blob: e1fc3455e7a374f50f7c812c54623bc58adece1a [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <ostream>
84#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085using namespace llvm;
86
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087STATISTIC(NumArrayLenItCounts,
88 "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90 "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92 "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94 "Number of loops with trip counts computed by force");
95
Dan Gohman089efff2008-05-13 00:00:25 +000096static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000097MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98 cl::desc("Maximum number of iterations SCEV will "
99 "symbolically execute a constant derived loop"),
100 cl::init(100));
101
Dan Gohman089efff2008-05-13 00:00:25 +0000102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107// SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000115 print(errs());
116 errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120 raw_os_ostream OS(o);
121 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122}
123
Dan Gohman7b560c42008-06-18 16:23:07 +0000124bool SCEV::isZero() const {
125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126 return SC->getValue()->isZero();
127 return false;
128}
129
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000130bool SCEV::isOne() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isOne();
133 return false;
134}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135
136SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000137SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141 return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146 return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000156 const SCEVHandle &Conc,
157 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 return this;
159}
160
Dan Gohman13058cc2009-04-21 00:47:46 +0000161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166 return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value. Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177 SCEVConstants->erase(V);
178}
179
Dan Gohman89f85052007-10-22 18:31:58 +0000180SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 SCEVConstant *&R = (*SCEVConstants)[V];
182 if (R == 0) R = new SCEVConstant(V);
183 return R;
184}
185
Dan Gohman89f85052007-10-22 18:31:58 +0000186SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188}
189
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190const Type *SCEVConstant::getType() const { return V->getType(); }
191
Dan Gohman13058cc2009-04-21 00:47:46 +0000192void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 WriteAsOperand(OS, V, false);
194}
195
Dan Gohman2a381532009-04-21 01:25:57 +0000196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197 const SCEVHandle &op, const Type *ty)
198 : SCEV(SCEVTy), Op(op), Ty(ty) {}
199
200SCEVCastExpr::~SCEVCastExpr() {}
201
202bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203 return Op->dominates(BB, DT);
204}
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207// particular input. Don't use a SCEVHandle here, or else the object will
208// never be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000209static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 SCEVTruncateExpr*> > SCEVTruncates;
211
212SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000213 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217}
218
219SCEVTruncateExpr::~SCEVTruncateExpr() {
220 SCEVTruncates->erase(std::make_pair(Op, Ty));
221}
222
Dan Gohman13058cc2009-04-21 00:47:46 +0000223void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000224 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225}
226
227// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228// particular input. Don't use a SCEVHandle here, or else the object will never
229// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000230static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 SCEVZeroExtendExpr*> > SCEVZeroExtends;
232
233SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000234 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000235 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
Dan Gohman13058cc2009-04-21 00:47:46 +0000244void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000245 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246}
247
248// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249// particular input. Don't use a SCEVHandle here, or else the object will never
250// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000251static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 SCEVSignExtendExpr*> > SCEVSignExtends;
253
254SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000255 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000256 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259}
260
261SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262 SCEVSignExtends->erase(std::make_pair(Op, Ty));
263}
264
Dan Gohman13058cc2009-04-21 00:47:46 +0000265void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000266 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267}
268
269// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270// particular input. Don't use a SCEVHandle here, or else the object will never
271// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000272static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 SCEVCommutativeExpr*> > SCEVCommExprs;
274
275SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000276 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278}
279
Dan Gohman13058cc2009-04-21 00:47:46 +0000280void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282 const char *OpStr = getOperationStr();
283 OS << "(" << *Operands[0];
284 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285 OS << OpStr << *Operands[i];
286 OS << ")";
287}
288
289SCEVHandle SCEVCommutativeExpr::
290replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000291 const SCEVHandle &Conc,
292 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000294 SCEVHandle H =
295 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 if (H != getOperand(i)) {
297 std::vector<SCEVHandle> NewOps;
298 NewOps.reserve(getNumOperands());
299 for (unsigned j = 0; j != i; ++j)
300 NewOps.push_back(getOperand(j));
301 NewOps.push_back(H);
302 for (++i; i != e; ++i)
303 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000304 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305
306 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000307 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000309 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000310 else if (isa<SCEVSMaxExpr>(this))
311 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000312 else if (isa<SCEVUMaxExpr>(this))
313 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 else
315 assert(0 && "Unknown commutative expr!");
316 }
317 }
318 return this;
319}
320
Dan Gohman72a8a022009-05-07 14:00:19 +0000321bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323 if (!getOperand(i)->dominates(BB, DT))
324 return false;
325 }
326 return true;
327}
328
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000330// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331// input. Don't use a SCEVHandle here, or else the object will never be
332// deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000333static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000334 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000336SCEVUDivExpr::~SCEVUDivExpr() {
337 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338}
339
Evan Cheng98c073b2009-02-17 00:13:06 +0000340bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342}
343
Dan Gohman13058cc2009-04-21 00:47:46 +0000344void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000345 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346}
347
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000348const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 return LHS->getType();
350}
351
352// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353// particular input. Don't use a SCEVHandle here, or else the object will never
354// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000355static ManagedStatic<std::map<std::pair<const Loop *,
356 std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 SCEVAddRecExpr*> > SCEVAddRecExprs;
358
359SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000360 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362}
363
364SCEVHandle SCEVAddRecExpr::
365replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000366 const SCEVHandle &Conc,
367 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000369 SCEVHandle H =
370 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 if (H != getOperand(i)) {
372 std::vector<SCEVHandle> NewOps;
373 NewOps.reserve(getNumOperands());
374 for (unsigned j = 0; j != i; ++j)
375 NewOps.push_back(getOperand(j));
376 NewOps.push_back(H);
377 for (++i; i != e; ++i)
378 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000379 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380
Dan Gohman89f85052007-10-22 18:31:58 +0000381 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 }
383 }
384 return this;
385}
386
387
388bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390 // contain L and if the start is invariant.
391 return !QueryLoop->contains(L->getHeader()) &&
392 getOperand(0)->isLoopInvariant(QueryLoop);
393}
394
395
Dan Gohman13058cc2009-04-21 00:47:46 +0000396void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 OS << "{" << *Operands[0];
398 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
399 OS << ",+," << *Operands[i];
400 OS << "}<" << L->getHeader()->getName() + ">";
401}
402
403// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
404// value. Don't use a SCEVHandle here, or else the object will never be
405// deleted!
406static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
407
408SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
409
410bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
411 // All non-instruction values are loop invariant. All instructions are loop
412 // invariant if they are not contained in the specified loop.
413 if (Instruction *I = dyn_cast<Instruction>(V))
414 return !L->contains(I->getParent());
415 return true;
416}
417
Evan Cheng98c073b2009-02-17 00:13:06 +0000418bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419 if (Instruction *I = dyn_cast<Instruction>(getValue()))
420 return DT->dominates(I->getParent(), BB);
421 return true;
422}
423
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424const Type *SCEVUnknown::getType() const {
425 return V->getType();
426}
427
Dan Gohman13058cc2009-04-21 00:47:46 +0000428void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 WriteAsOperand(OS, V, false);
430}
431
432//===----------------------------------------------------------------------===//
433// SCEV Utilities
434//===----------------------------------------------------------------------===//
435
436namespace {
437 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
438 /// than the complexity of the RHS. This comparator is used to canonicalize
439 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000440 class VISIBILITY_HIDDEN SCEVComplexityCompare {
441 LoopInfo *LI;
442 public:
443 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
444
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000445 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000446 // Primarily, sort the SCEVs by their getSCEVType().
447 if (LHS->getSCEVType() != RHS->getSCEVType())
448 return LHS->getSCEVType() < RHS->getSCEVType();
449
450 // Aside from the getSCEVType() ordering, the particular ordering
451 // isn't very important except that it's beneficial to be consistent,
452 // so that (a + b) and (b + a) don't end up as different expressions.
453
454 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
455 // not as complete as it could be.
456 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
457 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
458
459 // Compare getValueID values.
460 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
461 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
462
463 // Sort arguments by their position.
464 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
465 const Argument *RA = cast<Argument>(RU->getValue());
466 return LA->getArgNo() < RA->getArgNo();
467 }
468
469 // For instructions, compare their loop depth, and their opcode.
470 // This is pretty loose.
471 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
472 Instruction *RV = cast<Instruction>(RU->getValue());
473
474 // Compare loop depths.
475 if (LI->getLoopDepth(LV->getParent()) !=
476 LI->getLoopDepth(RV->getParent()))
477 return LI->getLoopDepth(LV->getParent()) <
478 LI->getLoopDepth(RV->getParent());
479
480 // Compare opcodes.
481 if (LV->getOpcode() != RV->getOpcode())
482 return LV->getOpcode() < RV->getOpcode();
483
484 // Compare the number of operands.
485 if (LV->getNumOperands() != RV->getNumOperands())
486 return LV->getNumOperands() < RV->getNumOperands();
487 }
488
489 return false;
490 }
491
492 // Constant sorting doesn't matter since they'll be folded.
493 if (isa<SCEVConstant>(LHS))
494 return false;
495
496 // Lexicographically compare n-ary expressions.
497 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
498 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
499 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
500 if (i >= RC->getNumOperands())
501 return false;
502 if (operator()(LC->getOperand(i), RC->getOperand(i)))
503 return true;
504 if (operator()(RC->getOperand(i), LC->getOperand(i)))
505 return false;
506 }
507 return LC->getNumOperands() < RC->getNumOperands();
508 }
509
Dan Gohman6e10db12009-05-07 19:23:21 +0000510 // Lexicographically compare udiv expressions.
511 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
512 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
513 if (operator()(LC->getLHS(), RC->getLHS()))
514 return true;
515 if (operator()(RC->getLHS(), LC->getLHS()))
516 return false;
517 if (operator()(LC->getRHS(), RC->getRHS()))
518 return true;
519 if (operator()(RC->getRHS(), LC->getRHS()))
520 return false;
521 return false;
522 }
523
Dan Gohman5d486452009-05-07 14:39:04 +0000524 // Compare cast expressions by operand.
525 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
526 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
527 return operator()(LC->getOperand(), RC->getOperand());
528 }
529
530 assert(0 && "Unknown SCEV kind!");
531 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000532 }
533 };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine. In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
Dan Gohman5d486452009-05-07 14:39:04 +0000546static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
547 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000548 if (Ops.size() < 2) return; // Noop
549 if (Ops.size() == 2) {
550 // This is the common case, which also happens to be trivially simple.
551 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000552 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000553 std::swap(Ops[0], Ops[1]);
554 return;
555 }
556
557 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000558 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000559
560 // Now that we are sorted by complexity, group elements of the same
561 // complexity. Note that this is, at worst, N^2, but the vector is likely to
562 // be extremely short in practice. Note that we take this approach because we
563 // do not want to depend on the addresses of the objects we are grouping.
564 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000565 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000566 unsigned Complexity = S->getSCEVType();
567
568 // If there are any objects of the same complexity and same value as this
569 // one, group them.
570 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571 if (Ops[j] == S) { // Found a duplicate.
572 // Move it to immediately after i'th element.
573 std::swap(Ops[i+1], Ops[j]);
574 ++i; // no need to rescan it.
575 if (i == e-2) return; // Done!
576 }
577 }
578 }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584// Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
Eli Friedman7489ec92008-08-04 23:49:06 +0000587/// BinomialCoefficient - Compute BC(It, K). The result has width W.
588// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000589static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000590 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000591 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000592 // Handle the simplest case efficiently.
593 if (K == 1)
594 return SE.getTruncateOrZeroExtend(It, ResultTy);
595
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000596 // We are using the following formula for BC(It, K):
597 //
598 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000600 // Suppose, W is the bitwidth of the return value. We must be prepared for
601 // overflow. Hence, we must assure that the result of our computation is
602 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
603 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000604 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000605 // However, this code doesn't use exactly that formula; the formula it uses
606 // is something like the following, where T is the number of factors of 2 in
607 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000609 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000610 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000611 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000612 // This formula is trivially equivalent to the previous formula. However,
613 // this formula can be implemented much more efficiently. The trick is that
614 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615 // arithmetic. To do exact division in modular arithmetic, all we have
616 // to do is multiply by the inverse. Therefore, this step can be done at
617 // width W.
618 //
619 // The next issue is how to safely do the division by 2^T. The way this
620 // is done is by doing the multiplication step at a width of at least W + T
621 // bits. This way, the bottom W+T bits of the product are accurate. Then,
622 // when we perform the division by 2^T (which is equivalent to a right shift
623 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
624 // truncated out after the division by 2^T.
625 //
626 // In comparison to just directly using the first formula, this technique
627 // is much more efficient; using the first formula requires W * K bits,
628 // but this formula less than W + K bits. Also, the first formula requires
629 // a division step, whereas this formula only requires multiplies and shifts.
630 //
631 // It doesn't matter whether the subtraction step is done in the calculation
632 // width or the input iteration count's width; if the subtraction overflows,
633 // the result must be zero anyway. We prefer here to do it in the width of
634 // the induction variable because it helps a lot for certain cases; CodeGen
635 // isn't smart enough to ignore the overflow, which leads to much less
636 // efficient code if the width of the subtraction is wider than the native
637 // register width.
638 //
639 // (It's possible to not widen at all by pulling out factors of 2 before
640 // the multiplication; for example, K=2 can be calculated as
641 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642 // extra arithmetic, so it's not an obvious win, and it gets
643 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000644
Eli Friedman7489ec92008-08-04 23:49:06 +0000645 // Protection from insane SCEVs; this bound is conservative,
646 // but it probably doesn't matter.
647 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000648 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000649
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000650 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000651
Eli Friedman7489ec92008-08-04 23:49:06 +0000652 // Calculate K! / 2^T and T; we divide out the factors of two before
653 // multiplying for calculating K! / 2^T to avoid overflow.
654 // Other overflow doesn't matter because we only care about the bottom
655 // W bits of the result.
656 APInt OddFactorial(W, 1);
657 unsigned T = 1;
658 for (unsigned i = 3; i <= K; ++i) {
659 APInt Mult(W, i);
660 unsigned TwoFactors = Mult.countTrailingZeros();
661 T += TwoFactors;
662 Mult = Mult.lshr(TwoFactors);
663 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000665
Eli Friedman7489ec92008-08-04 23:49:06 +0000666 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000667 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000668
669 // Calcuate 2^T, at width T+W.
670 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672 // Calculate the multiplicative inverse of K! / 2^T;
673 // this multiplication factor will perform the exact division by
674 // K! / 2^T.
675 APInt Mod = APInt::getSignedMinValue(W+1);
676 APInt MultiplyFactor = OddFactorial.zext(W+1);
677 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678 MultiplyFactor = MultiplyFactor.trunc(W);
679
680 // Calculate the product, at width T+W
681 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
682 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
683 for (unsigned i = 1; i != K; ++i) {
684 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
685 Dividend = SE.getMulExpr(Dividend,
686 SE.getTruncateOrZeroExtend(S, CalculationTy));
687 }
688
689 // Divide by 2^T
690 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
691
692 // Truncate the result, and divide by K! / 2^T.
693
694 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
695 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696}
697
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698/// evaluateAtIteration - Return the value of this chain of recurrences at
699/// the specified iteration number. We can evaluate this recurrence by
700/// multiplying each element in the chain by the binomial coefficient
701/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
702///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000703/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000705/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706///
Dan Gohman89f85052007-10-22 18:31:58 +0000707SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
708 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000711 // The computation is correct in the face of overflow provided that the
712 // multiplication is performed _after_ the evaluation of the binomial
713 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000714 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000715 if (isa<SCEVCouldNotCompute>(Coeff))
716 return Coeff;
717
718 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 }
720 return Result;
721}
722
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723//===----------------------------------------------------------------------===//
724// SCEV Expression folder implementations
725//===----------------------------------------------------------------------===//
726
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000727SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
728 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000729 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000730 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000731 assert(isSCEVable(Ty) &&
732 "This is not a conversion to a SCEVable type!");
733 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000734
Dan Gohmanc76b5452009-05-04 22:02:23 +0000735 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000736 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 ConstantExpr::getTrunc(SC->getValue(), Ty));
738
Dan Gohman1a5c4992009-04-22 16:20:48 +0000739 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000740 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000741 return getTruncateExpr(ST->getOperand(), Ty);
742
Nick Lewycky37d04642009-04-23 05:15:08 +0000743 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000744 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000745 return getTruncateOrSignExtend(SS->getOperand(), Ty);
746
747 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000748 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000749 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
750
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 // If the input value is a chrec scev made out of constants, truncate
752 // all of the constants.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000753 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 std::vector<SCEVHandle> Operands;
755 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000756 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
757 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 }
759
760 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762 return Result;
763}
764
Dan Gohman36d40922009-04-16 19:25:55 +0000765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000767 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000768 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000769 assert(isSCEVable(Ty) &&
770 "This is not a conversion to a SCEVable type!");
771 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000772
Dan Gohmanc76b5452009-05-04 22:02:23 +0000773 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000774 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000775 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777 return getUnknown(C);
778 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779
Dan Gohman1a5c4992009-04-22 16:20:48 +0000780 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000781 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000782 return getZeroExtendExpr(SZ->getOperand(), Ty);
783
Dan Gohmana9dba962009-04-27 20:16:15 +0000784 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000786 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000788 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000789 if (AR->isAffine()) {
790 // Check whether the backedge-taken count is SCEVCouldNotCompute.
791 // Note that this serves two purposes: It filters out loops that are
792 // simply not analyzable, and it covers the case where this code is
793 // being called from within backedge-taken count analysis, such that
794 // attempting to ask for the backedge-taken count would likely result
795 // in infinite recursion. In the later case, the analysis code will
796 // cope with a conservative value, and it will take care to purge
797 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000798 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000800 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000801 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000802 SCEVHandle Start = AR->getStart();
803 SCEVHandle Step = AR->getStepRecurrence(*this);
804
805 // Check whether the backedge-taken count can be losslessly casted to
806 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000807 SCEVHandle CastedMaxBECount =
808 getTruncateOrZeroExtend(MaxBECount, Start->getType());
809 if (MaxBECount ==
810 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000811 const Type *WideTy =
812 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000813 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000814 SCEVHandle ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000815 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000816 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000817 SCEVHandle Add = getAddExpr(Start, ZMul);
818 if (getZeroExtendExpr(Add, WideTy) ==
819 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000820 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000821 getZeroExtendExpr(Step, WideTy))))
822 // Return the expression with the addrec on the outside.
823 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824 getZeroExtendExpr(Step, Ty),
825 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000826
827 // Similar to above, only this time treat the step value as signed.
828 // This covers loops that count down.
829 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000830 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000831 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000832 Add = getAddExpr(Start, SMul);
833 if (getZeroExtendExpr(Add, WideTy) ==
834 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000835 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000836 getSignExtendExpr(Step, WideTy))))
837 // Return the expression with the addrec on the outside.
838 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839 getSignExtendExpr(Step, Ty),
840 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000841 }
842 }
843 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844
845 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847 return Result;
848}
849
Dan Gohmana9dba962009-04-27 20:16:15 +0000850SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000852 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000853 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000854 assert(isSCEVable(Ty) &&
855 "This is not a conversion to a SCEVable type!");
856 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000857
Dan Gohmanc76b5452009-05-04 22:02:23 +0000858 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000859 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000860 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862 return getUnknown(C);
863 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000864
Dan Gohman1a5c4992009-04-22 16:20:48 +0000865 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000866 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000867 return getSignExtendExpr(SS->getOperand(), Ty);
868
Dan Gohmana9dba962009-04-27 20:16:15 +0000869 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000870 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000871 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000874 if (AR->isAffine()) {
875 // Check whether the backedge-taken count is SCEVCouldNotCompute.
876 // Note that this serves two purposes: It filters out loops that are
877 // simply not analyzable, and it covers the case where this code is
878 // being called from within backedge-taken count analysis, such that
879 // attempting to ask for the backedge-taken count would likely result
880 // in infinite recursion. In the later case, the analysis code will
881 // cope with a conservative value, and it will take care to purge
882 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000883 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000885 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000886 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000887 SCEVHandle Start = AR->getStart();
888 SCEVHandle Step = AR->getStepRecurrence(*this);
889
890 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000891 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000892 SCEVHandle CastedMaxBECount =
893 getTruncateOrZeroExtend(MaxBECount, Start->getType());
894 if (MaxBECount ==
895 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000896 const Type *WideTy =
897 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000898 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000899 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000900 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000901 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000902 SCEVHandle Add = getAddExpr(Start, SMul);
903 if (getSignExtendExpr(Add, WideTy) ==
904 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000905 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohman3ded5b22009-04-29 22:28:28 +0000906 getSignExtendExpr(Step, WideTy))))
907 // Return the expression with the addrec on the outside.
908 return getAddRecExpr(getSignExtendExpr(Start, Ty),
909 getSignExtendExpr(Step, Ty),
910 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000911 }
912 }
913 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917 return Result;
918}
919
920// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000921SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 assert(!Ops.empty() && "Cannot get empty add!");
923 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +0000924#ifndef NDEBUG
925 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
926 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
927 getEffectiveSCEVType(Ops[0]->getType()) &&
928 "SCEVAddExpr operand types don't match!");
929#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930
931 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +0000932 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933
934 // If there are any constants, fold them together.
935 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +0000936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 ++Idx;
938 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +0000939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000941 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
942 RHSC->getValue()->getValue());
943 Ops[0] = getConstant(Fold);
944 Ops.erase(Ops.begin()+1); // Erase the folded element
945 if (Ops.size() == 1) return Ops[0];
946 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947 }
948
949 // If we are left with a constant zero being added, strip it off.
950 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
951 Ops.erase(Ops.begin());
952 --Idx;
953 }
954 }
955
956 if (Ops.size() == 1) return Ops[0];
957
958 // Okay, check to see if the same value occurs in the operand list twice. If
959 // so, merge them together into an multiply expression. Since we sorted the
960 // list, these values are required to be adjacent.
961 const Type *Ty = Ops[0]->getType();
962 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
963 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
964 // Found a match, merge the two values into a multiply, and add any
965 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000966 SCEVHandle Two = getIntegerSCEV(2, Ty);
967 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968 if (Ops.size() == 2)
969 return Mul;
970 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
971 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000972 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973 }
974
Dan Gohman45b3b542009-05-08 21:03:19 +0000975 // Check for truncates. If all the operands are truncated from the same
976 // type, see if factoring out the truncate would permit the result to be
977 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
978 // if the contents of the resulting outer trunc fold to something simple.
979 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
980 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
981 const Type *DstType = Trunc->getType();
982 const Type *SrcType = Trunc->getOperand()->getType();
983 std::vector<SCEVHandle> LargeOps;
984 bool Ok = true;
985 // Check all the operands to see if they can be represented in the
986 // source type of the truncate.
987 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
988 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
989 if (T->getOperand()->getType() != SrcType) {
990 Ok = false;
991 break;
992 }
993 LargeOps.push_back(T->getOperand());
994 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
995 // This could be either sign or zero extension, but sign extension
996 // is much more likely to be foldable here.
997 LargeOps.push_back(getSignExtendExpr(C, SrcType));
998 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
999 std::vector<SCEVHandle> LargeMulOps;
1000 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1001 if (const SCEVTruncateExpr *T =
1002 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1003 if (T->getOperand()->getType() != SrcType) {
1004 Ok = false;
1005 break;
1006 }
1007 LargeMulOps.push_back(T->getOperand());
1008 } else if (const SCEVConstant *C =
1009 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1010 // This could be either sign or zero extension, but sign extension
1011 // is much more likely to be foldable here.
1012 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1013 } else {
1014 Ok = false;
1015 break;
1016 }
1017 }
1018 if (Ok)
1019 LargeOps.push_back(getMulExpr(LargeMulOps));
1020 } else {
1021 Ok = false;
1022 break;
1023 }
1024 }
1025 if (Ok) {
1026 // Evaluate the expression in the larger type.
1027 SCEVHandle Fold = getAddExpr(LargeOps);
1028 // If it folds to something simple, use it. Otherwise, don't.
1029 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1030 return getTruncateExpr(Fold, DstType);
1031 }
1032 }
1033
1034 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1036 ++Idx;
1037
1038 // If there are add operands they would be next.
1039 if (Idx < Ops.size()) {
1040 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001041 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 // If we have an add, expand the add operands onto the end of the operands
1043 // list.
1044 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1045 Ops.erase(Ops.begin()+Idx);
1046 DeletedAdd = true;
1047 }
1048
1049 // If we deleted at least one add, we added operands to the end of the list,
1050 // and they are not necessarily sorted. Recurse to resort and resimplify
1051 // any operands we just aquired.
1052 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001053 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001054 }
1055
1056 // Skip over the add expression until we get to a multiply.
1057 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1058 ++Idx;
1059
1060 // If we are adding something to a multiply expression, make sure the
1061 // something is not already an operand of the multiply. If so, merge it into
1062 // the multiply.
1063 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001064 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001066 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1068 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1069 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1070 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1071 if (Mul->getNumOperands() != 2) {
1072 // If the multiply has more than two operands, we must get the
1073 // Y*Z term.
1074 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1075 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001076 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077 }
Dan Gohman89f85052007-10-22 18:31:58 +00001078 SCEVHandle One = getIntegerSCEV(1, Ty);
1079 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1080 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081 if (Ops.size() == 2) return OuterMul;
1082 if (AddOp < Idx) {
1083 Ops.erase(Ops.begin()+AddOp);
1084 Ops.erase(Ops.begin()+Idx-1);
1085 } else {
1086 Ops.erase(Ops.begin()+Idx);
1087 Ops.erase(Ops.begin()+AddOp-1);
1088 }
1089 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001090 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001091 }
1092
1093 // Check this multiply against other multiplies being added together.
1094 for (unsigned OtherMulIdx = Idx+1;
1095 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1096 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001097 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 // If MulOp occurs in OtherMul, we can fold the two multiplies
1099 // together.
1100 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1101 OMulOp != e; ++OMulOp)
1102 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1103 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1104 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1105 if (Mul->getNumOperands() != 2) {
1106 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1107 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001108 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001109 }
1110 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1111 if (OtherMul->getNumOperands() != 2) {
1112 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1113 OtherMul->op_end());
1114 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001115 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 }
Dan Gohman89f85052007-10-22 18:31:58 +00001117 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1118 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 if (Ops.size() == 2) return OuterMul;
1120 Ops.erase(Ops.begin()+Idx);
1121 Ops.erase(Ops.begin()+OtherMulIdx-1);
1122 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001123 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001124 }
1125 }
1126 }
1127 }
1128
1129 // If there are any add recurrences in the operands list, see if any other
1130 // added values are loop invariant. If so, we can fold them into the
1131 // recurrence.
1132 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1133 ++Idx;
1134
1135 // Scan over all recurrences, trying to fold loop invariants into them.
1136 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1137 // Scan all of the other operands to this add and add them to the vector if
1138 // they are loop invariant w.r.t. the recurrence.
1139 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001140 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001141 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1142 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1143 LIOps.push_back(Ops[i]);
1144 Ops.erase(Ops.begin()+i);
1145 --i; --e;
1146 }
1147
1148 // If we found some loop invariants, fold them into the recurrence.
1149 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001150 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001151 LIOps.push_back(AddRec->getStart());
1152
1153 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001154 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001155
Dan Gohman89f85052007-10-22 18:31:58 +00001156 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001157 // If all of the other operands were loop invariant, we are done.
1158 if (Ops.size() == 1) return NewRec;
1159
1160 // Otherwise, add the folded AddRec by the non-liv parts.
1161 for (unsigned i = 0;; ++i)
1162 if (Ops[i] == AddRec) {
1163 Ops[i] = NewRec;
1164 break;
1165 }
Dan Gohman89f85052007-10-22 18:31:58 +00001166 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001167 }
1168
1169 // Okay, if there weren't any loop invariants to be folded, check to see if
1170 // there are multiple AddRec's with the same loop induction variable being
1171 // added together. If so, we can fold them.
1172 for (unsigned OtherIdx = Idx+1;
1173 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1174 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001175 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001176 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1177 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1178 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1179 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1180 if (i >= NewOps.size()) {
1181 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1182 OtherAddRec->op_end());
1183 break;
1184 }
Dan Gohman89f85052007-10-22 18:31:58 +00001185 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001186 }
Dan Gohman89f85052007-10-22 18:31:58 +00001187 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188
1189 if (Ops.size() == 2) return NewAddRec;
1190
1191 Ops.erase(Ops.begin()+Idx);
1192 Ops.erase(Ops.begin()+OtherIdx-1);
1193 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001194 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 }
1196 }
1197
1198 // Otherwise couldn't fold anything into this recurrence. Move onto the
1199 // next one.
1200 }
1201
1202 // Okay, it looks like we really DO need an add expr. Check to see if we
1203 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001204 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001205 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1206 SCEVOps)];
1207 if (Result == 0) Result = new SCEVAddExpr(Ops);
1208 return Result;
1209}
1210
1211
Dan Gohman89f85052007-10-22 18:31:58 +00001212SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001214#ifndef NDEBUG
1215 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1216 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1217 getEffectiveSCEVType(Ops[0]->getType()) &&
1218 "SCEVMulExpr operand types don't match!");
1219#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001220
1221 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001222 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223
1224 // If there are any constants, fold them together.
1225 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001226 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227
1228 // C1*(C2+V) -> C1*C2 + C1*V
1229 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001230 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 if (Add->getNumOperands() == 2 &&
1232 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001233 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1234 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001235
1236
1237 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001238 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001240 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1241 RHSC->getValue()->getValue());
1242 Ops[0] = getConstant(Fold);
1243 Ops.erase(Ops.begin()+1); // Erase the folded element
1244 if (Ops.size() == 1) return Ops[0];
1245 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 }
1247
1248 // If we are left with a constant one being multiplied, strip it off.
1249 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1250 Ops.erase(Ops.begin());
1251 --Idx;
1252 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1253 // If we have a multiply of zero, it will always be zero.
1254 return Ops[0];
1255 }
1256 }
1257
1258 // Skip over the add expression until we get to a multiply.
1259 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1260 ++Idx;
1261
1262 if (Ops.size() == 1)
1263 return Ops[0];
1264
1265 // If there are mul operands inline them all into this expression.
1266 if (Idx < Ops.size()) {
1267 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001268 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 // If we have an mul, expand the mul operands onto the end of the operands
1270 // list.
1271 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1272 Ops.erase(Ops.begin()+Idx);
1273 DeletedMul = true;
1274 }
1275
1276 // If we deleted at least one mul, we added operands to the end of the list,
1277 // and they are not necessarily sorted. Recurse to resort and resimplify
1278 // any operands we just aquired.
1279 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001280 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281 }
1282
1283 // If there are any add recurrences in the operands list, see if any other
1284 // added values are loop invariant. If so, we can fold them into the
1285 // recurrence.
1286 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1287 ++Idx;
1288
1289 // Scan over all recurrences, trying to fold loop invariants into them.
1290 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1291 // Scan all of the other operands to this mul and add them to the vector if
1292 // they are loop invariant w.r.t. the recurrence.
1293 std::vector<SCEVHandle> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001294 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1296 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1297 LIOps.push_back(Ops[i]);
1298 Ops.erase(Ops.begin()+i);
1299 --i; --e;
1300 }
1301
1302 // If we found some loop invariants, fold them into the recurrence.
1303 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001304 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001305 std::vector<SCEVHandle> NewOps;
1306 NewOps.reserve(AddRec->getNumOperands());
1307 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001308 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001310 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 } else {
1312 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1313 std::vector<SCEVHandle> MulOps(LIOps);
1314 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001315 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001316 }
1317 }
1318
Dan Gohman89f85052007-10-22 18:31:58 +00001319 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320
1321 // If all of the other operands were loop invariant, we are done.
1322 if (Ops.size() == 1) return NewRec;
1323
1324 // Otherwise, multiply the folded AddRec by the non-liv parts.
1325 for (unsigned i = 0;; ++i)
1326 if (Ops[i] == AddRec) {
1327 Ops[i] = NewRec;
1328 break;
1329 }
Dan Gohman89f85052007-10-22 18:31:58 +00001330 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001331 }
1332
1333 // Okay, if there weren't any loop invariants to be folded, check to see if
1334 // there are multiple AddRec's with the same loop induction variable being
1335 // multiplied together. If so, we can fold them.
1336 for (unsigned OtherIdx = Idx+1;
1337 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1338 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001339 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1341 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001342 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001343 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001345 SCEVHandle B = F->getStepRecurrence(*this);
1346 SCEVHandle D = G->getStepRecurrence(*this);
1347 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1348 getMulExpr(G, B),
1349 getMulExpr(B, D));
1350 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1351 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 if (Ops.size() == 2) return NewAddRec;
1353
1354 Ops.erase(Ops.begin()+Idx);
1355 Ops.erase(Ops.begin()+OtherIdx-1);
1356 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001357 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 }
1359 }
1360
1361 // Otherwise couldn't fold anything into this recurrence. Move onto the
1362 // next one.
1363 }
1364
1365 // Okay, it looks like we really DO need an mul expr. Check to see if we
1366 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001367 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1369 SCEVOps)];
1370 if (Result == 0)
1371 Result = new SCEVMulExpr(Ops);
1372 return Result;
1373}
1374
Dan Gohman77841cd2009-05-04 22:23:18 +00001375SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1376 const SCEVHandle &RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001377 assert(getEffectiveSCEVType(LHS->getType()) ==
1378 getEffectiveSCEVType(RHS->getType()) &&
1379 "SCEVUDivExpr operand types don't match!");
1380
Dan Gohmanc76b5452009-05-04 22:02:23 +00001381 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001382 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001383 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001384 if (RHSC->isZero())
1385 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001387 // Determine if the division can be folded into the operands of
1388 // its operands.
1389 // TODO: Generalize this to non-constants by using known-bits information.
1390 const Type *Ty = LHS->getType();
1391 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1392 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1393 // For non-power-of-two values, effectively round the value up to the
1394 // nearest power of two.
1395 if (!RHSC->getValue()->getValue().isPowerOf2())
1396 ++MaxShiftAmt;
1397 const IntegerType *ExtTy =
1398 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1399 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1400 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1401 if (const SCEVConstant *Step =
1402 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1403 if (!Step->getValue()->getValue()
1404 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001405 getZeroExtendExpr(AR, ExtTy) ==
1406 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1407 getZeroExtendExpr(Step, ExtTy),
1408 AR->getLoop())) {
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001409 std::vector<SCEVHandle> Operands;
1410 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1411 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1412 return getAddRecExpr(Operands, AR->getLoop());
1413 }
1414 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001415 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1416 std::vector<SCEVHandle> Operands;
1417 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1418 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1419 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001420 // Find an operand that's safely divisible.
1421 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1422 SCEVHandle Op = M->getOperand(i);
1423 SCEVHandle Div = getUDivExpr(Op, RHSC);
1424 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman14374d32009-05-08 23:11:16 +00001425 Operands = M->getOperands();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001426 Operands[i] = Div;
1427 return getMulExpr(Operands);
1428 }
1429 }
Dan Gohman14374d32009-05-08 23:11:16 +00001430 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001431 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001432 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1433 std::vector<SCEVHandle> Operands;
1434 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1435 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1436 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1437 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001438 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1439 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1440 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1441 break;
1442 Operands.push_back(Op);
1443 }
1444 if (Operands.size() == A->getNumOperands())
1445 return getAddExpr(Operands);
1446 }
Dan Gohman14374d32009-05-08 23:11:16 +00001447 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001448
1449 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001450 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001451 Constant *LHSCV = LHSC->getValue();
1452 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001453 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 }
1455 }
1456
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001457 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1458 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459 return Result;
1460}
1461
1462
1463/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1464/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001465SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001466 const SCEVHandle &Step, const Loop *L) {
1467 std::vector<SCEVHandle> Operands;
1468 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001469 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001470 if (StepChrec->getLoop() == L) {
1471 Operands.insert(Operands.end(), StepChrec->op_begin(),
1472 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001473 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001474 }
1475
1476 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001477 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001478}
1479
1480/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1481/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001482SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001483 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001485#ifndef NDEBUG
1486 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1487 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1488 getEffectiveSCEVType(Operands[0]->getType()) &&
1489 "SCEVAddRecExpr operand types don't match!");
1490#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001491
Dan Gohman7b560c42008-06-18 16:23:07 +00001492 if (Operands.back()->isZero()) {
1493 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001494 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001495 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001496
Dan Gohman42936882008-08-08 18:33:12 +00001497 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001498 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001499 const Loop* NestedLoop = NestedAR->getLoop();
1500 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1501 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1502 NestedAR->op_end());
1503 SCEVHandle NestedARHandle(NestedAR);
1504 Operands[0] = NestedAR->getStart();
1505 NestedOperands[0] = getAddRecExpr(Operands, L);
1506 return getAddRecExpr(NestedOperands, NestedLoop);
1507 }
1508 }
1509
Dan Gohmanbff6b582009-05-04 22:30:44 +00001510 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1511 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1513 return Result;
1514}
1515
Nick Lewycky711640a2007-11-25 22:41:31 +00001516SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1517 const SCEVHandle &RHS) {
1518 std::vector<SCEVHandle> Ops;
1519 Ops.push_back(LHS);
1520 Ops.push_back(RHS);
1521 return getSMaxExpr(Ops);
1522}
1523
1524SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1525 assert(!Ops.empty() && "Cannot get empty smax!");
1526 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001527#ifndef NDEBUG
1528 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1529 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1530 getEffectiveSCEVType(Ops[0]->getType()) &&
1531 "SCEVSMaxExpr operand types don't match!");
1532#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001533
1534 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001535 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001536
1537 // If there are any constants, fold them together.
1538 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001539 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001540 ++Idx;
1541 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001542 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001543 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001544 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001545 APIntOps::smax(LHSC->getValue()->getValue(),
1546 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001547 Ops[0] = getConstant(Fold);
1548 Ops.erase(Ops.begin()+1); // Erase the folded element
1549 if (Ops.size() == 1) return Ops[0];
1550 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001551 }
1552
1553 // If we are left with a constant -inf, strip it off.
1554 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1555 Ops.erase(Ops.begin());
1556 --Idx;
1557 }
1558 }
1559
1560 if (Ops.size() == 1) return Ops[0];
1561
1562 // Find the first SMax
1563 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1564 ++Idx;
1565
1566 // Check to see if one of the operands is an SMax. If so, expand its operands
1567 // onto our operand list, and recurse to simplify.
1568 if (Idx < Ops.size()) {
1569 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001570 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001571 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1572 Ops.erase(Ops.begin()+Idx);
1573 DeletedSMax = true;
1574 }
1575
1576 if (DeletedSMax)
1577 return getSMaxExpr(Ops);
1578 }
1579
1580 // Okay, check to see if the same value occurs in the operand list twice. If
1581 // so, delete one. Since we sorted the list, these values are required to
1582 // be adjacent.
1583 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1584 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1585 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1586 --i; --e;
1587 }
1588
1589 if (Ops.size() == 1) return Ops[0];
1590
1591 assert(!Ops.empty() && "Reduced smax down to nothing!");
1592
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001593 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001594 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001595 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky711640a2007-11-25 22:41:31 +00001596 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1597 SCEVOps)];
1598 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1599 return Result;
1600}
1601
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001602SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1603 const SCEVHandle &RHS) {
1604 std::vector<SCEVHandle> Ops;
1605 Ops.push_back(LHS);
1606 Ops.push_back(RHS);
1607 return getUMaxExpr(Ops);
1608}
1609
1610SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1611 assert(!Ops.empty() && "Cannot get empty umax!");
1612 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001613#ifndef NDEBUG
1614 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1615 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1616 getEffectiveSCEVType(Ops[0]->getType()) &&
1617 "SCEVUMaxExpr operand types don't match!");
1618#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001619
1620 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001621 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001622
1623 // If there are any constants, fold them together.
1624 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001625 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001626 ++Idx;
1627 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001628 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001629 // We found two constants, fold them together!
1630 ConstantInt *Fold = ConstantInt::get(
1631 APIntOps::umax(LHSC->getValue()->getValue(),
1632 RHSC->getValue()->getValue()));
1633 Ops[0] = getConstant(Fold);
1634 Ops.erase(Ops.begin()+1); // Erase the folded element
1635 if (Ops.size() == 1) return Ops[0];
1636 LHSC = cast<SCEVConstant>(Ops[0]);
1637 }
1638
1639 // If we are left with a constant zero, strip it off.
1640 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1641 Ops.erase(Ops.begin());
1642 --Idx;
1643 }
1644 }
1645
1646 if (Ops.size() == 1) return Ops[0];
1647
1648 // Find the first UMax
1649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1650 ++Idx;
1651
1652 // Check to see if one of the operands is a UMax. If so, expand its operands
1653 // onto our operand list, and recurse to simplify.
1654 if (Idx < Ops.size()) {
1655 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001656 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001657 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1658 Ops.erase(Ops.begin()+Idx);
1659 DeletedUMax = true;
1660 }
1661
1662 if (DeletedUMax)
1663 return getUMaxExpr(Ops);
1664 }
1665
1666 // Okay, check to see if the same value occurs in the operand list twice. If
1667 // so, delete one. Since we sorted the list, these values are required to
1668 // be adjacent.
1669 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1670 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1671 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1672 --i; --e;
1673 }
1674
1675 if (Ops.size() == 1) return Ops[0];
1676
1677 assert(!Ops.empty() && "Reduced umax down to nothing!");
1678
1679 // Okay, it looks like we really DO need a umax expr. Check to see if we
1680 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001681 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001682 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1683 SCEVOps)];
1684 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1685 return Result;
1686}
1687
Dan Gohman89f85052007-10-22 18:31:58 +00001688SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001690 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001691 if (isa<ConstantPointerNull>(V))
1692 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1694 if (Result == 0) Result = new SCEVUnknown(V);
1695 return Result;
1696}
1697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699// Basic SCEV Analysis and PHI Idiom Recognition Code
1700//
1701
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001702/// isSCEVable - Test if values of the given type are analyzable within
1703/// the SCEV framework. This primarily includes integer types, and it
1704/// can optionally include pointer types if the ScalarEvolution class
1705/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001706bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001707 // Integers are always SCEVable.
1708 if (Ty->isInteger())
1709 return true;
1710
1711 // Pointers are SCEVable if TargetData information is available
1712 // to provide pointer size information.
1713 if (isa<PointerType>(Ty))
1714 return TD != NULL;
1715
1716 // Otherwise it's not SCEVable.
1717 return false;
1718}
1719
1720/// getTypeSizeInBits - Return the size in bits of the specified type,
1721/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001722uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001723 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1724
1725 // If we have a TargetData, use it!
1726 if (TD)
1727 return TD->getTypeSizeInBits(Ty);
1728
1729 // Otherwise, we support only integer types.
1730 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1731 return Ty->getPrimitiveSizeInBits();
1732}
1733
1734/// getEffectiveSCEVType - Return a type with the same bitwidth as
1735/// the given type and which represents how SCEV will treat the given
1736/// type, for which isSCEVable must return true. For pointer types,
1737/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001738const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001739 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1740
1741 if (Ty->isInteger())
1742 return Ty;
1743
1744 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1745 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001746}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001748SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0ad08b02009-04-18 17:58:19 +00001749 return UnknownValue;
1750}
1751
Dan Gohmand83d4af2009-05-04 22:20:30 +00001752/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001753/// computed.
1754bool ScalarEvolution::hasSCEV(Value *V) const {
1755 return Scalars.count(V);
1756}
1757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1759/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001760SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001761 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762
Dan Gohmanbff6b582009-05-04 22:30:44 +00001763 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001764 if (I != Scalars.end()) return I->second;
1765 SCEVHandle S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001766 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 return S;
1768}
1769
Dan Gohman01c2ee72009-04-16 03:18:22 +00001770/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1771/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001772SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1773 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001774 Constant *C;
1775 if (Val == 0)
1776 C = Constant::getNullValue(Ty);
1777 else if (Ty->isFloatingPoint())
1778 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1779 APFloat::IEEEdouble, Val));
1780 else
1781 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001782 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001783}
1784
1785/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1786///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001787SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001788 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001789 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001790
1791 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001792 Ty = getEffectiveSCEVType(Ty);
1793 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001794}
1795
1796/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001797SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001798 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001799 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001800
1801 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001802 Ty = getEffectiveSCEVType(Ty);
1803 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001804 return getMinusSCEV(AllOnes, V);
1805}
1806
1807/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1808///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001809SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001810 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001811 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001812 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001813}
1814
1815/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1816/// input value to the specified type. If the type must be extended, it is zero
1817/// extended.
1818SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001819ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001820 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001821 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001822 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1823 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001824 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001825 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001826 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001827 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001828 return getTruncateExpr(V, Ty);
1829 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001830}
1831
1832/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1833/// input value to the specified type. If the type must be extended, it is sign
1834/// extended.
1835SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001836ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001837 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001838 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001839 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1840 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001841 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001842 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001843 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001844 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001845 return getTruncateExpr(V, Ty);
1846 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001847}
1848
Dan Gohmanac959332009-05-13 03:46:30 +00001849/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1850/// input value to the specified type. If the type must be extended, it is zero
1851/// extended. The conversion must not be narrowing.
1852SCEVHandle
1853ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1854 const Type *SrcTy = V->getType();
1855 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1856 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1857 "Cannot noop or zero extend with non-integer arguments!");
1858 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1859 "getNoopOrZeroExtend cannot truncate!");
1860 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1861 return V; // No conversion
1862 return getZeroExtendExpr(V, Ty);
1863}
1864
1865/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1866/// input value to the specified type. If the type must be extended, it is sign
1867/// extended. The conversion must not be narrowing.
1868SCEVHandle
1869ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1870 const Type *SrcTy = V->getType();
1871 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1872 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1873 "Cannot noop or sign extend with non-integer arguments!");
1874 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1875 "getNoopOrSignExtend cannot truncate!");
1876 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1877 return V; // No conversion
1878 return getSignExtendExpr(V, Ty);
1879}
1880
1881/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1882/// input value to the specified type. The conversion must not be widening.
1883SCEVHandle
1884ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1885 const Type *SrcTy = V->getType();
1886 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1887 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1888 "Cannot truncate or noop with non-integer arguments!");
1889 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1890 "getTruncateOrNoop cannot extend!");
1891 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1892 return V; // No conversion
1893 return getTruncateExpr(V, Ty);
1894}
1895
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1897/// the specified instruction and replaces any references to the symbolic value
1898/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001899void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001900ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1901 const SCEVHandle &NewVal) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001902 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1903 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904 if (SI == Scalars.end()) return;
1905
1906 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001907 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908 if (NV == SI->second) return; // No change.
1909
1910 SI->second = NV; // Update the scalars map!
1911
1912 // Any instruction values that use this instruction might also need to be
1913 // updated!
1914 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1915 UI != E; ++UI)
1916 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1917}
1918
1919/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1920/// a loop header, making it a potential recurrence, or it doesn't.
1921///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001922SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001924 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001925 if (L->getHeader() == PN->getParent()) {
1926 // If it lives in the loop header, it has two incoming values, one
1927 // from outside the loop, and one from inside.
1928 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1929 unsigned BackEdge = IncomingEdge^1;
1930
1931 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001932 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933 assert(Scalars.find(PN) == Scalars.end() &&
1934 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00001935 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936
1937 // Using this symbolic name for the PHI, analyze the value coming around
1938 // the back-edge.
1939 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1940
1941 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1942 // has a special value for the first iteration of the loop.
1943
1944 // If the value coming around the backedge is an add with the symbolic
1945 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00001946 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947 // If there is a single occurrence of the symbolic value, replace it
1948 // with a recurrence.
1949 unsigned FoundIndex = Add->getNumOperands();
1950 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1951 if (Add->getOperand(i) == SymbolicName)
1952 if (FoundIndex == e) {
1953 FoundIndex = i;
1954 break;
1955 }
1956
1957 if (FoundIndex != Add->getNumOperands()) {
1958 // Create an add with everything but the specified operand.
1959 std::vector<SCEVHandle> Ops;
1960 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1961 if (i != FoundIndex)
1962 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001963 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001964
1965 // This is not a valid addrec if the step amount is varying each
1966 // loop iteration, but is not itself an addrec in this loop.
1967 if (Accum->isLoopInvariant(L) ||
1968 (isa<SCEVAddRecExpr>(Accum) &&
1969 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1970 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001971 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001972
1973 // Okay, for the entire analysis of this edge we assumed the PHI
1974 // to be symbolic. We now need to go back and update all of the
1975 // entries for the scalars that use the PHI (except for the PHI
1976 // itself) to use the new analyzed value instead of the "symbolic"
1977 // value.
1978 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1979 return PHISCEV;
1980 }
1981 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00001982 } else if (const SCEVAddRecExpr *AddRec =
1983 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984 // Otherwise, this could be a loop like this:
1985 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1986 // In this case, j = {1,+,1} and BEValue is j.
1987 // Because the other in-value of i (0) fits the evolution of BEValue
1988 // i really is an addrec evolution.
1989 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1990 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1991
1992 // If StartVal = j.start - j.stride, we can use StartVal as the
1993 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001994 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00001995 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001997 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001998
1999 // Okay, for the entire analysis of this edge we assumed the PHI
2000 // to be symbolic. We now need to go back and update all of the
2001 // entries for the scalars that use the PHI (except for the PHI
2002 // itself) to use the new analyzed value instead of the "symbolic"
2003 // value.
2004 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2005 return PHISCEV;
2006 }
2007 }
2008 }
2009
2010 return SymbolicName;
2011 }
2012
2013 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002014 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002015}
2016
Dan Gohman509cf4d2009-05-08 20:26:55 +00002017/// createNodeForGEP - Expand GEP instructions into add and multiply
2018/// operations. This allows them to be analyzed by regular SCEV code.
2019///
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002020SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002021
2022 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002023 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002024 // Don't attempt to analyze GEPs over unsized objects.
2025 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2026 return getUnknown(GEP);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002027 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002028 gep_type_iterator GTI = gep_type_begin(GEP);
2029 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2030 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002031 I != E; ++I) {
2032 Value *Index = *I;
2033 // Compute the (potentially symbolic) offset in bytes for this index.
2034 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2035 // For a struct, add the member offset.
2036 const StructLayout &SL = *TD->getStructLayout(STy);
2037 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2038 uint64_t Offset = SL.getElementOffset(FieldNo);
2039 TotalOffset = getAddExpr(TotalOffset,
2040 getIntegerSCEV(Offset, IntPtrTy));
2041 } else {
2042 // For an array, add the element offset, explicitly scaled.
2043 SCEVHandle LocalOffset = getSCEV(Index);
2044 if (!isa<PointerType>(LocalOffset->getType()))
2045 // Getelementptr indicies are signed.
2046 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2047 IntPtrTy);
2048 LocalOffset =
2049 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002050 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002051 IntPtrTy));
2052 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2053 }
2054 }
2055 return getAddExpr(getSCEV(Base), TotalOffset);
2056}
2057
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002058/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2059/// guaranteed to end in (at every loop iteration). It is, at the same time,
2060/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2061/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002062static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002063 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002064 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065
Dan Gohmanc76b5452009-05-04 22:02:23 +00002066 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002067 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2068 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002069
Dan Gohmanc76b5452009-05-04 22:02:23 +00002070 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002071 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2072 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002073 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002074 }
2075
Dan Gohmanc76b5452009-05-04 22:02:23 +00002076 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002077 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2078 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002079 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002080 }
2081
Dan Gohmanc76b5452009-05-04 22:02:23 +00002082 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002083 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002084 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002085 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002086 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002087 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002088 }
2089
Dan Gohmanc76b5452009-05-04 22:02:23 +00002090 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002091 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002092 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2093 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002094 for (unsigned i = 1, e = M->getNumOperands();
2095 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002096 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002097 BitWidth);
2098 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002100
Dan Gohmanc76b5452009-05-04 22:02:23 +00002101 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002102 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002103 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002104 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002105 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002106 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002108
Dan Gohmanc76b5452009-05-04 22:02:23 +00002109 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002110 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002111 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00002112 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002113 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00002114 return MinOpRes;
2115 }
2116
Dan Gohmanc76b5452009-05-04 22:02:23 +00002117 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002118 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002119 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002120 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002121 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002122 return MinOpRes;
2123 }
2124
Nick Lewycky35b56022009-01-13 09:18:58 +00002125 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002126 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127}
2128
2129/// createSCEV - We know that there is no SCEV for the specified value.
2130/// Analyze the expression.
2131///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002132SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002133 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002134 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002135
Dan Gohman3996f472008-06-22 19:56:46 +00002136 unsigned Opcode = Instruction::UserOp1;
2137 if (Instruction *I = dyn_cast<Instruction>(V))
2138 Opcode = I->getOpcode();
2139 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2140 Opcode = CE->getOpcode();
2141 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002142 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002143
Dan Gohman3996f472008-06-22 19:56:46 +00002144 User *U = cast<User>(V);
2145 switch (Opcode) {
2146 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002147 return getAddExpr(getSCEV(U->getOperand(0)),
2148 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002149 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002150 return getMulExpr(getSCEV(U->getOperand(0)),
2151 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002152 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002153 return getUDivExpr(getSCEV(U->getOperand(0)),
2154 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002155 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002156 return getMinusSCEV(getSCEV(U->getOperand(0)),
2157 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002158 case Instruction::And:
2159 // For an expression like x&255 that merely masks off the high bits,
2160 // use zext(trunc(x)) as the SCEV expression.
2161 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002162 if (CI->isNullValue())
2163 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002164 if (CI->isAllOnesValue())
2165 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002166 const APInt &A = CI->getValue();
2167 unsigned Ones = A.countTrailingOnes();
2168 if (APIntOps::isMask(Ones, A))
2169 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002170 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2171 IntegerType::get(Ones)),
2172 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002173 }
2174 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002175 case Instruction::Or:
2176 // If the RHS of the Or is a constant, we may have something like:
2177 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2178 // optimizations will transparently handle this case.
2179 //
2180 // In order for this transformation to be safe, the LHS must be of the
2181 // form X*(2^n) and the Or constant must be less than 2^n.
2182 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2183 SCEVHandle LHS = getSCEV(U->getOperand(0));
2184 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002185 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002186 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002187 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002188 }
Dan Gohman3996f472008-06-22 19:56:46 +00002189 break;
2190 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002191 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002192 // If the RHS of the xor is a signbit, then this is just an add.
2193 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002194 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002195 return getAddExpr(getSCEV(U->getOperand(0)),
2196 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002197
2198 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman3996f472008-06-22 19:56:46 +00002199 else if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002200 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman3996f472008-06-22 19:56:46 +00002201 }
2202 break;
2203
2204 case Instruction::Shl:
2205 // Turn shift left of a constant amount into a multiply.
2206 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2207 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2208 Constant *X = ConstantInt::get(
2209 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002210 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002211 }
2212 break;
2213
Nick Lewycky7fd27892008-07-07 06:15:49 +00002214 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002215 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002216 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2217 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2218 Constant *X = ConstantInt::get(
2219 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002220 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002221 }
2222 break;
2223
Dan Gohman53bf64a2009-04-21 02:26:00 +00002224 case Instruction::AShr:
2225 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2226 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2227 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2228 if (L->getOpcode() == Instruction::Shl &&
2229 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002230 unsigned BitWidth = getTypeSizeInBits(U->getType());
2231 uint64_t Amt = BitWidth - CI->getZExtValue();
2232 if (Amt == BitWidth)
2233 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2234 if (Amt > BitWidth)
2235 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002236 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002237 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002238 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002239 U->getType());
2240 }
2241 break;
2242
Dan Gohman3996f472008-06-22 19:56:46 +00002243 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002244 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002245
2246 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002247 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002248
2249 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002250 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002251
2252 case Instruction::BitCast:
2253 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002254 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002255 return getSCEV(U->getOperand(0));
2256 break;
2257
Dan Gohman01c2ee72009-04-16 03:18:22 +00002258 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002259 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002260 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002261 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002262
2263 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002264 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002265 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2266 U->getType());
2267
Dan Gohman509cf4d2009-05-08 20:26:55 +00002268 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002269 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002270 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002271
Dan Gohman3996f472008-06-22 19:56:46 +00002272 case Instruction::PHI:
2273 return createNodeForPHI(cast<PHINode>(U));
2274
2275 case Instruction::Select:
2276 // This could be a smax or umax that was lowered earlier.
2277 // Try to recover it.
2278 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2279 Value *LHS = ICI->getOperand(0);
2280 Value *RHS = ICI->getOperand(1);
2281 switch (ICI->getPredicate()) {
2282 case ICmpInst::ICMP_SLT:
2283 case ICmpInst::ICMP_SLE:
2284 std::swap(LHS, RHS);
2285 // fall through
2286 case ICmpInst::ICMP_SGT:
2287 case ICmpInst::ICMP_SGE:
2288 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002289 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002290 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002291 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002292 return getNotSCEV(getSMaxExpr(
2293 getNotSCEV(getSCEV(LHS)),
2294 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002295 break;
2296 case ICmpInst::ICMP_ULT:
2297 case ICmpInst::ICMP_ULE:
2298 std::swap(LHS, RHS);
2299 // fall through
2300 case ICmpInst::ICMP_UGT:
2301 case ICmpInst::ICMP_UGE:
2302 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002303 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002304 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2305 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002306 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2307 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002308 break;
2309 default:
2310 break;
2311 }
2312 }
2313
2314 default: // We cannot analyze this expression.
2315 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002316 }
2317
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002318 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002319}
2320
2321
2322
2323//===----------------------------------------------------------------------===//
2324// Iteration Count Computation Code
2325//
2326
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002327/// getBackedgeTakenCount - If the specified loop has a predictable
2328/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2329/// object. The backedge-taken count is the number of times the loop header
2330/// will be branched to from within the loop. This is one less than the
2331/// trip count of the loop, since it doesn't count the first iteration,
2332/// when the header is branched to from outside the loop.
2333///
2334/// Note that it is not valid to call this method on a loop without a
2335/// loop-invariant backedge-taken count (see
2336/// hasLoopInvariantBackedgeTakenCount).
2337///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002338SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002339 return getBackedgeTakenInfo(L).Exact;
2340}
2341
2342/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2343/// return the least SCEV value that is known never to be less than the
2344/// actual backedge taken count.
2345SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2346 return getBackedgeTakenInfo(L).Max;
2347}
2348
2349const ScalarEvolution::BackedgeTakenInfo &
2350ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002351 // Initially insert a CouldNotCompute for this loop. If the insertion
2352 // succeeds, procede to actually compute a backedge-taken count and
2353 // update the value. The temporary CouldNotCompute value tells SCEV
2354 // code elsewhere that it shouldn't attempt to request a new
2355 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002356 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002357 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2358 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002359 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2360 if (ItCount.Exact != UnknownValue) {
2361 assert(ItCount.Exact->isLoopInvariant(L) &&
2362 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363 "Computed trip count isn't loop invariant for loop!");
2364 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002365
Dan Gohmana9dba962009-04-27 20:16:15 +00002366 // Update the value in the map.
2367 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002368 } else if (isa<PHINode>(L->getHeader()->begin())) {
2369 // Only count loops that have phi nodes as not being computable.
2370 ++NumTripCountsNotComputed;
2371 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002372
2373 // Now that we know more about the trip count for this loop, forget any
2374 // existing SCEV values for PHI nodes in this loop since they are only
2375 // conservative estimates made without the benefit
2376 // of trip count information.
2377 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002378 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002380 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002381}
2382
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002383/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002384/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002385/// ScalarEvolution's ability to compute a trip count, or if the loop
2386/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002387void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002388 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002389 forgetLoopPHIs(L);
2390}
2391
2392/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2393/// PHI nodes in the given loop. This is used when the trip count of
2394/// the loop may have changed.
2395void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002396 BasicBlock *Header = L->getHeader();
2397
Dan Gohman9fd4a002009-05-12 01:27:58 +00002398 // Push all Loop-header PHIs onto the Worklist stack, except those
2399 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2400 // a PHI either means that it has an unrecognized structure, or it's
2401 // a PHI that's in the progress of being computed by createNodeForPHI.
2402 // In the former case, additional loop trip count information isn't
2403 // going to change anything. In the later case, createNodeForPHI will
2404 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002405 SmallVector<Instruction *, 16> Worklist;
2406 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002407 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2408 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2409 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2410 Worklist.push_back(PN);
2411 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002412
2413 while (!Worklist.empty()) {
2414 Instruction *I = Worklist.pop_back_val();
2415 if (Scalars.erase(I))
2416 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2417 UI != UE; ++UI)
2418 Worklist.push_back(cast<Instruction>(UI));
2419 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002420}
2421
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002422/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2423/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002424ScalarEvolution::BackedgeTakenInfo
2425ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002427 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002428 L->getExitBlocks(ExitBlocks);
2429 if (ExitBlocks.size() != 1) return UnknownValue;
2430
2431 // Okay, there is one exit block. Try to find the condition that causes the
2432 // loop to be exited.
2433 BasicBlock *ExitBlock = ExitBlocks[0];
2434
2435 BasicBlock *ExitingBlock = 0;
2436 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2437 PI != E; ++PI)
2438 if (L->contains(*PI)) {
2439 if (ExitingBlock == 0)
2440 ExitingBlock = *PI;
2441 else
2442 return UnknownValue; // More than one block exiting!
2443 }
2444 assert(ExitingBlock && "No exits from loop, something is broken!");
2445
2446 // Okay, we've computed the exiting block. See what condition causes us to
2447 // exit.
2448 //
2449 // FIXME: we should be able to handle switch instructions (with a single exit)
2450 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2451 if (ExitBr == 0) return UnknownValue;
2452 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2453
2454 // At this point, we know we have a conditional branch that determines whether
2455 // the loop is exited. However, we don't know if the branch is executed each
2456 // time through the loop. If not, then the execution count of the branch will
2457 // not be equal to the trip count of the loop.
2458 //
2459 // Currently we check for this by checking to see if the Exit branch goes to
2460 // the loop header. If so, we know it will always execute the same number of
2461 // times as the loop. We also handle the case where the exit block *is* the
2462 // loop header. This is common for un-rotated loops. More extensive analysis
2463 // could be done to handle more cases here.
2464 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2465 ExitBr->getSuccessor(1) != L->getHeader() &&
2466 ExitBr->getParent() != L->getHeader())
2467 return UnknownValue;
2468
2469 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2470
Eli Friedman459d7292009-05-09 12:32:42 +00002471 // If it's not an integer or pointer comparison then compute it the hard way.
2472 if (ExitCond == 0)
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002473 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474 ExitBr->getSuccessor(0) == ExitBlock);
2475
2476 // If the condition was exit on true, convert the condition to exit on false
2477 ICmpInst::Predicate Cond;
2478 if (ExitBr->getSuccessor(1) == ExitBlock)
2479 Cond = ExitCond->getPredicate();
2480 else
2481 Cond = ExitCond->getInversePredicate();
2482
2483 // Handle common loops like: for (X = "string"; *X; ++X)
2484 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2485 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2486 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002487 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002488 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2489 }
2490
2491 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2492 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2493
2494 // Try to evaluate any dependencies out of the loop.
2495 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2496 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2497 Tmp = getSCEVAtScope(RHS, L);
2498 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2499
2500 // At this point, we would like to compute how many iterations of the
2501 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002502 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2503 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 std::swap(LHS, RHS);
2505 Cond = ICmpInst::getSwappedPredicate(Cond);
2506 }
2507
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002508 // If we have a comparison of a chrec against a constant, try to use value
2509 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002510 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2511 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00002513 // Form the constant range.
2514 ConstantRange CompRange(
2515 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516
Eli Friedman459d7292009-05-09 12:32:42 +00002517 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2518 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519 }
2520
2521 switch (Cond) {
2522 case ICmpInst::ICMP_NE: { // while (X != Y)
2523 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002524 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002525 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2526 break;
2527 }
2528 case ICmpInst::ICMP_EQ: {
2529 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002530 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2532 break;
2533 }
2534 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002535 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2536 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002537 break;
2538 }
2539 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002540 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2541 getNotSCEV(RHS), L, true);
2542 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002543 break;
2544 }
2545 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002546 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2547 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002548 break;
2549 }
2550 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002551 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2552 getNotSCEV(RHS), L, false);
2553 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 break;
2555 }
2556 default:
2557#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002558 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002559 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002560 errs() << "[unsigned] ";
2561 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002562 << Instruction::getOpcodeName(Instruction::ICmp)
2563 << " " << *RHS << "\n";
2564#endif
2565 break;
2566 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002567 return
2568 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2569 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002570}
2571
2572static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002573EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2574 ScalarEvolution &SE) {
2575 SCEVHandle InVal = SE.getConstant(C);
2576 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002577 assert(isa<SCEVConstant>(Val) &&
2578 "Evaluation of SCEV at constant didn't fold correctly?");
2579 return cast<SCEVConstant>(Val)->getValue();
2580}
2581
2582/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2583/// and a GEP expression (missing the pointer index) indexing into it, return
2584/// the addressed element of the initializer or null if the index expression is
2585/// invalid.
2586static Constant *
2587GetAddressedElementFromGlobal(GlobalVariable *GV,
2588 const std::vector<ConstantInt*> &Indices) {
2589 Constant *Init = GV->getInitializer();
2590 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2591 uint64_t Idx = Indices[i]->getZExtValue();
2592 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2593 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2594 Init = cast<Constant>(CS->getOperand(Idx));
2595 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2596 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2597 Init = cast<Constant>(CA->getOperand(Idx));
2598 } else if (isa<ConstantAggregateZero>(Init)) {
2599 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2600 assert(Idx < STy->getNumElements() && "Bad struct index!");
2601 Init = Constant::getNullValue(STy->getElementType(Idx));
2602 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2603 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2604 Init = Constant::getNullValue(ATy->getElementType());
2605 } else {
2606 assert(0 && "Unknown constant aggregate type!");
2607 }
2608 return 0;
2609 } else {
2610 return 0; // Unknown initializer type
2611 }
2612 }
2613 return Init;
2614}
2615
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002616/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2617/// 'icmp op load X, cst', try to see if we can compute the backedge
2618/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002619SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002620ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2621 const Loop *L,
2622 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002623 if (LI->isVolatile()) return UnknownValue;
2624
2625 // Check to see if the loaded pointer is a getelementptr of a global.
2626 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2627 if (!GEP) return UnknownValue;
2628
2629 // Make sure that it is really a constant global we are gepping, with an
2630 // initializer, and make sure the first IDX is really 0.
2631 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2632 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2633 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2634 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2635 return UnknownValue;
2636
2637 // Okay, we allow one non-constant index into the GEP instruction.
2638 Value *VarIdx = 0;
2639 std::vector<ConstantInt*> Indexes;
2640 unsigned VarIdxNum = 0;
2641 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2642 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2643 Indexes.push_back(CI);
2644 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2645 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2646 VarIdx = GEP->getOperand(i);
2647 VarIdxNum = i-2;
2648 Indexes.push_back(0);
2649 }
2650
2651 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2652 // Check to see if X is a loop variant variable value now.
2653 SCEVHandle Idx = getSCEV(VarIdx);
2654 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2655 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2656
2657 // We can only recognize very limited forms of loop index expressions, in
2658 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002659 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2661 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2662 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2663 return UnknownValue;
2664
2665 unsigned MaxSteps = MaxBruteForceIterations;
2666 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2667 ConstantInt *ItCst =
2668 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002669 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670
2671 // Form the GEP offset.
2672 Indexes[VarIdxNum] = Val;
2673
2674 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2675 if (Result == 0) break; // Cannot compute!
2676
2677 // Evaluate the condition for this iteration.
2678 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2679 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2680 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2681#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002682 errs() << "\n***\n*** Computed loop count " << *ItCst
2683 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2684 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685#endif
2686 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002687 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688 }
2689 }
2690 return UnknownValue;
2691}
2692
2693
2694/// CanConstantFold - Return true if we can constant fold an instruction of the
2695/// specified type, assuming that all operands were constants.
2696static bool CanConstantFold(const Instruction *I) {
2697 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2698 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2699 return true;
2700
2701 if (const CallInst *CI = dyn_cast<CallInst>(I))
2702 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002703 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002704 return false;
2705}
2706
2707/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2708/// in the loop that V is derived from. We allow arbitrary operations along the
2709/// way, but the operands of an operation must either be constants or a value
2710/// derived from a constant PHI. If this expression does not fit with these
2711/// constraints, return null.
2712static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2713 // If this is not an instruction, or if this is an instruction outside of the
2714 // loop, it can't be derived from a loop PHI.
2715 Instruction *I = dyn_cast<Instruction>(V);
2716 if (I == 0 || !L->contains(I->getParent())) return 0;
2717
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002718 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 if (L->getHeader() == I->getParent())
2720 return PN;
2721 else
2722 // We don't currently keep track of the control flow needed to evaluate
2723 // PHIs, so we cannot handle PHIs inside of loops.
2724 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002725 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726
2727 // If we won't be able to constant fold this expression even if the operands
2728 // are constants, return early.
2729 if (!CanConstantFold(I)) return 0;
2730
2731 // Otherwise, we can evaluate this instruction if all of its operands are
2732 // constant or derived from a PHI node themselves.
2733 PHINode *PHI = 0;
2734 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2735 if (!(isa<Constant>(I->getOperand(Op)) ||
2736 isa<GlobalValue>(I->getOperand(Op)))) {
2737 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2738 if (P == 0) return 0; // Not evolving from PHI
2739 if (PHI == 0)
2740 PHI = P;
2741 else if (PHI != P)
2742 return 0; // Evolving from multiple different PHIs.
2743 }
2744
2745 // This is a expression evolving from a constant PHI!
2746 return PHI;
2747}
2748
2749/// EvaluateExpression - Given an expression that passes the
2750/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2751/// in the loop has the value PHIVal. If we can't fold this expression for some
2752/// reason, return null.
2753static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2754 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002755 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002756 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757 Instruction *I = cast<Instruction>(V);
2758
2759 std::vector<Constant*> Operands;
2760 Operands.resize(I->getNumOperands());
2761
2762 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2763 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2764 if (Operands[i] == 0) return 0;
2765 }
2766
Chris Lattnerd6e56912007-12-10 22:53:04 +00002767 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2768 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2769 &Operands[0], Operands.size());
2770 else
2771 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2772 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002773}
2774
2775/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2776/// in the header of its containing loop, we know the loop executes a
2777/// constant number of times, and the PHI node is just a recurrence
2778/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002779Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002780getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002781 std::map<PHINode*, Constant*>::iterator I =
2782 ConstantEvolutionLoopExitValue.find(PN);
2783 if (I != ConstantEvolutionLoopExitValue.end())
2784 return I->second;
2785
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002786 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002787 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2788
2789 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2790
2791 // Since the loop is canonicalized, the PHI node must have two entries. One
2792 // entry must be a constant (coming in from outside of the loop), and the
2793 // second must be derived from the same PHI.
2794 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2795 Constant *StartCST =
2796 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2797 if (StartCST == 0)
2798 return RetVal = 0; // Must be a constant.
2799
2800 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2801 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2802 if (PN2 != PN)
2803 return RetVal = 0; // Not derived from same PHI.
2804
2805 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002806 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002807 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2808
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002809 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002810 unsigned IterationNum = 0;
2811 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2812 if (IterationNum == NumIterations)
2813 return RetVal = PHIVal; // Got exit value!
2814
2815 // Compute the value of the PHI node for the next iteration.
2816 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2817 if (NextPHI == PHIVal)
2818 return RetVal = NextPHI; // Stopped evolving!
2819 if (NextPHI == 0)
2820 return 0; // Couldn't evaluate!
2821 PHIVal = NextPHI;
2822 }
2823}
2824
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002825/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002826/// constant number of times (the condition evolves only from constants),
2827/// try to evaluate a few iterations of the loop until we get the exit
2828/// condition gets a value of ExitWhen (true or false). If we cannot
2829/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002830SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002831ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2833 if (PN == 0) return UnknownValue;
2834
2835 // Since the loop is canonicalized, the PHI node must have two entries. One
2836 // entry must be a constant (coming in from outside of the loop), and the
2837 // second must be derived from the same PHI.
2838 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2839 Constant *StartCST =
2840 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2841 if (StartCST == 0) return UnknownValue; // Must be a constant.
2842
2843 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2844 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2845 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2846
2847 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2848 // the loop symbolically to determine when the condition gets a value of
2849 // "ExitWhen".
2850 unsigned IterationNum = 0;
2851 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2852 for (Constant *PHIVal = StartCST;
2853 IterationNum != MaxIterations; ++IterationNum) {
2854 ConstantInt *CondVal =
2855 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2856
2857 // Couldn't symbolically evaluate.
2858 if (!CondVal) return UnknownValue;
2859
2860 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2861 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2862 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002863 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002864 }
2865
2866 // Compute the value of the PHI node for the next iteration.
2867 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2868 if (NextPHI == 0 || NextPHI == PHIVal)
2869 return UnknownValue; // Couldn't evaluate or not making progress...
2870 PHIVal = NextPHI;
2871 }
2872
2873 // Too many iterations were needed to evaluate.
2874 return UnknownValue;
2875}
2876
Dan Gohmandd40e9a2009-05-08 20:38:54 +00002877/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2878/// at the specified scope in the program. The L value specifies a loop
2879/// nest to evaluate the expression at, where null is the top-level or a
2880/// specified loop is immediately inside of the loop.
2881///
2882/// This method can be used to compute the exit value for a variable defined
2883/// in a loop by querying what the value will hold in the parent loop.
2884///
2885/// If this value is not computable at this scope, a SCEVCouldNotCompute
2886/// object is returned.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002887SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002888 // FIXME: this should be turned into a virtual method on SCEV!
2889
2890 if (isa<SCEVConstant>(V)) return V;
2891
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002892 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002893 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002894 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002895 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002896 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002897 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2898 if (PHINode *PN = dyn_cast<PHINode>(I))
2899 if (PN->getParent() == LI->getHeader()) {
2900 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002901 // to see if the loop that contains it has a known backedge-taken
2902 // count. If so, we may be able to force computation of the exit
2903 // value.
2904 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002905 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002906 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002907 // Okay, we know how many times the containing loop executes. If
2908 // this is a constant evolving PHI node, get the final value at
2909 // the specified iteration number.
2910 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002911 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002912 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002913 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 }
2915 }
2916
2917 // Okay, this is an expression that we cannot symbolically evaluate
2918 // into a SCEV. Check to see if it's possible to symbolically evaluate
2919 // the arguments into constants, and if so, try to constant propagate the
2920 // result. This is particularly useful for computing loop exit values.
2921 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00002922 // Check to see if we've folded this instruction at this loop before.
2923 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2924 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2925 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2926 if (!Pair.second)
2927 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2928
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002929 std::vector<Constant*> Operands;
2930 Operands.reserve(I->getNumOperands());
2931 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2932 Value *Op = I->getOperand(i);
2933 if (Constant *C = dyn_cast<Constant>(Op)) {
2934 Operands.push_back(C);
2935 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002936 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002937 // non-integer and non-pointer, don't even try to analyze them
2938 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00002939 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002940 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002941
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002943 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002944 Constant *C = SC->getValue();
2945 if (C->getType() != Op->getType())
2946 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2947 Op->getType(),
2948 false),
2949 C, Op->getType());
2950 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002951 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00002952 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2953 if (C->getType() != Op->getType())
2954 C =
2955 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2956 Op->getType(),
2957 false),
2958 C, Op->getType());
2959 Operands.push_back(C);
2960 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961 return V;
2962 } else {
2963 return V;
2964 }
2965 }
2966 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002967
2968 Constant *C;
2969 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2970 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2971 &Operands[0], Operands.size());
2972 else
2973 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2974 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00002975 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002976 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 }
2978 }
2979
2980 // This is some other type of SCEVUnknown, just return it.
2981 return V;
2982 }
2983
Dan Gohmanc76b5452009-05-04 22:02:23 +00002984 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985 // Avoid performing the look-up in the common case where the specified
2986 // expression has no loop-variant portions.
2987 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2988 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2989 if (OpAtScope != Comm->getOperand(i)) {
2990 if (OpAtScope == UnknownValue) return UnknownValue;
2991 // Okay, at least one of these operands is loop variant but might be
2992 // foldable. Build a new instance of the folded commutative expression.
2993 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2994 NewOps.push_back(OpAtScope);
2995
2996 for (++i; i != e; ++i) {
2997 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2998 if (OpAtScope == UnknownValue) return UnknownValue;
2999 NewOps.push_back(OpAtScope);
3000 }
3001 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003002 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003003 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003004 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003005 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003006 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003007 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003008 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003009 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003010 }
3011 }
3012 // If we got here, all operands are loop invariant.
3013 return Comm;
3014 }
3015
Dan Gohmanc76b5452009-05-04 22:02:23 +00003016 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003017 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003018 if (LHS == UnknownValue) return LHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00003019 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020 if (RHS == UnknownValue) return RHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00003021 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3022 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003023 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003024 }
3025
3026 // If this is a loop recurrence for a loop that does not contain L, then we
3027 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003028 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003029 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3030 // To evaluate this recurrence, we need to know how many times the AddRec
3031 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003032 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3033 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003034
Eli Friedman7489ec92008-08-04 23:49:06 +00003035 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003036 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037 }
3038 return UnknownValue;
3039 }
3040
Dan Gohmanc76b5452009-05-04 22:02:23 +00003041 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003042 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3043 if (Op == UnknownValue) return Op;
3044 if (Op == Cast->getOperand())
3045 return Cast; // must be loop invariant
3046 return getZeroExtendExpr(Op, Cast->getType());
3047 }
3048
Dan Gohmanc76b5452009-05-04 22:02:23 +00003049 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003050 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3051 if (Op == UnknownValue) return Op;
3052 if (Op == Cast->getOperand())
3053 return Cast; // must be loop invariant
3054 return getSignExtendExpr(Op, Cast->getType());
3055 }
3056
Dan Gohmanc76b5452009-05-04 22:02:23 +00003057 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003058 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3059 if (Op == UnknownValue) return Op;
3060 if (Op == Cast->getOperand())
3061 return Cast; // must be loop invariant
3062 return getTruncateExpr(Op, Cast->getType());
3063 }
3064
3065 assert(0 && "Unknown SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003066}
3067
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003068/// getSCEVAtScope - This is a convenience function which does
3069/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003070SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3071 return getSCEVAtScope(getSCEV(V), L);
3072}
3073
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003074/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3075/// following equation:
3076///
3077/// A * X = B (mod N)
3078///
3079/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3080/// A and B isn't important.
3081///
3082/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3083static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3084 ScalarEvolution &SE) {
3085 uint32_t BW = A.getBitWidth();
3086 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3087 assert(A != 0 && "A must be non-zero.");
3088
3089 // 1. D = gcd(A, N)
3090 //
3091 // The gcd of A and N may have only one prime factor: 2. The number of
3092 // trailing zeros in A is its multiplicity
3093 uint32_t Mult2 = A.countTrailingZeros();
3094 // D = 2^Mult2
3095
3096 // 2. Check if B is divisible by D.
3097 //
3098 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3099 // is not less than multiplicity of this prime factor for D.
3100 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003101 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003102
3103 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3104 // modulo (N / D).
3105 //
3106 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3107 // bit width during computations.
3108 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3109 APInt Mod(BW + 1, 0);
3110 Mod.set(BW - Mult2); // Mod = N / D
3111 APInt I = AD.multiplicativeInverse(Mod);
3112
3113 // 4. Compute the minimum unsigned root of the equation:
3114 // I * (B / D) mod (N / D)
3115 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3116
3117 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3118 // bits.
3119 return SE.getConstant(Result.trunc(BW));
3120}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121
3122/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3123/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3124/// might be the same) or two SCEVCouldNotCompute objects.
3125///
3126static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00003127SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003128 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003129 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3130 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3131 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003132
3133 // We currently can only solve this if the coefficients are constants.
3134 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003135 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003136 return std::make_pair(CNC, CNC);
3137 }
3138
3139 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3140 const APInt &L = LC->getValue()->getValue();
3141 const APInt &M = MC->getValue()->getValue();
3142 const APInt &N = NC->getValue()->getValue();
3143 APInt Two(BitWidth, 2);
3144 APInt Four(BitWidth, 4);
3145
3146 {
3147 using namespace APIntOps;
3148 const APInt& C = L;
3149 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3150 // The B coefficient is M-N/2
3151 APInt B(M);
3152 B -= sdiv(N,Two);
3153
3154 // The A coefficient is N/2
3155 APInt A(N.sdiv(Two));
3156
3157 // Compute the B^2-4ac term.
3158 APInt SqrtTerm(B);
3159 SqrtTerm *= B;
3160 SqrtTerm -= Four * (A * C);
3161
3162 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3163 // integer value or else APInt::sqrt() will assert.
3164 APInt SqrtVal(SqrtTerm.sqrt());
3165
3166 // Compute the two solutions for the quadratic formula.
3167 // The divisions must be performed as signed divisions.
3168 APInt NegB(-B);
3169 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003170 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003171 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003172 return std::make_pair(CNC, CNC);
3173 }
3174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3176 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3177
Dan Gohman89f85052007-10-22 18:31:58 +00003178 return std::make_pair(SE.getConstant(Solution1),
3179 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003180 } // end APIntOps namespace
3181}
3182
3183/// HowFarToZero - Return the number of times a backedge comparing the specified
3184/// value to zero will execute. If not computable, return UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003185SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003187 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188 // If the value is already zero, the branch will execute zero times.
3189 if (C->getValue()->isZero()) return C;
3190 return UnknownValue; // Otherwise it will loop infinitely.
3191 }
3192
Dan Gohmanbff6b582009-05-04 22:30:44 +00003193 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003194 if (!AddRec || AddRec->getLoop() != L)
3195 return UnknownValue;
3196
3197 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003198 // If this is an affine expression, the execution count of this branch is
3199 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003200 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003201 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003202 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003203 // equivalent to:
3204 //
3205 // Step*N = -Start (mod 2^BW)
3206 //
3207 // where BW is the common bit width of Start and Step.
3208
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003209 // Get the initial value for the loop.
3210 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3211 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003212
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003213 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003214
Dan Gohmanc76b5452009-05-04 22:02:23 +00003215 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003216 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003217
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003218 // First, handle unitary steps.
3219 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003220 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003221 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3222 return Start; // N = Start (as unsigned)
3223
3224 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003225 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003226 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003227 -StartC->getValue()->getValue(),
3228 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003229 }
3230 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3231 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3232 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003233 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3234 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003235 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3236 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003237 if (R1) {
3238#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003239 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3240 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003241#endif
3242 // Pick the smallest positive root value.
3243 if (ConstantInt *CB =
3244 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3245 R1->getValue(), R2->getValue()))) {
3246 if (CB->getZExtValue() == false)
3247 std::swap(R1, R2); // R1 is the minimum root now.
3248
3249 // We can only use this value if the chrec ends up with an exact zero
3250 // value at this index. When solving for "X*X != 5", for example, we
3251 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003252 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003253 if (Val->isZero())
3254 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255 }
3256 }
3257 }
3258
3259 return UnknownValue;
3260}
3261
3262/// HowFarToNonZero - Return the number of times a backedge checking the
3263/// specified value for nonzero will execute. If not computable, return
3264/// UnknownValue
Dan Gohmanbff6b582009-05-04 22:30:44 +00003265SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003266 // Loops that look like: while (X == 0) are very strange indeed. We don't
3267 // handle them yet except for the trivial case. This could be expanded in the
3268 // future as needed.
3269
3270 // If the value is a constant, check to see if it is known to be non-zero
3271 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003272 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003273 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003274 return getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003275 return UnknownValue; // Otherwise it will loop infinitely.
3276 }
3277
3278 // We could implement others, but I really doubt anyone writes loops like
3279 // this, and if they did, they would already be constant folded.
3280 return UnknownValue;
3281}
3282
Dan Gohmanab157b22009-05-18 15:36:09 +00003283/// getLoopPredecessor - If the given loop's header has exactly one unique
3284/// predecessor outside the loop, return it. Otherwise return null.
3285///
3286BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3287 BasicBlock *Header = L->getHeader();
3288 BasicBlock *Pred = 0;
3289 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3290 PI != E; ++PI)
3291 if (!L->contains(*PI)) {
3292 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3293 Pred = *PI;
3294 }
3295 return Pred;
3296}
3297
Dan Gohman1cddf972008-09-15 22:18:04 +00003298/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3299/// (which may not be an immediate predecessor) which has exactly one
3300/// successor from which BB is reachable, or null if no such block is
3301/// found.
3302///
3303BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003304ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003305 // If the block has a unique predecessor, then there is no path from the
3306 // predecessor to the block that does not go through the direct edge
3307 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003308 if (BasicBlock *Pred = BB->getSinglePredecessor())
3309 return Pred;
3310
3311 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003312 // If the header has a unique predecessor outside the loop, it must be
3313 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003314 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003315 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003316
3317 return 0;
3318}
3319
Dan Gohmancacd2012009-02-12 22:19:27 +00003320/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003321/// a conditional between LHS and RHS. This is used to help avoid max
3322/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003323bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003324 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003325 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmanab157b22009-05-18 15:36:09 +00003326 BasicBlock *Predecessor = getLoopPredecessor(L);
3327 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003328
Dan Gohmanab157b22009-05-18 15:36:09 +00003329 // Starting at the loop predecessor, climb up the predecessor chain, as long
3330 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003331 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003332 for (; Predecessor;
3333 PredecessorDest = Predecessor,
3334 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003335
3336 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003337 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003338 if (!LoopEntryPredicate ||
3339 LoopEntryPredicate->isUnconditional())
3340 continue;
3341
3342 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3343 if (!ICI) continue;
3344
3345 // Now that we found a conditional branch that dominates the loop, check to
3346 // see if it is the comparison we are looking for.
3347 Value *PreCondLHS = ICI->getOperand(0);
3348 Value *PreCondRHS = ICI->getOperand(1);
3349 ICmpInst::Predicate Cond;
Dan Gohmanab157b22009-05-18 15:36:09 +00003350 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohmanab678fb2008-08-12 20:17:31 +00003351 Cond = ICI->getPredicate();
3352 else
3353 Cond = ICI->getInversePredicate();
3354
Dan Gohmancacd2012009-02-12 22:19:27 +00003355 if (Cond == Pred)
3356 ; // An exact match.
3357 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3358 ; // The actual condition is beyond sufficient.
3359 else
3360 // Check a few special cases.
3361 switch (Cond) {
3362 case ICmpInst::ICMP_UGT:
3363 if (Pred == ICmpInst::ICMP_ULT) {
3364 std::swap(PreCondLHS, PreCondRHS);
3365 Cond = ICmpInst::ICMP_ULT;
3366 break;
3367 }
3368 continue;
3369 case ICmpInst::ICMP_SGT:
3370 if (Pred == ICmpInst::ICMP_SLT) {
3371 std::swap(PreCondLHS, PreCondRHS);
3372 Cond = ICmpInst::ICMP_SLT;
3373 break;
3374 }
3375 continue;
3376 case ICmpInst::ICMP_NE:
3377 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3378 // so check for this case by checking if the NE is comparing against
3379 // a minimum or maximum constant.
3380 if (!ICmpInst::isTrueWhenEqual(Pred))
3381 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3382 const APInt &A = CI->getValue();
3383 switch (Pred) {
3384 case ICmpInst::ICMP_SLT:
3385 if (A.isMaxSignedValue()) break;
3386 continue;
3387 case ICmpInst::ICMP_SGT:
3388 if (A.isMinSignedValue()) break;
3389 continue;
3390 case ICmpInst::ICMP_ULT:
3391 if (A.isMaxValue()) break;
3392 continue;
3393 case ICmpInst::ICMP_UGT:
3394 if (A.isMinValue()) break;
3395 continue;
3396 default:
3397 continue;
3398 }
3399 Cond = ICmpInst::ICMP_NE;
3400 // NE is symmetric but the original comparison may not be. Swap
3401 // the operands if necessary so that they match below.
3402 if (isa<SCEVConstant>(LHS))
3403 std::swap(PreCondLHS, PreCondRHS);
3404 break;
3405 }
3406 continue;
3407 default:
3408 // We weren't able to reconcile the condition.
3409 continue;
3410 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003411
3412 if (!PreCondLHS->getType()->isInteger()) continue;
3413
3414 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3415 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3416 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003417 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3418 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003419 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003420 }
3421
Dan Gohmanab678fb2008-08-12 20:17:31 +00003422 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003423}
3424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003425/// HowManyLessThans - Return the number of times a backedge containing the
3426/// specified less-than comparison will execute. If not computable, return
3427/// UnknownValue.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003428ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00003429HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3430 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003431 // Only handle: "ADDREC < LoopInvariant".
3432 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3433
Dan Gohmanbff6b582009-05-04 22:30:44 +00003434 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003435 if (!AddRec || AddRec->getLoop() != L)
3436 return UnknownValue;
3437
3438 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003439 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003440 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3441 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3442 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3443
3444 // TODO: handle non-constant strides.
3445 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3446 if (!CStep || CStep->isZero())
3447 return UnknownValue;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00003448 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003449 // With unit stride, the iteration never steps past the limit value.
3450 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3451 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3452 // Test whether a positive iteration iteration can step past the limit
3453 // value and past the maximum value for its type in a single step.
3454 if (isSigned) {
3455 APInt Max = APInt::getSignedMaxValue(BitWidth);
3456 if ((Max - CStep->getValue()->getValue())
3457 .slt(CLimit->getValue()->getValue()))
3458 return UnknownValue;
3459 } else {
3460 APInt Max = APInt::getMaxValue(BitWidth);
3461 if ((Max - CStep->getValue()->getValue())
3462 .ult(CLimit->getValue()->getValue()))
3463 return UnknownValue;
3464 }
3465 } else
3466 // TODO: handle non-constant limit values below.
3467 return UnknownValue;
3468 } else
3469 // TODO: handle negative strides below.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003470 return UnknownValue;
3471
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003472 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3473 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3474 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003475 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003476
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003477 // First, we get the value of the LHS in the first iteration: n
3478 SCEVHandle Start = AddRec->getOperand(0);
3479
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003480 // Determine the minimum constant start value.
3481 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3482 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3483 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003484
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003485 // If we know that the condition is true in order to enter the loop,
3486 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3487 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3488 // division must round up.
3489 SCEVHandle End = RHS;
3490 if (!isLoopGuardedByCond(L,
3491 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3492 getMinusSCEV(Start, Step), RHS))
3493 End = isSigned ? getSMaxExpr(RHS, Start)
3494 : getUMaxExpr(RHS, Start);
3495
3496 // Determine the maximum constant end value.
3497 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3498 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3499 APInt::getMaxValue(BitWidth));
3500
3501 // Finally, we subtract these two values and divide, rounding up, to get
3502 // the number of times the backedge is executed.
3503 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3504 getAddExpr(Step, NegOne)),
3505 Step);
3506
3507 // The maximum backedge count is similar, except using the minimum start
3508 // value and the maximum end value.
3509 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3510 MinStart),
3511 getAddExpr(Step, NegOne)),
3512 Step);
3513
3514 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 }
3516
3517 return UnknownValue;
3518}
3519
3520/// getNumIterationsInRange - Return the number of iterations of this loop that
3521/// produce values in the specified constant range. Another way of looking at
3522/// this is that it returns the first iteration number where the value is not in
3523/// the condition, thus computing the exit count. If the iteration count can't
3524/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003525SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3526 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003527 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003528 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003529
3530 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003531 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003532 if (!SC->getValue()->isZero()) {
3533 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003534 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3535 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00003536 if (const SCEVAddRecExpr *ShiftedAddRec =
3537 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003538 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003539 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003540 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003541 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003542 }
3543
3544 // The only time we can solve this is when we have all constant indices.
3545 // Otherwise, we cannot determine the overflow conditions.
3546 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3547 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003548 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549
3550
3551 // Okay at this point we know that all elements of the chrec are constants and
3552 // that the start element is zero.
3553
3554 // First check to see if the range contains zero. If not, the first
3555 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003556 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003557 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003558 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559
3560 if (isAffine()) {
3561 // If this is an affine expression then we have this situation:
3562 // Solve {0,+,A} in Range === Ax in Range
3563
3564 // We know that zero is in the range. If A is positive then we know that
3565 // the upper value of the range must be the first possible exit value.
3566 // If A is negative then the lower of the range is the last possible loop
3567 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003568 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003569 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3570 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3571
3572 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003573 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003574 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3575
3576 // Evaluate at the exit value. If we really did fall out of the valid
3577 // range, then we computed our trip count, otherwise wrap around or other
3578 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003579 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003580 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003581 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003582
3583 // Ensure that the previous value is in the range. This is a sanity check.
3584 assert(Range.contains(
3585 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003586 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003587 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003588 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003589 } else if (isQuadratic()) {
3590 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3591 // quadratic equation to solve it. To do this, we must frame our problem in
3592 // terms of figuring out when zero is crossed, instead of when
3593 // Range.getUpper() is crossed.
3594 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003595 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3596 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003597
3598 // Next, solve the constructed addrec
3599 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003600 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003601 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3602 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603 if (R1) {
3604 // Pick the smallest positive root value.
3605 if (ConstantInt *CB =
3606 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3607 R1->getValue(), R2->getValue()))) {
3608 if (CB->getZExtValue() == false)
3609 std::swap(R1, R2); // R1 is the minimum root now.
3610
3611 // Make sure the root is not off by one. The returned iteration should
3612 // not be in the range, but the previous one should be. When solving
3613 // for "X*X < 5", for example, we should not return a root of 2.
3614 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003615 R1->getValue(),
3616 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617 if (Range.contains(R1Val->getValue())) {
3618 // The next iteration must be out of the range...
3619 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3620
Dan Gohman89f85052007-10-22 18:31:58 +00003621 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003622 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003623 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003624 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003625 }
3626
3627 // If R1 was not in the range, then it is a good return value. Make
3628 // sure that R1-1 WAS in the range though, just in case.
3629 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003630 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003631 if (Range.contains(R1Val->getValue()))
3632 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003633 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003634 }
3635 }
3636 }
3637
Dan Gohman0ad08b02009-04-18 17:58:19 +00003638 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639}
3640
3641
3642
3643//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00003644// SCEVCallbackVH Class Implementation
3645//===----------------------------------------------------------------------===//
3646
3647void SCEVCallbackVH::deleted() {
3648 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3649 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3650 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003651 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3652 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003653 SE->Scalars.erase(getValPtr());
3654 // this now dangles!
3655}
3656
3657void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3658 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3659
3660 // Forget all the expressions associated with users of the old value,
3661 // so that future queries will recompute the expressions using the new
3662 // value.
3663 SmallVector<User *, 16> Worklist;
3664 Value *Old = getValPtr();
3665 bool DeleteOld = false;
3666 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3667 UI != UE; ++UI)
3668 Worklist.push_back(*UI);
3669 while (!Worklist.empty()) {
3670 User *U = Worklist.pop_back_val();
3671 // Deleting the Old value will cause this to dangle. Postpone
3672 // that until everything else is done.
3673 if (U == Old) {
3674 DeleteOld = true;
3675 continue;
3676 }
3677 if (PHINode *PN = dyn_cast<PHINode>(U))
3678 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003679 if (Instruction *I = dyn_cast<Instruction>(U))
3680 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003681 if (SE->Scalars.erase(U))
3682 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3683 UI != UE; ++UI)
3684 Worklist.push_back(*UI);
3685 }
3686 if (DeleteOld) {
3687 if (PHINode *PN = dyn_cast<PHINode>(Old))
3688 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003689 if (Instruction *I = dyn_cast<Instruction>(Old))
3690 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003691 SE->Scalars.erase(Old);
3692 // this now dangles!
3693 }
3694 // this may dangle!
3695}
3696
3697SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3698 : CallbackVH(V), SE(se) {}
3699
3700//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003701// ScalarEvolution Class Implementation
3702//===----------------------------------------------------------------------===//
3703
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003704ScalarEvolution::ScalarEvolution()
3705 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3706}
3707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003708bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003709 this->F = &F;
3710 LI = &getAnalysis<LoopInfo>();
3711 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712 return false;
3713}
3714
3715void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003716 Scalars.clear();
3717 BackedgeTakenCounts.clear();
3718 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00003719 ValuesAtScopes.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003720}
3721
3722void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3723 AU.setPreservesAll();
3724 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003725}
3726
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003727bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003728 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729}
3730
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003731static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732 const Loop *L) {
3733 // Print all inner loops first
3734 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3735 PrintLoopInfo(OS, SE, *I);
3736
Nick Lewyckye5da1912008-01-02 02:49:20 +00003737 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003738
Devang Patel02451fa2007-08-21 00:31:24 +00003739 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003740 L->getExitBlocks(ExitBlocks);
3741 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003742 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003743
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003744 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3745 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003746 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003747 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003748 }
3749
Nick Lewyckye5da1912008-01-02 02:49:20 +00003750 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003751}
3752
Dan Gohman13058cc2009-04-21 00:47:46 +00003753void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003754 // ScalarEvolution's implementaiton of the print method is to print
3755 // out SCEV values of all instructions that are interesting. Doing
3756 // this potentially causes it to create new SCEV objects though,
3757 // which technically conflicts with the const qualifier. This isn't
3758 // observable from outside the class though (the hasSCEV function
3759 // notwithstanding), so casting away the const isn't dangerous.
3760 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003761
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003762 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003763 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00003764 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003765 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003766 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003767 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 SV->print(OS);
3769 OS << "\t\t";
3770
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003771 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003772 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003773 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3775 OS << "<<Unknown>>";
3776 } else {
3777 OS << *ExitValue;
3778 }
3779 }
3780
3781
3782 OS << "\n";
3783 }
3784
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003785 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3786 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3787 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788}
Dan Gohman13058cc2009-04-21 00:47:46 +00003789
3790void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3791 raw_os_ostream OS(o);
3792 print(OS, M);
3793}