blob: 7ec7cec6604dacd0302dbe54cfe128716ffbd6f2 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
Chris Lattner11eafa82010-02-11 21:17:54 +000026 reloc_pcrel_4byte = FirstTargetFixupKind, // 32-bit pcrel, e.g. a branch.
27 reloc_pcrel_1byte // 8-bit pcrel, e.g. branch_1
Chris Lattner5dccfad2010-02-10 06:52:12 +000028};
29}
30}
31
Chris Lattner45762472010-02-03 21:24:49 +000032namespace {
33class X86MCCodeEmitter : public MCCodeEmitter {
34 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
35 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000036 const TargetMachine &TM;
37 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000038 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000039public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000040 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000041 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000042 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000043 }
44
45 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000046
47 unsigned getNumFixupKinds() const {
Chris Lattner11eafa82010-02-11 21:17:54 +000048 return 1;
Daniel Dunbar73c55742010-02-09 22:59:55 +000049 }
50
51 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
52 static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000053 { "reloc_pcrel_4byte", 0, 4 * 8 },
54 { "reloc_pcrel_1byte", 0, 1 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000055 };
56
57 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
58 "Invalid kind!");
59 return Infos[Kind - FirstTargetFixupKind];
60 }
Chris Lattner45762472010-02-03 21:24:49 +000061
Chris Lattner28249d92010-02-05 01:53:19 +000062 static unsigned GetX86RegNum(const MCOperand &MO) {
63 return X86RegisterInfo::getX86RegNum(MO.getReg());
64 }
65
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000067 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000068 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000069 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000070
Chris Lattner37ce80e2010-02-10 06:41:02 +000071 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
72 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000073 // Output the constant in little endian byte order.
74 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000075 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000076 Val >>= 8;
77 }
78 }
Chris Lattner0e73c392010-02-05 06:16:07 +000079
Chris Lattnera38c7072010-02-11 06:54:23 +000080 void EmitImmediate(const MCOperand &Disp, unsigned ImmSize,
81 unsigned &CurByte, raw_ostream &OS,
82 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1ac23b12010-02-05 02:18:40 +0000102 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000103 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000104 unsigned &CurByte, raw_ostream &OS,
105 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000106
Daniel Dunbar73c55742010-02-09 22:59:55 +0000107 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000109
Chris Lattner45762472010-02-03 21:24:49 +0000110};
111
112} // end anonymous namespace
113
114
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000115MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
116 TargetMachine &TM) {
117 return new X86MCCodeEmitter(TM, false);
118}
119
120MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
121 TargetMachine &TM) {
122 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000123}
124
125
Chris Lattner1ac23b12010-02-05 02:18:40 +0000126/// isDisp8 - Return true if this signed displacement fits in a 8-bit
127/// sign-extended field.
128static bool isDisp8(int Value) {
129 return Value == (signed char)Value;
130}
131
Chris Lattner0e73c392010-02-05 06:16:07 +0000132void X86MCCodeEmitter::
Chris Lattnera38c7072010-02-11 06:54:23 +0000133EmitImmediate(const MCOperand &DispOp, unsigned Size,
134 unsigned &CurByte, raw_ostream &OS,
135 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000136 // If this is a simple integer displacement that doesn't require a relocation,
137 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000138 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000139 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000140 return;
141 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000142
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000143 // FIXME: Pass in the relocation type, this is just a hack..
144 unsigned FixupKind;
145 if (Size == 1)
Chris Lattner11eafa82010-02-11 21:17:54 +0000146 FixupKind = FK_Data_1;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000147 else if (Size == 2)
Chris Lattner11eafa82010-02-11 21:17:54 +0000148 FixupKind = FK_Data_2;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000149 else if (Size == 4)
Chris Lattner11eafa82010-02-11 21:17:54 +0000150 FixupKind = FK_Data_4;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000151 else {
152 assert(Size == 8 && "Unknown immediate size");
Chris Lattner11eafa82010-02-11 21:17:54 +0000153 FixupKind = FK_Data_8;
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000154 }
Chris Lattner5dccfad2010-02-10 06:52:12 +0000155
156 // Emit a symbolic constant as a fixup and 4 zeros.
157 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000158 MCFixupKind(FixupKind)));
Chris Lattnera38c7072010-02-11 06:54:23 +0000159 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000160}
161
162
Chris Lattner1ac23b12010-02-05 02:18:40 +0000163void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
164 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000165 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000166 raw_ostream &OS,
167 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000168 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000169 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000170 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000171 const MCOperand &IndexReg = MI.getOperand(Op+2);
172 unsigned BaseReg = Base.getReg();
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000173 unsigned BaseRegNo = -1U;
174 if (BaseReg != 0 && BaseReg != X86::RIP)
175 BaseRegNo = GetX86RegNum(Base);
176
Chris Lattnera8168ec2010-02-09 21:57:34 +0000177 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000178 // If no BaseReg, issue a RIP relative instruction only if the MCE can
179 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
180 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000181
Chris Lattnera8168ec2010-02-09 21:57:34 +0000182 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000183 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000184 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
185 // encode to an R/M value of 4, which indicates that a SIB byte is
186 // present.
187 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000188 // If there is no base register and we're in 64-bit mode, we need a SIB
189 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
190 (!Is64BitMode || BaseReg != 0)) {
191
192 if (BaseReg == 0 || // [disp32] in X86-32 mode
193 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000194 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000195 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000196 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000197 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000198
Chris Lattnera8168ec2010-02-09 21:57:34 +0000199 // If the base is not EBP/ESP and there is no displacement, use simple
200 // indirect register encoding, this handles addresses like [EAX]. The
201 // encoding for [EBP] with no displacement means [disp32] so we handle it
202 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000203 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000204 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000205 return;
206 }
207
208 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000209 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000210 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000211 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000212 return;
213 }
214
215 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000216 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000217 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000218 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000219 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000220
221 // We need a SIB byte, so start by outputting the ModR/M byte first
222 assert(IndexReg.getReg() != X86::ESP &&
223 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
224
225 bool ForceDisp32 = false;
226 bool ForceDisp8 = false;
227 if (BaseReg == 0) {
228 // If there is no base register, we emit the special case SIB byte with
229 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000230 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000231 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000232 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000233 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000234 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000235 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000236 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000237 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000238 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000239 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000240 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000241 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000242 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
243 } else {
244 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000245 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000246 }
247
248 // Calculate what the SS field value should be...
249 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
250 unsigned SS = SSTable[Scale.getImm()];
251
252 if (BaseReg == 0) {
253 // Handle the SIB byte for the case where there is no base, see Intel
254 // Manual 2A, table 2-7. The displacement has already been output.
255 unsigned IndexRegNo;
256 if (IndexReg.getReg())
257 IndexRegNo = GetX86RegNum(IndexReg);
258 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
259 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000260 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000261 } else {
262 unsigned IndexRegNo;
263 if (IndexReg.getReg())
264 IndexRegNo = GetX86RegNum(IndexReg);
265 else
266 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000267 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000268 }
269
270 // Do we need to output a displacement?
271 if (ForceDisp8)
Chris Lattnera38c7072010-02-11 06:54:23 +0000272 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000273 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnera38c7072010-02-11 06:54:23 +0000274 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000275}
276
Chris Lattner39a612e2010-02-05 22:10:22 +0000277/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
278/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
279/// size, and 3) use of X86-64 extended registers.
280static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
281 const TargetInstrDesc &Desc) {
282 unsigned REX = 0;
283
284 // Pseudo instructions do not need REX prefix byte.
285 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
286 return 0;
287 if (TSFlags & X86II::REX_W)
288 REX |= 1 << 3;
289
290 if (MI.getNumOperands() == 0) return REX;
291
292 unsigned NumOps = MI.getNumOperands();
293 // FIXME: MCInst should explicitize the two-addrness.
294 bool isTwoAddr = NumOps > 1 &&
295 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
296
297 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
298 unsigned i = isTwoAddr ? 1 : 0;
299 for (; i != NumOps; ++i) {
300 const MCOperand &MO = MI.getOperand(i);
301 if (!MO.isReg()) continue;
302 unsigned Reg = MO.getReg();
303 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000304 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
305 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000306 REX |= 0x40;
307 break;
308 }
309
310 switch (TSFlags & X86II::FormMask) {
311 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
312 case X86II::MRMSrcReg:
313 if (MI.getOperand(0).isReg() &&
314 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
315 REX |= 1 << 2;
316 i = isTwoAddr ? 2 : 1;
317 for (; i != NumOps; ++i) {
318 const MCOperand &MO = MI.getOperand(i);
319 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
320 REX |= 1 << 0;
321 }
322 break;
323 case X86II::MRMSrcMem: {
324 if (MI.getOperand(0).isReg() &&
325 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
326 REX |= 1 << 2;
327 unsigned Bit = 0;
328 i = isTwoAddr ? 2 : 1;
329 for (; i != NumOps; ++i) {
330 const MCOperand &MO = MI.getOperand(i);
331 if (MO.isReg()) {
332 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
333 REX |= 1 << Bit;
334 Bit++;
335 }
336 }
337 break;
338 }
339 case X86II::MRM0m: case X86II::MRM1m:
340 case X86II::MRM2m: case X86II::MRM3m:
341 case X86II::MRM4m: case X86II::MRM5m:
342 case X86II::MRM6m: case X86II::MRM7m:
343 case X86II::MRMDestMem: {
344 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
345 i = isTwoAddr ? 1 : 0;
346 if (NumOps > e && MI.getOperand(e).isReg() &&
347 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
348 REX |= 1 << 2;
349 unsigned Bit = 0;
350 for (; i != e; ++i) {
351 const MCOperand &MO = MI.getOperand(i);
352 if (MO.isReg()) {
353 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
354 REX |= 1 << Bit;
355 Bit++;
356 }
357 }
358 break;
359 }
360 default:
361 if (MI.getOperand(0).isReg() &&
362 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
363 REX |= 1 << 0;
364 i = isTwoAddr ? 2 : 1;
365 for (unsigned e = NumOps; i != e; ++i) {
366 const MCOperand &MO = MI.getOperand(i);
367 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
368 REX |= 1 << 2;
369 }
370 break;
371 }
372 return REX;
373}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000374
375void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000376EncodeInstruction(const MCInst &MI, raw_ostream &OS,
377 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000378 unsigned Opcode = MI.getOpcode();
379 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000380 unsigned TSFlags = Desc.TSFlags;
381
Chris Lattner37ce80e2010-02-10 06:41:02 +0000382 // Keep track of the current byte being emitted.
383 unsigned CurByte = 0;
384
Chris Lattner1e80f402010-02-03 21:57:59 +0000385 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
386 // in order to provide diffability.
387
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000388 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000389 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000390 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000391
392 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000393 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000394 default: assert(0 && "Invalid segment!");
395 case 0: break; // No segment override!
396 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000397 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000398 break;
399 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000400 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000401 break;
402 }
403
Chris Lattner1e80f402010-02-03 21:57:59 +0000404 // Emit the repeat opcode prefix as needed.
405 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000406 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000407
Chris Lattner1e80f402010-02-03 21:57:59 +0000408 // Emit the operand size opcode prefix as needed.
409 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000410 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000411
412 // Emit the address size opcode prefix as needed.
413 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000414 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000415
416 bool Need0FPrefix = false;
417 switch (TSFlags & X86II::Op0Mask) {
418 default: assert(0 && "Invalid prefix!");
419 case 0: break; // No prefix!
420 case X86II::REP: break; // already handled.
421 case X86II::TB: // Two-byte opcode prefix
422 case X86II::T8: // 0F 38
423 case X86II::TA: // 0F 3A
424 Need0FPrefix = true;
425 break;
426 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000427 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000428 Need0FPrefix = true;
429 break;
430 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000431 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000432 Need0FPrefix = true;
433 break;
434 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000435 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000436 Need0FPrefix = true;
437 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000438 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
439 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
440 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
441 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
442 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
443 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
444 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
445 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000446 }
447
448 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000449 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000450 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000451 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000452 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000453 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000454
455 // 0x0F escape code must be emitted just before the opcode.
456 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000457 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000458
459 // FIXME: Pull this up into previous switch if REX can be moved earlier.
460 switch (TSFlags & X86II::Op0Mask) {
461 case X86II::TF: // F2 0F 38
462 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000463 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000464 break;
465 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000466 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000467 break;
468 }
469
470 // If this is a two-address instruction, skip one of the register operands.
471 unsigned NumOps = Desc.getNumOperands();
472 unsigned CurOp = 0;
473 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
474 ++CurOp;
475 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
476 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
477 --NumOps;
478
Chris Lattner74a21512010-02-05 19:24:13 +0000479 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000480 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000481 case X86II::MRMInitReg:
482 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000483 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000484 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
485 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000486 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000487 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000488
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000489 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000490 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000491 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000492
493 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000494 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000495 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000496 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000497 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000498 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000499
500 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000501 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000502 EmitMemModRMByte(MI, CurOp,
503 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000504 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000505 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000506 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000507
508 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000509 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000510 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000511 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000512 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000513 break;
514
515 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000516 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000517
518 // FIXME: Maybe lea should have its own form? This is a horrible hack.
519 int AddrOperands;
520 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
521 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
522 AddrOperands = X86AddrNumOperands - 1; // No segment register
523 else
524 AddrOperands = X86AddrNumOperands;
525
Chris Lattnerdaa45552010-02-05 19:04:37 +0000526 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000527 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000528 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000529 break;
530 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000531
532 case X86II::MRM0r: case X86II::MRM1r:
533 case X86II::MRM2r: case X86II::MRM3r:
534 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000535 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000536 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000537
538 // Special handling of lfence, mfence, monitor, and mwait.
539 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
540 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
541 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000542 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
543 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000544
545 switch (Opcode) {
546 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000547 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
548 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000549 }
550 } else {
551 EmitRegModRMByte(MI.getOperand(CurOp++),
552 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000553 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000554 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000555 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000556 case X86II::MRM0m: case X86II::MRM1m:
557 case X86II::MRM2m: case X86II::MRM3m:
558 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000559 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000560 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000561 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000562 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000563 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000564 break;
565 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000566
567 // If there is a remaining operand, it must be a trailing immediate. Emit it
568 // according to the right size for the instruction.
Chris Lattnerbd13fb62010-02-11 19:25:55 +0000569 // FIXME: This should pass in whether the value is pc relative or not. This
570 // information should be aquired from TSFlags as well.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000571 if (CurOp != NumOps)
572 EmitImmediate(MI.getOperand(CurOp++), X86II::getSizeOfImm(TSFlags),
573 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000574
575#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000576 // FIXME: Verify.
577 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000578 errs() << "Cannot encode all operands of: ";
579 MI.dump();
580 errs() << '\n';
581 abort();
582 }
583#endif
Chris Lattner45762472010-02-03 21:24:49 +0000584}