blob: d8f7400c2ae21acfc7d462c159783c5f83fff53e [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohman12a9c082008-02-06 22:27:42 +000027#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44 setPow2DivIsCheap();
45
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
49
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
Duncan Sands082524c2008-01-23 20:39:46 +000056 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Duncan Sands082524c2008-01-23 20:39:46 +000058
Chris Lattner3bc08502008-01-17 19:59:44 +000059 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
Dale Johannesen472d15d2007-10-06 01:24:11 +000073 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000076 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000079
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 // PowerPC has no intrinsics for these particular operations
81 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000084 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // PowerPC has no SREM/UREM instructions
87 setOperationAction(ISD::SREM, MVT::i32, Expand);
88 setOperationAction(ISD::UREM, MVT::i32, Expand);
89 setOperationAction(ISD::SREM, MVT::i64, Expand);
90 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000091
92 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101
Dan Gohman2f7b1982007-10-11 23:21:31 +0000102 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::FSIN , MVT::f64, Expand);
104 setOperationAction(ISD::FCOS , MVT::f64, Expand);
105 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000106 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::FSIN , MVT::f32, Expand);
108 setOperationAction(ISD::FCOS , MVT::f32, Expand);
109 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000110 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dale Johannesen436e3802008-01-18 19:55:37 +0000111
Dan Gohman819574c2008-01-31 00:41:03 +0000112 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118 }
119
120 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
127 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
130
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
133
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT, MVT::i32, Expand);
136 setOperationAction(ISD::SELECT, MVT::i64, Expand);
137 setOperationAction(ISD::SELECT, MVT::f32, Expand);
138 setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
151
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000170
171 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
175
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
182 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
183 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
186 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
187
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000190
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART , MVT::Other, Custom);
193
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 else
198 setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
202 setOperationAction(ISD::VAEND , MVT::Other, Expand);
203 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
204 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
207
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226 } else {
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229 }
230
231 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000232 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Dan Gohman71619ec2008-03-07 20:36:53 +0000236 // 64-bit PowerPC wants to expand i128 shifts itself.
237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000241 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245 }
246
247 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248 // First set operation action for all vector types to expand. Then we
249 // will selectively turn on ones that can be effectively codegen'd.
250 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252 // add/sub are legal for all supported vector VT's.
253 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256 // We promote all shuffles to v16i8.
257 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260 // We promote all non-typed operations to v4i32.
261 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
269 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274 // No other operations are legal.
275 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000281 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000285 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000290 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294 }
295
296 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297 // with merges, splats, etc.
298 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300 setOperationAction(ISD::AND , MVT::v4i32, Legal);
301 setOperationAction(ISD::OR , MVT::v4i32, Legal);
302 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
303 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
304 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324 }
325
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326 setShiftAmountType(MVT::i32);
327 setSetCCResultContents(ZeroOrOneSetCCResult);
328
329 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330 setStackPointerRegisterToSaveRestore(PPC::X1);
331 setExceptionPointerRegister(PPC::X3);
332 setExceptionSelectorRegister(PPC::X4);
333 } else {
334 setStackPointerRegisterToSaveRestore(PPC::R1);
335 setExceptionPointerRegister(PPC::R3);
336 setExceptionSelectorRegister(PPC::R4);
337 }
338
339 // We have target-specific dag combine patterns for the following nodes:
340 setTargetDAGCombine(ISD::SINT_TO_FP);
341 setTargetDAGCombine(ISD::STORE);
342 setTargetDAGCombine(ISD::BR_CC);
343 setTargetDAGCombine(ISD::BSWAP);
344
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000345 // Darwin long double math library functions have $LDBL128 appended.
346 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000347 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000348 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000350 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000352 }
353
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 computeRegisterProperties();
355}
356
Dale Johannesen88945f82008-02-28 22:31:51 +0000357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360 TargetMachine &TM = getTargetMachine();
361 // Darwin passes everything on 4 byte boundary.
362 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363 return 4;
364 // FIXME Elf TBD
365 return 4;
366}
367
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369 switch (Opcode) {
370 default: return 0;
371 case PPCISD::FSEL: return "PPCISD::FSEL";
372 case PPCISD::FCFID: return "PPCISD::FCFID";
373 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
374 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
375 case PPCISD::STFIWX: return "PPCISD::STFIWX";
376 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
377 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
378 case PPCISD::VPERM: return "PPCISD::VPERM";
379 case PPCISD::Hi: return "PPCISD::Hi";
380 case PPCISD::Lo: return "PPCISD::Lo";
381 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
382 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383 case PPCISD::SRL: return "PPCISD::SRL";
384 case PPCISD::SRA: return "PPCISD::SRA";
385 case PPCISD::SHL: return "PPCISD::SHL";
386 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
387 case PPCISD::STD_32: return "PPCISD::STD_32";
388 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
389 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
390 case PPCISD::MTCTR: return "PPCISD::MTCTR";
391 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
392 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
393 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
394 case PPCISD::MFCR: return "PPCISD::MFCR";
395 case PPCISD::VCMP: return "PPCISD::VCMP";
396 case PPCISD::VCMPo: return "PPCISD::VCMPo";
397 case PPCISD::LBRX: return "PPCISD::LBRX";
398 case PPCISD::STBRX: return "PPCISD::STBRX";
399 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnere2a6e9f2008-01-18 18:51:16 +0000400 case PPCISD::MFFS: return "PPCISD::MFFS";
401 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
402 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
403 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
404 case PPCISD::MTFSF: return "PPCISD::MTFSF";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 }
406}
407
Scott Michel502151f2008-03-10 15:42:14 +0000408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411 return MVT::i32;
412}
413
414
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000422 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424 // Maybe this has already been legalized into the constant pool?
425 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000427 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 }
429 return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435 return Op.getOpcode() == ISD::UNDEF ||
436 cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442 if (!isUnary) {
443 for (unsigned i = 0; i != 16; ++i)
444 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
445 return false;
446 } else {
447 for (unsigned i = 0; i != 8; ++i)
448 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
449 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
450 return false;
451 }
452 return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458 if (!isUnary) {
459 for (unsigned i = 0; i != 16; i += 2)
460 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
461 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
462 return false;
463 } else {
464 for (unsigned i = 0; i != 8; i += 2)
465 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
466 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
467 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
468 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
469 return false;
470 }
471 return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477 unsigned LHSStart, unsigned RHSStart) {
478 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481 "Unsupported merge size!");
482
483 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
484 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
485 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486 LHSStart+j+i*UnitSize) ||
487 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488 RHSStart+j+i*UnitSize))
489 return false;
490 }
491 return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497 if (!isUnary)
498 return isVMerge(N, UnitSize, 8, 24);
499 return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505 if (!isUnary)
506 return isVMerge(N, UnitSize, 0, 16);
507 return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516 // Find the first non-undef value in the shuffle mask.
517 unsigned i;
518 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519 /*search*/;
520
521 if (i == 16) return -1; // all undef.
522
523 // Otherwise, check to see if the rest of the elements are consequtively
524 // numbered from this value.
525 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526 if (ShiftAmt < i) return -1;
527 ShiftAmt -= i;
528
529 if (!isUnary) {
530 // Check the rest of the elements to see if they are consequtive.
531 for (++i; i != 16; ++i)
532 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533 return -1;
534 } else {
535 // Check the rest of the elements to see if they are consequtive.
536 for (++i; i != 16; ++i)
537 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538 return -1;
539 }
540
541 return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549 N->getNumOperands() == 16 &&
550 (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552 // This is a splat operation if each element of the permute is the same, and
553 // if the value doesn't reference the second vector.
554 unsigned ElementBase = 0;
555 SDOperand Elt = N->getOperand(0);
556 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557 ElementBase = EltV->getValue();
558 else
559 return false; // FIXME: Handle UNDEF elements too!
560
561 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562 return false;
563
564 // Check that they are consequtive.
565 for (unsigned i = 1; i != EltSize; ++i) {
566 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568 return false;
569 }
570
571 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575 "Invalid VECTOR_SHUFFLE mask!");
576 for (unsigned j = 0; j != EltSize; ++j)
577 if (N->getOperand(i+j) != N->getOperand(j))
578 return false;
579 }
580
581 return true;
582}
583
Evan Chengc5912e32007-07-30 07:51:22 +0000584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587 assert(N->getOpcode() == ISD::BUILD_VECTOR);
588 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000590 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000591 return false;
592}
593
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597 assert(isSplatShuffleMask(N, EltSize));
598 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted. The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606 SDOperand OpVal(0, 0);
607
608 // If ByteSize of the splat is bigger than the element size of the
609 // build_vector, then we have a case where we are checking for a splat where
610 // multiple elements of the buildvector are folded together into a single
611 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612 unsigned EltSize = 16/N->getNumOperands();
613 if (EltSize < ByteSize) {
614 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
615 SDOperand UniquedVals[4];
616 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618 // See if all of the elements in the buildvector agree across.
619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621 // If the element isn't a constant, bail fully out.
622 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625 if (UniquedVals[i&(Multiple-1)].Val == 0)
626 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628 return SDOperand(); // no match.
629 }
630
631 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632 // either constant or undef values that are identical for each chunk. See
633 // if these chunks can form into a larger vspltis*.
634
635 // Check to see if all of the leading entries are either 0 or -1. If
636 // neither, then this won't fit into the immediate field.
637 bool LeadingZero = true;
638 bool LeadingOnes = true;
639 for (unsigned i = 0; i != Multiple-1; ++i) {
640 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
641
642 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644 }
645 // Finally, check the least significant entry.
646 if (LeadingZero) {
647 if (UniquedVals[Multiple-1].Val == 0)
648 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
649 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650 if (Val < 16)
651 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
652 }
653 if (LeadingOnes) {
654 if (UniquedVals[Multiple-1].Val == 0)
655 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
656 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
658 return DAG.getTargetConstant(Val, MVT::i32);
659 }
660
661 return SDOperand();
662 }
663
664 // Check to see if this buildvec has a single non-undef value in its elements.
665 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667 if (OpVal.Val == 0)
668 OpVal = N->getOperand(i);
669 else if (OpVal != N->getOperand(i))
670 return SDOperand();
671 }
672
673 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
674
675 unsigned ValSizeInBytes = 0;
676 uint64_t Value = 0;
677 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678 Value = CN->getValue();
679 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000682 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683 ValSizeInBytes = 4;
684 }
685
686 // If the splat value is larger than the element value, then we can never do
687 // this splat. The only case that we could fit the replicated bits into our
688 // immediate field for would be zero, and we prefer to use vxor for it.
689 if (ValSizeInBytes < ByteSize) return SDOperand();
690
691 // If the element value is larger than the splat value, cut it in half and
692 // check to see if the two halves are equal. Continue doing this until we
693 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
694 while (ValSizeInBytes > ByteSize) {
695 ValSizeInBytes >>= 1;
696
697 // If the top half equals the bottom half, we're still ok.
698 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699 (Value & ((1 << (8*ValSizeInBytes))-1)))
700 return SDOperand();
701 }
702
703 // Properly sign extend the value.
704 int ShAmt = (4-ByteSize)*8;
705 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708 if (MaskVal == 0) return SDOperand();
709
710 // Finally, if this value fits in a 5 bit sext field, return it
711 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712 return DAG.getTargetConstant(MaskVal, MVT::i32);
713 return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717// Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value. If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725 if (N->getOpcode() != ISD::Constant)
726 return false;
727
728 Imm = (short)cast<ConstantSDNode>(N)->getValue();
729 if (N->getValueType(0) == MVT::i32)
730 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731 else
732 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735 return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation. Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743 SDOperand &Index,
744 SelectionDAG &DAG) {
745 short imm = 0;
746 if (N.getOpcode() == ISD::ADD) {
747 if (isIntS16Immediate(N.getOperand(1), imm))
748 return false; // r+i
749 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750 return false; // r+i
751
752 Base = N.getOperand(0);
753 Index = N.getOperand(1);
754 return true;
755 } else if (N.getOpcode() == ISD::OR) {
756 if (isIntS16Immediate(N.getOperand(1), imm))
757 return false; // r+i can fold it if we can.
758
759 // If this is an or of disjoint bitfields, we can codegen this as an add
760 // (for better address arithmetic) if the LHS and RHS of the OR are provably
761 // disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000762 APInt LHSKnownZero, LHSKnownOne;
763 APInt RHSKnownZero, RHSKnownOne;
764 DAG.ComputeMaskedBits(N.getOperand(0),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000765 APInt::getAllOnesValue(N.getOperand(0)
766 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000767 LHSKnownZero, LHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768
Dan Gohman63f4e462008-02-27 01:23:58 +0000769 if (LHSKnownZero.getBoolValue()) {
770 DAG.ComputeMaskedBits(N.getOperand(1),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000771 APInt::getAllOnesValue(N.getOperand(1)
772 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000773 RHSKnownZero, RHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 // If all of the bits are known zero on the LHS or RHS, the add won't
775 // carry.
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000776 if (~(LHSKnownZero | RHSKnownZero) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777 Base = N.getOperand(0);
778 Index = N.getOperand(1);
779 return true;
780 }
781 }
782 }
783
784 return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791 SDOperand &Base, SelectionDAG &DAG){
792 // If this can be more profitably realized as r+r, fail.
793 if (SelectAddressRegReg(N, Disp, Base, DAG))
794 return false;
795
796 if (N.getOpcode() == ISD::ADD) {
797 short imm = 0;
798 if (isIntS16Immediate(N.getOperand(1), imm)) {
799 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802 } else {
803 Base = N.getOperand(0);
804 }
805 return true; // [r+i]
806 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807 // Match LOAD (ADD (X, Lo(G))).
808 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809 && "Cannot handle constant offsets yet!");
810 Disp = N.getOperand(1).getOperand(0); // The global address.
811 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812 Disp.getOpcode() == ISD::TargetConstantPool ||
813 Disp.getOpcode() == ISD::TargetJumpTable);
814 Base = N.getOperand(0);
815 return true; // [&g+r]
816 }
817 } else if (N.getOpcode() == ISD::OR) {
818 short imm = 0;
819 if (isIntS16Immediate(N.getOperand(1), imm)) {
820 // If this is an or of disjoint bitfields, we can codegen this as an add
821 // (for better address arithmetic) if the LHS and RHS of the OR are
822 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000823 APInt LHSKnownZero, LHSKnownOne;
824 DAG.ComputeMaskedBits(N.getOperand(0),
825 APInt::getAllOnesValue(32),
826 LHSKnownZero, LHSKnownOne);
827 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828 // If all of the bits are known zero on the LHS or RHS, the add won't
829 // carry.
830 Base = N.getOperand(0);
831 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
832 return true;
833 }
834 }
835 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
836 // Loading from a constant address.
837
838 // If this address fits entirely in a 16-bit sext immediate field, codegen
839 // this as "d, 0"
840 short Imm;
841 if (isIntS16Immediate(CN, Imm)) {
842 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
843 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
844 return true;
845 }
846
847 // Handle 32-bit sext immediates with LIS + addr mode.
848 if (CN->getValueType(0) == MVT::i32 ||
849 (int64_t)CN->getValue() == (int)CN->getValue()) {
850 int Addr = (int)CN->getValue();
851
852 // Otherwise, break this down into an LIS + disp.
853 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
854
855 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
856 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
857 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
858 return true;
859 }
860 }
861
862 Disp = DAG.getTargetConstant(0, getPointerTy());
863 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
864 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865 else
866 Base = N;
867 return true; // [r+0]
868}
869
870/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
871/// represented as an indexed [r+r] operation.
872bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
873 SDOperand &Index,
874 SelectionDAG &DAG) {
875 // Check to see if we can easily represent this as an [r+r] address. This
876 // will fail if it thinks that the address is more profitably represented as
877 // reg+imm, e.g. where imm = 0.
878 if (SelectAddressRegReg(N, Base, Index, DAG))
879 return true;
880
881 // If the operand is an addition, always emit this as [r+r], since this is
882 // better (for code size, and execution, as the memop does the add for free)
883 // than emitting an explicit add.
884 if (N.getOpcode() == ISD::ADD) {
885 Base = N.getOperand(0);
886 Index = N.getOperand(1);
887 return true;
888 }
889
890 // Otherwise, do it the hard way, using R0 as the base register.
891 Base = DAG.getRegister(PPC::R0, N.getValueType());
892 Index = N;
893 return true;
894}
895
896/// SelectAddressRegImmShift - Returns true if the address N can be
897/// represented by a base register plus a signed 14-bit displacement
898/// [r+imm*4]. Suitable for use by STD and friends.
899bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
900 SDOperand &Base,
901 SelectionDAG &DAG) {
902 // If this can be more profitably realized as r+r, fail.
903 if (SelectAddressRegReg(N, Disp, Base, DAG))
904 return false;
905
906 if (N.getOpcode() == ISD::ADD) {
907 short imm = 0;
908 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
909 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
910 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
911 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
912 } else {
913 Base = N.getOperand(0);
914 }
915 return true; // [r+i]
916 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
917 // Match LOAD (ADD (X, Lo(G))).
918 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
919 && "Cannot handle constant offsets yet!");
920 Disp = N.getOperand(1).getOperand(0); // The global address.
921 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
922 Disp.getOpcode() == ISD::TargetConstantPool ||
923 Disp.getOpcode() == ISD::TargetJumpTable);
924 Base = N.getOperand(0);
925 return true; // [&g+r]
926 }
927 } else if (N.getOpcode() == ISD::OR) {
928 short imm = 0;
929 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930 // If this is an or of disjoint bitfields, we can codegen this as an add
931 // (for better address arithmetic) if the LHS and RHS of the OR are
932 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000933 APInt LHSKnownZero, LHSKnownOne;
934 DAG.ComputeMaskedBits(N.getOperand(0),
935 APInt::getAllOnesValue(32),
936 LHSKnownZero, LHSKnownOne);
937 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 // If all of the bits are known zero on the LHS or RHS, the add won't
939 // carry.
940 Base = N.getOperand(0);
941 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942 return true;
943 }
944 }
945 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
946 // Loading from a constant address. Verify low two bits are clear.
947 if ((CN->getValue() & 3) == 0) {
948 // If this address fits entirely in a 14-bit sext immediate field, codegen
949 // this as "d, 0"
950 short Imm;
951 if (isIntS16Immediate(CN, Imm)) {
952 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
953 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
954 return true;
955 }
956
957 // Fold the low-part of 32-bit absolute addresses into addr mode.
958 if (CN->getValueType(0) == MVT::i32 ||
959 (int64_t)CN->getValue() == (int)CN->getValue()) {
960 int Addr = (int)CN->getValue();
961
962 // Otherwise, break this down into an LIS + disp.
963 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
964
965 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
966 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
967 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
968 return true;
969 }
970 }
971 }
972
973 Disp = DAG.getTargetConstant(0, getPointerTy());
974 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
975 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
976 else
977 Base = N;
978 return true; // [r+0]
979}
980
981
982/// getPreIndexedAddressParts - returns true by value, base pointer and
983/// offset pointer and addressing mode by reference if the node's address
984/// can be legally represented as pre-indexed load / store address.
985bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
986 SDOperand &Offset,
987 ISD::MemIndexedMode &AM,
988 SelectionDAG &DAG) {
989 // Disabled by default for now.
990 if (!EnablePPCPreinc) return false;
991
992 SDOperand Ptr;
993 MVT::ValueType VT;
994 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
995 Ptr = LD->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000996 VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997
998 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
999 ST = ST;
1000 Ptr = ST->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001001 VT = ST->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001002 } else
1003 return false;
1004
1005 // PowerPC doesn't have preinc load/store instructions for vectors.
1006 if (MVT::isVector(VT))
1007 return false;
1008
1009 // TODO: Check reg+reg first.
1010
1011 // LDU/STU use reg+imm*4, others use reg+imm.
1012 if (VT != MVT::i64) {
1013 // reg + imm
1014 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1015 return false;
1016 } else {
1017 // reg + imm * 4.
1018 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1019 return false;
1020 }
1021
1022 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1023 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1024 // sext i32 to i64 when addr mode is r+i.
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001025 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 LD->getExtensionType() == ISD::SEXTLOAD &&
1027 isa<ConstantSDNode>(Offset))
1028 return false;
1029 }
1030
1031 AM = ISD::PRE_INC;
1032 return true;
1033}
1034
1035//===----------------------------------------------------------------------===//
1036// LowerOperation implementation
1037//===----------------------------------------------------------------------===//
1038
Dale Johannesen8be83a72008-03-04 23:17:14 +00001039SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1040 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 MVT::ValueType PtrVT = Op.getValueType();
1042 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1043 Constant *C = CP->getConstVal();
1044 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1045 SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047 const TargetMachine &TM = DAG.getTarget();
1048
1049 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1050 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1051
1052 // If this is a non-darwin platform, we don't support non-static relo models
1053 // yet.
1054 if (TM.getRelocationModel() == Reloc::Static ||
1055 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056 // Generate non-pic code that has direct accesses to the constant pool.
1057 // The address of the global is just (hi(&g)+lo(&g)).
1058 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059 }
1060
1061 if (TM.getRelocationModel() == Reloc::PIC_) {
1062 // With PIC, the first instruction is actually "GR+hi(&G)".
1063 Hi = DAG.getNode(ISD::ADD, PtrVT,
1064 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065 }
1066
1067 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068 return Lo;
1069}
1070
Dale Johannesen8be83a72008-03-04 23:17:14 +00001071SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001072 MVT::ValueType PtrVT = Op.getValueType();
1073 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1074 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1075 SDOperand Zero = DAG.getConstant(0, PtrVT);
1076
1077 const TargetMachine &TM = DAG.getTarget();
1078
1079 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1080 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1081
1082 // If this is a non-darwin platform, we don't support non-static relo models
1083 // yet.
1084 if (TM.getRelocationModel() == Reloc::Static ||
1085 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1086 // Generate non-pic code that has direct accesses to the constant pool.
1087 // The address of the global is just (hi(&g)+lo(&g)).
1088 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089 }
1090
1091 if (TM.getRelocationModel() == Reloc::PIC_) {
1092 // With PIC, the first instruction is actually "GR+hi(&G)".
1093 Hi = DAG.getNode(ISD::ADD, PtrVT,
1094 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095 }
1096
1097 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1098 return Lo;
1099}
1100
Dale Johannesen8be83a72008-03-04 23:17:14 +00001101SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1102 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 assert(0 && "TLS not implemented for PPC.");
1104}
1105
Dale Johannesen8be83a72008-03-04 23:17:14 +00001106SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1107 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 MVT::ValueType PtrVT = Op.getValueType();
1109 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1110 GlobalValue *GV = GSDN->getGlobal();
1111 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
Evan Chenga5a257d2008-02-02 05:06:29 +00001112 // If it's a debug information descriptor, don't mess with it.
1113 if (DAG.isVerifiedDebugInfoDesc(Op))
1114 return GA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115 SDOperand Zero = DAG.getConstant(0, PtrVT);
1116
1117 const TargetMachine &TM = DAG.getTarget();
1118
1119 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1120 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1121
1122 // If this is a non-darwin platform, we don't support non-static relo models
1123 // yet.
1124 if (TM.getRelocationModel() == Reloc::Static ||
1125 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1126 // Generate non-pic code that has direct accesses to globals.
1127 // The address of the global is just (hi(&g)+lo(&g)).
1128 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1129 }
1130
1131 if (TM.getRelocationModel() == Reloc::PIC_) {
1132 // With PIC, the first instruction is actually "GR+hi(&G)".
1133 Hi = DAG.getNode(ISD::ADD, PtrVT,
1134 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1135 }
1136
1137 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1138
1139 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1140 return Lo;
1141
1142 // If the global is weak or external, we have to go through the lazy
1143 // resolution stub.
1144 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1145}
1146
Dale Johannesen8be83a72008-03-04 23:17:14 +00001147SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001148 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1149
1150 // If we're comparing for equality to zero, expose the fact that this is
1151 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1152 // fold the new nodes.
1153 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154 if (C->isNullValue() && CC == ISD::SETEQ) {
1155 MVT::ValueType VT = Op.getOperand(0).getValueType();
1156 SDOperand Zext = Op.getOperand(0);
1157 if (VT < MVT::i32) {
1158 VT = MVT::i32;
1159 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1160 }
1161 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1162 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1163 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1164 DAG.getConstant(Log2b, MVT::i32));
1165 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1166 }
1167 // Leave comparisons against 0 and -1 alone for now, since they're usually
1168 // optimized. FIXME: revisit this when we can custom lower all setcc
1169 // optimizations.
1170 if (C->isAllOnesValue() || C->isNullValue())
1171 return SDOperand();
1172 }
1173
1174 // If we have an integer seteq/setne, turn it into a compare against zero
1175 // by xor'ing the rhs with the lhs, which is faster than setting a
1176 // condition register, reading it back out, and masking the correct bit. The
1177 // normal approach here uses sub to do this instead of xor. Using xor exposes
1178 // the result to other bit-twiddling opportunities.
1179 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1180 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1181 MVT::ValueType VT = Op.getValueType();
1182 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1183 Op.getOperand(1));
1184 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1185 }
1186 return SDOperand();
1187}
1188
Dale Johannesen8be83a72008-03-04 23:17:14 +00001189SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 int VarArgsFrameIndex,
1191 int VarArgsStackOffset,
1192 unsigned VarArgsNumGPR,
1193 unsigned VarArgsNumFPR,
1194 const PPCSubtarget &Subtarget) {
1195
1196 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1197}
1198
Dale Johannesen8be83a72008-03-04 23:17:14 +00001199SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001200 int VarArgsFrameIndex,
1201 int VarArgsStackOffset,
1202 unsigned VarArgsNumGPR,
1203 unsigned VarArgsNumFPR,
1204 const PPCSubtarget &Subtarget) {
1205
1206 if (Subtarget.isMachoABI()) {
1207 // vastart just stores the address of the VarArgsFrameIndex slot into the
1208 // memory location argument.
1209 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1210 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
Dan Gohman12a9c082008-02-06 22:27:42 +00001211 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1212 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 }
1214
1215 // For ELF 32 ABI we follow the layout of the va_list struct.
1216 // We suppose the given va_list is already allocated.
1217 //
1218 // typedef struct {
1219 // char gpr; /* index into the array of 8 GPRs
1220 // * stored in the register save area
1221 // * gpr=0 corresponds to r3,
1222 // * gpr=1 to r4, etc.
1223 // */
1224 // char fpr; /* index into the array of 8 FPRs
1225 // * stored in the register save area
1226 // * fpr=0 corresponds to f1,
1227 // * fpr=1 to f2, etc.
1228 // */
1229 // char *overflow_arg_area;
1230 // /* location on stack that holds
1231 // * the next overflow argument
1232 // */
1233 // char *reg_save_area;
1234 // /* where r3:r10 and f1:f8 (if saved)
1235 // * are stored
1236 // */
1237 // } va_list[1];
1238
1239
1240 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1241 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1242
1243
1244 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1245
Dan Gohman12a9c082008-02-06 22:27:42 +00001246 SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1248
Dan Gohman12a9c082008-02-06 22:27:42 +00001249 uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1250 SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1251
1252 uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1253 SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1254
1255 uint64_t FPROffset = 1;
1256 SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257
Dan Gohman12a9c082008-02-06 22:27:42 +00001258 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259
1260 // Store first byte : number of int regs
1261 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
Dan Gohman12a9c082008-02-06 22:27:42 +00001262 Op.getOperand(1), SV, 0);
1263 uint64_t nextOffset = FPROffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1265 ConstFPROffset);
1266
1267 // Store second byte : number of float regs
Dan Gohman12a9c082008-02-06 22:27:42 +00001268 SDOperand secondStore =
1269 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1270 nextOffset += StackOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1272
1273 // Store second word : arguments given on stack
Dan Gohman12a9c082008-02-06 22:27:42 +00001274 SDOperand thirdStore =
1275 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1276 nextOffset += FrameOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001277 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1278
1279 // Store third word : arguments given in registers
Dan Gohman12a9c082008-02-06 22:27:42 +00001280 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281
1282}
1283
1284#include "PPCGenCallingConv.inc"
1285
1286/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1287/// depending on which subtarget is selected.
1288static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1289 if (Subtarget.isMachoABI()) {
1290 static const unsigned FPR[] = {
1291 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1292 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1293 };
1294 return FPR;
1295 }
1296
1297
1298 static const unsigned FPR[] = {
1299 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1300 PPC::F8
1301 };
1302 return FPR;
1303}
1304
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001305SDOperand
1306PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1307 SelectionDAG &DAG,
1308 int &VarArgsFrameIndex,
1309 int &VarArgsStackOffset,
1310 unsigned &VarArgsNumGPR,
1311 unsigned &VarArgsNumFPR,
1312 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 // TODO: add description of PPC stack frame format, or at least some docs.
1314 //
1315 MachineFunction &MF = DAG.getMachineFunction();
1316 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001317 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 SmallVector<SDOperand, 8> ArgValues;
1319 SDOperand Root = Op.getOperand(0);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001320 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001321
1322 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323 bool isPPC64 = PtrVT == MVT::i64;
1324 bool isMachoABI = Subtarget.isMachoABI();
1325 bool isELF32_ABI = Subtarget.isELF32_ABI();
1326 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1327
1328 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1329
1330 static const unsigned GPR_32[] = { // 32-bit registers.
1331 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1332 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1333 };
1334 static const unsigned GPR_64[] = { // 64-bit registers.
1335 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1336 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1337 };
1338
1339 static const unsigned *FPR = GetFPR(Subtarget);
1340
1341 static const unsigned VR[] = {
1342 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1343 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1344 };
1345
Owen Anderson1636de92007-09-07 04:06:50 +00001346 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001348 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001349
1350 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1351
1352 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1353
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001354 // In 32-bit non-varargs functions, the stack space for vectors is after the
1355 // stack space for non-vectors. We do not use this space unless we have
1356 // too many vectors to fit in registers, something that only occurs in
1357 // constructed examples:), but we have to walk the arglist to figure
1358 // that out...for the pathological case, compute VecArgOffset as the
1359 // start of the vector parameter area. Computing VecArgOffset is the
1360 // entire point of the following loop.
1361 // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1362 // to handle Elf here.
1363 unsigned VecArgOffset = ArgOffset;
1364 if (!isVarArg && !isPPC64) {
1365 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1366 ++ArgNo) {
1367 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1368 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1369 ISD::ParamFlags::ParamFlagsTy Flags =
1370 cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1371 unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1372
1373 if (isByVal) {
1374 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1375 ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1376 ISD::ParamFlags::ByValSizeOffs;
1377 unsigned ArgSize =
1378 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1379 VecArgOffset += ArgSize;
1380 continue;
1381 }
1382
1383 switch(ObjectVT) {
1384 default: assert(0 && "Unhandled argument type!");
1385 case MVT::i32:
1386 case MVT::f32:
1387 VecArgOffset += isPPC64 ? 8 : 4;
1388 break;
1389 case MVT::i64: // PPC64
1390 case MVT::f64:
1391 VecArgOffset += 8;
1392 break;
1393 case MVT::v4f32:
1394 case MVT::v4i32:
1395 case MVT::v8i16:
1396 case MVT::v16i8:
1397 // Nothing to do, we're only looking at Nonvector args here.
1398 break;
1399 }
1400 }
1401 }
1402 // We've found where the vector parameter area in memory is. Skip the
1403 // first 12 parameters; these don't use that memory.
1404 VecArgOffset = ((VecArgOffset+15)/16)*16;
1405 VecArgOffset += 12*16;
1406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 // Add DAG nodes to load the arguments or copy them out of registers. On
1408 // entry to a function on PPC, the arguments start after the linkage area,
1409 // although the first ones are often in registers.
1410 //
1411 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1412 // represented with two words (long long or double) must be copied to an
1413 // even GPR_idx value or to an even ArgOffset value.
1414
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001415 SmallVector<SDOperand, 8> MemOps;
1416
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1418 SDOperand ArgVal;
1419 bool needsLoad = false;
1420 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1421 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1422 unsigned ArgSize = ObjSize;
Dale Johannesen322e3b72008-03-10 02:17:22 +00001423 ISD::ParamFlags::ParamFlagsTy Flags =
1424 cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1425 unsigned AlignFlag = ISD::ParamFlags::One
1426 << ISD::ParamFlags::OrigAlignmentOffs;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001427 unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 // See if next argument requires stack alignment in ELF
1429 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1430 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1431 (!(Flags & AlignFlag)));
1432
1433 unsigned CurArgOffset = ArgOffset;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001434
1435 // FIXME alignment for ELF may not be right
1436 // FIXME the codegen can be much improved in some cases.
1437 // We do not have to keep everything in memory.
1438 if (isByVal) {
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001439 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1440 ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1441 ISD::ParamFlags::ByValSizeOffs;
1442 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001443 // Double word align in ELF
1444 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1445 // Objects of size 1 and 2 are right justified, everything else is
1446 // left justified. This means the memory address is adjusted forwards.
1447 if (ObjSize==1 || ObjSize==2) {
1448 CurArgOffset = CurArgOffset + (4 - ObjSize);
1449 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001450 // The value of the object is its address.
1451 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1452 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1453 ArgValues.push_back(FIN);
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001454 if (ObjSize==1 || ObjSize==2) {
1455 if (GPR_idx != Num_GPR_Regs) {
1456 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1457 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1458 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1459 SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1460 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1461 MemOps.push_back(Store);
1462 ++GPR_idx;
1463 if (isMachoABI) ArgOffset += PtrByteSize;
1464 } else {
1465 ArgOffset += PtrByteSize;
1466 }
1467 continue;
1468 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001469 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1470 // Store whatever pieces of the object are in registers
1471 // to memory. ArgVal will be address of the beginning of
1472 // the object.
1473 if (GPR_idx != Num_GPR_Regs) {
1474 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1475 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1476 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1477 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1478 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1479 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1480 MemOps.push_back(Store);
1481 ++GPR_idx;
1482 if (isMachoABI) ArgOffset += PtrByteSize;
1483 } else {
1484 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1485 break;
1486 }
1487 }
1488 continue;
1489 }
1490
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491 switch (ObjectVT) {
1492 default: assert(0 && "Unhandled argument type!");
1493 case MVT::i32:
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001494 if (!isPPC64) {
1495 // Double word align in ELF
1496 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1497
1498 if (GPR_idx != Num_GPR_Regs) {
1499 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1500 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1501 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1502 ++GPR_idx;
1503 } else {
1504 needsLoad = true;
1505 ArgSize = PtrByteSize;
1506 }
1507 // Stack align in ELF
1508 if (needsLoad && Expand && isELF32_ABI)
1509 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1510 // All int arguments reserve stack space in Macho ABI.
1511 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1512 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001513 }
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001514 // FALLTHROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 case MVT::i64: // PPC64
1516 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001517 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1518 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001519 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001520
1521 if (ObjectVT == MVT::i32) {
1522 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1523 // value to MVT::i64 and then truncate to the correct register size.
1524 if (Flags & ISD::ParamFlags::SExt)
1525 ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1526 DAG.getValueType(ObjectVT));
1527 else if (Flags & ISD::ParamFlags::ZExt)
1528 ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1529 DAG.getValueType(ObjectVT));
1530
1531 ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1532 }
1533
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001534 ++GPR_idx;
1535 } else {
1536 needsLoad = true;
1537 }
1538 // All int arguments reserve stack space in Macho ABI.
1539 if (isMachoABI || needsLoad) ArgOffset += 8;
1540 break;
1541
1542 case MVT::f32:
1543 case MVT::f64:
1544 // Every 4 bytes of argument space consumes one of the GPRs available for
1545 // argument passing.
1546 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1547 ++GPR_idx;
1548 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1549 ++GPR_idx;
1550 }
1551 if (FPR_idx != Num_FPR_Regs) {
1552 unsigned VReg;
1553 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001554 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001555 else
Chris Lattner1b989192007-12-31 04:13:23 +00001556 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1557 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1559 ++FPR_idx;
1560 } else {
1561 needsLoad = true;
1562 }
1563
1564 // Stack align in ELF
1565 if (needsLoad && Expand && isELF32_ABI)
1566 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1567 // All FP arguments reserve stack space in Macho ABI.
1568 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1569 break;
1570 case MVT::v4f32:
1571 case MVT::v4i32:
1572 case MVT::v8i16:
1573 case MVT::v16i8:
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001574 // Note that vector arguments in registers don't reserve stack space,
1575 // except in varargs functions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001576 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001577 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1578 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001580 if (isVarArg) {
1581 while ((ArgOffset % 16) != 0) {
1582 ArgOffset += PtrByteSize;
1583 if (GPR_idx != Num_GPR_Regs)
1584 GPR_idx++;
1585 }
1586 ArgOffset += 16;
1587 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1588 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589 ++VR_idx;
1590 } else {
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001591 if (!isVarArg && !isPPC64) {
1592 // Vectors go after all the nonvectors.
1593 CurArgOffset = VecArgOffset;
1594 VecArgOffset += 16;
1595 } else {
1596 // Vectors are aligned.
1597 ArgOffset = ((ArgOffset+15)/16)*16;
1598 CurArgOffset = ArgOffset;
1599 ArgOffset += 16;
Dale Johannesen896870b2008-03-12 00:49:20 +00001600 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601 needsLoad = true;
1602 }
1603 break;
1604 }
1605
1606 // We need to load the argument to a virtual register if we determined above
Chris Lattner60069452008-02-13 07:35:30 +00001607 // that we ran out of physical registers of the appropriate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001608 if (needsLoad) {
Chris Lattner60069452008-02-13 07:35:30 +00001609 int FI = MFI->CreateFixedObject(ObjSize,
1610 CurArgOffset + (ArgSize - ObjSize));
1611 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1612 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001613 }
1614
1615 ArgValues.push_back(ArgVal);
1616 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001617
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 // If the function takes variable number of arguments, make a frame index for
1619 // the start of the first vararg value... for expansion of llvm.va_start.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 if (isVarArg) {
1621
1622 int depth;
1623 if (isELF32_ABI) {
1624 VarArgsNumGPR = GPR_idx;
1625 VarArgsNumFPR = FPR_idx;
1626
1627 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1628 // pointer.
1629 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1630 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1631 MVT::getSizeInBits(PtrVT)/8);
1632
1633 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1634 ArgOffset);
1635
1636 }
1637 else
1638 depth = ArgOffset;
1639
1640 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1641 depth);
1642 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1643
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001644 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1645 // stored to the VarArgsFrameIndex on the stack.
1646 if (isELF32_ABI) {
1647 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1648 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1649 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1650 MemOps.push_back(Store);
1651 // Increment the address by four for the next argument to store
1652 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1653 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1654 }
1655 }
1656
1657 // If this function is vararg, store any remaining integer argument regs
1658 // to their spots on the stack so that they may be loaded by deferencing the
1659 // result of va_next.
1660 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1661 unsigned VReg;
1662 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001663 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664 else
Chris Lattner1b989192007-12-31 04:13:23 +00001665 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666
Chris Lattner1b989192007-12-31 04:13:23 +00001667 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001668 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1669 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1670 MemOps.push_back(Store);
1671 // Increment the address by four for the next argument to store
1672 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1673 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1674 }
1675
1676 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1677 // on the stack.
1678 if (isELF32_ABI) {
1679 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1680 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1681 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1682 MemOps.push_back(Store);
1683 // Increment the address by eight for the next argument to store
1684 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1685 PtrVT);
1686 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1687 }
1688
1689 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1690 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001691 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001692
Chris Lattner1b989192007-12-31 04:13:23 +00001693 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1695 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1696 MemOps.push_back(Store);
1697 // Increment the address by eight for the next argument to store
1698 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1699 PtrVT);
1700 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1701 }
1702 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001703 }
1704
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001705 if (!MemOps.empty())
1706 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001708 ArgValues.push_back(Root);
1709
1710 // Return the new list of results.
1711 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1712 Op.Val->value_end());
1713 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1714}
1715
1716/// isCallCompatibleAddress - Return the immediate to use if the specified
1717/// 32-bit value is representable in the immediate field of a BxA instruction.
1718static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1719 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1720 if (!C) return 0;
1721
1722 int Addr = C->getValue();
1723 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1724 (Addr << 6 >> 6) != Addr)
1725 return 0; // Top 6 bits have to be sext of immediate.
1726
Evan Cheng282c6462007-10-22 19:46:19 +00001727 return DAG.getConstant((int)C->getValue() >> 2,
1728 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729}
1730
Dale Johannesen8be83a72008-03-04 23:17:14 +00001731/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1732/// by "Src" to address "Dst" of size "Size". Alignment information is
1733/// specified by the specific parameter attribute. The copy will be passed as
1734/// a byval function parameter.
1735/// Sometimes what we are copying is the end of a larger object, the part that
1736/// does not fit in registers.
1737static SDOperand
1738CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
Dale Johannesen322e3b72008-03-10 02:17:22 +00001739 ISD::ParamFlags::ParamFlagsTy Flags,
1740 SelectionDAG &DAG, unsigned Size) {
1741 unsigned Align = ISD::ParamFlags::One <<
Dale Johannesen8be83a72008-03-04 23:17:14 +00001742 ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1743 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1744 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001745 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
Dale Johannesen8be83a72008-03-04 23:17:14 +00001746 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1747}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001748
Dale Johannesen8be83a72008-03-04 23:17:14 +00001749SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
Dan Gohman9f153572008-03-19 21:39:28 +00001750 const PPCSubtarget &Subtarget,
1751 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752 SDOperand Chain = Op.getOperand(0);
1753 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1754 SDOperand Callee = Op.getOperand(4);
1755 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1756
1757 bool isMachoABI = Subtarget.isMachoABI();
1758 bool isELF32_ABI = Subtarget.isELF32_ABI();
1759
1760 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1761 bool isPPC64 = PtrVT == MVT::i64;
1762 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1763
1764 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1765 // SelectExpr to use to put the arguments in the appropriate registers.
1766 std::vector<SDOperand> args_to_use;
1767
1768 // Count how many bytes are to be pushed on the stack, including the linkage
1769 // area, and parameter passing area. We start with 24/48 bytes, which is
1770 // prereserved space for [SP][CR][LR][3 x unused].
1771 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001772
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001773 // Add up all the space actually used.
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001774 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1775 // they all go in registers, but we must reserve stack space for them for
1776 // possible use by the caller. In varargs or 64-bit calls, parameters are
1777 // assigned stack space in order, with padding so Altivec parameters are
1778 // 16-byte aligned.
1779 unsigned nAltivecParamsAtEnd = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001780 for (unsigned i = 0; i != NumOps; ++i) {
Dale Johannesen946b9cc2008-03-12 00:22:17 +00001781 SDOperand Arg = Op.getOperand(5+2*i);
1782 MVT::ValueType ArgVT = Arg.getValueType();
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001783 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1784 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1785 if (!isVarArg && !isPPC64) {
1786 // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1787 // do those last so we know how much padding we need.
1788 nAltivecParamsAtEnd++;
1789 continue;
1790 } else {
1791 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1792 NumBytes = ((NumBytes+15)/16)*16;
1793 }
1794 }
Dale Johannesen322e3b72008-03-10 02:17:22 +00001795 ISD::ParamFlags::ParamFlagsTy Flags =
1796 cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001798 if (Flags & ISD::ParamFlags::ByVal)
1799 ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1800 ISD::ParamFlags::ByValSizeOffs;
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001801 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802 NumBytes += ArgSize;
1803 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00001804 // Allow for Altivec parameters at the end, if needed.
1805 if (nAltivecParamsAtEnd) {
1806 NumBytes = ((NumBytes+15)/16)*16;
1807 NumBytes += 16*nAltivecParamsAtEnd;
1808 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809
1810 // The prolog code of the callee may store up to 8 GPR argument registers to
1811 // the stack, allowing va_start to index over them in memory if its varargs.
1812 // Because we cannot tell if this is needed on the caller side, we have to
1813 // conservatively assume that it is needed. As such, make sure we have at
1814 // least enough stack space for the caller to store the 8 GPRs.
1815 NumBytes = std::max(NumBytes,
1816 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1817
1818 // Adjust the stack pointer for the new arguments...
1819 // These operations are automatically eliminated by the prolog/epilog pass
1820 Chain = DAG.getCALLSEQ_START(Chain,
1821 DAG.getConstant(NumBytes, PtrVT));
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001822 SDOperand CallSeqStart = Chain;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823
1824 // Set up a copy of the stack pointer for use loading and storing any
1825 // arguments that may not fit in the registers available for argument
1826 // passing.
1827 SDOperand StackPtr;
1828 if (isPPC64)
1829 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1830 else
1831 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1832
1833 // Figure out which arguments are going to go in registers, and which in
1834 // memory. Also, if this is a vararg function, floating point operations
1835 // must be stored to our stack, and loaded into integer regs as well, if
1836 // any integer regs are available for argument passing.
1837 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1838 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1839
1840 static const unsigned GPR_32[] = { // 32-bit registers.
1841 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1842 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1843 };
1844 static const unsigned GPR_64[] = { // 64-bit registers.
1845 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1846 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1847 };
1848 static const unsigned *FPR = GetFPR(Subtarget);
1849
1850 static const unsigned VR[] = {
1851 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1852 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1853 };
Owen Anderson1636de92007-09-07 04:06:50 +00001854 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001855 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001856 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001857
1858 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1859
1860 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1861 SmallVector<SDOperand, 8> MemOpChains;
1862 for (unsigned i = 0; i != NumOps; ++i) {
1863 bool inMem = false;
1864 SDOperand Arg = Op.getOperand(5+2*i);
Dale Johannesen322e3b72008-03-10 02:17:22 +00001865 ISD::ParamFlags::ParamFlagsTy Flags =
1866 cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1867 unsigned AlignFlag = ISD::ParamFlags::One <<
1868 ISD::ParamFlags::OrigAlignmentOffs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 // See if next argument requires stack alignment in ELF
1870 unsigned next = 5+2*(i+1)+1;
1871 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1872 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1873 (!(Flags & AlignFlag)));
1874
1875 // PtrOff will be used to store the current argument to the stack if a
1876 // register cannot be found for it.
1877 SDOperand PtrOff;
1878
1879 // Stack align in ELF 32
1880 if (isELF32_ABI && Expand)
1881 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1882 StackPtr.getValueType());
1883 else
1884 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1885
1886 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1887
1888 // On PPC64, promote integers to 64-bit values.
1889 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1890 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001891 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1892 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001893
1894 // FIXME Elf untested, what are alignment rules?
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001895 // FIXME memcpy is used way more than necessary. Correctness first.
Dale Johannesen8be83a72008-03-04 23:17:14 +00001896 if (Flags & ISD::ParamFlags::ByVal) {
1897 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1898 ISD::ParamFlags::ByValSizeOffs;
1899 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001900 if (Size==1 || Size==2) {
1901 // Very small objects are passed right-justified.
1902 // Everything else is passed left-justified.
1903 MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1904 if (GPR_idx != NumGPRs) {
1905 SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1906 NULL, 0, VT);
1907 MemOpChains.push_back(Load.getValue(1));
1908 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1909 if (isMachoABI)
1910 ArgOffset += PtrByteSize;
1911 } else {
1912 SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1913 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1914 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1915 CallSeqStart.Val->getOperand(0),
1916 Flags, DAG, Size);
1917 // This must go outside the CALLSEQ_START..END.
1918 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1919 CallSeqStart.Val->getOperand(1));
1920 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1921 Chain = CallSeqStart = NewCallSeqStart;
1922 ArgOffset += PtrByteSize;
1923 }
1924 continue;
1925 }
Dale Johannesenbfadf4b2008-03-17 02:13:43 +00001926 // Copy entire object into memory. There are cases where gcc-generated
1927 // code assumes it is there, even if it could be put entirely into
1928 // registers. (This is not what the doc says.)
1929 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1930 CallSeqStart.Val->getOperand(0),
1931 Flags, DAG, Size);
1932 // This must go outside the CALLSEQ_START..END.
1933 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1934 CallSeqStart.Val->getOperand(1));
1935 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1936 Chain = CallSeqStart = NewCallSeqStart;
1937 // And copy the pieces of it that fit into registers.
Dale Johannesen8be83a72008-03-04 23:17:14 +00001938 for (unsigned j=0; j<Size; j+=PtrByteSize) {
1939 SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1940 SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1941 if (GPR_idx != NumGPRs) {
1942 SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001943 MemOpChains.push_back(Load.getValue(1));
Dale Johannesen8be83a72008-03-04 23:17:14 +00001944 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1945 if (isMachoABI)
1946 ArgOffset += PtrByteSize;
1947 } else {
Dale Johannesenbfadf4b2008-03-17 02:13:43 +00001948 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001949 break;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001950 }
1951 }
1952 continue;
1953 }
1954
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 switch (Arg.getValueType()) {
1956 default: assert(0 && "Unexpected ValueType for argument!");
1957 case MVT::i32:
1958 case MVT::i64:
1959 // Double word align in ELF
1960 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1961 if (GPR_idx != NumGPRs) {
1962 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1963 } else {
1964 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1965 inMem = true;
1966 }
1967 if (inMem || isMachoABI) {
1968 // Stack align in ELF
1969 if (isELF32_ABI && Expand)
1970 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1971
1972 ArgOffset += PtrByteSize;
1973 }
1974 break;
1975 case MVT::f32:
1976 case MVT::f64:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001977 if (FPR_idx != NumFPRs) {
1978 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1979
1980 if (isVarArg) {
1981 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1982 MemOpChains.push_back(Store);
1983
1984 // Float varargs are always shadowed in available integer registers
1985 if (GPR_idx != NumGPRs) {
1986 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1987 MemOpChains.push_back(Load.getValue(1));
1988 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1989 Load));
1990 }
1991 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1992 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1993 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1994 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1995 MemOpChains.push_back(Load.getValue(1));
1996 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1997 Load));
1998 }
1999 } else {
2000 // If we have any FPRs remaining, we may also have GPRs remaining.
2001 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2002 // GPRs.
2003 if (isMachoABI) {
2004 if (GPR_idx != NumGPRs)
2005 ++GPR_idx;
2006 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2007 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
2008 ++GPR_idx;
2009 }
2010 }
2011 } else {
2012 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2013 inMem = true;
2014 }
2015 if (inMem || isMachoABI) {
2016 // Stack align in ELF
2017 if (isELF32_ABI && Expand)
2018 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2019 if (isPPC64)
2020 ArgOffset += 8;
2021 else
2022 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2023 }
2024 break;
2025 case MVT::v4f32:
2026 case MVT::v4i32:
2027 case MVT::v8i16:
2028 case MVT::v16i8:
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002029 if (isVarArg) {
2030 // These go aligned on the stack, or in the corresponding R registers
2031 // when within range. The Darwin PPC ABI doc claims they also go in
2032 // V registers; in fact gcc does this only for arguments that are
2033 // prototyped, not for those that match the ... We do it for all
2034 // arguments, seems to work.
2035 while (ArgOffset % 16 !=0) {
2036 ArgOffset += PtrByteSize;
2037 if (GPR_idx != NumGPRs)
2038 GPR_idx++;
2039 }
2040 // We could elide this store in the case where the object fits
2041 // entirely in R registers. Maybe later.
2042 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2043 DAG.getConstant(ArgOffset, PtrVT));
2044 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2045 MemOpChains.push_back(Store);
2046 if (VR_idx != NumVRs) {
2047 SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2048 MemOpChains.push_back(Load.getValue(1));
2049 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2050 }
2051 ArgOffset += 16;
2052 for (unsigned i=0; i<16; i+=PtrByteSize) {
2053 if (GPR_idx == NumGPRs)
2054 break;
2055 SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2056 DAG.getConstant(i, PtrVT));
2057 SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2058 MemOpChains.push_back(Load.getValue(1));
2059 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2060 }
2061 break;
2062 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00002063 // Non-varargs Altivec params generally go in registers, but have
2064 // stack space allocated at the end.
2065 if (VR_idx != NumVRs) {
2066 // Doesn't have GPR space allocated.
2067 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2068 } else if (nAltivecParamsAtEnd==0) {
2069 // We are emitting Altivec params in order.
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002070 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2071 DAG.getConstant(ArgOffset, PtrVT));
2072 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2073 MemOpChains.push_back(Store);
2074 ArgOffset += 16;
Dale Johannesen946b9cc2008-03-12 00:22:17 +00002075 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002076 break;
2077 }
2078 }
Dale Johannesenf6a394b2008-03-14 17:41:26 +00002079 // If all Altivec parameters fit in registers, as they usually do,
2080 // they get stack space following the non-Altivec parameters. We
2081 // don't track this here because nobody below needs it.
2082 // If there are more Altivec parameters than fit in registers emit
2083 // the stores here.
2084 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2085 unsigned j = 0;
2086 // Offset is aligned; skip 1st 12 params which go in V registers.
2087 ArgOffset = ((ArgOffset+15)/16)*16;
2088 ArgOffset += 12*16;
2089 for (unsigned i = 0; i != NumOps; ++i) {
2090 SDOperand Arg = Op.getOperand(5+2*i);
2091 MVT::ValueType ArgType = Arg.getValueType();
2092 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2093 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2094 if (++j > NumVRs) {
2095 SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2096 DAG.getConstant(ArgOffset, PtrVT));
2097 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2098 MemOpChains.push_back(Store);
2099 ArgOffset += 16;
2100 }
2101 }
2102 }
2103 }
2104
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002105 if (!MemOpChains.empty())
2106 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2107 &MemOpChains[0], MemOpChains.size());
2108
2109 // Build a sequence of copy-to-reg nodes chained together with token chain
2110 // and flag operands which copy the outgoing args into the appropriate regs.
2111 SDOperand InFlag;
2112 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2113 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2114 InFlag);
2115 InFlag = Chain.getValue(1);
2116 }
2117
2118 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2119 if (isVarArg && isELF32_ABI) {
Nicolas Geoffrayd01feb22008-03-10 14:12:10 +00002120 SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2121 Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122 InFlag = Chain.getValue(1);
2123 }
2124
2125 std::vector<MVT::ValueType> NodeTys;
2126 NodeTys.push_back(MVT::Other); // Returns a chain
2127 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
2128
2129 SmallVector<SDOperand, 8> Ops;
2130 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2131
2132 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2133 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2134 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00002135 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2136 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2137 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002138 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2139 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2140 // If this is an absolute destination address, use the munged value.
2141 Callee = SDOperand(Dest, 0);
2142 else {
2143 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2144 // to do the call, we can't use PPCISD::CALL.
2145 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2146 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2147 InFlag = Chain.getValue(1);
2148
Chris Lattner6eae8c62008-03-09 20:49:33 +00002149 // Copy the callee address into R12/X12 on darwin.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002150 if (isMachoABI) {
Chris Lattner6eae8c62008-03-09 20:49:33 +00002151 unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2152 Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153 InFlag = Chain.getValue(1);
2154 }
2155
2156 NodeTys.clear();
2157 NodeTys.push_back(MVT::Other);
2158 NodeTys.push_back(MVT::Flag);
2159 Ops.push_back(Chain);
2160 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2161 Callee.Val = 0;
2162 }
2163
2164 // If this is a direct call, pass the chain and the callee.
2165 if (Callee.Val) {
2166 Ops.push_back(Chain);
2167 Ops.push_back(Callee);
2168 }
2169
2170 // Add argument registers to the end of the list so that they are known live
2171 // into the call.
2172 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2173 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2174 RegsToPass[i].second.getValueType()));
2175
2176 if (InFlag.Val)
2177 Ops.push_back(InFlag);
2178 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2179 InFlag = Chain.getValue(1);
2180
Bill Wendling22f8deb2007-11-13 00:44:25 +00002181 Chain = DAG.getCALLSEQ_END(Chain,
2182 DAG.getConstant(NumBytes, PtrVT),
2183 DAG.getConstant(0, PtrVT),
2184 InFlag);
2185 if (Op.Val->getValueType(0) != MVT::Other)
2186 InFlag = Chain.getValue(1);
2187
Dan Gohman9f153572008-03-19 21:39:28 +00002188 SmallVector<SDOperand, 16> ResultVals;
2189 SmallVector<CCValAssign, 16> RVLocs;
2190 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2191 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2192 CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193
Dan Gohman9f153572008-03-19 21:39:28 +00002194 // Copy all of the result registers out of their specified physreg.
2195 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2196 CCValAssign &VA = RVLocs[i];
2197 MVT::ValueType VT = VA.getValVT();
2198 assert(VA.isRegLoc() && "Can only return in registers!");
2199 Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2200 ResultVals.push_back(Chain.getValue(0));
2201 InFlag = Chain.getValue(2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002202 }
Dan Gohman9f153572008-03-19 21:39:28 +00002203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002204 // If the function returns void, just return the chain.
Dan Gohman9f153572008-03-19 21:39:28 +00002205 if (RVLocs.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002206 return Chain;
2207
2208 // Otherwise, merge everything together with a MERGE_VALUES node.
Dan Gohman9f153572008-03-19 21:39:28 +00002209 ResultVals.push_back(Chain);
2210 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2211 &ResultVals[0], ResultVals.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002212 return Res.getValue(Op.ResNo);
2213}
2214
Dale Johannesen8be83a72008-03-04 23:17:14 +00002215SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2216 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217 SmallVector<CCValAssign, 16> RVLocs;
2218 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2219 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2220 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2221 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2222
2223 // If this is the first return lowered for this function, add the regs to the
2224 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00002225 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002226 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00002227 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002228 }
2229
2230 SDOperand Chain = Op.getOperand(0);
2231 SDOperand Flag;
2232
2233 // Copy the result values into the output registers.
2234 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2235 CCValAssign &VA = RVLocs[i];
2236 assert(VA.isRegLoc() && "Can only return in registers!");
2237 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2238 Flag = Chain.getValue(1);
2239 }
2240
2241 if (Flag.Val)
2242 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2243 else
2244 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2245}
2246
Dale Johannesen8be83a72008-03-04 23:17:14 +00002247SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002248 const PPCSubtarget &Subtarget) {
2249 // When we pop the dynamic allocation we need to restore the SP link.
2250
2251 // Get the corect type for pointers.
2252 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2253
2254 // Construct the stack pointer operand.
2255 bool IsPPC64 = Subtarget.isPPC64();
2256 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2257 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2258
2259 // Get the operands for the STACKRESTORE.
2260 SDOperand Chain = Op.getOperand(0);
2261 SDOperand SaveSP = Op.getOperand(1);
2262
2263 // Load the old link SP.
2264 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2265
2266 // Restore the stack pointer.
2267 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2268
2269 // Store the old link SP.
2270 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2271}
2272
Dale Johannesen8be83a72008-03-04 23:17:14 +00002273SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2274 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002275 const PPCSubtarget &Subtarget) {
2276 MachineFunction &MF = DAG.getMachineFunction();
2277 bool IsPPC64 = Subtarget.isPPC64();
2278 bool isMachoABI = Subtarget.isMachoABI();
2279
2280 // Get current frame pointer save index. The users of this index will be
2281 // primarily DYNALLOC instructions.
2282 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2283 int FPSI = FI->getFramePointerSaveIndex();
2284
2285 // If the frame pointer save index hasn't been defined yet.
2286 if (!FPSI) {
2287 // Find out what the fix offset of the frame pointer save area.
2288 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2289
2290 // Allocate the frame index for frame pointer save area.
2291 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2292 // Save the result.
2293 FI->setFramePointerSaveIndex(FPSI);
2294 }
2295
2296 // Get the inputs.
2297 SDOperand Chain = Op.getOperand(0);
2298 SDOperand Size = Op.getOperand(1);
2299
2300 // Get the corect type for pointers.
2301 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2302 // Negate the size.
2303 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2304 DAG.getConstant(0, PtrVT), Size);
2305 // Construct a node for the frame pointer save index.
2306 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2307 // Build a DYNALLOC node.
2308 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2309 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2310 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2311}
2312
2313
2314/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2315/// possible.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002316SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002317 // Not FP? Not a fsel.
2318 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2319 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2320 return SDOperand();
2321
2322 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2323
2324 // Cannot handle SETEQ/SETNE.
2325 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2326
2327 MVT::ValueType ResVT = Op.getValueType();
2328 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2329 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2330 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2331
2332 // If the RHS of the comparison is a 0.0, we don't need to do the
2333 // subtraction at all.
2334 if (isFloatingPointZero(RHS))
2335 switch (CC) {
2336 default: break; // SETUO etc aren't handled by fsel.
2337 case ISD::SETULT:
2338 case ISD::SETOLT:
2339 case ISD::SETLT:
2340 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2341 case ISD::SETUGE:
2342 case ISD::SETOGE:
2343 case ISD::SETGE:
2344 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2345 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2346 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2347 case ISD::SETUGT:
2348 case ISD::SETOGT:
2349 case ISD::SETGT:
2350 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2351 case ISD::SETULE:
2352 case ISD::SETOLE:
2353 case ISD::SETLE:
2354 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2355 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2356 return DAG.getNode(PPCISD::FSEL, ResVT,
2357 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2358 }
2359
Chris Lattnera216bee2007-10-15 20:14:52 +00002360 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 switch (CC) {
2362 default: break; // SETUO etc aren't handled by fsel.
2363 case ISD::SETULT:
2364 case ISD::SETOLT:
2365 case ISD::SETLT:
2366 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2367 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2368 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2369 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2370 case ISD::SETUGE:
2371 case ISD::SETOGE:
2372 case ISD::SETGE:
2373 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2374 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2375 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2376 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2377 case ISD::SETUGT:
2378 case ISD::SETOGT:
2379 case ISD::SETGT:
2380 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2381 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2382 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2383 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2384 case ISD::SETULE:
2385 case ISD::SETOLE:
2386 case ISD::SETLE:
2387 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2388 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2389 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2390 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2391 }
2392 return SDOperand();
2393}
2394
Chris Lattner28771092007-11-28 18:44:47 +00002395// FIXME: Split this code up when LegalizeDAGTypes lands.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002396SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2398 SDOperand Src = Op.getOperand(0);
2399 if (Src.getValueType() == MVT::f32)
2400 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2401
2402 SDOperand Tmp;
2403 switch (Op.getValueType()) {
2404 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2405 case MVT::i32:
2406 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2407 break;
2408 case MVT::i64:
2409 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2410 break;
2411 }
2412
2413 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002414 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2415
2416 // Emit a store to the stack slot.
2417 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2418
2419 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2420 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002422 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2423 DAG.getConstant(4, FIPtr.getValueType()));
2424 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425}
2426
Dale Johannesen8be83a72008-03-04 23:17:14 +00002427SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2428 SelectionDAG &DAG) {
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002429 assert(Op.getValueType() == MVT::ppcf128);
2430 SDNode *Node = Op.Val;
2431 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002432 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002433 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2434 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2435
2436 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2437 // of the long double, and puts FPSCR back the way it was. We do not
2438 // actually model FPSCR.
2439 std::vector<MVT::ValueType> NodeTys;
2440 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2441
2442 NodeTys.push_back(MVT::f64); // Return register
2443 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2444 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2445 MFFSreg = Result.getValue(0);
2446 InFlag = Result.getValue(1);
2447
2448 NodeTys.clear();
2449 NodeTys.push_back(MVT::Flag); // Returns a flag
2450 Ops[0] = DAG.getConstant(31, MVT::i32);
2451 Ops[1] = InFlag;
2452 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2453 InFlag = Result.getValue(0);
2454
2455 NodeTys.clear();
2456 NodeTys.push_back(MVT::Flag); // Returns a flag
2457 Ops[0] = DAG.getConstant(30, MVT::i32);
2458 Ops[1] = InFlag;
2459 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2460 InFlag = Result.getValue(0);
2461
2462 NodeTys.clear();
2463 NodeTys.push_back(MVT::f64); // result of add
2464 NodeTys.push_back(MVT::Flag); // Returns a flag
2465 Ops[0] = Lo;
2466 Ops[1] = Hi;
2467 Ops[2] = InFlag;
2468 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2469 FPreg = Result.getValue(0);
2470 InFlag = Result.getValue(1);
2471
2472 NodeTys.clear();
2473 NodeTys.push_back(MVT::f64);
2474 Ops[0] = DAG.getConstant(1, MVT::i32);
2475 Ops[1] = MFFSreg;
2476 Ops[2] = FPreg;
2477 Ops[3] = InFlag;
2478 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2479 FPreg = Result.getValue(0);
2480
2481 // We know the low half is about to be thrown away, so just use something
2482 // convenient.
2483 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2484}
2485
Dale Johannesen8be83a72008-03-04 23:17:14 +00002486SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman8b232ff2008-03-11 01:59:03 +00002487 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2488 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2489 return SDOperand();
2490
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 if (Op.getOperand(0).getValueType() == MVT::i64) {
2492 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2493 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2494 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002495 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496 return FP;
2497 }
2498
2499 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2500 "Unhandled SINT_TO_FP type in custom expander!");
2501 // Since we only generate this in 64-bit mode, we can take advantage of
2502 // 64-bit registers. In particular, sign extend the input value into the
2503 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2504 // then lfd it and fcfid it.
2505 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2506 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2507 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2508 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2509
2510 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2511 Op.getOperand(0));
2512
2513 // STD the extended value into the stack slot.
Dan Gohmanfb020b62008-02-07 18:41:25 +00002514 MemOperand MO(PseudoSourceValue::getFixedStack(),
Dan Gohman12a9c082008-02-06 22:27:42 +00002515 MemOperand::MOStore, FrameIdx, 8, 8);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2517 DAG.getEntryNode(), Ext64, FIdx,
Dan Gohman12a9c082008-02-06 22:27:42 +00002518 DAG.getMemOperand(MO));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519 // Load the value as a double.
2520 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2521
2522 // FCFID it and return it.
2523 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2524 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002525 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526 return FP;
2527}
2528
Dale Johannesen8be83a72008-03-04 23:17:14 +00002529SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
Dale Johannesen436e3802008-01-18 19:55:37 +00002530 /*
2531 The rounding mode is in bits 30:31 of FPSR, and has the following
2532 settings:
2533 00 Round to nearest
2534 01 Round to 0
2535 10 Round to +inf
2536 11 Round to -inf
2537
2538 FLT_ROUNDS, on the other hand, expects the following:
2539 -1 Undefined
2540 0 Round to 0
2541 1 Round to nearest
2542 2 Round to +inf
2543 3 Round to -inf
2544
2545 To perform the conversion, we do:
2546 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2547 */
2548
2549 MachineFunction &MF = DAG.getMachineFunction();
2550 MVT::ValueType VT = Op.getValueType();
2551 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2552 std::vector<MVT::ValueType> NodeTys;
2553 SDOperand MFFSreg, InFlag;
2554
2555 // Save FP Control Word to register
2556 NodeTys.push_back(MVT::f64); // return register
2557 NodeTys.push_back(MVT::Flag); // unused in this context
2558 SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2559
2560 // Save FP register to stack slot
2561 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2562 SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2563 SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2564 StackSlot, NULL, 0);
2565
2566 // Load FP Control Word from low 32 bits of stack slot.
2567 SDOperand Four = DAG.getConstant(4, PtrVT);
2568 SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2569 SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2570
2571 // Transform as necessary
2572 SDOperand CWD1 =
2573 DAG.getNode(ISD::AND, MVT::i32,
2574 CWD, DAG.getConstant(3, MVT::i32));
2575 SDOperand CWD2 =
2576 DAG.getNode(ISD::SRL, MVT::i32,
2577 DAG.getNode(ISD::AND, MVT::i32,
2578 DAG.getNode(ISD::XOR, MVT::i32,
2579 CWD, DAG.getConstant(3, MVT::i32)),
2580 DAG.getConstant(3, MVT::i32)),
2581 DAG.getConstant(1, MVT::i8));
2582
2583 SDOperand RetVal =
2584 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2585
2586 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2587 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2588}
2589
Dale Johannesen8be83a72008-03-04 23:17:14 +00002590SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002591 MVT::ValueType VT = Op.getValueType();
2592 unsigned BitWidth = MVT::getSizeInBits(VT);
2593 assert(Op.getNumOperands() == 3 &&
2594 VT == Op.getOperand(1).getValueType() &&
2595 "Unexpected SHL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596
2597 // Expand into a bunch of logical ops. Note that these ops
2598 // depend on the PPC behavior for oversized shift amounts.
2599 SDOperand Lo = Op.getOperand(0);
2600 SDOperand Hi = Op.getOperand(1);
2601 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002602 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002603
Dan Gohman71619ec2008-03-07 20:36:53 +00002604 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2605 DAG.getConstant(BitWidth, AmtVT), Amt);
2606 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2607 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2608 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2609 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2610 DAG.getConstant(-BitWidth, AmtVT));
2611 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2612 SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2613 SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002614 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002615 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002616 OutOps, 2);
2617}
2618
Dale Johannesen8be83a72008-03-04 23:17:14 +00002619SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002620 MVT::ValueType VT = Op.getValueType();
2621 unsigned BitWidth = MVT::getSizeInBits(VT);
2622 assert(Op.getNumOperands() == 3 &&
2623 VT == Op.getOperand(1).getValueType() &&
2624 "Unexpected SRL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002625
Dan Gohman71619ec2008-03-07 20:36:53 +00002626 // Expand into a bunch of logical ops. Note that these ops
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627 // depend on the PPC behavior for oversized shift amounts.
2628 SDOperand Lo = Op.getOperand(0);
2629 SDOperand Hi = Op.getOperand(1);
2630 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002631 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632
Dan Gohman71619ec2008-03-07 20:36:53 +00002633 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2634 DAG.getConstant(BitWidth, AmtVT), Amt);
2635 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2636 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2637 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2638 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2639 DAG.getConstant(-BitWidth, AmtVT));
2640 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2641 SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2642 SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002643 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002644 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 OutOps, 2);
2646}
2647
Dale Johannesen8be83a72008-03-04 23:17:14 +00002648SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002649 MVT::ValueType VT = Op.getValueType();
2650 unsigned BitWidth = MVT::getSizeInBits(VT);
2651 assert(Op.getNumOperands() == 3 &&
2652 VT == Op.getOperand(1).getValueType() &&
2653 "Unexpected SRA!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002654
Dan Gohman71619ec2008-03-07 20:36:53 +00002655 // Expand into a bunch of logical ops, followed by a select_cc.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002656 SDOperand Lo = Op.getOperand(0);
2657 SDOperand Hi = Op.getOperand(1);
2658 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002659 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660
Dan Gohman71619ec2008-03-07 20:36:53 +00002661 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2662 DAG.getConstant(BitWidth, AmtVT), Amt);
2663 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2664 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2665 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2666 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2667 DAG.getConstant(-BitWidth, AmtVT));
2668 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2669 SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2670 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671 Tmp4, Tmp6, ISD::SETLE);
2672 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002673 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002674 OutOps, 2);
2675}
2676
2677//===----------------------------------------------------------------------===//
2678// Vector related lowering.
2679//
2680
2681// If this is a vector of constants or undefs, get the bits. A bit in
2682// UndefBits is set if the corresponding element of the vector is an
2683// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2684// zero. Return true if this is not an array of constants, false if it is.
2685//
2686static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2687 uint64_t UndefBits[2]) {
2688 // Start with zero'd results.
2689 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2690
2691 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2692 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2693 SDOperand OpVal = BV->getOperand(i);
2694
2695 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2696 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2697
2698 uint64_t EltBits = 0;
2699 if (OpVal.getOpcode() == ISD::UNDEF) {
2700 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2701 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2702 continue;
2703 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2704 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2705 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2706 assert(CN->getValueType(0) == MVT::f32 &&
2707 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002708 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002709 } else {
2710 // Nonconstant element.
2711 return true;
2712 }
2713
2714 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2715 }
2716
2717 //printf("%llx %llx %llx %llx\n",
2718 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2719 return false;
2720}
2721
2722// If this is a splat (repetition) of a value across the whole vector, return
2723// the smallest size that splats it. For example, "0x01010101010101..." is a
2724// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2725// SplatSize = 1 byte.
2726static bool isConstantSplat(const uint64_t Bits128[2],
2727 const uint64_t Undef128[2],
2728 unsigned &SplatBits, unsigned &SplatUndef,
2729 unsigned &SplatSize) {
2730
2731 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2732 // the same as the lower 64-bits, ignoring undefs.
2733 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2734 return false; // Can't be a splat if two pieces don't match.
2735
2736 uint64_t Bits64 = Bits128[0] | Bits128[1];
2737 uint64_t Undef64 = Undef128[0] & Undef128[1];
2738
2739 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2740 // undefs.
2741 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2742 return false; // Can't be a splat if two pieces don't match.
2743
2744 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2745 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2746
2747 // If the top 16-bits are different than the lower 16-bits, ignoring
2748 // undefs, we have an i32 splat.
2749 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2750 SplatBits = Bits32;
2751 SplatUndef = Undef32;
2752 SplatSize = 4;
2753 return true;
2754 }
2755
2756 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2757 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2758
2759 // If the top 8-bits are different than the lower 8-bits, ignoring
2760 // undefs, we have an i16 splat.
2761 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2762 SplatBits = Bits16;
2763 SplatUndef = Undef16;
2764 SplatSize = 2;
2765 return true;
2766 }
2767
2768 // Otherwise, we have an 8-bit splat.
2769 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2770 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2771 SplatSize = 1;
2772 return true;
2773}
2774
2775/// BuildSplatI - Build a canonical splati of Val with an element size of
2776/// SplatSize. Cast the result to VT.
2777static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2778 SelectionDAG &DAG) {
2779 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2780
2781 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2782 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2783 };
2784
2785 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2786
2787 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2788 if (Val == -1)
2789 SplatSize = 1;
2790
2791 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2792
2793 // Build a canonical splat for this value.
2794 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2795 SmallVector<SDOperand, 8> Ops;
2796 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2797 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2798 &Ops[0], Ops.size());
2799 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2800}
2801
2802/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2803/// specified intrinsic ID.
2804static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2805 SelectionDAG &DAG,
2806 MVT::ValueType DestVT = MVT::Other) {
2807 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2808 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2809 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2810}
2811
2812/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2813/// specified intrinsic ID.
2814static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2815 SDOperand Op2, SelectionDAG &DAG,
2816 MVT::ValueType DestVT = MVT::Other) {
2817 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2818 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2819 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2820}
2821
2822
2823/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2824/// amount. The result has the specified value type.
2825static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2826 MVT::ValueType VT, SelectionDAG &DAG) {
2827 // Force LHS/RHS to be the right type.
2828 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2829 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2830
2831 SDOperand Ops[16];
2832 for (unsigned i = 0; i != 16; ++i)
2833 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2834 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2835 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2836 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2837}
2838
2839// If this is a case we can't handle, return null and let the default
2840// expansion code take care of it. If we CAN select this case, and if it
2841// selects to a single instruction, return Op. Otherwise, if we can codegen
2842// this case more efficiently than a constant pool load, lower it to the
2843// sequence of ops that should be used.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002844SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2845 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846 // If this is a vector of constants or undefs, get the bits. A bit in
2847 // UndefBits is set if the corresponding element of the vector is an
2848 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2849 // zero.
2850 uint64_t VectorBits[2];
2851 uint64_t UndefBits[2];
2852 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2853 return SDOperand(); // Not a constant vector.
2854
2855 // If this is a splat (repetition) of a value across the whole vector, return
2856 // the smallest size that splats it. For example, "0x01010101010101..." is a
2857 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2858 // SplatSize = 1 byte.
2859 unsigned SplatBits, SplatUndef, SplatSize;
2860 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2861 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2862
2863 // First, handle single instruction cases.
2864
2865 // All zeros?
2866 if (SplatBits == 0) {
2867 // Canonicalize all zero vectors to be v4i32.
2868 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2869 SDOperand Z = DAG.getConstant(0, MVT::i32);
2870 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2871 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2872 }
2873 return Op;
2874 }
2875
2876 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2877 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2878 if (SextVal >= -16 && SextVal <= 15)
2879 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2880
2881
2882 // Two instruction sequences.
2883
2884 // If this value is in the range [-32,30] and is even, use:
2885 // tmp = VSPLTI[bhw], result = add tmp, tmp
2886 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2887 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2888 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2889 }
2890
2891 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2892 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2893 // for fneg/fabs.
2894 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2895 // Make -1 and vspltisw -1:
2896 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2897
2898 // Make the VSLW intrinsic, computing 0x8000_0000.
2899 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2900 OnesV, DAG);
2901
2902 // xor by OnesV to invert it.
2903 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2904 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2905 }
2906
2907 // Check to see if this is a wide variety of vsplti*, binop self cases.
2908 unsigned SplatBitSize = SplatSize*8;
2909 static const signed char SplatCsts[] = {
2910 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2911 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2912 };
2913
Owen Anderson1636de92007-09-07 04:06:50 +00002914 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2916 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2917 int i = SplatCsts[idx];
2918
2919 // Figure out what shift amount will be used by altivec if shifted by i in
2920 // this splat size.
2921 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2922
2923 // vsplti + shl self.
2924 if (SextVal == (i << (int)TypeShiftAmt)) {
2925 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2926 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2927 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2928 Intrinsic::ppc_altivec_vslw
2929 };
2930 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2931 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2932 }
2933
2934 // vsplti + srl self.
2935 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2936 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2937 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2938 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2939 Intrinsic::ppc_altivec_vsrw
2940 };
2941 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2942 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2943 }
2944
2945 // vsplti + sra self.
2946 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2947 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2948 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2949 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2950 Intrinsic::ppc_altivec_vsraw
2951 };
2952 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2953 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2954 }
2955
2956 // vsplti + rol self.
2957 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2958 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2959 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2960 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2961 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2962 Intrinsic::ppc_altivec_vrlw
2963 };
2964 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2965 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2966 }
2967
2968 // t = vsplti c, result = vsldoi t, t, 1
2969 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2970 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2971 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2972 }
2973 // t = vsplti c, result = vsldoi t, t, 2
2974 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2975 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2976 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2977 }
2978 // t = vsplti c, result = vsldoi t, t, 3
2979 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2980 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2981 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2982 }
2983 }
2984
2985 // Three instruction sequences.
2986
2987 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2988 if (SextVal >= 0 && SextVal <= 31) {
2989 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2990 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002991 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2993 }
2994 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2995 if (SextVal >= -31 && SextVal <= 0) {
2996 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2997 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002998 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002999 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3000 }
3001 }
3002
3003 return SDOperand();
3004}
3005
3006/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3007/// the specified operations to build the shuffle.
3008static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
3009 SDOperand RHS, SelectionDAG &DAG) {
3010 unsigned OpNum = (PFEntry >> 26) & 0x0F;
3011 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3012 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
3013
3014 enum {
3015 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3016 OP_VMRGHW,
3017 OP_VMRGLW,
3018 OP_VSPLTISW0,
3019 OP_VSPLTISW1,
3020 OP_VSPLTISW2,
3021 OP_VSPLTISW3,
3022 OP_VSLDOI4,
3023 OP_VSLDOI8,
3024 OP_VSLDOI12
3025 };
3026
3027 if (OpNum == OP_COPY) {
3028 if (LHSID == (1*9+2)*9+3) return LHS;
3029 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3030 return RHS;
3031 }
3032
3033 SDOperand OpLHS, OpRHS;
3034 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3035 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3036
3037 unsigned ShufIdxs[16];
3038 switch (OpNum) {
3039 default: assert(0 && "Unknown i32 permute!");
3040 case OP_VMRGHW:
3041 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
3042 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3043 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
3044 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3045 break;
3046 case OP_VMRGLW:
3047 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3048 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3049 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3050 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3051 break;
3052 case OP_VSPLTISW0:
3053 for (unsigned i = 0; i != 16; ++i)
3054 ShufIdxs[i] = (i&3)+0;
3055 break;
3056 case OP_VSPLTISW1:
3057 for (unsigned i = 0; i != 16; ++i)
3058 ShufIdxs[i] = (i&3)+4;
3059 break;
3060 case OP_VSPLTISW2:
3061 for (unsigned i = 0; i != 16; ++i)
3062 ShufIdxs[i] = (i&3)+8;
3063 break;
3064 case OP_VSPLTISW3:
3065 for (unsigned i = 0; i != 16; ++i)
3066 ShufIdxs[i] = (i&3)+12;
3067 break;
3068 case OP_VSLDOI4:
3069 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3070 case OP_VSLDOI8:
3071 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3072 case OP_VSLDOI12:
3073 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3074 }
3075 SDOperand Ops[16];
3076 for (unsigned i = 0; i != 16; ++i)
3077 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3078
3079 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3080 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3081}
3082
3083/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
3084/// is a shuffle we can handle in a single instruction, return it. Otherwise,
3085/// return the code it can be lowered into. Worst case, it can always be
3086/// lowered into a vperm.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003087SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3088 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089 SDOperand V1 = Op.getOperand(0);
3090 SDOperand V2 = Op.getOperand(1);
3091 SDOperand PermMask = Op.getOperand(2);
3092
3093 // Cases that are handled by instructions that take permute immediates
3094 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3095 // selected by the instruction selector.
3096 if (V2.getOpcode() == ISD::UNDEF) {
3097 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3098 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3099 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3100 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3101 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3102 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3103 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3104 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3105 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3106 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3107 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3108 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3109 return Op;
3110 }
3111 }
3112
3113 // Altivec has a variety of "shuffle immediates" that take two vector inputs
3114 // and produce a fixed permutation. If any of these match, do not lower to
3115 // VPERM.
3116 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3117 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3118 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3119 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3120 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3121 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3122 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3123 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3124 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3125 return Op;
3126
3127 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3128 // perfect shuffle table to emit an optimal matching sequence.
3129 unsigned PFIndexes[4];
3130 bool isFourElementShuffle = true;
3131 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3132 unsigned EltNo = 8; // Start out undef.
3133 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
3134 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3135 continue; // Undef, ignore it.
3136
3137 unsigned ByteSource =
3138 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3139 if ((ByteSource & 3) != j) {
3140 isFourElementShuffle = false;
3141 break;
3142 }
3143
3144 if (EltNo == 8) {
3145 EltNo = ByteSource/4;
3146 } else if (EltNo != ByteSource/4) {
3147 isFourElementShuffle = false;
3148 break;
3149 }
3150 }
3151 PFIndexes[i] = EltNo;
3152 }
3153
3154 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3155 // perfect shuffle vector to determine if it is cost effective to do this as
3156 // discrete instructions, or whether we should use a vperm.
3157 if (isFourElementShuffle) {
3158 // Compute the index in the perfect shuffle table.
3159 unsigned PFTableIndex =
3160 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3161
3162 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3163 unsigned Cost = (PFEntry >> 30);
3164
3165 // Determining when to avoid vperm is tricky. Many things affect the cost
3166 // of vperm, particularly how many times the perm mask needs to be computed.
3167 // For example, if the perm mask can be hoisted out of a loop or is already
3168 // used (perhaps because there are multiple permutes with the same shuffle
3169 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3170 // the loop requires an extra register.
3171 //
3172 // As a compromise, we only emit discrete instructions if the shuffle can be
3173 // generated in 3 or fewer operations. When we have loop information
3174 // available, if this block is within a loop, we should avoid using vperm
3175 // for 3-operation perms and use a constant pool load instead.
3176 if (Cost < 3)
3177 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3178 }
3179
3180 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3181 // vector that will get spilled to the constant pool.
3182 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3183
3184 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3185 // that it is in input element units, not in bytes. Convert now.
3186 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3187 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3188
3189 SmallVector<SDOperand, 16> ResultMask;
3190 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3191 unsigned SrcElt;
3192 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3193 SrcElt = 0;
3194 else
3195 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3196
3197 for (unsigned j = 0; j != BytesPerElement; ++j)
3198 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3199 MVT::i8));
3200 }
3201
3202 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3203 &ResultMask[0], ResultMask.size());
3204 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3205}
3206
3207/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3208/// altivec comparison. If it is, return true and fill in Opc/isDot with
3209/// information about the intrinsic.
3210static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3211 bool &isDot) {
3212 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3213 CompareOpc = -1;
3214 isDot = false;
3215 switch (IntrinsicID) {
3216 default: return false;
3217 // Comparison predicates.
3218 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3219 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3220 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
3221 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
3222 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3223 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3224 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3225 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3226 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3227 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3228 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3229 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3230 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3231
3232 // Normal Comparisons.
3233 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
3234 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
3235 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
3236 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
3237 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
3238 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
3239 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
3240 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
3241 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
3242 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
3243 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
3244 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
3245 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
3246 }
3247 return true;
3248}
3249
3250/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3251/// lower, do it, otherwise return null.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003252SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3253 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003254 // If this is a lowered altivec predicate compare, CompareOpc is set to the
3255 // opcode number of the comparison.
3256 int CompareOpc;
3257 bool isDot;
3258 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3259 return SDOperand(); // Don't custom lower most intrinsics.
3260
3261 // If this is a non-dot comparison, make the VCMP node and we are done.
3262 if (!isDot) {
3263 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3264 Op.getOperand(1), Op.getOperand(2),
3265 DAG.getConstant(CompareOpc, MVT::i32));
3266 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3267 }
3268
3269 // Create the PPCISD altivec 'dot' comparison node.
3270 SDOperand Ops[] = {
3271 Op.getOperand(2), // LHS
3272 Op.getOperand(3), // RHS
3273 DAG.getConstant(CompareOpc, MVT::i32)
3274 };
3275 std::vector<MVT::ValueType> VTs;
3276 VTs.push_back(Op.getOperand(2).getValueType());
3277 VTs.push_back(MVT::Flag);
3278 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3279
3280 // Now that we have the comparison, emit a copy from the CR to a GPR.
3281 // This is flagged to the above dot comparison.
3282 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3283 DAG.getRegister(PPC::CR6, MVT::i32),
3284 CompNode.getValue(1));
3285
3286 // Unpack the result based on how the target uses it.
3287 unsigned BitNo; // Bit # of CR6.
3288 bool InvertBit; // Invert result?
3289 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3290 default: // Can't happen, don't crash on invalid number though.
3291 case 0: // Return the value of the EQ bit of CR6.
3292 BitNo = 0; InvertBit = false;
3293 break;
3294 case 1: // Return the inverted value of the EQ bit of CR6.
3295 BitNo = 0; InvertBit = true;
3296 break;
3297 case 2: // Return the value of the LT bit of CR6.
3298 BitNo = 2; InvertBit = false;
3299 break;
3300 case 3: // Return the inverted value of the LT bit of CR6.
3301 BitNo = 2; InvertBit = true;
3302 break;
3303 }
3304
3305 // Shift the bit into the low position.
3306 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3307 DAG.getConstant(8-(3-BitNo), MVT::i32));
3308 // Isolate the bit.
3309 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3310 DAG.getConstant(1, MVT::i32));
3311
3312 // If we are supposed to, toggle the bit.
3313 if (InvertBit)
3314 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3315 DAG.getConstant(1, MVT::i32));
3316 return Flags;
3317}
3318
Dale Johannesen8be83a72008-03-04 23:17:14 +00003319SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3320 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003321 // Create a stack slot that is 16-byte aligned.
3322 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3323 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3324 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3325 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3326
3327 // Store the input value into Value#0 of the stack slot.
3328 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3329 Op.getOperand(0), FIdx, NULL, 0);
3330 // Load it out.
3331 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3332}
3333
Dale Johannesen8be83a72008-03-04 23:17:14 +00003334SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003335 if (Op.getValueType() == MVT::v4i32) {
3336 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3337
3338 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
3339 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3340
3341 SDOperand RHSSwap = // = vrlw RHS, 16
3342 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3343
3344 // Shrinkify inputs to v8i16.
3345 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3346 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3347 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3348
3349 // Low parts multiplied together, generating 32-bit results (we ignore the
3350 // top parts).
3351 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3352 LHS, RHS, DAG, MVT::v4i32);
3353
3354 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3355 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3356 // Shift the high parts up 16 bits.
3357 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3358 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3359 } else if (Op.getValueType() == MVT::v8i16) {
3360 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3361
3362 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3363
3364 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3365 LHS, RHS, Zero, DAG);
3366 } else if (Op.getValueType() == MVT::v16i8) {
3367 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3368
3369 // Multiply the even 8-bit parts, producing 16-bit sums.
3370 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3371 LHS, RHS, DAG, MVT::v8i16);
3372 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3373
3374 // Multiply the odd 8-bit parts, producing 16-bit sums.
3375 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3376 LHS, RHS, DAG, MVT::v8i16);
3377 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3378
3379 // Merge the results together.
3380 SDOperand Ops[16];
3381 for (unsigned i = 0; i != 8; ++i) {
3382 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
3383 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3384 }
3385 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3386 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3387 } else {
3388 assert(0 && "Unknown mul to lower!");
3389 abort();
3390 }
3391}
3392
3393/// LowerOperation - Provide custom lowering hooks for some operations.
3394///
3395SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3396 switch (Op.getOpcode()) {
3397 default: assert(0 && "Wasn't expecting to be able to lower this!");
3398 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3399 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3400 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3401 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3402 case ISD::SETCC: return LowerSETCC(Op, DAG);
3403 case ISD::VASTART:
3404 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3405 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3406
3407 case ISD::VAARG:
3408 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3409 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3410
3411 case ISD::FORMAL_ARGUMENTS:
3412 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3413 VarArgsStackOffset, VarArgsNumGPR,
3414 VarArgsNumFPR, PPCSubTarget);
3415
Dan Gohman9f153572008-03-19 21:39:28 +00003416 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget,
3417 getTargetMachine());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003418 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3419 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3420 case ISD::DYNAMIC_STACKALLOC:
3421 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3422
3423 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3424 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3425 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003426 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohman819574c2008-01-31 00:41:03 +00003427 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003428
3429 // Lower 64-bit shifts.
3430 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3431 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3432 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3433
3434 // Vector-related lowering.
3435 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3436 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3437 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3438 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3439 case ISD::MUL: return LowerMUL(Op, DAG);
3440
Chris Lattnerf8b93372007-12-08 06:59:59 +00003441 // Frame & Return address.
3442 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003443 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3444 }
3445 return SDOperand();
3446}
3447
Chris Lattner28771092007-11-28 18:44:47 +00003448SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3449 switch (N->getOpcode()) {
3450 default: assert(0 && "Wasn't expecting to be able to lower this!");
3451 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3452 }
3453}
3454
3455
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456//===----------------------------------------------------------------------===//
3457// Other Lowering Code
3458//===----------------------------------------------------------------------===//
3459
3460MachineBasicBlock *
Evan Chenge637db12008-01-30 18:18:23 +00003461PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3462 MachineBasicBlock *BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003463 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3464 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3465 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3466 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3467 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3468 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3469 "Unexpected instr type to insert");
3470
3471 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3472 // control-flow pattern. The incoming instruction knows the destination vreg
3473 // to set, the condition code register to branch on, the true/false values to
3474 // select between, and a branch opcode to use.
3475 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3476 ilist<MachineBasicBlock>::iterator It = BB;
3477 ++It;
3478
3479 // thisMBB:
3480 // ...
3481 // TrueVal = ...
3482 // cmpTY ccX, r1, r2
3483 // bCC copy1MBB
3484 // fallthrough --> copy0MBB
3485 MachineBasicBlock *thisMBB = BB;
3486 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3487 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3488 unsigned SelectPred = MI->getOperand(4).getImm();
3489 BuildMI(BB, TII->get(PPC::BCC))
3490 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3491 MachineFunction *F = BB->getParent();
3492 F->getBasicBlockList().insert(It, copy0MBB);
3493 F->getBasicBlockList().insert(It, sinkMBB);
3494 // Update machine-CFG edges by first adding all successors of the current
3495 // block to the new block which will contain the Phi node for the select.
3496 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3497 e = BB->succ_end(); i != e; ++i)
3498 sinkMBB->addSuccessor(*i);
3499 // Next, remove all successors of the current block, and add the true
3500 // and fallthrough blocks as its successors.
3501 while(!BB->succ_empty())
3502 BB->removeSuccessor(BB->succ_begin());
3503 BB->addSuccessor(copy0MBB);
3504 BB->addSuccessor(sinkMBB);
3505
3506 // copy0MBB:
3507 // %FalseValue = ...
3508 // # fallthrough to sinkMBB
3509 BB = copy0MBB;
3510
3511 // Update machine-CFG edges
3512 BB->addSuccessor(sinkMBB);
3513
3514 // sinkMBB:
3515 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3516 // ...
3517 BB = sinkMBB;
3518 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3519 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3520 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3521
3522 delete MI; // The pseudo instruction is gone now.
3523 return BB;
3524}
3525
3526//===----------------------------------------------------------------------===//
3527// Target Optimization Hooks
3528//===----------------------------------------------------------------------===//
3529
3530SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3531 DAGCombinerInfo &DCI) const {
3532 TargetMachine &TM = getTargetMachine();
3533 SelectionDAG &DAG = DCI.DAG;
3534 switch (N->getOpcode()) {
3535 default: break;
3536 case PPCISD::SHL:
3537 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3538 if (C->getValue() == 0) // 0 << V -> 0.
3539 return N->getOperand(0);
3540 }
3541 break;
3542 case PPCISD::SRL:
3543 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3544 if (C->getValue() == 0) // 0 >>u V -> 0.
3545 return N->getOperand(0);
3546 }
3547 break;
3548 case PPCISD::SRA:
3549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3550 if (C->getValue() == 0 || // 0 >>s V -> 0.
3551 C->isAllOnesValue()) // -1 >>s V -> -1.
3552 return N->getOperand(0);
3553 }
3554 break;
3555
3556 case ISD::SINT_TO_FP:
3557 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3558 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3559 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3560 // We allow the src/dst to be either f32/f64, but the intermediate
3561 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003562 if (N->getOperand(0).getValueType() == MVT::i64 &&
3563 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003564 SDOperand Val = N->getOperand(0).getOperand(0);
3565 if (Val.getValueType() == MVT::f32) {
3566 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3567 DCI.AddToWorklist(Val.Val);
3568 }
3569
3570 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3571 DCI.AddToWorklist(Val.Val);
3572 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3573 DCI.AddToWorklist(Val.Val);
3574 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003575 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3576 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003577 DCI.AddToWorklist(Val.Val);
3578 }
3579 return Val;
3580 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3581 // If the intermediate type is i32, we can avoid the load/store here
3582 // too.
3583 }
3584 }
3585 }
3586 break;
3587 case ISD::STORE:
3588 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3589 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
Chris Lattnerdf7a4ae2008-01-18 16:54:56 +00003590 !cast<StoreSDNode>(N)->isTruncatingStore() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003592 N->getOperand(1).getValueType() == MVT::i32 &&
3593 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003594 SDOperand Val = N->getOperand(1).getOperand(0);
3595 if (Val.getValueType() == MVT::f32) {
3596 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3597 DCI.AddToWorklist(Val.Val);
3598 }
3599 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3600 DCI.AddToWorklist(Val.Val);
3601
3602 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3603 N->getOperand(2), N->getOperand(3));
3604 DCI.AddToWorklist(Val.Val);
3605 return Val;
3606 }
3607
3608 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3609 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3610 N->getOperand(1).Val->hasOneUse() &&
3611 (N->getOperand(1).getValueType() == MVT::i32 ||
3612 N->getOperand(1).getValueType() == MVT::i16)) {
3613 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3614 // Do an any-extend to 32-bits if this is a half-word input.
3615 if (BSwapOp.getValueType() == MVT::i16)
3616 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3617
3618 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3619 N->getOperand(2), N->getOperand(3),
3620 DAG.getValueType(N->getOperand(1).getValueType()));
3621 }
3622 break;
3623 case ISD::BSWAP:
3624 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3625 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3626 N->getOperand(0).hasOneUse() &&
3627 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3628 SDOperand Load = N->getOperand(0);
3629 LoadSDNode *LD = cast<LoadSDNode>(Load);
3630 // Create the byte-swapping load.
3631 std::vector<MVT::ValueType> VTs;
3632 VTs.push_back(MVT::i32);
3633 VTs.push_back(MVT::Other);
Dan Gohman12a9c082008-02-06 22:27:42 +00003634 SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003635 SDOperand Ops[] = {
3636 LD->getChain(), // Chain
3637 LD->getBasePtr(), // Ptr
Dan Gohman12a9c082008-02-06 22:27:42 +00003638 MO, // MemOperand
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639 DAG.getValueType(N->getValueType(0)) // VT
3640 };
3641 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3642
3643 // If this is an i16 load, insert the truncate.
3644 SDOperand ResVal = BSLoad;
3645 if (N->getValueType(0) == MVT::i16)
3646 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3647
3648 // First, combine the bswap away. This makes the value produced by the
3649 // load dead.
3650 DCI.CombineTo(N, ResVal);
3651
3652 // Next, combine the load away, we give it a bogus result value but a real
3653 // chain result. The result value is dead because the bswap is dead.
3654 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3655
3656 // Return N so it doesn't get rechecked!
3657 return SDOperand(N, 0);
3658 }
3659
3660 break;
3661 case PPCISD::VCMP: {
3662 // If a VCMPo node already exists with exactly the same operands as this
3663 // node, use its result instead of this node (VCMPo computes both a CR6 and
3664 // a normal output).
3665 //
3666 if (!N->getOperand(0).hasOneUse() &&
3667 !N->getOperand(1).hasOneUse() &&
3668 !N->getOperand(2).hasOneUse()) {
3669
3670 // Scan all of the users of the LHS, looking for VCMPo's that match.
3671 SDNode *VCMPoNode = 0;
3672
3673 SDNode *LHSN = N->getOperand(0).Val;
3674 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3675 UI != E; ++UI)
3676 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3677 (*UI)->getOperand(1) == N->getOperand(1) &&
3678 (*UI)->getOperand(2) == N->getOperand(2) &&
3679 (*UI)->getOperand(0) == N->getOperand(0)) {
3680 VCMPoNode = *UI;
3681 break;
3682 }
3683
3684 // If there is no VCMPo node, or if the flag value has a single use, don't
3685 // transform this.
3686 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3687 break;
3688
3689 // Look at the (necessarily single) use of the flag value. If it has a
3690 // chain, this transformation is more complex. Note that multiple things
3691 // could use the value result, which we should ignore.
3692 SDNode *FlagUser = 0;
3693 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3694 FlagUser == 0; ++UI) {
3695 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3696 SDNode *User = *UI;
3697 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3698 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3699 FlagUser = User;
3700 break;
3701 }
3702 }
3703 }
3704
3705 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3706 // give up for right now.
3707 if (FlagUser->getOpcode() == PPCISD::MFCR)
3708 return SDOperand(VCMPoNode, 0);
3709 }
3710 break;
3711 }
3712 case ISD::BR_CC: {
3713 // If this is a branch on an altivec predicate comparison, lower this so
3714 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3715 // lowering is done pre-legalize, because the legalizer lowers the predicate
3716 // compare down to code that is difficult to reassemble.
3717 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3718 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3719 int CompareOpc;
3720 bool isDot;
3721
3722 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3723 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3724 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3725 assert(isDot && "Can't compare against a vector result!");
3726
3727 // If this is a comparison against something other than 0/1, then we know
3728 // that the condition is never/always true.
3729 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3730 if (Val != 0 && Val != 1) {
3731 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3732 return N->getOperand(0);
3733 // Always !=, turn it into an unconditional branch.
3734 return DAG.getNode(ISD::BR, MVT::Other,
3735 N->getOperand(0), N->getOperand(4));
3736 }
3737
3738 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3739
3740 // Create the PPCISD altivec 'dot' comparison node.
3741 std::vector<MVT::ValueType> VTs;
3742 SDOperand Ops[] = {
3743 LHS.getOperand(2), // LHS of compare
3744 LHS.getOperand(3), // RHS of compare
3745 DAG.getConstant(CompareOpc, MVT::i32)
3746 };
3747 VTs.push_back(LHS.getOperand(2).getValueType());
3748 VTs.push_back(MVT::Flag);
3749 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3750
3751 // Unpack the result based on how the target uses it.
3752 PPC::Predicate CompOpc;
3753 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3754 default: // Can't happen, don't crash on invalid number though.
3755 case 0: // Branch on the value of the EQ bit of CR6.
3756 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3757 break;
3758 case 1: // Branch on the inverted value of the EQ bit of CR6.
3759 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3760 break;
3761 case 2: // Branch on the value of the LT bit of CR6.
3762 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3763 break;
3764 case 3: // Branch on the inverted value of the LT bit of CR6.
3765 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3766 break;
3767 }
3768
3769 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3770 DAG.getConstant(CompOpc, MVT::i32),
3771 DAG.getRegister(PPC::CR6, MVT::i32),
3772 N->getOperand(4), CompNode.getValue(1));
3773 }
3774 break;
3775 }
3776 }
3777
3778 return SDOperand();
3779}
3780
3781//===----------------------------------------------------------------------===//
3782// Inline Assembly Support
3783//===----------------------------------------------------------------------===//
3784
3785void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +00003786 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +00003787 APInt &KnownZero,
3788 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003789 const SelectionDAG &DAG,
3790 unsigned Depth) const {
Dan Gohman229fa052008-02-13 00:35:47 +00003791 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003792 switch (Op.getOpcode()) {
3793 default: break;
3794 case PPCISD::LBRX: {
3795 // lhbrx is known to have the top bits cleared out.
3796 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3797 KnownZero = 0xFFFF0000;
3798 break;
3799 }
3800 case ISD::INTRINSIC_WO_CHAIN: {
3801 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3802 default: break;
3803 case Intrinsic::ppc_altivec_vcmpbfp_p:
3804 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3805 case Intrinsic::ppc_altivec_vcmpequb_p:
3806 case Intrinsic::ppc_altivec_vcmpequh_p:
3807 case Intrinsic::ppc_altivec_vcmpequw_p:
3808 case Intrinsic::ppc_altivec_vcmpgefp_p:
3809 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3810 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3811 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3812 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3813 case Intrinsic::ppc_altivec_vcmpgtub_p:
3814 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3815 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3816 KnownZero = ~1U; // All bits but the low one are known to be zero.
3817 break;
3818 }
3819 }
3820 }
3821}
3822
3823
3824/// getConstraintType - Given a constraint, return the type of
3825/// constraint it is for this target.
3826PPCTargetLowering::ConstraintType
3827PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3828 if (Constraint.size() == 1) {
3829 switch (Constraint[0]) {
3830 default: break;
3831 case 'b':
3832 case 'r':
3833 case 'f':
3834 case 'v':
3835 case 'y':
3836 return C_RegisterClass;
3837 }
3838 }
3839 return TargetLowering::getConstraintType(Constraint);
3840}
3841
3842std::pair<unsigned, const TargetRegisterClass*>
3843PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3844 MVT::ValueType VT) const {
3845 if (Constraint.size() == 1) {
3846 // GCC RS6000 Constraint Letters
3847 switch (Constraint[0]) {
3848 case 'b': // R1-R31
3849 case 'r': // R0-R31
3850 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3851 return std::make_pair(0U, PPC::G8RCRegisterClass);
3852 return std::make_pair(0U, PPC::GPRCRegisterClass);
3853 case 'f':
3854 if (VT == MVT::f32)
3855 return std::make_pair(0U, PPC::F4RCRegisterClass);
3856 else if (VT == MVT::f64)
3857 return std::make_pair(0U, PPC::F8RCRegisterClass);
3858 break;
3859 case 'v':
3860 return std::make_pair(0U, PPC::VRRCRegisterClass);
3861 case 'y': // crrc
3862 return std::make_pair(0U, PPC::CRRCRegisterClass);
3863 }
3864 }
3865
3866 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3867}
3868
3869
Chris Lattnera531abc2007-08-25 00:47:38 +00003870/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3871/// vector. If it is invalid, don't add anything to Ops.
3872void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3873 std::vector<SDOperand>&Ops,
3874 SelectionDAG &DAG) {
3875 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003876 switch (Letter) {
3877 default: break;
3878 case 'I':
3879 case 'J':
3880 case 'K':
3881 case 'L':
3882 case 'M':
3883 case 'N':
3884 case 'O':
3885 case 'P': {
3886 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003887 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 unsigned Value = CST->getValue();
3889 switch (Letter) {
3890 default: assert(0 && "Unknown constraint letter!");
3891 case 'I': // "I" is a signed 16-bit constant.
3892 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003893 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003894 break;
3895 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3896 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3897 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003898 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899 break;
3900 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3901 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003902 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003903 break;
3904 case 'M': // "M" is a constant that is greater than 31.
3905 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003906 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 break;
3908 case 'N': // "N" is a positive constant that is an exact power of two.
3909 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003910 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 break;
3912 case 'O': // "O" is the constant zero.
3913 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003914 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003915 break;
3916 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3917 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003918 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003919 break;
3920 }
3921 break;
3922 }
3923 }
3924
Chris Lattnera531abc2007-08-25 00:47:38 +00003925 if (Result.Val) {
3926 Ops.push_back(Result);
3927 return;
3928 }
3929
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003930 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003931 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003932}
3933
3934// isLegalAddressingMode - Return true if the addressing mode represented
3935// by AM is legal for this target, for a load/store of the specified type.
3936bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3937 const Type *Ty) const {
3938 // FIXME: PPC does not allow r+i addressing modes for vectors!
3939
3940 // PPC allows a sign-extended 16-bit immediate field.
3941 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3942 return false;
3943
3944 // No global is ever allowed as a base.
3945 if (AM.BaseGV)
3946 return false;
3947
3948 // PPC only support r+r,
3949 switch (AM.Scale) {
3950 case 0: // "r+i" or just "i", depending on HasBaseReg.
3951 break;
3952 case 1:
3953 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3954 return false;
3955 // Otherwise we have r+r or r+i.
3956 break;
3957 case 2:
3958 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3959 return false;
3960 // Allow 2*r as r+r.
3961 break;
3962 default:
3963 // No other scales are supported.
3964 return false;
3965 }
3966
3967 return true;
3968}
3969
3970/// isLegalAddressImmediate - Return true if the integer value can be used
3971/// as the offset of the target addressing mode for load / store of the
3972/// given type.
3973bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3974 // PPC allows a sign-extended 16-bit immediate field.
3975 return (V > -(1 << 16) && V < (1 << 16)-1);
3976}
3977
3978bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3979 return false;
3980}
3981
Chris Lattnerf8b93372007-12-08 06:59:59 +00003982SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3983 // Depths > 0 not supported yet!
3984 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3985 return SDOperand();
3986
3987 MachineFunction &MF = DAG.getMachineFunction();
3988 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3989 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3990 if (RAIdx == 0) {
3991 bool isPPC64 = PPCSubTarget.isPPC64();
3992 int Offset =
3993 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3994
3995 // Set up a frame object for the return address.
3996 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3997
3998 // Remember it for next time.
3999 FuncInfo->setReturnAddrSaveIndex(RAIdx);
4000
4001 // Make sure the function really does not optimize away the store of the RA
4002 // to the stack.
4003 FuncInfo->setLRStoreRequired();
4004 }
4005
4006 // Just load the return address off the stack.
4007 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
4008 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4009}
4010
4011SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 // Depths > 0 not supported yet!
4013 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4014 return SDOperand();
4015
4016 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4017 bool isPPC64 = PtrVT == MVT::i64;
4018
4019 MachineFunction &MF = DAG.getMachineFunction();
4020 MachineFrameInfo *MFI = MF.getFrameInfo();
4021 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4022 && MFI->getStackSize();
4023
4024 if (isPPC64)
4025 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00004026 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004027 else
4028 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4029 MVT::i32);
4030}