blob: 17c83457d4c2c44f66cfc1d1789ac170b9cf1f79 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Chris Lattner434136d2009-06-27 04:38:55 +000021#include "llvm/GlobalVariable.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000022#include "llvm/DerivedTypes.h"
Owen Anderson15b39322009-07-13 04:09:18 +000023#include "llvm/LLVMContext.h"
Owen Anderson1636de92007-09-07 04:06:50 +000024#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000025#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000026#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000028#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000030#include "llvm/Support/CommandLine.h"
Edwin Török3cb88482009-07-08 18:01:40 +000031#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
Evan Cheng950aac02007-09-25 01:57:46 +000033#include "llvm/Target/TargetOptions.h"
Chris Lattner621c44d2009-08-22 20:48:53 +000034#include "llvm/MC/MCAsmInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000035using namespace llvm;
36
Chris Lattnerd71b0b02009-08-23 03:41:05 +000037static cl::opt<bool>
38NoFusing("disable-spill-fusing",
39 cl::desc("Disable fusing of spill code into instructions"));
40static cl::opt<bool>
41PrintFailedFusing("print-failed-fuse-candidates",
42 cl::desc("Print instructions that the allocator wants to"
43 " fuse, but the X86 backend currently can't"),
44 cl::Hidden);
45static cl::opt<bool>
46ReMatPICStubLoad("remat-pic-stub-load",
47 cl::desc("Re-materialize load from stub in PIC mode"),
48 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000049
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000051 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000053 SmallVector<unsigned,16> AmbEntries;
54 static const unsigned OpTbl2Addr[][2] = {
55 { X86::ADC32ri, X86::ADC32mi },
56 { X86::ADC32ri8, X86::ADC32mi8 },
57 { X86::ADC32rr, X86::ADC32mr },
58 { X86::ADC64ri32, X86::ADC64mi32 },
59 { X86::ADC64ri8, X86::ADC64mi8 },
60 { X86::ADC64rr, X86::ADC64mr },
61 { X86::ADD16ri, X86::ADD16mi },
62 { X86::ADD16ri8, X86::ADD16mi8 },
63 { X86::ADD16rr, X86::ADD16mr },
64 { X86::ADD32ri, X86::ADD32mi },
65 { X86::ADD32ri8, X86::ADD32mi8 },
66 { X86::ADD32rr, X86::ADD32mr },
67 { X86::ADD64ri32, X86::ADD64mi32 },
68 { X86::ADD64ri8, X86::ADD64mi8 },
69 { X86::ADD64rr, X86::ADD64mr },
70 { X86::ADD8ri, X86::ADD8mi },
71 { X86::ADD8rr, X86::ADD8mr },
72 { X86::AND16ri, X86::AND16mi },
73 { X86::AND16ri8, X86::AND16mi8 },
74 { X86::AND16rr, X86::AND16mr },
75 { X86::AND32ri, X86::AND32mi },
76 { X86::AND32ri8, X86::AND32mi8 },
77 { X86::AND32rr, X86::AND32mr },
78 { X86::AND64ri32, X86::AND64mi32 },
79 { X86::AND64ri8, X86::AND64mi8 },
80 { X86::AND64rr, X86::AND64mr },
81 { X86::AND8ri, X86::AND8mi },
82 { X86::AND8rr, X86::AND8mr },
83 { X86::DEC16r, X86::DEC16m },
84 { X86::DEC32r, X86::DEC32m },
85 { X86::DEC64_16r, X86::DEC64_16m },
86 { X86::DEC64_32r, X86::DEC64_32m },
87 { X86::DEC64r, X86::DEC64m },
88 { X86::DEC8r, X86::DEC8m },
89 { X86::INC16r, X86::INC16m },
90 { X86::INC32r, X86::INC32m },
91 { X86::INC64_16r, X86::INC64_16m },
92 { X86::INC64_32r, X86::INC64_32m },
93 { X86::INC64r, X86::INC64m },
94 { X86::INC8r, X86::INC8m },
95 { X86::NEG16r, X86::NEG16m },
96 { X86::NEG32r, X86::NEG32m },
97 { X86::NEG64r, X86::NEG64m },
98 { X86::NEG8r, X86::NEG8m },
99 { X86::NOT16r, X86::NOT16m },
100 { X86::NOT32r, X86::NOT32m },
101 { X86::NOT64r, X86::NOT64m },
102 { X86::NOT8r, X86::NOT8m },
103 { X86::OR16ri, X86::OR16mi },
104 { X86::OR16ri8, X86::OR16mi8 },
105 { X86::OR16rr, X86::OR16mr },
106 { X86::OR32ri, X86::OR32mi },
107 { X86::OR32ri8, X86::OR32mi8 },
108 { X86::OR32rr, X86::OR32mr },
109 { X86::OR64ri32, X86::OR64mi32 },
110 { X86::OR64ri8, X86::OR64mi8 },
111 { X86::OR64rr, X86::OR64mr },
112 { X86::OR8ri, X86::OR8mi },
113 { X86::OR8rr, X86::OR8mr },
114 { X86::ROL16r1, X86::ROL16m1 },
115 { X86::ROL16rCL, X86::ROL16mCL },
116 { X86::ROL16ri, X86::ROL16mi },
117 { X86::ROL32r1, X86::ROL32m1 },
118 { X86::ROL32rCL, X86::ROL32mCL },
119 { X86::ROL32ri, X86::ROL32mi },
120 { X86::ROL64r1, X86::ROL64m1 },
121 { X86::ROL64rCL, X86::ROL64mCL },
122 { X86::ROL64ri, X86::ROL64mi },
123 { X86::ROL8r1, X86::ROL8m1 },
124 { X86::ROL8rCL, X86::ROL8mCL },
125 { X86::ROL8ri, X86::ROL8mi },
126 { X86::ROR16r1, X86::ROR16m1 },
127 { X86::ROR16rCL, X86::ROR16mCL },
128 { X86::ROR16ri, X86::ROR16mi },
129 { X86::ROR32r1, X86::ROR32m1 },
130 { X86::ROR32rCL, X86::ROR32mCL },
131 { X86::ROR32ri, X86::ROR32mi },
132 { X86::ROR64r1, X86::ROR64m1 },
133 { X86::ROR64rCL, X86::ROR64mCL },
134 { X86::ROR64ri, X86::ROR64mi },
135 { X86::ROR8r1, X86::ROR8m1 },
136 { X86::ROR8rCL, X86::ROR8mCL },
137 { X86::ROR8ri, X86::ROR8mi },
138 { X86::SAR16r1, X86::SAR16m1 },
139 { X86::SAR16rCL, X86::SAR16mCL },
140 { X86::SAR16ri, X86::SAR16mi },
141 { X86::SAR32r1, X86::SAR32m1 },
142 { X86::SAR32rCL, X86::SAR32mCL },
143 { X86::SAR32ri, X86::SAR32mi },
144 { X86::SAR64r1, X86::SAR64m1 },
145 { X86::SAR64rCL, X86::SAR64mCL },
146 { X86::SAR64ri, X86::SAR64mi },
147 { X86::SAR8r1, X86::SAR8m1 },
148 { X86::SAR8rCL, X86::SAR8mCL },
149 { X86::SAR8ri, X86::SAR8mi },
150 { X86::SBB32ri, X86::SBB32mi },
151 { X86::SBB32ri8, X86::SBB32mi8 },
152 { X86::SBB32rr, X86::SBB32mr },
153 { X86::SBB64ri32, X86::SBB64mi32 },
154 { X86::SBB64ri8, X86::SBB64mi8 },
155 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000156 { X86::SHL16rCL, X86::SHL16mCL },
157 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000158 { X86::SHL32rCL, X86::SHL32mCL },
159 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000160 { X86::SHL64rCL, X86::SHL64mCL },
161 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000162 { X86::SHL8rCL, X86::SHL8mCL },
163 { X86::SHL8ri, X86::SHL8mi },
164 { X86::SHLD16rrCL, X86::SHLD16mrCL },
165 { X86::SHLD16rri8, X86::SHLD16mri8 },
166 { X86::SHLD32rrCL, X86::SHLD32mrCL },
167 { X86::SHLD32rri8, X86::SHLD32mri8 },
168 { X86::SHLD64rrCL, X86::SHLD64mrCL },
169 { X86::SHLD64rri8, X86::SHLD64mri8 },
170 { X86::SHR16r1, X86::SHR16m1 },
171 { X86::SHR16rCL, X86::SHR16mCL },
172 { X86::SHR16ri, X86::SHR16mi },
173 { X86::SHR32r1, X86::SHR32m1 },
174 { X86::SHR32rCL, X86::SHR32mCL },
175 { X86::SHR32ri, X86::SHR32mi },
176 { X86::SHR64r1, X86::SHR64m1 },
177 { X86::SHR64rCL, X86::SHR64mCL },
178 { X86::SHR64ri, X86::SHR64mi },
179 { X86::SHR8r1, X86::SHR8m1 },
180 { X86::SHR8rCL, X86::SHR8mCL },
181 { X86::SHR8ri, X86::SHR8mi },
182 { X86::SHRD16rrCL, X86::SHRD16mrCL },
183 { X86::SHRD16rri8, X86::SHRD16mri8 },
184 { X86::SHRD32rrCL, X86::SHRD32mrCL },
185 { X86::SHRD32rri8, X86::SHRD32mri8 },
186 { X86::SHRD64rrCL, X86::SHRD64mrCL },
187 { X86::SHRD64rri8, X86::SHRD64mri8 },
188 { X86::SUB16ri, X86::SUB16mi },
189 { X86::SUB16ri8, X86::SUB16mi8 },
190 { X86::SUB16rr, X86::SUB16mr },
191 { X86::SUB32ri, X86::SUB32mi },
192 { X86::SUB32ri8, X86::SUB32mi8 },
193 { X86::SUB32rr, X86::SUB32mr },
194 { X86::SUB64ri32, X86::SUB64mi32 },
195 { X86::SUB64ri8, X86::SUB64mi8 },
196 { X86::SUB64rr, X86::SUB64mr },
197 { X86::SUB8ri, X86::SUB8mi },
198 { X86::SUB8rr, X86::SUB8mr },
199 { X86::XOR16ri, X86::XOR16mi },
200 { X86::XOR16ri8, X86::XOR16mi8 },
201 { X86::XOR16rr, X86::XOR16mr },
202 { X86::XOR32ri, X86::XOR32mi },
203 { X86::XOR32ri8, X86::XOR32mi8 },
204 { X86::XOR32rr, X86::XOR32mr },
205 { X86::XOR64ri32, X86::XOR64mi32 },
206 { X86::XOR64ri8, X86::XOR64mi8 },
207 { X86::XOR64rr, X86::XOR64mr },
208 { X86::XOR8ri, X86::XOR8mi },
209 { X86::XOR8rr, X86::XOR8mr }
210 };
211
212 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
213 unsigned RegOp = OpTbl2Addr[i][0];
214 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000215 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000216 std::make_pair(MemOp,0))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000217 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000218 // Index 0, folded load and store, no alignment requirement.
219 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000220 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000221 std::make_pair(RegOp,
222 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000223 AmbEntries.push_back(MemOp);
224 }
225
226 // If the third value is 1, then it's folding either a load or a store.
Evan Chenga5853792009-07-15 06:10:07 +0000227 static const unsigned OpTbl0[][4] = {
228 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
229 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
230 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
231 { X86::CALL32r, X86::CALL32m, 1, 0 },
232 { X86::CALL64r, X86::CALL64m, 1, 0 },
233 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
234 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
235 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
236 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
237 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
238 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
239 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
240 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
241 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
242 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
243 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
244 { X86::DIV16r, X86::DIV16m, 1, 0 },
245 { X86::DIV32r, X86::DIV32m, 1, 0 },
246 { X86::DIV64r, X86::DIV64m, 1, 0 },
247 { X86::DIV8r, X86::DIV8m, 1, 0 },
248 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
249 { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
250 { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
251 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
252 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
253 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
254 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
255 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
256 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
257 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
258 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
259 { X86::JMP32r, X86::JMP32m, 1, 0 },
260 { X86::JMP64r, X86::JMP64m, 1, 0 },
261 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
262 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
263 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
264 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
265 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
266 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
267 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
268 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
269 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
270 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
271 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
272 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
273 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
274 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
275 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
276 { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
277 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
278 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
279 { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
280 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
281 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
282 { X86::MUL16r, X86::MUL16m, 1, 0 },
283 { X86::MUL32r, X86::MUL32m, 1, 0 },
284 { X86::MUL64r, X86::MUL64m, 1, 0 },
285 { X86::MUL8r, X86::MUL8m, 1, 0 },
286 { X86::SETAEr, X86::SETAEm, 0, 0 },
287 { X86::SETAr, X86::SETAm, 0, 0 },
288 { X86::SETBEr, X86::SETBEm, 0, 0 },
289 { X86::SETBr, X86::SETBm, 0, 0 },
290 { X86::SETEr, X86::SETEm, 0, 0 },
291 { X86::SETGEr, X86::SETGEm, 0, 0 },
292 { X86::SETGr, X86::SETGm, 0, 0 },
293 { X86::SETLEr, X86::SETLEm, 0, 0 },
294 { X86::SETLr, X86::SETLm, 0, 0 },
295 { X86::SETNEr, X86::SETNEm, 0, 0 },
296 { X86::SETNOr, X86::SETNOm, 0, 0 },
297 { X86::SETNPr, X86::SETNPm, 0, 0 },
298 { X86::SETNSr, X86::SETNSm, 0, 0 },
299 { X86::SETOr, X86::SETOm, 0, 0 },
300 { X86::SETPr, X86::SETPm, 0, 0 },
301 { X86::SETSr, X86::SETSm, 0, 0 },
302 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
303 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
304 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
305 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
306 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000307 };
308
309 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
310 unsigned RegOp = OpTbl0[i][0];
311 unsigned MemOp = OpTbl0[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000312 unsigned Align = OpTbl0[i][3];
Dan Gohman55d19662008-07-07 17:46:23 +0000313 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000314 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000315 assert(false && "Duplicated entries?");
316 unsigned FoldedLoad = OpTbl0[i][2];
317 // Index 0, folded load or store.
318 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
319 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
320 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000321 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000322 AmbEntries.push_back(MemOp);
323 }
324
Evan Chenga5853792009-07-15 06:10:07 +0000325 static const unsigned OpTbl1[][3] = {
326 { X86::CMP16rr, X86::CMP16rm, 0 },
327 { X86::CMP32rr, X86::CMP32rm, 0 },
328 { X86::CMP64rr, X86::CMP64rm, 0 },
329 { X86::CMP8rr, X86::CMP8rm, 0 },
330 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
331 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
332 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
333 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
334 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
335 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
336 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
337 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
338 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
339 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
340 { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
341 { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
342 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
343 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
344 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
345 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
346 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
347 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
348 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
349 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
350 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
351 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
352 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
353 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
354 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
355 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
356 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
357 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
358 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
359 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
360 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
361 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
362 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
363 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
364 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
365 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
366 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
367 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
368 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
369 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
370 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
371 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
372 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
373 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
374 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
375 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
376 { X86::MOV16rr, X86::MOV16rm, 0 },
377 { X86::MOV32rr, X86::MOV32rm, 0 },
378 { X86::MOV64rr, X86::MOV64rm, 0 },
379 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
380 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
381 { X86::MOV8rr, X86::MOV8rm, 0 },
382 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
383 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
384 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
385 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
386 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
387 { X86::MOVDQArr, X86::MOVDQArm, 16 },
388 { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
389 { X86::MOVSDrr, X86::MOVSDrm, 0 },
390 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
391 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
392 { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
393 { X86::MOVSSrr, X86::MOVSSrm, 0 },
394 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
395 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
396 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
397 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
398 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
399 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
400 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
401 { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
402 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
403 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
404 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
405 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
406 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
407 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
408 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
409 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
410 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
411 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
412 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
413 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
414 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
415 { X86::RCPPSr, X86::RCPPSm, 16 },
416 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
417 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
418 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
419 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
420 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
421 { X86::SQRTPDr, X86::SQRTPDm, 16 },
422 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
423 { X86::SQRTPSr, X86::SQRTPSm, 16 },
424 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
425 { X86::SQRTSDr, X86::SQRTSDm, 0 },
426 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
427 { X86::SQRTSSr, X86::SQRTSSm, 0 },
428 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
429 { X86::TEST16rr, X86::TEST16rm, 0 },
430 { X86::TEST32rr, X86::TEST32rm, 0 },
431 { X86::TEST64rr, X86::TEST64rm, 0 },
432 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000433 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Evan Chenga5853792009-07-15 06:10:07 +0000434 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
435 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000436 };
437
438 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
439 unsigned RegOp = OpTbl1[i][0];
440 unsigned MemOp = OpTbl1[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000441 unsigned Align = OpTbl1[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000442 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000443 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000444 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000445 // Index 1, folded load
446 unsigned AuxInfo = 1 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000447 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
448 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000449 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000450 AmbEntries.push_back(MemOp);
451 }
452
Evan Chenga5853792009-07-15 06:10:07 +0000453 static const unsigned OpTbl2[][3] = {
454 { X86::ADC32rr, X86::ADC32rm, 0 },
455 { X86::ADC64rr, X86::ADC64rm, 0 },
456 { X86::ADD16rr, X86::ADD16rm, 0 },
457 { X86::ADD32rr, X86::ADD32rm, 0 },
458 { X86::ADD64rr, X86::ADD64rm, 0 },
459 { X86::ADD8rr, X86::ADD8rm, 0 },
460 { X86::ADDPDrr, X86::ADDPDrm, 16 },
461 { X86::ADDPSrr, X86::ADDPSrm, 16 },
462 { X86::ADDSDrr, X86::ADDSDrm, 0 },
463 { X86::ADDSSrr, X86::ADDSSrm, 0 },
464 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
465 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
466 { X86::AND16rr, X86::AND16rm, 0 },
467 { X86::AND32rr, X86::AND32rm, 0 },
468 { X86::AND64rr, X86::AND64rm, 0 },
469 { X86::AND8rr, X86::AND8rm, 0 },
470 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
471 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
472 { X86::ANDPDrr, X86::ANDPDrm, 16 },
473 { X86::ANDPSrr, X86::ANDPSrm, 16 },
474 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
475 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
476 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
477 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
478 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
479 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
480 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
481 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
482 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
483 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
484 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
485 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
486 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
487 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
488 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
489 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
490 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
491 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
492 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
493 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
494 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
495 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
496 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
497 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
498 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
499 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
500 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
501 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
502 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
503 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
504 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
505 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
506 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
507 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
508 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
509 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
510 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
511 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
512 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
513 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
514 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
515 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
516 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
517 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
518 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
519 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
520 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
521 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
522 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
523 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
524 { X86::CMPSDrr, X86::CMPSDrm, 0 },
525 { X86::CMPSSrr, X86::CMPSSrm, 0 },
526 { X86::DIVPDrr, X86::DIVPDrm, 16 },
527 { X86::DIVPSrr, X86::DIVPSrm, 16 },
528 { X86::DIVSDrr, X86::DIVSDrm, 0 },
529 { X86::DIVSSrr, X86::DIVSSrm, 0 },
530 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
531 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
532 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
533 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
534 { X86::FsORPDrr, X86::FsORPDrm, 16 },
535 { X86::FsORPSrr, X86::FsORPSrm, 16 },
536 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
537 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
538 { X86::HADDPDrr, X86::HADDPDrm, 16 },
539 { X86::HADDPSrr, X86::HADDPSrm, 16 },
540 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
541 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
542 { X86::IMUL16rr, X86::IMUL16rm, 0 },
543 { X86::IMUL32rr, X86::IMUL32rm, 0 },
544 { X86::IMUL64rr, X86::IMUL64rm, 0 },
545 { X86::MAXPDrr, X86::MAXPDrm, 16 },
546 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
547 { X86::MAXPSrr, X86::MAXPSrm, 16 },
548 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
549 { X86::MAXSDrr, X86::MAXSDrm, 0 },
550 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
551 { X86::MAXSSrr, X86::MAXSSrm, 0 },
552 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
553 { X86::MINPDrr, X86::MINPDrm, 16 },
554 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
555 { X86::MINPSrr, X86::MINPSrm, 16 },
556 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
557 { X86::MINSDrr, X86::MINSDrm, 0 },
558 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
559 { X86::MINSSrr, X86::MINSSrm, 0 },
560 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
561 { X86::MULPDrr, X86::MULPDrm, 16 },
562 { X86::MULPSrr, X86::MULPSrm, 16 },
563 { X86::MULSDrr, X86::MULSDrm, 0 },
564 { X86::MULSSrr, X86::MULSSrm, 0 },
565 { X86::OR16rr, X86::OR16rm, 0 },
566 { X86::OR32rr, X86::OR32rm, 0 },
567 { X86::OR64rr, X86::OR64rm, 0 },
568 { X86::OR8rr, X86::OR8rm, 0 },
569 { X86::ORPDrr, X86::ORPDrm, 16 },
570 { X86::ORPSrr, X86::ORPSrm, 16 },
571 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
572 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
573 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
574 { X86::PADDBrr, X86::PADDBrm, 16 },
575 { X86::PADDDrr, X86::PADDDrm, 16 },
576 { X86::PADDQrr, X86::PADDQrm, 16 },
577 { X86::PADDSBrr, X86::PADDSBrm, 16 },
578 { X86::PADDSWrr, X86::PADDSWrm, 16 },
579 { X86::PADDWrr, X86::PADDWrm, 16 },
580 { X86::PANDNrr, X86::PANDNrm, 16 },
581 { X86::PANDrr, X86::PANDrm, 16 },
582 { X86::PAVGBrr, X86::PAVGBrm, 16 },
583 { X86::PAVGWrr, X86::PAVGWrm, 16 },
584 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
585 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
586 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
587 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
588 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
589 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
590 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
591 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
592 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
593 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
594 { X86::PMINSWrr, X86::PMINSWrm, 16 },
595 { X86::PMINUBrr, X86::PMINUBrm, 16 },
596 { X86::PMULDQrr, X86::PMULDQrm, 16 },
597 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
598 { X86::PMULHWrr, X86::PMULHWrm, 16 },
599 { X86::PMULLDrr, X86::PMULLDrm, 16 },
600 { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
601 { X86::PMULLWrr, X86::PMULLWrm, 16 },
602 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
603 { X86::PORrr, X86::PORrm, 16 },
604 { X86::PSADBWrr, X86::PSADBWrm, 16 },
605 { X86::PSLLDrr, X86::PSLLDrm, 16 },
606 { X86::PSLLQrr, X86::PSLLQrm, 16 },
607 { X86::PSLLWrr, X86::PSLLWrm, 16 },
608 { X86::PSRADrr, X86::PSRADrm, 16 },
609 { X86::PSRAWrr, X86::PSRAWrm, 16 },
610 { X86::PSRLDrr, X86::PSRLDrm, 16 },
611 { X86::PSRLQrr, X86::PSRLQrm, 16 },
612 { X86::PSRLWrr, X86::PSRLWrm, 16 },
613 { X86::PSUBBrr, X86::PSUBBrm, 16 },
614 { X86::PSUBDrr, X86::PSUBDrm, 16 },
615 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
616 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
617 { X86::PSUBWrr, X86::PSUBWrm, 16 },
618 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
619 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
620 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
621 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
622 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
623 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
624 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
625 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
626 { X86::PXORrr, X86::PXORrm, 16 },
627 { X86::SBB32rr, X86::SBB32rm, 0 },
628 { X86::SBB64rr, X86::SBB64rm, 0 },
629 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
630 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
631 { X86::SUB16rr, X86::SUB16rm, 0 },
632 { X86::SUB32rr, X86::SUB32rm, 0 },
633 { X86::SUB64rr, X86::SUB64rm, 0 },
634 { X86::SUB8rr, X86::SUB8rm, 0 },
635 { X86::SUBPDrr, X86::SUBPDrm, 16 },
636 { X86::SUBPSrr, X86::SUBPSrm, 16 },
637 { X86::SUBSDrr, X86::SUBSDrm, 0 },
638 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000639 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Evan Chenga5853792009-07-15 06:10:07 +0000640 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
641 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
642 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
643 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
644 { X86::XOR16rr, X86::XOR16rm, 0 },
645 { X86::XOR32rr, X86::XOR32rm, 0 },
646 { X86::XOR64rr, X86::XOR64rm, 0 },
647 { X86::XOR8rr, X86::XOR8rm, 0 },
648 { X86::XORPDrr, X86::XORPDrm, 16 },
649 { X86::XORPSrr, X86::XORPSrm, 16 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000650 };
651
652 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653 unsigned RegOp = OpTbl2[i][0];
654 unsigned MemOp = OpTbl2[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000655 unsigned Align = OpTbl2[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000656 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000657 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000658 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000659 // Index 2, folded load
660 unsigned AuxInfo = 2 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000661 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000662 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000663 AmbEntries.push_back(MemOp);
664 }
665
666 // Remove ambiguous entries.
667 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668}
669
670bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000671 unsigned &SrcReg, unsigned &DstReg,
672 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000673 switch (MI.getOpcode()) {
674 default:
675 return false;
676 case X86::MOV8rr:
Bill Wendling2d1c8222009-04-17 22:40:38 +0000677 case X86::MOV8rr_NOREX:
Chris Lattnerff195282008-03-11 19:28:17 +0000678 case X86::MOV16rr:
679 case X86::MOV32rr:
680 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000681 case X86::MOVSSrr:
682 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000683
684 // FP Stack register class copies
685 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
686 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
687 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
688
Chris Lattnerff195282008-03-11 19:28:17 +0000689 case X86::FsMOVAPSrr:
690 case X86::FsMOVAPDrr:
691 case X86::MOVAPSrr:
692 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000693 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000694 case X86::MOVSS2PSrr:
695 case X86::MOVSD2PDrr:
696 case X86::MOVPS2SSrr:
697 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000698 case X86::MMX_MOVQ64rr:
699 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000700 MI.getOperand(0).isReg() &&
701 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000702 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000703 SrcReg = MI.getOperand(1).getReg();
704 DstReg = MI.getOperand(0).getReg();
705 SrcSubIdx = MI.getOperand(1).getSubReg();
706 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000707 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709}
710
Dan Gohman90feee22008-11-18 19:49:32 +0000711unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 int &FrameIndex) const {
713 switch (MI->getOpcode()) {
714 default: break;
715 case X86::MOV8rm:
716 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718 case X86::MOV64rm:
719 case X86::LD_Fp64m:
720 case X86::MOVSSrm:
721 case X86::MOVSDrm:
722 case X86::MOVAPSrm:
723 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000724 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 case X86::MMX_MOVD64rm:
726 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000727 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
728 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000729 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000731 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000732 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733 return MI->getOperand(0).getReg();
734 }
735 break;
736 }
737 return 0;
738}
739
Dan Gohman90feee22008-11-18 19:49:32 +0000740unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 int &FrameIndex) const {
742 switch (MI->getOpcode()) {
743 default: break;
744 case X86::MOV8mr:
745 case X86::MOV16mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 case X86::MOV32mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 case X86::MOV64mr:
748 case X86::ST_FpP64m:
749 case X86::MOVSSmr:
750 case X86::MOVSDmr:
751 case X86::MOVAPSmr:
752 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000753 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 case X86::MMX_MOVD64mr:
755 case X86::MMX_MOVQ64mr:
756 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000757 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
758 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000759 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000761 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000762 FrameIndex = MI->getOperand(0).getIndex();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000763 return MI->getOperand(X86AddrNumOperands).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 }
765 break;
766 }
767 return 0;
768}
769
Evan Chengb819a512008-03-27 01:45:11 +0000770/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
771/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000772static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000773 bool isPICBase = false;
774 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
775 E = MRI.def_end(); I != E; ++I) {
776 MachineInstr *DefMI = I.getOperand().getParent();
777 if (DefMI->getOpcode() != X86::MOVPC32r)
778 return false;
779 assert(!isPICBase && "More than one PIC base?");
780 isPICBase = true;
781 }
782 return isPICBase;
783}
Evan Chenge9caab52008-03-31 07:54:19 +0000784
Chris Lattner434136d2009-06-27 04:38:55 +0000785/// CanRematLoadWithDispOperand - Return true if a load with the specified
786/// operand is a candidate for remat: for this to be true we need to know that
787/// the load will always return the same value, even if moved.
788static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
789 X86TargetMachine &TM) {
790 // Loads from constant pool entries can be remat'd.
791 if (MO.isCPI()) return true;
792
793 // We can remat globals in some cases.
794 if (MO.isGlobal()) {
795 // If this is a load of a stub, not of the global, we can remat it. This
796 // access will always return the address of the global.
Chris Lattner6d62ab92009-07-10 06:29:59 +0000797 if (isGlobalStubReference(MO.getTargetFlags()))
Chris Lattner434136d2009-06-27 04:38:55 +0000798 return true;
799
800 // If the global itself is constant, we can remat the load.
801 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
802 if (GV->isConstant())
803 return true;
804 }
805 return false;
806}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000807
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000808bool
809X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810 switch (MI->getOpcode()) {
811 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000812 case X86::MOV8rm:
813 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000814 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000815 case X86::MOV64rm:
816 case X86::LD_Fp64m:
817 case X86::MOVSSrm:
818 case X86::MOVSDrm:
819 case X86::MOVAPSrm:
820 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000821 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000822 case X86::MMX_MOVD64rm:
823 case X86::MMX_MOVQ64rm: {
824 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000825 if (MI->getOperand(1).isReg() &&
826 MI->getOperand(2).isImm() &&
827 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Chris Lattner434136d2009-06-27 04:38:55 +0000828 CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000829 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattnerdc6fc472009-06-27 04:16:01 +0000830 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000831 return true;
832 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000833 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000834 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000835 const MachineFunction &MF = *MI->getParent()->getParent();
836 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000837 bool isPICBase = false;
838 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
839 E = MRI.def_end(); I != E; ++I) {
840 MachineInstr *DefMI = I.getOperand().getParent();
841 if (DefMI->getOpcode() != X86::MOVPC32r)
842 return false;
843 assert(!isPICBase && "More than one PIC base?");
844 isPICBase = true;
845 }
846 return isPICBase;
847 }
848 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000849 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000850
851 case X86::LEA32r:
852 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000853 if (MI->getOperand(2).isImm() &&
854 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
855 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000856 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000857 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000858 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000859 unsigned BaseReg = MI->getOperand(1).getReg();
860 if (BaseReg == 0)
861 return true;
862 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000863 const MachineFunction &MF = *MI->getParent()->getParent();
864 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000865 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000866 }
867 return false;
868 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000870
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871 // All other instructions marked M_REMATERIALIZABLE are always trivially
872 // rematerializable.
873 return true;
874}
875
Evan Chengc564ded2008-06-24 07:10:51 +0000876/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
877/// would clobber the EFLAGS condition register. Note the result may be
878/// conservative. If it cannot definitely determine the safety after visiting
879/// two instructions it assumes it's not safe.
880static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
881 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000882 // It's always safe to clobber EFLAGS at the end of a block.
883 if (I == MBB.end())
884 return true;
885
Evan Chengc564ded2008-06-24 07:10:51 +0000886 // For compile time consideration, if we are not able to determine the
887 // safety after visiting 2 instructions, we will assume it's not safe.
888 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000889 bool SeenDef = false;
890 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
891 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000892 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000893 continue;
894 if (MO.getReg() == X86::EFLAGS) {
895 if (MO.isUse())
896 return false;
897 SeenDef = true;
898 }
899 }
900
901 if (SeenDef)
902 // This instruction defines EFLAGS, no need to look any further.
903 return true;
904 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000905
906 // If we make it to the end of the block, it's safe to clobber EFLAGS.
907 if (I == MBB.end())
908 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000909 }
910
911 // Conservative answer.
912 return false;
913}
914
Evan Cheng7d73efc2008-03-31 20:40:39 +0000915void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
916 MachineBasicBlock::iterator I,
Evan Cheng463a3e42009-07-16 09:20:10 +0000917 unsigned DestReg, unsigned SubIdx,
Evan Cheng7d73efc2008-03-31 20:40:39 +0000918 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000919 DebugLoc DL = DebugLoc::getUnknownLoc();
920 if (I != MBB.end()) DL = I->getDebugLoc();
921
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000922 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
923 DestReg = RI.getSubReg(DestReg, SubIdx);
924 SubIdx = 0;
925 }
926
Evan Cheng7d73efc2008-03-31 20:40:39 +0000927 // MOV32r0 etc. are implemented with xor which clobbers condition code.
928 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng463a3e42009-07-16 09:20:10 +0000929 bool Clone = true;
930 unsigned Opc = Orig->getOpcode();
931 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000932 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000933 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000934 case X86::MOV16r0:
Chris Lattner17f62252009-07-14 20:19:57 +0000935 case X86::MOV32r0: {
Evan Chengc564ded2008-06-24 07:10:51 +0000936 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng463a3e42009-07-16 09:20:10 +0000937 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000938 default: break;
939 case X86::MOV8r0: Opc = X86::MOV8ri; break;
940 case X86::MOV16r0: Opc = X86::MOV16ri; break;
941 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Evan Chengc564ded2008-06-24 07:10:51 +0000942 }
Evan Cheng463a3e42009-07-16 09:20:10 +0000943 Clone = false;
Evan Chengc564ded2008-06-24 07:10:51 +0000944 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000945 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000946 }
947 }
948
Evan Cheng463a3e42009-07-16 09:20:10 +0000949 if (Clone) {
Dan Gohman221a4372008-07-07 23:14:23 +0000950 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000951 MI->getOperand(0).setReg(DestReg);
952 MBB.insert(I, MI);
Evan Cheng463a3e42009-07-16 09:20:10 +0000953 } else {
954 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000955 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000956
Evan Cheng463a3e42009-07-16 09:20:10 +0000957 MachineInstr *NewMI = prior(I);
958 NewMI->getOperand(0).setSubReg(SubIdx);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000959}
960
Evan Chengfa1a4952007-10-05 08:04:01 +0000961/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
962/// is not marked dead.
963static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000964 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
965 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000966 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000967 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
968 return true;
969 }
970 }
971 return false;
972}
973
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974/// convertToThreeAddress - This method must be implemented by targets that
975/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
976/// may be able to convert a two-address instruction into a true
977/// three-address instruction on demand. This allows the X86 target (for
978/// example) to convert ADD and SHL instructions into LEA instructions if they
979/// would require register copies due to two-addressness.
980///
981/// This method returns a null pointer if the transformation cannot be
982/// performed, otherwise it returns the new instruction.
983///
984MachineInstr *
985X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
986 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000987 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000989 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000990 // All instructions input are two-addr instructions. Get the known operands.
991 unsigned Dest = MI->getOperand(0).getReg();
992 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000993 bool isDead = MI->getOperand(0).isDead();
994 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000995
996 MachineInstr *NewMI = NULL;
997 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
998 // we have better subtarget support, enable the 16-bit LEA generation here.
999 bool DisableLEA16 = true;
1000
Evan Cheng6b96ed32007-10-05 20:34:26 +00001001 unsigned MIOpc = MI->getOpcode();
1002 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 case X86::SHUFPSrri: {
1004 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1005 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1006
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007 unsigned B = MI->getOperand(1).getReg();
1008 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001010 unsigned A = MI->getOperand(0).getReg();
1011 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001012 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling2b739762009-05-13 21:33:08 +00001013 .addReg(A, RegState::Define | getDeadRegState(isDead))
1014 .addReg(B, getKillRegState(isKill)).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 break;
1016 }
1017 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001018 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1020 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 unsigned ShAmt = MI->getOperand(2).getImm();
1022 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001023
Bill Wendling13ee2e42009-02-11 21:51:19 +00001024 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001025 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1026 .addReg(0).addImm(1 << ShAmt)
1027 .addReg(Src, getKillRegState(isKill))
1028 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 break;
1030 }
1031 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001032 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1034 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 unsigned ShAmt = MI->getOperand(2).getImm();
1036 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001037
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1039 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001040 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001041 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001042 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001043 .addReg(Src, getKillRegState(isKill)).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 break;
1045 }
1046 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001047 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001048 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1049 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001050 unsigned ShAmt = MI->getOperand(2).getImm();
1051 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001052
Christopher Lamb380c6272007-08-10 21:18:25 +00001053 if (DisableLEA16) {
1054 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001055 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001056 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1057 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001058 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1059 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001060
Christopher Lamb8d226a22008-03-11 10:27:36 +00001061 // Build and insert into an implicit UNDEF value. This is OK because
1062 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001063 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1064 MachineInstr *InsMI =
1065 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Bill Wendling2b739762009-05-13 21:33:08 +00001066 .addReg(leaInReg)
1067 .addReg(Src, getKillRegState(isKill))
Evan Chenge52c1912008-07-03 09:09:37 +00001068 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001069
Bill Wendling13ee2e42009-02-11 21:51:19 +00001070 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1071 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001072 .addReg(leaInReg, RegState::Kill)
1073 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001074
Bill Wendling13ee2e42009-02-11 21:51:19 +00001075 MachineInstr *ExtMI =
1076 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Bill Wendling2b739762009-05-13 21:33:08 +00001077 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1078 .addReg(leaOutReg, RegState::Kill)
1079 .addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001080
Owen Andersonc6959722008-07-02 23:41:07 +00001081 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001082 // Update live variables
1083 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1084 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1085 if (isKill)
1086 LV->replaceKillInstruction(Src, MI, InsMI);
1087 if (isDead)
1088 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001089 }
Evan Chenge52c1912008-07-03 09:09:37 +00001090 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001091 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001092 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001093 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001094 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001095 .addReg(Src, getKillRegState(isKill))
1096 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001097 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 break;
1099 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001100 default: {
1101 // The following opcodes also sets the condition code register(s). Only
1102 // convert them to equivalent lea if the condition code register def's
1103 // are dead!
1104 if (hasLiveCondCodeDef(MI))
1105 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106
Evan Chenga28a9562007-10-09 07:14:53 +00001107 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001108 switch (MIOpc) {
1109 default: return 0;
1110 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001111 case X86::INC32r:
1112 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001113 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001114 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1115 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001116 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001117 .addReg(Dest, RegState::Define |
1118 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001119 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001120 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 case X86::INC16r:
1123 case X86::INC64_16r:
1124 if (DisableLEA16) return 0;
1125 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001126 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001127 .addReg(Dest, RegState::Define |
1128 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001129 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001130 break;
1131 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001132 case X86::DEC32r:
1133 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001134 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001135 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1136 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001137 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001138 .addReg(Dest, RegState::Define |
1139 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001140 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001141 break;
1142 }
1143 case X86::DEC16r:
1144 case X86::DEC64_16r:
1145 if (DisableLEA16) return 0;
1146 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001147 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001148 .addReg(Dest, RegState::Define |
1149 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001150 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001151 break;
1152 case X86::ADD64rr:
1153 case X86::ADD32rr: {
1154 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001155 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1156 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001157 unsigned Src2 = MI->getOperand(2).getReg();
1158 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001159 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001160 .addReg(Dest, RegState::Define |
1161 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001162 Src, isKill, Src2, isKill2);
1163 if (LV && isKill2)
1164 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001165 break;
1166 }
Evan Chenge52c1912008-07-03 09:09:37 +00001167 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001168 if (DisableLEA16) return 0;
1169 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001170 unsigned Src2 = MI->getOperand(2).getReg();
1171 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001172 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001173 .addReg(Dest, RegState::Define |
1174 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001175 Src, isKill, Src2, isKill2);
1176 if (LV && isKill2)
1177 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001178 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001179 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001180 case X86::ADD64ri32:
1181 case X86::ADD64ri8:
1182 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001183 if (MI->getOperand(2).isImm())
Rafael Espindolabca99f72009-04-08 21:14:34 +00001184 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001185 .addReg(Dest, RegState::Define |
1186 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001187 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001188 break;
1189 case X86::ADD32ri:
1190 case X86::ADD32ri8:
1191 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001192 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001193 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Rafael Espindolabca99f72009-04-08 21:14:34 +00001194 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001195 .addReg(Dest, RegState::Define |
1196 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001197 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001198 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001199 break;
1200 case X86::ADD16ri:
1201 case X86::ADD16ri8:
1202 if (DisableLEA16) return 0;
1203 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001204 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001205 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001206 .addReg(Dest, RegState::Define |
1207 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001208 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001209 break;
1210 case X86::SHL16ri:
1211 if (DisableLEA16) return 0;
1212 case X86::SHL32ri:
1213 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001214 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001215 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001216 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1218 X86AddressMode AM;
1219 AM.Scale = 1 << ShAmt;
1220 AM.IndexReg = Src;
1221 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001222 : (MIOpc == X86::SHL32ri
1223 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001224 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001225 .addReg(Dest, RegState::Define |
1226 getDeadRegState(isDead)), AM);
Evan Chenge52c1912008-07-03 09:09:37 +00001227 if (isKill)
1228 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001229 }
1230 break;
1231 }
1232 }
1233 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 }
1235
Evan Chengc3cb24d2008-02-07 08:29:53 +00001236 if (!NewMI) return 0;
1237
Evan Chenge52c1912008-07-03 09:09:37 +00001238 if (LV) { // Update live variables
1239 if (isKill)
1240 LV->replaceKillInstruction(Src, MI, NewMI);
1241 if (isDead)
1242 LV->replaceKillInstruction(Dest, MI, NewMI);
1243 }
1244
Evan Cheng6b96ed32007-10-05 20:34:26 +00001245 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 return NewMI;
1247}
1248
1249/// commuteInstruction - We have a few instructions that must be hacked on to
1250/// commute them.
1251///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001252MachineInstr *
1253X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 switch (MI->getOpcode()) {
1255 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1256 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1257 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001258 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1259 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1260 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 unsigned Opc;
1262 unsigned Size;
1263 switch (MI->getOpcode()) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001264 default: llvm_unreachable("Unreachable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1266 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1267 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1268 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001269 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1270 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001272 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001273 if (NewMI) {
1274 MachineFunction &MF = *MI->getParent()->getParent();
1275 MI = MF.CloneMachineInstr(MI);
1276 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001277 }
Dan Gohman921581d2008-10-17 01:23:35 +00001278 MI->setDesc(get(Opc));
1279 MI->getOperand(3).setImm(Size-Amt);
1280 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281 }
Evan Cheng926658c2007-10-05 23:13:21 +00001282 case X86::CMOVB16rr:
1283 case X86::CMOVB32rr:
1284 case X86::CMOVB64rr:
1285 case X86::CMOVAE16rr:
1286 case X86::CMOVAE32rr:
1287 case X86::CMOVAE64rr:
1288 case X86::CMOVE16rr:
1289 case X86::CMOVE32rr:
1290 case X86::CMOVE64rr:
1291 case X86::CMOVNE16rr:
1292 case X86::CMOVNE32rr:
1293 case X86::CMOVNE64rr:
1294 case X86::CMOVBE16rr:
1295 case X86::CMOVBE32rr:
1296 case X86::CMOVBE64rr:
1297 case X86::CMOVA16rr:
1298 case X86::CMOVA32rr:
1299 case X86::CMOVA64rr:
1300 case X86::CMOVL16rr:
1301 case X86::CMOVL32rr:
1302 case X86::CMOVL64rr:
1303 case X86::CMOVGE16rr:
1304 case X86::CMOVGE32rr:
1305 case X86::CMOVGE64rr:
1306 case X86::CMOVLE16rr:
1307 case X86::CMOVLE32rr:
1308 case X86::CMOVLE64rr:
1309 case X86::CMOVG16rr:
1310 case X86::CMOVG32rr:
1311 case X86::CMOVG64rr:
1312 case X86::CMOVS16rr:
1313 case X86::CMOVS32rr:
1314 case X86::CMOVS64rr:
1315 case X86::CMOVNS16rr:
1316 case X86::CMOVNS32rr:
1317 case X86::CMOVNS64rr:
1318 case X86::CMOVP16rr:
1319 case X86::CMOVP32rr:
1320 case X86::CMOVP64rr:
1321 case X86::CMOVNP16rr:
1322 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001323 case X86::CMOVNP64rr:
1324 case X86::CMOVO16rr:
1325 case X86::CMOVO32rr:
1326 case X86::CMOVO64rr:
1327 case X86::CMOVNO16rr:
1328 case X86::CMOVNO32rr:
1329 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001330 unsigned Opc = 0;
1331 switch (MI->getOpcode()) {
1332 default: break;
1333 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1334 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1335 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1336 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1337 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1338 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1339 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1340 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1341 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1342 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1343 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1344 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1345 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1346 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1347 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1348 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1349 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1350 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1351 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1352 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1353 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1354 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1355 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1356 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1357 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1358 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1359 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1360 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1361 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1362 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1363 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1364 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001365 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001366 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1367 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1368 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1369 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1370 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001371 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001372 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1373 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1374 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001375 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1376 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001377 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001378 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1379 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1380 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001381 }
Dan Gohman921581d2008-10-17 01:23:35 +00001382 if (NewMI) {
1383 MachineFunction &MF = *MI->getParent()->getParent();
1384 MI = MF.CloneMachineInstr(MI);
1385 NewMI = false;
1386 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001387 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001388 // Fallthrough intended.
1389 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001391 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 }
1393}
1394
1395static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1396 switch (BrOpc) {
1397 default: return X86::COND_INVALID;
1398 case X86::JE: return X86::COND_E;
1399 case X86::JNE: return X86::COND_NE;
1400 case X86::JL: return X86::COND_L;
1401 case X86::JLE: return X86::COND_LE;
1402 case X86::JG: return X86::COND_G;
1403 case X86::JGE: return X86::COND_GE;
1404 case X86::JB: return X86::COND_B;
1405 case X86::JBE: return X86::COND_BE;
1406 case X86::JA: return X86::COND_A;
1407 case X86::JAE: return X86::COND_AE;
1408 case X86::JS: return X86::COND_S;
1409 case X86::JNS: return X86::COND_NS;
1410 case X86::JP: return X86::COND_P;
1411 case X86::JNP: return X86::COND_NP;
1412 case X86::JO: return X86::COND_O;
1413 case X86::JNO: return X86::COND_NO;
1414 }
1415}
1416
1417unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1418 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001419 default: llvm_unreachable("Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001420 case X86::COND_E: return X86::JE;
1421 case X86::COND_NE: return X86::JNE;
1422 case X86::COND_L: return X86::JL;
1423 case X86::COND_LE: return X86::JLE;
1424 case X86::COND_G: return X86::JG;
1425 case X86::COND_GE: return X86::JGE;
1426 case X86::COND_B: return X86::JB;
1427 case X86::COND_BE: return X86::JBE;
1428 case X86::COND_A: return X86::JA;
1429 case X86::COND_AE: return X86::JAE;
1430 case X86::COND_S: return X86::JS;
1431 case X86::COND_NS: return X86::JNS;
1432 case X86::COND_P: return X86::JP;
1433 case X86::COND_NP: return X86::JNP;
1434 case X86::COND_O: return X86::JO;
1435 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001436 }
1437}
1438
1439/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1440/// e.g. turning COND_E to COND_NE.
1441X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1442 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001443 default: llvm_unreachable("Illegal condition code!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444 case X86::COND_E: return X86::COND_NE;
1445 case X86::COND_NE: return X86::COND_E;
1446 case X86::COND_L: return X86::COND_GE;
1447 case X86::COND_LE: return X86::COND_G;
1448 case X86::COND_G: return X86::COND_LE;
1449 case X86::COND_GE: return X86::COND_L;
1450 case X86::COND_B: return X86::COND_AE;
1451 case X86::COND_BE: return X86::COND_A;
1452 case X86::COND_A: return X86::COND_BE;
1453 case X86::COND_AE: return X86::COND_B;
1454 case X86::COND_S: return X86::COND_NS;
1455 case X86::COND_NS: return X86::COND_S;
1456 case X86::COND_P: return X86::COND_NP;
1457 case X86::COND_NP: return X86::COND_P;
1458 case X86::COND_O: return X86::COND_NO;
1459 case X86::COND_NO: return X86::COND_O;
1460 }
1461}
1462
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001463bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001464 const TargetInstrDesc &TID = MI->getDesc();
1465 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001466
1467 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001468 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001469 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001470 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001471 return true;
1472 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473}
1474
Evan Cheng12515792007-07-26 17:32:14 +00001475// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1476static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1477 const X86InstrInfo &TII) {
1478 if (MI->getOpcode() == X86::FP_REG_KILL)
1479 return false;
1480 return TII.isUnpredicatedTerminator(MI);
1481}
1482
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001483bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1484 MachineBasicBlock *&TBB,
1485 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001486 SmallVectorImpl<MachineOperand> &Cond,
1487 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001488 // Start from the bottom of the block and work up, examining the
1489 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001491 while (I != MBB.begin()) {
1492 --I;
1493 // Working from the bottom, when we see a non-terminator
1494 // instruction, we're done.
1495 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1496 break;
1497 // A terminator that isn't a branch can't easily be handled
1498 // by this analysis.
1499 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001501 // Handle unconditional branches.
1502 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001503 if (!AllowModify) {
1504 TBB = I->getOperand(0).getMBB();
Evan Cheng67bf8e22009-05-08 06:34:09 +00001505 continue;
Evan Chengeac31642009-02-09 07:14:22 +00001506 }
1507
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001508 // If the block has any instructions after a JMP, delete them.
1509 while (next(I) != MBB.end())
1510 next(I)->eraseFromParent();
1511 Cond.clear();
1512 FBB = 0;
1513 // Delete the JMP if it's equivalent to a fall-through.
1514 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1515 TBB = 0;
1516 I->eraseFromParent();
1517 I = MBB.end();
1518 continue;
1519 }
1520 // TBB is used to indicate the unconditinal destination.
1521 TBB = I->getOperand(0).getMBB();
1522 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001524 // Handle conditional branches.
1525 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001526 if (BranchCode == X86::COND_INVALID)
1527 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001528 // Working from the bottom, handle the first conditional branch.
1529 if (Cond.empty()) {
1530 FBB = TBB;
1531 TBB = I->getOperand(0).getMBB();
1532 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1533 continue;
1534 }
1535 // Handle subsequent conditional branches. Only handle the case
1536 // where all conditional branches branch to the same destination
1537 // and their condition opcodes fit one of the special
1538 // multi-branch idioms.
1539 assert(Cond.size() == 1);
1540 assert(TBB);
1541 // Only handle the case where all conditional branches branch to
1542 // the same destination.
1543 if (TBB != I->getOperand(0).getMBB())
1544 return true;
1545 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1546 // If the conditions are the same, we can leave them alone.
1547 if (OldBranchCode == BranchCode)
1548 continue;
1549 // If they differ, see if they fit one of the known patterns.
1550 // Theoretically we could handle more patterns here, but
1551 // we shouldn't expect to see them if instruction selection
1552 // has done a reasonable job.
1553 if ((OldBranchCode == X86::COND_NP &&
1554 BranchCode == X86::COND_E) ||
1555 (OldBranchCode == X86::COND_E &&
1556 BranchCode == X86::COND_NP))
1557 BranchCode = X86::COND_NP_OR_E;
1558 else if ((OldBranchCode == X86::COND_P &&
1559 BranchCode == X86::COND_NE) ||
1560 (OldBranchCode == X86::COND_NE &&
1561 BranchCode == X86::COND_P))
1562 BranchCode = X86::COND_NE_OR_P;
1563 else
1564 return true;
1565 // Update the MachineOperand.
1566 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 }
1568
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001569 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001570}
1571
1572unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1573 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001574 unsigned Count = 0;
1575
1576 while (I != MBB.begin()) {
1577 --I;
1578 if (I->getOpcode() != X86::JMP &&
1579 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1580 break;
1581 // Remove the branch.
1582 I->eraseFromParent();
1583 I = MBB.end();
1584 ++Count;
1585 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001587 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001588}
1589
1590unsigned
1591X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1592 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001593 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001594 // FIXME this should probably have a DebugLoc operand
1595 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596 // Shouldn't be a fall through.
1597 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1598 assert((Cond.size() == 1 || Cond.size() == 0) &&
1599 "X86 branch conditions have one component!");
1600
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001601 if (Cond.empty()) {
1602 // Unconditional branch?
1603 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001604 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001605 return 1;
1606 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001607
1608 // Conditional branch.
1609 unsigned Count = 0;
1610 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1611 switch (CC) {
1612 case X86::COND_NP_OR_E:
1613 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001614 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001615 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001616 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001617 ++Count;
1618 break;
1619 case X86::COND_NE_OR_P:
1620 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001621 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001622 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001623 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001624 ++Count;
1625 break;
1626 default: {
1627 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001628 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001629 ++Count;
1630 }
1631 }
1632 if (FBB) {
1633 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001634 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001635 ++Count;
1636 }
1637 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001638}
1639
Dan Gohman2da0db32009-04-15 00:04:23 +00001640/// isHReg - Test if the given register is a physical h register.
1641static bool isHReg(unsigned Reg) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001642 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman2da0db32009-04-15 00:04:23 +00001643}
1644
Owen Anderson9fa72d92008-08-26 18:03:31 +00001645bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001646 MachineBasicBlock::iterator MI,
1647 unsigned DestReg, unsigned SrcReg,
1648 const TargetRegisterClass *DestRC,
1649 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001650 DebugLoc DL = DebugLoc::getUnknownLoc();
1651 if (MI != MBB.end()) DL = MI->getDebugLoc();
1652
Dan Gohmand4df6252009-04-20 22:54:34 +00001653 // Determine if DstRC and SrcRC have a common superclass in common.
1654 const TargetRegisterClass *CommonRC = DestRC;
1655 if (DestRC == SrcRC)
1656 /* Source and destination have the same register class. */;
1657 else if (CommonRC->hasSuperClass(SrcRC))
1658 CommonRC = SrcRC;
Dan Gohmanfe606822009-07-30 01:56:29 +00001659 else if (!DestRC->hasSubClass(SrcRC)) {
1660 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
Dan Gohman861ed262009-08-05 22:18:26 +00001661 // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1662 // GR32_NOSP, copy as GR32.
Dan Gohmande9c0562009-08-11 15:59:48 +00001663 if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1664 DestRC->hasSuperClass(&X86::GR64RegClass))
Dan Gohmanfe606822009-07-30 01:56:29 +00001665 CommonRC = &X86::GR64RegClass;
Dan Gohmande9c0562009-08-11 15:59:48 +00001666 else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1667 DestRC->hasSuperClass(&X86::GR32RegClass))
Dan Gohman861ed262009-08-05 22:18:26 +00001668 CommonRC = &X86::GR32RegClass;
Dan Gohmanfe606822009-07-30 01:56:29 +00001669 else
1670 CommonRC = 0;
1671 }
Dan Gohmand4df6252009-04-20 22:54:34 +00001672
1673 if (CommonRC) {
Chris Lattner59707122008-03-09 07:58:04 +00001674 unsigned Opc;
Dan Gohmanfe606822009-07-30 01:56:29 +00001675 if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001676 Opc = X86::MOV64rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001677 } else if (CommonRC == &X86::GR32RegClass ||
1678 CommonRC == &X86::GR32_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001679 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001680 } else if (CommonRC == &X86::GR16RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001681 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001682 } else if (CommonRC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001683 // Copying to or from a physical H register on x86-64 requires a NOREX
Bill Wendling2d1c8222009-04-17 22:40:38 +00001684 // move. Otherwise use a normal move.
1685 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1686 TM.getSubtarget<X86Subtarget>().is64Bit())
Dan Gohman2da0db32009-04-15 00:04:23 +00001687 Opc = X86::MOV8rr_NOREX;
1688 else
1689 Opc = X86::MOV8rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001690 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001691 Opc = X86::MOV64rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001692 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001693 Opc = X86::MOV32rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001694 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001695 Opc = X86::MOV16rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001696 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001697 Opc = X86::MOV8rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001698 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1699 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1700 Opc = X86::MOV8rr_NOREX;
1701 else
1702 Opc = X86::MOV8rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001703 } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1704 CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001705 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001706 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001707 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001708 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001709 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001710 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001711 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001712 } else if (CommonRC == &X86::RFP32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001713 Opc = X86::MOV_Fp3232;
Dan Gohmand4df6252009-04-20 22:54:34 +00001714 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001715 Opc = X86::MOV_Fp6464;
Dan Gohmand4df6252009-04-20 22:54:34 +00001716 } else if (CommonRC == &X86::RFP80RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001717 Opc = X86::MOV_Fp8080;
Dan Gohmand4df6252009-04-20 22:54:34 +00001718 } else if (CommonRC == &X86::FR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001719 Opc = X86::FsMOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001720 } else if (CommonRC == &X86::FR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001721 Opc = X86::FsMOVAPDrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001722 } else if (CommonRC == &X86::VR128RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001723 Opc = X86::MOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001724 } else if (CommonRC == &X86::VR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001725 Opc = X86::MMX_MOVQ64rr;
1726 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001727 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001728 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001729 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001730 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001731 }
Dan Gohmanfe606822009-07-30 01:56:29 +00001732
Chris Lattner59707122008-03-09 07:58:04 +00001733 // Moving EFLAGS to / from another register requires a push and a pop.
1734 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001735 if (SrcReg != X86::EFLAGS)
1736 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001737 if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001738 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1739 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001740 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001741 } else if (DestRC == &X86::GR32RegClass ||
1742 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001743 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1744 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001745 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001746 }
1747 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001748 if (DestReg != X86::EFLAGS)
1749 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001750 if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001751 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1752 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001753 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001754 } else if (SrcRC == &X86::GR32RegClass ||
1755 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001756 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1757 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001758 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001759 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001760 }
Dan Gohman744d4622009-04-13 16:09:41 +00001761
Chris Lattner0d128722008-03-09 09:15:31 +00001762 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001763 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001764 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001765 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1766 // Can only copy from ST(0)/ST(1) right now
1767 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001768 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001769 unsigned Opc;
1770 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001771 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001772 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001773 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001774 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001775 if (DestRC != &X86::RFP80RegClass)
1776 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001777 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001778 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001779 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001780 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001781 }
Chris Lattner0d128722008-03-09 09:15:31 +00001782
1783 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1784 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001785 // Copying to ST(0) / ST(1).
1786 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001787 // Can only copy to TOS right now
1788 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001789 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001790 unsigned Opc;
1791 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001792 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001793 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001794 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001795 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001796 if (SrcRC != &X86::RFP80RegClass)
1797 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001798 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001799 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001800 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001801 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001802 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001803
Owen Anderson9fa72d92008-08-26 18:03:31 +00001804 // Not yet supported!
1805 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001806}
1807
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001808static unsigned getStoreRegOpcode(unsigned SrcReg,
1809 const TargetRegisterClass *RC,
1810 bool isStackAligned,
1811 TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001812 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001813 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001814 Opc = X86::MOV64mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001815 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001816 Opc = X86::MOV32mr;
1817 } else if (RC == &X86::GR16RegClass) {
1818 Opc = X86::MOV16mr;
1819 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001820 // Copying to or from a physical H register on x86-64 requires a NOREX
1821 // move. Otherwise use a normal move.
1822 if (isHReg(SrcReg) &&
1823 TM.getSubtarget<X86Subtarget>().is64Bit())
1824 Opc = X86::MOV8mr_NOREX;
1825 else
1826 Opc = X86::MOV8mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001827 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001828 Opc = X86::MOV64mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001829 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001830 Opc = X86::MOV32mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001831 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001832 Opc = X86::MOV16mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001833 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001834 Opc = X86::MOV8mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001835 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1836 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1837 Opc = X86::MOV8mr_NOREX;
1838 else
1839 Opc = X86::MOV8mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001840 } else if (RC == &X86::GR64_NOREXRegClass ||
1841 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001842 Opc = X86::MOV64mr;
1843 } else if (RC == &X86::GR32_NOREXRegClass) {
1844 Opc = X86::MOV32mr;
1845 } else if (RC == &X86::GR16_NOREXRegClass) {
1846 Opc = X86::MOV16mr;
1847 } else if (RC == &X86::GR8_NOREXRegClass) {
1848 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001849 } else if (RC == &X86::RFP80RegClass) {
1850 Opc = X86::ST_FpP80m; // pops
1851 } else if (RC == &X86::RFP64RegClass) {
1852 Opc = X86::ST_Fp64m;
1853 } else if (RC == &X86::RFP32RegClass) {
1854 Opc = X86::ST_Fp32m;
1855 } else if (RC == &X86::FR32RegClass) {
1856 Opc = X86::MOVSSmr;
1857 } else if (RC == &X86::FR64RegClass) {
1858 Opc = X86::MOVSDmr;
1859 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001860 // If stack is realigned we can use aligned stores.
1861 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001862 } else if (RC == &X86::VR64RegClass) {
1863 Opc = X86::MMX_MOVQ64mr;
1864 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001865 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001866 }
1867
1868 return Opc;
1869}
1870
1871void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1872 MachineBasicBlock::iterator MI,
1873 unsigned SrcReg, bool isKill, int FrameIdx,
1874 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001875 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001876 bool isAligned = (RI.getStackAlignment() >= 16) ||
1877 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001878 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001879 DebugLoc DL = DebugLoc::getUnknownLoc();
1880 if (MI != MBB.end()) DL = MI->getDebugLoc();
1881 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling2b739762009-05-13 21:33:08 +00001882 .addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001883}
1884
1885void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1886 bool isKill,
1887 SmallVectorImpl<MachineOperand> &Addr,
1888 const TargetRegisterClass *RC,
1889 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001890 bool isAligned = (RI.getStackAlignment() >= 16) ||
1891 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001892 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001893 DebugLoc DL = DebugLoc::getUnknownLoc();
1894 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001895 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001896 MIB.addOperand(Addr[i]);
Bill Wendling2b739762009-05-13 21:33:08 +00001897 MIB.addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001898 NewMIs.push_back(MIB);
1899}
1900
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001901static unsigned getLoadRegOpcode(unsigned DestReg,
1902 const TargetRegisterClass *RC,
1903 bool isStackAligned,
1904 const TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001905 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001906 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001907 Opc = X86::MOV64rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001908 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001909 Opc = X86::MOV32rm;
1910 } else if (RC == &X86::GR16RegClass) {
1911 Opc = X86::MOV16rm;
1912 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001913 // Copying to or from a physical H register on x86-64 requires a NOREX
1914 // move. Otherwise use a normal move.
1915 if (isHReg(DestReg) &&
1916 TM.getSubtarget<X86Subtarget>().is64Bit())
1917 Opc = X86::MOV8rm_NOREX;
1918 else
1919 Opc = X86::MOV8rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001920 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001921 Opc = X86::MOV64rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001922 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001923 Opc = X86::MOV32rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001924 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001925 Opc = X86::MOV16rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001926 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001927 Opc = X86::MOV8rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001928 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1929 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1930 Opc = X86::MOV8rm_NOREX;
1931 else
1932 Opc = X86::MOV8rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001933 } else if (RC == &X86::GR64_NOREXRegClass ||
1934 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001935 Opc = X86::MOV64rm;
1936 } else if (RC == &X86::GR32_NOREXRegClass) {
1937 Opc = X86::MOV32rm;
1938 } else if (RC == &X86::GR16_NOREXRegClass) {
1939 Opc = X86::MOV16rm;
1940 } else if (RC == &X86::GR8_NOREXRegClass) {
1941 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00001942 } else if (RC == &X86::RFP80RegClass) {
1943 Opc = X86::LD_Fp80m;
1944 } else if (RC == &X86::RFP64RegClass) {
1945 Opc = X86::LD_Fp64m;
1946 } else if (RC == &X86::RFP32RegClass) {
1947 Opc = X86::LD_Fp32m;
1948 } else if (RC == &X86::FR32RegClass) {
1949 Opc = X86::MOVSSrm;
1950 } else if (RC == &X86::FR64RegClass) {
1951 Opc = X86::MOVSDrm;
1952 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001953 // If stack is realigned we can use aligned loads.
1954 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001955 } else if (RC == &X86::VR64RegClass) {
1956 Opc = X86::MMX_MOVQ64rm;
1957 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001958 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001959 }
1960
1961 return Opc;
1962}
1963
1964void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001965 MachineBasicBlock::iterator MI,
1966 unsigned DestReg, int FrameIdx,
1967 const TargetRegisterClass *RC) const{
1968 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001969 bool isAligned = (RI.getStackAlignment() >= 16) ||
1970 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001971 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001972 DebugLoc DL = DebugLoc::getUnknownLoc();
1973 if (MI != MBB.end()) DL = MI->getDebugLoc();
1974 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001975}
1976
1977void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001978 SmallVectorImpl<MachineOperand> &Addr,
1979 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001980 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001981 bool isAligned = (RI.getStackAlignment() >= 16) ||
1982 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001983 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001984 DebugLoc DL = DebugLoc::getUnknownLoc();
1985 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001986 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001987 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00001988 NewMIs.push_back(MIB);
1989}
1990
Owen Anderson6690c7f2008-01-04 23:57:37 +00001991bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001992 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001993 const std::vector<CalleeSavedInfo> &CSI) const {
1994 if (CSI.empty())
1995 return false;
1996
Bill Wendling13ee2e42009-02-11 21:51:19 +00001997 DebugLoc DL = DebugLoc::getUnknownLoc();
1998 if (MI != MBB.end()) DL = MI->getDebugLoc();
1999
Evan Chengc275cf62008-09-26 19:14:21 +00002000 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002001 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002002 unsigned SlotSize = is64Bit ? 8 : 4;
2003
2004 MachineFunction &MF = *MBB.getParent();
Evan Cheng10b8d222009-07-09 06:53:48 +00002005 unsigned FPReg = RI.getFrameRegister(MF);
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002006 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Eli Friedman65b88222009-06-04 02:32:04 +00002007 unsigned CalleeFrameSize = 0;
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002008
Owen Anderson6690c7f2008-01-04 23:57:37 +00002009 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2010 for (unsigned i = CSI.size(); i != 0; --i) {
2011 unsigned Reg = CSI[i-1].getReg();
Eli Friedman65b88222009-06-04 02:32:04 +00002012 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002013 // Add the callee-saved register as live-in. It's killed at the spill.
2014 MBB.addLiveIn(Reg);
Evan Cheng10b8d222009-07-09 06:53:48 +00002015 if (Reg == FPReg)
2016 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2017 continue;
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002018 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002019 CalleeFrameSize += SlotSize;
Evan Cheng10b8d222009-07-09 06:53:48 +00002020 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
Eli Friedman65b88222009-06-04 02:32:04 +00002021 } else {
2022 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2023 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002024 }
Eli Friedman65b88222009-06-04 02:32:04 +00002025
2026 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002027 return true;
2028}
2029
2030bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002031 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002032 const std::vector<CalleeSavedInfo> &CSI) const {
2033 if (CSI.empty())
2034 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00002035
2036 DebugLoc DL = DebugLoc::getUnknownLoc();
2037 if (MI != MBB.end()) DL = MI->getDebugLoc();
2038
Evan Cheng10b8d222009-07-09 06:53:48 +00002039 MachineFunction &MF = *MBB.getParent();
2040 unsigned FPReg = RI.getFrameRegister(MF);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002041 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002042 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002043 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2044 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2045 unsigned Reg = CSI[i].getReg();
Evan Cheng10b8d222009-07-09 06:53:48 +00002046 if (Reg == FPReg)
2047 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2048 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002049 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002050 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002051 BuildMI(MBB, MI, DL, get(Opc), Reg);
2052 } else {
2053 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2054 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002055 }
2056 return true;
2057}
2058
Dan Gohman221a4372008-07-07 23:14:23 +00002059static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002060 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002061 MachineInstr *MI,
2062 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002063 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002064 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2065 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002066 MachineInstrBuilder MIB(NewMI);
2067 unsigned NumAddrOps = MOs.size();
2068 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002069 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002071 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002072
2073 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00002074 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002075 for (unsigned i = 0; i != NumOps; ++i) {
2076 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002077 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002078 }
2079 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2080 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002081 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002082 }
2083 return MIB;
2084}
2085
Dan Gohman221a4372008-07-07 23:14:23 +00002086static MachineInstr *FuseInst(MachineFunction &MF,
2087 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002088 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002089 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002090 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2091 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002092 MachineInstrBuilder MIB(NewMI);
2093
2094 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2095 MachineOperand &MO = MI->getOperand(i);
2096 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002097 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002098 unsigned NumAddrOps = MOs.size();
2099 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002100 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002101 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002102 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002103 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002104 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002105 }
2106 }
2107 return MIB;
2108}
2109
2110static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002111 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002112 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002113 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002114 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002115
2116 unsigned NumAddrOps = MOs.size();
2117 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002118 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002119 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002120 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002121 return MIB.addImm(0);
2122}
2123
2124MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002125X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2126 MachineInstr *MI, unsigned i,
Evan Chenga5853792009-07-15 06:10:07 +00002127 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng8f0797f2009-09-11 00:39:26 +00002128 unsigned Size, unsigned Align) const {
Evan Chenga5853792009-07-15 06:10:07 +00002129 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002130 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002131 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002132 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002133 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002134
2135 MachineInstr *NewMI = NULL;
2136 // Folding a memory location into the two-address part of a two-address
2137 // instruction is different than folding it other places. It requires
2138 // replacing the *two* registers with the memory location.
2139 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002140 MI->getOperand(0).isReg() &&
2141 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002142 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2143 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2144 isTwoAddrFold = true;
2145 } else if (i == 0) { // If operand 0
2146 if (MI->getOpcode() == X86::MOV16r0)
2147 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2148 else if (MI->getOpcode() == X86::MOV32r0)
2149 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002150 else if (MI->getOpcode() == X86::MOV8r0)
2151 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002152 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002153 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002154
2155 OpcodeTablePtr = &RegOp2MemOpTable0;
2156 } else if (i == 1) {
2157 OpcodeTablePtr = &RegOp2MemOpTable1;
2158 } else if (i == 2) {
2159 OpcodeTablePtr = &RegOp2MemOpTable2;
2160 }
2161
2162 // If table selected...
2163 if (OpcodeTablePtr) {
2164 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002165 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002166 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2167 if (I != OpcodeTablePtr->end()) {
Evan Cheng8f0797f2009-09-11 00:39:26 +00002168 unsigned Opcode = I->second.first;
Evan Chenga5853792009-07-15 06:10:07 +00002169 unsigned MinAlign = I->second.second;
2170 if (Align < MinAlign)
2171 return NULL;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002172 bool NarrowToMOV32rm = false;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002173 if (Size) {
2174 unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2175 if (Size < RCSize) {
2176 // Check if it's safe to fold the load. If the size of the object is
2177 // narrower than the load width, then it's not.
2178 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2179 return NULL;
2180 // If this is a 64-bit load, but the spill slot is 32, then we can do
2181 // a 32-bit load which is implicitly zero-extended. This likely is due
2182 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002183 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2184 return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002185 Opcode = X86::MOV32rm;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002186 NarrowToMOV32rm = true;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002187 }
2188 }
2189
Owen Anderson9a184ef2008-01-07 01:35:02 +00002190 if (isTwoAddrFold)
Evan Cheng8f0797f2009-09-11 00:39:26 +00002191 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002192 else
Evan Cheng8f0797f2009-09-11 00:39:26 +00002193 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002194
2195 if (NarrowToMOV32rm) {
2196 // If this is the special case where we use a MOV32rm to load a 32-bit
2197 // value and zero-extend the top bits. Change the destination register
2198 // to a 32-bit one.
2199 unsigned DstReg = NewMI->getOperand(0).getReg();
2200 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2201 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2202 4/*x86_subreg_32bit*/));
2203 else
2204 NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2205 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002206 return NewMI;
2207 }
2208 }
2209
2210 // No fusion
2211 if (PrintFailedFusing)
Chris Lattnerd71b0b02009-08-23 03:41:05 +00002212 errs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002213 return NULL;
2214}
2215
2216
Dan Gohmanedc83d62008-12-03 18:43:12 +00002217MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2218 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002219 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002220 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002221 // Check switch flag
2222 if (NoFusing) return NULL;
2223
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002224 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng8f0797f2009-09-11 00:39:26 +00002225 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002226 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002227 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2228 unsigned NewOpc = 0;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002229 unsigned RCSize = 0;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002230 switch (MI->getOpcode()) {
2231 default: return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002232 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
2233 case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2234 case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2235 case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002236 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002237 // Check if it's safe to fold the load. If the size of the object is
2238 // narrower than the load width, then it's not.
2239 if (Size < RCSize)
2240 return NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002241 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002242 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002243 MI->getOperand(1).ChangeToImmediate(0);
2244 } else if (Ops.size() != 1)
2245 return NULL;
2246
2247 SmallVector<MachineOperand,4> MOs;
2248 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng8f0797f2009-09-11 00:39:26 +00002249 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002250}
2251
Dan Gohmanedc83d62008-12-03 18:43:12 +00002252MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2253 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002254 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002255 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256 // Check switch flag
2257 if (NoFusing) return NULL;
2258
Dan Gohmand0e8c752008-07-12 00:10:52 +00002259 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002260 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002261 if (LoadMI->hasOneMemOperand())
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002262 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman51dbce62009-09-21 18:30:38 +00002263 else
2264 switch (LoadMI->getOpcode()) {
2265 case X86::V_SET0:
2266 case X86::V_SETALLONES:
2267 Alignment = 16;
2268 break;
2269 case X86::FsFLD0SD:
2270 Alignment = 8;
2271 break;
2272 case X86::FsFLD0SS:
2273 Alignment = 4;
2274 break;
2275 default:
2276 llvm_unreachable("Don't know how to fold this instruction!");
2277 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002278 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2279 unsigned NewOpc = 0;
2280 switch (MI->getOpcode()) {
2281 default: return NULL;
2282 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2283 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2284 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2285 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2286 }
2287 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002288 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002289 MI->getOperand(1).ChangeToImmediate(0);
2290 } else if (Ops.size() != 1)
2291 return NULL;
2292
Rafael Espindolabca99f72009-04-08 21:14:34 +00002293 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman51dbce62009-09-21 18:30:38 +00002294 switch (LoadMI->getOpcode()) {
2295 case X86::V_SET0:
2296 case X86::V_SETALLONES:
2297 case X86::FsFLD0SD:
2298 case X86::FsFLD0SS: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002299 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2300 // Create a constant-pool entry and operands to load from it.
2301
2302 // x86-32 PIC requires a PIC base register for constant pools.
2303 unsigned PICBase = 0;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002304 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng3b570332009-07-16 18:44:05 +00002305 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2306 PICBase = X86::RIP;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002307 else
Evan Cheng3b570332009-07-16 18:44:05 +00002308 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2309 // This doesn't work for several reasons.
2310 // 1. GlobalBaseReg may have been spilled.
2311 // 2. It may not be live at MI.
Dan Gohman51dbce62009-09-21 18:30:38 +00002312 return NULL;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002313 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002314
Dan Gohman51dbce62009-09-21 18:30:38 +00002315 // Create a constant-pool entry.
Dan Gohman37eb6c82008-12-03 05:21:24 +00002316 MachineConstantPool &MCP = *MF.getConstantPool();
Dan Gohman51dbce62009-09-21 18:30:38 +00002317 const Type *Ty;
2318 if (LoadMI->getOpcode() == X86::FsFLD0SS)
2319 Ty = Type::getFloatTy(MF.getFunction()->getContext());
2320 else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2321 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2322 else
2323 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2324 Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2325 Constant::getAllOnesValue(Ty) :
2326 Constant::getNullValue(Ty);
2327 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002328
2329 // Create operands to load from the constant pool entry.
2330 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2331 MOs.push_back(MachineOperand::CreateImm(1));
2332 MOs.push_back(MachineOperand::CreateReg(0, false));
2333 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002334 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman51dbce62009-09-21 18:30:38 +00002335 break;
2336 }
2337 default: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002338 // Folding a normal load. Just copy the load's address operands.
2339 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002340 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002341 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman51dbce62009-09-21 18:30:38 +00002342 break;
2343 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002344 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002345 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002346}
2347
2348
Dan Gohman46b948e2008-10-16 01:49:15 +00002349bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2350 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002351 // Check switch flag
2352 if (NoFusing) return 0;
2353
2354 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2355 switch (MI->getOpcode()) {
2356 default: return false;
2357 case X86::TEST8rr:
2358 case X86::TEST16rr:
2359 case X86::TEST32rr:
2360 case X86::TEST64rr:
2361 return true;
2362 }
2363 }
2364
2365 if (Ops.size() != 1)
2366 return false;
2367
2368 unsigned OpNum = Ops[0];
2369 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002370 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002371 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002372 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002373
2374 // Folding a memory location into the two-address part of a two-address
2375 // instruction is different than folding it other places. It requires
2376 // replacing the *two* registers with the memory location.
Evan Chenga5853792009-07-15 06:10:07 +00002377 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002378 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2379 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2380 } else if (OpNum == 0) { // If operand 0
2381 switch (Opc) {
Chris Lattner17f62252009-07-14 20:19:57 +00002382 case X86::MOV8r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002383 case X86::MOV16r0:
2384 case X86::MOV32r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002385 return true;
2386 default: break;
2387 }
2388 OpcodeTablePtr = &RegOp2MemOpTable0;
2389 } else if (OpNum == 1) {
2390 OpcodeTablePtr = &RegOp2MemOpTable1;
2391 } else if (OpNum == 2) {
2392 OpcodeTablePtr = &RegOp2MemOpTable2;
2393 }
2394
2395 if (OpcodeTablePtr) {
2396 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002397 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002398 OpcodeTablePtr->find((unsigned*)Opc);
2399 if (I != OpcodeTablePtr->end())
2400 return true;
2401 }
2402 return false;
2403}
2404
2405bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2406 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002407 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002408 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2409 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2410 if (I == MemOp2RegOpTable.end())
2411 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002412 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002413 unsigned Opc = I->second.first;
2414 unsigned Index = I->second.second & 0xf;
2415 bool FoldedLoad = I->second.second & (1 << 4);
2416 bool FoldedStore = I->second.second & (1 << 5);
2417 if (UnfoldLoad && !FoldedLoad)
2418 return false;
2419 UnfoldLoad &= FoldedLoad;
2420 if (UnfoldStore && !FoldedStore)
2421 return false;
2422 UnfoldStore &= FoldedStore;
2423
Chris Lattner5b930372008-01-07 07:27:27 +00002424 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002425 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner6a66b292009-07-29 21:10:12 +00002426 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002427 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002428 SmallVector<MachineOperand,2> BeforeOps;
2429 SmallVector<MachineOperand,2> AfterOps;
2430 SmallVector<MachineOperand,4> ImpOps;
2431 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2432 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002433 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002434 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002435 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002436 ImpOps.push_back(Op);
2437 else if (i < Index)
2438 BeforeOps.push_back(Op);
2439 else if (i > Index)
2440 AfterOps.push_back(Op);
2441 }
2442
2443 // Emit the load instruction.
2444 if (UnfoldLoad) {
2445 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2446 if (UnfoldStore) {
2447 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002448 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002449 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002450 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002451 MO.setIsKill(false);
2452 }
2453 }
2454 }
2455
2456 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002457 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002458 MachineInstrBuilder MIB(DataMI);
2459
2460 if (FoldedStore)
Bill Wendling2b739762009-05-13 21:33:08 +00002461 MIB.addReg(Reg, RegState::Define);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002462 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002463 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002464 if (FoldedLoad)
2465 MIB.addReg(Reg);
2466 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002467 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002468 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2469 MachineOperand &MO = ImpOps[i];
Bill Wendling2b739762009-05-13 21:33:08 +00002470 MIB.addReg(MO.getReg(),
2471 getDefRegState(MO.isDef()) |
2472 RegState::Implicit |
2473 getKillRegState(MO.isKill()) |
Evan Cheng9c73db12009-06-30 08:49:04 +00002474 getDeadRegState(MO.isDead()) |
2475 getUndefRegState(MO.isUndef()));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002476 }
2477 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2478 unsigned NewOpc = 0;
2479 switch (DataMI->getOpcode()) {
2480 default: break;
2481 case X86::CMP64ri32:
2482 case X86::CMP32ri:
2483 case X86::CMP16ri:
2484 case X86::CMP8ri: {
2485 MachineOperand &MO0 = DataMI->getOperand(0);
2486 MachineOperand &MO1 = DataMI->getOperand(1);
2487 if (MO1.getImm() == 0) {
2488 switch (DataMI->getOpcode()) {
2489 default: break;
2490 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2491 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2492 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2493 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2494 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002495 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002496 MO1.ChangeToRegister(MO0.getReg(), false);
2497 }
2498 }
2499 }
2500 NewMIs.push_back(DataMI);
2501
2502 // Emit the store instruction.
2503 if (UnfoldStore) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002504 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002505 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2506 }
2507
2508 return true;
2509}
2510
2511bool
2512X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002513 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002514 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002515 return false;
2516
2517 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002518 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002519 if (I == MemOp2RegOpTable.end())
2520 return false;
2521 unsigned Opc = I->second.first;
2522 unsigned Index = I->second.second & 0xf;
2523 bool FoldedLoad = I->second.second & (1 << 4);
2524 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002525 const TargetInstrDesc &TID = get(Opc);
Chris Lattner6a66b292009-07-29 21:10:12 +00002526 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
Dan Gohman31b70a62009-03-04 19:23:38 +00002527 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002528 std::vector<SDValue> AddrOps;
2529 std::vector<SDValue> BeforeOps;
2530 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002531 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002532 unsigned NumOps = N->getNumOperands();
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002533 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002534 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002535 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002536 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002537 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002538 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002539 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002540 AfterOps.push_back(Op);
2541 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002542 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002543 AddrOps.push_back(Chain);
2544
2545 // Emit the load instruction.
2546 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002547 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002548 if (FoldedLoad) {
Owen Andersonac9de032009-08-10 22:56:29 +00002549 EVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002550 bool isAligned = (RI.getStackAlignment() >= 16) ||
2551 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002552 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2553 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002554 NewNodes.push_back(Load);
2555 }
2556
2557 // Emit the data processing instruction.
Owen Andersonac9de032009-08-10 22:56:29 +00002558 std::vector<EVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002559 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002560 if (TID.getNumDefs() > 0) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002561 DstRC = TID.OpInfo[0].getRegClass(&RI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002562 VTs.push_back(*DstRC->vt_begin());
2563 }
2564 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersonac9de032009-08-10 22:56:29 +00002565 EVT VT = N->getValueType(i);
Owen Anderson36e3a6e2009-08-11 20:47:22 +00002566 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002567 VTs.push_back(VT);
2568 }
2569 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002570 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002571 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman61fda0d2009-09-25 18:54:59 +00002572 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2573 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002574 NewNodes.push_back(NewNode);
2575
2576 // Emit the store instruction.
2577 if (FoldedStore) {
2578 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002579 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002580 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002581 bool isAligned = (RI.getStackAlignment() >= 16) ||
2582 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002583 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2584 isAligned, TM),
2585 dl, MVT::Other,
2586 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002587 NewNodes.push_back(Store);
2588 }
2589
2590 return true;
2591}
2592
2593unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2594 bool UnfoldLoad, bool UnfoldStore) const {
2595 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2596 MemOp2RegOpTable.find((unsigned*)Opc);
2597 if (I == MemOp2RegOpTable.end())
2598 return 0;
2599 bool FoldedLoad = I->second.second & (1 << 4);
2600 bool FoldedStore = I->second.second & (1 << 5);
2601 if (UnfoldLoad && !FoldedLoad)
2602 return 0;
2603 if (UnfoldStore && !FoldedStore)
2604 return 0;
2605 return I->second.first;
2606}
2607
Dan Gohman46b948e2008-10-16 01:49:15 +00002608bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002609 if (MBB.empty()) return false;
2610
2611 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002612 case X86::TCRETURNri:
2613 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002614 case X86::RET: // Return.
2615 case X86::RETI:
2616 case X86::TAILJMPd:
2617 case X86::TAILJMPr:
2618 case X86::TAILJMPm:
2619 case X86::JMP: // Uncond branch.
2620 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002621 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002622 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002623 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002624 return true;
2625 default: return false;
2626 }
2627}
2628
2629bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002630ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002631 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002632 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002633 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2634 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002635 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002636 return false;
2637}
2638
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002639bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002640isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2641 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002642 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002643 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2644 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002645}
2646
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002647unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2648 switch (Desc->TSFlags & X86II::ImmMask) {
2649 case X86II::Imm8: return 1;
2650 case X86II::Imm16: return 2;
2651 case X86II::Imm32: return 4;
2652 case X86II::Imm64: return 8;
Edwin Törökbd448e32009-07-14 16:55:14 +00002653 default: llvm_unreachable("Immediate size not set!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002654 return 0;
2655 }
2656}
2657
2658/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2659/// e.g. r8, xmm8, etc.
2660bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002661 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002662 switch (MO.getReg()) {
2663 default: break;
2664 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2665 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2666 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2667 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2668 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2669 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2670 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2671 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2672 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2673 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2674 return true;
2675 }
2676 return false;
2677}
2678
2679
2680/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2681/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2682/// size, and 3) use of X86-64 extended registers.
2683unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2684 unsigned REX = 0;
2685 const TargetInstrDesc &Desc = MI.getDesc();
2686
2687 // Pseudo instructions do not need REX prefix byte.
2688 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2689 return 0;
2690 if (Desc.TSFlags & X86II::REX_W)
2691 REX |= 1 << 3;
2692
2693 unsigned NumOps = Desc.getNumOperands();
2694 if (NumOps) {
2695 bool isTwoAddr = NumOps > 1 &&
2696 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2697
2698 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2699 unsigned i = isTwoAddr ? 1 : 0;
2700 for (unsigned e = NumOps; i != e; ++i) {
2701 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002702 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002703 unsigned Reg = MO.getReg();
2704 if (isX86_64NonExtLowByteReg(Reg))
2705 REX |= 0x40;
2706 }
2707 }
2708
2709 switch (Desc.TSFlags & X86II::FormMask) {
2710 case X86II::MRMInitReg:
2711 if (isX86_64ExtendedReg(MI.getOperand(0)))
2712 REX |= (1 << 0) | (1 << 2);
2713 break;
2714 case X86II::MRMSrcReg: {
2715 if (isX86_64ExtendedReg(MI.getOperand(0)))
2716 REX |= 1 << 2;
2717 i = isTwoAddr ? 2 : 1;
2718 for (unsigned e = NumOps; i != e; ++i) {
2719 const MachineOperand& MO = MI.getOperand(i);
2720 if (isX86_64ExtendedReg(MO))
2721 REX |= 1 << 0;
2722 }
2723 break;
2724 }
2725 case X86II::MRMSrcMem: {
2726 if (isX86_64ExtendedReg(MI.getOperand(0)))
2727 REX |= 1 << 2;
2728 unsigned Bit = 0;
2729 i = isTwoAddr ? 2 : 1;
2730 for (; i != NumOps; ++i) {
2731 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002732 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002733 if (isX86_64ExtendedReg(MO))
2734 REX |= 1 << Bit;
2735 Bit++;
2736 }
2737 }
2738 break;
2739 }
2740 case X86II::MRM0m: case X86II::MRM1m:
2741 case X86II::MRM2m: case X86II::MRM3m:
2742 case X86II::MRM4m: case X86II::MRM5m:
2743 case X86II::MRM6m: case X86II::MRM7m:
2744 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002745 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002746 i = isTwoAddr ? 1 : 0;
2747 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2748 REX |= 1 << 2;
2749 unsigned Bit = 0;
2750 for (; i != e; ++i) {
2751 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002752 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002753 if (isX86_64ExtendedReg(MO))
2754 REX |= 1 << Bit;
2755 Bit++;
2756 }
2757 }
2758 break;
2759 }
2760 default: {
2761 if (isX86_64ExtendedReg(MI.getOperand(0)))
2762 REX |= 1 << 0;
2763 i = isTwoAddr ? 2 : 1;
2764 for (unsigned e = NumOps; i != e; ++i) {
2765 const MachineOperand& MO = MI.getOperand(i);
2766 if (isX86_64ExtendedReg(MO))
2767 REX |= 1 << 2;
2768 }
2769 break;
2770 }
2771 }
2772 }
2773 return REX;
2774}
2775
2776/// sizePCRelativeBlockAddress - This method returns the size of a PC
2777/// relative block address instruction
2778///
2779static unsigned sizePCRelativeBlockAddress() {
2780 return 4;
2781}
2782
2783/// sizeGlobalAddress - Give the size of the emission of this global address
2784///
2785static unsigned sizeGlobalAddress(bool dword) {
2786 return dword ? 8 : 4;
2787}
2788
2789/// sizeConstPoolAddress - Give the size of the emission of this constant
2790/// pool address
2791///
2792static unsigned sizeConstPoolAddress(bool dword) {
2793 return dword ? 8 : 4;
2794}
2795
2796/// sizeExternalSymbolAddress - Give the size of the emission of this external
2797/// symbol
2798///
2799static unsigned sizeExternalSymbolAddress(bool dword) {
2800 return dword ? 8 : 4;
2801}
2802
2803/// sizeJumpTableAddress - Give the size of the emission of this jump
2804/// table address
2805///
2806static unsigned sizeJumpTableAddress(bool dword) {
2807 return dword ? 8 : 4;
2808}
2809
2810static unsigned sizeConstant(unsigned Size) {
2811 return Size;
2812}
2813
2814static unsigned sizeRegModRMByte(){
2815 return 1;
2816}
2817
2818static unsigned sizeSIBByte(){
2819 return 1;
2820}
2821
2822static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2823 unsigned FinalSize = 0;
2824 // If this is a simple integer displacement that doesn't require a relocation.
2825 if (!RelocOp) {
2826 FinalSize += sizeConstant(4);
2827 return FinalSize;
2828 }
2829
2830 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002831 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002832 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002833 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002834 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002835 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002836 FinalSize += sizeJumpTableAddress(false);
2837 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002838 llvm_unreachable("Unknown value to relocate!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002839 }
2840 return FinalSize;
2841}
2842
2843static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2844 bool IsPIC, bool Is64BitMode) {
2845 const MachineOperand &Op3 = MI.getOperand(Op+3);
2846 int DispVal = 0;
2847 const MachineOperand *DispForReloc = 0;
2848 unsigned FinalSize = 0;
2849
2850 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002851 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002852 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002853 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002854 if (Is64BitMode || IsPIC) {
2855 DispForReloc = &Op3;
2856 } else {
2857 DispVal = 1;
2858 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002859 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002860 if (Is64BitMode || IsPIC) {
2861 DispForReloc = &Op3;
2862 } else {
2863 DispVal = 1;
2864 }
2865 } else {
2866 DispVal = 1;
2867 }
2868
2869 const MachineOperand &Base = MI.getOperand(Op);
2870 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2871
2872 unsigned BaseReg = Base.getReg();
2873
2874 // Is a SIB byte needed?
Evan Cheng92569ce2009-05-12 00:07:35 +00002875 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2876 IndexReg.getReg() == 0 &&
Evan Cheng099109d2009-05-04 22:49:16 +00002877 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002878 if (BaseReg == 0) { // Just a displacement?
2879 // Emit special case [disp32] encoding
2880 ++FinalSize;
2881 FinalSize += getDisplacementFieldSize(DispForReloc);
2882 } else {
2883 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2884 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2885 // Emit simple indirect register encoding... [EAX] f.e.
2886 ++FinalSize;
2887 // Be pessimistic and assume it's a disp32, not a disp8
2888 } else {
2889 // Emit the most general non-SIB encoding: [REG+disp32]
2890 ++FinalSize;
2891 FinalSize += getDisplacementFieldSize(DispForReloc);
2892 }
2893 }
2894
2895 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2896 assert(IndexReg.getReg() != X86::ESP &&
2897 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2898
2899 bool ForceDisp32 = false;
2900 if (BaseReg == 0 || DispForReloc) {
2901 // Emit the normal disp32 encoding.
2902 ++FinalSize;
2903 ForceDisp32 = true;
2904 } else {
2905 ++FinalSize;
2906 }
2907
2908 FinalSize += sizeSIBByte();
2909
2910 // Do we need to output a displacement?
2911 if (DispVal != 0 || ForceDisp32) {
2912 FinalSize += getDisplacementFieldSize(DispForReloc);
2913 }
2914 }
2915 return FinalSize;
2916}
2917
2918
2919static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2920 const TargetInstrDesc *Desc,
2921 bool IsPIC, bool Is64BitMode) {
2922
2923 unsigned Opcode = Desc->Opcode;
2924 unsigned FinalSize = 0;
2925
2926 // Emit the lock opcode prefix as needed.
2927 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2928
Bill Wendling6ee76552009-05-28 23:40:46 +00002929 // Emit segment override opcode prefix as needed.
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002930 switch (Desc->TSFlags & X86II::SegOvrMask) {
2931 case X86II::FS:
2932 case X86II::GS:
2933 ++FinalSize;
2934 break;
Edwin Törökbd448e32009-07-14 16:55:14 +00002935 default: llvm_unreachable("Invalid segment!");
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002936 case 0: break; // No segment override!
2937 }
2938
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002939 // Emit the repeat opcode prefix as needed.
2940 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2941
2942 // Emit the operand size opcode prefix as needed.
2943 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2944
2945 // Emit the address size opcode prefix as needed.
2946 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2947
2948 bool Need0FPrefix = false;
2949 switch (Desc->TSFlags & X86II::Op0Mask) {
2950 case X86II::TB: // Two-byte opcode prefix
2951 case X86II::T8: // 0F 38
2952 case X86II::TA: // 0F 3A
2953 Need0FPrefix = true;
2954 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00002955 case X86II::TF: // F2 0F 38
2956 ++FinalSize;
2957 Need0FPrefix = true;
2958 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002959 case X86II::REP: break; // already handled.
2960 case X86II::XS: // F3 0F
2961 ++FinalSize;
2962 Need0FPrefix = true;
2963 break;
2964 case X86II::XD: // F2 0F
2965 ++FinalSize;
2966 Need0FPrefix = true;
2967 break;
2968 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2969 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2970 ++FinalSize;
2971 break; // Two-byte opcode prefix
Edwin Törökbd448e32009-07-14 16:55:14 +00002972 default: llvm_unreachable("Invalid prefix!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002973 case 0: break; // No prefix!
2974 }
2975
2976 if (Is64BitMode) {
2977 // REX prefix
2978 unsigned REX = X86InstrInfo::determineREX(MI);
2979 if (REX)
2980 ++FinalSize;
2981 }
2982
2983 // 0x0F escape code must be emitted just before the opcode.
2984 if (Need0FPrefix)
2985 ++FinalSize;
2986
2987 switch (Desc->TSFlags & X86II::Op0Mask) {
2988 case X86II::T8: // 0F 38
2989 ++FinalSize;
2990 break;
Bill Wendling6ee76552009-05-28 23:40:46 +00002991 case X86II::TA: // 0F 3A
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002992 ++FinalSize;
2993 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00002994 case X86II::TF: // F2 0F 38
2995 ++FinalSize;
2996 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002997 }
2998
2999 // If this is a two-address instruction, skip one of the register operands.
3000 unsigned NumOps = Desc->getNumOperands();
3001 unsigned CurOp = 0;
3002 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3003 CurOp++;
Evan Cheng099109d2009-05-04 22:49:16 +00003004 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3005 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3006 --NumOps;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003007
3008 switch (Desc->TSFlags & X86II::FormMask) {
Edwin Törökbd448e32009-07-14 16:55:14 +00003009 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003010 case X86II::Pseudo:
3011 // Remember the current PC offset, this is the PIC relocation
3012 // base address.
3013 switch (Opcode) {
3014 default:
3015 break;
3016 case TargetInstrInfo::INLINEASM: {
3017 const MachineFunction *MF = MI.getParent()->getParent();
Chris Lattner5f1fdb32009-08-02 05:20:37 +00003018 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3019 FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
Chris Lattner621c44d2009-08-22 20:48:53 +00003020 *MF->getTarget().getMCAsmInfo());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003021 break;
3022 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00003023 case TargetInstrInfo::DBG_LABEL:
3024 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003025 break;
3026 case TargetInstrInfo::IMPLICIT_DEF:
Jakob Stoklund Olesen8f12c7c2009-09-28 20:32:26 +00003027 case TargetInstrInfo::KILL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003028 case X86::DWARF_LOC:
3029 case X86::FP_REG_KILL:
3030 break;
3031 case X86::MOVPC32r: {
3032 // This emits the "call" portion of this pseudo instruction.
3033 ++FinalSize;
3034 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3035 break;
3036 }
3037 }
3038 CurOp = NumOps;
3039 break;
3040 case X86II::RawFrm:
3041 ++FinalSize;
3042
3043 if (CurOp != NumOps) {
3044 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003045 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003046 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003047 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003048 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003049 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003050 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003051 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003052 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3053 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003054 llvm_unreachable("Unknown RawFrm operand!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055 }
3056 }
3057 break;
3058
3059 case X86II::AddRegFrm:
3060 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003061 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003062
3063 if (CurOp != NumOps) {
3064 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3065 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003066 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003067 FinalSize += sizeConstant(Size);
3068 else {
3069 bool dword = false;
3070 if (Opcode == X86::MOV64ri)
3071 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003072 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003073 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003074 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003075 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003076 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003077 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003078 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003079 FinalSize += sizeJumpTableAddress(dword);
3080 }
3081 }
3082 break;
3083
3084 case X86II::MRMDestReg: {
3085 ++FinalSize;
3086 FinalSize += sizeRegModRMByte();
3087 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003088 if (CurOp != NumOps) {
3089 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003090 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003091 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003092 break;
3093 }
3094 case X86II::MRMDestMem: {
3095 ++FinalSize;
3096 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003097 CurOp += X86AddrNumOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003098 if (CurOp != NumOps) {
3099 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003100 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003101 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003102 break;
3103 }
3104
3105 case X86II::MRMSrcReg:
3106 ++FinalSize;
3107 FinalSize += sizeRegModRMByte();
3108 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003109 if (CurOp != NumOps) {
3110 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003111 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003112 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003113 break;
3114
3115 case X86II::MRMSrcMem: {
Evan Cheng099109d2009-05-04 22:49:16 +00003116 int AddrOperands;
3117 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3118 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3119 AddrOperands = X86AddrNumOperands - 1; // No segment register
3120 else
3121 AddrOperands = X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003122
3123 ++FinalSize;
3124 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003125 CurOp += AddrOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003126 if (CurOp != NumOps) {
3127 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003128 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003129 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003130 break;
3131 }
3132
3133 case X86II::MRM0r: case X86II::MRM1r:
3134 case X86II::MRM2r: case X86II::MRM3r:
3135 case X86II::MRM4r: case X86II::MRM5r:
3136 case X86II::MRM6r: case X86II::MRM7r:
3137 ++FinalSize;
Evan Cheng099109d2009-05-04 22:49:16 +00003138 if (Desc->getOpcode() == X86::LFENCE ||
Bill Wendling6ee76552009-05-28 23:40:46 +00003139 Desc->getOpcode() == X86::MFENCE) {
3140 // Special handling of lfence and mfence;
Evan Cheng099109d2009-05-04 22:49:16 +00003141 FinalSize += sizeRegModRMByte();
Bill Wendling6ee76552009-05-28 23:40:46 +00003142 } else if (Desc->getOpcode() == X86::MONITOR ||
3143 Desc->getOpcode() == X86::MWAIT) {
3144 // Special handling of monitor and mwait.
3145 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3146 } else {
Evan Cheng099109d2009-05-04 22:49:16 +00003147 ++CurOp;
3148 FinalSize += sizeRegModRMByte();
3149 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003150
3151 if (CurOp != NumOps) {
3152 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3153 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003154 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003155 FinalSize += sizeConstant(Size);
3156 else {
3157 bool dword = false;
3158 if (Opcode == X86::MOV64ri32)
3159 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003160 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003161 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003162 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003163 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003164 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003165 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003166 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003167 FinalSize += sizeJumpTableAddress(dword);
3168 }
3169 }
3170 break;
3171
3172 case X86II::MRM0m: case X86II::MRM1m:
3173 case X86II::MRM2m: case X86II::MRM3m:
3174 case X86II::MRM4m: case X86II::MRM5m:
3175 case X86II::MRM6m: case X86II::MRM7m: {
3176
3177 ++FinalSize;
3178 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003179 CurOp += X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003180
3181 if (CurOp != NumOps) {
3182 const MachineOperand &MO = MI.getOperand(CurOp++);
3183 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003184 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003185 FinalSize += sizeConstant(Size);
3186 else {
3187 bool dword = false;
3188 if (Opcode == X86::MOV64mi32)
3189 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003190 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003191 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003192 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003193 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003194 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003195 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003196 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003197 FinalSize += sizeJumpTableAddress(dword);
3198 }
3199 }
3200 break;
3201 }
3202
3203 case X86II::MRMInitReg:
3204 ++FinalSize;
3205 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3206 FinalSize += sizeRegModRMByte();
3207 ++CurOp;
3208 break;
3209 }
3210
3211 if (!Desc->isVariadic() && CurOp != NumOps) {
Edwin Török3cb88482009-07-08 18:01:40 +00003212 std::string msg;
3213 raw_string_ostream Msg(msg);
3214 Msg << "Cannot determine size: " << MI;
3215 llvm_report_error(Msg.str());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003216 }
3217
3218
3219 return FinalSize;
3220}
3221
3222
3223unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3224 const TargetInstrDesc &Desc = MI->getDesc();
Chris Lattner144e3482009-07-10 20:53:38 +00003225 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003226 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003227 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
Chris Lattner739b0102009-06-25 17:28:07 +00003228 if (Desc.getOpcode() == X86::MOVPC32r)
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003229 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003230 return Size;
3231}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003232
Dan Gohman882ab732008-09-30 00:58:23 +00003233/// getGlobalBaseReg - Return a virtual register initialized with the
3234/// the global base register value. Output instructions required to
3235/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003236///
Dan Gohman882ab732008-09-30 00:58:23 +00003237unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3238 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3239 "X86-64 PIC uses RIP relative addressing");
3240
3241 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3242 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3243 if (GlobalBaseReg != 0)
3244 return GlobalBaseReg;
3245
Dan Gohmanb60482f2008-09-23 18:22:58 +00003246 // Insert the set of GlobalBaseReg into the first MBB of the function
3247 MachineBasicBlock &FirstMBB = MF->front();
3248 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003249 DebugLoc DL = DebugLoc::getUnknownLoc();
3250 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003251 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3252 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3253
3254 const TargetInstrInfo *TII = TM.getInstrInfo();
3255 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3256 // only used in JIT code emission as displacement to pc.
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003257 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003258
3259 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003260 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Chris Lattner5d1f2572009-07-09 04:39:06 +00003261 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003262 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3263 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
Bill Wendling13ee2e42009-02-11 21:51:19 +00003264 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Daniel Dunbar9f086b92009-09-01 22:06:46 +00003265 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003266 X86II::MO_GOT_ABSOLUTE_ADDRESS);
Dan Gohman882ab732008-09-30 00:58:23 +00003267 } else {
3268 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003269 }
3270
Dan Gohman882ab732008-09-30 00:58:23 +00003271 X86FI->setGlobalBaseReg(GlobalBaseReg);
3272 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003273}