blob: e8ac954c4d7a8e640f0109f80cd61da8cf7c0c12 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 bool writeInstructionCast(const Instruction &I);
162
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 private :
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
168
169 void lowerIntrinsics(Function &F);
170
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
176
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
180
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000186 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187
Chris Lattner8bbc8592008-03-02 08:07:24 +0000188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
195 }
196
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
201 //
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
205 if (isa<CmpInst>(I))
206 return true;
207
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 // Don't inline a load across a store or other bad things!
214 return false;
215
Chris Lattnerf858a042008-03-02 05:41:07 +0000216 // Must not be used in inline asm, extractelement, or shufflevector.
217 if (I.hasOneUse()) {
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
221 return false;
222 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
226 }
227
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
231 //
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
238 return 0;
239 return AI;
240 }
241
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
245 return true;
246 return false;
247 }
248
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
251
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
257 }
258
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
261 }
262 void visitUnreachableInst(UnreachableInst &I);
263
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
268
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 void visitInstruction(Instruction &I) {
288 cerr << "C Writer does not know about " << I;
289 abort();
290 }
291
292 void outputLValue(Instruction *I) {
293 Out << " " << GetValueName(I) << " = ";
294 }
295
296 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
297 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
298 BasicBlock *Successor, unsigned Indent);
299 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
300 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000301 void printGEPExpression(Value *Ptr, gep_type_iterator I,
302 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303
304 std::string GetValueName(const Value *Operand);
305 };
306}
307
308char CWriter::ID = 0;
309
310/// This method inserts names for any unnamed structure types that are used by
311/// the program, and removes names from structure types that are not used by the
312/// program.
313///
314bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
315 // Get a set of types that are used by the program...
316 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
317
318 // Loop over the module symbol table, removing types from UT that are
319 // already named, and removing names for types that are not used.
320 //
321 TypeSymbolTable &TST = M.getTypeSymbolTable();
322 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
323 TI != TE; ) {
324 TypeSymbolTable::iterator I = TI++;
325
326 // If this isn't a struct type, remove it from our set of types to name.
327 // This simplifies emission later.
328 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
329 TST.remove(I);
330 } else {
331 // If this is not used, remove it from the symbol table.
332 std::set<const Type *>::iterator UTI = UT.find(I->second);
333 if (UTI == UT.end())
334 TST.remove(I);
335 else
336 UT.erase(UTI); // Only keep one name for this type.
337 }
338 }
339
340 // UT now contains types that are not named. Loop over it, naming
341 // structure types.
342 //
343 bool Changed = false;
344 unsigned RenameCounter = 0;
345 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
346 I != E; ++I)
347 if (const StructType *ST = dyn_cast<StructType>(*I)) {
348 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
349 ++RenameCounter;
350 Changed = true;
351 }
352
353
354 // Loop over all external functions and globals. If we have two with
355 // identical names, merge them.
356 // FIXME: This code should disappear when we don't allow values with the same
357 // names when they have different types!
358 std::map<std::string, GlobalValue*> ExtSymbols;
359 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
360 Function *GV = I++;
361 if (GV->isDeclaration() && GV->hasName()) {
362 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
363 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
364 if (!X.second) {
365 // Found a conflict, replace this global with the previous one.
366 GlobalValue *OldGV = X.first->second;
367 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
368 GV->eraseFromParent();
369 Changed = true;
370 }
371 }
372 }
373 // Do the same for globals.
374 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
375 I != E;) {
376 GlobalVariable *GV = I++;
377 if (GV->isDeclaration() && GV->hasName()) {
378 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
379 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
380 if (!X.second) {
381 // Found a conflict, replace this global with the previous one.
382 GlobalValue *OldGV = X.first->second;
383 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
384 GV->eraseFromParent();
385 Changed = true;
386 }
387 }
388 }
389
390 return Changed;
391}
392
393/// printStructReturnPointerFunctionType - This is like printType for a struct
394/// return type, except, instead of printing the type as void (*)(Struct*, ...)
395/// print it as "Struct (*)(...)", for struct return functions.
396void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000397 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 const PointerType *TheTy) {
399 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
400 std::stringstream FunctionInnards;
401 FunctionInnards << " (*) (";
402 bool PrintedType = false;
403
404 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
405 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
406 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000407 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 if (PrintedType)
409 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000410 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000411 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000412 assert(isa<PointerType>(ArgTy));
413 ArgTy = cast<PointerType>(ArgTy)->getElementType();
414 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000415 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000416 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 PrintedType = true;
418 }
419 if (FTy->isVarArg()) {
420 if (PrintedType)
421 FunctionInnards << ", ...";
422 } else if (!PrintedType) {
423 FunctionInnards << "void";
424 }
425 FunctionInnards << ')';
426 std::string tstr = FunctionInnards.str();
427 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000428 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429}
430
431std::ostream &
432CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000433 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000434 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 "Invalid type for printSimpleType");
436 switch (Ty->getTypeID()) {
437 case Type::VoidTyID: return Out << "void " << NameSoFar;
438 case Type::IntegerTyID: {
439 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
440 if (NumBits == 1)
441 return Out << "bool " << NameSoFar;
442 else if (NumBits <= 8)
443 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
444 else if (NumBits <= 16)
445 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
446 else if (NumBits <= 32)
447 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000448 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000450 else {
451 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
452 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 }
454 }
455 case Type::FloatTyID: return Out << "float " << NameSoFar;
456 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000457 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
458 // present matches host 'long double'.
459 case Type::X86_FP80TyID:
460 case Type::PPC_FP128TyID:
461 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000462
463 case Type::VectorTyID: {
464 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000465 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000466 " __attribute__((vector_size(" +
467 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000468 }
469
470 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 cerr << "Unknown primitive type: " << *Ty << "\n";
472 abort();
473 }
474}
475
476// Pass the Type* and the variable name and this prints out the variable
477// declaration.
478//
479std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
480 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000481 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000482 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 printSimpleType(Out, Ty, isSigned, NameSoFar);
484 return Out;
485 }
486
487 // Check to see if the type is named.
488 if (!IgnoreName || isa<OpaqueType>(Ty)) {
489 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
490 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
491 }
492
493 switch (Ty->getTypeID()) {
494 case Type::FunctionTyID: {
495 const FunctionType *FTy = cast<FunctionType>(Ty);
496 std::stringstream FunctionInnards;
497 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 unsigned Idx = 1;
499 for (FunctionType::param_iterator I = FTy->param_begin(),
500 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000501 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000502 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000503 assert(isa<PointerType>(ArgTy));
504 ArgTy = cast<PointerType>(ArgTy)->getElementType();
505 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 if (I != FTy->param_begin())
507 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000508 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000509 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510 ++Idx;
511 }
512 if (FTy->isVarArg()) {
513 if (FTy->getNumParams())
514 FunctionInnards << ", ...";
515 } else if (!FTy->getNumParams()) {
516 FunctionInnards << "void";
517 }
518 FunctionInnards << ')';
519 std::string tstr = FunctionInnards.str();
520 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000521 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000522 return Out;
523 }
524 case Type::StructTyID: {
525 const StructType *STy = cast<StructType>(Ty);
526 Out << NameSoFar + " {\n";
527 unsigned Idx = 0;
528 for (StructType::element_iterator I = STy->element_begin(),
529 E = STy->element_end(); I != E; ++I) {
530 Out << " ";
531 printType(Out, *I, false, "field" + utostr(Idx++));
532 Out << ";\n";
533 }
534 Out << '}';
535 if (STy->isPacked())
536 Out << " __attribute__ ((packed))";
537 return Out;
538 }
539
540 case Type::PointerTyID: {
541 const PointerType *PTy = cast<PointerType>(Ty);
542 std::string ptrName = "*" + NameSoFar;
543
544 if (isa<ArrayType>(PTy->getElementType()) ||
545 isa<VectorType>(PTy->getElementType()))
546 ptrName = "(" + ptrName + ")";
547
Chris Lattner1c8733e2008-03-12 17:45:29 +0000548 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000549 // Must be a function ptr cast!
550 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000551 return printType(Out, PTy->getElementType(), false, ptrName);
552 }
553
554 case Type::ArrayTyID: {
555 const ArrayType *ATy = cast<ArrayType>(Ty);
556 unsigned NumElements = ATy->getNumElements();
557 if (NumElements == 0) NumElements = 1;
558 return printType(Out, ATy->getElementType(), false,
559 NameSoFar + "[" + utostr(NumElements) + "]");
560 }
561
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000562 case Type::OpaqueTyID: {
563 static int Count = 0;
564 std::string TyName = "struct opaque_" + itostr(Count++);
565 assert(TypeNames.find(Ty) == TypeNames.end());
566 TypeNames[Ty] = TyName;
567 return Out << TyName << ' ' << NameSoFar;
568 }
569 default:
570 assert(0 && "Unhandled case in getTypeProps!");
571 abort();
572 }
573
574 return Out;
575}
576
577void CWriter::printConstantArray(ConstantArray *CPA) {
578
579 // As a special case, print the array as a string if it is an array of
580 // ubytes or an array of sbytes with positive values.
581 //
582 const Type *ETy = CPA->getType()->getElementType();
583 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
584
585 // Make sure the last character is a null char, as automatically added by C
586 if (isString && (CPA->getNumOperands() == 0 ||
587 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
588 isString = false;
589
590 if (isString) {
591 Out << '\"';
592 // Keep track of whether the last number was a hexadecimal escape
593 bool LastWasHex = false;
594
595 // Do not include the last character, which we know is null
596 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
597 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
598
599 // Print it out literally if it is a printable character. The only thing
600 // to be careful about is when the last letter output was a hex escape
601 // code, in which case we have to be careful not to print out hex digits
602 // explicitly (the C compiler thinks it is a continuation of the previous
603 // character, sheesh...)
604 //
605 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
606 LastWasHex = false;
607 if (C == '"' || C == '\\')
608 Out << "\\" << C;
609 else
610 Out << C;
611 } else {
612 LastWasHex = false;
613 switch (C) {
614 case '\n': Out << "\\n"; break;
615 case '\t': Out << "\\t"; break;
616 case '\r': Out << "\\r"; break;
617 case '\v': Out << "\\v"; break;
618 case '\a': Out << "\\a"; break;
619 case '\"': Out << "\\\""; break;
620 case '\'': Out << "\\\'"; break;
621 default:
622 Out << "\\x";
623 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
624 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
625 LastWasHex = true;
626 break;
627 }
628 }
629 }
630 Out << '\"';
631 } else {
632 Out << '{';
633 if (CPA->getNumOperands()) {
634 Out << ' ';
635 printConstant(cast<Constant>(CPA->getOperand(0)));
636 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
637 Out << ", ";
638 printConstant(cast<Constant>(CPA->getOperand(i)));
639 }
640 }
641 Out << " }";
642 }
643}
644
645void CWriter::printConstantVector(ConstantVector *CP) {
646 Out << '{';
647 if (CP->getNumOperands()) {
648 Out << ' ';
649 printConstant(cast<Constant>(CP->getOperand(0)));
650 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
651 Out << ", ";
652 printConstant(cast<Constant>(CP->getOperand(i)));
653 }
654 }
655 Out << " }";
656}
657
658// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
659// textually as a double (rather than as a reference to a stack-allocated
660// variable). We decide this by converting CFP to a string and back into a
661// double, and then checking whether the conversion results in a bit-equal
662// double to the original value of CFP. This depends on us and the target C
663// compiler agreeing on the conversion process (which is pretty likely since we
664// only deal in IEEE FP).
665//
666static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000667 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000668 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
669 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000670 APFloat APF = APFloat(CFP->getValueAPF()); // copy
671 if (CFP->getType()==Type::FloatTy)
672 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000673#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
674 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000675 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676 if (!strncmp(Buffer, "0x", 2) ||
677 !strncmp(Buffer, "-0x", 3) ||
678 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000679 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000680 return false;
681#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000682 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683
684 while (StrVal[0] == ' ')
685 StrVal.erase(StrVal.begin());
686
687 // Check to make sure that the stringized number is not some string like "Inf"
688 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
689 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
690 ((StrVal[0] == '-' || StrVal[0] == '+') &&
691 (StrVal[1] >= '0' && StrVal[1] <= '9')))
692 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000693 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694 return false;
695#endif
696}
697
698/// Print out the casting for a cast operation. This does the double casting
699/// necessary for conversion to the destination type, if necessary.
700/// @brief Print a cast
701void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
702 // Print the destination type cast
703 switch (opc) {
704 case Instruction::UIToFP:
705 case Instruction::SIToFP:
706 case Instruction::IntToPtr:
707 case Instruction::Trunc:
708 case Instruction::BitCast:
709 case Instruction::FPExt:
710 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
711 Out << '(';
712 printType(Out, DstTy);
713 Out << ')';
714 break;
715 case Instruction::ZExt:
716 case Instruction::PtrToInt:
717 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
718 Out << '(';
719 printSimpleType(Out, DstTy, false);
720 Out << ')';
721 break;
722 case Instruction::SExt:
723 case Instruction::FPToSI: // For these, make sure we get a signed dest
724 Out << '(';
725 printSimpleType(Out, DstTy, true);
726 Out << ')';
727 break;
728 default:
729 assert(0 && "Invalid cast opcode");
730 }
731
732 // Print the source type cast
733 switch (opc) {
734 case Instruction::UIToFP:
735 case Instruction::ZExt:
736 Out << '(';
737 printSimpleType(Out, SrcTy, false);
738 Out << ')';
739 break;
740 case Instruction::SIToFP:
741 case Instruction::SExt:
742 Out << '(';
743 printSimpleType(Out, SrcTy, true);
744 Out << ')';
745 break;
746 case Instruction::IntToPtr:
747 case Instruction::PtrToInt:
748 // Avoid "cast to pointer from integer of different size" warnings
749 Out << "(unsigned long)";
750 break;
751 case Instruction::Trunc:
752 case Instruction::BitCast:
753 case Instruction::FPExt:
754 case Instruction::FPTrunc:
755 case Instruction::FPToSI:
756 case Instruction::FPToUI:
757 break; // These don't need a source cast.
758 default:
759 assert(0 && "Invalid cast opcode");
760 break;
761 }
762}
763
764// printConstant - The LLVM Constant to C Constant converter.
765void CWriter::printConstant(Constant *CPV) {
766 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
767 switch (CE->getOpcode()) {
768 case Instruction::Trunc:
769 case Instruction::ZExt:
770 case Instruction::SExt:
771 case Instruction::FPTrunc:
772 case Instruction::FPExt:
773 case Instruction::UIToFP:
774 case Instruction::SIToFP:
775 case Instruction::FPToUI:
776 case Instruction::FPToSI:
777 case Instruction::PtrToInt:
778 case Instruction::IntToPtr:
779 case Instruction::BitCast:
780 Out << "(";
781 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
782 if (CE->getOpcode() == Instruction::SExt &&
783 CE->getOperand(0)->getType() == Type::Int1Ty) {
784 // Make sure we really sext from bool here by subtracting from 0
785 Out << "0-";
786 }
787 printConstant(CE->getOperand(0));
788 if (CE->getType() == Type::Int1Ty &&
789 (CE->getOpcode() == Instruction::Trunc ||
790 CE->getOpcode() == Instruction::FPToUI ||
791 CE->getOpcode() == Instruction::FPToSI ||
792 CE->getOpcode() == Instruction::PtrToInt)) {
793 // Make sure we really truncate to bool here by anding with 1
794 Out << "&1u";
795 }
796 Out << ')';
797 return;
798
799 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000800 Out << "(";
801 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
802 gep_type_end(CPV));
803 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 return;
805 case Instruction::Select:
806 Out << '(';
807 printConstant(CE->getOperand(0));
808 Out << '?';
809 printConstant(CE->getOperand(1));
810 Out << ':';
811 printConstant(CE->getOperand(2));
812 Out << ')';
813 return;
814 case Instruction::Add:
815 case Instruction::Sub:
816 case Instruction::Mul:
817 case Instruction::SDiv:
818 case Instruction::UDiv:
819 case Instruction::FDiv:
820 case Instruction::URem:
821 case Instruction::SRem:
822 case Instruction::FRem:
823 case Instruction::And:
824 case Instruction::Or:
825 case Instruction::Xor:
826 case Instruction::ICmp:
827 case Instruction::Shl:
828 case Instruction::LShr:
829 case Instruction::AShr:
830 {
831 Out << '(';
832 bool NeedsClosingParens = printConstExprCast(CE);
833 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
834 switch (CE->getOpcode()) {
835 case Instruction::Add: Out << " + "; break;
836 case Instruction::Sub: Out << " - "; break;
837 case Instruction::Mul: Out << " * "; break;
838 case Instruction::URem:
839 case Instruction::SRem:
840 case Instruction::FRem: Out << " % "; break;
841 case Instruction::UDiv:
842 case Instruction::SDiv:
843 case Instruction::FDiv: Out << " / "; break;
844 case Instruction::And: Out << " & "; break;
845 case Instruction::Or: Out << " | "; break;
846 case Instruction::Xor: Out << " ^ "; break;
847 case Instruction::Shl: Out << " << "; break;
848 case Instruction::LShr:
849 case Instruction::AShr: Out << " >> "; break;
850 case Instruction::ICmp:
851 switch (CE->getPredicate()) {
852 case ICmpInst::ICMP_EQ: Out << " == "; break;
853 case ICmpInst::ICMP_NE: Out << " != "; break;
854 case ICmpInst::ICMP_SLT:
855 case ICmpInst::ICMP_ULT: Out << " < "; break;
856 case ICmpInst::ICMP_SLE:
857 case ICmpInst::ICMP_ULE: Out << " <= "; break;
858 case ICmpInst::ICMP_SGT:
859 case ICmpInst::ICMP_UGT: Out << " > "; break;
860 case ICmpInst::ICMP_SGE:
861 case ICmpInst::ICMP_UGE: Out << " >= "; break;
862 default: assert(0 && "Illegal ICmp predicate");
863 }
864 break;
865 default: assert(0 && "Illegal opcode here!");
866 }
867 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
868 if (NeedsClosingParens)
869 Out << "))";
870 Out << ')';
871 return;
872 }
873 case Instruction::FCmp: {
874 Out << '(';
875 bool NeedsClosingParens = printConstExprCast(CE);
876 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
877 Out << "0";
878 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
879 Out << "1";
880 else {
881 const char* op = 0;
882 switch (CE->getPredicate()) {
883 default: assert(0 && "Illegal FCmp predicate");
884 case FCmpInst::FCMP_ORD: op = "ord"; break;
885 case FCmpInst::FCMP_UNO: op = "uno"; break;
886 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
887 case FCmpInst::FCMP_UNE: op = "une"; break;
888 case FCmpInst::FCMP_ULT: op = "ult"; break;
889 case FCmpInst::FCMP_ULE: op = "ule"; break;
890 case FCmpInst::FCMP_UGT: op = "ugt"; break;
891 case FCmpInst::FCMP_UGE: op = "uge"; break;
892 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
893 case FCmpInst::FCMP_ONE: op = "one"; break;
894 case FCmpInst::FCMP_OLT: op = "olt"; break;
895 case FCmpInst::FCMP_OLE: op = "ole"; break;
896 case FCmpInst::FCMP_OGT: op = "ogt"; break;
897 case FCmpInst::FCMP_OGE: op = "oge"; break;
898 }
899 Out << "llvm_fcmp_" << op << "(";
900 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
901 Out << ", ";
902 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
903 Out << ")";
904 }
905 if (NeedsClosingParens)
906 Out << "))";
907 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000908 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 }
910 default:
911 cerr << "CWriter Error: Unhandled constant expression: "
912 << *CE << "\n";
913 abort();
914 }
915 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
916 Out << "((";
917 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000918 Out << ")/*UNDEF*/";
919 if (!isa<VectorType>(CPV->getType())) {
920 Out << "0)";
921 } else {
922 Out << "{})";
923 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000924 return;
925 }
926
927 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
928 const Type* Ty = CI->getType();
929 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000930 Out << (CI->getZExtValue() ? '1' : '0');
931 else if (Ty == Type::Int32Ty)
932 Out << CI->getZExtValue() << 'u';
933 else if (Ty->getPrimitiveSizeInBits() > 32)
934 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000935 else {
936 Out << "((";
937 printSimpleType(Out, Ty, false) << ')';
938 if (CI->isMinValue(true))
939 Out << CI->getZExtValue() << 'u';
940 else
941 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000942 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 }
944 return;
945 }
946
947 switch (CPV->getType()->getTypeID()) {
948 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000949 case Type::DoubleTyID:
950 case Type::X86_FP80TyID:
951 case Type::PPC_FP128TyID:
952 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 ConstantFP *FPC = cast<ConstantFP>(CPV);
954 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
955 if (I != FPConstantMap.end()) {
956 // Because of FP precision problems we must load from a stack allocated
957 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000958 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
959 FPC->getType() == Type::DoubleTy ? "double" :
960 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 << "*)&FPConstant" << I->second << ')';
962 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000963 assert(FPC->getType() == Type::FloatTy ||
964 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000965 double V = FPC->getType() == Type::FloatTy ?
966 FPC->getValueAPF().convertToFloat() :
967 FPC->getValueAPF().convertToDouble();
968 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 // The value is NaN
970
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000971 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
973 // it's 0x7ff4.
974 const unsigned long QuietNaN = 0x7ff8UL;
975 //const unsigned long SignalNaN = 0x7ff4UL;
976
977 // We need to grab the first part of the FP #
978 char Buffer[100];
979
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000980 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
982
983 std::string Num(&Buffer[0], &Buffer[6]);
984 unsigned long Val = strtoul(Num.c_str(), 0, 16);
985
986 if (FPC->getType() == Type::FloatTy)
987 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
988 << Buffer << "\") /*nan*/ ";
989 else
990 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
991 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000992 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000994 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
996 << " /*inf*/ ";
997 } else {
998 std::string Num;
999#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1000 // Print out the constant as a floating point number.
1001 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001002 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 Num = Buffer;
1004#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001005 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001007 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 }
1009 }
1010 break;
1011 }
1012
1013 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001014 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001015 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001016 } else {
1017 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1019 Out << '{';
1020 if (AT->getNumElements()) {
1021 Out << ' ';
1022 Constant *CZ = Constant::getNullValue(AT->getElementType());
1023 printConstant(CZ);
1024 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1025 Out << ", ";
1026 printConstant(CZ);
1027 }
1028 }
1029 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 }
1031 break;
1032
1033 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001034 // Use C99 compound expression literal initializer syntax.
1035 Out << "(";
1036 printType(Out, CPV->getType());
1037 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001038 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001039 printConstantVector(CV);
1040 } else {
1041 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1042 const VectorType *VT = cast<VectorType>(CPV->getType());
1043 Out << "{ ";
1044 Constant *CZ = Constant::getNullValue(VT->getElementType());
1045 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001046 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001047 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 }
1050 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 }
1052 break;
1053
1054 case Type::StructTyID:
1055 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1056 const StructType *ST = cast<StructType>(CPV->getType());
1057 Out << '{';
1058 if (ST->getNumElements()) {
1059 Out << ' ';
1060 printConstant(Constant::getNullValue(ST->getElementType(0)));
1061 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1062 Out << ", ";
1063 printConstant(Constant::getNullValue(ST->getElementType(i)));
1064 }
1065 }
1066 Out << " }";
1067 } else {
1068 Out << '{';
1069 if (CPV->getNumOperands()) {
1070 Out << ' ';
1071 printConstant(cast<Constant>(CPV->getOperand(0)));
1072 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1073 Out << ", ";
1074 printConstant(cast<Constant>(CPV->getOperand(i)));
1075 }
1076 }
1077 Out << " }";
1078 }
1079 break;
1080
1081 case Type::PointerTyID:
1082 if (isa<ConstantPointerNull>(CPV)) {
1083 Out << "((";
1084 printType(Out, CPV->getType()); // sign doesn't matter
1085 Out << ")/*NULL*/0)";
1086 break;
1087 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1088 writeOperand(GV);
1089 break;
1090 }
1091 // FALL THROUGH
1092 default:
1093 cerr << "Unknown constant type: " << *CPV << "\n";
1094 abort();
1095 }
1096}
1097
1098// Some constant expressions need to be casted back to the original types
1099// because their operands were casted to the expected type. This function takes
1100// care of detecting that case and printing the cast for the ConstantExpr.
1101bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1102 bool NeedsExplicitCast = false;
1103 const Type *Ty = CE->getOperand(0)->getType();
1104 bool TypeIsSigned = false;
1105 switch (CE->getOpcode()) {
1106 case Instruction::LShr:
1107 case Instruction::URem:
1108 case Instruction::UDiv: NeedsExplicitCast = true; break;
1109 case Instruction::AShr:
1110 case Instruction::SRem:
1111 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1112 case Instruction::SExt:
1113 Ty = CE->getType();
1114 NeedsExplicitCast = true;
1115 TypeIsSigned = true;
1116 break;
1117 case Instruction::ZExt:
1118 case Instruction::Trunc:
1119 case Instruction::FPTrunc:
1120 case Instruction::FPExt:
1121 case Instruction::UIToFP:
1122 case Instruction::SIToFP:
1123 case Instruction::FPToUI:
1124 case Instruction::FPToSI:
1125 case Instruction::PtrToInt:
1126 case Instruction::IntToPtr:
1127 case Instruction::BitCast:
1128 Ty = CE->getType();
1129 NeedsExplicitCast = true;
1130 break;
1131 default: break;
1132 }
1133 if (NeedsExplicitCast) {
1134 Out << "((";
1135 if (Ty->isInteger() && Ty != Type::Int1Ty)
1136 printSimpleType(Out, Ty, TypeIsSigned);
1137 else
1138 printType(Out, Ty); // not integer, sign doesn't matter
1139 Out << ")(";
1140 }
1141 return NeedsExplicitCast;
1142}
1143
1144// Print a constant assuming that it is the operand for a given Opcode. The
1145// opcodes that care about sign need to cast their operands to the expected
1146// type before the operation proceeds. This function does the casting.
1147void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1148
1149 // Extract the operand's type, we'll need it.
1150 const Type* OpTy = CPV->getType();
1151
1152 // Indicate whether to do the cast or not.
1153 bool shouldCast = false;
1154 bool typeIsSigned = false;
1155
1156 // Based on the Opcode for which this Constant is being written, determine
1157 // the new type to which the operand should be casted by setting the value
1158 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1159 // casted below.
1160 switch (Opcode) {
1161 default:
1162 // for most instructions, it doesn't matter
1163 break;
1164 case Instruction::LShr:
1165 case Instruction::UDiv:
1166 case Instruction::URem:
1167 shouldCast = true;
1168 break;
1169 case Instruction::AShr:
1170 case Instruction::SDiv:
1171 case Instruction::SRem:
1172 shouldCast = true;
1173 typeIsSigned = true;
1174 break;
1175 }
1176
1177 // Write out the casted constant if we should, otherwise just write the
1178 // operand.
1179 if (shouldCast) {
1180 Out << "((";
1181 printSimpleType(Out, OpTy, typeIsSigned);
1182 Out << ")";
1183 printConstant(CPV);
1184 Out << ")";
1185 } else
1186 printConstant(CPV);
1187}
1188
1189std::string CWriter::GetValueName(const Value *Operand) {
1190 std::string Name;
1191
1192 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1193 std::string VarName;
1194
1195 Name = Operand->getName();
1196 VarName.reserve(Name.capacity());
1197
1198 for (std::string::iterator I = Name.begin(), E = Name.end();
1199 I != E; ++I) {
1200 char ch = *I;
1201
1202 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001203 (ch >= '0' && ch <= '9') || ch == '_')) {
1204 char buffer[5];
1205 sprintf(buffer, "_%x_", ch);
1206 VarName += buffer;
1207 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 VarName += ch;
1209 }
1210
1211 Name = "llvm_cbe_" + VarName;
1212 } else {
1213 Name = Mang->getValueName(Operand);
1214 }
1215
1216 return Name;
1217}
1218
1219void CWriter::writeOperandInternal(Value *Operand) {
1220 if (Instruction *I = dyn_cast<Instruction>(Operand))
1221 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1222 // Should we inline this instruction to build a tree?
1223 Out << '(';
1224 visit(*I);
1225 Out << ')';
1226 return;
1227 }
1228
1229 Constant* CPV = dyn_cast<Constant>(Operand);
1230
1231 if (CPV && !isa<GlobalValue>(CPV))
1232 printConstant(CPV);
1233 else
1234 Out << GetValueName(Operand);
1235}
1236
1237void CWriter::writeOperandRaw(Value *Operand) {
1238 Constant* CPV = dyn_cast<Constant>(Operand);
1239 if (CPV && !isa<GlobalValue>(CPV)) {
1240 printConstant(CPV);
1241 } else {
1242 Out << GetValueName(Operand);
1243 }
1244}
1245
1246void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001247 bool isAddressImplicit = isAddressExposed(Operand);
1248 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 Out << "(&"; // Global variables are referenced as their addresses by llvm
1250
1251 writeOperandInternal(Operand);
1252
Chris Lattner8bbc8592008-03-02 08:07:24 +00001253 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 Out << ')';
1255}
1256
1257// Some instructions need to have their result value casted back to the
1258// original types because their operands were casted to the expected type.
1259// This function takes care of detecting that case and printing the cast
1260// for the Instruction.
1261bool CWriter::writeInstructionCast(const Instruction &I) {
1262 const Type *Ty = I.getOperand(0)->getType();
1263 switch (I.getOpcode()) {
1264 case Instruction::LShr:
1265 case Instruction::URem:
1266 case Instruction::UDiv:
1267 Out << "((";
1268 printSimpleType(Out, Ty, false);
1269 Out << ")(";
1270 return true;
1271 case Instruction::AShr:
1272 case Instruction::SRem:
1273 case Instruction::SDiv:
1274 Out << "((";
1275 printSimpleType(Out, Ty, true);
1276 Out << ")(";
1277 return true;
1278 default: break;
1279 }
1280 return false;
1281}
1282
1283// Write the operand with a cast to another type based on the Opcode being used.
1284// This will be used in cases where an instruction has specific type
1285// requirements (usually signedness) for its operands.
1286void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1287
1288 // Extract the operand's type, we'll need it.
1289 const Type* OpTy = Operand->getType();
1290
1291 // Indicate whether to do the cast or not.
1292 bool shouldCast = false;
1293
1294 // Indicate whether the cast should be to a signed type or not.
1295 bool castIsSigned = false;
1296
1297 // Based on the Opcode for which this Operand is being written, determine
1298 // the new type to which the operand should be casted by setting the value
1299 // of OpTy. If we change OpTy, also set shouldCast to true.
1300 switch (Opcode) {
1301 default:
1302 // for most instructions, it doesn't matter
1303 break;
1304 case Instruction::LShr:
1305 case Instruction::UDiv:
1306 case Instruction::URem: // Cast to unsigned first
1307 shouldCast = true;
1308 castIsSigned = false;
1309 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001310 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 case Instruction::AShr:
1312 case Instruction::SDiv:
1313 case Instruction::SRem: // Cast to signed first
1314 shouldCast = true;
1315 castIsSigned = true;
1316 break;
1317 }
1318
1319 // Write out the casted operand if we should, otherwise just write the
1320 // operand.
1321 if (shouldCast) {
1322 Out << "((";
1323 printSimpleType(Out, OpTy, castIsSigned);
1324 Out << ")";
1325 writeOperand(Operand);
1326 Out << ")";
1327 } else
1328 writeOperand(Operand);
1329}
1330
1331// Write the operand with a cast to another type based on the icmp predicate
1332// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001333void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1334 // This has to do a cast to ensure the operand has the right signedness.
1335 // Also, if the operand is a pointer, we make sure to cast to an integer when
1336 // doing the comparison both for signedness and so that the C compiler doesn't
1337 // optimize things like "p < NULL" to false (p may contain an integer value
1338 // f.e.).
1339 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // Write out the casted operand if we should, otherwise just write the
1342 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001343 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001345 return;
1346 }
1347
1348 // Should this be a signed comparison? If so, convert to signed.
1349 bool castIsSigned = Cmp.isSignedPredicate();
1350
1351 // If the operand was a pointer, convert to a large integer type.
1352 const Type* OpTy = Operand->getType();
1353 if (isa<PointerType>(OpTy))
1354 OpTy = TD->getIntPtrType();
1355
1356 Out << "((";
1357 printSimpleType(Out, OpTy, castIsSigned);
1358 Out << ")";
1359 writeOperand(Operand);
1360 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001361}
1362
1363// generateCompilerSpecificCode - This is where we add conditional compilation
1364// directives to cater to specific compilers as need be.
1365//
Dan Gohman3f795232008-04-02 23:52:49 +00001366static void generateCompilerSpecificCode(std::ostream& Out,
1367 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 // Alloca is hard to get, and we don't want to include stdlib.h here.
1369 Out << "/* get a declaration for alloca */\n"
1370 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1371 << "#define alloca(x) __builtin_alloca((x))\n"
1372 << "#define _alloca(x) __builtin_alloca((x))\n"
1373 << "#elif defined(__APPLE__)\n"
1374 << "extern void *__builtin_alloca(unsigned long);\n"
1375 << "#define alloca(x) __builtin_alloca(x)\n"
1376 << "#define longjmp _longjmp\n"
1377 << "#define setjmp _setjmp\n"
1378 << "#elif defined(__sun__)\n"
1379 << "#if defined(__sparcv9)\n"
1380 << "extern void *__builtin_alloca(unsigned long);\n"
1381 << "#else\n"
1382 << "extern void *__builtin_alloca(unsigned int);\n"
1383 << "#endif\n"
1384 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001385 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386 << "#define alloca(x) __builtin_alloca(x)\n"
1387 << "#elif defined(_MSC_VER)\n"
1388 << "#define inline _inline\n"
1389 << "#define alloca(x) _alloca(x)\n"
1390 << "#else\n"
1391 << "#include <alloca.h>\n"
1392 << "#endif\n\n";
1393
1394 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1395 // If we aren't being compiled with GCC, just drop these attributes.
1396 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1397 << "#define __attribute__(X)\n"
1398 << "#endif\n\n";
1399
1400 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1401 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1402 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1403 << "#elif defined(__GNUC__)\n"
1404 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1405 << "#else\n"
1406 << "#define __EXTERNAL_WEAK__\n"
1407 << "#endif\n\n";
1408
1409 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1410 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1411 << "#define __ATTRIBUTE_WEAK__\n"
1412 << "#elif defined(__GNUC__)\n"
1413 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1414 << "#else\n"
1415 << "#define __ATTRIBUTE_WEAK__\n"
1416 << "#endif\n\n";
1417
1418 // Add hidden visibility support. FIXME: APPLE_CC?
1419 Out << "#if defined(__GNUC__)\n"
1420 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1421 << "#endif\n\n";
1422
1423 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1424 // From the GCC documentation:
1425 //
1426 // double __builtin_nan (const char *str)
1427 //
1428 // This is an implementation of the ISO C99 function nan.
1429 //
1430 // Since ISO C99 defines this function in terms of strtod, which we do
1431 // not implement, a description of the parsing is in order. The string is
1432 // parsed as by strtol; that is, the base is recognized by leading 0 or
1433 // 0x prefixes. The number parsed is placed in the significand such that
1434 // the least significant bit of the number is at the least significant
1435 // bit of the significand. The number is truncated to fit the significand
1436 // field provided. The significand is forced to be a quiet NaN.
1437 //
1438 // This function, if given a string literal, is evaluated early enough
1439 // that it is considered a compile-time constant.
1440 //
1441 // float __builtin_nanf (const char *str)
1442 //
1443 // Similar to __builtin_nan, except the return type is float.
1444 //
1445 // double __builtin_inf (void)
1446 //
1447 // Similar to __builtin_huge_val, except a warning is generated if the
1448 // target floating-point format does not support infinities. This
1449 // function is suitable for implementing the ISO C99 macro INFINITY.
1450 //
1451 // float __builtin_inff (void)
1452 //
1453 // Similar to __builtin_inf, except the return type is float.
1454 Out << "#ifdef __GNUC__\n"
1455 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1456 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1457 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1458 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1459 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1460 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1461 << "#define LLVM_PREFETCH(addr,rw,locality) "
1462 "__builtin_prefetch(addr,rw,locality)\n"
1463 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1464 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1465 << "#define LLVM_ASM __asm__\n"
1466 << "#else\n"
1467 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1468 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1469 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1470 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1471 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1472 << "#define LLVM_INFF 0.0F /* Float */\n"
1473 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1474 << "#define __ATTRIBUTE_CTOR__\n"
1475 << "#define __ATTRIBUTE_DTOR__\n"
1476 << "#define LLVM_ASM(X)\n"
1477 << "#endif\n\n";
1478
1479 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1480 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1481 << "#define __builtin_stack_restore(X) /* noop */\n"
1482 << "#endif\n\n";
1483
Dan Gohman3f795232008-04-02 23:52:49 +00001484 // Output typedefs for 128-bit integers. If these are needed with a
1485 // 32-bit target or with a C compiler that doesn't support mode(TI),
1486 // more drastic measures will be needed.
1487 if (TD->getPointerSize() >= 8) {
1488 Out << "#ifdef __GNUC__ /* 128-bit integer types */\n"
1489 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1490 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1491 << "#endif\n\n";
1492 }
Dan Gohmana2245af2008-04-02 19:40:14 +00001493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 // Output target-specific code that should be inserted into main.
1495 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001496}
1497
1498/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1499/// the StaticTors set.
1500static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1501 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1502 if (!InitList) return;
1503
1504 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1505 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1506 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1507
1508 if (CS->getOperand(1)->isNullValue())
1509 return; // Found a null terminator, exit printing.
1510 Constant *FP = CS->getOperand(1);
1511 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1512 if (CE->isCast())
1513 FP = CE->getOperand(0);
1514 if (Function *F = dyn_cast<Function>(FP))
1515 StaticTors.insert(F);
1516 }
1517}
1518
1519enum SpecialGlobalClass {
1520 NotSpecial = 0,
1521 GlobalCtors, GlobalDtors,
1522 NotPrinted
1523};
1524
1525/// getGlobalVariableClass - If this is a global that is specially recognized
1526/// by LLVM, return a code that indicates how we should handle it.
1527static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1528 // If this is a global ctors/dtors list, handle it now.
1529 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1530 if (GV->getName() == "llvm.global_ctors")
1531 return GlobalCtors;
1532 else if (GV->getName() == "llvm.global_dtors")
1533 return GlobalDtors;
1534 }
1535
1536 // Otherwise, it it is other metadata, don't print it. This catches things
1537 // like debug information.
1538 if (GV->getSection() == "llvm.metadata")
1539 return NotPrinted;
1540
1541 return NotSpecial;
1542}
1543
1544
1545bool CWriter::doInitialization(Module &M) {
1546 // Initialize
1547 TheModule = &M;
1548
1549 TD = new TargetData(&M);
1550 IL = new IntrinsicLowering(*TD);
1551 IL->AddPrototypes(M);
1552
1553 // Ensure that all structure types have names...
1554 Mang = new Mangler(M);
1555 Mang->markCharUnacceptable('.');
1556
1557 // Keep track of which functions are static ctors/dtors so they can have
1558 // an attribute added to their prototypes.
1559 std::set<Function*> StaticCtors, StaticDtors;
1560 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1561 I != E; ++I) {
1562 switch (getGlobalVariableClass(I)) {
1563 default: break;
1564 case GlobalCtors:
1565 FindStaticTors(I, StaticCtors);
1566 break;
1567 case GlobalDtors:
1568 FindStaticTors(I, StaticDtors);
1569 break;
1570 }
1571 }
1572
1573 // get declaration for alloca
1574 Out << "/* Provide Declarations */\n";
1575 Out << "#include <stdarg.h>\n"; // Varargs support
1576 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001577 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001578
1579 // Provide a definition for `bool' if not compiling with a C++ compiler.
1580 Out << "\n"
1581 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1582
1583 << "\n\n/* Support for floating point constants */\n"
1584 << "typedef unsigned long long ConstantDoubleTy;\n"
1585 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001586 << "typedef struct { unsigned long long f1; unsigned short f2; "
1587 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001588 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001589 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1590 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591 << "\n\n/* Global Declarations */\n";
1592
1593 // First output all the declarations for the program, because C requires
1594 // Functions & globals to be declared before they are used.
1595 //
1596
1597 // Loop over the symbol table, emitting all named constants...
1598 printModuleTypes(M.getTypeSymbolTable());
1599
1600 // Global variable declarations...
1601 if (!M.global_empty()) {
1602 Out << "\n/* External Global Variable Declarations */\n";
1603 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1604 I != E; ++I) {
1605
1606 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1607 Out << "extern ";
1608 else if (I->hasDLLImportLinkage())
1609 Out << "__declspec(dllimport) ";
1610 else
1611 continue; // Internal Global
1612
1613 // Thread Local Storage
1614 if (I->isThreadLocal())
1615 Out << "__thread ";
1616
1617 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1618
1619 if (I->hasExternalWeakLinkage())
1620 Out << " __EXTERNAL_WEAK__";
1621 Out << ";\n";
1622 }
1623 }
1624
1625 // Function declarations
1626 Out << "\n/* Function Declarations */\n";
1627 Out << "double fmod(double, double);\n"; // Support for FP rem
1628 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001629 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001630
1631 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1632 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001633 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001634 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1635 if (I->hasExternalWeakLinkage())
1636 Out << "extern ";
1637 printFunctionSignature(I, true);
1638 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1639 Out << " __ATTRIBUTE_WEAK__";
1640 if (I->hasExternalWeakLinkage())
1641 Out << " __EXTERNAL_WEAK__";
1642 if (StaticCtors.count(I))
1643 Out << " __ATTRIBUTE_CTOR__";
1644 if (StaticDtors.count(I))
1645 Out << " __ATTRIBUTE_DTOR__";
1646 if (I->hasHiddenVisibility())
1647 Out << " __HIDDEN__";
1648
1649 if (I->hasName() && I->getName()[0] == 1)
1650 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1651
1652 Out << ";\n";
1653 }
1654 }
1655
1656 // Output the global variable declarations
1657 if (!M.global_empty()) {
1658 Out << "\n\n/* Global Variable Declarations */\n";
1659 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1660 I != E; ++I)
1661 if (!I->isDeclaration()) {
1662 // Ignore special globals, such as debug info.
1663 if (getGlobalVariableClass(I))
1664 continue;
1665
1666 if (I->hasInternalLinkage())
1667 Out << "static ";
1668 else
1669 Out << "extern ";
1670
1671 // Thread Local Storage
1672 if (I->isThreadLocal())
1673 Out << "__thread ";
1674
1675 printType(Out, I->getType()->getElementType(), false,
1676 GetValueName(I));
1677
1678 if (I->hasLinkOnceLinkage())
1679 Out << " __attribute__((common))";
1680 else if (I->hasWeakLinkage())
1681 Out << " __ATTRIBUTE_WEAK__";
1682 else if (I->hasExternalWeakLinkage())
1683 Out << " __EXTERNAL_WEAK__";
1684 if (I->hasHiddenVisibility())
1685 Out << " __HIDDEN__";
1686 Out << ";\n";
1687 }
1688 }
1689
1690 // Output the global variable definitions and contents...
1691 if (!M.global_empty()) {
1692 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1693 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1694 I != E; ++I)
1695 if (!I->isDeclaration()) {
1696 // Ignore special globals, such as debug info.
1697 if (getGlobalVariableClass(I))
1698 continue;
1699
1700 if (I->hasInternalLinkage())
1701 Out << "static ";
1702 else if (I->hasDLLImportLinkage())
1703 Out << "__declspec(dllimport) ";
1704 else if (I->hasDLLExportLinkage())
1705 Out << "__declspec(dllexport) ";
1706
1707 // Thread Local Storage
1708 if (I->isThreadLocal())
1709 Out << "__thread ";
1710
1711 printType(Out, I->getType()->getElementType(), false,
1712 GetValueName(I));
1713 if (I->hasLinkOnceLinkage())
1714 Out << " __attribute__((common))";
1715 else if (I->hasWeakLinkage())
1716 Out << " __ATTRIBUTE_WEAK__";
1717
1718 if (I->hasHiddenVisibility())
1719 Out << " __HIDDEN__";
1720
1721 // If the initializer is not null, emit the initializer. If it is null,
1722 // we try to avoid emitting large amounts of zeros. The problem with
1723 // this, however, occurs when the variable has weak linkage. In this
1724 // case, the assembler will complain about the variable being both weak
1725 // and common, so we disable this optimization.
1726 if (!I->getInitializer()->isNullValue()) {
1727 Out << " = " ;
1728 writeOperand(I->getInitializer());
1729 } else if (I->hasWeakLinkage()) {
1730 // We have to specify an initializer, but it doesn't have to be
1731 // complete. If the value is an aggregate, print out { 0 }, and let
1732 // the compiler figure out the rest of the zeros.
1733 Out << " = " ;
1734 if (isa<StructType>(I->getInitializer()->getType()) ||
1735 isa<ArrayType>(I->getInitializer()->getType()) ||
1736 isa<VectorType>(I->getInitializer()->getType())) {
1737 Out << "{ 0 }";
1738 } else {
1739 // Just print it out normally.
1740 writeOperand(I->getInitializer());
1741 }
1742 }
1743 Out << ";\n";
1744 }
1745 }
1746
1747 if (!M.empty())
1748 Out << "\n\n/* Function Bodies */\n";
1749
1750 // Emit some helper functions for dealing with FCMP instruction's
1751 // predicates
1752 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1753 Out << "return X == X && Y == Y; }\n";
1754 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1755 Out << "return X != X || Y != Y; }\n";
1756 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1757 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1758 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1759 Out << "return X != Y; }\n";
1760 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1761 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1762 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1763 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1764 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1765 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1766 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1767 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1768 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1769 Out << "return X == Y ; }\n";
1770 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1771 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1772 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1773 Out << "return X < Y ; }\n";
1774 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1775 Out << "return X > Y ; }\n";
1776 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1777 Out << "return X <= Y ; }\n";
1778 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1779 Out << "return X >= Y ; }\n";
1780 return false;
1781}
1782
1783
1784/// Output all floating point constants that cannot be printed accurately...
1785void CWriter::printFloatingPointConstants(Function &F) {
1786 // Scan the module for floating point constants. If any FP constant is used
1787 // in the function, we want to redirect it here so that we do not depend on
1788 // the precision of the printed form, unless the printed form preserves
1789 // precision.
1790 //
1791 static unsigned FPCounter = 0;
1792 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1793 I != E; ++I)
1794 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1795 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1796 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1798
1799 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001800 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001801 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001803 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001804 << "ULL; /* " << Val << " */\n";
1805 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001806 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001807 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1808 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001810 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001812 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001813 // api needed to prevent premature destruction
1814 APInt api = FPC->getValueAPF().convertToAPInt();
1815 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001816 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1817 << " = { 0x" << std::hex
1818 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1819 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1820 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001821 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1822 APInt api = FPC->getValueAPF().convertToAPInt();
1823 const uint64_t *p = api.getRawData();
1824 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1825 << " = { 0x" << std::hex
1826 << p[0] << ", 0x" << p[1]
1827 << "}; /* Long double constant */\n" << std::dec;
1828
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001829 } else
1830 assert(0 && "Unknown float type!");
1831 }
1832
1833 Out << '\n';
1834}
1835
1836
1837/// printSymbolTable - Run through symbol table looking for type names. If a
1838/// type name is found, emit its declaration...
1839///
1840void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1841 Out << "/* Helper union for bitcasts */\n";
1842 Out << "typedef union {\n";
1843 Out << " unsigned int Int32;\n";
1844 Out << " unsigned long long Int64;\n";
1845 Out << " float Float;\n";
1846 Out << " double Double;\n";
1847 Out << "} llvmBitCastUnion;\n";
1848
1849 // We are only interested in the type plane of the symbol table.
1850 TypeSymbolTable::const_iterator I = TST.begin();
1851 TypeSymbolTable::const_iterator End = TST.end();
1852
1853 // If there are no type names, exit early.
1854 if (I == End) return;
1855
1856 // Print out forward declarations for structure types before anything else!
1857 Out << "/* Structure forward decls */\n";
1858 for (; I != End; ++I) {
1859 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1860 Out << Name << ";\n";
1861 TypeNames.insert(std::make_pair(I->second, Name));
1862 }
1863
1864 Out << '\n';
1865
1866 // Now we can print out typedefs. Above, we guaranteed that this can only be
1867 // for struct or opaque types.
1868 Out << "/* Typedefs */\n";
1869 for (I = TST.begin(); I != End; ++I) {
1870 std::string Name = "l_" + Mang->makeNameProper(I->first);
1871 Out << "typedef ";
1872 printType(Out, I->second, false, Name);
1873 Out << ";\n";
1874 }
1875
1876 Out << '\n';
1877
1878 // Keep track of which structures have been printed so far...
1879 std::set<const StructType *> StructPrinted;
1880
1881 // Loop over all structures then push them into the stack so they are
1882 // printed in the correct order.
1883 //
1884 Out << "/* Structure contents */\n";
1885 for (I = TST.begin(); I != End; ++I)
1886 if (const StructType *STy = dyn_cast<StructType>(I->second))
1887 // Only print out used types!
1888 printContainedStructs(STy, StructPrinted);
1889}
1890
1891// Push the struct onto the stack and recursively push all structs
1892// this one depends on.
1893//
1894// TODO: Make this work properly with vector types
1895//
1896void CWriter::printContainedStructs(const Type *Ty,
1897 std::set<const StructType*> &StructPrinted){
1898 // Don't walk through pointers.
1899 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1900
1901 // Print all contained types first.
1902 for (Type::subtype_iterator I = Ty->subtype_begin(),
1903 E = Ty->subtype_end(); I != E; ++I)
1904 printContainedStructs(*I, StructPrinted);
1905
1906 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1907 // Check to see if we have already printed this struct.
1908 if (StructPrinted.insert(STy).second) {
1909 // Print structure type out.
1910 std::string Name = TypeNames[STy];
1911 printType(Out, STy, false, Name, true);
1912 Out << ";\n\n";
1913 }
1914 }
1915}
1916
1917void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1918 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001919 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920
1921 if (F->hasInternalLinkage()) Out << "static ";
1922 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1923 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1924 switch (F->getCallingConv()) {
1925 case CallingConv::X86_StdCall:
1926 Out << "__stdcall ";
1927 break;
1928 case CallingConv::X86_FastCall:
1929 Out << "__fastcall ";
1930 break;
1931 }
1932
1933 // Loop over the arguments, printing them...
1934 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00001935 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936
1937 std::stringstream FunctionInnards;
1938
1939 // Print out the name...
1940 FunctionInnards << GetValueName(F) << '(';
1941
1942 bool PrintedArg = false;
1943 if (!F->isDeclaration()) {
1944 if (!F->arg_empty()) {
1945 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001946 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947
1948 // If this is a struct-return function, don't print the hidden
1949 // struct-return argument.
1950 if (isStructReturn) {
1951 assert(I != E && "Invalid struct return function!");
1952 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001953 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 }
1955
1956 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001957 for (; I != E; ++I) {
1958 if (PrintedArg) FunctionInnards << ", ";
1959 if (I->hasName() || !Prototype)
1960 ArgName = GetValueName(I);
1961 else
1962 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001963 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00001964 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001965 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001966 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001967 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001968 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001969 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970 ArgName);
1971 PrintedArg = true;
1972 ++Idx;
1973 }
1974 }
1975 } else {
1976 // Loop over the arguments, printing them.
1977 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001978 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001979
1980 // If this is a struct-return function, don't print the hidden
1981 // struct-return argument.
1982 if (isStructReturn) {
1983 assert(I != E && "Invalid struct return function!");
1984 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001985 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001986 }
1987
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988 for (; I != E; ++I) {
1989 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001990 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00001991 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00001992 assert(isa<PointerType>(ArgTy));
1993 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1994 }
1995 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00001996 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001997 PrintedArg = true;
1998 ++Idx;
1999 }
2000 }
2001
2002 // Finish printing arguments... if this is a vararg function, print the ...,
2003 // unless there are no known types, in which case, we just emit ().
2004 //
2005 if (FT->isVarArg() && PrintedArg) {
2006 if (PrintedArg) FunctionInnards << ", ";
2007 FunctionInnards << "..."; // Output varargs portion of signature!
2008 } else if (!FT->isVarArg() && !PrintedArg) {
2009 FunctionInnards << "void"; // ret() -> ret(void) in C.
2010 }
2011 FunctionInnards << ')';
2012
2013 // Get the return tpe for the function.
2014 const Type *RetTy;
2015 if (!isStructReturn)
2016 RetTy = F->getReturnType();
2017 else {
2018 // If this is a struct-return function, print the struct-return type.
2019 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2020 }
2021
2022 // Print out the return type and the signature built above.
2023 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002024 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025 FunctionInnards.str());
2026}
2027
2028static inline bool isFPIntBitCast(const Instruction &I) {
2029 if (!isa<BitCastInst>(I))
2030 return false;
2031 const Type *SrcTy = I.getOperand(0)->getType();
2032 const Type *DstTy = I.getType();
2033 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2034 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2035}
2036
2037void CWriter::printFunction(Function &F) {
2038 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002039 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040
2041 printFunctionSignature(&F, false);
2042 Out << " {\n";
2043
2044 // If this is a struct return function, handle the result with magic.
2045 if (isStructReturn) {
2046 const Type *StructTy =
2047 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2048 Out << " ";
2049 printType(Out, StructTy, false, "StructReturn");
2050 Out << "; /* Struct return temporary */\n";
2051
2052 Out << " ";
2053 printType(Out, F.arg_begin()->getType(), false,
2054 GetValueName(F.arg_begin()));
2055 Out << " = &StructReturn;\n";
2056 }
2057
2058 bool PrintedVar = false;
2059
2060 // print local variable information for the function
2061 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2062 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2063 Out << " ";
2064 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2065 Out << "; /* Address-exposed local */\n";
2066 PrintedVar = true;
2067 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2068 Out << " ";
2069 printType(Out, I->getType(), false, GetValueName(&*I));
2070 Out << ";\n";
2071
2072 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2073 Out << " ";
2074 printType(Out, I->getType(), false,
2075 GetValueName(&*I)+"__PHI_TEMPORARY");
2076 Out << ";\n";
2077 }
2078 PrintedVar = true;
2079 }
2080 // We need a temporary for the BitCast to use so it can pluck a value out
2081 // of a union to do the BitCast. This is separate from the need for a
2082 // variable to hold the result of the BitCast.
2083 if (isFPIntBitCast(*I)) {
2084 Out << " llvmBitCastUnion " << GetValueName(&*I)
2085 << "__BITCAST_TEMPORARY;\n";
2086 PrintedVar = true;
2087 }
2088 }
2089
2090 if (PrintedVar)
2091 Out << '\n';
2092
2093 if (F.hasExternalLinkage() && F.getName() == "main")
2094 Out << " CODE_FOR_MAIN();\n";
2095
2096 // print the basic blocks
2097 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2098 if (Loop *L = LI->getLoopFor(BB)) {
2099 if (L->getHeader() == BB && L->getParentLoop() == 0)
2100 printLoop(L);
2101 } else {
2102 printBasicBlock(BB);
2103 }
2104 }
2105
2106 Out << "}\n\n";
2107}
2108
2109void CWriter::printLoop(Loop *L) {
2110 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2111 << "' to make GCC happy */\n";
2112 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2113 BasicBlock *BB = L->getBlocks()[i];
2114 Loop *BBLoop = LI->getLoopFor(BB);
2115 if (BBLoop == L)
2116 printBasicBlock(BB);
2117 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2118 printLoop(BBLoop);
2119 }
2120 Out << " } while (1); /* end of syntactic loop '"
2121 << L->getHeader()->getName() << "' */\n";
2122}
2123
2124void CWriter::printBasicBlock(BasicBlock *BB) {
2125
2126 // Don't print the label for the basic block if there are no uses, or if
2127 // the only terminator use is the predecessor basic block's terminator.
2128 // We have to scan the use list because PHI nodes use basic blocks too but
2129 // do not require a label to be generated.
2130 //
2131 bool NeedsLabel = false;
2132 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2133 if (isGotoCodeNecessary(*PI, BB)) {
2134 NeedsLabel = true;
2135 break;
2136 }
2137
2138 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2139
2140 // Output all of the instructions in the basic block...
2141 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2142 ++II) {
2143 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2144 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2145 outputLValue(II);
2146 else
2147 Out << " ";
2148 visit(*II);
2149 Out << ";\n";
2150 }
2151 }
2152
2153 // Don't emit prefix or suffix for the terminator...
2154 visit(*BB->getTerminator());
2155}
2156
2157
2158// Specific Instruction type classes... note that all of the casts are
2159// necessary because we use the instruction classes as opaque types...
2160//
2161void CWriter::visitReturnInst(ReturnInst &I) {
2162 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002163 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164
2165 if (isStructReturn) {
2166 Out << " return StructReturn;\n";
2167 return;
2168 }
2169
2170 // Don't output a void return if this is the last basic block in the function
2171 if (I.getNumOperands() == 0 &&
2172 &*--I.getParent()->getParent()->end() == I.getParent() &&
2173 !I.getParent()->size() == 1) {
2174 return;
2175 }
2176
2177 Out << " return";
2178 if (I.getNumOperands()) {
2179 Out << ' ';
2180 writeOperand(I.getOperand(0));
2181 }
2182 Out << ";\n";
2183}
2184
2185void CWriter::visitSwitchInst(SwitchInst &SI) {
2186
2187 Out << " switch (";
2188 writeOperand(SI.getOperand(0));
2189 Out << ") {\n default:\n";
2190 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2191 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2192 Out << ";\n";
2193 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2194 Out << " case ";
2195 writeOperand(SI.getOperand(i));
2196 Out << ":\n";
2197 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2198 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2199 printBranchToBlock(SI.getParent(), Succ, 2);
2200 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2201 Out << " break;\n";
2202 }
2203 Out << " }\n";
2204}
2205
2206void CWriter::visitUnreachableInst(UnreachableInst &I) {
2207 Out << " /*UNREACHABLE*/;\n";
2208}
2209
2210bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2211 /// FIXME: This should be reenabled, but loop reordering safe!!
2212 return true;
2213
2214 if (next(Function::iterator(From)) != Function::iterator(To))
2215 return true; // Not the direct successor, we need a goto.
2216
2217 //isa<SwitchInst>(From->getTerminator())
2218
2219 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2220 return true;
2221 return false;
2222}
2223
2224void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2225 BasicBlock *Successor,
2226 unsigned Indent) {
2227 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2228 PHINode *PN = cast<PHINode>(I);
2229 // Now we have to do the printing.
2230 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2231 if (!isa<UndefValue>(IV)) {
2232 Out << std::string(Indent, ' ');
2233 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2234 writeOperand(IV);
2235 Out << "; /* for PHI node */\n";
2236 }
2237 }
2238}
2239
2240void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2241 unsigned Indent) {
2242 if (isGotoCodeNecessary(CurBB, Succ)) {
2243 Out << std::string(Indent, ' ') << " goto ";
2244 writeOperand(Succ);
2245 Out << ";\n";
2246 }
2247}
2248
2249// Branch instruction printing - Avoid printing out a branch to a basic block
2250// that immediately succeeds the current one.
2251//
2252void CWriter::visitBranchInst(BranchInst &I) {
2253
2254 if (I.isConditional()) {
2255 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2256 Out << " if (";
2257 writeOperand(I.getCondition());
2258 Out << ") {\n";
2259
2260 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2261 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2262
2263 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2264 Out << " } else {\n";
2265 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2266 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2267 }
2268 } else {
2269 // First goto not necessary, assume second one is...
2270 Out << " if (!";
2271 writeOperand(I.getCondition());
2272 Out << ") {\n";
2273
2274 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2275 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2276 }
2277
2278 Out << " }\n";
2279 } else {
2280 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2281 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2282 }
2283 Out << "\n";
2284}
2285
2286// PHI nodes get copied into temporary values at the end of predecessor basic
2287// blocks. We now need to copy these temporary values into the REAL value for
2288// the PHI.
2289void CWriter::visitPHINode(PHINode &I) {
2290 writeOperand(&I);
2291 Out << "__PHI_TEMPORARY";
2292}
2293
2294
2295void CWriter::visitBinaryOperator(Instruction &I) {
2296 // binary instructions, shift instructions, setCond instructions.
2297 assert(!isa<PointerType>(I.getType()));
2298
2299 // We must cast the results of binary operations which might be promoted.
2300 bool needsCast = false;
2301 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2302 || (I.getType() == Type::FloatTy)) {
2303 needsCast = true;
2304 Out << "((";
2305 printType(Out, I.getType(), false);
2306 Out << ")(";
2307 }
2308
2309 // If this is a negation operation, print it out as such. For FP, we don't
2310 // want to print "-0.0 - X".
2311 if (BinaryOperator::isNeg(&I)) {
2312 Out << "-(";
2313 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2314 Out << ")";
2315 } else if (I.getOpcode() == Instruction::FRem) {
2316 // Output a call to fmod/fmodf instead of emitting a%b
2317 if (I.getType() == Type::FloatTy)
2318 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002319 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002320 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002321 else // all 3 flavors of long double
2322 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323 writeOperand(I.getOperand(0));
2324 Out << ", ";
2325 writeOperand(I.getOperand(1));
2326 Out << ")";
2327 } else {
2328
2329 // Write out the cast of the instruction's value back to the proper type
2330 // if necessary.
2331 bool NeedsClosingParens = writeInstructionCast(I);
2332
2333 // Certain instructions require the operand to be forced to a specific type
2334 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2335 // below for operand 1
2336 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2337
2338 switch (I.getOpcode()) {
2339 case Instruction::Add: Out << " + "; break;
2340 case Instruction::Sub: Out << " - "; break;
2341 case Instruction::Mul: Out << " * "; break;
2342 case Instruction::URem:
2343 case Instruction::SRem:
2344 case Instruction::FRem: Out << " % "; break;
2345 case Instruction::UDiv:
2346 case Instruction::SDiv:
2347 case Instruction::FDiv: Out << " / "; break;
2348 case Instruction::And: Out << " & "; break;
2349 case Instruction::Or: Out << " | "; break;
2350 case Instruction::Xor: Out << " ^ "; break;
2351 case Instruction::Shl : Out << " << "; break;
2352 case Instruction::LShr:
2353 case Instruction::AShr: Out << " >> "; break;
2354 default: cerr << "Invalid operator type!" << I; abort();
2355 }
2356
2357 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2358 if (NeedsClosingParens)
2359 Out << "))";
2360 }
2361
2362 if (needsCast) {
2363 Out << "))";
2364 }
2365}
2366
2367void CWriter::visitICmpInst(ICmpInst &I) {
2368 // We must cast the results of icmp which might be promoted.
2369 bool needsCast = false;
2370
2371 // Write out the cast of the instruction's value back to the proper type
2372 // if necessary.
2373 bool NeedsClosingParens = writeInstructionCast(I);
2374
2375 // Certain icmp predicate require the operand to be forced to a specific type
2376 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2377 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002378 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379
2380 switch (I.getPredicate()) {
2381 case ICmpInst::ICMP_EQ: Out << " == "; break;
2382 case ICmpInst::ICMP_NE: Out << " != "; break;
2383 case ICmpInst::ICMP_ULE:
2384 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2385 case ICmpInst::ICMP_UGE:
2386 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2387 case ICmpInst::ICMP_ULT:
2388 case ICmpInst::ICMP_SLT: Out << " < "; break;
2389 case ICmpInst::ICMP_UGT:
2390 case ICmpInst::ICMP_SGT: Out << " > "; break;
2391 default: cerr << "Invalid icmp predicate!" << I; abort();
2392 }
2393
Chris Lattner389c9142007-09-15 06:51:03 +00002394 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002395 if (NeedsClosingParens)
2396 Out << "))";
2397
2398 if (needsCast) {
2399 Out << "))";
2400 }
2401}
2402
2403void CWriter::visitFCmpInst(FCmpInst &I) {
2404 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2405 Out << "0";
2406 return;
2407 }
2408 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2409 Out << "1";
2410 return;
2411 }
2412
2413 const char* op = 0;
2414 switch (I.getPredicate()) {
2415 default: assert(0 && "Illegal FCmp predicate");
2416 case FCmpInst::FCMP_ORD: op = "ord"; break;
2417 case FCmpInst::FCMP_UNO: op = "uno"; break;
2418 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2419 case FCmpInst::FCMP_UNE: op = "une"; break;
2420 case FCmpInst::FCMP_ULT: op = "ult"; break;
2421 case FCmpInst::FCMP_ULE: op = "ule"; break;
2422 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2423 case FCmpInst::FCMP_UGE: op = "uge"; break;
2424 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2425 case FCmpInst::FCMP_ONE: op = "one"; break;
2426 case FCmpInst::FCMP_OLT: op = "olt"; break;
2427 case FCmpInst::FCMP_OLE: op = "ole"; break;
2428 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2429 case FCmpInst::FCMP_OGE: op = "oge"; break;
2430 }
2431
2432 Out << "llvm_fcmp_" << op << "(";
2433 // Write the first operand
2434 writeOperand(I.getOperand(0));
2435 Out << ", ";
2436 // Write the second operand
2437 writeOperand(I.getOperand(1));
2438 Out << ")";
2439}
2440
2441static const char * getFloatBitCastField(const Type *Ty) {
2442 switch (Ty->getTypeID()) {
2443 default: assert(0 && "Invalid Type");
2444 case Type::FloatTyID: return "Float";
2445 case Type::DoubleTyID: return "Double";
2446 case Type::IntegerTyID: {
2447 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2448 if (NumBits <= 32)
2449 return "Int32";
2450 else
2451 return "Int64";
2452 }
2453 }
2454}
2455
2456void CWriter::visitCastInst(CastInst &I) {
2457 const Type *DstTy = I.getType();
2458 const Type *SrcTy = I.getOperand(0)->getType();
2459 Out << '(';
2460 if (isFPIntBitCast(I)) {
2461 // These int<->float and long<->double casts need to be handled specially
2462 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2463 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2464 writeOperand(I.getOperand(0));
2465 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2466 << getFloatBitCastField(I.getType());
2467 } else {
2468 printCast(I.getOpcode(), SrcTy, DstTy);
2469 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2470 // Make sure we really get a sext from bool by subtracing the bool from 0
2471 Out << "0-";
2472 }
2473 writeOperand(I.getOperand(0));
2474 if (DstTy == Type::Int1Ty &&
2475 (I.getOpcode() == Instruction::Trunc ||
2476 I.getOpcode() == Instruction::FPToUI ||
2477 I.getOpcode() == Instruction::FPToSI ||
2478 I.getOpcode() == Instruction::PtrToInt)) {
2479 // Make sure we really get a trunc to bool by anding the operand with 1
2480 Out << "&1u";
2481 }
2482 }
2483 Out << ')';
2484}
2485
2486void CWriter::visitSelectInst(SelectInst &I) {
2487 Out << "((";
2488 writeOperand(I.getCondition());
2489 Out << ") ? (";
2490 writeOperand(I.getTrueValue());
2491 Out << ") : (";
2492 writeOperand(I.getFalseValue());
2493 Out << "))";
2494}
2495
2496
2497void CWriter::lowerIntrinsics(Function &F) {
2498 // This is used to keep track of intrinsics that get generated to a lowered
2499 // function. We must generate the prototypes before the function body which
2500 // will only be expanded on first use (by the loop below).
2501 std::vector<Function*> prototypesToGen;
2502
2503 // Examine all the instructions in this function to find the intrinsics that
2504 // need to be lowered.
2505 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2506 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2507 if (CallInst *CI = dyn_cast<CallInst>(I++))
2508 if (Function *F = CI->getCalledFunction())
2509 switch (F->getIntrinsicID()) {
2510 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002511 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512 case Intrinsic::vastart:
2513 case Intrinsic::vacopy:
2514 case Intrinsic::vaend:
2515 case Intrinsic::returnaddress:
2516 case Intrinsic::frameaddress:
2517 case Intrinsic::setjmp:
2518 case Intrinsic::longjmp:
2519 case Intrinsic::prefetch:
2520 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002521 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002522 case Intrinsic::x86_sse_cmp_ss:
2523 case Intrinsic::x86_sse_cmp_ps:
2524 case Intrinsic::x86_sse2_cmp_sd:
2525 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002526 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002527 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 break;
2529 default:
2530 // If this is an intrinsic that directly corresponds to a GCC
2531 // builtin, we handle it.
2532 const char *BuiltinName = "";
2533#define GET_GCC_BUILTIN_NAME
2534#include "llvm/Intrinsics.gen"
2535#undef GET_GCC_BUILTIN_NAME
2536 // If we handle it, don't lower it.
2537 if (BuiltinName[0]) break;
2538
2539 // All other intrinsic calls we must lower.
2540 Instruction *Before = 0;
2541 if (CI != &BB->front())
2542 Before = prior(BasicBlock::iterator(CI));
2543
2544 IL->LowerIntrinsicCall(CI);
2545 if (Before) { // Move iterator to instruction after call
2546 I = Before; ++I;
2547 } else {
2548 I = BB->begin();
2549 }
2550 // If the intrinsic got lowered to another call, and that call has
2551 // a definition then we need to make sure its prototype is emitted
2552 // before any calls to it.
2553 if (CallInst *Call = dyn_cast<CallInst>(I))
2554 if (Function *NewF = Call->getCalledFunction())
2555 if (!NewF->isDeclaration())
2556 prototypesToGen.push_back(NewF);
2557
2558 break;
2559 }
2560
2561 // We may have collected some prototypes to emit in the loop above.
2562 // Emit them now, before the function that uses them is emitted. But,
2563 // be careful not to emit them twice.
2564 std::vector<Function*>::iterator I = prototypesToGen.begin();
2565 std::vector<Function*>::iterator E = prototypesToGen.end();
2566 for ( ; I != E; ++I) {
2567 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2568 Out << '\n';
2569 printFunctionSignature(*I, true);
2570 Out << ";\n";
2571 }
2572 }
2573}
2574
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575void CWriter::visitCallInst(CallInst &I) {
2576 //check if we have inline asm
2577 if (isInlineAsm(I)) {
2578 visitInlineAsm(I);
2579 return;
2580 }
2581
2582 bool WroteCallee = false;
2583
2584 // Handle intrinsic function calls first...
2585 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002586 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2587 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002588 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589
2590 Value *Callee = I.getCalledValue();
2591
2592 const PointerType *PTy = cast<PointerType>(Callee->getType());
2593 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2594
2595 // If this is a call to a struct-return function, assign to the first
2596 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002597 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002598 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002599 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002600 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002601 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002602 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603 }
2604
2605 if (I.isTailCall()) Out << " /*tail*/ ";
2606
2607 if (!WroteCallee) {
2608 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002609 // the pointer. Ditto for indirect calls with byval arguments.
2610 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611
2612 // GCC is a real PITA. It does not permit codegening casts of functions to
2613 // function pointers if they are in a call (it generates a trap instruction
2614 // instead!). We work around this by inserting a cast to void* in between
2615 // the function and the function pointer cast. Unfortunately, we can't just
2616 // form the constant expression here, because the folder will immediately
2617 // nuke it.
2618 //
2619 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2620 // that void* and function pointers have the same size. :( To deal with this
2621 // in the common case, we handle casts where the number of arguments passed
2622 // match exactly.
2623 //
2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2625 if (CE->isCast())
2626 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2627 NeedsCast = true;
2628 Callee = RF;
2629 }
2630
2631 if (NeedsCast) {
2632 // Ok, just cast the pointer type.
2633 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002634 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002635 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002636 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002637 else if (hasByVal)
2638 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2639 else
2640 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002641 Out << ")(void*)";
2642 }
2643 writeOperand(Callee);
2644 if (NeedsCast) Out << ')';
2645 }
2646
2647 Out << '(';
2648
2649 unsigned NumDeclaredParams = FTy->getNumParams();
2650
2651 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2652 unsigned ArgNo = 0;
2653 if (isStructRet) { // Skip struct return argument.
2654 ++AI;
2655 ++ArgNo;
2656 }
2657
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002659 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 if (PrintedArg) Out << ", ";
2661 if (ArgNo < NumDeclaredParams &&
2662 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2663 Out << '(';
2664 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002665 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666 Out << ')';
2667 }
Evan Chengf8956382008-01-11 23:10:11 +00002668 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002669 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2670 writeOperandDeref(*AI);
2671 else
2672 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673 PrintedArg = true;
2674 }
2675 Out << ')';
2676}
2677
Chris Lattnera74b9182008-03-02 08:29:41 +00002678/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2679/// if the entire call is handled, return false it it wasn't handled, and
2680/// optionally set 'WroteCallee' if the callee has already been printed out.
2681bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2682 bool &WroteCallee) {
2683 switch (ID) {
2684 default: {
2685 // If this is an intrinsic that directly corresponds to a GCC
2686 // builtin, we emit it here.
2687 const char *BuiltinName = "";
2688 Function *F = I.getCalledFunction();
2689#define GET_GCC_BUILTIN_NAME
2690#include "llvm/Intrinsics.gen"
2691#undef GET_GCC_BUILTIN_NAME
2692 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2693
2694 Out << BuiltinName;
2695 WroteCallee = true;
2696 return false;
2697 }
2698 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002699 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002700 return true;
2701 case Intrinsic::vastart:
2702 Out << "0; ";
2703
2704 Out << "va_start(*(va_list*)";
2705 writeOperand(I.getOperand(1));
2706 Out << ", ";
2707 // Output the last argument to the enclosing function.
2708 if (I.getParent()->getParent()->arg_empty()) {
2709 cerr << "The C backend does not currently support zero "
2710 << "argument varargs functions, such as '"
2711 << I.getParent()->getParent()->getName() << "'!\n";
2712 abort();
2713 }
2714 writeOperand(--I.getParent()->getParent()->arg_end());
2715 Out << ')';
2716 return true;
2717 case Intrinsic::vaend:
2718 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2719 Out << "0; va_end(*(va_list*)";
2720 writeOperand(I.getOperand(1));
2721 Out << ')';
2722 } else {
2723 Out << "va_end(*(va_list*)0)";
2724 }
2725 return true;
2726 case Intrinsic::vacopy:
2727 Out << "0; ";
2728 Out << "va_copy(*(va_list*)";
2729 writeOperand(I.getOperand(1));
2730 Out << ", *(va_list*)";
2731 writeOperand(I.getOperand(2));
2732 Out << ')';
2733 return true;
2734 case Intrinsic::returnaddress:
2735 Out << "__builtin_return_address(";
2736 writeOperand(I.getOperand(1));
2737 Out << ')';
2738 return true;
2739 case Intrinsic::frameaddress:
2740 Out << "__builtin_frame_address(";
2741 writeOperand(I.getOperand(1));
2742 Out << ')';
2743 return true;
2744 case Intrinsic::powi:
2745 Out << "__builtin_powi(";
2746 writeOperand(I.getOperand(1));
2747 Out << ", ";
2748 writeOperand(I.getOperand(2));
2749 Out << ')';
2750 return true;
2751 case Intrinsic::setjmp:
2752 Out << "setjmp(*(jmp_buf*)";
2753 writeOperand(I.getOperand(1));
2754 Out << ')';
2755 return true;
2756 case Intrinsic::longjmp:
2757 Out << "longjmp(*(jmp_buf*)";
2758 writeOperand(I.getOperand(1));
2759 Out << ", ";
2760 writeOperand(I.getOperand(2));
2761 Out << ')';
2762 return true;
2763 case Intrinsic::prefetch:
2764 Out << "LLVM_PREFETCH((const void *)";
2765 writeOperand(I.getOperand(1));
2766 Out << ", ";
2767 writeOperand(I.getOperand(2));
2768 Out << ", ";
2769 writeOperand(I.getOperand(3));
2770 Out << ")";
2771 return true;
2772 case Intrinsic::stacksave:
2773 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2774 // to work around GCC bugs (see PR1809).
2775 Out << "0; *((void**)&" << GetValueName(&I)
2776 << ") = __builtin_stack_save()";
2777 return true;
2778 case Intrinsic::dbg_stoppoint: {
2779 // If we use writeOperand directly we get a "u" suffix which is rejected
2780 // by gcc.
2781 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2782 Out << "\n#line "
2783 << SPI.getLine()
2784 << " \"" << SPI.getDirectory()
2785 << SPI.getFileName() << "\"\n";
2786 return true;
2787 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002788 case Intrinsic::x86_sse_cmp_ss:
2789 case Intrinsic::x86_sse_cmp_ps:
2790 case Intrinsic::x86_sse2_cmp_sd:
2791 case Intrinsic::x86_sse2_cmp_pd:
2792 Out << '(';
2793 printType(Out, I.getType());
2794 Out << ')';
2795 // Multiple GCC builtins multiplex onto this intrinsic.
2796 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2797 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2798 case 0: Out << "__builtin_ia32_cmpeq"; break;
2799 case 1: Out << "__builtin_ia32_cmplt"; break;
2800 case 2: Out << "__builtin_ia32_cmple"; break;
2801 case 3: Out << "__builtin_ia32_cmpunord"; break;
2802 case 4: Out << "__builtin_ia32_cmpneq"; break;
2803 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2804 case 6: Out << "__builtin_ia32_cmpnle"; break;
2805 case 7: Out << "__builtin_ia32_cmpord"; break;
2806 }
2807 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2808 Out << 'p';
2809 else
2810 Out << 's';
2811 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2812 Out << 's';
2813 else
2814 Out << 'd';
2815
2816 Out << "(";
2817 writeOperand(I.getOperand(1));
2818 Out << ", ";
2819 writeOperand(I.getOperand(2));
2820 Out << ")";
2821 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002822 case Intrinsic::ppc_altivec_lvsl:
2823 Out << '(';
2824 printType(Out, I.getType());
2825 Out << ')';
2826 Out << "__builtin_altivec_lvsl(0, (void*)";
2827 writeOperand(I.getOperand(1));
2828 Out << ")";
2829 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002830 }
2831}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832
2833//This converts the llvm constraint string to something gcc is expecting.
2834//TODO: work out platform independent constraints and factor those out
2835// of the per target tables
2836// handle multiple constraint codes
2837std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2838
2839 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2840
Dan Gohman12300e12008-03-25 21:45:14 +00002841 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002842
2843 //Grab the translation table from TargetAsmInfo if it exists
2844 if (!TAsm) {
2845 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002846 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002847 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2848 if (Match) {
2849 //Per platform Target Machines don't exist, so create it
2850 // this must be done only once
2851 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2852 TAsm = TM->getTargetAsmInfo();
2853 }
2854 }
2855 if (TAsm)
2856 table = TAsm->getAsmCBE();
2857
2858 //Search the translation table if it exists
2859 for (int i = 0; table && table[i]; i += 2)
2860 if (c.Codes[0] == table[i])
2861 return table[i+1];
2862
2863 //default is identity
2864 return c.Codes[0];
2865}
2866
2867//TODO: import logic from AsmPrinter.cpp
2868static std::string gccifyAsm(std::string asmstr) {
2869 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2870 if (asmstr[i] == '\n')
2871 asmstr.replace(i, 1, "\\n");
2872 else if (asmstr[i] == '\t')
2873 asmstr.replace(i, 1, "\\t");
2874 else if (asmstr[i] == '$') {
2875 if (asmstr[i + 1] == '{') {
2876 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2877 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2878 std::string n = "%" +
2879 asmstr.substr(a + 1, b - a - 1) +
2880 asmstr.substr(i + 2, a - i - 2);
2881 asmstr.replace(i, b - i + 1, n);
2882 i += n.size() - 1;
2883 } else
2884 asmstr.replace(i, 1, "%");
2885 }
2886 else if (asmstr[i] == '%')//grr
2887 { asmstr.replace(i, 1, "%%"); ++i;}
2888
2889 return asmstr;
2890}
2891
2892//TODO: assumptions about what consume arguments from the call are likely wrong
2893// handle communitivity
2894void CWriter::visitInlineAsm(CallInst &CI) {
2895 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2896 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2897 std::vector<std::pair<std::string, Value*> > Input;
2898 std::vector<std::pair<std::string, Value*> > Output;
2899 std::string Clobber;
2900 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2901 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2902 E = Constraints.end(); I != E; ++I) {
2903 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2904 std::string c =
2905 InterpretASMConstraint(*I);
2906 switch(I->Type) {
2907 default:
2908 assert(0 && "Unknown asm constraint");
2909 break;
2910 case InlineAsm::isInput: {
2911 if (c.size()) {
2912 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2913 ++count; //consume arg
2914 }
2915 break;
2916 }
2917 case InlineAsm::isOutput: {
2918 if (c.size()) {
2919 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2920 count ? CI.getOperand(count) : &CI));
2921 ++count; //consume arg
2922 }
2923 break;
2924 }
2925 case InlineAsm::isClobber: {
2926 if (c.size())
2927 Clobber += ",\"" + c + "\"";
2928 break;
2929 }
2930 }
2931 }
2932
2933 //fix up the asm string for gcc
2934 std::string asmstr = gccifyAsm(as->getAsmString());
2935
2936 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2937 Out << " :";
Chris Lattner8bbc8592008-03-02 08:07:24 +00002938 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002939 E = Output.end(); I != E; ++I) {
2940 Out << "\"" << I->first << "\"(";
2941 writeOperandRaw(I->second);
2942 Out << ")";
2943 if (I + 1 != E)
2944 Out << ",";
2945 }
2946 Out << "\n :";
2947 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2948 E = Input.end(); I != E; ++I) {
2949 Out << "\"" << I->first << "\"(";
2950 writeOperandRaw(I->second);
2951 Out << ")";
2952 if (I + 1 != E)
2953 Out << ",";
2954 }
2955 if (Clobber.size())
2956 Out << "\n :" << Clobber.substr(1);
2957 Out << ")";
2958}
2959
2960void CWriter::visitMallocInst(MallocInst &I) {
2961 assert(0 && "lowerallocations pass didn't work!");
2962}
2963
2964void CWriter::visitAllocaInst(AllocaInst &I) {
2965 Out << '(';
2966 printType(Out, I.getType());
2967 Out << ") alloca(sizeof(";
2968 printType(Out, I.getType()->getElementType());
2969 Out << ')';
2970 if (I.isArrayAllocation()) {
2971 Out << " * " ;
2972 writeOperand(I.getOperand(0));
2973 }
2974 Out << ')';
2975}
2976
2977void CWriter::visitFreeInst(FreeInst &I) {
2978 assert(0 && "lowerallocations pass didn't work!");
2979}
2980
Chris Lattner8bbc8592008-03-02 08:07:24 +00002981void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
2982 gep_type_iterator E) {
2983
2984 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002986 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987 return;
2988 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002989
2990 // Find out if the last index is into a vector. If so, we have to print this
2991 // specially. Since vectors can't have elements of indexable type, only the
2992 // last index could possibly be of a vector element.
2993 const VectorType *LastIndexIsVector = 0;
2994 {
2995 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
2996 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002997 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002998
2999 Out << "(";
3000
3001 // If the last index is into a vector, we can't print it as &a[i][j] because
3002 // we can't index into a vector with j in GCC. Instead, emit this as
3003 // (((float*)&a[i])+j)
3004 if (LastIndexIsVector) {
3005 Out << "((";
3006 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3007 Out << ")(";
3008 }
3009
3010 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011
Chris Lattner8bbc8592008-03-02 08:07:24 +00003012 // If the first index is 0 (very typical) we can do a number of
3013 // simplifications to clean up the code.
3014 Value *FirstOp = I.getOperand();
3015 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3016 // First index isn't simple, print it the hard way.
3017 writeOperand(Ptr);
3018 } else {
3019 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020
Chris Lattner8bbc8592008-03-02 08:07:24 +00003021 // Okay, emit the first operand. If Ptr is something that is already address
3022 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3023 if (isAddressExposed(Ptr)) {
3024 writeOperandInternal(Ptr);
3025 } else if (I != E && isa<StructType>(*I)) {
3026 // If we didn't already emit the first operand, see if we can print it as
3027 // P->f instead of "P[0].f"
3028 writeOperand(Ptr);
3029 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3030 ++I; // eat the struct index as well.
3031 } else {
3032 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3033 Out << "(*";
3034 writeOperand(Ptr);
3035 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 }
3037 }
3038
Chris Lattner8bbc8592008-03-02 08:07:24 +00003039 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 if (isa<StructType>(*I)) {
3041 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00003042 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003044 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003045 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003046 } else {
3047 // If the last index is into a vector, then print it out as "+j)". This
3048 // works with the 'LastIndexIsVector' code above.
3049 if (isa<Constant>(I.getOperand()) &&
3050 cast<Constant>(I.getOperand())->isNullValue()) {
3051 Out << "))"; // avoid "+0".
3052 } else {
3053 Out << ")+(";
3054 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3055 Out << "))";
3056 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003057 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003058 }
3059 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003060}
3061
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003062void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3063 bool IsVolatile, unsigned Alignment) {
3064
3065 bool IsUnaligned = Alignment &&
3066 Alignment < TD->getABITypeAlignment(OperandType);
3067
3068 if (!IsUnaligned)
3069 Out << '*';
3070 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003072 if (IsUnaligned)
3073 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3074 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3075 if (IsUnaligned) {
3076 Out << "; } ";
3077 if (IsVolatile) Out << "volatile ";
3078 Out << "*";
3079 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 Out << ")";
3081 }
3082
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003083 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003084
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003085 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003087 if (IsUnaligned)
3088 Out << "->data";
3089 }
3090}
3091
3092void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003093 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3094 I.getAlignment());
3095
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003096}
3097
3098void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003099 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3100 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101 Out << " = ";
3102 Value *Operand = I.getOperand(0);
3103 Constant *BitMask = 0;
3104 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3105 if (!ITy->isPowerOf2ByteWidth())
3106 // We have a bit width that doesn't match an even power-of-2 byte
3107 // size. Consequently we must & the value with the type's bit mask
3108 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3109 if (BitMask)
3110 Out << "((";
3111 writeOperand(Operand);
3112 if (BitMask) {
3113 Out << ") & ";
3114 printConstant(BitMask);
3115 Out << ")";
3116 }
3117}
3118
3119void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003120 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3121 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003122}
3123
3124void CWriter::visitVAArgInst(VAArgInst &I) {
3125 Out << "va_arg(*(va_list*)";
3126 writeOperand(I.getOperand(0));
3127 Out << ", ";
3128 printType(Out, I.getType());
3129 Out << ");\n ";
3130}
3131
Chris Lattnerf41a7942008-03-02 03:52:39 +00003132void CWriter::visitInsertElementInst(InsertElementInst &I) {
3133 const Type *EltTy = I.getType()->getElementType();
3134 writeOperand(I.getOperand(0));
3135 Out << ";\n ";
3136 Out << "((";
3137 printType(Out, PointerType::getUnqual(EltTy));
3138 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003139 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003140 Out << "] = (";
3141 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003142 Out << ")";
3143}
3144
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003145void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3146 // We know that our operand is not inlined.
3147 Out << "((";
3148 const Type *EltTy =
3149 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3150 printType(Out, PointerType::getUnqual(EltTy));
3151 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3152 writeOperand(I.getOperand(1));
3153 Out << "]";
3154}
3155
Chris Lattnerf858a042008-03-02 05:41:07 +00003156void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3157 Out << "(";
3158 printType(Out, SVI.getType());
3159 Out << "){ ";
3160 const VectorType *VT = SVI.getType();
3161 unsigned NumElts = VT->getNumElements();
3162 const Type *EltTy = VT->getElementType();
3163
3164 for (unsigned i = 0; i != NumElts; ++i) {
3165 if (i) Out << ", ";
3166 int SrcVal = SVI.getMaskValue(i);
3167 if ((unsigned)SrcVal >= NumElts*2) {
3168 Out << " 0/*undef*/ ";
3169 } else {
3170 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3171 if (isa<Instruction>(Op)) {
3172 // Do an extractelement of this value from the appropriate input.
3173 Out << "((";
3174 printType(Out, PointerType::getUnqual(EltTy));
3175 Out << ")(&" << GetValueName(Op)
3176 << "))[" << (SrcVal & NumElts-1) << "]";
3177 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3178 Out << "0";
3179 } else {
3180 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3181 }
3182 }
3183 }
3184 Out << "}";
3185}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003186
Chris Lattnerf41a7942008-03-02 03:52:39 +00003187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188//===----------------------------------------------------------------------===//
3189// External Interface declaration
3190//===----------------------------------------------------------------------===//
3191
3192bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3193 std::ostream &o,
3194 CodeGenFileType FileType,
3195 bool Fast) {
3196 if (FileType != TargetMachine::AssemblyFile) return true;
3197
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003198 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199 PM.add(createLowerAllocationsPass(true));
3200 PM.add(createLowerInvokePass());
3201 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3202 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3203 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003204 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003205 return false;
3206}