may only lower integer representations they support.
6241</p>
6242<h5>Semantics:</h5>
6243<p>
6244 These intrinsics does a series of operations atomically. They first load the
6245 value stored at <tt>ptr</tt>. They then do the bitwise operation
6246 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6247 value stored at <tt>ptr</tt>.
6248</p>
6249
6250<h5>Examples:</h5>
6251<pre>
6252%ptr = malloc i32
6253 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006254%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006255 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006256%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006257 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006258%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006259 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006260%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006261 <i>; yields {i32}:result3 = FF</i>
6262%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6263</pre>
6264</div>
6265
6266
6267<!-- _______________________________________________________________________ -->
6268<div class="doc_subsubsection">
6269 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6270 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6271 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6272 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6273
6274</div>
6275<div class="doc_text">
6276<h5>Syntax:</h5>
6277<p>
6278 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6279 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006280 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6281 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006282 support all bit widths however.</p>
6283<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006284declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6285declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6286declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6287declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006288
6289</pre>
6290
6291<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006292declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6293declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6294declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6295declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006296
6297</pre>
6298
6299<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006300declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6301declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6302declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6303declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006304
6305</pre>
6306
6307<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006308declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6309declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6310declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6311declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006312
6313</pre>
6314<h5>Overview:</h5>
6315<p>
6316 These intrinsics takes the signed or unsigned minimum or maximum of
6317 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6318 original value at <tt>ptr</tt>.
6319</p>
6320<h5>Arguments:</h5>
6321<p>
6322
6323 These intrinsics take two arguments, the first a pointer to an integer value
6324 and the second an integer value. The result is also an integer value. These
6325 integer types can have any bit width, but they must all have the same bit
6326 width. The targets may only lower integer representations they support.
6327</p>
6328<h5>Semantics:</h5>
6329<p>
6330 These intrinsics does a series of operations atomically. They first load the
6331 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6332 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6333 the original value stored at <tt>ptr</tt>.
6334</p>
6335
6336<h5>Examples:</h5>
6337<pre>
6338%ptr = malloc i32
6339 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006340%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006341 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006342%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006343 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006344%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006345 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006346%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006347 <i>; yields {i32}:result3 = 8</i>
6348%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6349</pre>
6350</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006351
6352<!-- ======================================================================= -->
6353<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006354 <a name="int_general">General Intrinsics</a>
6355</div>
6356
6357<div class="doc_text">
6358<p> This class of intrinsics is designed to be generic and has
6359no specific purpose. </p>
6360</div>
6361
6362<!-- _______________________________________________________________________ -->
6363<div class="doc_subsubsection">
6364 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6365</div>
6366
6367<div class="doc_text">
6368
6369<h5>Syntax:</h5>
6370<pre>
6371 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6372</pre>
6373
6374<h5>Overview:</h5>
6375
6376<p>
6377The '<tt>llvm.var.annotation</tt>' intrinsic
6378</p>
6379
6380<h5>Arguments:</h5>
6381
6382<p>
6383The first argument is a pointer to a value, the second is a pointer to a
6384global string, the third is a pointer to a global string which is the source
6385file name, and the last argument is the line number.
6386</p>
6387
6388<h5>Semantics:</h5>
6389
6390<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006391This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006392This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006393annotations. These have no other defined use, they are ignored by code
6394generation and optimization.
6395</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006396</div>
6397
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006398<!-- _______________________________________________________________________ -->
6399<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006400 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006401</div>
6402
6403<div class="doc_text">
6404
6405<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006406<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6407any integer bit width.
6408</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006409<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006410 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6411 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6412 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6413 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6414 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006415</pre>
6416
6417<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006418
6419<p>
6420The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006421</p>
6422
6423<h5>Arguments:</h5>
6424
6425<p>
6426The first argument is an integer value (result of some expression),
6427the second is a pointer to a global string, the third is a pointer to a global
6428string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006429It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006430</p>
6431
6432<h5>Semantics:</h5>
6433
6434<p>
6435This intrinsic allows annotations to be put on arbitrary expressions
6436with arbitrary strings. This can be useful for special purpose optimizations
6437that want to look for these annotations. These have no other defined use, they
6438are ignored by code generation and optimization.
Dan Gohman2672f3e2008-10-14 16:51:45 +00006439</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006440</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006441
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006442<!-- _______________________________________________________________________ -->
6443<div class="doc_subsubsection">
6444 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6445</div>
6446
6447<div class="doc_text">
6448
6449<h5>Syntax:</h5>
6450<pre>
6451 declare void @llvm.trap()
6452</pre>
6453
6454<h5>Overview:</h5>
6455
6456<p>
6457The '<tt>llvm.trap</tt>' intrinsic
6458</p>
6459
6460<h5>Arguments:</h5>
6461
6462<p>
6463None
6464</p>
6465
6466<h5>Semantics:</h5>
6467
6468<p>
6469This intrinsics is lowered to the target dependent trap instruction. If the
6470target does not have a trap instruction, this intrinsic will be lowered to the
6471call of the abort() function.
6472</p>
6473</div>
6474
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006475<!-- *********************************************************************** -->
6476<hr>
6477<address>
6478 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6479 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6480 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006481 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006482
6483 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6484 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6485 Last modified: $Date$
6486</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006487
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006488</body>
6489</html>