blob: b22f081b4300938e25df2ca10deefa232c14ba16 [file] [log] [blame]
Nate Begeman1d9d7422005-10-18 00:28:58 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman21e463b2005-10-16 05:39:50 +000010// This file implements the PPCISelLowering class.
Chris Lattner7c5a3d32005-08-16 17:14:42 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner16e71f22005-10-14 23:59:06 +000014#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
Chris Lattner59138102006-04-17 05:28:54 +000016#include "PPCPerfectShuffle.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000017#include "llvm/ADT/VectorExtras.h"
Evan Chengc4c62572006-03-13 23:20:37 +000018#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner8a2d3ca2005-08-26 21:23:58 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000022#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner7b738342005-09-13 19:33:40 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattner0b1e4e52005-08-26 17:36:52 +000024#include "llvm/Constants.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000025#include "llvm/Function.h"
Chris Lattner6d92cad2006-03-26 10:06:40 +000026#include "llvm/Intrinsics.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000027#include "llvm/Support/MathExtras.h"
Evan Chengd2ee2182006-02-18 00:08:58 +000028#include "llvm/Target/TargetOptions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000029using namespace llvm;
30
Nate Begeman21e463b2005-10-16 05:39:50 +000031PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
Chris Lattner7c5a3d32005-08-16 17:14:42 +000032 : TargetLowering(TM) {
33
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
Nate Begeman405e3ec2005-10-21 00:02:42 +000036 setPow2DivIsCheap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +000037
Chris Lattnerd145a612005-09-27 22:18:25 +000038 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
40
Chris Lattner7c5a3d32005-08-16 17:14:42 +000041 // Set up the register classes.
Nate Begeman1d9d7422005-10-18 00:28:58 +000042 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000045
Chris Lattnera54aa942006-01-29 06:26:08 +000046 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
Chris Lattner7c5a3d32005-08-16 17:14:42 +000049 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000065 setOperationAction(ISD::FREM , MVT::f64, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000066 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000068 setOperationAction(ISD::FREM , MVT::f32, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000069
70 // If we're enabling GP optimizations, use hardware square root
Chris Lattner1e9de3e2005-09-02 18:33:05 +000071 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +000072 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74 }
75
Chris Lattner9601a862006-03-05 05:08:37 +000076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
Nate Begemand88fc032006-01-14 03:14:10 +000079 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000081 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
83
Nate Begeman35ef9132006-01-11 21:21:00 +000084 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
86
Chris Lattner7c5a3d32005-08-16 17:14:42 +000087 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
Chris Lattnere4bc9ea2005-08-26 00:52:45 +000091
Chris Lattner0b1e4e52005-08-26 17:36:52 +000092 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
Nate Begeman44775902006-01-31 08:17:29 +000095
Nate Begeman750ac1b2006-02-01 07:19:44 +000096 // PowerPC wants to optimize integer setcc a bit
Nate Begeman44775902006-01-31 08:17:29 +000097 setOperationAction(ISD::SETCC, MVT::i32, Custom);
Chris Lattnereb9b62e2005-08-31 19:09:57 +000098
Nate Begeman81e80972006-03-17 01:40:33 +000099 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000101
Chris Lattnerf7605322005-08-31 21:09:52 +0000102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000104
Jim Laskeyad23c9d2005-08-17 00:40:22 +0000105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
Chris Lattner53e88452005-12-23 05:13:35 +0000109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
Chris Lattnerf73bae12005-11-29 06:16:21 +0000114
Chris Lattner25b8b8c2006-04-28 21:56:10 +0000115 // We cannot sextinreg(i1). Expand to shifts.
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117
118
Jim Laskeyabf6d172006-01-05 01:25:28 +0000119 // Support label based line numbers.
Chris Lattnerf73bae12005-11-29 06:16:21 +0000120 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskeye0bce712006-01-05 01:47:43 +0000121 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Jim Laskeyabf6d172006-01-05 01:25:28 +0000122 // FIXME - use subtarget debug flags
Jim Laskeye0bce712006-01-05 01:47:43 +0000123 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
Jim Laskeyabf6d172006-01-05 01:25:28 +0000124 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000125
Nate Begeman28a6b022005-12-10 02:36:00 +0000126 // We want to legalize GlobalAddress and ConstantPool nodes into the
127 // appropriate instructions to materialize the address.
Chris Lattner3eef4e32005-11-17 18:26:56 +0000128 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
Nate Begeman28a6b022005-12-10 02:36:00 +0000129 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
Nate Begeman37efe672006-04-22 18:53:45 +0000130 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
Chris Lattnerb99329e2006-01-13 02:42:53 +0000131
Nate Begemanee625572006-01-27 21:09:22 +0000132 // RET must be custom lowered, to meet ABI requirements
133 setOperationAction(ISD::RET , MVT::Other, Custom);
134
Nate Begemanacc398c2006-01-25 18:21:52 +0000135 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136 setOperationAction(ISD::VASTART , MVT::Other, Custom);
137
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000138 // Use the default implementation.
Nate Begemanacc398c2006-01-25 18:21:52 +0000139 setOperationAction(ISD::VAARG , MVT::Other, Expand);
140 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
141 setOperationAction(ISD::VAEND , MVT::Other, Expand);
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000142 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
Chris Lattner860e8862005-11-17 07:30:41 +0000145
Chris Lattner6d92cad2006-03-26 10:06:40 +0000146 // We want to custom lower some of our intrinsics.
Chris Lattner48b61a72006-03-28 00:40:33 +0000147 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Chris Lattner6d92cad2006-03-26 10:06:40 +0000148
Nate Begemanc09eeec2005-09-06 22:03:27 +0000149 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Nate Begeman1d9d7422005-10-18 00:28:58 +0000150 // They also have instructions for converting between i64 and fp.
Nate Begemanc09eeec2005-09-06 22:03:27 +0000151 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
Chris Lattner7fbcef72006-03-24 07:53:47 +0000153
154 // FIXME: disable this lowered code. This generates 64-bit register values,
155 // and we don't model the fact that the top part is clobbered by calls. We
156 // need to flag these together so that the value isn't live across a call.
157 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
158
Nate Begemanae749a92005-10-25 23:48:36 +0000159 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
161 } else {
Chris Lattner860e8862005-11-17 07:30:41 +0000162 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
Nate Begemanae749a92005-10-25 23:48:36 +0000163 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
Nate Begeman9d2b8172005-10-18 00:56:42 +0000164 }
165
166 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167 // 64 bit PowerPC implementations can support i64 types directly
168 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000169 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000171 } else {
172 // 32 bit PowerPC wants to expand i64 shifts itself.
173 setOperationAction(ISD::SHL, MVT::i64, Custom);
174 setOperationAction(ISD::SRL, MVT::i64, Custom);
175 setOperationAction(ISD::SRA, MVT::i64, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000176 }
Evan Chengd30bf012006-03-01 01:11:20 +0000177
Nate Begeman425a9692005-11-29 08:17:20 +0000178 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000179 // First set operation action for all vector types to expand. Then we
180 // will selectively turn on ones that can be effectively codegen'd.
181 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000183 // add/sub are legal for all supported vector VT's.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000184 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000186
Chris Lattner7ff7e672006-04-04 17:25:31 +0000187 // We promote all shuffles to v16i8.
188 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000189 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
190
191 // We promote all non-typed operations to v4i32.
192 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
193 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
194 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
195 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
196 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
197 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
198 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
199 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
200 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000204
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000205 // No other operations are legal.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000206 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattner01cae072006-04-03 23:55:43 +0000214
215 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000216 }
217
Chris Lattner7ff7e672006-04-04 17:25:31 +0000218 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219 // with merges, splats, etc.
220 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
221
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000222 setOperationAction(ISD::AND , MVT::v4i32, Legal);
223 setOperationAction(ISD::OR , MVT::v4i32, Legal);
224 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
225 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
226 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
228
Nate Begeman425a9692005-11-29 08:17:20 +0000229 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
Nate Begeman7fd1edd2005-12-19 23:25:09 +0000230 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
Chris Lattner8d052bc2006-03-25 07:39:07 +0000231 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
Chris Lattnerec4a0c72006-01-29 06:32:58 +0000233
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000234 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
Chris Lattnere7c768e2006-04-18 03:24:30 +0000235 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
Chris Lattner72dd9bd2006-04-18 03:43:48 +0000236 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
Chris Lattner19a81522006-04-18 03:57:35 +0000237 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000238
Chris Lattnerb2177b92006-03-19 06:55:52 +0000239 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000241
Chris Lattner541f91b2006-04-02 00:43:36 +0000242 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000244 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
Nate Begeman425a9692005-11-29 08:17:20 +0000246 }
247
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000248 setSetCCResultContents(ZeroOrOneSetCCResult);
Chris Lattnercadd7422006-01-13 17:52:03 +0000249 setStackPointerRegisterToSaveRestore(PPC::R1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000250
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000251 // We have target-specific dag combine patterns for the following nodes:
252 setTargetDAGCombine(ISD::SINT_TO_FP);
Chris Lattner51269842006-03-01 05:50:56 +0000253 setTargetDAGCombine(ISD::STORE);
Chris Lattner90564f22006-04-18 17:59:36 +0000254 setTargetDAGCombine(ISD::BR_CC);
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000255
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000256 computeRegisterProperties();
257}
258
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000259const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
260 switch (Opcode) {
261 default: return 0;
262 case PPCISD::FSEL: return "PPCISD::FSEL";
263 case PPCISD::FCFID: return "PPCISD::FCFID";
264 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
265 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
Chris Lattner51269842006-03-01 05:50:56 +0000266 case PPCISD::STFIWX: return "PPCISD::STFIWX";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000267 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
268 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000269 case PPCISD::VPERM: return "PPCISD::VPERM";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000270 case PPCISD::Hi: return "PPCISD::Hi";
271 case PPCISD::Lo: return "PPCISD::Lo";
272 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273 case PPCISD::SRL: return "PPCISD::SRL";
274 case PPCISD::SRA: return "PPCISD::SRA";
275 case PPCISD::SHL: return "PPCISD::SHL";
Chris Lattnerecfe55e2006-03-22 05:30:33 +0000276 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
277 case PPCISD::STD_32: return "PPCISD::STD_32";
Chris Lattnere00ebf02006-01-28 07:33:03 +0000278 case PPCISD::CALL: return "PPCISD::CALL";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000279 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000280 case PPCISD::MFCR: return "PPCISD::MFCR";
Chris Lattnera17b1552006-03-31 05:13:27 +0000281 case PPCISD::VCMP: return "PPCISD::VCMP";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000282 case PPCISD::VCMPo: return "PPCISD::VCMPo";
Chris Lattnerf70f8d92006-04-18 18:05:58 +0000283 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000284 }
285}
286
Chris Lattner1a635d62006-04-14 06:01:58 +0000287//===----------------------------------------------------------------------===//
288// Node matching predicates, for use by the tblgen matching code.
289//===----------------------------------------------------------------------===//
290
Chris Lattner0b1e4e52005-08-26 17:36:52 +0000291/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292static bool isFloatingPointZero(SDOperand Op) {
293 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296 // Maybe this has already been legalized into the constant pool?
297 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
300 }
301 return false;
302}
303
Chris Lattnerddb739e2006-04-06 17:23:16 +0000304/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
305/// true if Op is undef or if it matches the specified value.
306static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307 return Op.getOpcode() == ISD::UNDEF ||
308 cast<ConstantSDNode>(Op)->getValue() == Val;
309}
310
311/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312/// VPKUHUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000313bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
314 if (!isUnary) {
315 for (unsigned i = 0; i != 16; ++i)
316 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
317 return false;
318 } else {
319 for (unsigned i = 0; i != 8; ++i)
320 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
321 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
322 return false;
323 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000324 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000325}
326
327/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328/// VPKUWUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000329bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
330 if (!isUnary) {
331 for (unsigned i = 0; i != 16; i += 2)
332 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
333 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
334 return false;
335 } else {
336 for (unsigned i = 0; i != 8; i += 2)
337 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
338 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
339 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
340 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
341 return false;
342 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000343 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000344}
345
Chris Lattnercaad1632006-04-06 22:02:42 +0000346/// isVMerge - Common function, used to match vmrg* shuffles.
347///
348static bool isVMerge(SDNode *N, unsigned UnitSize,
349 unsigned LHSStart, unsigned RHSStart) {
Chris Lattner116cc482006-04-06 21:11:54 +0000350 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353 "Unsupported merge size!");
354
355 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
356 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
357 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000358 LHSStart+j+i*UnitSize) ||
Chris Lattner116cc482006-04-06 21:11:54 +0000359 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000360 RHSStart+j+i*UnitSize))
Chris Lattner116cc482006-04-06 21:11:54 +0000361 return false;
362 }
Chris Lattnercaad1632006-04-06 22:02:42 +0000363 return true;
364}
365
366/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
369 if (!isUnary)
370 return isVMerge(N, UnitSize, 8, 24);
371 return isVMerge(N, UnitSize, 8, 8);
Chris Lattner116cc482006-04-06 21:11:54 +0000372}
373
374/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
Chris Lattnercaad1632006-04-06 22:02:42 +0000376bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
377 if (!isUnary)
378 return isVMerge(N, UnitSize, 0, 16);
379 return isVMerge(N, UnitSize, 0, 0);
Chris Lattner116cc482006-04-06 21:11:54 +0000380}
381
382
Chris Lattnerd0608e12006-04-06 18:26:28 +0000383/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384/// amount, otherwise return -1.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000385int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
Chris Lattner116cc482006-04-06 21:11:54 +0000386 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
Chris Lattnerd0608e12006-04-06 18:26:28 +0000388 // Find the first non-undef value in the shuffle mask.
389 unsigned i;
390 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
391 /*search*/;
392
393 if (i == 16) return -1; // all undef.
394
395 // Otherwise, check to see if the rest of the elements are consequtively
396 // numbered from this value.
397 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398 if (ShiftAmt < i) return -1;
399 ShiftAmt -= i;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000400
Chris Lattnerf24380e2006-04-06 22:28:36 +0000401 if (!isUnary) {
402 // Check the rest of the elements to see if they are consequtive.
403 for (++i; i != 16; ++i)
404 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
405 return -1;
406 } else {
407 // Check the rest of the elements to see if they are consequtive.
408 for (++i; i != 16; ++i)
409 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
410 return -1;
411 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000412
413 return ShiftAmt;
414}
Chris Lattneref819f82006-03-20 06:33:01 +0000415
416/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417/// specifies a splat of a single element that is suitable for input to
418/// VSPLTB/VSPLTH/VSPLTW.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000419bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421 N->getNumOperands() == 16 &&
422 (EltSize == 1 || EltSize == 2 || EltSize == 4));
Chris Lattnerdd4d2d02006-03-20 06:51:10 +0000423
Chris Lattner88a99ef2006-03-20 06:37:44 +0000424 // This is a splat operation if each element of the permute is the same, and
425 // if the value doesn't reference the second vector.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000426 unsigned ElementBase = 0;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000427 SDOperand Elt = N->getOperand(0);
Chris Lattner7ff7e672006-04-04 17:25:31 +0000428 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429 ElementBase = EltV->getValue();
430 else
431 return false; // FIXME: Handle UNDEF elements too!
432
433 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
434 return false;
435
436 // Check that they are consequtive.
437 for (unsigned i = 1; i != EltSize; ++i) {
438 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
440 return false;
441 }
442
Chris Lattner88a99ef2006-03-20 06:37:44 +0000443 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000444 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
Chris Lattnerb097aa92006-04-14 23:19:08 +0000445 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000446 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447 "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000448 for (unsigned j = 0; j != EltSize; ++j)
449 if (N->getOperand(i+j) != N->getOperand(j))
450 return false;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000451 }
452
Chris Lattner7ff7e672006-04-04 17:25:31 +0000453 return true;
Chris Lattneref819f82006-03-20 06:33:01 +0000454}
455
456/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000458unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459 assert(isSplatShuffleMask(N, EltSize));
460 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
Chris Lattneref819f82006-03-20 06:33:01 +0000461}
462
Chris Lattnere87192a2006-04-12 17:37:20 +0000463/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
Chris Lattner140a58f2006-04-08 06:46:53 +0000464/// by using a vspltis[bhw] instruction of the specified element size, return
465/// the constant being splatted. The ByteSize field indicates the number of
466/// bytes of each element [124] -> [bhw].
Chris Lattnere87192a2006-04-12 17:37:20 +0000467SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000468 SDOperand OpVal(0, 0);
Chris Lattner79d9a882006-04-08 07:14:26 +0000469
470 // If ByteSize of the splat is bigger than the element size of the
471 // build_vector, then we have a case where we are checking for a splat where
472 // multiple elements of the buildvector are folded together into a single
473 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474 unsigned EltSize = 16/N->getNumOperands();
475 if (EltSize < ByteSize) {
476 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
477 SDOperand UniquedVals[4];
478 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
479
480 // See if all of the elements in the buildvector agree across.
481 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483 // If the element isn't a constant, bail fully out.
484 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
485
486
487 if (UniquedVals[i&(Multiple-1)].Val == 0)
488 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490 return SDOperand(); // no match.
491 }
492
493 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494 // either constant or undef values that are identical for each chunk. See
495 // if these chunks can form into a larger vspltis*.
496
497 // Check to see if all of the leading entries are either 0 or -1. If
498 // neither, then this won't fit into the immediate field.
499 bool LeadingZero = true;
500 bool LeadingOnes = true;
501 for (unsigned i = 0; i != Multiple-1; ++i) {
502 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
503
504 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
506 }
507 // Finally, check the least significant entry.
508 if (LeadingZero) {
509 if (UniquedVals[Multiple-1].Val == 0)
510 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
511 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
512 if (Val < 16)
513 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
514 }
515 if (LeadingOnes) {
516 if (UniquedVals[Multiple-1].Val == 0)
517 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
518 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
520 return DAG.getTargetConstant(Val, MVT::i32);
521 }
522
523 return SDOperand();
524 }
525
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000526 // Check to see if this buildvec has a single non-undef value in its elements.
527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
529 if (OpVal.Val == 0)
530 OpVal = N->getOperand(i);
531 else if (OpVal != N->getOperand(i))
Chris Lattner140a58f2006-04-08 06:46:53 +0000532 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000533 }
534
Chris Lattner140a58f2006-04-08 06:46:53 +0000535 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000536
Nate Begeman98e70cc2006-03-28 04:15:58 +0000537 unsigned ValSizeInBytes = 0;
538 uint64_t Value = 0;
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000539 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540 Value = CN->getValue();
541 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544 Value = FloatToBits(CN->getValue());
545 ValSizeInBytes = 4;
546 }
547
548 // If the splat value is larger than the element value, then we can never do
549 // this splat. The only case that we could fit the replicated bits into our
550 // immediate field for would be zero, and we prefer to use vxor for it.
Chris Lattner140a58f2006-04-08 06:46:53 +0000551 if (ValSizeInBytes < ByteSize) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000552
553 // If the element value is larger than the splat value, cut it in half and
554 // check to see if the two halves are equal. Continue doing this until we
555 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
556 while (ValSizeInBytes > ByteSize) {
557 ValSizeInBytes >>= 1;
558
559 // If the top half equals the bottom half, we're still ok.
Chris Lattner9b42bdd2006-04-05 17:39:25 +0000560 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561 (Value & ((1 << (8*ValSizeInBytes))-1)))
Chris Lattner140a58f2006-04-08 06:46:53 +0000562 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000563 }
564
565 // Properly sign extend the value.
566 int ShAmt = (4-ByteSize)*8;
567 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
568
Evan Cheng5b6a01b2006-03-26 09:52:32 +0000569 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
Chris Lattner140a58f2006-04-08 06:46:53 +0000570 if (MaskVal == 0) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000571
Chris Lattner140a58f2006-04-08 06:46:53 +0000572 // Finally, if this value fits in a 5 bit sext field, return it
573 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574 return DAG.getTargetConstant(MaskVal, MVT::i32);
575 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000576}
577
Chris Lattner1a635d62006-04-14 06:01:58 +0000578//===----------------------------------------------------------------------===//
579// LowerOperation implementation
580//===----------------------------------------------------------------------===//
581
582static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584 Constant *C = CP->get();
585 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586 SDOperand Zero = DAG.getConstant(0, MVT::i32);
587
588 const TargetMachine &TM = DAG.getTarget();
589
590 // If this is a non-darwin platform, we don't support non-static relo models
591 // yet.
592 if (TM.getRelocationModel() == Reloc::Static ||
593 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594 // Generate non-pic code that has direct accesses to the constant pool.
595 // The address of the global is just (hi(&g)+lo(&g)).
596 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
599 }
600
601 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602 if (TM.getRelocationModel() == Reloc::PIC) {
603 // With PIC, the first instruction is actually "GR+hi(&G)".
604 Hi = DAG.getNode(ISD::ADD, MVT::i32,
605 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
606 }
607
608 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
610 return Lo;
611}
612
Nate Begeman37efe672006-04-22 18:53:45 +0000613static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616 SDOperand Zero = DAG.getConstant(0, MVT::i32);
617
618 const TargetMachine &TM = DAG.getTarget();
619
620 // If this is a non-darwin platform, we don't support non-static relo models
621 // yet.
622 if (TM.getRelocationModel() == Reloc::Static ||
623 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624 // Generate non-pic code that has direct accesses to the constant pool.
625 // The address of the global is just (hi(&g)+lo(&g)).
626 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
629 }
630
631 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632 if (TM.getRelocationModel() == Reloc::PIC) {
633 // With PIC, the first instruction is actually "GR+hi(&G)".
634 Hi = DAG.getNode(ISD::ADD, MVT::i32,
635 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
636 }
637
638 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
640 return Lo;
641}
642
Chris Lattner1a635d62006-04-14 06:01:58 +0000643static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645 GlobalValue *GV = GSDN->getGlobal();
646 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647 SDOperand Zero = DAG.getConstant(0, MVT::i32);
648
649 const TargetMachine &TM = DAG.getTarget();
650
651 // If this is a non-darwin platform, we don't support non-static relo models
652 // yet.
653 if (TM.getRelocationModel() == Reloc::Static ||
654 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655 // Generate non-pic code that has direct accesses to globals.
656 // The address of the global is just (hi(&g)+lo(&g)).
657 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
660 }
661
662 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663 if (TM.getRelocationModel() == Reloc::PIC) {
664 // With PIC, the first instruction is actually "GR+hi(&G)".
665 Hi = DAG.getNode(ISD::ADD, MVT::i32,
666 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
667 }
668
669 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
671
672 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
674 return Lo;
675
676 // If the global is weak or external, we have to go through the lazy
677 // resolution stub.
678 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
679}
680
681static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
683
684 // If we're comparing for equality to zero, expose the fact that this is
685 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686 // fold the new nodes.
687 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688 if (C->isNullValue() && CC == ISD::SETEQ) {
689 MVT::ValueType VT = Op.getOperand(0).getValueType();
690 SDOperand Zext = Op.getOperand(0);
691 if (VT < MVT::i32) {
692 VT = MVT::i32;
693 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
694 }
695 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698 DAG.getConstant(Log2b, MVT::i32));
699 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
700 }
701 // Leave comparisons against 0 and -1 alone for now, since they're usually
702 // optimized. FIXME: revisit this when we can custom lower all setcc
703 // optimizations.
704 if (C->isAllOnesValue() || C->isNullValue())
705 return SDOperand();
706 }
707
708 // If we have an integer seteq/setne, turn it into a compare against zero
709 // by subtracting the rhs from the lhs, which is faster than setting a
710 // condition register, reading it back out, and masking the correct bit.
711 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713 MVT::ValueType VT = Op.getValueType();
714 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
715 Op.getOperand(1));
716 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
717 }
718 return SDOperand();
719}
720
721static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722 unsigned VarArgsFrameIndex) {
723 // vastart just stores the address of the VarArgsFrameIndex slot into the
724 // memory location argument.
725 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727 Op.getOperand(1), Op.getOperand(2));
728}
729
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000730static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
731 int &VarArgsFrameIndex) {
732 // TODO: add description of PPC stack frame format, or at least some docs.
733 //
734 MachineFunction &MF = DAG.getMachineFunction();
735 MachineFrameInfo *MFI = MF.getFrameInfo();
736 SSARegMap *RegMap = MF.getSSARegMap();
737 std::vector<SDOperand> ArgValues;
738 SDOperand Root = Op.getOperand(0);
739
740 unsigned ArgOffset = 24;
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000741 const unsigned Num_GPR_Regs = 8;
742 const unsigned Num_FPR_Regs = 13;
743 const unsigned Num_VR_Regs = 12;
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000744 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
745 static const unsigned GPR[] = {
746 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
747 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
748 };
749 static const unsigned FPR[] = {
750 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
751 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
752 };
753 static const unsigned VR[] = {
754 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
755 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
756 };
757
758 // Add DAG nodes to load the arguments or copy them out of registers. On
759 // entry to a function on PPC, the arguments start at offset 24, although the
760 // first ones are often in registers.
761 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
762 SDOperand ArgVal;
763 bool needsLoad = false;
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000764 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
765 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
766
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000767 unsigned CurArgOffset = ArgOffset;
768
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000769 switch (ObjectVT) {
770 default: assert(0 && "Unhandled argument type!");
771 case MVT::i32:
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000772 // All int arguments reserve stack space.
773 ArgOffset += 4;
774
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000775 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000776 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
777 MF.addLiveIn(GPR[GPR_idx], VReg);
778 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000779 ++GPR_idx;
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000780 } else {
781 needsLoad = true;
782 }
783 break;
784 case MVT::f32:
785 case MVT::f64:
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000786 // All FP arguments reserve stack space.
787 ArgOffset += ObjSize;
788
789 // Every 4 bytes of argument space consumes one of the GPRs available for
790 // argument passing.
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000791 if (GPR_idx != Num_GPR_Regs) {
792 ++GPR_idx;
793 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
794 ++GPR_idx;
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000795 }
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000796 if (FPR_idx != Num_FPR_Regs) {
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000797 unsigned VReg;
798 if (ObjectVT == MVT::f32)
799 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
800 else
801 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
802 MF.addLiveIn(FPR[FPR_idx], VReg);
803 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000804 ++FPR_idx;
805 } else {
806 needsLoad = true;
807 }
808 break;
809 case MVT::v4f32:
810 case MVT::v4i32:
811 case MVT::v8i16:
812 case MVT::v16i8:
Chris Lattnerbe4849a2006-05-16 18:51:52 +0000813 // Note that vector arguments in registers don't reserve stack space.
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000814 if (VR_idx != Num_VR_Regs) {
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000815 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
816 MF.addLiveIn(VR[VR_idx], VReg);
817 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000818 ++VR_idx;
819 } else {
820 // This should be simple, but requires getting 16-byte aligned stack
821 // values.
822 assert(0 && "Loading VR argument not implemented yet!");
823 needsLoad = true;
824 }
825 break;
826 }
827
828 // We need to load the argument to a virtual register if we determined above
829 // that we ran out of physical registers of the appropriate type
830 if (needsLoad) {
Chris Lattnerb375b5e2006-05-16 18:54:32 +0000831 // If the argument is actually used, emit a load from the right stack
832 // slot.
833 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
834 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
835 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
836 ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
837 DAG.getSrcValue(NULL));
838 } else {
839 // Don't emit a dead load.
840 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
841 }
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000842 }
843
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000844 ArgValues.push_back(ArgVal);
845 }
846
847 // If the function takes variable number of arguments, make a frame index for
848 // the start of the first vararg value... for expansion of llvm.va_start.
849 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
850 if (isVarArg) {
851 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
852 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
853 // If this function is vararg, store any remaining integer argument regs
854 // to their spots on the stack so that they may be loaded by deferencing the
855 // result of va_next.
856 std::vector<SDOperand> MemOps;
Chris Lattneraf4ec0c2006-05-16 18:58:15 +0000857 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
Chris Lattner8ab5fe52006-05-16 18:18:50 +0000858 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
859 MF.addLiveIn(GPR[GPR_idx], VReg);
860 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
861 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
862 Val, FIN, DAG.getSrcValue(NULL));
863 MemOps.push_back(Store);
864 // Increment the address by four for the next argument to store
865 SDOperand PtrOff = DAG.getConstant(4, MVT::i32);
866 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
867 }
868 if (!MemOps.empty())
869 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
870 }
871
872 ArgValues.push_back(Root);
873
874 // Return the new list of results.
875 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
876 Op.Val->value_end());
877 return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
878}
879
Chris Lattnerabde4602006-05-16 22:56:08 +0000880static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
881 SDOperand Chain = Op.getOperand(0);
882 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
883 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
884 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
885 SDOperand Callee = Op.getOperand(4);
886
887 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
888 // SelectExpr to use to put the arguments in the appropriate registers.
889 std::vector<SDOperand> args_to_use;
890
891 // Count how many bytes are to be pushed on the stack, including the linkage
892 // area, and parameter passing area.
893 unsigned NumBytes = 24;
894
895 if (Op.getNumOperands() == 5) {
896 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, MVT::i32));
897 } else {
898 for (unsigned i = 5, e = Op.getNumOperands(); i != e; ++i)
899 NumBytes += MVT::getSizeInBits(Op.getOperand(i).getValueType())/8;
900
901 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
902 // plus 32 bytes of argument space in case any called code gets funky on us.
903 // (Required by ABI to support var arg)
904 if (NumBytes < 56) NumBytes = 56;
905
906 // Adjust the stack pointer for the new arguments...
907 // These operations are automatically eliminated by the prolog/epilog pass
908 Chain = DAG.getCALLSEQ_START(Chain,
909 DAG.getConstant(NumBytes, MVT::i32));
910
911 // Set up a copy of the stack pointer for use loading and storing any
912 // arguments that may not fit in the registers available for argument
913 // passing.
914 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
915
916 // Figure out which arguments are going to go in registers, and which in
917 // memory. Also, if this is a vararg function, floating point operations
918 // must be stored to our stack, and loaded into integer regs as well, if
919 // any integer regs are available for argument passing.
920 unsigned ArgOffset = 24;
921 unsigned GPR_remaining = 8;
922 unsigned FPR_remaining = 13;
923
924 std::vector<SDOperand> MemOps;
925 for (unsigned i = 5, e = Op.getNumOperands(); i != e; ++i) {
926 SDOperand Arg = Op.getOperand(i);
927
928 // PtrOff will be used to store the current argument to the stack if a
929 // register cannot be found for it.
930 SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
931 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
932 switch (Arg.getValueType()) {
933 default: assert(0 && "Unexpected ValueType for argument!");
934 case MVT::i32:
935 if (GPR_remaining > 0) {
936 args_to_use.push_back(Arg);
937 --GPR_remaining;
938 } else {
939 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
940 Arg, PtrOff, DAG.getSrcValue(NULL)));
941 }
942 ArgOffset += 4;
943 break;
944 case MVT::f32:
945 case MVT::f64:
946 if (FPR_remaining > 0) {
947 args_to_use.push_back(Arg);
948 --FPR_remaining;
949 if (isVarArg) {
950 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
951 Arg, PtrOff,
952 DAG.getSrcValue(NULL));
953 MemOps.push_back(Store);
954 // Float varargs are always shadowed in available integer registers
955 if (GPR_remaining > 0) {
956 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
957 DAG.getSrcValue(NULL));
958 MemOps.push_back(Load.getValue(1));
959 args_to_use.push_back(Load);
960 --GPR_remaining;
961 }
962 if (GPR_remaining > 0 && Arg.getValueType() == MVT::f64) {
963 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
964 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
965 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
966 DAG.getSrcValue(NULL));
967 MemOps.push_back(Load.getValue(1));
968 args_to_use.push_back(Load);
969 --GPR_remaining;
970 }
971 } else {
972 // If we have any FPRs remaining, we may also have GPRs remaining.
973 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
974 // GPRs.
975 if (GPR_remaining > 0) {
976 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
977 --GPR_remaining;
978 }
979 if (GPR_remaining > 0 && Arg.getValueType() == MVT::f64) {
980 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
981 --GPR_remaining;
982 }
983 }
984 } else {
985 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
986 Arg, PtrOff, DAG.getSrcValue(NULL)));
987 }
988 ArgOffset += (Arg.getValueType() == MVT::f32) ? 4 : 8;
989 break;
990 }
991 }
992 if (!MemOps.empty())
993 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
994 }
995
996 std::vector<MVT::ValueType> RetVals(Op.Val->value_begin(),
997 Op.Val->value_end());
998
999 // If the callee is a GlobalAddress node (quite common, every direct call is)
1000 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1001 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1002 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
1003
1004 std::vector<SDOperand> Ops;
1005 Ops.push_back(Chain);
1006 Ops.push_back(Callee);
1007 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
1008 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
1009
1010 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
1011 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1012 DAG.getConstant(NumBytes, MVT::i32));
1013
1014 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1015 Op.Val->value_end());
1016 Ops.clear();
1017
1018 for (unsigned i = 0, e = TheCall.Val->getNumValues()-1; i != e; ++i)
1019 Ops.push_back(SDOperand(TheCall.Val, i));
1020 Ops.push_back(Chain);
1021 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, RetVT, Ops);
1022
1023 return Res.getValue(Op.ResNo);
1024}
1025
Chris Lattner1a635d62006-04-14 06:01:58 +00001026static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1027 SDOperand Copy;
1028 switch(Op.getNumOperands()) {
1029 default:
1030 assert(0 && "Do not know how to return this many arguments!");
1031 abort();
1032 case 1:
1033 return SDOperand(); // ret void is legal
1034 case 2: {
1035 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1036 unsigned ArgReg;
1037 if (MVT::isVector(ArgVT))
1038 ArgReg = PPC::V2;
1039 else if (MVT::isInteger(ArgVT))
1040 ArgReg = PPC::R3;
1041 else {
1042 assert(MVT::isFloatingPoint(ArgVT));
1043 ArgReg = PPC::F1;
1044 }
1045
1046 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1047 SDOperand());
1048
1049 // If we haven't noted the R3/F1 are live out, do so now.
1050 if (DAG.getMachineFunction().liveout_empty())
1051 DAG.getMachineFunction().addLiveOut(ArgReg);
1052 break;
1053 }
1054 case 3:
1055 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
1056 SDOperand());
1057 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1058 // If we haven't noted the R3+R4 are live out, do so now.
1059 if (DAG.getMachineFunction().liveout_empty()) {
1060 DAG.getMachineFunction().addLiveOut(PPC::R3);
1061 DAG.getMachineFunction().addLiveOut(PPC::R4);
1062 }
1063 break;
1064 }
1065 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1066}
1067
1068/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1069/// possible.
1070static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1071 // Not FP? Not a fsel.
1072 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1073 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1074 return SDOperand();
1075
1076 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1077
1078 // Cannot handle SETEQ/SETNE.
1079 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1080
1081 MVT::ValueType ResVT = Op.getValueType();
1082 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1083 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1084 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
1085
1086 // If the RHS of the comparison is a 0.0, we don't need to do the
1087 // subtraction at all.
1088 if (isFloatingPointZero(RHS))
1089 switch (CC) {
1090 default: break; // SETUO etc aren't handled by fsel.
1091 case ISD::SETULT:
1092 case ISD::SETLT:
1093 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1094 case ISD::SETUGE:
1095 case ISD::SETGE:
1096 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1097 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1098 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1099 case ISD::SETUGT:
1100 case ISD::SETGT:
1101 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1102 case ISD::SETULE:
1103 case ISD::SETLE:
1104 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1105 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1106 return DAG.getNode(PPCISD::FSEL, ResVT,
1107 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1108 }
1109
1110 SDOperand Cmp;
1111 switch (CC) {
1112 default: break; // SETUO etc aren't handled by fsel.
1113 case ISD::SETULT:
1114 case ISD::SETLT:
1115 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1116 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1117 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1118 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1119 case ISD::SETUGE:
1120 case ISD::SETGE:
1121 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1122 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1123 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1124 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1125 case ISD::SETUGT:
1126 case ISD::SETGT:
1127 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1128 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1129 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1130 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1131 case ISD::SETULE:
1132 case ISD::SETLE:
1133 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1134 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1135 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1136 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1137 }
1138 return SDOperand();
1139}
1140
1141static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1142 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1143 SDOperand Src = Op.getOperand(0);
1144 if (Src.getValueType() == MVT::f32)
1145 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1146
1147 SDOperand Tmp;
1148 switch (Op.getValueType()) {
1149 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1150 case MVT::i32:
1151 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1152 break;
1153 case MVT::i64:
1154 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1155 break;
1156 }
1157
1158 // Convert the FP value to an int value through memory.
1159 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1160 if (Op.getValueType() == MVT::i32)
1161 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1162 return Bits;
1163}
1164
1165static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1166 if (Op.getOperand(0).getValueType() == MVT::i64) {
1167 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1168 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1169 if (Op.getValueType() == MVT::f32)
1170 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1171 return FP;
1172 }
1173
1174 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1175 "Unhandled SINT_TO_FP type in custom expander!");
1176 // Since we only generate this in 64-bit mode, we can take advantage of
1177 // 64-bit registers. In particular, sign extend the input value into the
1178 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1179 // then lfd it and fcfid it.
1180 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1181 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1182 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1183
1184 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1185 Op.getOperand(0));
1186
1187 // STD the extended value into the stack slot.
1188 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1189 DAG.getEntryNode(), Ext64, FIdx,
1190 DAG.getSrcValue(NULL));
1191 // Load the value as a double.
1192 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1193
1194 // FCFID it and return it.
1195 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1196 if (Op.getValueType() == MVT::f32)
1197 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1198 return FP;
1199}
1200
1201static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
1202 assert(Op.getValueType() == MVT::i64 &&
1203 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1204 // The generic code does a fine job expanding shift by a constant.
1205 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1206
1207 // Otherwise, expand into a bunch of logical ops. Note that these ops
1208 // depend on the PPC behavior for oversized shift amounts.
1209 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1210 DAG.getConstant(0, MVT::i32));
1211 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1212 DAG.getConstant(1, MVT::i32));
1213 SDOperand Amt = Op.getOperand(1);
1214
1215 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1216 DAG.getConstant(32, MVT::i32), Amt);
1217 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1218 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1219 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1220 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1221 DAG.getConstant(-32U, MVT::i32));
1222 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1223 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1224 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1225 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1226}
1227
1228static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
1229 assert(Op.getValueType() == MVT::i64 &&
1230 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1231 // The generic code does a fine job expanding shift by a constant.
1232 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1233
1234 // Otherwise, expand into a bunch of logical ops. Note that these ops
1235 // depend on the PPC behavior for oversized shift amounts.
1236 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1237 DAG.getConstant(0, MVT::i32));
1238 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1239 DAG.getConstant(1, MVT::i32));
1240 SDOperand Amt = Op.getOperand(1);
1241
1242 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1243 DAG.getConstant(32, MVT::i32), Amt);
1244 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1245 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1246 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1247 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1248 DAG.getConstant(-32U, MVT::i32));
1249 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1250 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1251 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1252 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1253}
1254
1255static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
1256 assert(Op.getValueType() == MVT::i64 &&
1257 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1258 // The generic code does a fine job expanding shift by a constant.
1259 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1260
1261 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1262 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1263 DAG.getConstant(0, MVT::i32));
1264 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1265 DAG.getConstant(1, MVT::i32));
1266 SDOperand Amt = Op.getOperand(1);
1267
1268 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1269 DAG.getConstant(32, MVT::i32), Amt);
1270 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1271 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1272 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1273 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1274 DAG.getConstant(-32U, MVT::i32));
1275 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1276 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1277 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1278 Tmp4, Tmp6, ISD::SETLE);
1279 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1280}
1281
1282//===----------------------------------------------------------------------===//
1283// Vector related lowering.
1284//
1285
Chris Lattnerac225ca2006-04-12 19:07:14 +00001286// If this is a vector of constants or undefs, get the bits. A bit in
1287// UndefBits is set if the corresponding element of the vector is an
1288// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1289// zero. Return true if this is not an array of constants, false if it is.
1290//
Chris Lattnerac225ca2006-04-12 19:07:14 +00001291static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1292 uint64_t UndefBits[2]) {
1293 // Start with zero'd results.
1294 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1295
1296 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1297 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1298 SDOperand OpVal = BV->getOperand(i);
1299
1300 unsigned PartNo = i >= e/2; // In the upper 128 bits?
Chris Lattnerb17f1672006-04-16 01:01:29 +00001301 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
Chris Lattnerac225ca2006-04-12 19:07:14 +00001302
1303 uint64_t EltBits = 0;
1304 if (OpVal.getOpcode() == ISD::UNDEF) {
1305 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1306 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1307 continue;
1308 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1309 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1310 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1311 assert(CN->getValueType(0) == MVT::f32 &&
1312 "Only one legal FP vector type!");
1313 EltBits = FloatToBits(CN->getValue());
1314 } else {
1315 // Nonconstant element.
1316 return true;
1317 }
1318
1319 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1320 }
1321
1322 //printf("%llx %llx %llx %llx\n",
1323 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1324 return false;
1325}
Chris Lattneref819f82006-03-20 06:33:01 +00001326
Chris Lattnerb17f1672006-04-16 01:01:29 +00001327// If this is a splat (repetition) of a value across the whole vector, return
1328// the smallest size that splats it. For example, "0x01010101010101..." is a
1329// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1330// SplatSize = 1 byte.
1331static bool isConstantSplat(const uint64_t Bits128[2],
1332 const uint64_t Undef128[2],
1333 unsigned &SplatBits, unsigned &SplatUndef,
1334 unsigned &SplatSize) {
1335
1336 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1337 // the same as the lower 64-bits, ignoring undefs.
1338 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1339 return false; // Can't be a splat if two pieces don't match.
1340
1341 uint64_t Bits64 = Bits128[0] | Bits128[1];
1342 uint64_t Undef64 = Undef128[0] & Undef128[1];
1343
1344 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1345 // undefs.
1346 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1347 return false; // Can't be a splat if two pieces don't match.
1348
1349 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1350 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1351
1352 // If the top 16-bits are different than the lower 16-bits, ignoring
1353 // undefs, we have an i32 splat.
1354 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1355 SplatBits = Bits32;
1356 SplatUndef = Undef32;
1357 SplatSize = 4;
1358 return true;
1359 }
1360
1361 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1362 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1363
1364 // If the top 8-bits are different than the lower 8-bits, ignoring
1365 // undefs, we have an i16 splat.
1366 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1367 SplatBits = Bits16;
1368 SplatUndef = Undef16;
1369 SplatSize = 2;
1370 return true;
1371 }
1372
1373 // Otherwise, we have an 8-bit splat.
1374 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1375 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1376 SplatSize = 1;
1377 return true;
1378}
1379
Chris Lattner4a998b92006-04-17 06:00:21 +00001380/// BuildSplatI - Build a canonical splati of Val with an element size of
1381/// SplatSize. Cast the result to VT.
1382static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1383 SelectionDAG &DAG) {
1384 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
Chris Lattner6876e662006-04-17 06:58:41 +00001385
1386 // Force vspltis[hw] -1 to vspltisb -1.
1387 if (Val == -1) SplatSize = 1;
1388
Chris Lattner4a998b92006-04-17 06:00:21 +00001389 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1390 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1391 };
1392 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1393
1394 // Build a canonical splat for this value.
1395 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1396 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1397 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1398 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1399}
1400
Chris Lattnere7c768e2006-04-18 03:24:30 +00001401/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
Chris Lattner6876e662006-04-17 06:58:41 +00001402/// specified intrinsic ID.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001403static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1404 SelectionDAG &DAG,
1405 MVT::ValueType DestVT = MVT::Other) {
1406 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1407 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
Chris Lattner6876e662006-04-17 06:58:41 +00001408 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1409}
1410
Chris Lattnere7c768e2006-04-18 03:24:30 +00001411/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1412/// specified intrinsic ID.
1413static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1414 SDOperand Op2, SelectionDAG &DAG,
1415 MVT::ValueType DestVT = MVT::Other) {
1416 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1417 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1418 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1419}
1420
1421
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001422/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1423/// amount. The result has the specified value type.
1424static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1425 MVT::ValueType VT, SelectionDAG &DAG) {
1426 // Force LHS/RHS to be the right type.
1427 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1428 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1429
1430 std::vector<SDOperand> Ops;
1431 for (unsigned i = 0; i != 16; ++i)
1432 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1433 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1434 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1435 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1436}
1437
Chris Lattnerf1b47082006-04-14 05:19:18 +00001438// If this is a case we can't handle, return null and let the default
1439// expansion code take care of it. If we CAN select this case, and if it
1440// selects to a single instruction, return Op. Otherwise, if we can codegen
1441// this case more efficiently than a constant pool load, lower it to the
1442// sequence of ops that should be used.
1443static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1444 // If this is a vector of constants or undefs, get the bits. A bit in
1445 // UndefBits is set if the corresponding element of the vector is an
1446 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1447 // zero.
1448 uint64_t VectorBits[2];
1449 uint64_t UndefBits[2];
1450 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1451 return SDOperand(); // Not a constant vector.
1452
Chris Lattnerb17f1672006-04-16 01:01:29 +00001453 // If this is a splat (repetition) of a value across the whole vector, return
1454 // the smallest size that splats it. For example, "0x01010101010101..." is a
1455 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1456 // SplatSize = 1 byte.
1457 unsigned SplatBits, SplatUndef, SplatSize;
1458 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1459 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1460
1461 // First, handle single instruction cases.
1462
1463 // All zeros?
1464 if (SplatBits == 0) {
1465 // Canonicalize all zero vectors to be v4i32.
1466 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1467 SDOperand Z = DAG.getConstant(0, MVT::i32);
1468 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1469 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1470 }
1471 return Op;
Chris Lattnerf1b47082006-04-14 05:19:18 +00001472 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001473
1474 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1475 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
Chris Lattner4a998b92006-04-17 06:00:21 +00001476 if (SextVal >= -16 && SextVal <= 15)
1477 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
Chris Lattnerb17f1672006-04-16 01:01:29 +00001478
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001479
1480 // Two instruction sequences.
1481
Chris Lattner4a998b92006-04-17 06:00:21 +00001482 // If this value is in the range [-32,30] and is even, use:
1483 // tmp = VSPLTI[bhw], result = add tmp, tmp
1484 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1485 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1486 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1487 }
Chris Lattner6876e662006-04-17 06:58:41 +00001488
1489 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1490 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1491 // for fneg/fabs.
1492 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1493 // Make -1 and vspltisw -1:
1494 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1495
1496 // Make the VSLW intrinsic, computing 0x8000_0000.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001497 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1498 OnesV, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001499
1500 // xor by OnesV to invert it.
1501 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1502 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1503 }
1504
1505 // Check to see if this is a wide variety of vsplti*, binop self cases.
1506 unsigned SplatBitSize = SplatSize*8;
1507 static const char SplatCsts[] = {
1508 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001509 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
Chris Lattner6876e662006-04-17 06:58:41 +00001510 };
1511 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1512 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1513 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1514 int i = SplatCsts[idx];
1515
1516 // Figure out what shift amount will be used by altivec if shifted by i in
1517 // this splat size.
1518 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1519
1520 // vsplti + shl self.
1521 if (SextVal == (i << (int)TypeShiftAmt)) {
1522 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1523 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1524 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1525 Intrinsic::ppc_altivec_vslw
1526 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001527 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001528 }
1529
1530 // vsplti + srl self.
1531 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1532 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1533 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1534 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1535 Intrinsic::ppc_altivec_vsrw
1536 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001537 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001538 }
1539
1540 // vsplti + sra self.
1541 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1542 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1543 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1544 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1545 Intrinsic::ppc_altivec_vsraw
1546 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001547 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001548 }
1549
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001550 // vsplti + rol self.
1551 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1552 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1553 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1554 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1555 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1556 Intrinsic::ppc_altivec_vrlw
1557 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001558 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001559 }
1560
1561 // t = vsplti c, result = vsldoi t, t, 1
1562 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1563 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1564 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1565 }
1566 // t = vsplti c, result = vsldoi t, t, 2
1567 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1568 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1569 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1570 }
1571 // t = vsplti c, result = vsldoi t, t, 3
1572 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1573 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1574 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1575 }
Chris Lattner6876e662006-04-17 06:58:41 +00001576 }
1577
Chris Lattner6876e662006-04-17 06:58:41 +00001578 // Three instruction sequences.
1579
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001580 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1581 if (SextVal >= 0 && SextVal <= 31) {
1582 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1583 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1584 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1585 }
1586 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1587 if (SextVal >= -31 && SextVal <= 0) {
1588 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1589 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
Chris Lattnerc4083822006-04-17 06:07:44 +00001590 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
Chris Lattnerf1b47082006-04-14 05:19:18 +00001591 }
1592 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001593
Chris Lattnerf1b47082006-04-14 05:19:18 +00001594 return SDOperand();
1595}
1596
Chris Lattner59138102006-04-17 05:28:54 +00001597/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1598/// the specified operations to build the shuffle.
1599static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1600 SDOperand RHS, SelectionDAG &DAG) {
1601 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1602 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1603 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1604
1605 enum {
Chris Lattner00402c72006-05-16 04:20:24 +00001606 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
Chris Lattner59138102006-04-17 05:28:54 +00001607 OP_VMRGHW,
1608 OP_VMRGLW,
1609 OP_VSPLTISW0,
1610 OP_VSPLTISW1,
1611 OP_VSPLTISW2,
1612 OP_VSPLTISW3,
1613 OP_VSLDOI4,
1614 OP_VSLDOI8,
1615 OP_VSLDOI12,
1616 };
1617
1618 if (OpNum == OP_COPY) {
1619 if (LHSID == (1*9+2)*9+3) return LHS;
1620 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1621 return RHS;
1622 }
1623
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001624 SDOperand OpLHS, OpRHS;
1625 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1626 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1627
Chris Lattner59138102006-04-17 05:28:54 +00001628 unsigned ShufIdxs[16];
1629 switch (OpNum) {
1630 default: assert(0 && "Unknown i32 permute!");
1631 case OP_VMRGHW:
1632 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1633 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1634 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1635 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1636 break;
1637 case OP_VMRGLW:
1638 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1639 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1640 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1641 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1642 break;
1643 case OP_VSPLTISW0:
1644 for (unsigned i = 0; i != 16; ++i)
1645 ShufIdxs[i] = (i&3)+0;
1646 break;
1647 case OP_VSPLTISW1:
1648 for (unsigned i = 0; i != 16; ++i)
1649 ShufIdxs[i] = (i&3)+4;
1650 break;
1651 case OP_VSPLTISW2:
1652 for (unsigned i = 0; i != 16; ++i)
1653 ShufIdxs[i] = (i&3)+8;
1654 break;
1655 case OP_VSPLTISW3:
1656 for (unsigned i = 0; i != 16; ++i)
1657 ShufIdxs[i] = (i&3)+12;
1658 break;
1659 case OP_VSLDOI4:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001660 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001661 case OP_VSLDOI8:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001662 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001663 case OP_VSLDOI12:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001664 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001665 }
1666 std::vector<SDOperand> Ops;
1667 for (unsigned i = 0; i != 16; ++i)
1668 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
Chris Lattner59138102006-04-17 05:28:54 +00001669
1670 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1671 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1672}
1673
Chris Lattnerf1b47082006-04-14 05:19:18 +00001674/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1675/// is a shuffle we can handle in a single instruction, return it. Otherwise,
1676/// return the code it can be lowered into. Worst case, it can always be
1677/// lowered into a vperm.
1678static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1679 SDOperand V1 = Op.getOperand(0);
1680 SDOperand V2 = Op.getOperand(1);
1681 SDOperand PermMask = Op.getOperand(2);
1682
1683 // Cases that are handled by instructions that take permute immediates
1684 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1685 // selected by the instruction selector.
1686 if (V2.getOpcode() == ISD::UNDEF) {
1687 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1688 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1689 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1690 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1691 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1692 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1693 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1694 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1695 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1696 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1697 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1698 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1699 return Op;
1700 }
1701 }
1702
1703 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1704 // and produce a fixed permutation. If any of these match, do not lower to
1705 // VPERM.
1706 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1707 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1708 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1709 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1710 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1711 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1712 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1713 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1714 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1715 return Op;
1716
Chris Lattner59138102006-04-17 05:28:54 +00001717 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1718 // perfect shuffle table to emit an optimal matching sequence.
1719 unsigned PFIndexes[4];
1720 bool isFourElementShuffle = true;
1721 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1722 unsigned EltNo = 8; // Start out undef.
1723 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1724 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1725 continue; // Undef, ignore it.
1726
1727 unsigned ByteSource =
1728 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1729 if ((ByteSource & 3) != j) {
1730 isFourElementShuffle = false;
1731 break;
1732 }
1733
1734 if (EltNo == 8) {
1735 EltNo = ByteSource/4;
1736 } else if (EltNo != ByteSource/4) {
1737 isFourElementShuffle = false;
1738 break;
1739 }
1740 }
1741 PFIndexes[i] = EltNo;
1742 }
1743
1744 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1745 // perfect shuffle vector to determine if it is cost effective to do this as
1746 // discrete instructions, or whether we should use a vperm.
1747 if (isFourElementShuffle) {
1748 // Compute the index in the perfect shuffle table.
1749 unsigned PFTableIndex =
1750 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1751
1752 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1753 unsigned Cost = (PFEntry >> 30);
1754
1755 // Determining when to avoid vperm is tricky. Many things affect the cost
1756 // of vperm, particularly how many times the perm mask needs to be computed.
1757 // For example, if the perm mask can be hoisted out of a loop or is already
1758 // used (perhaps because there are multiple permutes with the same shuffle
1759 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1760 // the loop requires an extra register.
1761 //
1762 // As a compromise, we only emit discrete instructions if the shuffle can be
1763 // generated in 3 or fewer operations. When we have loop information
1764 // available, if this block is within a loop, we should avoid using vperm
1765 // for 3-operation perms and use a constant pool load instead.
1766 if (Cost < 3)
1767 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1768 }
Chris Lattnerf1b47082006-04-14 05:19:18 +00001769
1770 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1771 // vector that will get spilled to the constant pool.
1772 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1773
1774 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1775 // that it is in input element units, not in bytes. Convert now.
1776 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1777 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1778
1779 std::vector<SDOperand> ResultMask;
1780 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
Chris Lattner730b4562006-04-15 23:48:05 +00001781 unsigned SrcElt;
1782 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1783 SrcElt = 0;
1784 else
1785 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
Chris Lattnerf1b47082006-04-14 05:19:18 +00001786
1787 for (unsigned j = 0; j != BytesPerElement; ++j)
1788 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1789 MVT::i8));
1790 }
1791
1792 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1793 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1794}
1795
Chris Lattner90564f22006-04-18 17:59:36 +00001796/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1797/// altivec comparison. If it is, return true and fill in Opc/isDot with
1798/// information about the intrinsic.
1799static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1800 bool &isDot) {
1801 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1802 CompareOpc = -1;
1803 isDot = false;
1804 switch (IntrinsicID) {
1805 default: return false;
1806 // Comparison predicates.
Chris Lattner1a635d62006-04-14 06:01:58 +00001807 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1808 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1809 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1810 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1811 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1812 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1813 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1814 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1815 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1816 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1817 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1818 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1819 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1820
1821 // Normal Comparisons.
1822 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1823 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1824 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1825 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1826 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1827 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1828 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1829 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1830 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1831 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1832 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1833 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1834 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1835 }
Chris Lattner90564f22006-04-18 17:59:36 +00001836 return true;
1837}
1838
1839/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1840/// lower, do it, otherwise return null.
1841static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1842 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1843 // opcode number of the comparison.
1844 int CompareOpc;
1845 bool isDot;
1846 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1847 return SDOperand(); // Don't custom lower most intrinsics.
Chris Lattner1a635d62006-04-14 06:01:58 +00001848
Chris Lattner90564f22006-04-18 17:59:36 +00001849 // If this is a non-dot comparison, make the VCMP node and we are done.
Chris Lattner1a635d62006-04-14 06:01:58 +00001850 if (!isDot) {
1851 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1852 Op.getOperand(1), Op.getOperand(2),
1853 DAG.getConstant(CompareOpc, MVT::i32));
1854 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1855 }
1856
1857 // Create the PPCISD altivec 'dot' comparison node.
1858 std::vector<SDOperand> Ops;
1859 std::vector<MVT::ValueType> VTs;
1860 Ops.push_back(Op.getOperand(2)); // LHS
1861 Ops.push_back(Op.getOperand(3)); // RHS
1862 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1863 VTs.push_back(Op.getOperand(2).getValueType());
1864 VTs.push_back(MVT::Flag);
1865 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1866
1867 // Now that we have the comparison, emit a copy from the CR to a GPR.
1868 // This is flagged to the above dot comparison.
1869 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1870 DAG.getRegister(PPC::CR6, MVT::i32),
1871 CompNode.getValue(1));
1872
1873 // Unpack the result based on how the target uses it.
1874 unsigned BitNo; // Bit # of CR6.
1875 bool InvertBit; // Invert result?
1876 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1877 default: // Can't happen, don't crash on invalid number though.
1878 case 0: // Return the value of the EQ bit of CR6.
1879 BitNo = 0; InvertBit = false;
1880 break;
1881 case 1: // Return the inverted value of the EQ bit of CR6.
1882 BitNo = 0; InvertBit = true;
1883 break;
1884 case 2: // Return the value of the LT bit of CR6.
1885 BitNo = 2; InvertBit = false;
1886 break;
1887 case 3: // Return the inverted value of the LT bit of CR6.
1888 BitNo = 2; InvertBit = true;
1889 break;
1890 }
1891
1892 // Shift the bit into the low position.
1893 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1894 DAG.getConstant(8-(3-BitNo), MVT::i32));
1895 // Isolate the bit.
1896 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1897 DAG.getConstant(1, MVT::i32));
1898
1899 // If we are supposed to, toggle the bit.
1900 if (InvertBit)
1901 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1902 DAG.getConstant(1, MVT::i32));
1903 return Flags;
1904}
1905
1906static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1907 // Create a stack slot that is 16-byte aligned.
1908 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1909 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1910 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1911
1912 // Store the input value into Value#0 of the stack slot.
1913 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1914 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1915 // Load it out.
1916 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1917}
1918
Chris Lattnere7c768e2006-04-18 03:24:30 +00001919static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001920 if (Op.getValueType() == MVT::v4i32) {
1921 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1922
1923 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1924 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1925
1926 SDOperand RHSSwap = // = vrlw RHS, 16
1927 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1928
1929 // Shrinkify inputs to v8i16.
1930 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1931 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1932 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1933
1934 // Low parts multiplied together, generating 32-bit results (we ignore the
1935 // top parts).
1936 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1937 LHS, RHS, DAG, MVT::v4i32);
1938
1939 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1940 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1941 // Shift the high parts up 16 bits.
1942 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1943 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1944 } else if (Op.getValueType() == MVT::v8i16) {
1945 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1946
Chris Lattnercea2aa72006-04-18 04:28:57 +00001947 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001948
Chris Lattnercea2aa72006-04-18 04:28:57 +00001949 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1950 LHS, RHS, Zero, DAG);
Chris Lattner19a81522006-04-18 03:57:35 +00001951 } else if (Op.getValueType() == MVT::v16i8) {
1952 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1953
1954 // Multiply the even 8-bit parts, producing 16-bit sums.
1955 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1956 LHS, RHS, DAG, MVT::v8i16);
1957 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1958
1959 // Multiply the odd 8-bit parts, producing 16-bit sums.
1960 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1961 LHS, RHS, DAG, MVT::v8i16);
1962 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1963
1964 // Merge the results together.
1965 std::vector<SDOperand> Ops;
1966 for (unsigned i = 0; i != 8; ++i) {
1967 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1968 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1969 }
1970
1971 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1972 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001973 } else {
1974 assert(0 && "Unknown mul to lower!");
1975 abort();
1976 }
Chris Lattnere7c768e2006-04-18 03:24:30 +00001977}
1978
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001979/// LowerOperation - Provide custom lowering hooks for some operations.
1980///
Nate Begeman21e463b2005-10-16 05:39:50 +00001981SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001982 switch (Op.getOpcode()) {
1983 default: assert(0 && "Wasn't expecting to be able to lower this!");
Chris Lattner1a635d62006-04-14 06:01:58 +00001984 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1985 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
Nate Begeman37efe672006-04-22 18:53:45 +00001986 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
Chris Lattner1a635d62006-04-14 06:01:58 +00001987 case ISD::SETCC: return LowerSETCC(Op, DAG);
1988 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
Chris Lattner8ab5fe52006-05-16 18:18:50 +00001989 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
1990 VarArgsFrameIndex);
Chris Lattnerabde4602006-05-16 22:56:08 +00001991 case ISD::CALL: return LowerCALL(Op, DAG);
Chris Lattner1a635d62006-04-14 06:01:58 +00001992 case ISD::RET: return LowerRET(Op, DAG);
Chris Lattner7c0d6642005-10-02 06:37:13 +00001993
Chris Lattner1a635d62006-04-14 06:01:58 +00001994 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1995 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1996 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001997
Chris Lattner1a635d62006-04-14 06:01:58 +00001998 // Lower 64-bit shifts.
1999 case ISD::SHL: return LowerSHL(Op, DAG);
2000 case ISD::SRL: return LowerSRL(Op, DAG);
2001 case ISD::SRA: return LowerSRA(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002002
Chris Lattner1a635d62006-04-14 06:01:58 +00002003 // Vector-related lowering.
2004 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2005 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2006 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2007 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
Chris Lattnere7c768e2006-04-18 03:24:30 +00002008 case ISD::MUL: return LowerMUL(Op, DAG);
Chris Lattnerbc11c342005-08-31 20:23:54 +00002009 }
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00002010 return SDOperand();
2011}
2012
Chris Lattner1a635d62006-04-14 06:01:58 +00002013//===----------------------------------------------------------------------===//
2014// Other Lowering Code
2015//===----------------------------------------------------------------------===//
2016
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002017MachineBasicBlock *
Nate Begeman21e463b2005-10-16 05:39:50 +00002018PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2019 MachineBasicBlock *BB) {
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002020 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
Chris Lattner919c0322005-10-01 01:35:02 +00002021 MI->getOpcode() == PPC::SELECT_CC_F4 ||
Chris Lattner710ff322006-04-08 22:45:08 +00002022 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2023 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002024 "Unexpected instr type to insert");
2025
2026 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2027 // control-flow pattern. The incoming instruction knows the destination vreg
2028 // to set, the condition code register to branch on, the true/false values to
2029 // select between, and a branch opcode to use.
2030 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2031 ilist<MachineBasicBlock>::iterator It = BB;
2032 ++It;
2033
2034 // thisMBB:
2035 // ...
2036 // TrueVal = ...
2037 // cmpTY ccX, r1, r2
2038 // bCC copy1MBB
2039 // fallthrough --> copy0MBB
2040 MachineBasicBlock *thisMBB = BB;
2041 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2042 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2043 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2044 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2045 MachineFunction *F = BB->getParent();
2046 F->getBasicBlockList().insert(It, copy0MBB);
2047 F->getBasicBlockList().insert(It, sinkMBB);
Nate Begemanf15485a2006-03-27 01:32:24 +00002048 // Update machine-CFG edges by first adding all successors of the current
2049 // block to the new block which will contain the Phi node for the select.
2050 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2051 e = BB->succ_end(); i != e; ++i)
2052 sinkMBB->addSuccessor(*i);
2053 // Next, remove all successors of the current block, and add the true
2054 // and fallthrough blocks as its successors.
2055 while(!BB->succ_empty())
2056 BB->removeSuccessor(BB->succ_begin());
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002057 BB->addSuccessor(copy0MBB);
2058 BB->addSuccessor(sinkMBB);
2059
2060 // copy0MBB:
2061 // %FalseValue = ...
2062 // # fallthrough to sinkMBB
2063 BB = copy0MBB;
2064
2065 // Update machine-CFG edges
2066 BB->addSuccessor(sinkMBB);
2067
2068 // sinkMBB:
2069 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2070 // ...
2071 BB = sinkMBB;
2072 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2073 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2074 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2075
2076 delete MI; // The pseudo instruction is gone now.
2077 return BB;
2078}
2079
Chris Lattner1a635d62006-04-14 06:01:58 +00002080//===----------------------------------------------------------------------===//
2081// Target Optimization Hooks
2082//===----------------------------------------------------------------------===//
2083
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002084SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2085 DAGCombinerInfo &DCI) const {
2086 TargetMachine &TM = getTargetMachine();
2087 SelectionDAG &DAG = DCI.DAG;
2088 switch (N->getOpcode()) {
2089 default: break;
2090 case ISD::SINT_TO_FP:
2091 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002092 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2093 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2094 // We allow the src/dst to be either f32/f64, but the intermediate
2095 // type must be i64.
2096 if (N->getOperand(0).getValueType() == MVT::i64) {
2097 SDOperand Val = N->getOperand(0).getOperand(0);
2098 if (Val.getValueType() == MVT::f32) {
2099 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2100 DCI.AddToWorklist(Val.Val);
2101 }
2102
2103 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002104 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002105 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002106 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002107 if (N->getValueType(0) == MVT::f32) {
2108 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2109 DCI.AddToWorklist(Val.Val);
2110 }
2111 return Val;
2112 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2113 // If the intermediate type is i32, we can avoid the load/store here
2114 // too.
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002115 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002116 }
2117 }
2118 break;
Chris Lattner51269842006-03-01 05:50:56 +00002119 case ISD::STORE:
2120 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2121 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2122 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2123 N->getOperand(1).getValueType() == MVT::i32) {
2124 SDOperand Val = N->getOperand(1).getOperand(0);
2125 if (Val.getValueType() == MVT::f32) {
2126 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2127 DCI.AddToWorklist(Val.Val);
2128 }
2129 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2130 DCI.AddToWorklist(Val.Val);
2131
2132 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2133 N->getOperand(2), N->getOperand(3));
2134 DCI.AddToWorklist(Val.Val);
2135 return Val;
2136 }
2137 break;
Chris Lattner4468c222006-03-31 06:02:07 +00002138 case PPCISD::VCMP: {
2139 // If a VCMPo node already exists with exactly the same operands as this
2140 // node, use its result instead of this node (VCMPo computes both a CR6 and
2141 // a normal output).
2142 //
2143 if (!N->getOperand(0).hasOneUse() &&
2144 !N->getOperand(1).hasOneUse() &&
2145 !N->getOperand(2).hasOneUse()) {
2146
2147 // Scan all of the users of the LHS, looking for VCMPo's that match.
2148 SDNode *VCMPoNode = 0;
2149
2150 SDNode *LHSN = N->getOperand(0).Val;
2151 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2152 UI != E; ++UI)
2153 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2154 (*UI)->getOperand(1) == N->getOperand(1) &&
2155 (*UI)->getOperand(2) == N->getOperand(2) &&
2156 (*UI)->getOperand(0) == N->getOperand(0)) {
2157 VCMPoNode = *UI;
2158 break;
2159 }
2160
Chris Lattner00901202006-04-18 18:28:22 +00002161 // If there is no VCMPo node, or if the flag value has a single use, don't
2162 // transform this.
2163 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2164 break;
2165
2166 // Look at the (necessarily single) use of the flag value. If it has a
2167 // chain, this transformation is more complex. Note that multiple things
2168 // could use the value result, which we should ignore.
2169 SDNode *FlagUser = 0;
2170 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2171 FlagUser == 0; ++UI) {
2172 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2173 SDNode *User = *UI;
2174 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2175 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2176 FlagUser = User;
2177 break;
2178 }
2179 }
2180 }
2181
2182 // If the user is a MFCR instruction, we know this is safe. Otherwise we
2183 // give up for right now.
2184 if (FlagUser->getOpcode() == PPCISD::MFCR)
Chris Lattner4468c222006-03-31 06:02:07 +00002185 return SDOperand(VCMPoNode, 0);
2186 }
2187 break;
2188 }
Chris Lattner90564f22006-04-18 17:59:36 +00002189 case ISD::BR_CC: {
2190 // If this is a branch on an altivec predicate comparison, lower this so
2191 // that we don't have to do a MFCR: instead, branch directly on CR6. This
2192 // lowering is done pre-legalize, because the legalizer lowers the predicate
2193 // compare down to code that is difficult to reassemble.
2194 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2195 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2196 int CompareOpc;
2197 bool isDot;
2198
2199 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2200 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2201 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2202 assert(isDot && "Can't compare against a vector result!");
2203
2204 // If this is a comparison against something other than 0/1, then we know
2205 // that the condition is never/always true.
2206 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2207 if (Val != 0 && Val != 1) {
2208 if (CC == ISD::SETEQ) // Cond never true, remove branch.
2209 return N->getOperand(0);
2210 // Always !=, turn it into an unconditional branch.
2211 return DAG.getNode(ISD::BR, MVT::Other,
2212 N->getOperand(0), N->getOperand(4));
2213 }
2214
2215 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2216
2217 // Create the PPCISD altivec 'dot' comparison node.
2218 std::vector<SDOperand> Ops;
2219 std::vector<MVT::ValueType> VTs;
2220 Ops.push_back(LHS.getOperand(2)); // LHS of compare
2221 Ops.push_back(LHS.getOperand(3)); // RHS of compare
2222 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2223 VTs.push_back(LHS.getOperand(2).getValueType());
2224 VTs.push_back(MVT::Flag);
2225 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2226
2227 // Unpack the result based on how the target uses it.
2228 unsigned CompOpc;
2229 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2230 default: // Can't happen, don't crash on invalid number though.
2231 case 0: // Branch on the value of the EQ bit of CR6.
2232 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2233 break;
2234 case 1: // Branch on the inverted value of the EQ bit of CR6.
2235 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2236 break;
2237 case 2: // Branch on the value of the LT bit of CR6.
2238 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2239 break;
2240 case 3: // Branch on the inverted value of the LT bit of CR6.
2241 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2242 break;
2243 }
2244
2245 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2246 DAG.getRegister(PPC::CR6, MVT::i32),
2247 DAG.getConstant(CompOpc, MVT::i32),
2248 N->getOperand(4), CompNode.getValue(1));
2249 }
2250 break;
2251 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002252 }
2253
2254 return SDOperand();
2255}
2256
Chris Lattner1a635d62006-04-14 06:01:58 +00002257//===----------------------------------------------------------------------===//
2258// Inline Assembly Support
2259//===----------------------------------------------------------------------===//
2260
Chris Lattnerbbe77de2006-04-02 06:26:07 +00002261void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2262 uint64_t Mask,
2263 uint64_t &KnownZero,
2264 uint64_t &KnownOne,
2265 unsigned Depth) const {
2266 KnownZero = 0;
2267 KnownOne = 0;
2268 switch (Op.getOpcode()) {
2269 default: break;
2270 case ISD::INTRINSIC_WO_CHAIN: {
2271 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2272 default: break;
2273 case Intrinsic::ppc_altivec_vcmpbfp_p:
2274 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2275 case Intrinsic::ppc_altivec_vcmpequb_p:
2276 case Intrinsic::ppc_altivec_vcmpequh_p:
2277 case Intrinsic::ppc_altivec_vcmpequw_p:
2278 case Intrinsic::ppc_altivec_vcmpgefp_p:
2279 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2280 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2281 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2282 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2283 case Intrinsic::ppc_altivec_vcmpgtub_p:
2284 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2285 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2286 KnownZero = ~1U; // All bits but the low one are known to be zero.
2287 break;
2288 }
2289 }
2290 }
2291}
2292
2293
Chris Lattnerad3bc8d2006-02-07 20:16:30 +00002294/// getConstraintType - Given a constraint letter, return the type of
2295/// constraint it is for this target.
2296PPCTargetLowering::ConstraintType
2297PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2298 switch (ConstraintLetter) {
2299 default: break;
2300 case 'b':
2301 case 'r':
2302 case 'f':
2303 case 'v':
2304 case 'y':
2305 return C_RegisterClass;
2306 }
2307 return TargetLowering::getConstraintType(ConstraintLetter);
2308}
2309
2310
Chris Lattnerddc787d2006-01-31 19:20:21 +00002311std::vector<unsigned> PPCTargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00002312getRegClassForInlineAsmConstraint(const std::string &Constraint,
2313 MVT::ValueType VT) const {
Chris Lattnerddc787d2006-01-31 19:20:21 +00002314 if (Constraint.size() == 1) {
2315 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2316 default: break; // Unknown constriant letter
2317 case 'b':
2318 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2319 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2320 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2321 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2322 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2323 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2324 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2325 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2326 0);
2327 case 'r':
2328 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2329 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2330 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2331 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2332 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2333 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2334 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2335 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2336 0);
2337 case 'f':
2338 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2339 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2340 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2341 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2342 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2343 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2344 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2345 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2346 0);
2347 case 'v':
2348 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2349 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2350 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2351 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2352 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2353 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2354 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2355 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2356 0);
2357 case 'y':
2358 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2359 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2360 0);
2361 }
2362 }
2363
Chris Lattner1efa40f2006-02-22 00:56:39 +00002364 return std::vector<unsigned>();
Chris Lattnerddc787d2006-01-31 19:20:21 +00002365}
Chris Lattner763317d2006-02-07 00:47:13 +00002366
2367// isOperandValidForConstraint
2368bool PPCTargetLowering::
2369isOperandValidForConstraint(SDOperand Op, char Letter) {
2370 switch (Letter) {
2371 default: break;
2372 case 'I':
2373 case 'J':
2374 case 'K':
2375 case 'L':
2376 case 'M':
2377 case 'N':
2378 case 'O':
2379 case 'P': {
2380 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2381 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2382 switch (Letter) {
2383 default: assert(0 && "Unknown constraint letter!");
2384 case 'I': // "I" is a signed 16-bit constant.
2385 return (short)Value == (int)Value;
2386 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2387 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2388 return (short)Value == 0;
2389 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2390 return (Value >> 16) == 0;
2391 case 'M': // "M" is a constant that is greater than 31.
2392 return Value > 31;
2393 case 'N': // "N" is a positive constant that is an exact power of two.
2394 return (int)Value > 0 && isPowerOf2_32(Value);
2395 case 'O': // "O" is the constant zero.
2396 return Value == 0;
2397 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2398 return (short)-Value == (int)-Value;
2399 }
2400 break;
2401 }
2402 }
2403
2404 // Handle standard constraint letters.
2405 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2406}
Evan Chengc4c62572006-03-13 23:20:37 +00002407
2408/// isLegalAddressImmediate - Return true if the integer value can be used
2409/// as the offset of the target addressing mode.
2410bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2411 // PPC allows a sign-extended 16-bit immediate field.
2412 return (V > -(1 << 16) && V < (1 << 16)-1);
2413}