blob: 77955a6a42619a3c77e9400b926f49bdb1ea4a1b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
Dan Gohman27a4bc02009-01-15 17:57:09 +0000226 { X86::BT16ri8, X86::BT16mi8, 1 },
227 { X86::BT32ri8, X86::BT32mi8, 1 },
228 { X86::BT64ri8, X86::BT64mi8, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CALL32r, X86::CALL32m, 1 },
230 { X86::CALL64r, X86::CALL64m, 1 },
231 { X86::CMP16ri, X86::CMP16mi, 1 },
232 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP32ri, X86::CMP32mi, 1 },
235 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP64ri32, X86::CMP64mi32, 1 },
238 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000239 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000240 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000241 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::DIV16r, X86::DIV16m, 1 },
243 { X86::DIV32r, X86::DIV32m, 1 },
244 { X86::DIV64r, X86::DIV64m, 1 },
245 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000246 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000247 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
248 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
249 { X86::IDIV16r, X86::IDIV16m, 1 },
250 { X86::IDIV32r, X86::IDIV32m, 1 },
251 { X86::IDIV64r, X86::IDIV64m, 1 },
252 { X86::IDIV8r, X86::IDIV8m, 1 },
253 { X86::IMUL16r, X86::IMUL16m, 1 },
254 { X86::IMUL32r, X86::IMUL32m, 1 },
255 { X86::IMUL64r, X86::IMUL64m, 1 },
256 { X86::IMUL8r, X86::IMUL8m, 1 },
257 { X86::JMP32r, X86::JMP32m, 1 },
258 { X86::JMP64r, X86::JMP64m, 1 },
259 { X86::MOV16ri, X86::MOV16mi, 0 },
260 { X86::MOV16rr, X86::MOV16mr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000261 { X86::MOV32ri, X86::MOV32mi, 0 },
262 { X86::MOV32rr, X86::MOV32mr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000263 { X86::MOV64ri32, X86::MOV64mi32, 0 },
264 { X86::MOV64rr, X86::MOV64mr, 0 },
265 { X86::MOV8ri, X86::MOV8mi, 0 },
266 { X86::MOV8rr, X86::MOV8mr, 0 },
267 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
268 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000269 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000270 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
271 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
272 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
273 { X86::MOVSDrr, X86::MOVSDmr, 0 },
274 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
275 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
276 { X86::MOVSSrr, X86::MOVSSmr, 0 },
277 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
278 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
279 { X86::MUL16r, X86::MUL16m, 1 },
280 { X86::MUL32r, X86::MUL32m, 1 },
281 { X86::MUL64r, X86::MUL64m, 1 },
282 { X86::MUL8r, X86::MUL8m, 1 },
283 { X86::SETAEr, X86::SETAEm, 0 },
284 { X86::SETAr, X86::SETAm, 0 },
285 { X86::SETBEr, X86::SETBEm, 0 },
286 { X86::SETBr, X86::SETBm, 0 },
287 { X86::SETEr, X86::SETEm, 0 },
288 { X86::SETGEr, X86::SETGEm, 0 },
289 { X86::SETGr, X86::SETGm, 0 },
290 { X86::SETLEr, X86::SETLEm, 0 },
291 { X86::SETLr, X86::SETLm, 0 },
292 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000293 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000294 { X86::SETNPr, X86::SETNPm, 0 },
295 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000296 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000297 { X86::SETPr, X86::SETPm, 0 },
298 { X86::SETSr, X86::SETSm, 0 },
299 { X86::TAILJMPr, X86::TAILJMPm, 1 },
300 { X86::TEST16ri, X86::TEST16mi, 1 },
301 { X86::TEST32ri, X86::TEST32mi, 1 },
302 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000303 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000304 };
305
306 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
307 unsigned RegOp = OpTbl0[i][0];
308 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000309 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
310 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000311 assert(false && "Duplicated entries?");
312 unsigned FoldedLoad = OpTbl0[i][2];
313 // Index 0, folded load or store.
314 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
315 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
316 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000317 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000318 AmbEntries.push_back(MemOp);
319 }
320
321 static const unsigned OpTbl1[][2] = {
322 { X86::CMP16rr, X86::CMP16rm },
323 { X86::CMP32rr, X86::CMP32rm },
324 { X86::CMP64rr, X86::CMP64rm },
325 { X86::CMP8rr, X86::CMP8rm },
326 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
327 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
328 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
329 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
330 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
331 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
332 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
333 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
334 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
335 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
336 { X86::FsMOVAPDrr, X86::MOVSDrm },
337 { X86::FsMOVAPSrr, X86::MOVSSrm },
338 { X86::IMUL16rri, X86::IMUL16rmi },
339 { X86::IMUL16rri8, X86::IMUL16rmi8 },
340 { X86::IMUL32rri, X86::IMUL32rmi },
341 { X86::IMUL32rri8, X86::IMUL32rmi8 },
342 { X86::IMUL64rri32, X86::IMUL64rmi32 },
343 { X86::IMUL64rri8, X86::IMUL64rmi8 },
344 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
345 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
346 { X86::Int_COMISDrr, X86::Int_COMISDrm },
347 { X86::Int_COMISSrr, X86::Int_COMISSrm },
348 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
349 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
350 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
351 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
352 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
353 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
354 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
355 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
356 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
357 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
358 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
359 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
360 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
361 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
362 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
363 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
364 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
365 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
366 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
367 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
368 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
369 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
370 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
371 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
372 { X86::MOV16rr, X86::MOV16rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000373 { X86::MOV32rr, X86::MOV32rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000374 { X86::MOV64rr, X86::MOV64rm },
375 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
376 { X86::MOV64toSDrr, X86::MOV64toSDrm },
377 { X86::MOV8rr, X86::MOV8rm },
378 { X86::MOVAPDrr, X86::MOVAPDrm },
379 { X86::MOVAPSrr, X86::MOVAPSrm },
380 { X86::MOVDDUPrr, X86::MOVDDUPrm },
381 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
382 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000383 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000384 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
385 { X86::MOVSDrr, X86::MOVSDrm },
386 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
387 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
388 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
389 { X86::MOVSSrr, X86::MOVSSrm },
390 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
391 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
392 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
393 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
394 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
395 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
396 { X86::MOVUPDrr, X86::MOVUPDrm },
397 { X86::MOVUPSrr, X86::MOVUPSrm },
398 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
399 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
400 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
401 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
402 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
Dan Gohman744d4622009-04-13 16:09:41 +0000403 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000404 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
405 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000406 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000407 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
408 { X86::PSHUFDri, X86::PSHUFDmi },
409 { X86::PSHUFHWri, X86::PSHUFHWmi },
410 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000411 { X86::RCPPSr, X86::RCPPSm },
412 { X86::RCPPSr_Int, X86::RCPPSm_Int },
413 { X86::RSQRTPSr, X86::RSQRTPSm },
414 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
415 { X86::RSQRTSSr, X86::RSQRTSSm },
416 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
417 { X86::SQRTPDr, X86::SQRTPDm },
418 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
419 { X86::SQRTPSr, X86::SQRTPSm },
420 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
421 { X86::SQRTSDr, X86::SQRTSDm },
422 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
423 { X86::SQRTSSr, X86::SQRTSSm },
424 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
425 { X86::TEST16rr, X86::TEST16rm },
426 { X86::TEST32rr, X86::TEST32rm },
427 { X86::TEST64rr, X86::TEST64rm },
428 { X86::TEST8rr, X86::TEST8rm },
429 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
430 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000431 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000432 };
433
434 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
435 unsigned RegOp = OpTbl1[i][0];
436 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000437 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
438 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000439 assert(false && "Duplicated entries?");
440 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
441 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
442 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000443 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000444 AmbEntries.push_back(MemOp);
445 }
446
447 static const unsigned OpTbl2[][2] = {
448 { X86::ADC32rr, X86::ADC32rm },
449 { X86::ADC64rr, X86::ADC64rm },
450 { X86::ADD16rr, X86::ADD16rm },
451 { X86::ADD32rr, X86::ADD32rm },
452 { X86::ADD64rr, X86::ADD64rm },
453 { X86::ADD8rr, X86::ADD8rm },
454 { X86::ADDPDrr, X86::ADDPDrm },
455 { X86::ADDPSrr, X86::ADDPSrm },
456 { X86::ADDSDrr, X86::ADDSDrm },
457 { X86::ADDSSrr, X86::ADDSSrm },
458 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
459 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
460 { X86::AND16rr, X86::AND16rm },
461 { X86::AND32rr, X86::AND32rm },
462 { X86::AND64rr, X86::AND64rm },
463 { X86::AND8rr, X86::AND8rm },
464 { X86::ANDNPDrr, X86::ANDNPDrm },
465 { X86::ANDNPSrr, X86::ANDNPSrm },
466 { X86::ANDPDrr, X86::ANDPDrm },
467 { X86::ANDPSrr, X86::ANDPSrm },
468 { X86::CMOVA16rr, X86::CMOVA16rm },
469 { X86::CMOVA32rr, X86::CMOVA32rm },
470 { X86::CMOVA64rr, X86::CMOVA64rm },
471 { X86::CMOVAE16rr, X86::CMOVAE16rm },
472 { X86::CMOVAE32rr, X86::CMOVAE32rm },
473 { X86::CMOVAE64rr, X86::CMOVAE64rm },
474 { X86::CMOVB16rr, X86::CMOVB16rm },
475 { X86::CMOVB32rr, X86::CMOVB32rm },
476 { X86::CMOVB64rr, X86::CMOVB64rm },
477 { X86::CMOVBE16rr, X86::CMOVBE16rm },
478 { X86::CMOVBE32rr, X86::CMOVBE32rm },
479 { X86::CMOVBE64rr, X86::CMOVBE64rm },
480 { X86::CMOVE16rr, X86::CMOVE16rm },
481 { X86::CMOVE32rr, X86::CMOVE32rm },
482 { X86::CMOVE64rr, X86::CMOVE64rm },
483 { X86::CMOVG16rr, X86::CMOVG16rm },
484 { X86::CMOVG32rr, X86::CMOVG32rm },
485 { X86::CMOVG64rr, X86::CMOVG64rm },
486 { X86::CMOVGE16rr, X86::CMOVGE16rm },
487 { X86::CMOVGE32rr, X86::CMOVGE32rm },
488 { X86::CMOVGE64rr, X86::CMOVGE64rm },
489 { X86::CMOVL16rr, X86::CMOVL16rm },
490 { X86::CMOVL32rr, X86::CMOVL32rm },
491 { X86::CMOVL64rr, X86::CMOVL64rm },
492 { X86::CMOVLE16rr, X86::CMOVLE16rm },
493 { X86::CMOVLE32rr, X86::CMOVLE32rm },
494 { X86::CMOVLE64rr, X86::CMOVLE64rm },
495 { X86::CMOVNE16rr, X86::CMOVNE16rm },
496 { X86::CMOVNE32rr, X86::CMOVNE32rm },
497 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000498 { X86::CMOVNO16rr, X86::CMOVNO16rm },
499 { X86::CMOVNO32rr, X86::CMOVNO32rm },
500 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000501 { X86::CMOVNP16rr, X86::CMOVNP16rm },
502 { X86::CMOVNP32rr, X86::CMOVNP32rm },
503 { X86::CMOVNP64rr, X86::CMOVNP64rm },
504 { X86::CMOVNS16rr, X86::CMOVNS16rm },
505 { X86::CMOVNS32rr, X86::CMOVNS32rm },
506 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000507 { X86::CMOVO16rr, X86::CMOVO16rm },
508 { X86::CMOVO32rr, X86::CMOVO32rm },
509 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000510 { X86::CMOVP16rr, X86::CMOVP16rm },
511 { X86::CMOVP32rr, X86::CMOVP32rm },
512 { X86::CMOVP64rr, X86::CMOVP64rm },
513 { X86::CMOVS16rr, X86::CMOVS16rm },
514 { X86::CMOVS32rr, X86::CMOVS32rm },
515 { X86::CMOVS64rr, X86::CMOVS64rm },
516 { X86::CMPPDrri, X86::CMPPDrmi },
517 { X86::CMPPSrri, X86::CMPPSrmi },
518 { X86::CMPSDrr, X86::CMPSDrm },
519 { X86::CMPSSrr, X86::CMPSSrm },
520 { X86::DIVPDrr, X86::DIVPDrm },
521 { X86::DIVPSrr, X86::DIVPSrm },
522 { X86::DIVSDrr, X86::DIVSDrm },
523 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000524 { X86::FsANDNPDrr, X86::FsANDNPDrm },
525 { X86::FsANDNPSrr, X86::FsANDNPSrm },
526 { X86::FsANDPDrr, X86::FsANDPDrm },
527 { X86::FsANDPSrr, X86::FsANDPSrm },
528 { X86::FsORPDrr, X86::FsORPDrm },
529 { X86::FsORPSrr, X86::FsORPSrm },
530 { X86::FsXORPDrr, X86::FsXORPDrm },
531 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000532 { X86::HADDPDrr, X86::HADDPDrm },
533 { X86::HADDPSrr, X86::HADDPSrm },
534 { X86::HSUBPDrr, X86::HSUBPDrm },
535 { X86::HSUBPSrr, X86::HSUBPSrm },
536 { X86::IMUL16rr, X86::IMUL16rm },
537 { X86::IMUL32rr, X86::IMUL32rm },
538 { X86::IMUL64rr, X86::IMUL64rm },
539 { X86::MAXPDrr, X86::MAXPDrm },
540 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
541 { X86::MAXPSrr, X86::MAXPSrm },
542 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
543 { X86::MAXSDrr, X86::MAXSDrm },
544 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
545 { X86::MAXSSrr, X86::MAXSSrm },
546 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
547 { X86::MINPDrr, X86::MINPDrm },
548 { X86::MINPDrr_Int, X86::MINPDrm_Int },
549 { X86::MINPSrr, X86::MINPSrm },
550 { X86::MINPSrr_Int, X86::MINPSrm_Int },
551 { X86::MINSDrr, X86::MINSDrm },
552 { X86::MINSDrr_Int, X86::MINSDrm_Int },
553 { X86::MINSSrr, X86::MINSSrm },
554 { X86::MINSSrr_Int, X86::MINSSrm_Int },
555 { X86::MULPDrr, X86::MULPDrm },
556 { X86::MULPSrr, X86::MULPSrm },
557 { X86::MULSDrr, X86::MULSDrm },
558 { X86::MULSSrr, X86::MULSSrm },
559 { X86::OR16rr, X86::OR16rm },
560 { X86::OR32rr, X86::OR32rm },
561 { X86::OR64rr, X86::OR64rm },
562 { X86::OR8rr, X86::OR8rm },
563 { X86::ORPDrr, X86::ORPDrm },
564 { X86::ORPSrr, X86::ORPSrm },
565 { X86::PACKSSDWrr, X86::PACKSSDWrm },
566 { X86::PACKSSWBrr, X86::PACKSSWBrm },
567 { X86::PACKUSWBrr, X86::PACKUSWBrm },
568 { X86::PADDBrr, X86::PADDBrm },
569 { X86::PADDDrr, X86::PADDDrm },
570 { X86::PADDQrr, X86::PADDQrm },
571 { X86::PADDSBrr, X86::PADDSBrm },
572 { X86::PADDSWrr, X86::PADDSWrm },
573 { X86::PADDWrr, X86::PADDWrm },
574 { X86::PANDNrr, X86::PANDNrm },
575 { X86::PANDrr, X86::PANDrm },
576 { X86::PAVGBrr, X86::PAVGBrm },
577 { X86::PAVGWrr, X86::PAVGWrm },
578 { X86::PCMPEQBrr, X86::PCMPEQBrm },
579 { X86::PCMPEQDrr, X86::PCMPEQDrm },
580 { X86::PCMPEQWrr, X86::PCMPEQWrm },
581 { X86::PCMPGTBrr, X86::PCMPGTBrm },
582 { X86::PCMPGTDrr, X86::PCMPGTDrm },
583 { X86::PCMPGTWrr, X86::PCMPGTWrm },
584 { X86::PINSRWrri, X86::PINSRWrmi },
585 { X86::PMADDWDrr, X86::PMADDWDrm },
586 { X86::PMAXSWrr, X86::PMAXSWrm },
587 { X86::PMAXUBrr, X86::PMAXUBrm },
588 { X86::PMINSWrr, X86::PMINSWrm },
589 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000590 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000591 { X86::PMULHUWrr, X86::PMULHUWrm },
592 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000593 { X86::PMULLDrr, X86::PMULLDrm },
594 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000595 { X86::PMULLWrr, X86::PMULLWrm },
596 { X86::PMULUDQrr, X86::PMULUDQrm },
597 { X86::PORrr, X86::PORrm },
598 { X86::PSADBWrr, X86::PSADBWrm },
599 { X86::PSLLDrr, X86::PSLLDrm },
600 { X86::PSLLQrr, X86::PSLLQrm },
601 { X86::PSLLWrr, X86::PSLLWrm },
602 { X86::PSRADrr, X86::PSRADrm },
603 { X86::PSRAWrr, X86::PSRAWrm },
604 { X86::PSRLDrr, X86::PSRLDrm },
605 { X86::PSRLQrr, X86::PSRLQrm },
606 { X86::PSRLWrr, X86::PSRLWrm },
607 { X86::PSUBBrr, X86::PSUBBrm },
608 { X86::PSUBDrr, X86::PSUBDrm },
609 { X86::PSUBSBrr, X86::PSUBSBrm },
610 { X86::PSUBSWrr, X86::PSUBSWrm },
611 { X86::PSUBWrr, X86::PSUBWrm },
612 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
613 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
614 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
615 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
616 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
617 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
618 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
619 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
620 { X86::PXORrr, X86::PXORrm },
621 { X86::SBB32rr, X86::SBB32rm },
622 { X86::SBB64rr, X86::SBB64rm },
623 { X86::SHUFPDrri, X86::SHUFPDrmi },
624 { X86::SHUFPSrri, X86::SHUFPSrmi },
625 { X86::SUB16rr, X86::SUB16rm },
626 { X86::SUB32rr, X86::SUB32rm },
627 { X86::SUB64rr, X86::SUB64rm },
628 { X86::SUB8rr, X86::SUB8rm },
629 { X86::SUBPDrr, X86::SUBPDrm },
630 { X86::SUBPSrr, X86::SUBPSrm },
631 { X86::SUBSDrr, X86::SUBSDrm },
632 { X86::SUBSSrr, X86::SUBSSrm },
633 // FIXME: TEST*rr -> swapped operand of TEST*mr.
634 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
635 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
636 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
637 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
638 { X86::XOR16rr, X86::XOR16rm },
639 { X86::XOR32rr, X86::XOR32rm },
640 { X86::XOR64rr, X86::XOR64rm },
641 { X86::XOR8rr, X86::XOR8rm },
642 { X86::XORPDrr, X86::XORPDrm },
643 { X86::XORPSrr, X86::XORPSrm }
644 };
645
646 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
647 unsigned RegOp = OpTbl2[i][0];
648 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000649 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
650 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000651 assert(false && "Duplicated entries?");
Dan Gohman590c05b2009-03-04 19:24:25 +0000652 unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
Owen Anderson9a184ef2008-01-07 01:35:02 +0000653 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000654 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000655 AmbEntries.push_back(MemOp);
656 }
657
658 // Remove ambiguous entries.
659 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660}
661
662bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000663 unsigned &SrcReg, unsigned &DstReg,
664 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000665 switch (MI.getOpcode()) {
666 default:
667 return false;
668 case X86::MOV8rr:
669 case X86::MOV16rr:
670 case X86::MOV32rr:
671 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000672 case X86::MOVSSrr:
673 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000674
675 // FP Stack register class copies
676 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
677 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
678 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
679
Chris Lattnerff195282008-03-11 19:28:17 +0000680 case X86::FsMOVAPSrr:
681 case X86::FsMOVAPDrr:
682 case X86::MOVAPSrr:
683 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000684 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000685 case X86::MOVSS2PSrr:
686 case X86::MOVSD2PDrr:
687 case X86::MOVPS2SSrr:
688 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000689 case X86::MMX_MOVQ64rr:
690 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000691 MI.getOperand(0).isReg() &&
692 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000693 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000694 SrcReg = MI.getOperand(1).getReg();
695 DstReg = MI.getOperand(0).getReg();
696 SrcSubIdx = MI.getOperand(1).getSubReg();
697 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000698 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700}
701
Dan Gohman90feee22008-11-18 19:49:32 +0000702unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000703 int &FrameIndex) const {
704 switch (MI->getOpcode()) {
705 default: break;
706 case X86::MOV8rm:
707 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 case X86::MOV64rm:
710 case X86::LD_Fp64m:
711 case X86::MOVSSrm:
712 case X86::MOVSDrm:
713 case X86::MOVAPSrm:
714 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000715 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 case X86::MMX_MOVD64rm:
717 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000718 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
719 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000720 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000722 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000723 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 return MI->getOperand(0).getReg();
725 }
726 break;
727 }
728 return 0;
729}
730
Dan Gohman90feee22008-11-18 19:49:32 +0000731unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 int &FrameIndex) const {
733 switch (MI->getOpcode()) {
734 default: break;
735 case X86::MOV8mr:
736 case X86::MOV16mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 case X86::MOV32mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 case X86::MOV64mr:
739 case X86::ST_FpP64m:
740 case X86::MOVSSmr:
741 case X86::MOVSDmr:
742 case X86::MOVAPSmr:
743 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000744 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 case X86::MMX_MOVD64mr:
746 case X86::MMX_MOVQ64mr:
747 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000748 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
749 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000750 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000752 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000753 FrameIndex = MI->getOperand(0).getIndex();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000754 return MI->getOperand(X86AddrNumOperands).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 }
756 break;
757 }
758 return 0;
759}
760
761
Evan Chengb819a512008-03-27 01:45:11 +0000762/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
763/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000764static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000765 bool isPICBase = false;
766 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
767 E = MRI.def_end(); I != E; ++I) {
768 MachineInstr *DefMI = I.getOperand().getParent();
769 if (DefMI->getOpcode() != X86::MOVPC32r)
770 return false;
771 assert(!isPICBase && "More than one PIC base?");
772 isPICBase = true;
773 }
774 return isPICBase;
775}
Evan Chenge9caab52008-03-31 07:54:19 +0000776
777/// isGVStub - Return true if the GV requires an extra load to get the
778/// real address.
779static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
780 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
781}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000782
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000783bool
784X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 switch (MI->getOpcode()) {
786 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000787 case X86::MOV8rm:
788 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000789 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000790 case X86::MOV64rm:
791 case X86::LD_Fp64m:
792 case X86::MOVSSrm:
793 case X86::MOVSDrm:
794 case X86::MOVAPSrm:
795 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000796 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000797 case X86::MMX_MOVD64rm:
798 case X86::MMX_MOVQ64rm: {
799 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000800 if (MI->getOperand(1).isReg() &&
801 MI->getOperand(2).isImm() &&
802 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
803 (MI->getOperand(4).isCPI() ||
804 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000805 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 unsigned BaseReg = MI->getOperand(1).getReg();
807 if (BaseReg == 0)
808 return true;
809 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000810 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000811 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000812 const MachineFunction &MF = *MI->getParent()->getParent();
813 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000814 bool isPICBase = false;
815 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
816 E = MRI.def_end(); I != E; ++I) {
817 MachineInstr *DefMI = I.getOperand().getParent();
818 if (DefMI->getOpcode() != X86::MOVPC32r)
819 return false;
820 assert(!isPICBase && "More than one PIC base?");
821 isPICBase = true;
822 }
823 return isPICBase;
824 }
825 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000826 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000827
828 case X86::LEA32r:
829 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000830 if (MI->getOperand(2).isImm() &&
831 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
832 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000833 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000834 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000835 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000836 unsigned BaseReg = MI->getOperand(1).getReg();
837 if (BaseReg == 0)
838 return true;
839 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000840 const MachineFunction &MF = *MI->getParent()->getParent();
841 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000842 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843 }
844 return false;
845 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000847
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848 // All other instructions marked M_REMATERIALIZABLE are always trivially
849 // rematerializable.
850 return true;
851}
852
Evan Chengc564ded2008-06-24 07:10:51 +0000853/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
854/// would clobber the EFLAGS condition register. Note the result may be
855/// conservative. If it cannot definitely determine the safety after visiting
856/// two instructions it assumes it's not safe.
857static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
858 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000859 // It's always safe to clobber EFLAGS at the end of a block.
860 if (I == MBB.end())
861 return true;
862
Evan Chengc564ded2008-06-24 07:10:51 +0000863 // For compile time consideration, if we are not able to determine the
864 // safety after visiting 2 instructions, we will assume it's not safe.
865 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000866 bool SeenDef = false;
867 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
868 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000869 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000870 continue;
871 if (MO.getReg() == X86::EFLAGS) {
872 if (MO.isUse())
873 return false;
874 SeenDef = true;
875 }
876 }
877
878 if (SeenDef)
879 // This instruction defines EFLAGS, no need to look any further.
880 return true;
881 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000882
883 // If we make it to the end of the block, it's safe to clobber EFLAGS.
884 if (I == MBB.end())
885 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000886 }
887
888 // Conservative answer.
889 return false;
890}
891
Evan Cheng7d73efc2008-03-31 20:40:39 +0000892void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
893 MachineBasicBlock::iterator I,
894 unsigned DestReg,
895 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000896 DebugLoc DL = DebugLoc::getUnknownLoc();
897 if (I != MBB.end()) DL = I->getDebugLoc();
898
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000899 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000900 ? Orig->getOperand(0).getSubReg() : 0;
901 bool ChangeSubIdx = SubIdx != 0;
902 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
903 DestReg = RI.getSubReg(DestReg, SubIdx);
904 SubIdx = 0;
905 }
906
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 // MOV32r0 etc. are implemented with xor which clobbers condition code.
908 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000909 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000911 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000912 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000913 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000914 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000915 case X86::MOV64r0: {
916 if (!isSafeToClobberEFLAGS(MBB, I)) {
917 unsigned Opc = 0;
918 switch (Orig->getOpcode()) {
919 default: break;
920 case X86::MOV8r0: Opc = X86::MOV8ri; break;
921 case X86::MOV16r0: Opc = X86::MOV16ri; break;
922 case X86::MOV32r0: Opc = X86::MOV32ri; break;
923 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
924 }
Bill Wendling13ee2e42009-02-11 21:51:19 +0000925 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Chengc564ded2008-06-24 07:10:51 +0000926 Emitted = true;
927 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000929 }
930 }
931
932 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000933 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000934 MI->getOperand(0).setReg(DestReg);
935 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000936 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000937
938 if (ChangeSubIdx) {
939 MachineInstr *NewMI = prior(I);
940 NewMI->getOperand(0).setSubReg(SubIdx);
941 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000942}
943
Chris Lattnerea3a1812008-01-10 23:08:24 +0000944/// isInvariantLoad - Return true if the specified instruction (which is marked
945/// mayLoad) is loading from a location whose value is invariant across the
946/// function. For example, loading a value from the constant pool or from
947/// from the argument area of a function if it does not change. This should
948/// only return true of *all* loads the instruction does are invariant (if it
949/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000950bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000951 // This code cares about loads from three cases: constant pool entries,
952 // invariant argument slots, and global stubs. In order to handle these cases
953 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000954 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000955 // none of these three cases is ever used as anything other than a load base
956 // and X86 doesn't have any instructions that load from multiple places.
957
958 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
959 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000960 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000961 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000962 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000963
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000964 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000965 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000966
967 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000968 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000969 const MachineFrameInfo &MFI =
970 *MI->getParent()->getParent()->getFrameInfo();
971 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000972 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
973 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000974 }
Chris Lattner0875b572008-01-12 00:35:08 +0000975
Chris Lattnerea3a1812008-01-10 23:08:24 +0000976 // All other instances of these instructions are presumed to have other
977 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000978 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000979}
980
Evan Chengfa1a4952007-10-05 08:04:01 +0000981/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
982/// is not marked dead.
983static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000984 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
985 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000986 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000987 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
988 return true;
989 }
990 }
991 return false;
992}
993
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994/// convertToThreeAddress - This method must be implemented by targets that
995/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
996/// may be able to convert a two-address instruction into a true
997/// three-address instruction on demand. This allows the X86 target (for
998/// example) to convert ADD and SHL instructions into LEA instructions if they
999/// would require register copies due to two-addressness.
1000///
1001/// This method returns a null pointer if the transformation cannot be
1002/// performed, otherwise it returns the new instruction.
1003///
1004MachineInstr *
1005X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1006 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001007 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001009 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 // All instructions input are two-addr instructions. Get the known operands.
1011 unsigned Dest = MI->getOperand(0).getReg();
1012 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001013 bool isDead = MI->getOperand(0).isDead();
1014 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015
1016 MachineInstr *NewMI = NULL;
1017 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1018 // we have better subtarget support, enable the 16-bit LEA generation here.
1019 bool DisableLEA16 = true;
1020
Evan Cheng6b96ed32007-10-05 20:34:26 +00001021 unsigned MIOpc = MI->getOpcode();
1022 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 case X86::SHUFPSrri: {
1024 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1025 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1026
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 unsigned B = MI->getOperand(1).getReg();
1028 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001030 unsigned A = MI->getOperand(0).getReg();
1031 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001032 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1033 .addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001034 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 break;
1036 }
1037 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001038 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1040 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 unsigned ShAmt = MI->getOperand(2).getImm();
1042 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001043
Bill Wendling13ee2e42009-02-11 21:51:19 +00001044 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1045 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001046 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 break;
1048 }
1049 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001050 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1052 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 unsigned ShAmt = MI->getOperand(2).getImm();
1054 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001055
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001056 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1057 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001058 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1059 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001060 .addReg(0).addImm(1 << ShAmt)
1061 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001062 break;
1063 }
1064 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001065 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001066 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1067 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001068 unsigned ShAmt = MI->getOperand(2).getImm();
1069 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001070
Christopher Lamb380c6272007-08-10 21:18:25 +00001071 if (DisableLEA16) {
1072 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001073 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001074 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1075 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001076 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1077 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001078
Christopher Lamb8d226a22008-03-11 10:27:36 +00001079 // Build and insert into an implicit UNDEF value. This is OK because
1080 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001081 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1082 MachineInstr *InsMI =
1083 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001084 .addReg(leaInReg).addReg(Src, false, false, isKill)
1085 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001086
Bill Wendling13ee2e42009-02-11 21:51:19 +00001087 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1088 .addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001089 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001090
Bill Wendling13ee2e42009-02-11 21:51:19 +00001091 MachineInstr *ExtMI =
1092 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001093 .addReg(Dest, true, false, false, isDead)
1094 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001095
Owen Andersonc6959722008-07-02 23:41:07 +00001096 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001097 // Update live variables
1098 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1099 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1100 if (isKill)
1101 LV->replaceKillInstruction(Src, MI, InsMI);
1102 if (isDead)
1103 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001104 }
Evan Chenge52c1912008-07-03 09:09:37 +00001105 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001106 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001107 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1108 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001109 .addReg(0).addImm(1 << ShAmt)
1110 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001111 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001112 break;
1113 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001114 default: {
1115 // The following opcodes also sets the condition code register(s). Only
1116 // convert them to equivalent lea if the condition code register def's
1117 // are dead!
1118 if (hasLiveCondCodeDef(MI))
1119 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001120
Evan Chenga28a9562007-10-09 07:14:53 +00001121 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 switch (MIOpc) {
1123 default: return 0;
1124 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001125 case X86::INC32r:
1126 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001127 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001128 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1129 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001130 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1131 .addReg(Dest, true, false, false, isDead),
1132 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001133 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001134 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001135 case X86::INC16r:
1136 case X86::INC64_16r:
1137 if (DisableLEA16) return 0;
1138 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001139 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001140 .addReg(Dest, true, false, false, isDead),
1141 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001142 break;
1143 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001144 case X86::DEC32r:
1145 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001146 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001147 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1148 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001149 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1150 .addReg(Dest, true, false, false, isDead),
1151 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001152 break;
1153 }
1154 case X86::DEC16r:
1155 case X86::DEC64_16r:
1156 if (DisableLEA16) return 0;
1157 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001158 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001159 .addReg(Dest, true, false, false, isDead),
1160 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 break;
1162 case X86::ADD64rr:
1163 case X86::ADD32rr: {
1164 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001165 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1166 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001167 unsigned Src2 = MI->getOperand(2).getReg();
1168 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001169 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001170 .addReg(Dest, true, false, false, isDead),
1171 Src, isKill, Src2, isKill2);
1172 if (LV && isKill2)
1173 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001174 break;
1175 }
Evan Chenge52c1912008-07-03 09:09:37 +00001176 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001177 if (DisableLEA16) return 0;
1178 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001179 unsigned Src2 = MI->getOperand(2).getReg();
1180 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001181 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001182 .addReg(Dest, true, false, false, isDead),
1183 Src, isKill, Src2, isKill2);
1184 if (LV && isKill2)
1185 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001186 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001187 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001188 case X86::ADD64ri32:
1189 case X86::ADD64ri8:
1190 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001191 if (MI->getOperand(2).isImm())
Rafael Espindolabca99f72009-04-08 21:14:34 +00001192 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1193 .addReg(Dest, true, false, false, isDead),
1194 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001195 break;
1196 case X86::ADD32ri:
1197 case X86::ADD32ri8:
1198 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001199 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001200 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Rafael Espindolabca99f72009-04-08 21:14:34 +00001201 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1202 .addReg(Dest, true, false, false, isDead),
1203 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001204 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001205 break;
1206 case X86::ADD16ri:
1207 case X86::ADD16ri8:
1208 if (DisableLEA16) return 0;
1209 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001210 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001211 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001212 .addReg(Dest, true, false, false, isDead),
1213 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001214 break;
1215 case X86::SHL16ri:
1216 if (DisableLEA16) return 0;
1217 case X86::SHL32ri:
1218 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001219 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001220 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001221 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001222 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1223 X86AddressMode AM;
1224 AM.Scale = 1 << ShAmt;
1225 AM.IndexReg = Src;
1226 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001227 : (MIOpc == X86::SHL32ri
1228 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001229 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001230 .addReg(Dest, true, false, false, isDead), AM);
1231 if (isKill)
1232 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001233 }
1234 break;
1235 }
1236 }
1237 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238 }
1239
Evan Chengc3cb24d2008-02-07 08:29:53 +00001240 if (!NewMI) return 0;
1241
Evan Chenge52c1912008-07-03 09:09:37 +00001242 if (LV) { // Update live variables
1243 if (isKill)
1244 LV->replaceKillInstruction(Src, MI, NewMI);
1245 if (isDead)
1246 LV->replaceKillInstruction(Dest, MI, NewMI);
1247 }
1248
Evan Cheng6b96ed32007-10-05 20:34:26 +00001249 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 return NewMI;
1251}
1252
1253/// commuteInstruction - We have a few instructions that must be hacked on to
1254/// commute them.
1255///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001256MachineInstr *
1257X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 switch (MI->getOpcode()) {
1259 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1260 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1261 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001262 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1263 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1264 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 unsigned Opc;
1266 unsigned Size;
1267 switch (MI->getOpcode()) {
1268 default: assert(0 && "Unreachable!");
1269 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1270 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1271 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1272 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001273 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1274 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001276 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001277 if (NewMI) {
1278 MachineFunction &MF = *MI->getParent()->getParent();
1279 MI = MF.CloneMachineInstr(MI);
1280 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001281 }
Dan Gohman921581d2008-10-17 01:23:35 +00001282 MI->setDesc(get(Opc));
1283 MI->getOperand(3).setImm(Size-Amt);
1284 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285 }
Evan Cheng926658c2007-10-05 23:13:21 +00001286 case X86::CMOVB16rr:
1287 case X86::CMOVB32rr:
1288 case X86::CMOVB64rr:
1289 case X86::CMOVAE16rr:
1290 case X86::CMOVAE32rr:
1291 case X86::CMOVAE64rr:
1292 case X86::CMOVE16rr:
1293 case X86::CMOVE32rr:
1294 case X86::CMOVE64rr:
1295 case X86::CMOVNE16rr:
1296 case X86::CMOVNE32rr:
1297 case X86::CMOVNE64rr:
1298 case X86::CMOVBE16rr:
1299 case X86::CMOVBE32rr:
1300 case X86::CMOVBE64rr:
1301 case X86::CMOVA16rr:
1302 case X86::CMOVA32rr:
1303 case X86::CMOVA64rr:
1304 case X86::CMOVL16rr:
1305 case X86::CMOVL32rr:
1306 case X86::CMOVL64rr:
1307 case X86::CMOVGE16rr:
1308 case X86::CMOVGE32rr:
1309 case X86::CMOVGE64rr:
1310 case X86::CMOVLE16rr:
1311 case X86::CMOVLE32rr:
1312 case X86::CMOVLE64rr:
1313 case X86::CMOVG16rr:
1314 case X86::CMOVG32rr:
1315 case X86::CMOVG64rr:
1316 case X86::CMOVS16rr:
1317 case X86::CMOVS32rr:
1318 case X86::CMOVS64rr:
1319 case X86::CMOVNS16rr:
1320 case X86::CMOVNS32rr:
1321 case X86::CMOVNS64rr:
1322 case X86::CMOVP16rr:
1323 case X86::CMOVP32rr:
1324 case X86::CMOVP64rr:
1325 case X86::CMOVNP16rr:
1326 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001327 case X86::CMOVNP64rr:
1328 case X86::CMOVO16rr:
1329 case X86::CMOVO32rr:
1330 case X86::CMOVO64rr:
1331 case X86::CMOVNO16rr:
1332 case X86::CMOVNO32rr:
1333 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001334 unsigned Opc = 0;
1335 switch (MI->getOpcode()) {
1336 default: break;
1337 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1338 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1339 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1340 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1341 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1342 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1343 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1344 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1345 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1346 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1347 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1348 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1349 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1350 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1351 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1352 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1353 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1354 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1355 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1356 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1357 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1358 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1359 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1360 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1361 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1362 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1363 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1364 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1365 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1366 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1367 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1368 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1369 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1370 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1371 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1372 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1373 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1374 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1375 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1376 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1377 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1378 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001379 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1380 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1381 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1382 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1383 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1384 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001385 }
Dan Gohman921581d2008-10-17 01:23:35 +00001386 if (NewMI) {
1387 MachineFunction &MF = *MI->getParent()->getParent();
1388 MI = MF.CloneMachineInstr(MI);
1389 NewMI = false;
1390 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001391 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001392 // Fallthrough intended.
1393 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001395 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001396 }
1397}
1398
1399static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1400 switch (BrOpc) {
1401 default: return X86::COND_INVALID;
1402 case X86::JE: return X86::COND_E;
1403 case X86::JNE: return X86::COND_NE;
1404 case X86::JL: return X86::COND_L;
1405 case X86::JLE: return X86::COND_LE;
1406 case X86::JG: return X86::COND_G;
1407 case X86::JGE: return X86::COND_GE;
1408 case X86::JB: return X86::COND_B;
1409 case X86::JBE: return X86::COND_BE;
1410 case X86::JA: return X86::COND_A;
1411 case X86::JAE: return X86::COND_AE;
1412 case X86::JS: return X86::COND_S;
1413 case X86::JNS: return X86::COND_NS;
1414 case X86::JP: return X86::COND_P;
1415 case X86::JNP: return X86::COND_NP;
1416 case X86::JO: return X86::COND_O;
1417 case X86::JNO: return X86::COND_NO;
1418 }
1419}
1420
1421unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1422 switch (CC) {
1423 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001424 case X86::COND_E: return X86::JE;
1425 case X86::COND_NE: return X86::JNE;
1426 case X86::COND_L: return X86::JL;
1427 case X86::COND_LE: return X86::JLE;
1428 case X86::COND_G: return X86::JG;
1429 case X86::COND_GE: return X86::JGE;
1430 case X86::COND_B: return X86::JB;
1431 case X86::COND_BE: return X86::JBE;
1432 case X86::COND_A: return X86::JA;
1433 case X86::COND_AE: return X86::JAE;
1434 case X86::COND_S: return X86::JS;
1435 case X86::COND_NS: return X86::JNS;
1436 case X86::COND_P: return X86::JP;
1437 case X86::COND_NP: return X86::JNP;
1438 case X86::COND_O: return X86::JO;
1439 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001440 }
1441}
1442
1443/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1444/// e.g. turning COND_E to COND_NE.
1445X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1446 switch (CC) {
1447 default: assert(0 && "Illegal condition code!");
1448 case X86::COND_E: return X86::COND_NE;
1449 case X86::COND_NE: return X86::COND_E;
1450 case X86::COND_L: return X86::COND_GE;
1451 case X86::COND_LE: return X86::COND_G;
1452 case X86::COND_G: return X86::COND_LE;
1453 case X86::COND_GE: return X86::COND_L;
1454 case X86::COND_B: return X86::COND_AE;
1455 case X86::COND_BE: return X86::COND_A;
1456 case X86::COND_A: return X86::COND_BE;
1457 case X86::COND_AE: return X86::COND_B;
1458 case X86::COND_S: return X86::COND_NS;
1459 case X86::COND_NS: return X86::COND_S;
1460 case X86::COND_P: return X86::COND_NP;
1461 case X86::COND_NP: return X86::COND_P;
1462 case X86::COND_O: return X86::COND_NO;
1463 case X86::COND_NO: return X86::COND_O;
1464 }
1465}
1466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001467bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001468 const TargetInstrDesc &TID = MI->getDesc();
1469 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001470
1471 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001472 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001473 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001474 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001475 return true;
1476 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477}
1478
Evan Cheng12515792007-07-26 17:32:14 +00001479// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1480static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1481 const X86InstrInfo &TII) {
1482 if (MI->getOpcode() == X86::FP_REG_KILL)
1483 return false;
1484 return TII.isUnpredicatedTerminator(MI);
1485}
1486
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1488 MachineBasicBlock *&TBB,
1489 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001490 SmallVectorImpl<MachineOperand> &Cond,
1491 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001492 // Start from the bottom of the block and work up, examining the
1493 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001495 while (I != MBB.begin()) {
1496 --I;
1497 // Working from the bottom, when we see a non-terminator
1498 // instruction, we're done.
1499 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1500 break;
1501 // A terminator that isn't a branch can't easily be handled
1502 // by this analysis.
1503 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001505 // Handle unconditional branches.
1506 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001507 if (!AllowModify) {
1508 TBB = I->getOperand(0).getMBB();
1509 return false;
1510 }
1511
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001512 // If the block has any instructions after a JMP, delete them.
1513 while (next(I) != MBB.end())
1514 next(I)->eraseFromParent();
1515 Cond.clear();
1516 FBB = 0;
1517 // Delete the JMP if it's equivalent to a fall-through.
1518 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1519 TBB = 0;
1520 I->eraseFromParent();
1521 I = MBB.end();
1522 continue;
1523 }
1524 // TBB is used to indicate the unconditinal destination.
1525 TBB = I->getOperand(0).getMBB();
1526 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001528 // Handle conditional branches.
1529 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001530 if (BranchCode == X86::COND_INVALID)
1531 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001532 // Working from the bottom, handle the first conditional branch.
1533 if (Cond.empty()) {
1534 FBB = TBB;
1535 TBB = I->getOperand(0).getMBB();
1536 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1537 continue;
1538 }
1539 // Handle subsequent conditional branches. Only handle the case
1540 // where all conditional branches branch to the same destination
1541 // and their condition opcodes fit one of the special
1542 // multi-branch idioms.
1543 assert(Cond.size() == 1);
1544 assert(TBB);
1545 // Only handle the case where all conditional branches branch to
1546 // the same destination.
1547 if (TBB != I->getOperand(0).getMBB())
1548 return true;
1549 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1550 // If the conditions are the same, we can leave them alone.
1551 if (OldBranchCode == BranchCode)
1552 continue;
1553 // If they differ, see if they fit one of the known patterns.
1554 // Theoretically we could handle more patterns here, but
1555 // we shouldn't expect to see them if instruction selection
1556 // has done a reasonable job.
1557 if ((OldBranchCode == X86::COND_NP &&
1558 BranchCode == X86::COND_E) ||
1559 (OldBranchCode == X86::COND_E &&
1560 BranchCode == X86::COND_NP))
1561 BranchCode = X86::COND_NP_OR_E;
1562 else if ((OldBranchCode == X86::COND_P &&
1563 BranchCode == X86::COND_NE) ||
1564 (OldBranchCode == X86::COND_NE &&
1565 BranchCode == X86::COND_P))
1566 BranchCode = X86::COND_NE_OR_P;
1567 else
1568 return true;
1569 // Update the MachineOperand.
1570 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571 }
1572
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001573 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001574}
1575
1576unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1577 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001578 unsigned Count = 0;
1579
1580 while (I != MBB.begin()) {
1581 --I;
1582 if (I->getOpcode() != X86::JMP &&
1583 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1584 break;
1585 // Remove the branch.
1586 I->eraseFromParent();
1587 I = MBB.end();
1588 ++Count;
1589 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001590
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001591 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592}
1593
1594unsigned
1595X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1596 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001597 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001598 // FIXME this should probably have a DebugLoc operand
1599 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001600 // Shouldn't be a fall through.
1601 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1602 assert((Cond.size() == 1 || Cond.size() == 0) &&
1603 "X86 branch conditions have one component!");
1604
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001605 if (Cond.empty()) {
1606 // Unconditional branch?
1607 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001608 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001609 return 1;
1610 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001611
1612 // Conditional branch.
1613 unsigned Count = 0;
1614 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1615 switch (CC) {
1616 case X86::COND_NP_OR_E:
1617 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001618 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001619 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001620 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001621 ++Count;
1622 break;
1623 case X86::COND_NE_OR_P:
1624 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001625 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001626 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001627 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001628 ++Count;
1629 break;
1630 default: {
1631 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001632 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001633 ++Count;
1634 }
1635 }
1636 if (FBB) {
1637 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001638 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001639 ++Count;
1640 }
1641 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642}
1643
Owen Anderson9fa72d92008-08-26 18:03:31 +00001644bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001645 MachineBasicBlock::iterator MI,
1646 unsigned DestReg, unsigned SrcReg,
1647 const TargetRegisterClass *DestRC,
1648 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001649 DebugLoc DL = DebugLoc::getUnknownLoc();
1650 if (MI != MBB.end()) DL = MI->getDebugLoc();
1651
Chris Lattner59707122008-03-09 07:58:04 +00001652 if (DestRC == SrcRC) {
1653 unsigned Opc;
1654 if (DestRC == &X86::GR64RegClass) {
1655 Opc = X86::MOV64rr;
1656 } else if (DestRC == &X86::GR32RegClass) {
1657 Opc = X86::MOV32rr;
1658 } else if (DestRC == &X86::GR16RegClass) {
1659 Opc = X86::MOV16rr;
1660 } else if (DestRC == &X86::GR8RegClass) {
1661 Opc = X86::MOV8rr;
Dan Gohman744d4622009-04-13 16:09:41 +00001662 } else if (DestRC == &X86::GR64_RegClass) {
1663 Opc = X86::MOV64rr;
Chris Lattner59707122008-03-09 07:58:04 +00001664 } else if (DestRC == &X86::GR32_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001665 Opc = X86::MOV32rr;
Chris Lattner59707122008-03-09 07:58:04 +00001666 } else if (DestRC == &X86::GR16_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001667 Opc = X86::MOV16rr;
1668 } else if (DestRC == &X86::GR8_RegClass) {
1669 Opc = X86::MOV8rr;
1670 } else if (DestRC == &X86::GR64_NOREXRegClass) {
1671 Opc = X86::MOV64rr;
1672 } else if (DestRC == &X86::GR32_NOREXRegClass) {
1673 Opc = X86::MOV32rr;
1674 } else if (DestRC == &X86::GR16_NOREXRegClass) {
1675 Opc = X86::MOV16rr;
1676 } else if (DestRC == &X86::GR8_NOREXRegClass) {
1677 Opc = X86::MOV8rr;
Chris Lattner59707122008-03-09 07:58:04 +00001678 } else if (DestRC == &X86::RFP32RegClass) {
1679 Opc = X86::MOV_Fp3232;
1680 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1681 Opc = X86::MOV_Fp6464;
1682 } else if (DestRC == &X86::RFP80RegClass) {
1683 Opc = X86::MOV_Fp8080;
1684 } else if (DestRC == &X86::FR32RegClass) {
1685 Opc = X86::FsMOVAPSrr;
1686 } else if (DestRC == &X86::FR64RegClass) {
1687 Opc = X86::FsMOVAPDrr;
1688 } else if (DestRC == &X86::VR128RegClass) {
1689 Opc = X86::MOVAPSrr;
1690 } else if (DestRC == &X86::VR64RegClass) {
1691 Opc = X86::MMX_MOVQ64rr;
1692 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001693 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001694 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001695 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001696 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001697 }
Chris Lattner59707122008-03-09 07:58:04 +00001698
1699 // Moving EFLAGS to / from another register requires a push and a pop.
1700 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001701 if (SrcReg != X86::EFLAGS)
1702 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001703 if (DestRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001704 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1705 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001706 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001707 } else if (DestRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001708 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1709 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001710 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001711 }
1712 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001713 if (DestReg != X86::EFLAGS)
1714 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001715 if (SrcRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001716 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1717 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001718 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001719 } else if (SrcRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001720 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1721 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001722 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001723 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001724 }
Dan Gohman744d4622009-04-13 16:09:41 +00001725
Chris Lattner0d128722008-03-09 09:15:31 +00001726 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001727 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001728 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001729 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1730 // Can only copy from ST(0)/ST(1) right now
1731 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001732 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001733 unsigned Opc;
1734 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001735 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001736 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001737 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001738 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001739 if (DestRC != &X86::RFP80RegClass)
1740 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001741 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001742 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001743 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001744 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001745 }
Chris Lattner0d128722008-03-09 09:15:31 +00001746
1747 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1748 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001749 // Copying to ST(0) / ST(1).
1750 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001751 // Can only copy to TOS right now
1752 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001753 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001754 unsigned Opc;
1755 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001756 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001757 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001758 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001759 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001760 if (SrcRC != &X86::RFP80RegClass)
1761 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001762 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001763 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001764 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001765 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001766 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001767
Owen Anderson9fa72d92008-08-26 18:03:31 +00001768 // Not yet supported!
1769 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001770}
1771
Owen Anderson81875432008-01-01 21:11:32 +00001772static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001773 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001774 unsigned Opc = 0;
1775 if (RC == &X86::GR64RegClass) {
1776 Opc = X86::MOV64mr;
1777 } else if (RC == &X86::GR32RegClass) {
1778 Opc = X86::MOV32mr;
1779 } else if (RC == &X86::GR16RegClass) {
1780 Opc = X86::MOV16mr;
1781 } else if (RC == &X86::GR8RegClass) {
1782 Opc = X86::MOV8mr;
Dan Gohman744d4622009-04-13 16:09:41 +00001783 } else if (RC == &X86::GR64_RegClass) {
1784 Opc = X86::MOV64mr;
Owen Anderson81875432008-01-01 21:11:32 +00001785 } else if (RC == &X86::GR32_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001786 Opc = X86::MOV32mr;
Owen Anderson81875432008-01-01 21:11:32 +00001787 } else if (RC == &X86::GR16_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001788 Opc = X86::MOV16mr;
1789 } else if (RC == &X86::GR8_RegClass) {
1790 Opc = X86::MOV8mr;
1791 } else if (RC == &X86::GR64_NOREXRegClass) {
1792 Opc = X86::MOV64mr;
1793 } else if (RC == &X86::GR32_NOREXRegClass) {
1794 Opc = X86::MOV32mr;
1795 } else if (RC == &X86::GR16_NOREXRegClass) {
1796 Opc = X86::MOV16mr;
1797 } else if (RC == &X86::GR8_NOREXRegClass) {
1798 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001799 } else if (RC == &X86::RFP80RegClass) {
1800 Opc = X86::ST_FpP80m; // pops
1801 } else if (RC == &X86::RFP64RegClass) {
1802 Opc = X86::ST_Fp64m;
1803 } else if (RC == &X86::RFP32RegClass) {
1804 Opc = X86::ST_Fp32m;
1805 } else if (RC == &X86::FR32RegClass) {
1806 Opc = X86::MOVSSmr;
1807 } else if (RC == &X86::FR64RegClass) {
1808 Opc = X86::MOVSDmr;
1809 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001810 // If stack is realigned we can use aligned stores.
1811 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001812 } else if (RC == &X86::VR64RegClass) {
1813 Opc = X86::MMX_MOVQ64mr;
1814 } else {
1815 assert(0 && "Unknown regclass");
1816 abort();
1817 }
1818
1819 return Opc;
1820}
1821
1822void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1823 MachineBasicBlock::iterator MI,
1824 unsigned SrcReg, bool isKill, int FrameIdx,
1825 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001826 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001827 bool isAligned = (RI.getStackAlignment() >= 16) ||
1828 RI.needsStackRealignment(MF);
1829 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001830 DebugLoc DL = DebugLoc::getUnknownLoc();
1831 if (MI != MBB.end()) DL = MI->getDebugLoc();
1832 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1833 .addReg(SrcReg, false, false, isKill);
Owen Anderson81875432008-01-01 21:11:32 +00001834}
1835
1836void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1837 bool isKill,
1838 SmallVectorImpl<MachineOperand> &Addr,
1839 const TargetRegisterClass *RC,
1840 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001841 bool isAligned = (RI.getStackAlignment() >= 16) ||
1842 RI.needsStackRealignment(MF);
1843 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001844 DebugLoc DL = DebugLoc::getUnknownLoc();
1845 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001846 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001847 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00001848 MIB.addReg(SrcReg, false, false, isKill);
1849 NewMIs.push_back(MIB);
1850}
1851
1852static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001853 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001854 unsigned Opc = 0;
1855 if (RC == &X86::GR64RegClass) {
1856 Opc = X86::MOV64rm;
1857 } else if (RC == &X86::GR32RegClass) {
1858 Opc = X86::MOV32rm;
1859 } else if (RC == &X86::GR16RegClass) {
1860 Opc = X86::MOV16rm;
1861 } else if (RC == &X86::GR8RegClass) {
1862 Opc = X86::MOV8rm;
Dan Gohman744d4622009-04-13 16:09:41 +00001863 } else if (RC == &X86::GR64_RegClass) {
1864 Opc = X86::MOV64rm;
Owen Anderson81875432008-01-01 21:11:32 +00001865 } else if (RC == &X86::GR32_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001866 Opc = X86::MOV32rm;
Owen Anderson81875432008-01-01 21:11:32 +00001867 } else if (RC == &X86::GR16_RegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001868 Opc = X86::MOV16rm;
1869 } else if (RC == &X86::GR8_RegClass) {
1870 Opc = X86::MOV8rm;
1871 } else if (RC == &X86::GR64_NOREXRegClass) {
1872 Opc = X86::MOV64rm;
1873 } else if (RC == &X86::GR32_NOREXRegClass) {
1874 Opc = X86::MOV32rm;
1875 } else if (RC == &X86::GR16_NOREXRegClass) {
1876 Opc = X86::MOV16rm;
1877 } else if (RC == &X86::GR8_NOREXRegClass) {
1878 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00001879 } else if (RC == &X86::RFP80RegClass) {
1880 Opc = X86::LD_Fp80m;
1881 } else if (RC == &X86::RFP64RegClass) {
1882 Opc = X86::LD_Fp64m;
1883 } else if (RC == &X86::RFP32RegClass) {
1884 Opc = X86::LD_Fp32m;
1885 } else if (RC == &X86::FR32RegClass) {
1886 Opc = X86::MOVSSrm;
1887 } else if (RC == &X86::FR64RegClass) {
1888 Opc = X86::MOVSDrm;
1889 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001890 // If stack is realigned we can use aligned loads.
1891 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001892 } else if (RC == &X86::VR64RegClass) {
1893 Opc = X86::MMX_MOVQ64rm;
1894 } else {
1895 assert(0 && "Unknown regclass");
1896 abort();
1897 }
1898
1899 return Opc;
1900}
1901
1902void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001903 MachineBasicBlock::iterator MI,
1904 unsigned DestReg, int FrameIdx,
1905 const TargetRegisterClass *RC) const{
1906 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001907 bool isAligned = (RI.getStackAlignment() >= 16) ||
1908 RI.needsStackRealignment(MF);
1909 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001910 DebugLoc DL = DebugLoc::getUnknownLoc();
1911 if (MI != MBB.end()) DL = MI->getDebugLoc();
1912 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001913}
1914
1915void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001916 SmallVectorImpl<MachineOperand> &Addr,
1917 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001918 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001919 bool isAligned = (RI.getStackAlignment() >= 16) ||
1920 RI.needsStackRealignment(MF);
1921 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001922 DebugLoc DL = DebugLoc::getUnknownLoc();
1923 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001924 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001925 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00001926 NewMIs.push_back(MIB);
1927}
1928
Owen Anderson6690c7f2008-01-04 23:57:37 +00001929bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001930 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001931 const std::vector<CalleeSavedInfo> &CSI) const {
1932 if (CSI.empty())
1933 return false;
1934
Bill Wendling13ee2e42009-02-11 21:51:19 +00001935 DebugLoc DL = DebugLoc::getUnknownLoc();
1936 if (MI != MBB.end()) DL = MI->getDebugLoc();
1937
Evan Chengc275cf62008-09-26 19:14:21 +00001938 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001939 unsigned SlotSize = is64Bit ? 8 : 4;
1940
1941 MachineFunction &MF = *MBB.getParent();
1942 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1943 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1944
Owen Anderson6690c7f2008-01-04 23:57:37 +00001945 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1946 for (unsigned i = CSI.size(); i != 0; --i) {
1947 unsigned Reg = CSI[i-1].getReg();
1948 // Add the callee-saved register as live-in. It's killed at the spill.
1949 MBB.addLiveIn(Reg);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001950 BuildMI(MBB, MI, DL, get(Opc))
Dan Gohman4df0e362008-11-26 06:39:12 +00001951 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001952 }
1953 return true;
1954}
1955
1956bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001957 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001958 const std::vector<CalleeSavedInfo> &CSI) const {
1959 if (CSI.empty())
1960 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001961
1962 DebugLoc DL = DebugLoc::getUnknownLoc();
1963 if (MI != MBB.end()) DL = MI->getDebugLoc();
1964
Owen Anderson6690c7f2008-01-04 23:57:37 +00001965 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1966
1967 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1968 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1969 unsigned Reg = CSI[i].getReg();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001970 BuildMI(MBB, MI, DL, get(Opc), Reg);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001971 }
1972 return true;
1973}
1974
Dan Gohman221a4372008-07-07 23:14:23 +00001975static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001976 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001977 MachineInstr *MI,
1978 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001979 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001980 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
1981 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001982 MachineInstrBuilder MIB(NewMI);
1983 unsigned NumAddrOps = MOs.size();
1984 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001985 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001986 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00001987 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001988
1989 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001990 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001991 for (unsigned i = 0; i != NumOps; ++i) {
1992 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001993 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001994 }
1995 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1996 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001997 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001998 }
1999 return MIB;
2000}
2001
Dan Gohman221a4372008-07-07 23:14:23 +00002002static MachineInstr *FuseInst(MachineFunction &MF,
2003 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002004 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002005 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002006 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2007 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008 MachineInstrBuilder MIB(NewMI);
2009
2010 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2011 MachineOperand &MO = MI->getOperand(i);
2012 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002013 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002014 unsigned NumAddrOps = MOs.size();
2015 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002016 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002017 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002018 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002019 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002020 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002021 }
2022 }
2023 return MIB;
2024}
2025
2026static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002027 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002028 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002029 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002030 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002031
2032 unsigned NumAddrOps = MOs.size();
2033 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002034 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002035 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002036 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002037 return MIB.addImm(0);
2038}
2039
2040MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002041X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2042 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002043 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002044 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2045 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002046 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002047 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002048 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002049
2050 MachineInstr *NewMI = NULL;
2051 // Folding a memory location into the two-address part of a two-address
2052 // instruction is different than folding it other places. It requires
2053 // replacing the *two* registers with the memory location.
2054 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002055 MI->getOperand(0).isReg() &&
2056 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002057 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2058 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2059 isTwoAddrFold = true;
2060 } else if (i == 0) { // If operand 0
2061 if (MI->getOpcode() == X86::MOV16r0)
2062 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2063 else if (MI->getOpcode() == X86::MOV32r0)
2064 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2065 else if (MI->getOpcode() == X86::MOV64r0)
2066 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2067 else if (MI->getOpcode() == X86::MOV8r0)
2068 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002069 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002071
2072 OpcodeTablePtr = &RegOp2MemOpTable0;
2073 } else if (i == 1) {
2074 OpcodeTablePtr = &RegOp2MemOpTable1;
2075 } else if (i == 2) {
2076 OpcodeTablePtr = &RegOp2MemOpTable2;
2077 }
2078
2079 // If table selected...
2080 if (OpcodeTablePtr) {
2081 // Find the Opcode to fuse
2082 DenseMap<unsigned*, unsigned>::iterator I =
2083 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2084 if (I != OpcodeTablePtr->end()) {
2085 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002086 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002087 else
Dan Gohman221a4372008-07-07 23:14:23 +00002088 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002089 return NewMI;
2090 }
2091 }
2092
2093 // No fusion
2094 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002095 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002096 return NULL;
2097}
2098
2099
Dan Gohmanedc83d62008-12-03 18:43:12 +00002100MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2101 MachineInstr *MI,
2102 const SmallVectorImpl<unsigned> &Ops,
2103 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002104 // Check switch flag
2105 if (NoFusing) return NULL;
2106
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002107 const MachineFrameInfo *MFI = MF.getFrameInfo();
2108 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2109 // FIXME: Move alignment requirement into tables?
2110 if (Alignment < 16) {
2111 switch (MI->getOpcode()) {
2112 default: break;
2113 // Not always safe to fold movsd into these instructions since their load
2114 // folding variants expects the address to be 16 byte aligned.
2115 case X86::FsANDNPDrr:
2116 case X86::FsANDNPSrr:
2117 case X86::FsANDPDrr:
2118 case X86::FsANDPSrr:
2119 case X86::FsORPDrr:
2120 case X86::FsORPSrr:
2121 case X86::FsXORPDrr:
2122 case X86::FsXORPSrr:
2123 return NULL;
2124 }
2125 }
2126
Owen Anderson9a184ef2008-01-07 01:35:02 +00002127 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2128 unsigned NewOpc = 0;
2129 switch (MI->getOpcode()) {
2130 default: return NULL;
2131 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2132 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2133 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2134 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2135 }
2136 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002137 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002138 MI->getOperand(1).ChangeToImmediate(0);
2139 } else if (Ops.size() != 1)
2140 return NULL;
2141
2142 SmallVector<MachineOperand,4> MOs;
2143 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002144 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002145}
2146
Dan Gohmanedc83d62008-12-03 18:43:12 +00002147MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2148 MachineInstr *MI,
2149 const SmallVectorImpl<unsigned> &Ops,
2150 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002151 // Check switch flag
2152 if (NoFusing) return NULL;
2153
Dan Gohmand0e8c752008-07-12 00:10:52 +00002154 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002155 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002156 if (LoadMI->hasOneMemOperand())
2157 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002158
2159 // FIXME: Move alignment requirement into tables?
2160 if (Alignment < 16) {
2161 switch (MI->getOpcode()) {
2162 default: break;
2163 // Not always safe to fold movsd into these instructions since their load
2164 // folding variants expects the address to be 16 byte aligned.
2165 case X86::FsANDNPDrr:
2166 case X86::FsANDNPSrr:
2167 case X86::FsANDPDrr:
2168 case X86::FsANDPSrr:
2169 case X86::FsORPDrr:
2170 case X86::FsORPSrr:
2171 case X86::FsXORPDrr:
2172 case X86::FsXORPSrr:
2173 return NULL;
2174 }
2175 }
2176
Owen Anderson9a184ef2008-01-07 01:35:02 +00002177 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2178 unsigned NewOpc = 0;
2179 switch (MI->getOpcode()) {
2180 default: return NULL;
2181 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2182 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2183 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2184 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2185 }
2186 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002187 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002188 MI->getOperand(1).ChangeToImmediate(0);
2189 } else if (Ops.size() != 1)
2190 return NULL;
2191
Rafael Espindolabca99f72009-04-08 21:14:34 +00002192 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002193 if (LoadMI->getOpcode() == X86::V_SET0 ||
2194 LoadMI->getOpcode() == X86::V_SETALLONES) {
2195 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2196 // Create a constant-pool entry and operands to load from it.
2197
2198 // x86-32 PIC requires a PIC base register for constant pools.
2199 unsigned PICBase = 0;
2200 if (TM.getRelocationModel() == Reloc::PIC_ &&
2201 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002202 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2203 // This doesn't work for several reasons.
2204 // 1. GlobalBaseReg may have been spilled.
2205 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002206 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002207
2208 // Create a v4i32 constant-pool entry.
2209 MachineConstantPool &MCP = *MF.getConstantPool();
2210 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2211 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2212 ConstantVector::getNullValue(Ty) :
2213 ConstantVector::getAllOnesValue(Ty);
Evan Cheng68c18682009-03-13 07:51:59 +00002214 unsigned CPI = MCP.getConstantPoolIndex(C, 16);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002215
2216 // Create operands to load from the constant pool entry.
2217 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2218 MOs.push_back(MachineOperand::CreateImm(1));
2219 MOs.push_back(MachineOperand::CreateReg(0, false));
2220 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002221 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman37eb6c82008-12-03 05:21:24 +00002222 } else {
2223 // Folding a normal load. Just copy the load's address operands.
2224 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002225 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002226 MOs.push_back(LoadMI->getOperand(i));
2227 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002228 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002229}
2230
2231
Dan Gohman46b948e2008-10-16 01:49:15 +00002232bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2233 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002234 // Check switch flag
2235 if (NoFusing) return 0;
2236
2237 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2238 switch (MI->getOpcode()) {
2239 default: return false;
2240 case X86::TEST8rr:
2241 case X86::TEST16rr:
2242 case X86::TEST32rr:
2243 case X86::TEST64rr:
2244 return true;
2245 }
2246 }
2247
2248 if (Ops.size() != 1)
2249 return false;
2250
2251 unsigned OpNum = Ops[0];
2252 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002253 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002254 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002255 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002256
2257 // Folding a memory location into the two-address part of a two-address
2258 // instruction is different than folding it other places. It requires
2259 // replacing the *two* registers with the memory location.
2260 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2261 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2262 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2263 } else if (OpNum == 0) { // If operand 0
2264 switch (Opc) {
2265 case X86::MOV16r0:
2266 case X86::MOV32r0:
2267 case X86::MOV64r0:
2268 case X86::MOV8r0:
2269 return true;
2270 default: break;
2271 }
2272 OpcodeTablePtr = &RegOp2MemOpTable0;
2273 } else if (OpNum == 1) {
2274 OpcodeTablePtr = &RegOp2MemOpTable1;
2275 } else if (OpNum == 2) {
2276 OpcodeTablePtr = &RegOp2MemOpTable2;
2277 }
2278
2279 if (OpcodeTablePtr) {
2280 // Find the Opcode to fuse
2281 DenseMap<unsigned*, unsigned>::iterator I =
2282 OpcodeTablePtr->find((unsigned*)Opc);
2283 if (I != OpcodeTablePtr->end())
2284 return true;
2285 }
2286 return false;
2287}
2288
2289bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2290 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002291 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002292 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2293 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2294 if (I == MemOp2RegOpTable.end())
2295 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002296 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002297 unsigned Opc = I->second.first;
2298 unsigned Index = I->second.second & 0xf;
2299 bool FoldedLoad = I->second.second & (1 << 4);
2300 bool FoldedStore = I->second.second & (1 << 5);
2301 if (UnfoldLoad && !FoldedLoad)
2302 return false;
2303 UnfoldLoad &= FoldedLoad;
2304 if (UnfoldStore && !FoldedStore)
2305 return false;
2306 UnfoldStore &= FoldedStore;
2307
Chris Lattner5b930372008-01-07 07:27:27 +00002308 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002309 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002310 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002311 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002312 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002313 SmallVector<MachineOperand,2> BeforeOps;
2314 SmallVector<MachineOperand,2> AfterOps;
2315 SmallVector<MachineOperand,4> ImpOps;
2316 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2317 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002318 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002319 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002320 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002321 ImpOps.push_back(Op);
2322 else if (i < Index)
2323 BeforeOps.push_back(Op);
2324 else if (i > Index)
2325 AfterOps.push_back(Op);
2326 }
2327
2328 // Emit the load instruction.
2329 if (UnfoldLoad) {
2330 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2331 if (UnfoldStore) {
2332 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002333 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002334 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002335 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002336 MO.setIsKill(false);
2337 }
2338 }
2339 }
2340
2341 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002342 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002343 MachineInstrBuilder MIB(DataMI);
2344
2345 if (FoldedStore)
2346 MIB.addReg(Reg, true);
2347 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002348 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002349 if (FoldedLoad)
2350 MIB.addReg(Reg);
2351 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002352 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002353 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2354 MachineOperand &MO = ImpOps[i];
2355 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2356 }
2357 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2358 unsigned NewOpc = 0;
2359 switch (DataMI->getOpcode()) {
2360 default: break;
2361 case X86::CMP64ri32:
2362 case X86::CMP32ri:
2363 case X86::CMP16ri:
2364 case X86::CMP8ri: {
2365 MachineOperand &MO0 = DataMI->getOperand(0);
2366 MachineOperand &MO1 = DataMI->getOperand(1);
2367 if (MO1.getImm() == 0) {
2368 switch (DataMI->getOpcode()) {
2369 default: break;
2370 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2371 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2372 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2373 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2374 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002375 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002376 MO1.ChangeToRegister(MO0.getReg(), false);
2377 }
2378 }
2379 }
2380 NewMIs.push_back(DataMI);
2381
2382 // Emit the store instruction.
2383 if (UnfoldStore) {
2384 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002385 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002386 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002387 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2388 }
2389
2390 return true;
2391}
2392
2393bool
2394X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002395 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002396 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002397 return false;
2398
2399 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002400 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002401 if (I == MemOp2RegOpTable.end())
2402 return false;
2403 unsigned Opc = I->second.first;
2404 unsigned Index = I->second.second & 0xf;
2405 bool FoldedLoad = I->second.second & (1 << 4);
2406 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002407 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002408 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002409 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002410 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman31b70a62009-03-04 19:23:38 +00002411 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002412 std::vector<SDValue> AddrOps;
2413 std::vector<SDValue> BeforeOps;
2414 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002415 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002416 unsigned NumOps = N->getNumOperands();
2417 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002418 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002419 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002420 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002421 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002422 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002423 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002424 AfterOps.push_back(Op);
2425 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002426 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002427 AddrOps.push_back(Chain);
2428
2429 // Emit the load instruction.
2430 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002431 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002432 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002433 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002434 bool isAligned = (RI.getStackAlignment() >= 16) ||
2435 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002436 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned), dl,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002437 VT, MVT::Other,
2438 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002439 NewNodes.push_back(Load);
2440 }
2441
2442 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002443 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002444 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002445 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002446 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002447 DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002448 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002449 VTs.push_back(*DstRC->vt_begin());
2450 }
2451 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002452 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002453 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002454 VTs.push_back(VT);
2455 }
2456 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002457 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002458 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dale Johannesen913ba762009-02-06 01:31:28 +00002459 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2460 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002461 NewNodes.push_back(NewNode);
2462
2463 // Emit the store instruction.
2464 if (FoldedStore) {
2465 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002466 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002467 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002468 bool isAligned = (RI.getStackAlignment() >= 16) ||
2469 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002470 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned), dl,
Evan Cheng47906a22008-07-21 06:34:17 +00002471 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002472 NewNodes.push_back(Store);
2473 }
2474
2475 return true;
2476}
2477
2478unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2479 bool UnfoldLoad, bool UnfoldStore) const {
2480 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2481 MemOp2RegOpTable.find((unsigned*)Opc);
2482 if (I == MemOp2RegOpTable.end())
2483 return 0;
2484 bool FoldedLoad = I->second.second & (1 << 4);
2485 bool FoldedStore = I->second.second & (1 << 5);
2486 if (UnfoldLoad && !FoldedLoad)
2487 return 0;
2488 if (UnfoldStore && !FoldedStore)
2489 return 0;
2490 return I->second.first;
2491}
2492
Dan Gohman46b948e2008-10-16 01:49:15 +00002493bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 if (MBB.empty()) return false;
2495
2496 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002497 case X86::TCRETURNri:
2498 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002499 case X86::RET: // Return.
2500 case X86::RETI:
2501 case X86::TAILJMPd:
2502 case X86::TAILJMPr:
2503 case X86::TAILJMPm:
2504 case X86::JMP: // Uncond branch.
2505 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002506 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002508 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002509 return true;
2510 default: return false;
2511 }
2512}
2513
2514bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002515ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002517 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002518 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2519 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002520 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521 return false;
2522}
2523
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002524bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002525isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2526 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002527 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002528 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2529 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002530}
2531
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002532unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2533 switch (Desc->TSFlags & X86II::ImmMask) {
2534 case X86II::Imm8: return 1;
2535 case X86II::Imm16: return 2;
2536 case X86II::Imm32: return 4;
2537 case X86II::Imm64: return 8;
2538 default: assert(0 && "Immediate size not set!");
2539 return 0;
2540 }
2541}
2542
2543/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2544/// e.g. r8, xmm8, etc.
2545bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002546 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002547 switch (MO.getReg()) {
2548 default: break;
2549 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2550 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2551 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2552 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2553 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2554 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2555 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2556 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2557 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2558 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2559 return true;
2560 }
2561 return false;
2562}
2563
2564
2565/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2566/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2567/// size, and 3) use of X86-64 extended registers.
2568unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2569 unsigned REX = 0;
2570 const TargetInstrDesc &Desc = MI.getDesc();
2571
2572 // Pseudo instructions do not need REX prefix byte.
2573 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2574 return 0;
2575 if (Desc.TSFlags & X86II::REX_W)
2576 REX |= 1 << 3;
2577
2578 unsigned NumOps = Desc.getNumOperands();
2579 if (NumOps) {
2580 bool isTwoAddr = NumOps > 1 &&
2581 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2582
2583 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2584 unsigned i = isTwoAddr ? 1 : 0;
2585 for (unsigned e = NumOps; i != e; ++i) {
2586 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002587 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002588 unsigned Reg = MO.getReg();
2589 if (isX86_64NonExtLowByteReg(Reg))
2590 REX |= 0x40;
2591 }
2592 }
2593
2594 switch (Desc.TSFlags & X86II::FormMask) {
2595 case X86II::MRMInitReg:
2596 if (isX86_64ExtendedReg(MI.getOperand(0)))
2597 REX |= (1 << 0) | (1 << 2);
2598 break;
2599 case X86II::MRMSrcReg: {
2600 if (isX86_64ExtendedReg(MI.getOperand(0)))
2601 REX |= 1 << 2;
2602 i = isTwoAddr ? 2 : 1;
2603 for (unsigned e = NumOps; i != e; ++i) {
2604 const MachineOperand& MO = MI.getOperand(i);
2605 if (isX86_64ExtendedReg(MO))
2606 REX |= 1 << 0;
2607 }
2608 break;
2609 }
2610 case X86II::MRMSrcMem: {
2611 if (isX86_64ExtendedReg(MI.getOperand(0)))
2612 REX |= 1 << 2;
2613 unsigned Bit = 0;
2614 i = isTwoAddr ? 2 : 1;
2615 for (; i != NumOps; ++i) {
2616 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002617 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002618 if (isX86_64ExtendedReg(MO))
2619 REX |= 1 << Bit;
2620 Bit++;
2621 }
2622 }
2623 break;
2624 }
2625 case X86II::MRM0m: case X86II::MRM1m:
2626 case X86II::MRM2m: case X86II::MRM3m:
2627 case X86II::MRM4m: case X86II::MRM5m:
2628 case X86II::MRM6m: case X86II::MRM7m:
2629 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002630 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002631 i = isTwoAddr ? 1 : 0;
2632 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2633 REX |= 1 << 2;
2634 unsigned Bit = 0;
2635 for (; i != e; ++i) {
2636 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002637 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002638 if (isX86_64ExtendedReg(MO))
2639 REX |= 1 << Bit;
2640 Bit++;
2641 }
2642 }
2643 break;
2644 }
2645 default: {
2646 if (isX86_64ExtendedReg(MI.getOperand(0)))
2647 REX |= 1 << 0;
2648 i = isTwoAddr ? 2 : 1;
2649 for (unsigned e = NumOps; i != e; ++i) {
2650 const MachineOperand& MO = MI.getOperand(i);
2651 if (isX86_64ExtendedReg(MO))
2652 REX |= 1 << 2;
2653 }
2654 break;
2655 }
2656 }
2657 }
2658 return REX;
2659}
2660
2661/// sizePCRelativeBlockAddress - This method returns the size of a PC
2662/// relative block address instruction
2663///
2664static unsigned sizePCRelativeBlockAddress() {
2665 return 4;
2666}
2667
2668/// sizeGlobalAddress - Give the size of the emission of this global address
2669///
2670static unsigned sizeGlobalAddress(bool dword) {
2671 return dword ? 8 : 4;
2672}
2673
2674/// sizeConstPoolAddress - Give the size of the emission of this constant
2675/// pool address
2676///
2677static unsigned sizeConstPoolAddress(bool dword) {
2678 return dword ? 8 : 4;
2679}
2680
2681/// sizeExternalSymbolAddress - Give the size of the emission of this external
2682/// symbol
2683///
2684static unsigned sizeExternalSymbolAddress(bool dword) {
2685 return dword ? 8 : 4;
2686}
2687
2688/// sizeJumpTableAddress - Give the size of the emission of this jump
2689/// table address
2690///
2691static unsigned sizeJumpTableAddress(bool dword) {
2692 return dword ? 8 : 4;
2693}
2694
2695static unsigned sizeConstant(unsigned Size) {
2696 return Size;
2697}
2698
2699static unsigned sizeRegModRMByte(){
2700 return 1;
2701}
2702
2703static unsigned sizeSIBByte(){
2704 return 1;
2705}
2706
2707static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2708 unsigned FinalSize = 0;
2709 // If this is a simple integer displacement that doesn't require a relocation.
2710 if (!RelocOp) {
2711 FinalSize += sizeConstant(4);
2712 return FinalSize;
2713 }
2714
2715 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002716 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002717 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002718 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002719 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002720 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002721 FinalSize += sizeJumpTableAddress(false);
2722 } else {
2723 assert(0 && "Unknown value to relocate!");
2724 }
2725 return FinalSize;
2726}
2727
2728static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2729 bool IsPIC, bool Is64BitMode) {
2730 const MachineOperand &Op3 = MI.getOperand(Op+3);
2731 int DispVal = 0;
2732 const MachineOperand *DispForReloc = 0;
2733 unsigned FinalSize = 0;
2734
2735 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002736 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002737 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002738 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002739 if (Is64BitMode || IsPIC) {
2740 DispForReloc = &Op3;
2741 } else {
2742 DispVal = 1;
2743 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002744 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002745 if (Is64BitMode || IsPIC) {
2746 DispForReloc = &Op3;
2747 } else {
2748 DispVal = 1;
2749 }
2750 } else {
2751 DispVal = 1;
2752 }
2753
2754 const MachineOperand &Base = MI.getOperand(Op);
2755 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2756
2757 unsigned BaseReg = Base.getReg();
2758
2759 // Is a SIB byte needed?
Chris Lattnerf9090422009-04-09 06:10:51 +00002760 if ((!Is64BitMode || DispForReloc) && IndexReg.getReg() == 0 &&
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002761 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2762 if (BaseReg == 0) { // Just a displacement?
2763 // Emit special case [disp32] encoding
2764 ++FinalSize;
2765 FinalSize += getDisplacementFieldSize(DispForReloc);
2766 } else {
2767 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2768 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2769 // Emit simple indirect register encoding... [EAX] f.e.
2770 ++FinalSize;
2771 // Be pessimistic and assume it's a disp32, not a disp8
2772 } else {
2773 // Emit the most general non-SIB encoding: [REG+disp32]
2774 ++FinalSize;
2775 FinalSize += getDisplacementFieldSize(DispForReloc);
2776 }
2777 }
2778
2779 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2780 assert(IndexReg.getReg() != X86::ESP &&
2781 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2782
2783 bool ForceDisp32 = false;
2784 if (BaseReg == 0 || DispForReloc) {
2785 // Emit the normal disp32 encoding.
2786 ++FinalSize;
2787 ForceDisp32 = true;
2788 } else {
2789 ++FinalSize;
2790 }
2791
2792 FinalSize += sizeSIBByte();
2793
2794 // Do we need to output a displacement?
2795 if (DispVal != 0 || ForceDisp32) {
2796 FinalSize += getDisplacementFieldSize(DispForReloc);
2797 }
2798 }
2799 return FinalSize;
2800}
2801
2802
2803static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2804 const TargetInstrDesc *Desc,
2805 bool IsPIC, bool Is64BitMode) {
2806
2807 unsigned Opcode = Desc->Opcode;
2808 unsigned FinalSize = 0;
2809
2810 // Emit the lock opcode prefix as needed.
2811 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2812
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002813 // Emit segment overrid opcode prefix as needed.
2814 switch (Desc->TSFlags & X86II::SegOvrMask) {
2815 case X86II::FS:
2816 case X86II::GS:
2817 ++FinalSize;
2818 break;
2819 default: assert(0 && "Invalid segment!");
2820 case 0: break; // No segment override!
2821 }
2822
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002823 // Emit the repeat opcode prefix as needed.
2824 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2825
2826 // Emit the operand size opcode prefix as needed.
2827 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2828
2829 // Emit the address size opcode prefix as needed.
2830 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2831
2832 bool Need0FPrefix = false;
2833 switch (Desc->TSFlags & X86II::Op0Mask) {
2834 case X86II::TB: // Two-byte opcode prefix
2835 case X86II::T8: // 0F 38
2836 case X86II::TA: // 0F 3A
2837 Need0FPrefix = true;
2838 break;
2839 case X86II::REP: break; // already handled.
2840 case X86II::XS: // F3 0F
2841 ++FinalSize;
2842 Need0FPrefix = true;
2843 break;
2844 case X86II::XD: // F2 0F
2845 ++FinalSize;
2846 Need0FPrefix = true;
2847 break;
2848 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2849 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2850 ++FinalSize;
2851 break; // Two-byte opcode prefix
2852 default: assert(0 && "Invalid prefix!");
2853 case 0: break; // No prefix!
2854 }
2855
2856 if (Is64BitMode) {
2857 // REX prefix
2858 unsigned REX = X86InstrInfo::determineREX(MI);
2859 if (REX)
2860 ++FinalSize;
2861 }
2862
2863 // 0x0F escape code must be emitted just before the opcode.
2864 if (Need0FPrefix)
2865 ++FinalSize;
2866
2867 switch (Desc->TSFlags & X86II::Op0Mask) {
2868 case X86II::T8: // 0F 38
2869 ++FinalSize;
2870 break;
2871 case X86II::TA: // 0F 3A
2872 ++FinalSize;
2873 break;
2874 }
2875
2876 // If this is a two-address instruction, skip one of the register operands.
2877 unsigned NumOps = Desc->getNumOperands();
2878 unsigned CurOp = 0;
2879 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2880 CurOp++;
2881
2882 switch (Desc->TSFlags & X86II::FormMask) {
2883 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2884 case X86II::Pseudo:
2885 // Remember the current PC offset, this is the PIC relocation
2886 // base address.
2887 switch (Opcode) {
2888 default:
2889 break;
2890 case TargetInstrInfo::INLINEASM: {
2891 const MachineFunction *MF = MI.getParent()->getParent();
2892 const char *AsmStr = MI.getOperand(0).getSymbolName();
2893 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2894 FinalSize += AI->getInlineAsmLength(AsmStr);
2895 break;
2896 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002897 case TargetInstrInfo::DBG_LABEL:
2898 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002899 break;
2900 case TargetInstrInfo::IMPLICIT_DEF:
2901 case TargetInstrInfo::DECLARE:
2902 case X86::DWARF_LOC:
2903 case X86::FP_REG_KILL:
2904 break;
2905 case X86::MOVPC32r: {
2906 // This emits the "call" portion of this pseudo instruction.
2907 ++FinalSize;
2908 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2909 break;
2910 }
2911 }
2912 CurOp = NumOps;
2913 break;
2914 case X86II::RawFrm:
2915 ++FinalSize;
2916
2917 if (CurOp != NumOps) {
2918 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002919 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002920 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002921 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002922 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002923 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002924 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002925 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002926 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2927 } else {
2928 assert(0 && "Unknown RawFrm operand!");
2929 }
2930 }
2931 break;
2932
2933 case X86II::AddRegFrm:
2934 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002935 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002936
2937 if (CurOp != NumOps) {
2938 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2939 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002940 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002941 FinalSize += sizeConstant(Size);
2942 else {
2943 bool dword = false;
2944 if (Opcode == X86::MOV64ri)
2945 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002946 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002947 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002948 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002949 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002950 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002951 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002952 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002953 FinalSize += sizeJumpTableAddress(dword);
2954 }
2955 }
2956 break;
2957
2958 case X86II::MRMDestReg: {
2959 ++FinalSize;
2960 FinalSize += sizeRegModRMByte();
2961 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002962 if (CurOp != NumOps) {
2963 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002964 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002965 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002966 break;
2967 }
2968 case X86II::MRMDestMem: {
2969 ++FinalSize;
2970 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2971 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002972 if (CurOp != NumOps) {
2973 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002974 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002975 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002976 break;
2977 }
2978
2979 case X86II::MRMSrcReg:
2980 ++FinalSize;
2981 FinalSize += sizeRegModRMByte();
2982 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002983 if (CurOp != NumOps) {
2984 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002985 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002986 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002987 break;
2988
2989 case X86II::MRMSrcMem: {
2990
2991 ++FinalSize;
2992 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2993 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002994 if (CurOp != NumOps) {
2995 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002996 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002997 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002998 break;
2999 }
3000
3001 case X86II::MRM0r: case X86II::MRM1r:
3002 case X86II::MRM2r: case X86II::MRM3r:
3003 case X86II::MRM4r: case X86II::MRM5r:
3004 case X86II::MRM6r: case X86II::MRM7r:
3005 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003006 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003007 FinalSize += sizeRegModRMByte();
3008
3009 if (CurOp != NumOps) {
3010 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3011 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003012 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003013 FinalSize += sizeConstant(Size);
3014 else {
3015 bool dword = false;
3016 if (Opcode == X86::MOV64ri32)
3017 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003018 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003019 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003020 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003021 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003022 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003023 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003024 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003025 FinalSize += sizeJumpTableAddress(dword);
3026 }
3027 }
3028 break;
3029
3030 case X86II::MRM0m: case X86II::MRM1m:
3031 case X86II::MRM2m: case X86II::MRM3m:
3032 case X86II::MRM4m: case X86II::MRM5m:
3033 case X86II::MRM6m: case X86II::MRM7m: {
3034
3035 ++FinalSize;
3036 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3037 CurOp += 4;
3038
3039 if (CurOp != NumOps) {
3040 const MachineOperand &MO = MI.getOperand(CurOp++);
3041 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003042 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003043 FinalSize += sizeConstant(Size);
3044 else {
3045 bool dword = false;
3046 if (Opcode == X86::MOV64mi32)
3047 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003048 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003049 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003050 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003051 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003052 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003053 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003054 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055 FinalSize += sizeJumpTableAddress(dword);
3056 }
3057 }
3058 break;
3059 }
3060
3061 case X86II::MRMInitReg:
3062 ++FinalSize;
3063 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3064 FinalSize += sizeRegModRMByte();
3065 ++CurOp;
3066 break;
3067 }
3068
3069 if (!Desc->isVariadic() && CurOp != NumOps) {
3070 cerr << "Cannot determine size: ";
3071 MI.dump();
3072 cerr << '\n';
3073 abort();
3074 }
3075
3076
3077 return FinalSize;
3078}
3079
3080
3081unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3082 const TargetInstrDesc &Desc = MI->getDesc();
3083 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003084 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003085 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3086 if (Desc.getOpcode() == X86::MOVPC32r) {
3087 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3088 }
3089 return Size;
3090}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003091
Dan Gohman882ab732008-09-30 00:58:23 +00003092/// getGlobalBaseReg - Return a virtual register initialized with the
3093/// the global base register value. Output instructions required to
3094/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003095///
Dan Gohman882ab732008-09-30 00:58:23 +00003096unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3097 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3098 "X86-64 PIC uses RIP relative addressing");
3099
3100 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3101 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3102 if (GlobalBaseReg != 0)
3103 return GlobalBaseReg;
3104
Dan Gohmanb60482f2008-09-23 18:22:58 +00003105 // Insert the set of GlobalBaseReg into the first MBB of the function
3106 MachineBasicBlock &FirstMBB = MF->front();
3107 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003108 DebugLoc DL = DebugLoc::getUnknownLoc();
3109 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003110 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3111 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3112
3113 const TargetInstrInfo *TII = TM.getInstrInfo();
3114 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3115 // only used in JIT code emission as displacement to pc.
Bill Wendling13ee2e42009-02-11 21:51:19 +00003116 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3117 .addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003118
3119 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3120 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3121 if (TM.getRelocationModel() == Reloc::PIC_ &&
3122 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003123 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003124 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Bill Wendling13ee2e42009-02-11 21:51:19 +00003125 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Dan Gohmanb60482f2008-09-23 18:22:58 +00003126 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003127 } else {
3128 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003129 }
3130
Dan Gohman882ab732008-09-30 00:58:23 +00003131 X86FI->setGlobalBaseReg(GlobalBaseReg);
3132 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003133}