blob: 9cf67b9d4ffe317a1df9a06d478bbe7ab6f049db [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
226 { X86::CALL32r, X86::CALL32m, 1 },
227 { X86::CALL64r, X86::CALL64m, 1 },
228 { X86::CMP16ri, X86::CMP16mi, 1 },
229 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000230 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000231 { X86::CMP32ri, X86::CMP32mi, 1 },
232 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP64ri32, X86::CMP64mi32, 1 },
235 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000238 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000239 { X86::DIV16r, X86::DIV16m, 1 },
240 { X86::DIV32r, X86::DIV32m, 1 },
241 { X86::DIV64r, X86::DIV64m, 1 },
242 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000243 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000244 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
245 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
246 { X86::IDIV16r, X86::IDIV16m, 1 },
247 { X86::IDIV32r, X86::IDIV32m, 1 },
248 { X86::IDIV64r, X86::IDIV64m, 1 },
249 { X86::IDIV8r, X86::IDIV8m, 1 },
250 { X86::IMUL16r, X86::IMUL16m, 1 },
251 { X86::IMUL32r, X86::IMUL32m, 1 },
252 { X86::IMUL64r, X86::IMUL64m, 1 },
253 { X86::IMUL8r, X86::IMUL8m, 1 },
254 { X86::JMP32r, X86::JMP32m, 1 },
255 { X86::JMP64r, X86::JMP64m, 1 },
256 { X86::MOV16ri, X86::MOV16mi, 0 },
257 { X86::MOV16rr, X86::MOV16mr, 0 },
258 { X86::MOV16to16_, X86::MOV16_mr, 0 },
259 { X86::MOV32ri, X86::MOV32mi, 0 },
260 { X86::MOV32rr, X86::MOV32mr, 0 },
261 { X86::MOV32to32_, X86::MOV32_mr, 0 },
262 { X86::MOV64ri32, X86::MOV64mi32, 0 },
263 { X86::MOV64rr, X86::MOV64mr, 0 },
264 { X86::MOV8ri, X86::MOV8mi, 0 },
265 { X86::MOV8rr, X86::MOV8mr, 0 },
266 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
267 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000268 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000269 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
270 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
271 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
272 { X86::MOVSDrr, X86::MOVSDmr, 0 },
273 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
274 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
275 { X86::MOVSSrr, X86::MOVSSmr, 0 },
276 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
277 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
278 { X86::MUL16r, X86::MUL16m, 1 },
279 { X86::MUL32r, X86::MUL32m, 1 },
280 { X86::MUL64r, X86::MUL64m, 1 },
281 { X86::MUL8r, X86::MUL8m, 1 },
282 { X86::SETAEr, X86::SETAEm, 0 },
283 { X86::SETAr, X86::SETAm, 0 },
284 { X86::SETBEr, X86::SETBEm, 0 },
285 { X86::SETBr, X86::SETBm, 0 },
286 { X86::SETEr, X86::SETEm, 0 },
287 { X86::SETGEr, X86::SETGEm, 0 },
288 { X86::SETGr, X86::SETGm, 0 },
289 { X86::SETLEr, X86::SETLEm, 0 },
290 { X86::SETLr, X86::SETLm, 0 },
291 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000292 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000293 { X86::SETNPr, X86::SETNPm, 0 },
294 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000295 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000296 { X86::SETPr, X86::SETPm, 0 },
297 { X86::SETSr, X86::SETSm, 0 },
298 { X86::TAILJMPr, X86::TAILJMPm, 1 },
299 { X86::TEST16ri, X86::TEST16mi, 1 },
300 { X86::TEST32ri, X86::TEST32mi, 1 },
301 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000302 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000303 };
304
305 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
306 unsigned RegOp = OpTbl0[i][0];
307 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000308 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
309 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000310 assert(false && "Duplicated entries?");
311 unsigned FoldedLoad = OpTbl0[i][2];
312 // Index 0, folded load or store.
313 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
314 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
315 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000316 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000317 AmbEntries.push_back(MemOp);
318 }
319
320 static const unsigned OpTbl1[][2] = {
321 { X86::CMP16rr, X86::CMP16rm },
322 { X86::CMP32rr, X86::CMP32rm },
323 { X86::CMP64rr, X86::CMP64rm },
324 { X86::CMP8rr, X86::CMP8rm },
325 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
326 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
327 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
328 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
329 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
330 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
331 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
332 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
333 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
334 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
335 { X86::FsMOVAPDrr, X86::MOVSDrm },
336 { X86::FsMOVAPSrr, X86::MOVSSrm },
337 { X86::IMUL16rri, X86::IMUL16rmi },
338 { X86::IMUL16rri8, X86::IMUL16rmi8 },
339 { X86::IMUL32rri, X86::IMUL32rmi },
340 { X86::IMUL32rri8, X86::IMUL32rmi8 },
341 { X86::IMUL64rri32, X86::IMUL64rmi32 },
342 { X86::IMUL64rri8, X86::IMUL64rmi8 },
343 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
344 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
345 { X86::Int_COMISDrr, X86::Int_COMISDrm },
346 { X86::Int_COMISSrr, X86::Int_COMISSrm },
347 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
348 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
349 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
350 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
351 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
352 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
353 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
354 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
355 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
356 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
357 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
358 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
359 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
360 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
361 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
362 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
363 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
364 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
365 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
366 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
367 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
368 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
369 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
370 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
371 { X86::MOV16rr, X86::MOV16rm },
372 { X86::MOV16to16_, X86::MOV16_rm },
373 { X86::MOV32rr, X86::MOV32rm },
374 { X86::MOV32to32_, X86::MOV32_rm },
375 { X86::MOV64rr, X86::MOV64rm },
376 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
377 { X86::MOV64toSDrr, X86::MOV64toSDrm },
378 { X86::MOV8rr, X86::MOV8rm },
379 { X86::MOVAPDrr, X86::MOVAPDrm },
380 { X86::MOVAPSrr, X86::MOVAPSrm },
381 { X86::MOVDDUPrr, X86::MOVDDUPrm },
382 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
383 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000384 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000385 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
386 { X86::MOVSDrr, X86::MOVSDrm },
387 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
388 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
389 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
390 { X86::MOVSSrr, X86::MOVSSrm },
391 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
392 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
393 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
394 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
395 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
396 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
397 { X86::MOVUPDrr, X86::MOVUPDrm },
398 { X86::MOVUPSrr, X86::MOVUPSrm },
399 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
400 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
401 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
402 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
403 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
404 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
405 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000406 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000407 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
408 { X86::PSHUFDri, X86::PSHUFDmi },
409 { X86::PSHUFHWri, X86::PSHUFHWmi },
410 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000411 { X86::RCPPSr, X86::RCPPSm },
412 { X86::RCPPSr_Int, X86::RCPPSm_Int },
413 { X86::RSQRTPSr, X86::RSQRTPSm },
414 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
415 { X86::RSQRTSSr, X86::RSQRTSSm },
416 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
417 { X86::SQRTPDr, X86::SQRTPDm },
418 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
419 { X86::SQRTPSr, X86::SQRTPSm },
420 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
421 { X86::SQRTSDr, X86::SQRTSDm },
422 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
423 { X86::SQRTSSr, X86::SQRTSSm },
424 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
425 { X86::TEST16rr, X86::TEST16rm },
426 { X86::TEST32rr, X86::TEST32rm },
427 { X86::TEST64rr, X86::TEST64rm },
428 { X86::TEST8rr, X86::TEST8rm },
429 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
430 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000431 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000432 };
433
434 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
435 unsigned RegOp = OpTbl1[i][0];
436 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000437 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
438 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000439 assert(false && "Duplicated entries?");
440 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
441 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
442 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000443 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000444 AmbEntries.push_back(MemOp);
445 }
446
447 static const unsigned OpTbl2[][2] = {
448 { X86::ADC32rr, X86::ADC32rm },
449 { X86::ADC64rr, X86::ADC64rm },
450 { X86::ADD16rr, X86::ADD16rm },
451 { X86::ADD32rr, X86::ADD32rm },
452 { X86::ADD64rr, X86::ADD64rm },
453 { X86::ADD8rr, X86::ADD8rm },
454 { X86::ADDPDrr, X86::ADDPDrm },
455 { X86::ADDPSrr, X86::ADDPSrm },
456 { X86::ADDSDrr, X86::ADDSDrm },
457 { X86::ADDSSrr, X86::ADDSSrm },
458 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
459 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
460 { X86::AND16rr, X86::AND16rm },
461 { X86::AND32rr, X86::AND32rm },
462 { X86::AND64rr, X86::AND64rm },
463 { X86::AND8rr, X86::AND8rm },
464 { X86::ANDNPDrr, X86::ANDNPDrm },
465 { X86::ANDNPSrr, X86::ANDNPSrm },
466 { X86::ANDPDrr, X86::ANDPDrm },
467 { X86::ANDPSrr, X86::ANDPSrm },
468 { X86::CMOVA16rr, X86::CMOVA16rm },
469 { X86::CMOVA32rr, X86::CMOVA32rm },
470 { X86::CMOVA64rr, X86::CMOVA64rm },
471 { X86::CMOVAE16rr, X86::CMOVAE16rm },
472 { X86::CMOVAE32rr, X86::CMOVAE32rm },
473 { X86::CMOVAE64rr, X86::CMOVAE64rm },
474 { X86::CMOVB16rr, X86::CMOVB16rm },
475 { X86::CMOVB32rr, X86::CMOVB32rm },
476 { X86::CMOVB64rr, X86::CMOVB64rm },
477 { X86::CMOVBE16rr, X86::CMOVBE16rm },
478 { X86::CMOVBE32rr, X86::CMOVBE32rm },
479 { X86::CMOVBE64rr, X86::CMOVBE64rm },
480 { X86::CMOVE16rr, X86::CMOVE16rm },
481 { X86::CMOVE32rr, X86::CMOVE32rm },
482 { X86::CMOVE64rr, X86::CMOVE64rm },
483 { X86::CMOVG16rr, X86::CMOVG16rm },
484 { X86::CMOVG32rr, X86::CMOVG32rm },
485 { X86::CMOVG64rr, X86::CMOVG64rm },
486 { X86::CMOVGE16rr, X86::CMOVGE16rm },
487 { X86::CMOVGE32rr, X86::CMOVGE32rm },
488 { X86::CMOVGE64rr, X86::CMOVGE64rm },
489 { X86::CMOVL16rr, X86::CMOVL16rm },
490 { X86::CMOVL32rr, X86::CMOVL32rm },
491 { X86::CMOVL64rr, X86::CMOVL64rm },
492 { X86::CMOVLE16rr, X86::CMOVLE16rm },
493 { X86::CMOVLE32rr, X86::CMOVLE32rm },
494 { X86::CMOVLE64rr, X86::CMOVLE64rm },
495 { X86::CMOVNE16rr, X86::CMOVNE16rm },
496 { X86::CMOVNE32rr, X86::CMOVNE32rm },
497 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000498 { X86::CMOVNO16rr, X86::CMOVNO16rm },
499 { X86::CMOVNO32rr, X86::CMOVNO32rm },
500 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000501 { X86::CMOVNP16rr, X86::CMOVNP16rm },
502 { X86::CMOVNP32rr, X86::CMOVNP32rm },
503 { X86::CMOVNP64rr, X86::CMOVNP64rm },
504 { X86::CMOVNS16rr, X86::CMOVNS16rm },
505 { X86::CMOVNS32rr, X86::CMOVNS32rm },
506 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000507 { X86::CMOVO16rr, X86::CMOVO16rm },
508 { X86::CMOVO32rr, X86::CMOVO32rm },
509 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000510 { X86::CMOVP16rr, X86::CMOVP16rm },
511 { X86::CMOVP32rr, X86::CMOVP32rm },
512 { X86::CMOVP64rr, X86::CMOVP64rm },
513 { X86::CMOVS16rr, X86::CMOVS16rm },
514 { X86::CMOVS32rr, X86::CMOVS32rm },
515 { X86::CMOVS64rr, X86::CMOVS64rm },
516 { X86::CMPPDrri, X86::CMPPDrmi },
517 { X86::CMPPSrri, X86::CMPPSrmi },
518 { X86::CMPSDrr, X86::CMPSDrm },
519 { X86::CMPSSrr, X86::CMPSSrm },
520 { X86::DIVPDrr, X86::DIVPDrm },
521 { X86::DIVPSrr, X86::DIVPSrm },
522 { X86::DIVSDrr, X86::DIVSDrm },
523 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000524 { X86::FsANDNPDrr, X86::FsANDNPDrm },
525 { X86::FsANDNPSrr, X86::FsANDNPSrm },
526 { X86::FsANDPDrr, X86::FsANDPDrm },
527 { X86::FsANDPSrr, X86::FsANDPSrm },
528 { X86::FsORPDrr, X86::FsORPDrm },
529 { X86::FsORPSrr, X86::FsORPSrm },
530 { X86::FsXORPDrr, X86::FsXORPDrm },
531 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000532 { X86::HADDPDrr, X86::HADDPDrm },
533 { X86::HADDPSrr, X86::HADDPSrm },
534 { X86::HSUBPDrr, X86::HSUBPDrm },
535 { X86::HSUBPSrr, X86::HSUBPSrm },
536 { X86::IMUL16rr, X86::IMUL16rm },
537 { X86::IMUL32rr, X86::IMUL32rm },
538 { X86::IMUL64rr, X86::IMUL64rm },
539 { X86::MAXPDrr, X86::MAXPDrm },
540 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
541 { X86::MAXPSrr, X86::MAXPSrm },
542 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
543 { X86::MAXSDrr, X86::MAXSDrm },
544 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
545 { X86::MAXSSrr, X86::MAXSSrm },
546 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
547 { X86::MINPDrr, X86::MINPDrm },
548 { X86::MINPDrr_Int, X86::MINPDrm_Int },
549 { X86::MINPSrr, X86::MINPSrm },
550 { X86::MINPSrr_Int, X86::MINPSrm_Int },
551 { X86::MINSDrr, X86::MINSDrm },
552 { X86::MINSDrr_Int, X86::MINSDrm_Int },
553 { X86::MINSSrr, X86::MINSSrm },
554 { X86::MINSSrr_Int, X86::MINSSrm_Int },
555 { X86::MULPDrr, X86::MULPDrm },
556 { X86::MULPSrr, X86::MULPSrm },
557 { X86::MULSDrr, X86::MULSDrm },
558 { X86::MULSSrr, X86::MULSSrm },
559 { X86::OR16rr, X86::OR16rm },
560 { X86::OR32rr, X86::OR32rm },
561 { X86::OR64rr, X86::OR64rm },
562 { X86::OR8rr, X86::OR8rm },
563 { X86::ORPDrr, X86::ORPDrm },
564 { X86::ORPSrr, X86::ORPSrm },
565 { X86::PACKSSDWrr, X86::PACKSSDWrm },
566 { X86::PACKSSWBrr, X86::PACKSSWBrm },
567 { X86::PACKUSWBrr, X86::PACKUSWBrm },
568 { X86::PADDBrr, X86::PADDBrm },
569 { X86::PADDDrr, X86::PADDDrm },
570 { X86::PADDQrr, X86::PADDQrm },
571 { X86::PADDSBrr, X86::PADDSBrm },
572 { X86::PADDSWrr, X86::PADDSWrm },
573 { X86::PADDWrr, X86::PADDWrm },
574 { X86::PANDNrr, X86::PANDNrm },
575 { X86::PANDrr, X86::PANDrm },
576 { X86::PAVGBrr, X86::PAVGBrm },
577 { X86::PAVGWrr, X86::PAVGWrm },
578 { X86::PCMPEQBrr, X86::PCMPEQBrm },
579 { X86::PCMPEQDrr, X86::PCMPEQDrm },
580 { X86::PCMPEQWrr, X86::PCMPEQWrm },
581 { X86::PCMPGTBrr, X86::PCMPGTBrm },
582 { X86::PCMPGTDrr, X86::PCMPGTDrm },
583 { X86::PCMPGTWrr, X86::PCMPGTWrm },
584 { X86::PINSRWrri, X86::PINSRWrmi },
585 { X86::PMADDWDrr, X86::PMADDWDrm },
586 { X86::PMAXSWrr, X86::PMAXSWrm },
587 { X86::PMAXUBrr, X86::PMAXUBrm },
588 { X86::PMINSWrr, X86::PMINSWrm },
589 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000590 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000591 { X86::PMULHUWrr, X86::PMULHUWrm },
592 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000593 { X86::PMULLDrr, X86::PMULLDrm },
594 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000595 { X86::PMULLWrr, X86::PMULLWrm },
596 { X86::PMULUDQrr, X86::PMULUDQrm },
597 { X86::PORrr, X86::PORrm },
598 { X86::PSADBWrr, X86::PSADBWrm },
599 { X86::PSLLDrr, X86::PSLLDrm },
600 { X86::PSLLQrr, X86::PSLLQrm },
601 { X86::PSLLWrr, X86::PSLLWrm },
602 { X86::PSRADrr, X86::PSRADrm },
603 { X86::PSRAWrr, X86::PSRAWrm },
604 { X86::PSRLDrr, X86::PSRLDrm },
605 { X86::PSRLQrr, X86::PSRLQrm },
606 { X86::PSRLWrr, X86::PSRLWrm },
607 { X86::PSUBBrr, X86::PSUBBrm },
608 { X86::PSUBDrr, X86::PSUBDrm },
609 { X86::PSUBSBrr, X86::PSUBSBrm },
610 { X86::PSUBSWrr, X86::PSUBSWrm },
611 { X86::PSUBWrr, X86::PSUBWrm },
612 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
613 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
614 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
615 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
616 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
617 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
618 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
619 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
620 { X86::PXORrr, X86::PXORrm },
621 { X86::SBB32rr, X86::SBB32rm },
622 { X86::SBB64rr, X86::SBB64rm },
623 { X86::SHUFPDrri, X86::SHUFPDrmi },
624 { X86::SHUFPSrri, X86::SHUFPSrmi },
625 { X86::SUB16rr, X86::SUB16rm },
626 { X86::SUB32rr, X86::SUB32rm },
627 { X86::SUB64rr, X86::SUB64rm },
628 { X86::SUB8rr, X86::SUB8rm },
629 { X86::SUBPDrr, X86::SUBPDrm },
630 { X86::SUBPSrr, X86::SUBPSrm },
631 { X86::SUBSDrr, X86::SUBSDrm },
632 { X86::SUBSSrr, X86::SUBSSrm },
633 // FIXME: TEST*rr -> swapped operand of TEST*mr.
634 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
635 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
636 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
637 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
638 { X86::XOR16rr, X86::XOR16rm },
639 { X86::XOR32rr, X86::XOR32rm },
640 { X86::XOR64rr, X86::XOR64rm },
641 { X86::XOR8rr, X86::XOR8rm },
642 { X86::XORPDrr, X86::XORPDrm },
643 { X86::XORPSrr, X86::XORPSrm }
644 };
645
646 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
647 unsigned RegOp = OpTbl2[i][0];
648 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000649 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
650 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000651 assert(false && "Duplicated entries?");
652 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
653 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000654 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000655 AmbEntries.push_back(MemOp);
656 }
657
658 // Remove ambiguous entries.
659 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660}
661
662bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
663 unsigned& sourceReg,
664 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000665 switch (MI.getOpcode()) {
666 default:
667 return false;
668 case X86::MOV8rr:
669 case X86::MOV16rr:
670 case X86::MOV32rr:
671 case X86::MOV64rr:
672 case X86::MOV16to16_:
673 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000674 case X86::MOVSSrr:
675 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000676
677 // FP Stack register class copies
678 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
679 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
680 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
681
Chris Lattnerff195282008-03-11 19:28:17 +0000682 case X86::FsMOVAPSrr:
683 case X86::FsMOVAPDrr:
684 case X86::MOVAPSrr:
685 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000686 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000687 case X86::MOVSS2PSrr:
688 case X86::MOVSD2PDrr:
689 case X86::MOVPS2SSrr:
690 case X86::MOVPD2SDrr:
691 case X86::MMX_MOVD64rr:
692 case X86::MMX_MOVQ64rr:
693 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000694 MI.getOperand(0).isReg() &&
695 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000696 "invalid register-register move instruction");
697 sourceReg = MI.getOperand(1).getReg();
698 destReg = MI.getOperand(0).getReg();
699 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701}
702
Dan Gohman90feee22008-11-18 19:49:32 +0000703unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 int &FrameIndex) const {
705 switch (MI->getOpcode()) {
706 default: break;
707 case X86::MOV8rm:
708 case X86::MOV16rm:
709 case X86::MOV16_rm:
710 case X86::MOV32rm:
711 case X86::MOV32_rm:
712 case X86::MOV64rm:
713 case X86::LD_Fp64m:
714 case X86::MOVSSrm:
715 case X86::MOVSDrm:
716 case X86::MOVAPSrm:
717 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000718 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 case X86::MMX_MOVD64rm:
720 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000721 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
722 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000723 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000725 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000726 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727 return MI->getOperand(0).getReg();
728 }
729 break;
730 }
731 return 0;
732}
733
Dan Gohman90feee22008-11-18 19:49:32 +0000734unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 int &FrameIndex) const {
736 switch (MI->getOpcode()) {
737 default: break;
738 case X86::MOV8mr:
739 case X86::MOV16mr:
740 case X86::MOV16_mr:
741 case X86::MOV32mr:
742 case X86::MOV32_mr:
743 case X86::MOV64mr:
744 case X86::ST_FpP64m:
745 case X86::MOVSSmr:
746 case X86::MOVSDmr:
747 case X86::MOVAPSmr:
748 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000749 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 case X86::MMX_MOVD64mr:
751 case X86::MMX_MOVQ64mr:
752 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000753 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
754 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000755 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000757 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000758 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 return MI->getOperand(4).getReg();
760 }
761 break;
762 }
763 return 0;
764}
765
766
Evan Chengb819a512008-03-27 01:45:11 +0000767/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
768/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000769static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000770 bool isPICBase = false;
771 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
772 E = MRI.def_end(); I != E; ++I) {
773 MachineInstr *DefMI = I.getOperand().getParent();
774 if (DefMI->getOpcode() != X86::MOVPC32r)
775 return false;
776 assert(!isPICBase && "More than one PIC base?");
777 isPICBase = true;
778 }
779 return isPICBase;
780}
Evan Chenge9caab52008-03-31 07:54:19 +0000781
782/// isGVStub - Return true if the GV requires an extra load to get the
783/// real address.
784static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
785 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
786}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000787
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000788bool
789X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 switch (MI->getOpcode()) {
791 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000792 case X86::MOV8rm:
793 case X86::MOV16rm:
794 case X86::MOV16_rm:
795 case X86::MOV32rm:
796 case X86::MOV32_rm:
797 case X86::MOV64rm:
798 case X86::LD_Fp64m:
799 case X86::MOVSSrm:
800 case X86::MOVSDrm:
801 case X86::MOVAPSrm:
802 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000803 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000804 case X86::MMX_MOVD64rm:
805 case X86::MMX_MOVQ64rm: {
806 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000807 if (MI->getOperand(1).isReg() &&
808 MI->getOperand(2).isImm() &&
809 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
810 (MI->getOperand(4).isCPI() ||
811 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000812 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000813 unsigned BaseReg = MI->getOperand(1).getReg();
814 if (BaseReg == 0)
815 return true;
816 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000817 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000818 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000819 const MachineFunction &MF = *MI->getParent()->getParent();
820 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000821 bool isPICBase = false;
822 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
823 E = MRI.def_end(); I != E; ++I) {
824 MachineInstr *DefMI = I.getOperand().getParent();
825 if (DefMI->getOpcode() != X86::MOVPC32r)
826 return false;
827 assert(!isPICBase && "More than one PIC base?");
828 isPICBase = true;
829 }
830 return isPICBase;
831 }
832 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000833 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000834
835 case X86::LEA32r:
836 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000837 if (MI->getOperand(2).isImm() &&
838 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
839 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000840 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000841 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000842 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843 unsigned BaseReg = MI->getOperand(1).getReg();
844 if (BaseReg == 0)
845 return true;
846 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000847 const MachineFunction &MF = *MI->getParent()->getParent();
848 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000849 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000850 }
851 return false;
852 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000854
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000855 // All other instructions marked M_REMATERIALIZABLE are always trivially
856 // rematerializable.
857 return true;
858}
859
Evan Chengc564ded2008-06-24 07:10:51 +0000860/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
861/// would clobber the EFLAGS condition register. Note the result may be
862/// conservative. If it cannot definitely determine the safety after visiting
863/// two instructions it assumes it's not safe.
864static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
865 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000866 // It's always safe to clobber EFLAGS at the end of a block.
867 if (I == MBB.end())
868 return true;
869
Evan Chengc564ded2008-06-24 07:10:51 +0000870 // For compile time consideration, if we are not able to determine the
871 // safety after visiting 2 instructions, we will assume it's not safe.
872 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000873 bool SeenDef = false;
874 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
875 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000876 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000877 continue;
878 if (MO.getReg() == X86::EFLAGS) {
879 if (MO.isUse())
880 return false;
881 SeenDef = true;
882 }
883 }
884
885 if (SeenDef)
886 // This instruction defines EFLAGS, no need to look any further.
887 return true;
888 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000889
890 // If we make it to the end of the block, it's safe to clobber EFLAGS.
891 if (I == MBB.end())
892 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000893 }
894
895 // Conservative answer.
896 return false;
897}
898
Evan Cheng7d73efc2008-03-31 20:40:39 +0000899void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
900 MachineBasicBlock::iterator I,
901 unsigned DestReg,
902 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000903 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000904 ? Orig->getOperand(0).getSubReg() : 0;
905 bool ChangeSubIdx = SubIdx != 0;
906 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
907 DestReg = RI.getSubReg(DestReg, SubIdx);
908 SubIdx = 0;
909 }
910
Evan Cheng7d73efc2008-03-31 20:40:39 +0000911 // MOV32r0 etc. are implemented with xor which clobbers condition code.
912 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000913 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000914 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000915 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000916 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000917 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000918 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000919 case X86::MOV64r0: {
920 if (!isSafeToClobberEFLAGS(MBB, I)) {
921 unsigned Opc = 0;
922 switch (Orig->getOpcode()) {
923 default: break;
924 case X86::MOV8r0: Opc = X86::MOV8ri; break;
925 case X86::MOV16r0: Opc = X86::MOV16ri; break;
926 case X86::MOV32r0: Opc = X86::MOV32ri; break;
927 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
928 }
929 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
930 Emitted = true;
931 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000932 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000933 }
934 }
935
936 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000937 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000938 MI->getOperand(0).setReg(DestReg);
939 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000940 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000941
942 if (ChangeSubIdx) {
943 MachineInstr *NewMI = prior(I);
944 NewMI->getOperand(0).setSubReg(SubIdx);
945 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000946}
947
Chris Lattnerea3a1812008-01-10 23:08:24 +0000948/// isInvariantLoad - Return true if the specified instruction (which is marked
949/// mayLoad) is loading from a location whose value is invariant across the
950/// function. For example, loading a value from the constant pool or from
951/// from the argument area of a function if it does not change. This should
952/// only return true of *all* loads the instruction does are invariant (if it
953/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000954bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000955 // This code cares about loads from three cases: constant pool entries,
956 // invariant argument slots, and global stubs. In order to handle these cases
957 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000958 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000959 // none of these three cases is ever used as anything other than a load base
960 // and X86 doesn't have any instructions that load from multiple places.
961
962 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
963 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000964 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000965 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000966 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000967
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000968 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000969 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000970
971 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000972 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000973 const MachineFrameInfo &MFI =
974 *MI->getParent()->getParent()->getFrameInfo();
975 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000976 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
977 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000978 }
Chris Lattner0875b572008-01-12 00:35:08 +0000979
Chris Lattnerea3a1812008-01-10 23:08:24 +0000980 // All other instances of these instructions are presumed to have other
981 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000982 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000983}
984
Evan Chengfa1a4952007-10-05 08:04:01 +0000985/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
986/// is not marked dead.
987static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000988 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
989 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000990 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000991 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
992 return true;
993 }
994 }
995 return false;
996}
997
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000998/// convertToThreeAddress - This method must be implemented by targets that
999/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1000/// may be able to convert a two-address instruction into a true
1001/// three-address instruction on demand. This allows the X86 target (for
1002/// example) to convert ADD and SHL instructions into LEA instructions if they
1003/// would require register copies due to two-addressness.
1004///
1005/// This method returns a null pointer if the transformation cannot be
1006/// performed, otherwise it returns the new instruction.
1007///
1008MachineInstr *
1009X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1010 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001011 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001013 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001014 // All instructions input are two-addr instructions. Get the known operands.
1015 unsigned Dest = MI->getOperand(0).getReg();
1016 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001017 bool isDead = MI->getOperand(0).isDead();
1018 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019
1020 MachineInstr *NewMI = NULL;
1021 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1022 // we have better subtarget support, enable the 16-bit LEA generation here.
1023 bool DisableLEA16 = true;
1024
Evan Cheng6b96ed32007-10-05 20:34:26 +00001025 unsigned MIOpc = MI->getOpcode();
1026 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 case X86::SHUFPSrri: {
1028 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1029 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1030
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 unsigned B = MI->getOperand(1).getReg();
1032 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001034 unsigned A = MI->getOperand(0).getReg();
1035 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001036 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001037 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 break;
1039 }
1040 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001041 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1043 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 unsigned ShAmt = MI->getOperand(2).getImm();
1045 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001046
Dan Gohman221a4372008-07-07 23:14:23 +00001047 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001048 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 break;
1050 }
1051 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001052 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 unsigned ShAmt = MI->getOperand(2).getImm();
1056 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001057
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001058 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1059 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001060 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001061 .addReg(0).addImm(1 << ShAmt)
1062 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001063 break;
1064 }
1065 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001066 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001067 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1068 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001069 unsigned ShAmt = MI->getOperand(2).getImm();
1070 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001071
Christopher Lamb380c6272007-08-10 21:18:25 +00001072 if (DisableLEA16) {
1073 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001074 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001075 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1076 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001077 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1078 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001079
Christopher Lamb8d226a22008-03-11 10:27:36 +00001080 // Build and insert into an implicit UNDEF value. This is OK because
1081 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001082 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1083 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001084 .addReg(leaInReg).addReg(Src, false, false, isKill)
1085 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001086
Dan Gohman221a4372008-07-07 23:14:23 +00001087 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001088 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001089
Dan Gohman221a4372008-07-07 23:14:23 +00001090 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001091 .addReg(Dest, true, false, false, isDead)
1092 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001093 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001094 // Update live variables
1095 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1096 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1097 if (isKill)
1098 LV->replaceKillInstruction(Src, MI, InsMI);
1099 if (isDead)
1100 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001101 }
Evan Chenge52c1912008-07-03 09:09:37 +00001102 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001103 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001104 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001105 .addReg(0).addImm(1 << ShAmt)
1106 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001107 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 break;
1109 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001110 default: {
1111 // The following opcodes also sets the condition code register(s). Only
1112 // convert them to equivalent lea if the condition code register def's
1113 // are dead!
1114 if (hasLiveCondCodeDef(MI))
1115 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116
Evan Chenga28a9562007-10-09 07:14:53 +00001117 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001118 switch (MIOpc) {
1119 default: return 0;
1120 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001121 case X86::INC32r:
1122 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001123 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001124 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1125 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001126 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001127 .addReg(Dest, true, false, false, isDead),
1128 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001129 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001130 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001131 case X86::INC16r:
1132 case X86::INC64_16r:
1133 if (DisableLEA16) return 0;
1134 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001135 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001136 .addReg(Dest, true, false, false, isDead),
1137 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001138 break;
1139 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001140 case X86::DEC32r:
1141 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001142 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001143 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1144 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001145 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001146 .addReg(Dest, true, false, false, isDead),
1147 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001148 break;
1149 }
1150 case X86::DEC16r:
1151 case X86::DEC64_16r:
1152 if (DisableLEA16) return 0;
1153 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001154 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001155 .addReg(Dest, true, false, false, isDead),
1156 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001157 break;
1158 case X86::ADD64rr:
1159 case X86::ADD32rr: {
1160 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001161 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1162 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001163 unsigned Src2 = MI->getOperand(2).getReg();
1164 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001165 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001166 .addReg(Dest, true, false, false, isDead),
1167 Src, isKill, Src2, isKill2);
1168 if (LV && isKill2)
1169 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001170 break;
1171 }
Evan Chenge52c1912008-07-03 09:09:37 +00001172 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001173 if (DisableLEA16) return 0;
1174 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001175 unsigned Src2 = MI->getOperand(2).getReg();
1176 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001177 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001178 .addReg(Dest, true, false, false, isDead),
1179 Src, isKill, Src2, isKill2);
1180 if (LV && isKill2)
1181 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001182 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001183 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001184 case X86::ADD64ri32:
1185 case X86::ADD64ri8:
1186 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001187 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001188 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001189 .addReg(Dest, true, false, false, isDead),
1190 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001191 break;
1192 case X86::ADD32ri:
1193 case X86::ADD32ri8:
1194 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001195 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001196 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001197 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001198 .addReg(Dest, true, false, false, isDead),
1199 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001200 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001201 break;
1202 case X86::ADD16ri:
1203 case X86::ADD16ri8:
1204 if (DisableLEA16) return 0;
1205 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001206 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001207 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001208 .addReg(Dest, true, false, false, isDead),
1209 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001210 break;
1211 case X86::SHL16ri:
1212 if (DisableLEA16) return 0;
1213 case X86::SHL32ri:
1214 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001215 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001216 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001217 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001218 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1219 X86AddressMode AM;
1220 AM.Scale = 1 << ShAmt;
1221 AM.IndexReg = Src;
1222 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001223 : (MIOpc == X86::SHL32ri
1224 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001225 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001226 .addReg(Dest, true, false, false, isDead), AM);
1227 if (isKill)
1228 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001229 }
1230 break;
1231 }
1232 }
1233 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 }
1235
Evan Chengc3cb24d2008-02-07 08:29:53 +00001236 if (!NewMI) return 0;
1237
Evan Chenge52c1912008-07-03 09:09:37 +00001238 if (LV) { // Update live variables
1239 if (isKill)
1240 LV->replaceKillInstruction(Src, MI, NewMI);
1241 if (isDead)
1242 LV->replaceKillInstruction(Dest, MI, NewMI);
1243 }
1244
Evan Cheng6b96ed32007-10-05 20:34:26 +00001245 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 return NewMI;
1247}
1248
1249/// commuteInstruction - We have a few instructions that must be hacked on to
1250/// commute them.
1251///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001252MachineInstr *
1253X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 switch (MI->getOpcode()) {
1255 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1256 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1257 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001258 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1259 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1260 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 unsigned Opc;
1262 unsigned Size;
1263 switch (MI->getOpcode()) {
1264 default: assert(0 && "Unreachable!");
1265 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1266 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1267 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1268 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001269 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1270 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001272 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001273 if (NewMI) {
1274 MachineFunction &MF = *MI->getParent()->getParent();
1275 MI = MF.CloneMachineInstr(MI);
1276 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001277 }
Dan Gohman921581d2008-10-17 01:23:35 +00001278 MI->setDesc(get(Opc));
1279 MI->getOperand(3).setImm(Size-Amt);
1280 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281 }
Evan Cheng926658c2007-10-05 23:13:21 +00001282 case X86::CMOVB16rr:
1283 case X86::CMOVB32rr:
1284 case X86::CMOVB64rr:
1285 case X86::CMOVAE16rr:
1286 case X86::CMOVAE32rr:
1287 case X86::CMOVAE64rr:
1288 case X86::CMOVE16rr:
1289 case X86::CMOVE32rr:
1290 case X86::CMOVE64rr:
1291 case X86::CMOVNE16rr:
1292 case X86::CMOVNE32rr:
1293 case X86::CMOVNE64rr:
1294 case X86::CMOVBE16rr:
1295 case X86::CMOVBE32rr:
1296 case X86::CMOVBE64rr:
1297 case X86::CMOVA16rr:
1298 case X86::CMOVA32rr:
1299 case X86::CMOVA64rr:
1300 case X86::CMOVL16rr:
1301 case X86::CMOVL32rr:
1302 case X86::CMOVL64rr:
1303 case X86::CMOVGE16rr:
1304 case X86::CMOVGE32rr:
1305 case X86::CMOVGE64rr:
1306 case X86::CMOVLE16rr:
1307 case X86::CMOVLE32rr:
1308 case X86::CMOVLE64rr:
1309 case X86::CMOVG16rr:
1310 case X86::CMOVG32rr:
1311 case X86::CMOVG64rr:
1312 case X86::CMOVS16rr:
1313 case X86::CMOVS32rr:
1314 case X86::CMOVS64rr:
1315 case X86::CMOVNS16rr:
1316 case X86::CMOVNS32rr:
1317 case X86::CMOVNS64rr:
1318 case X86::CMOVP16rr:
1319 case X86::CMOVP32rr:
1320 case X86::CMOVP64rr:
1321 case X86::CMOVNP16rr:
1322 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001323 case X86::CMOVNP64rr:
1324 case X86::CMOVO16rr:
1325 case X86::CMOVO32rr:
1326 case X86::CMOVO64rr:
1327 case X86::CMOVNO16rr:
1328 case X86::CMOVNO32rr:
1329 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001330 unsigned Opc = 0;
1331 switch (MI->getOpcode()) {
1332 default: break;
1333 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1334 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1335 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1336 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1337 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1338 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1339 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1340 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1341 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1342 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1343 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1344 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1345 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1346 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1347 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1348 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1349 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1350 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1351 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1352 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1353 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1354 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1355 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1356 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1357 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1358 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1359 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1360 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1361 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1362 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1363 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1364 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1365 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1366 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1367 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1368 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1369 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1370 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1371 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1372 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1373 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1374 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001375 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1376 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1377 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1378 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1379 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1380 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001381 }
Dan Gohman921581d2008-10-17 01:23:35 +00001382 if (NewMI) {
1383 MachineFunction &MF = *MI->getParent()->getParent();
1384 MI = MF.CloneMachineInstr(MI);
1385 NewMI = false;
1386 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001387 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001388 // Fallthrough intended.
1389 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001391 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 }
1393}
1394
1395static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1396 switch (BrOpc) {
1397 default: return X86::COND_INVALID;
1398 case X86::JE: return X86::COND_E;
1399 case X86::JNE: return X86::COND_NE;
1400 case X86::JL: return X86::COND_L;
1401 case X86::JLE: return X86::COND_LE;
1402 case X86::JG: return X86::COND_G;
1403 case X86::JGE: return X86::COND_GE;
1404 case X86::JB: return X86::COND_B;
1405 case X86::JBE: return X86::COND_BE;
1406 case X86::JA: return X86::COND_A;
1407 case X86::JAE: return X86::COND_AE;
1408 case X86::JS: return X86::COND_S;
1409 case X86::JNS: return X86::COND_NS;
1410 case X86::JP: return X86::COND_P;
1411 case X86::JNP: return X86::COND_NP;
1412 case X86::JO: return X86::COND_O;
1413 case X86::JNO: return X86::COND_NO;
1414 }
1415}
1416
1417unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1418 switch (CC) {
1419 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001420 case X86::COND_E: return X86::JE;
1421 case X86::COND_NE: return X86::JNE;
1422 case X86::COND_L: return X86::JL;
1423 case X86::COND_LE: return X86::JLE;
1424 case X86::COND_G: return X86::JG;
1425 case X86::COND_GE: return X86::JGE;
1426 case X86::COND_B: return X86::JB;
1427 case X86::COND_BE: return X86::JBE;
1428 case X86::COND_A: return X86::JA;
1429 case X86::COND_AE: return X86::JAE;
1430 case X86::COND_S: return X86::JS;
1431 case X86::COND_NS: return X86::JNS;
1432 case X86::COND_P: return X86::JP;
1433 case X86::COND_NP: return X86::JNP;
1434 case X86::COND_O: return X86::JO;
1435 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001436 }
1437}
1438
1439/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1440/// e.g. turning COND_E to COND_NE.
1441X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1442 switch (CC) {
1443 default: assert(0 && "Illegal condition code!");
1444 case X86::COND_E: return X86::COND_NE;
1445 case X86::COND_NE: return X86::COND_E;
1446 case X86::COND_L: return X86::COND_GE;
1447 case X86::COND_LE: return X86::COND_G;
1448 case X86::COND_G: return X86::COND_LE;
1449 case X86::COND_GE: return X86::COND_L;
1450 case X86::COND_B: return X86::COND_AE;
1451 case X86::COND_BE: return X86::COND_A;
1452 case X86::COND_A: return X86::COND_BE;
1453 case X86::COND_AE: return X86::COND_B;
1454 case X86::COND_S: return X86::COND_NS;
1455 case X86::COND_NS: return X86::COND_S;
1456 case X86::COND_P: return X86::COND_NP;
1457 case X86::COND_NP: return X86::COND_P;
1458 case X86::COND_O: return X86::COND_NO;
1459 case X86::COND_NO: return X86::COND_O;
1460 }
1461}
1462
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001463bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001464 const TargetInstrDesc &TID = MI->getDesc();
1465 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001466
1467 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001468 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001469 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001470 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001471 return true;
1472 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473}
1474
Evan Cheng12515792007-07-26 17:32:14 +00001475// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1476static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1477 const X86InstrInfo &TII) {
1478 if (MI->getOpcode() == X86::FP_REG_KILL)
1479 return false;
1480 return TII.isUnpredicatedTerminator(MI);
1481}
1482
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001483bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1484 MachineBasicBlock *&TBB,
1485 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001486 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001487 // Start from the bottom of the block and work up, examining the
1488 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001490 while (I != MBB.begin()) {
1491 --I;
1492 // Working from the bottom, when we see a non-terminator
1493 // instruction, we're done.
1494 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1495 break;
1496 // A terminator that isn't a branch can't easily be handled
1497 // by this analysis.
1498 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001499 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001500 // Handle unconditional branches.
1501 if (I->getOpcode() == X86::JMP) {
1502 // If the block has any instructions after a JMP, delete them.
1503 while (next(I) != MBB.end())
1504 next(I)->eraseFromParent();
1505 Cond.clear();
1506 FBB = 0;
1507 // Delete the JMP if it's equivalent to a fall-through.
1508 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1509 TBB = 0;
1510 I->eraseFromParent();
1511 I = MBB.end();
1512 continue;
1513 }
1514 // TBB is used to indicate the unconditinal destination.
1515 TBB = I->getOperand(0).getMBB();
1516 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001518 // Handle conditional branches.
1519 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 if (BranchCode == X86::COND_INVALID)
1521 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001522 // Working from the bottom, handle the first conditional branch.
1523 if (Cond.empty()) {
1524 FBB = TBB;
1525 TBB = I->getOperand(0).getMBB();
1526 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1527 continue;
1528 }
1529 // Handle subsequent conditional branches. Only handle the case
1530 // where all conditional branches branch to the same destination
1531 // and their condition opcodes fit one of the special
1532 // multi-branch idioms.
1533 assert(Cond.size() == 1);
1534 assert(TBB);
1535 // Only handle the case where all conditional branches branch to
1536 // the same destination.
1537 if (TBB != I->getOperand(0).getMBB())
1538 return true;
1539 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1540 // If the conditions are the same, we can leave them alone.
1541 if (OldBranchCode == BranchCode)
1542 continue;
1543 // If they differ, see if they fit one of the known patterns.
1544 // Theoretically we could handle more patterns here, but
1545 // we shouldn't expect to see them if instruction selection
1546 // has done a reasonable job.
1547 if ((OldBranchCode == X86::COND_NP &&
1548 BranchCode == X86::COND_E) ||
1549 (OldBranchCode == X86::COND_E &&
1550 BranchCode == X86::COND_NP))
1551 BranchCode = X86::COND_NP_OR_E;
1552 else if ((OldBranchCode == X86::COND_P &&
1553 BranchCode == X86::COND_NE) ||
1554 (OldBranchCode == X86::COND_NE &&
1555 BranchCode == X86::COND_P))
1556 BranchCode = X86::COND_NE_OR_P;
1557 else
1558 return true;
1559 // Update the MachineOperand.
1560 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001561 }
1562
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001563 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001564}
1565
1566unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1567 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001568 unsigned Count = 0;
1569
1570 while (I != MBB.begin()) {
1571 --I;
1572 if (I->getOpcode() != X86::JMP &&
1573 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1574 break;
1575 // Remove the branch.
1576 I->eraseFromParent();
1577 I = MBB.end();
1578 ++Count;
1579 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001580
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001581 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582}
1583
Owen Anderson81875432008-01-01 21:11:32 +00001584static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001585 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001586 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001587 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001588 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001589 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001590 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001591 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001592 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001593 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001594 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001595 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001596 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001597 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001598 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001599 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001600 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1601 else
1602 assert(0 && "Unknown operand for X86InstrAddOperand!");
1603
1604 return MIB;
1605}
1606
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001607unsigned
1608X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1609 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001610 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001611 // Shouldn't be a fall through.
1612 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1613 assert((Cond.size() == 1 || Cond.size() == 0) &&
1614 "X86 branch conditions have one component!");
1615
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001616 if (Cond.empty()) {
1617 // Unconditional branch?
1618 assert(!FBB && "Unconditional branch with multiple successors!");
1619 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 return 1;
1621 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001622
1623 // Conditional branch.
1624 unsigned Count = 0;
1625 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1626 switch (CC) {
1627 case X86::COND_NP_OR_E:
1628 // Synthesize NP_OR_E with two branches.
1629 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1630 ++Count;
1631 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1632 ++Count;
1633 break;
1634 case X86::COND_NE_OR_P:
1635 // Synthesize NE_OR_P with two branches.
1636 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1637 ++Count;
1638 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1639 ++Count;
1640 break;
1641 default: {
1642 unsigned Opc = GetCondBranchFromCond(CC);
1643 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1644 ++Count;
1645 }
1646 }
1647 if (FBB) {
1648 // Two-way Conditional branch. Insert the second branch.
1649 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1650 ++Count;
1651 }
1652 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001653}
1654
Owen Anderson9fa72d92008-08-26 18:03:31 +00001655bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001656 MachineBasicBlock::iterator MI,
1657 unsigned DestReg, unsigned SrcReg,
1658 const TargetRegisterClass *DestRC,
1659 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001660 if (DestRC == SrcRC) {
1661 unsigned Opc;
1662 if (DestRC == &X86::GR64RegClass) {
1663 Opc = X86::MOV64rr;
1664 } else if (DestRC == &X86::GR32RegClass) {
1665 Opc = X86::MOV32rr;
1666 } else if (DestRC == &X86::GR16RegClass) {
1667 Opc = X86::MOV16rr;
1668 } else if (DestRC == &X86::GR8RegClass) {
1669 Opc = X86::MOV8rr;
1670 } else if (DestRC == &X86::GR32_RegClass) {
1671 Opc = X86::MOV32_rr;
1672 } else if (DestRC == &X86::GR16_RegClass) {
1673 Opc = X86::MOV16_rr;
1674 } else if (DestRC == &X86::RFP32RegClass) {
1675 Opc = X86::MOV_Fp3232;
1676 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1677 Opc = X86::MOV_Fp6464;
1678 } else if (DestRC == &X86::RFP80RegClass) {
1679 Opc = X86::MOV_Fp8080;
1680 } else if (DestRC == &X86::FR32RegClass) {
1681 Opc = X86::FsMOVAPSrr;
1682 } else if (DestRC == &X86::FR64RegClass) {
1683 Opc = X86::FsMOVAPDrr;
1684 } else if (DestRC == &X86::VR128RegClass) {
1685 Opc = X86::MOVAPSrr;
1686 } else if (DestRC == &X86::VR64RegClass) {
1687 Opc = X86::MMX_MOVQ64rr;
1688 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001689 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001690 }
Chris Lattner59707122008-03-09 07:58:04 +00001691 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001692 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001693 }
Chris Lattner59707122008-03-09 07:58:04 +00001694
1695 // Moving EFLAGS to / from another register requires a push and a pop.
1696 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001697 if (SrcReg != X86::EFLAGS)
1698 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001699 if (DestRC == &X86::GR64RegClass) {
1700 BuildMI(MBB, MI, get(X86::PUSHFQ));
1701 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001702 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001703 } else if (DestRC == &X86::GR32RegClass) {
1704 BuildMI(MBB, MI, get(X86::PUSHFD));
1705 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001706 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001707 }
1708 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001709 if (DestReg != X86::EFLAGS)
1710 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001711 if (SrcRC == &X86::GR64RegClass) {
1712 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1713 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001714 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001715 } else if (SrcRC == &X86::GR32RegClass) {
1716 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1717 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001718 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001719 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001720 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001721
Chris Lattner0d128722008-03-09 09:15:31 +00001722 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001723 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001724 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001725 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1726 // Can only copy from ST(0)/ST(1) right now
1727 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001728 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001729 unsigned Opc;
1730 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001731 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001732 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001733 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001734 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001735 if (DestRC != &X86::RFP80RegClass)
1736 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001737 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001738 }
1739 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001740 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001741 }
Chris Lattner0d128722008-03-09 09:15:31 +00001742
1743 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1744 if (DestRC == &X86::RSTRegClass) {
1745 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001746 if (DestReg != X86::ST0)
1747 // Can only copy to TOS right now
1748 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001749 unsigned Opc;
1750 if (SrcRC == &X86::RFP32RegClass)
1751 Opc = X86::FpSET_ST0_32;
1752 else if (SrcRC == &X86::RFP64RegClass)
1753 Opc = X86::FpSET_ST0_64;
1754 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001755 if (SrcRC != &X86::RFP80RegClass)
1756 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001757 Opc = X86::FpSET_ST0_80;
1758 }
1759 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001760 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001761 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001762
Owen Anderson9fa72d92008-08-26 18:03:31 +00001763 // Not yet supported!
1764 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001765}
1766
Owen Anderson81875432008-01-01 21:11:32 +00001767static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001768 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001769 unsigned Opc = 0;
1770 if (RC == &X86::GR64RegClass) {
1771 Opc = X86::MOV64mr;
1772 } else if (RC == &X86::GR32RegClass) {
1773 Opc = X86::MOV32mr;
1774 } else if (RC == &X86::GR16RegClass) {
1775 Opc = X86::MOV16mr;
1776 } else if (RC == &X86::GR8RegClass) {
1777 Opc = X86::MOV8mr;
1778 } else if (RC == &X86::GR32_RegClass) {
1779 Opc = X86::MOV32_mr;
1780 } else if (RC == &X86::GR16_RegClass) {
1781 Opc = X86::MOV16_mr;
1782 } else if (RC == &X86::RFP80RegClass) {
1783 Opc = X86::ST_FpP80m; // pops
1784 } else if (RC == &X86::RFP64RegClass) {
1785 Opc = X86::ST_Fp64m;
1786 } else if (RC == &X86::RFP32RegClass) {
1787 Opc = X86::ST_Fp32m;
1788 } else if (RC == &X86::FR32RegClass) {
1789 Opc = X86::MOVSSmr;
1790 } else if (RC == &X86::FR64RegClass) {
1791 Opc = X86::MOVSDmr;
1792 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001793 // If stack is realigned we can use aligned stores.
1794 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001795 } else if (RC == &X86::VR64RegClass) {
1796 Opc = X86::MMX_MOVQ64mr;
1797 } else {
1798 assert(0 && "Unknown regclass");
1799 abort();
1800 }
1801
1802 return Opc;
1803}
1804
1805void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1806 MachineBasicBlock::iterator MI,
1807 unsigned SrcReg, bool isKill, int FrameIdx,
1808 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001809 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001810 bool isAligned = (RI.getStackAlignment() >= 16) ||
1811 RI.needsStackRealignment(MF);
1812 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001813 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1814 .addReg(SrcReg, false, false, isKill);
1815}
1816
1817void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1818 bool isKill,
1819 SmallVectorImpl<MachineOperand> &Addr,
1820 const TargetRegisterClass *RC,
1821 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001822 bool isAligned = (RI.getStackAlignment() >= 16) ||
1823 RI.needsStackRealignment(MF);
1824 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001825 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001826 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1827 MIB = X86InstrAddOperand(MIB, Addr[i]);
1828 MIB.addReg(SrcReg, false, false, isKill);
1829 NewMIs.push_back(MIB);
1830}
1831
1832static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001833 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001834 unsigned Opc = 0;
1835 if (RC == &X86::GR64RegClass) {
1836 Opc = X86::MOV64rm;
1837 } else if (RC == &X86::GR32RegClass) {
1838 Opc = X86::MOV32rm;
1839 } else if (RC == &X86::GR16RegClass) {
1840 Opc = X86::MOV16rm;
1841 } else if (RC == &X86::GR8RegClass) {
1842 Opc = X86::MOV8rm;
1843 } else if (RC == &X86::GR32_RegClass) {
1844 Opc = X86::MOV32_rm;
1845 } else if (RC == &X86::GR16_RegClass) {
1846 Opc = X86::MOV16_rm;
1847 } else if (RC == &X86::RFP80RegClass) {
1848 Opc = X86::LD_Fp80m;
1849 } else if (RC == &X86::RFP64RegClass) {
1850 Opc = X86::LD_Fp64m;
1851 } else if (RC == &X86::RFP32RegClass) {
1852 Opc = X86::LD_Fp32m;
1853 } else if (RC == &X86::FR32RegClass) {
1854 Opc = X86::MOVSSrm;
1855 } else if (RC == &X86::FR64RegClass) {
1856 Opc = X86::MOVSDrm;
1857 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001858 // If stack is realigned we can use aligned loads.
1859 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001860 } else if (RC == &X86::VR64RegClass) {
1861 Opc = X86::MMX_MOVQ64rm;
1862 } else {
1863 assert(0 && "Unknown regclass");
1864 abort();
1865 }
1866
1867 return Opc;
1868}
1869
1870void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001871 MachineBasicBlock::iterator MI,
1872 unsigned DestReg, int FrameIdx,
1873 const TargetRegisterClass *RC) const{
1874 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001875 bool isAligned = (RI.getStackAlignment() >= 16) ||
1876 RI.needsStackRealignment(MF);
1877 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001878 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1879}
1880
1881void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001882 SmallVectorImpl<MachineOperand> &Addr,
1883 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001884 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001885 bool isAligned = (RI.getStackAlignment() >= 16) ||
1886 RI.needsStackRealignment(MF);
1887 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001888 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001889 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1890 MIB = X86InstrAddOperand(MIB, Addr[i]);
1891 NewMIs.push_back(MIB);
1892}
1893
Owen Anderson6690c7f2008-01-04 23:57:37 +00001894bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001895 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001896 const std::vector<CalleeSavedInfo> &CSI) const {
1897 if (CSI.empty())
1898 return false;
1899
Evan Chengc275cf62008-09-26 19:14:21 +00001900 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001901 unsigned SlotSize = is64Bit ? 8 : 4;
1902
1903 MachineFunction &MF = *MBB.getParent();
1904 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1905 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1906
Owen Anderson6690c7f2008-01-04 23:57:37 +00001907 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1908 for (unsigned i = CSI.size(); i != 0; --i) {
1909 unsigned Reg = CSI[i-1].getReg();
1910 // Add the callee-saved register as live-in. It's killed at the spill.
1911 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001912 BuildMI(MBB, MI, get(Opc))
1913 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001914 }
1915 return true;
1916}
1917
1918bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001919 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001920 const std::vector<CalleeSavedInfo> &CSI) const {
1921 if (CSI.empty())
1922 return false;
1923
1924 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1925
1926 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1927 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1928 unsigned Reg = CSI[i].getReg();
1929 BuildMI(MBB, MI, get(Opc), Reg);
1930 }
1931 return true;
1932}
1933
Dan Gohman221a4372008-07-07 23:14:23 +00001934static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001935 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001936 MachineInstr *MI, const TargetInstrInfo &TII) {
1937 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001938 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001939 MachineInstrBuilder MIB(NewMI);
1940 unsigned NumAddrOps = MOs.size();
1941 for (unsigned i = 0; i != NumAddrOps; ++i)
1942 MIB = X86InstrAddOperand(MIB, MOs[i]);
1943 if (NumAddrOps < 4) // FrameIndex only
1944 MIB.addImm(1).addReg(0).addImm(0);
1945
1946 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001947 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001948 for (unsigned i = 0; i != NumOps; ++i) {
1949 MachineOperand &MO = MI->getOperand(i+2);
1950 MIB = X86InstrAddOperand(MIB, MO);
1951 }
1952 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1953 MachineOperand &MO = MI->getOperand(i);
1954 MIB = X86InstrAddOperand(MIB, MO);
1955 }
1956 return MIB;
1957}
1958
Dan Gohman221a4372008-07-07 23:14:23 +00001959static MachineInstr *FuseInst(MachineFunction &MF,
1960 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001961 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001962 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001963 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001964 MachineInstrBuilder MIB(NewMI);
1965
1966 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1967 MachineOperand &MO = MI->getOperand(i);
1968 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001969 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001970 unsigned NumAddrOps = MOs.size();
1971 for (unsigned i = 0; i != NumAddrOps; ++i)
1972 MIB = X86InstrAddOperand(MIB, MOs[i]);
1973 if (NumAddrOps < 4) // FrameIndex only
1974 MIB.addImm(1).addReg(0).addImm(0);
1975 } else {
1976 MIB = X86InstrAddOperand(MIB, MO);
1977 }
1978 }
1979 return MIB;
1980}
1981
1982static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001983 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001984 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001985 MachineFunction &MF = *MI->getParent()->getParent();
1986 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001987
1988 unsigned NumAddrOps = MOs.size();
1989 for (unsigned i = 0; i != NumAddrOps; ++i)
1990 MIB = X86InstrAddOperand(MIB, MOs[i]);
1991 if (NumAddrOps < 4) // FrameIndex only
1992 MIB.addImm(1).addReg(0).addImm(0);
1993 return MIB.addImm(0);
1994}
1995
1996MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00001997X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
1998 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001999 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002000 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2001 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002002 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002003 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002004 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002005
2006 MachineInstr *NewMI = NULL;
2007 // Folding a memory location into the two-address part of a two-address
2008 // instruction is different than folding it other places. It requires
2009 // replacing the *two* registers with the memory location.
2010 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002011 MI->getOperand(0).isReg() &&
2012 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002013 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2014 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2015 isTwoAddrFold = true;
2016 } else if (i == 0) { // If operand 0
2017 if (MI->getOpcode() == X86::MOV16r0)
2018 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2019 else if (MI->getOpcode() == X86::MOV32r0)
2020 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2021 else if (MI->getOpcode() == X86::MOV64r0)
2022 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2023 else if (MI->getOpcode() == X86::MOV8r0)
2024 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002025 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002026 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002027
2028 OpcodeTablePtr = &RegOp2MemOpTable0;
2029 } else if (i == 1) {
2030 OpcodeTablePtr = &RegOp2MemOpTable1;
2031 } else if (i == 2) {
2032 OpcodeTablePtr = &RegOp2MemOpTable2;
2033 }
2034
2035 // If table selected...
2036 if (OpcodeTablePtr) {
2037 // Find the Opcode to fuse
2038 DenseMap<unsigned*, unsigned>::iterator I =
2039 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2040 if (I != OpcodeTablePtr->end()) {
2041 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002042 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002043 else
Dan Gohman221a4372008-07-07 23:14:23 +00002044 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002045 return NewMI;
2046 }
2047 }
2048
2049 // No fusion
2050 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002051 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002052 return NULL;
2053}
2054
2055
Dan Gohmanedc83d62008-12-03 18:43:12 +00002056MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2057 MachineInstr *MI,
2058 const SmallVectorImpl<unsigned> &Ops,
2059 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002060 // Check switch flag
2061 if (NoFusing) return NULL;
2062
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002063 const MachineFrameInfo *MFI = MF.getFrameInfo();
2064 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2065 // FIXME: Move alignment requirement into tables?
2066 if (Alignment < 16) {
2067 switch (MI->getOpcode()) {
2068 default: break;
2069 // Not always safe to fold movsd into these instructions since their load
2070 // folding variants expects the address to be 16 byte aligned.
2071 case X86::FsANDNPDrr:
2072 case X86::FsANDNPSrr:
2073 case X86::FsANDPDrr:
2074 case X86::FsANDPSrr:
2075 case X86::FsORPDrr:
2076 case X86::FsORPSrr:
2077 case X86::FsXORPDrr:
2078 case X86::FsXORPSrr:
2079 return NULL;
2080 }
2081 }
2082
Owen Anderson9a184ef2008-01-07 01:35:02 +00002083 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2084 unsigned NewOpc = 0;
2085 switch (MI->getOpcode()) {
2086 default: return NULL;
2087 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2088 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2089 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2090 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2091 }
2092 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002093 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002094 MI->getOperand(1).ChangeToImmediate(0);
2095 } else if (Ops.size() != 1)
2096 return NULL;
2097
2098 SmallVector<MachineOperand,4> MOs;
2099 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002100 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002101}
2102
Dan Gohmanedc83d62008-12-03 18:43:12 +00002103MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2104 MachineInstr *MI,
2105 const SmallVectorImpl<unsigned> &Ops,
2106 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002107 // Check switch flag
2108 if (NoFusing) return NULL;
2109
Dan Gohmand0e8c752008-07-12 00:10:52 +00002110 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002111 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002112 if (LoadMI->hasOneMemOperand())
2113 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002114
2115 // FIXME: Move alignment requirement into tables?
2116 if (Alignment < 16) {
2117 switch (MI->getOpcode()) {
2118 default: break;
2119 // Not always safe to fold movsd into these instructions since their load
2120 // folding variants expects the address to be 16 byte aligned.
2121 case X86::FsANDNPDrr:
2122 case X86::FsANDNPSrr:
2123 case X86::FsANDPDrr:
2124 case X86::FsANDPSrr:
2125 case X86::FsORPDrr:
2126 case X86::FsORPSrr:
2127 case X86::FsXORPDrr:
2128 case X86::FsXORPSrr:
2129 return NULL;
2130 }
2131 }
2132
Owen Anderson9a184ef2008-01-07 01:35:02 +00002133 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2134 unsigned NewOpc = 0;
2135 switch (MI->getOpcode()) {
2136 default: return NULL;
2137 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2138 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2139 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2140 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2141 }
2142 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002143 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002144 MI->getOperand(1).ChangeToImmediate(0);
2145 } else if (Ops.size() != 1)
2146 return NULL;
2147
2148 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002149 if (LoadMI->getOpcode() == X86::V_SET0 ||
2150 LoadMI->getOpcode() == X86::V_SETALLONES) {
2151 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2152 // Create a constant-pool entry and operands to load from it.
2153
2154 // x86-32 PIC requires a PIC base register for constant pools.
2155 unsigned PICBase = 0;
2156 if (TM.getRelocationModel() == Reloc::PIC_ &&
2157 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002158 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2159 // This doesn't work for several reasons.
2160 // 1. GlobalBaseReg may have been spilled.
2161 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002162 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002163
2164 // Create a v4i32 constant-pool entry.
2165 MachineConstantPool &MCP = *MF.getConstantPool();
2166 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2167 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2168 ConstantVector::getNullValue(Ty) :
2169 ConstantVector::getAllOnesValue(Ty);
2170 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2171
2172 // Create operands to load from the constant pool entry.
2173 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2174 MOs.push_back(MachineOperand::CreateImm(1));
2175 MOs.push_back(MachineOperand::CreateReg(0, false));
2176 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2177 } else {
2178 // Folding a normal load. Just copy the load's address operands.
2179 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2180 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2181 MOs.push_back(LoadMI->getOperand(i));
2182 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002183 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002184}
2185
2186
Dan Gohman46b948e2008-10-16 01:49:15 +00002187bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2188 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002189 // Check switch flag
2190 if (NoFusing) return 0;
2191
2192 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2193 switch (MI->getOpcode()) {
2194 default: return false;
2195 case X86::TEST8rr:
2196 case X86::TEST16rr:
2197 case X86::TEST32rr:
2198 case X86::TEST64rr:
2199 return true;
2200 }
2201 }
2202
2203 if (Ops.size() != 1)
2204 return false;
2205
2206 unsigned OpNum = Ops[0];
2207 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002208 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002209 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002210 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002211
2212 // Folding a memory location into the two-address part of a two-address
2213 // instruction is different than folding it other places. It requires
2214 // replacing the *two* registers with the memory location.
2215 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2216 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2217 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2218 } else if (OpNum == 0) { // If operand 0
2219 switch (Opc) {
2220 case X86::MOV16r0:
2221 case X86::MOV32r0:
2222 case X86::MOV64r0:
2223 case X86::MOV8r0:
2224 return true;
2225 default: break;
2226 }
2227 OpcodeTablePtr = &RegOp2MemOpTable0;
2228 } else if (OpNum == 1) {
2229 OpcodeTablePtr = &RegOp2MemOpTable1;
2230 } else if (OpNum == 2) {
2231 OpcodeTablePtr = &RegOp2MemOpTable2;
2232 }
2233
2234 if (OpcodeTablePtr) {
2235 // Find the Opcode to fuse
2236 DenseMap<unsigned*, unsigned>::iterator I =
2237 OpcodeTablePtr->find((unsigned*)Opc);
2238 if (I != OpcodeTablePtr->end())
2239 return true;
2240 }
2241 return false;
2242}
2243
2244bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2245 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2246 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2247 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2248 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2249 if (I == MemOp2RegOpTable.end())
2250 return false;
2251 unsigned Opc = I->second.first;
2252 unsigned Index = I->second.second & 0xf;
2253 bool FoldedLoad = I->second.second & (1 << 4);
2254 bool FoldedStore = I->second.second & (1 << 5);
2255 if (UnfoldLoad && !FoldedLoad)
2256 return false;
2257 UnfoldLoad &= FoldedLoad;
2258 if (UnfoldStore && !FoldedStore)
2259 return false;
2260 UnfoldStore &= FoldedStore;
2261
Chris Lattner5b930372008-01-07 07:27:27 +00002262 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002263 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002264 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002265 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2266 SmallVector<MachineOperand,4> AddrOps;
2267 SmallVector<MachineOperand,2> BeforeOps;
2268 SmallVector<MachineOperand,2> AfterOps;
2269 SmallVector<MachineOperand,4> ImpOps;
2270 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2271 MachineOperand &Op = MI->getOperand(i);
2272 if (i >= Index && i < Index+4)
2273 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002274 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002275 ImpOps.push_back(Op);
2276 else if (i < Index)
2277 BeforeOps.push_back(Op);
2278 else if (i > Index)
2279 AfterOps.push_back(Op);
2280 }
2281
2282 // Emit the load instruction.
2283 if (UnfoldLoad) {
2284 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2285 if (UnfoldStore) {
2286 // Address operands cannot be marked isKill.
2287 for (unsigned i = 1; i != 5; ++i) {
2288 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002289 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002290 MO.setIsKill(false);
2291 }
2292 }
2293 }
2294
2295 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002296 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 MachineInstrBuilder MIB(DataMI);
2298
2299 if (FoldedStore)
2300 MIB.addReg(Reg, true);
2301 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2302 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2303 if (FoldedLoad)
2304 MIB.addReg(Reg);
2305 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2306 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2307 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2308 MachineOperand &MO = ImpOps[i];
2309 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2310 }
2311 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2312 unsigned NewOpc = 0;
2313 switch (DataMI->getOpcode()) {
2314 default: break;
2315 case X86::CMP64ri32:
2316 case X86::CMP32ri:
2317 case X86::CMP16ri:
2318 case X86::CMP8ri: {
2319 MachineOperand &MO0 = DataMI->getOperand(0);
2320 MachineOperand &MO1 = DataMI->getOperand(1);
2321 if (MO1.getImm() == 0) {
2322 switch (DataMI->getOpcode()) {
2323 default: break;
2324 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2325 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2326 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2327 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2328 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002329 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002330 MO1.ChangeToRegister(MO0.getReg(), false);
2331 }
2332 }
2333 }
2334 NewMIs.push_back(DataMI);
2335
2336 // Emit the store instruction.
2337 if (UnfoldStore) {
2338 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002339 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002340 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2341 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2342 }
2343
2344 return true;
2345}
2346
2347bool
2348X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2349 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002350 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002351 return false;
2352
2353 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002354 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002355 if (I == MemOp2RegOpTable.end())
2356 return false;
2357 unsigned Opc = I->second.first;
2358 unsigned Index = I->second.second & 0xf;
2359 bool FoldedLoad = I->second.second & (1 << 4);
2360 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002361 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002362 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002363 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002364 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002365 std::vector<SDValue> AddrOps;
2366 std::vector<SDValue> BeforeOps;
2367 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002368 unsigned NumOps = N->getNumOperands();
2369 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002370 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002371 if (i >= Index && i < Index+4)
2372 AddrOps.push_back(Op);
2373 else if (i < Index)
2374 BeforeOps.push_back(Op);
2375 else if (i > Index)
2376 AfterOps.push_back(Op);
2377 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002378 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002379 AddrOps.push_back(Chain);
2380
2381 // Emit the load instruction.
2382 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002383 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002384 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002385 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002386 bool isAligned = (RI.getStackAlignment() >= 16) ||
2387 RI.needsStackRealignment(MF);
2388 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002389 VT, MVT::Other,
2390 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002391 NewNodes.push_back(Load);
2392 }
2393
2394 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002395 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002396 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002397 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002398 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002399 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002400 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2401 VTs.push_back(*DstRC->vt_begin());
2402 }
2403 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002404 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002405 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002406 VTs.push_back(VT);
2407 }
2408 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002409 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002410 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2411 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2412 NewNodes.push_back(NewNode);
2413
2414 // Emit the store instruction.
2415 if (FoldedStore) {
2416 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002417 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002418 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002419 bool isAligned = (RI.getStackAlignment() >= 16) ||
2420 RI.needsStackRealignment(MF);
2421 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2422 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002423 NewNodes.push_back(Store);
2424 }
2425
2426 return true;
2427}
2428
2429unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2430 bool UnfoldLoad, bool UnfoldStore) const {
2431 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2432 MemOp2RegOpTable.find((unsigned*)Opc);
2433 if (I == MemOp2RegOpTable.end())
2434 return 0;
2435 bool FoldedLoad = I->second.second & (1 << 4);
2436 bool FoldedStore = I->second.second & (1 << 5);
2437 if (UnfoldLoad && !FoldedLoad)
2438 return 0;
2439 if (UnfoldStore && !FoldedStore)
2440 return 0;
2441 return I->second.first;
2442}
2443
Dan Gohman46b948e2008-10-16 01:49:15 +00002444bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002445 if (MBB.empty()) return false;
2446
2447 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002448 case X86::TCRETURNri:
2449 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002450 case X86::RET: // Return.
2451 case X86::RETI:
2452 case X86::TAILJMPd:
2453 case X86::TAILJMPr:
2454 case X86::TAILJMPm:
2455 case X86::JMP: // Uncond branch.
2456 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002457 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002458 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002459 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002460 return true;
2461 default: return false;
2462 }
2463}
2464
2465bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002466ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002468 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002469 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2470 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002471 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472 return false;
2473}
2474
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002475bool X86InstrInfo::
2476IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2477 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2478 // allow any loads of these registers before FpGet_ST0_80.
2479 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2480 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2481}
2482
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002483const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2484 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2485 if (Subtarget->is64Bit())
2486 return &X86::GR64RegClass;
2487 else
2488 return &X86::GR32RegClass;
2489}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002490
2491unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2492 switch (Desc->TSFlags & X86II::ImmMask) {
2493 case X86II::Imm8: return 1;
2494 case X86II::Imm16: return 2;
2495 case X86II::Imm32: return 4;
2496 case X86II::Imm64: return 8;
2497 default: assert(0 && "Immediate size not set!");
2498 return 0;
2499 }
2500}
2501
2502/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2503/// e.g. r8, xmm8, etc.
2504bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002505 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002506 switch (MO.getReg()) {
2507 default: break;
2508 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2509 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2510 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2511 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2512 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2513 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2514 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2515 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2516 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2517 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2518 return true;
2519 }
2520 return false;
2521}
2522
2523
2524/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2525/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2526/// size, and 3) use of X86-64 extended registers.
2527unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2528 unsigned REX = 0;
2529 const TargetInstrDesc &Desc = MI.getDesc();
2530
2531 // Pseudo instructions do not need REX prefix byte.
2532 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2533 return 0;
2534 if (Desc.TSFlags & X86II::REX_W)
2535 REX |= 1 << 3;
2536
2537 unsigned NumOps = Desc.getNumOperands();
2538 if (NumOps) {
2539 bool isTwoAddr = NumOps > 1 &&
2540 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2541
2542 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2543 unsigned i = isTwoAddr ? 1 : 0;
2544 for (unsigned e = NumOps; i != e; ++i) {
2545 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002546 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002547 unsigned Reg = MO.getReg();
2548 if (isX86_64NonExtLowByteReg(Reg))
2549 REX |= 0x40;
2550 }
2551 }
2552
2553 switch (Desc.TSFlags & X86II::FormMask) {
2554 case X86II::MRMInitReg:
2555 if (isX86_64ExtendedReg(MI.getOperand(0)))
2556 REX |= (1 << 0) | (1 << 2);
2557 break;
2558 case X86II::MRMSrcReg: {
2559 if (isX86_64ExtendedReg(MI.getOperand(0)))
2560 REX |= 1 << 2;
2561 i = isTwoAddr ? 2 : 1;
2562 for (unsigned e = NumOps; i != e; ++i) {
2563 const MachineOperand& MO = MI.getOperand(i);
2564 if (isX86_64ExtendedReg(MO))
2565 REX |= 1 << 0;
2566 }
2567 break;
2568 }
2569 case X86II::MRMSrcMem: {
2570 if (isX86_64ExtendedReg(MI.getOperand(0)))
2571 REX |= 1 << 2;
2572 unsigned Bit = 0;
2573 i = isTwoAddr ? 2 : 1;
2574 for (; i != NumOps; ++i) {
2575 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002576 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002577 if (isX86_64ExtendedReg(MO))
2578 REX |= 1 << Bit;
2579 Bit++;
2580 }
2581 }
2582 break;
2583 }
2584 case X86II::MRM0m: case X86II::MRM1m:
2585 case X86II::MRM2m: case X86II::MRM3m:
2586 case X86II::MRM4m: case X86II::MRM5m:
2587 case X86II::MRM6m: case X86II::MRM7m:
2588 case X86II::MRMDestMem: {
2589 unsigned e = isTwoAddr ? 5 : 4;
2590 i = isTwoAddr ? 1 : 0;
2591 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2592 REX |= 1 << 2;
2593 unsigned Bit = 0;
2594 for (; i != e; ++i) {
2595 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002596 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002597 if (isX86_64ExtendedReg(MO))
2598 REX |= 1 << Bit;
2599 Bit++;
2600 }
2601 }
2602 break;
2603 }
2604 default: {
2605 if (isX86_64ExtendedReg(MI.getOperand(0)))
2606 REX |= 1 << 0;
2607 i = isTwoAddr ? 2 : 1;
2608 for (unsigned e = NumOps; i != e; ++i) {
2609 const MachineOperand& MO = MI.getOperand(i);
2610 if (isX86_64ExtendedReg(MO))
2611 REX |= 1 << 2;
2612 }
2613 break;
2614 }
2615 }
2616 }
2617 return REX;
2618}
2619
2620/// sizePCRelativeBlockAddress - This method returns the size of a PC
2621/// relative block address instruction
2622///
2623static unsigned sizePCRelativeBlockAddress() {
2624 return 4;
2625}
2626
2627/// sizeGlobalAddress - Give the size of the emission of this global address
2628///
2629static unsigned sizeGlobalAddress(bool dword) {
2630 return dword ? 8 : 4;
2631}
2632
2633/// sizeConstPoolAddress - Give the size of the emission of this constant
2634/// pool address
2635///
2636static unsigned sizeConstPoolAddress(bool dword) {
2637 return dword ? 8 : 4;
2638}
2639
2640/// sizeExternalSymbolAddress - Give the size of the emission of this external
2641/// symbol
2642///
2643static unsigned sizeExternalSymbolAddress(bool dword) {
2644 return dword ? 8 : 4;
2645}
2646
2647/// sizeJumpTableAddress - Give the size of the emission of this jump
2648/// table address
2649///
2650static unsigned sizeJumpTableAddress(bool dword) {
2651 return dword ? 8 : 4;
2652}
2653
2654static unsigned sizeConstant(unsigned Size) {
2655 return Size;
2656}
2657
2658static unsigned sizeRegModRMByte(){
2659 return 1;
2660}
2661
2662static unsigned sizeSIBByte(){
2663 return 1;
2664}
2665
2666static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2667 unsigned FinalSize = 0;
2668 // If this is a simple integer displacement that doesn't require a relocation.
2669 if (!RelocOp) {
2670 FinalSize += sizeConstant(4);
2671 return FinalSize;
2672 }
2673
2674 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002675 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002676 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002677 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002678 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002679 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002680 FinalSize += sizeJumpTableAddress(false);
2681 } else {
2682 assert(0 && "Unknown value to relocate!");
2683 }
2684 return FinalSize;
2685}
2686
2687static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2688 bool IsPIC, bool Is64BitMode) {
2689 const MachineOperand &Op3 = MI.getOperand(Op+3);
2690 int DispVal = 0;
2691 const MachineOperand *DispForReloc = 0;
2692 unsigned FinalSize = 0;
2693
2694 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002695 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002696 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002697 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002698 if (Is64BitMode || IsPIC) {
2699 DispForReloc = &Op3;
2700 } else {
2701 DispVal = 1;
2702 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002703 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002704 if (Is64BitMode || IsPIC) {
2705 DispForReloc = &Op3;
2706 } else {
2707 DispVal = 1;
2708 }
2709 } else {
2710 DispVal = 1;
2711 }
2712
2713 const MachineOperand &Base = MI.getOperand(Op);
2714 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2715
2716 unsigned BaseReg = Base.getReg();
2717
2718 // Is a SIB byte needed?
2719 if (IndexReg.getReg() == 0 &&
2720 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2721 if (BaseReg == 0) { // Just a displacement?
2722 // Emit special case [disp32] encoding
2723 ++FinalSize;
2724 FinalSize += getDisplacementFieldSize(DispForReloc);
2725 } else {
2726 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2727 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2728 // Emit simple indirect register encoding... [EAX] f.e.
2729 ++FinalSize;
2730 // Be pessimistic and assume it's a disp32, not a disp8
2731 } else {
2732 // Emit the most general non-SIB encoding: [REG+disp32]
2733 ++FinalSize;
2734 FinalSize += getDisplacementFieldSize(DispForReloc);
2735 }
2736 }
2737
2738 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2739 assert(IndexReg.getReg() != X86::ESP &&
2740 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2741
2742 bool ForceDisp32 = false;
2743 if (BaseReg == 0 || DispForReloc) {
2744 // Emit the normal disp32 encoding.
2745 ++FinalSize;
2746 ForceDisp32 = true;
2747 } else {
2748 ++FinalSize;
2749 }
2750
2751 FinalSize += sizeSIBByte();
2752
2753 // Do we need to output a displacement?
2754 if (DispVal != 0 || ForceDisp32) {
2755 FinalSize += getDisplacementFieldSize(DispForReloc);
2756 }
2757 }
2758 return FinalSize;
2759}
2760
2761
2762static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2763 const TargetInstrDesc *Desc,
2764 bool IsPIC, bool Is64BitMode) {
2765
2766 unsigned Opcode = Desc->Opcode;
2767 unsigned FinalSize = 0;
2768
2769 // Emit the lock opcode prefix as needed.
2770 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2771
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002772 // Emit segment overrid opcode prefix as needed.
2773 switch (Desc->TSFlags & X86II::SegOvrMask) {
2774 case X86II::FS:
2775 case X86II::GS:
2776 ++FinalSize;
2777 break;
2778 default: assert(0 && "Invalid segment!");
2779 case 0: break; // No segment override!
2780 }
2781
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002782 // Emit the repeat opcode prefix as needed.
2783 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2784
2785 // Emit the operand size opcode prefix as needed.
2786 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2787
2788 // Emit the address size opcode prefix as needed.
2789 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2790
2791 bool Need0FPrefix = false;
2792 switch (Desc->TSFlags & X86II::Op0Mask) {
2793 case X86II::TB: // Two-byte opcode prefix
2794 case X86II::T8: // 0F 38
2795 case X86II::TA: // 0F 3A
2796 Need0FPrefix = true;
2797 break;
2798 case X86II::REP: break; // already handled.
2799 case X86II::XS: // F3 0F
2800 ++FinalSize;
2801 Need0FPrefix = true;
2802 break;
2803 case X86II::XD: // F2 0F
2804 ++FinalSize;
2805 Need0FPrefix = true;
2806 break;
2807 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2808 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2809 ++FinalSize;
2810 break; // Two-byte opcode prefix
2811 default: assert(0 && "Invalid prefix!");
2812 case 0: break; // No prefix!
2813 }
2814
2815 if (Is64BitMode) {
2816 // REX prefix
2817 unsigned REX = X86InstrInfo::determineREX(MI);
2818 if (REX)
2819 ++FinalSize;
2820 }
2821
2822 // 0x0F escape code must be emitted just before the opcode.
2823 if (Need0FPrefix)
2824 ++FinalSize;
2825
2826 switch (Desc->TSFlags & X86II::Op0Mask) {
2827 case X86II::T8: // 0F 38
2828 ++FinalSize;
2829 break;
2830 case X86II::TA: // 0F 3A
2831 ++FinalSize;
2832 break;
2833 }
2834
2835 // If this is a two-address instruction, skip one of the register operands.
2836 unsigned NumOps = Desc->getNumOperands();
2837 unsigned CurOp = 0;
2838 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2839 CurOp++;
2840
2841 switch (Desc->TSFlags & X86II::FormMask) {
2842 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2843 case X86II::Pseudo:
2844 // Remember the current PC offset, this is the PIC relocation
2845 // base address.
2846 switch (Opcode) {
2847 default:
2848 break;
2849 case TargetInstrInfo::INLINEASM: {
2850 const MachineFunction *MF = MI.getParent()->getParent();
2851 const char *AsmStr = MI.getOperand(0).getSymbolName();
2852 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2853 FinalSize += AI->getInlineAsmLength(AsmStr);
2854 break;
2855 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002856 case TargetInstrInfo::DBG_LABEL:
2857 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002858 break;
2859 case TargetInstrInfo::IMPLICIT_DEF:
2860 case TargetInstrInfo::DECLARE:
2861 case X86::DWARF_LOC:
2862 case X86::FP_REG_KILL:
2863 break;
2864 case X86::MOVPC32r: {
2865 // This emits the "call" portion of this pseudo instruction.
2866 ++FinalSize;
2867 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2868 break;
2869 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002870 case X86::TLS_tp:
2871 case X86::TLS_gs_ri:
2872 FinalSize += 2;
2873 FinalSize += sizeGlobalAddress(false);
2874 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002875 }
2876 CurOp = NumOps;
2877 break;
2878 case X86II::RawFrm:
2879 ++FinalSize;
2880
2881 if (CurOp != NumOps) {
2882 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002883 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002884 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002885 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002886 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002887 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002888 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002889 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002890 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2891 } else {
2892 assert(0 && "Unknown RawFrm operand!");
2893 }
2894 }
2895 break;
2896
2897 case X86II::AddRegFrm:
2898 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002899 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002900
2901 if (CurOp != NumOps) {
2902 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2903 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002904 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002905 FinalSize += sizeConstant(Size);
2906 else {
2907 bool dword = false;
2908 if (Opcode == X86::MOV64ri)
2909 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002910 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002911 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002912 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002913 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002914 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002915 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002916 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002917 FinalSize += sizeJumpTableAddress(dword);
2918 }
2919 }
2920 break;
2921
2922 case X86II::MRMDestReg: {
2923 ++FinalSize;
2924 FinalSize += sizeRegModRMByte();
2925 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002926 if (CurOp != NumOps) {
2927 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002928 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002929 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002930 break;
2931 }
2932 case X86II::MRMDestMem: {
2933 ++FinalSize;
2934 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2935 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002936 if (CurOp != NumOps) {
2937 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002938 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002939 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002940 break;
2941 }
2942
2943 case X86II::MRMSrcReg:
2944 ++FinalSize;
2945 FinalSize += sizeRegModRMByte();
2946 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002947 if (CurOp != NumOps) {
2948 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002949 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002950 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002951 break;
2952
2953 case X86II::MRMSrcMem: {
2954
2955 ++FinalSize;
2956 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2957 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002958 if (CurOp != NumOps) {
2959 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002960 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002961 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002962 break;
2963 }
2964
2965 case X86II::MRM0r: case X86II::MRM1r:
2966 case X86II::MRM2r: case X86II::MRM3r:
2967 case X86II::MRM4r: case X86II::MRM5r:
2968 case X86II::MRM6r: case X86II::MRM7r:
2969 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002970 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002971 FinalSize += sizeRegModRMByte();
2972
2973 if (CurOp != NumOps) {
2974 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2975 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002976 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002977 FinalSize += sizeConstant(Size);
2978 else {
2979 bool dword = false;
2980 if (Opcode == X86::MOV64ri32)
2981 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002982 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002983 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002984 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002985 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002986 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002987 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002988 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 FinalSize += sizeJumpTableAddress(dword);
2990 }
2991 }
2992 break;
2993
2994 case X86II::MRM0m: case X86II::MRM1m:
2995 case X86II::MRM2m: case X86II::MRM3m:
2996 case X86II::MRM4m: case X86II::MRM5m:
2997 case X86II::MRM6m: case X86II::MRM7m: {
2998
2999 ++FinalSize;
3000 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3001 CurOp += 4;
3002
3003 if (CurOp != NumOps) {
3004 const MachineOperand &MO = MI.getOperand(CurOp++);
3005 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003006 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003007 FinalSize += sizeConstant(Size);
3008 else {
3009 bool dword = false;
3010 if (Opcode == X86::MOV64mi32)
3011 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003012 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003013 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003014 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003015 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003016 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003017 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003018 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003019 FinalSize += sizeJumpTableAddress(dword);
3020 }
3021 }
3022 break;
3023 }
3024
3025 case X86II::MRMInitReg:
3026 ++FinalSize;
3027 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3028 FinalSize += sizeRegModRMByte();
3029 ++CurOp;
3030 break;
3031 }
3032
3033 if (!Desc->isVariadic() && CurOp != NumOps) {
3034 cerr << "Cannot determine size: ";
3035 MI.dump();
3036 cerr << '\n';
3037 abort();
3038 }
3039
3040
3041 return FinalSize;
3042}
3043
3044
3045unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3046 const TargetInstrDesc &Desc = MI->getDesc();
3047 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003048 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003049 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3050 if (Desc.getOpcode() == X86::MOVPC32r) {
3051 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3052 }
3053 return Size;
3054}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003055
Dan Gohman882ab732008-09-30 00:58:23 +00003056/// getGlobalBaseReg - Return a virtual register initialized with the
3057/// the global base register value. Output instructions required to
3058/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003059///
Dan Gohman882ab732008-09-30 00:58:23 +00003060unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3061 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3062 "X86-64 PIC uses RIP relative addressing");
3063
3064 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3065 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3066 if (GlobalBaseReg != 0)
3067 return GlobalBaseReg;
3068
Dan Gohmanb60482f2008-09-23 18:22:58 +00003069 // Insert the set of GlobalBaseReg into the first MBB of the function
3070 MachineBasicBlock &FirstMBB = MF->front();
3071 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3072 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3073 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3074
3075 const TargetInstrInfo *TII = TM.getInstrInfo();
3076 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3077 // only used in JIT code emission as displacement to pc.
3078 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3079
3080 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3081 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3082 if (TM.getRelocationModel() == Reloc::PIC_ &&
3083 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003084 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003085 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3086 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3087 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003088 } else {
3089 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003090 }
3091
Dan Gohman882ab732008-09-30 00:58:23 +00003092 X86FI->setGlobalBaseReg(GlobalBaseReg);
3093 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003094}