blob: c35d70077fe5f80b63d90887b266130affc01ca5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christophera1151bf2009-12-05 02:46:03 +00008 <meta name="description"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendlinge2753242009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner0fee5c22009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendlinge2753242009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000039 </ol>
40 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 <li><a href="#globalvars">Global Variables</a></li>
44 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Devang Patela4bb6792010-01-11 19:35:55 +000046 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel008cd3e2008-09-26 23:51:19 +000048 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000049 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
51 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman27b47012009-07-27 18:07:55 +000052 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 </ol>
54 </li>
55 <li><a href="#typesystem">Type System</a>
56 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000057 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christophera1151bf2009-12-05 02:46:03 +000058 <li><a href="#t_primitive">Primitive Types</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 <ol>
Nick Lewycky244cf482009-09-27 00:45:11 +000060 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner488772f2008-01-04 04:32:38 +000061 <li><a href="#t_floating">Floating Point Types</a></li>
62 <li><a href="#t_void">Void Type</a></li>
63 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky29aaef82009-05-30 05:06:04 +000064 <li><a href="#t_metadata">Metadata Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000065 </ol>
66 </li>
67 <li><a href="#t_derived">Derived Types</a>
68 <ol>
Chris Lattnerd5d51722010-02-12 20:49:41 +000069 <li><a href="#t_aggregate">Aggregate Types</a>
70 <ol>
71 <li><a href="#t_array">Array Type</a></li>
72 <li><a href="#t_struct">Structure Type</a></li>
73 <li><a href="#t_pstruct">Packed Structure Type</a></li>
74 <li><a href="#t_union">Union Type</a></li>
75 <li><a href="#t_vector">Vector Type</a></li>
76 </ol>
77 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 <li><a href="#t_function">Function Type</a></li>
79 <li><a href="#t_pointer">Pointer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 <li><a href="#t_opaque">Opaque Type</a></li>
81 </ol>
82 </li>
Chris Lattner515195a2009-02-02 07:32:36 +000083 <li><a href="#t_uprefs">Type Up-references</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084 </ol>
85 </li>
86 <li><a href="#constants">Constants</a>
87 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000088 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner97063852009-02-28 18:32:25 +000089 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000090 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
91 <li><a href="#undefvalues">Undefined Values</a></li>
Chris Lattner29246b52009-10-27 21:19:13 +000092 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000093 <li><a href="#constantexprs">Constant Expressions</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 </ol>
95 </li>
96 <li><a href="#othervalues">Other Values</a>
97 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000098 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Patela4bb6792010-01-11 19:35:55 +000099 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100 </ol>
101 </li>
Chris Lattner75c24e02009-07-20 05:55:19 +0000102 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
103 <ol>
104 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner1e0e0d12009-07-20 06:14:25 +0000105 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
106 Global Variable</a></li>
Chris Lattner75c24e02009-07-20 05:55:19 +0000107 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
108 Global Variable</a></li>
109 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
110 Global Variable</a></li>
111 </ol>
112 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113 <li><a href="#instref">Instruction Reference</a>
114 <ol>
115 <li><a href="#terminators">Terminator Instructions</a>
116 <ol>
117 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
118 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
119 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattner4c3800f2009-10-28 00:19:10 +0000120 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
122 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
123 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
124 </ol>
125 </li>
126 <li><a href="#binaryops">Binary Operations</a>
127 <ol>
128 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000129 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000131 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000133 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
135 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
136 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
137 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
138 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
139 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
140 </ol>
141 </li>
142 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
143 <ol>
144 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
145 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
146 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
147 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
148 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
149 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
150 </ol>
151 </li>
152 <li><a href="#vectorops">Vector Operations</a>
153 <ol>
154 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
155 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
156 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
157 </ol>
158 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000159 <li><a href="#aggregateops">Aggregate Operations</a>
160 <ol>
161 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
162 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
163 </ol>
164 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000165 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
166 <ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
168 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
169 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
170 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
171 </ol>
172 </li>
173 <li><a href="#convertops">Conversion Operations</a>
174 <ol>
175 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
176 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
178 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
179 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
180 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
182 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
183 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
184 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
185 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
186 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
187 </ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +0000188 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189 <li><a href="#otherops">Other Operations</a>
190 <ol>
191 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
192 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
193 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
194 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
195 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
196 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
197 </ol>
198 </li>
199 </ol>
200 </li>
201 <li><a href="#intrinsics">Intrinsic Functions</a>
202 <ol>
203 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
204 <ol>
205 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
206 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
207 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
208 </ol>
209 </li>
210 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
211 <ol>
212 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
213 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
214 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
215 </ol>
216 </li>
217 <li><a href="#int_codegen">Code Generator Intrinsics</a>
218 <ol>
219 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
220 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
221 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
222 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
223 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
224 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
225 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
226 </ol>
227 </li>
228 <li><a href="#int_libc">Standard C Library Intrinsics</a>
229 <ol>
230 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
232 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
233 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000235 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 </ol>
239 </li>
240 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
241 <ol>
242 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
243 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
244 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
245 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 </ol>
247 </li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000248 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
249 <ol>
Bill Wendling3e1258b2009-02-08 04:04:40 +0000250 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
251 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
252 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
253 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
254 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingbda98b62009-02-08 23:00:09 +0000255 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000256 </ol>
257 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258 <li><a href="#int_debugger">Debugger intrinsics</a></li>
259 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000260 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000261 <ol>
262 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000263 </ol>
264 </li>
Bill Wendling9127adb2008-11-18 22:10:53 +0000265 <li><a href="#int_atomics">Atomic intrinsics</a>
266 <ol>
267 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
268 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
269 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
270 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
271 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
272 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
273 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
274 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
275 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
276 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
277 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
278 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
279 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
280 </ol>
281 </li>
Nick Lewyckyc888d352009-10-13 07:03:23 +0000282 <li><a href="#int_memorymarkers">Memory Use Markers</a>
283 <ol>
284 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
285 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
286 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
287 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
288 </ol>
289 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000290 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000292 <li><a href="#int_var_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000293 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000294 <li><a href="#int_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000295 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000296 <li><a href="#int_trap">
Bill Wendlinge4164592008-11-19 05:56:17 +0000297 '<tt>llvm.trap</tt>' Intrinsic</a></li>
298 <li><a href="#int_stackprotector">
299 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher767a3722009-11-30 08:03:53 +0000300 <li><a href="#int_objectsize">
301 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000302 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303 </li>
304 </ol>
305 </li>
306</ol>
307
308<div class="doc_author">
309 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
310 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
311</div>
312
313<!-- *********************************************************************** -->
314<div class="doc_section"> <a name="abstract">Abstract </a></div>
315<!-- *********************************************************************** -->
316
317<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000318
319<p>This document is a reference manual for the LLVM assembly language. LLVM is
320 a Static Single Assignment (SSA) based representation that provides type
321 safety, low-level operations, flexibility, and the capability of representing
322 'all' high-level languages cleanly. It is the common code representation
323 used throughout all phases of the LLVM compilation strategy.</p>
324
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325</div>
326
327<!-- *********************************************************************** -->
328<div class="doc_section"> <a name="introduction">Introduction</a> </div>
329<!-- *********************************************************************** -->
330
331<div class="doc_text">
332
Bill Wendlingf85859d2009-07-20 02:29:24 +0000333<p>The LLVM code representation is designed to be used in three different forms:
334 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
335 for fast loading by a Just-In-Time compiler), and as a human readable
336 assembly language representation. This allows LLVM to provide a powerful
337 intermediate representation for efficient compiler transformations and
338 analysis, while providing a natural means to debug and visualize the
339 transformations. The three different forms of LLVM are all equivalent. This
340 document describes the human readable representation and notation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341
Bill Wendlingf85859d2009-07-20 02:29:24 +0000342<p>The LLVM representation aims to be light-weight and low-level while being
343 expressive, typed, and extensible at the same time. It aims to be a
344 "universal IR" of sorts, by being at a low enough level that high-level ideas
345 may be cleanly mapped to it (similar to how microprocessors are "universal
346 IR's", allowing many source languages to be mapped to them). By providing
347 type information, LLVM can be used as the target of optimizations: for
348 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling614b32b2009-11-02 00:24:16 +0000349 variable is never accessed outside of the current function, allowing it to
Bill Wendlingf85859d2009-07-20 02:29:24 +0000350 be promoted to a simple SSA value instead of a memory location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351
352</div>
353
354<!-- _______________________________________________________________________ -->
355<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
356
357<div class="doc_text">
358
Bill Wendlingf85859d2009-07-20 02:29:24 +0000359<p>It is important to note that this document describes 'well formed' LLVM
360 assembly language. There is a difference between what the parser accepts and
361 what is considered 'well formed'. For example, the following instruction is
362 syntactically okay, but not well formed:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363
364<div class="doc_code">
365<pre>
366%x = <a href="#i_add">add</a> i32 1, %x
367</pre>
368</div>
369
Bill Wendling614b32b2009-11-02 00:24:16 +0000370<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
371 LLVM infrastructure provides a verification pass that may be used to verify
372 that an LLVM module is well formed. This pass is automatically run by the
373 parser after parsing input assembly and by the optimizer before it outputs
374 bitcode. The violations pointed out by the verifier pass indicate bugs in
375 transformation passes or input to the parser.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000376
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377</div>
378
Chris Lattnera83fdc02007-10-03 17:34:29 +0000379<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380
381<!-- *********************************************************************** -->
382<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
383<!-- *********************************************************************** -->
384
385<div class="doc_text">
386
Bill Wendlingf85859d2009-07-20 02:29:24 +0000387<p>LLVM identifiers come in two basic types: global and local. Global
388 identifiers (functions, global variables) begin with the <tt>'@'</tt>
389 character. Local identifiers (register names, types) begin with
390 the <tt>'%'</tt> character. Additionally, there are three different formats
391 for identifiers, for different purposes:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392
393<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000394 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingf85859d2009-07-20 02:29:24 +0000395 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
396 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
397 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
398 other characters in their names can be surrounded with quotes. Special
399 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
400 ASCII code for the character in hexadecimal. In this way, any character
401 can be used in a name value, even quotes themselves.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402
Reid Spencerc8245b02007-08-07 14:34:28 +0000403 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingf85859d2009-07-20 02:29:24 +0000404 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405
406 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingf85859d2009-07-20 02:29:24 +0000407 constants</a>, below.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408</ol>
409
Reid Spencerc8245b02007-08-07 14:34:28 +0000410<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingf85859d2009-07-20 02:29:24 +0000411 don't need to worry about name clashes with reserved words, and the set of
412 reserved words may be expanded in the future without penalty. Additionally,
413 unnamed identifiers allow a compiler to quickly come up with a temporary
414 variable without having to avoid symbol table conflicts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415
416<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingf85859d2009-07-20 02:29:24 +0000417 languages. There are keywords for different opcodes
418 ('<tt><a href="#i_add">add</a></tt>',
419 '<tt><a href="#i_bitcast">bitcast</a></tt>',
420 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
421 ('<tt><a href="#t_void">void</a></tt>',
422 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
423 reserved words cannot conflict with variable names, because none of them
424 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425
426<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingf85859d2009-07-20 02:29:24 +0000427 '<tt>%X</tt>' by 8:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428
429<p>The easy way:</p>
430
431<div class="doc_code">
432<pre>
433%result = <a href="#i_mul">mul</a> i32 %X, 8
434</pre>
435</div>
436
437<p>After strength reduction:</p>
438
439<div class="doc_code">
440<pre>
441%result = <a href="#i_shl">shl</a> i32 %X, i8 3
442</pre>
443</div>
444
445<p>And the hard way:</p>
446
447<div class="doc_code">
448<pre>
Gabor Greifc0ea7672009-10-28 13:05:07 +0000449%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
450%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451%result = <a href="#i_add">add</a> i32 %1, %1
452</pre>
453</div>
454
Bill Wendlingf85859d2009-07-20 02:29:24 +0000455<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
456 lexical features of LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000457
458<ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000460 line.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461
462 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingf85859d2009-07-20 02:29:24 +0000463 assigned to a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464
465 <li>Unnamed temporaries are numbered sequentially</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466</ol>
467
Bill Wendling614b32b2009-11-02 00:24:16 +0000468<p>It also shows a convention that we follow in this document. When
Bill Wendlingf85859d2009-07-20 02:29:24 +0000469 demonstrating instructions, we will follow an instruction with a comment that
470 defines the type and name of value produced. Comments are shown in italic
471 text.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472
473</div>
474
475<!-- *********************************************************************** -->
476<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
477<!-- *********************************************************************** -->
478
479<!-- ======================================================================= -->
480<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
481</div>
482
483<div class="doc_text">
484
Bill Wendlingf85859d2009-07-20 02:29:24 +0000485<p>LLVM programs are composed of "Module"s, each of which is a translation unit
486 of the input programs. Each module consists of functions, global variables,
487 and symbol table entries. Modules may be combined together with the LLVM
488 linker, which merges function (and global variable) definitions, resolves
489 forward declarations, and merges symbol table entries. Here is an example of
490 the "hello world" module:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491
492<div class="doc_code">
Bill Wendling614b32b2009-11-02 00:24:16 +0000493<pre>
494<i>; Declare the string constant as a global constant.</i>
495<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000496
497<i>; External declaration of the puts function</i>
Bill Wendling614b32b2009-11-02 00:24:16 +0000498<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000499
500<i>; Definition of main function</i>
Bill Wendling614b32b2009-11-02 00:24:16 +0000501define i32 @main() { <i>; i32()* </i>
502 <i>; Convert [13 x i8]* to i8 *...</i>
503 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504
Bill Wendling614b32b2009-11-02 00:24:16 +0000505 <i>; Call puts function to write out the string to stdout.</i>
506 <a href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Devang Patela4bb6792010-01-11 19:35:55 +0000507 <a href="#i_ret">ret</a> i32 0<br>}
508
509<i>; Named metadata</i>
510!1 = metadata !{i32 41}
511!foo = !{!1, null}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512</pre>
513</div>
514
Bill Wendlingf85859d2009-07-20 02:29:24 +0000515<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Patela4bb6792010-01-11 19:35:55 +0000516 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingf85859d2009-07-20 02:29:24 +0000517 a <a href="#functionstructure">function definition</a> for
Devang Patela4bb6792010-01-11 19:35:55 +0000518 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
519 "<tt>foo"</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520
Bill Wendlingf85859d2009-07-20 02:29:24 +0000521<p>In general, a module is made up of a list of global values, where both
522 functions and global variables are global values. Global values are
523 represented by a pointer to a memory location (in this case, a pointer to an
524 array of char, and a pointer to a function), and have one of the
525 following <a href="#linkage">linkage types</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000526
527</div>
528
529<!-- ======================================================================= -->
530<div class="doc_subsection">
531 <a name="linkage">Linkage Types</a>
532</div>
533
534<div class="doc_text">
535
Bill Wendlingf85859d2009-07-20 02:29:24 +0000536<p>All Global Variables and Functions have one of the following types of
537 linkage:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538
539<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +0000540 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000541 <dd>Global values with private linkage are only directly accessible by objects
542 in the current module. In particular, linking code into a module with an
543 private global value may cause the private to be renamed as necessary to
544 avoid collisions. Because the symbol is private to the module, all
545 references can be updated. This doesn't show up in any symbol table in the
546 object file.</dd>
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000547
Bill Wendling614b32b2009-11-02 00:24:16 +0000548 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling41a07852009-07-20 01:03:30 +0000549 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattner06c1ecc2009-08-24 04:32:16 +0000550 removed by the linker after evaluation. Note that (unlike private
551 symbols) linker_private symbols are subject to coalescing by the linker:
552 weak symbols get merged and redefinitions are rejected. However, unlike
553 normal strong symbols, they are removed by the linker from the final
554 linked image (executable or dynamic library).</dd>
Bill Wendling41a07852009-07-20 01:03:30 +0000555
Bill Wendling614b32b2009-11-02 00:24:16 +0000556 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000557 <dd>Similar to private, but the value shows as a local symbol
558 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
559 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560
Bill Wendling614b32b2009-11-02 00:24:16 +0000561 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner68433442009-04-13 05:44:34 +0000562 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingf85859d2009-07-20 02:29:24 +0000563 into the object file corresponding to the LLVM module. They exist to
564 allow inlining and other optimizations to take place given knowledge of
565 the definition of the global, which is known to be somewhere outside the
566 module. Globals with <tt>available_externally</tt> linkage are allowed to
567 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
568 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner68433442009-04-13 05:44:34 +0000569
Bill Wendling614b32b2009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattnerd16c5512010-01-09 19:15:14 +0000572 the same name when linkage occurs. This can be used to implement
573 some forms of inline functions, templates, or other code which must be
574 generated in each translation unit that uses it, but where the body may
575 be overridden with a more definitive definition later. Unreferenced
576 <tt>linkonce</tt> globals are allowed to be discarded. Note that
577 <tt>linkonce</tt> linkage does not actually allow the optimizer to
578 inline the body of this function into callers because it doesn't know if
579 this definition of the function is the definitive definition within the
580 program or whether it will be overridden by a stronger definition.
581 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
582 linkage.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583
Bill Wendling614b32b2009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000585 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
586 <tt>linkonce</tt> linkage, except that unreferenced globals with
587 <tt>weak</tt> linkage may not be discarded. This is used for globals that
588 are declared "weak" in C source code.</dd>
589
Bill Wendling614b32b2009-11-02 00:24:16 +0000590 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000591 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
592 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
593 global scope.
594 Symbols with "<tt>common</tt>" linkage are merged in the same way as
595 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner83c4a712009-08-05 05:41:44 +0000596 <tt>common</tt> symbols may not have an explicit section,
Eric Christophera1151bf2009-12-05 02:46:03 +0000597 must have a zero initializer, and may not be marked '<a
Chris Lattner83c4a712009-08-05 05:41:44 +0000598 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
599 have common linkage.</dd>
Chris Lattner7215c7f2009-08-05 05:21:07 +0000600
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000601
Bill Wendling614b32b2009-11-02 00:24:16 +0000602 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000603 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000604 pointer to array type. When two global variables with appending linkage
605 are linked together, the two global arrays are appended together. This is
606 the LLVM, typesafe, equivalent of having the system linker append together
607 "sections" with identical names when .o files are linked.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608
Bill Wendling614b32b2009-11-02 00:24:16 +0000609 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000610 <dd>The semantics of this linkage follow the ELF object file model: the symbol
611 is weak until linked, if not linked, the symbol becomes null instead of
612 being an undefined reference.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613
Bill Wendling614b32b2009-11-02 00:24:16 +0000614 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
615 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000616 <dd>Some languages allow differing globals to be merged, such as two functions
617 with different semantics. Other languages, such as <tt>C++</tt>, ensure
618 that only equivalent globals are ever merged (the "one definition rule" -
619 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
620 and <tt>weak_odr</tt> linkage types to indicate that the global will only
621 be merged with equivalent globals. These linkage types are otherwise the
622 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands19d161f2009-03-07 15:45:40 +0000623
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000625 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingf85859d2009-07-20 02:29:24 +0000626 visible, meaning that it participates in linkage and can be used to
627 resolve external symbol references.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628</dl>
629
Bill Wendlingf85859d2009-07-20 02:29:24 +0000630<p>The next two types of linkage are targeted for Microsoft Windows platform
631 only. They are designed to support importing (exporting) symbols from (to)
632 DLLs (Dynamic Link Libraries).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633
Bill Wendlingf85859d2009-07-20 02:29:24 +0000634<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +0000635 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingf85859d2009-07-20 02:29:24 +0000637 or variable via a global pointer to a pointer that is set up by the DLL
638 exporting the symbol. On Microsoft Windows targets, the pointer name is
639 formed by combining <code>__imp_</code> and the function or variable
640 name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641
Bill Wendling614b32b2009-11-02 00:24:16 +0000642 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingf85859d2009-07-20 02:29:24 +0000644 pointer to a pointer in a DLL, so that it can be referenced with the
645 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
646 name is formed by combining <code>__imp_</code> and the function or
647 variable name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648</dl>
649
Bill Wendlingf85859d2009-07-20 02:29:24 +0000650<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
651 another module defined a "<tt>.LC0</tt>" variable and was linked with this
652 one, one of the two would be renamed, preventing a collision. Since
653 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
654 declarations), they are accessible outside of the current module.</p>
655
656<p>It is illegal for a function <i>declaration</i> to have any linkage type
657 other than "externally visible", <tt>dllimport</tt>
658 or <tt>extern_weak</tt>.</p>
659
Duncan Sands19d161f2009-03-07 15:45:40 +0000660<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000661 or <tt>weak_odr</tt> linkages.</p>
662
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663</div>
664
665<!-- ======================================================================= -->
666<div class="doc_subsection">
667 <a name="callingconv">Calling Conventions</a>
668</div>
669
670<div class="doc_text">
671
672<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000673 and <a href="#i_invoke">invokes</a> can all have an optional calling
674 convention specified for the call. The calling convention of any pair of
675 dynamic caller/callee must match, or the behavior of the program is
676 undefined. The following calling conventions are supported by LLVM, and more
677 may be added in the future:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678
679<dl>
680 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingf85859d2009-07-20 02:29:24 +0000682 specified) matches the target C calling conventions. This calling
683 convention supports varargs function calls and tolerates some mismatch in
684 the declared prototype and implemented declaration of the function (as
685 does normal C).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686
687 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingf85859d2009-07-20 02:29:24 +0000689 (e.g. by passing things in registers). This calling convention allows the
690 target to use whatever tricks it wants to produce fast code for the
691 target, without having to conform to an externally specified ABI
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +0000692 (Application Binary Interface).
693 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
694 when this convention is used.</a> This calling convention does not
Bill Wendlingf85859d2009-07-20 02:29:24 +0000695 support varargs and requires the prototype of all callees to exactly match
696 the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697
698 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingf85859d2009-07-20 02:29:24 +0000700 as possible under the assumption that the call is not commonly executed.
701 As such, these calls often preserve all registers so that the call does
702 not break any live ranges in the caller side. This calling convention
703 does not support varargs and requires the prototype of all callees to
704 exactly match the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705
706 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingf85859d2009-07-20 02:29:24 +0000708 target-specific calling conventions to be used. Target specific calling
709 conventions start at 64.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710</dl>
711
712<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingf85859d2009-07-20 02:29:24 +0000713 support Pascal conventions or any other well-known target-independent
714 convention.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715
716</div>
717
718<!-- ======================================================================= -->
719<div class="doc_subsection">
720 <a name="visibility">Visibility Styles</a>
721</div>
722
723<div class="doc_text">
724
Bill Wendlingf85859d2009-07-20 02:29:24 +0000725<p>All Global Variables and Functions have one of the following visibility
726 styles:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727
728<dl>
729 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner96451482008-08-05 18:29:16 +0000730 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingf85859d2009-07-20 02:29:24 +0000731 that the declaration is visible to other modules and, in shared libraries,
732 means that the declared entity may be overridden. On Darwin, default
733 visibility means that the declaration is visible to other modules. Default
734 visibility corresponds to "external linkage" in the language.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735
736 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingf85859d2009-07-20 02:29:24 +0000738 object if they are in the same shared object. Usually, hidden visibility
739 indicates that the symbol will not be placed into the dynamic symbol
740 table, so no other module (executable or shared library) can reference it
741 directly.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742
743 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingf85859d2009-07-20 02:29:24 +0000745 the dynamic symbol table, but that references within the defining module
746 will bind to the local symbol. That is, the symbol cannot be overridden by
747 another module.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748</dl>
749
750</div>
751
752<!-- ======================================================================= -->
753<div class="doc_subsection">
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000754 <a name="namedtypes">Named Types</a>
755</div>
756
757<div class="doc_text">
758
759<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingf85859d2009-07-20 02:29:24 +0000760 it easier to read the IR and make the IR more condensed (particularly when
761 recursive types are involved). An example of a name specification is:</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000762
763<div class="doc_code">
764<pre>
765%mytype = type { %mytype*, i32 }
766</pre>
767</div>
768
Bill Wendlingf85859d2009-07-20 02:29:24 +0000769<p>You may give a name to any <a href="#typesystem">type</a> except
770 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
771 is expected with the syntax "%mytype".</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000772
773<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingf85859d2009-07-20 02:29:24 +0000774 and that you can therefore specify multiple names for the same type. This
775 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
776 uses structural typing, the name is not part of the type. When printing out
777 LLVM IR, the printer will pick <em>one name</em> to render all types of a
778 particular shape. This means that if you have code where two different
779 source types end up having the same LLVM type, that the dumper will sometimes
780 print the "wrong" or unexpected type. This is an important design point and
781 isn't going to change.</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000782
783</div>
784
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000785<!-- ======================================================================= -->
786<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 <a name="globalvars">Global Variables</a>
788</div>
789
790<div class="doc_text">
791
792<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingf85859d2009-07-20 02:29:24 +0000793 instead of run-time. Global variables may optionally be initialized, may
794 have an explicit section to be placed in, and may have an optional explicit
795 alignment specified. A variable may be defined as "thread_local", which
796 means that it will not be shared by threads (each thread will have a
797 separated copy of the variable). A variable may be defined as a global
798 "constant," which indicates that the contents of the variable
799 will <b>never</b> be modified (enabling better optimization, allowing the
800 global data to be placed in the read-only section of an executable, etc).
801 Note that variables that need runtime initialization cannot be marked
802 "constant" as there is a store to the variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803
Bill Wendlingf85859d2009-07-20 02:29:24 +0000804<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
805 constant, even if the final definition of the global is not. This capability
806 can be used to enable slightly better optimization of the program, but
807 requires the language definition to guarantee that optimizations based on the
808 'constantness' are valid for the translation units that do not include the
809 definition.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000810
Bill Wendlingf85859d2009-07-20 02:29:24 +0000811<p>As SSA values, global variables define pointer values that are in scope
812 (i.e. they dominate) all basic blocks in the program. Global variables
813 always define a pointer to their "content" type because they describe a
814 region of memory, and all memory objects in LLVM are accessed through
815 pointers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816
Bill Wendlingf85859d2009-07-20 02:29:24 +0000817<p>A global variable may be declared to reside in a target-specific numbered
818 address space. For targets that support them, address spaces may affect how
819 optimizations are performed and/or what target instructions are used to
820 access the variable. The default address space is zero. The address space
821 qualifier must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000822
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000824 supports it, it will emit globals to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825
826<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000827 the alignment is set to zero, the alignment of the global is set by the
828 target to whatever it feels convenient. If an explicit alignment is
829 specified, the global is forced to have at least that much alignment. All
830 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831
Bill Wendlingf85859d2009-07-20 02:29:24 +0000832<p>For example, the following defines a global in a numbered address space with
833 an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834
835<div class="doc_code">
836<pre>
Dan Gohman21ef02c2009-01-11 00:40:00 +0000837@G = addrspace(5) constant float 1.0, section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838</pre>
839</div>
840
841</div>
842
843
844<!-- ======================================================================= -->
845<div class="doc_subsection">
846 <a name="functionstructure">Functions</a>
847</div>
848
849<div class="doc_text">
850
Bill Wendlingf85859d2009-07-20 02:29:24 +0000851<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
852 optional <a href="#linkage">linkage type</a>, an optional
853 <a href="#visibility">visibility style</a>, an optional
854 <a href="#callingconv">calling convention</a>, a return type, an optional
855 <a href="#paramattrs">parameter attribute</a> for the return type, a function
856 name, a (possibly empty) argument list (each with optional
857 <a href="#paramattrs">parameter attributes</a>), optional
858 <a href="#fnattrs">function attributes</a>, an optional section, an optional
859 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
860 curly brace, a list of basic blocks, and a closing curly brace.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000861
Bill Wendlingf85859d2009-07-20 02:29:24 +0000862<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
863 optional <a href="#linkage">linkage type</a>, an optional
Eric Christophera1151bf2009-12-05 02:46:03 +0000864 <a href="#visibility">visibility style</a>, an optional
Bill Wendlingf85859d2009-07-20 02:29:24 +0000865 <a href="#callingconv">calling convention</a>, a return type, an optional
866 <a href="#paramattrs">parameter attribute</a> for the return type, a function
867 name, a possibly empty list of arguments, an optional alignment, and an
868 optional <a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869
Chris Lattner96451482008-08-05 18:29:16 +0000870<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingf85859d2009-07-20 02:29:24 +0000871 (Control Flow Graph) for the function. Each basic block may optionally start
872 with a label (giving the basic block a symbol table entry), contains a list
873 of instructions, and ends with a <a href="#terminators">terminator</a>
874 instruction (such as a branch or function return).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875
876<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingf85859d2009-07-20 02:29:24 +0000877 executed on entrance to the function, and it is not allowed to have
878 predecessor basic blocks (i.e. there can not be any branches to the entry
879 block of a function). Because the block can have no predecessors, it also
880 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881
882<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000883 supports it, it will emit functions to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884
885<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000886 the alignment is set to zero, the alignment of the function is set by the
887 target to whatever it feels convenient. If an explicit alignment is
888 specified, the function is forced to have at least that much alignment. All
889 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890
Bill Wendling6ec40612009-07-20 02:39:26 +0000891<h5>Syntax:</h5>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000892<div class="doc_code">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000893<pre>
Chris Lattner1e5c5cd02008-10-13 16:55:18 +0000894define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingf85859d2009-07-20 02:29:24 +0000895 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
896 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
897 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
898 [<a href="#gc">gc</a>] { ... }
899</pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000900</div>
901
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902</div>
903
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904<!-- ======================================================================= -->
905<div class="doc_subsection">
906 <a name="aliasstructure">Aliases</a>
907</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000908
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000910
911<p>Aliases act as "second name" for the aliasee value (which can be either
912 function, global variable, another alias or bitcast of global value). Aliases
913 may have an optional <a href="#linkage">linkage type</a>, and an
914 optional <a href="#visibility">visibility style</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000915
Bill Wendling6ec40612009-07-20 02:39:26 +0000916<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917<div class="doc_code">
918<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000919@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000920</pre>
921</div>
922
923</div>
924
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925<!-- ======================================================================= -->
Devang Patela4bb6792010-01-11 19:35:55 +0000926<div class="doc_subsection">
927 <a name="namedmetadatastructure">Named Metadata</a>
928</div>
929
930<div class="doc_text">
931
Chris Lattnerd0d96292010-01-15 21:50:19 +0000932<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
933 nodes</a> (but not metadata strings) and null are the only valid operands for
934 a named metadata.</p>
Devang Patela4bb6792010-01-11 19:35:55 +0000935
936<h5>Syntax:</h5>
937<div class="doc_code">
938<pre>
939!1 = metadata !{metadata !"one"}
940!name = !{null, !1}
941</pre>
942</div>
943
944</div>
945
946<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948
Bill Wendlingf85859d2009-07-20 02:29:24 +0000949<div class="doc_text">
950
951<p>The return type and each parameter of a function type may have a set of
952 <i>parameter attributes</i> associated with them. Parameter attributes are
953 used to communicate additional information about the result or parameters of
954 a function. Parameter attributes are considered to be part of the function,
955 not of the function type, so functions with different parameter attributes
956 can have the same function type.</p>
957
958<p>Parameter attributes are simple keywords that follow the type specified. If
959 multiple parameter attributes are needed, they are space separated. For
960 example:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961
962<div class="doc_code">
963<pre>
Nick Lewycky3022a742009-02-15 23:06:14 +0000964declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerf33b8452008-10-04 18:33:34 +0000965declare i32 @atoi(i8 zeroext)
966declare signext i8 @returns_signed_char()
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967</pre>
968</div>
969
Bill Wendlingf85859d2009-07-20 02:29:24 +0000970<p>Note that any attributes for the function result (<tt>nounwind</tt>,
971 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972
Bill Wendlingf85859d2009-07-20 02:29:24 +0000973<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner275e6be2008-01-11 06:20:47 +0000974
Bill Wendlingf85859d2009-07-20 02:29:24 +0000975<dl>
Bill Wendling614b32b2009-11-02 00:24:16 +0000976 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000977 <dd>This indicates to the code generator that the parameter or return value
978 should be zero-extended to a 32-bit value by the caller (for a parameter)
979 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000980
Bill Wendling614b32b2009-11-02 00:24:16 +0000981 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000982 <dd>This indicates to the code generator that the parameter or return value
983 should be sign-extended to a 32-bit value by the caller (for a parameter)
984 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000985
Bill Wendling614b32b2009-11-02 00:24:16 +0000986 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000987 <dd>This indicates that this parameter or return value should be treated in a
988 special target-dependent fashion during while emitting code for a function
989 call or return (usually, by putting it in a register as opposed to memory,
990 though some targets use it to distinguish between two different kinds of
991 registers). Use of this attribute is target-specific.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000992
Bill Wendling614b32b2009-11-02 00:24:16 +0000993 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000994 <dd>This indicates that the pointer parameter should really be passed by value
995 to the function. The attribute implies that a hidden copy of the pointee
996 is made between the caller and the callee, so the callee is unable to
997 modify the value in the callee. This attribute is only valid on LLVM
998 pointer arguments. It is generally used to pass structs and arrays by
999 value, but is also valid on pointers to scalars. The copy is considered
1000 to belong to the caller not the callee (for example,
1001 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1002 <tt>byval</tt> parameters). This is not a valid attribute for return
1003 values. The byval attribute also supports specifying an alignment with
1004 the align attribute. This has a target-specific effect on the code
1005 generator that usually indicates a desired alignment for the synthesized
1006 stack slot.</dd>
1007
Bill Wendling614b32b2009-11-02 00:24:16 +00001008 <dt><tt><b>sret</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001009 <dd>This indicates that the pointer parameter specifies the address of a
1010 structure that is the return value of the function in the source program.
1011 This pointer must be guaranteed by the caller to be valid: loads and
1012 stores to the structure may be assumed by the callee to not to trap. This
1013 may only be applied to the first parameter. This is not a valid attribute
1014 for return values. </dd>
1015
Bill Wendling614b32b2009-11-02 00:24:16 +00001016 <dt><tt><b>noalias</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001017 <dd>This indicates that the pointer does not alias any global or any other
1018 parameter. The caller is responsible for ensuring that this is the
1019 case. On a function return value, <tt>noalias</tt> additionally indicates
1020 that the pointer does not alias any other pointers visible to the
1021 caller. For further details, please see the discussion of the NoAlias
1022 response in
1023 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
1024 analysis</a>.</dd>
1025
Bill Wendling614b32b2009-11-02 00:24:16 +00001026 <dt><tt><b>nocapture</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001027 <dd>This indicates that the callee does not make any copies of the pointer
1028 that outlive the callee itself. This is not a valid attribute for return
1029 values.</dd>
1030
Bill Wendling614b32b2009-11-02 00:24:16 +00001031 <dt><tt><b>nest</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001032 <dd>This indicates that the pointer parameter can be excised using the
1033 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1034 attribute for return values.</dd>
1035</dl>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036
1037</div>
1038
1039<!-- ======================================================================= -->
1040<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001041 <a name="gc">Garbage Collector Names</a>
1042</div>
1043
1044<div class="doc_text">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001045
Bill Wendlingf85859d2009-07-20 02:29:24 +00001046<p>Each function may specify a garbage collector name, which is simply a
1047 string:</p>
1048
1049<div class="doc_code">
1050<pre>
Bill Wendling614b32b2009-11-02 00:24:16 +00001051define void @f() gc "name" { ... }
Bill Wendlingf85859d2009-07-20 02:29:24 +00001052</pre>
1053</div>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001054
1055<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001056 collector which will cause the compiler to alter its output in order to
1057 support the named garbage collection algorithm.</p>
1058
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001059</div>
1060
1061<!-- ======================================================================= -->
1062<div class="doc_subsection">
Devang Patel008cd3e2008-09-26 23:51:19 +00001063 <a name="fnattrs">Function Attributes</a>
Devang Pateld468f1c2008-09-04 23:05:13 +00001064</div>
1065
1066<div class="doc_text">
Devang Patel008cd3e2008-09-26 23:51:19 +00001067
Bill Wendlingf85859d2009-07-20 02:29:24 +00001068<p>Function attributes are set to communicate additional information about a
1069 function. Function attributes are considered to be part of the function, not
1070 of the function type, so functions with different parameter attributes can
1071 have the same function type.</p>
Devang Patel008cd3e2008-09-26 23:51:19 +00001072
Bill Wendlingf85859d2009-07-20 02:29:24 +00001073<p>Function attributes are simple keywords that follow the type specified. If
1074 multiple attributes are needed, they are space separated. For example:</p>
Devang Pateld468f1c2008-09-04 23:05:13 +00001075
1076<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001077<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +00001078define void @f() noinline { ... }
1079define void @f() alwaysinline { ... }
1080define void @f() alwaysinline optsize { ... }
Bill Wendling614b32b2009-11-02 00:24:16 +00001081define void @f() optsize { ... }
Bill Wendling74d3eac2008-09-07 10:26:33 +00001082</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +00001083</div>
1084
Bill Wendling74d3eac2008-09-07 10:26:33 +00001085<dl>
Charles Davisfaa8f752010-02-12 00:31:15 +00001086 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1087 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1088 the backend should forcibly align the stack pointer. Specify the
1089 desired alignment, which must be a power of two, in parentheses.
1090
Bill Wendling614b32b2009-11-02 00:24:16 +00001091 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001092 <dd>This attribute indicates that the inliner should attempt to inline this
1093 function into callers whenever possible, ignoring any active inlining size
1094 threshold for this caller.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001095
Jakob Stoklund Olesen77180732010-02-06 01:16:28 +00001096 <dt><tt><b>inlinehint</b></tt></dt>
1097 <dd>This attribute indicates that the source code contained a hint that inlining
1098 this function is desirable (such as the "inline" keyword in C/C++). It
1099 is just a hint; it imposes no requirements on the inliner.</dd>
1100
Bill Wendling614b32b2009-11-02 00:24:16 +00001101 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001102 <dd>This attribute indicates that the inliner should never inline this
1103 function in any situation. This attribute may not be used together with
1104 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001105
Bill Wendling614b32b2009-11-02 00:24:16 +00001106 <dt><tt><b>optsize</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001107 <dd>This attribute suggests that optimization passes and code generator passes
1108 make choices that keep the code size of this function low, and otherwise
1109 do optimizations specifically to reduce code size.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001110
Bill Wendling614b32b2009-11-02 00:24:16 +00001111 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001112 <dd>This function attribute indicates that the function never returns
1113 normally. This produces undefined behavior at runtime if the function
1114 ever does dynamically return.</dd>
Bill Wendlingdfaabba2008-11-13 01:02:51 +00001115
Bill Wendling614b32b2009-11-02 00:24:16 +00001116 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001117 <dd>This function attribute indicates that the function never returns with an
1118 unwind or exceptional control flow. If the function does unwind, its
1119 runtime behavior is undefined.</dd>
Bill Wendlingbe9ec3f2008-11-26 19:07:40 +00001120
Bill Wendling614b32b2009-11-02 00:24:16 +00001121 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001122 <dd>This attribute indicates that the function computes its result (or decides
1123 to unwind an exception) based strictly on its arguments, without
1124 dereferencing any pointer arguments or otherwise accessing any mutable
1125 state (e.g. memory, control registers, etc) visible to caller functions.
1126 It does not write through any pointer arguments
1127 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1128 changes any state visible to callers. This means that it cannot unwind
1129 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1130 could use the <tt>unwind</tt> instruction.</dd>
Devang Patela2f9f412009-06-12 19:45:19 +00001131
Bill Wendling614b32b2009-11-02 00:24:16 +00001132 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001133 <dd>This attribute indicates that the function does not write through any
1134 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1135 arguments) or otherwise modify any state (e.g. memory, control registers,
1136 etc) visible to caller functions. It may dereference pointer arguments
1137 and read state that may be set in the caller. A readonly function always
1138 returns the same value (or unwinds an exception identically) when called
1139 with the same set of arguments and global state. It cannot unwind an
1140 exception by calling the <tt>C++</tt> exception throwing methods, but may
1141 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovedd7d112009-07-17 18:07:26 +00001142
Bill Wendling614b32b2009-11-02 00:24:16 +00001143 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001144 <dd>This attribute indicates that the function should emit a stack smashing
1145 protector. It is in the form of a "canary"&mdash;a random value placed on
1146 the stack before the local variables that's checked upon return from the
1147 function to see if it has been overwritten. A heuristic is used to
1148 determine if a function needs stack protectors or not.<br>
1149<br>
1150 If a function that has an <tt>ssp</tt> attribute is inlined into a
1151 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1152 function will have an <tt>ssp</tt> attribute.</dd>
1153
Bill Wendling614b32b2009-11-02 00:24:16 +00001154 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001155 <dd>This attribute indicates that the function should <em>always</em> emit a
1156 stack smashing protector. This overrides
Bill Wendling6ec40612009-07-20 02:39:26 +00001157 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1158<br>
1159 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1160 function that doesn't have an <tt>sspreq</tt> attribute or which has
1161 an <tt>ssp</tt> attribute, then the resulting function will have
1162 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001163
Bill Wendling614b32b2009-11-02 00:24:16 +00001164 <dt><tt><b>noredzone</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001165 <dd>This attribute indicates that the code generator should not use a red
1166 zone, even if the target-specific ABI normally permits it.</dd>
1167
Bill Wendling614b32b2009-11-02 00:24:16 +00001168 <dt><tt><b>noimplicitfloat</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001169 <dd>This attributes disables implicit floating point instructions.</dd>
1170
Bill Wendling614b32b2009-11-02 00:24:16 +00001171 <dt><tt><b>naked</b></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001172 <dd>This attribute disables prologue / epilogue emission for the function.
1173 This can have very system-specific consequences.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001174</dl>
1175
Devang Pateld468f1c2008-09-04 23:05:13 +00001176</div>
1177
1178<!-- ======================================================================= -->
1179<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 <a name="moduleasm">Module-Level Inline Assembly</a>
1181</div>
1182
1183<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001184
1185<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1186 the GCC "file scope inline asm" blocks. These blocks are internally
1187 concatenated by LLVM and treated as a single unit, but may be separated in
1188 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001189
1190<div class="doc_code">
1191<pre>
1192module asm "inline asm code goes here"
1193module asm "more can go here"
1194</pre>
1195</div>
1196
1197<p>The strings can contain any character by escaping non-printable characters.
1198 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingf85859d2009-07-20 02:29:24 +00001199 for the number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001200
Bill Wendlingf85859d2009-07-20 02:29:24 +00001201<p>The inline asm code is simply printed to the machine code .s file when
1202 assembly code is generated.</p>
1203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204</div>
1205
1206<!-- ======================================================================= -->
1207<div class="doc_subsection">
1208 <a name="datalayout">Data Layout</a>
1209</div>
1210
1211<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001212
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingf85859d2009-07-20 02:29:24 +00001214 data is to be laid out in memory. The syntax for the data layout is
1215 simply:</p>
1216
1217<div class="doc_code">
1218<pre>
1219target datalayout = "<i>layout specification</i>"
1220</pre>
1221</div>
1222
1223<p>The <i>layout specification</i> consists of a list of specifications
1224 separated by the minus sign character ('-'). Each specification starts with
1225 a letter and may include other information after the letter to define some
1226 aspect of the data layout. The specifications accepted are as follows:</p>
1227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001228<dl>
1229 <dt><tt>E</tt></dt>
1230 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001231 bits with the most significance have the lowest address location.</dd>
1232
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001233 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001234 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingf85859d2009-07-20 02:29:24 +00001235 the bits with the least significance have the lowest address
1236 location.</dd>
1237
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001239 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingf85859d2009-07-20 02:29:24 +00001240 <i>preferred</i> alignments. All sizes are in bits. Specifying
1241 the <i>pref</i> alignment is optional. If omitted, the
1242 preceding <tt>:</tt> should be omitted too.</dd>
1243
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1245 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001246 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001249 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001250 <i>size</i>.</dd>
1251
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christophera1151bf2009-12-05 02:46:03 +00001253 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001254 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1255 (double).</dd>
1256
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1258 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001259 <i>size</i>.</dd>
1260
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001261 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1262 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001263 <i>size</i>.</dd>
Chris Lattnerece41802009-11-07 09:35:34 +00001264
1265 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1266 <dd>This specifies a set of native integer widths for the target CPU
1267 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1268 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christophera1151bf2009-12-05 02:46:03 +00001269 this set are considered to support most general arithmetic
Chris Lattnerece41802009-11-07 09:35:34 +00001270 operations efficiently.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001272
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001273<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001274 default set of specifications which are then (possibly) overriden by the
1275 specifications in the <tt>datalayout</tt> keyword. The default specifications
1276 are given in this list:</p>
1277
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278<ul>
1279 <li><tt>E</tt> - big endian</li>
Dan Gohmane78194f2010-02-23 02:44:03 +00001280 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1282 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1283 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1284 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001285 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001286 alignment of 64-bits</li>
1287 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1288 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1289 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1290 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1291 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001292 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293</ul>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001294
1295<p>When LLVM is determining the alignment for a given type, it uses the
1296 following rules:</p>
1297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298<ol>
1299 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingf85859d2009-07-20 02:29:24 +00001300 specification is used.</li>
1301
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001302 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001303 smallest integer type that is larger than the bitwidth of the sought type
1304 is used. If none of the specifications are larger than the bitwidth then
1305 the the largest integer type is used. For example, given the default
1306 specifications above, the i7 type will use the alignment of i8 (next
1307 largest) while both i65 and i256 will use the alignment of i64 (largest
1308 specified).</li>
1309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001310 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001311 largest vector type that is smaller than the sought vector type will be
1312 used as a fall back. This happens because &lt;128 x double&gt; can be
1313 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001315
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001316</div>
1317
Dan Gohman27b47012009-07-27 18:07:55 +00001318<!-- ======================================================================= -->
1319<div class="doc_subsection">
1320 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1321</div>
1322
1323<div class="doc_text">
1324
Andreas Bolka11fbf432009-07-29 00:02:05 +00001325<p>Any memory access must be done through a pointer value associated
Andreas Bolka23bece42009-07-27 20:37:10 +00001326with an address range of the memory access, otherwise the behavior
Dan Gohman27b47012009-07-27 18:07:55 +00001327is undefined. Pointer values are associated with address ranges
1328according to the following rules:</p>
1329
1330<ul>
Andreas Bolka11fbf432009-07-29 00:02:05 +00001331 <li>A pointer value formed from a
1332 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1333 is associated with the addresses associated with the first operand
1334 of the <tt>getelementptr</tt>.</li>
1335 <li>An address of a global variable is associated with the address
Dan Gohman27b47012009-07-27 18:07:55 +00001336 range of the variable's storage.</li>
1337 <li>The result value of an allocation instruction is associated with
1338 the address range of the allocated storage.</li>
1339 <li>A null pointer in the default address-space is associated with
Andreas Bolka11fbf432009-07-29 00:02:05 +00001340 no address.</li>
1341 <li>A pointer value formed by an
1342 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1343 address ranges of all pointer values that contribute (directly or
1344 indirectly) to the computation of the pointer's value.</li>
1345 <li>The result value of a
1346 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman27b47012009-07-27 18:07:55 +00001347 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1348 <li>An integer constant other than zero or a pointer value returned
1349 from a function not defined within LLVM may be associated with address
1350 ranges allocated through mechanisms other than those provided by
Andreas Bolka11fbf432009-07-29 00:02:05 +00001351 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman27b47012009-07-27 18:07:55 +00001352 allocated by mechanisms provided by LLVM.</li>
1353 </ul>
1354
1355<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka11fbf432009-07-29 00:02:05 +00001356<tt><a href="#i_load">load</a></tt> merely indicates the size and
1357alignment of the memory from which to load, as well as the
1358interpretation of the value. The first operand of a
1359<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1360and alignment of the store.</p>
Dan Gohman27b47012009-07-27 18:07:55 +00001361
1362<p>Consequently, type-based alias analysis, aka TBAA, aka
1363<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1364LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1365additional information which specialized optimization passes may use
1366to implement type-based alias analysis.</p>
1367
1368</div>
1369
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001370<!-- *********************************************************************** -->
1371<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1372<!-- *********************************************************************** -->
1373
1374<div class="doc_text">
1375
1376<p>The LLVM type system is one of the most important features of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001377 intermediate representation. Being typed enables a number of optimizations
1378 to be performed on the intermediate representation directly, without having
1379 to do extra analyses on the side before the transformation. A strong type
1380 system makes it easier to read the generated code and enables novel analyses
1381 and transformations that are not feasible to perform on normal three address
1382 code representations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383
1384</div>
1385
1386<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001387<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001388Classifications</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001389
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001391
1392<p>The types fall into a few useful classifications:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001393
1394<table border="1" cellspacing="0" cellpadding="4">
1395 <tbody>
1396 <tr><th>Classification</th><th>Types</th></tr>
1397 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001398 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001399 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1400 </tr>
1401 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001402 <td><a href="#t_floating">floating point</a></td>
1403 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001404 </tr>
1405 <tr>
1406 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001407 <td><a href="#t_integer">integer</a>,
1408 <a href="#t_floating">floating point</a>,
1409 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001410 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001411 <a href="#t_struct">structure</a>,
Chris Lattnerd5d51722010-02-12 20:49:41 +00001412 <a href="#t_union">union</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001413 <a href="#t_array">array</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001414 <a href="#t_label">label</a>,
1415 <a href="#t_metadata">metadata</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001416 </td>
1417 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001418 <tr>
1419 <td><a href="#t_primitive">primitive</a></td>
1420 <td><a href="#t_label">label</a>,
1421 <a href="#t_void">void</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001422 <a href="#t_floating">floating point</a>,
1423 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner488772f2008-01-04 04:32:38 +00001424 </tr>
1425 <tr>
1426 <td><a href="#t_derived">derived</a></td>
Chris Lattnerd5d51722010-02-12 20:49:41 +00001427 <td><a href="#t_array">array</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001428 <a href="#t_function">function</a>,
1429 <a href="#t_pointer">pointer</a>,
1430 <a href="#t_struct">structure</a>,
1431 <a href="#t_pstruct">packed structure</a>,
Chris Lattnerd5d51722010-02-12 20:49:41 +00001432 <a href="#t_union">union</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001433 <a href="#t_vector">vector</a>,
1434 <a href="#t_opaque">opaque</a>.
Dan Gohman032ba852008-10-14 16:32:04 +00001435 </td>
Chris Lattner488772f2008-01-04 04:32:38 +00001436 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001437 </tbody>
1438</table>
1439
Bill Wendlingf85859d2009-07-20 02:29:24 +00001440<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1441 important. Values of these types are the only ones which can be produced by
Nick Lewycky244cf482009-09-27 00:45:11 +00001442 instructions.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001443
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444</div>
1445
1446<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001447<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001448
Chris Lattner488772f2008-01-04 04:32:38 +00001449<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001450
Chris Lattner488772f2008-01-04 04:32:38 +00001451<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingf85859d2009-07-20 02:29:24 +00001452 system.</p>
Chris Lattner488772f2008-01-04 04:32:38 +00001453
Chris Lattner86437612008-01-04 04:34:14 +00001454</div>
1455
Chris Lattner488772f2008-01-04 04:32:38 +00001456<!-- _______________________________________________________________________ -->
Nick Lewycky244cf482009-09-27 00:45:11 +00001457<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1458
1459<div class="doc_text">
1460
1461<h5>Overview:</h5>
1462<p>The integer type is a very simple type that simply specifies an arbitrary
1463 bit width for the integer type desired. Any bit width from 1 bit to
1464 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1465
1466<h5>Syntax:</h5>
1467<pre>
1468 iN
1469</pre>
1470
1471<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1472 value.</p>
1473
1474<h5>Examples:</h5>
1475<table class="layout">
1476 <tr class="layout">
1477 <td class="left"><tt>i1</tt></td>
1478 <td class="left">a single-bit integer.</td>
1479 </tr>
1480 <tr class="layout">
1481 <td class="left"><tt>i32</tt></td>
1482 <td class="left">a 32-bit integer.</td>
1483 </tr>
1484 <tr class="layout">
1485 <td class="left"><tt>i1942652</tt></td>
1486 <td class="left">a really big integer of over 1 million bits.</td>
1487 </tr>
1488</table>
1489
Nick Lewycky244cf482009-09-27 00:45:11 +00001490</div>
1491
1492<!-- _______________________________________________________________________ -->
Chris Lattner488772f2008-01-04 04:32:38 +00001493<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1494
1495<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001496
1497<table>
1498 <tbody>
1499 <tr><th>Type</th><th>Description</th></tr>
1500 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1501 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1502 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1503 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1504 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1505 </tbody>
1506</table>
1507
Chris Lattner488772f2008-01-04 04:32:38 +00001508</div>
1509
1510<!-- _______________________________________________________________________ -->
1511<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1512
1513<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001514
Chris Lattner488772f2008-01-04 04:32:38 +00001515<h5>Overview:</h5>
1516<p>The void type does not represent any value and has no size.</p>
1517
1518<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001519<pre>
1520 void
1521</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001522
Chris Lattner488772f2008-01-04 04:32:38 +00001523</div>
1524
1525<!-- _______________________________________________________________________ -->
1526<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1527
1528<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001529
Chris Lattner488772f2008-01-04 04:32:38 +00001530<h5>Overview:</h5>
1531<p>The label type represents code labels.</p>
1532
1533<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001534<pre>
1535 label
1536</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001537
Chris Lattner488772f2008-01-04 04:32:38 +00001538</div>
1539
Nick Lewycky29aaef82009-05-30 05:06:04 +00001540<!-- _______________________________________________________________________ -->
1541<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1542
1543<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001544
Nick Lewycky29aaef82009-05-30 05:06:04 +00001545<h5>Overview:</h5>
Nick Lewyckyeb021882009-09-27 23:27:42 +00001546<p>The metadata type represents embedded metadata. No derived types may be
1547 created from metadata except for <a href="#t_function">function</a>
1548 arguments.
Nick Lewycky29aaef82009-05-30 05:06:04 +00001549
1550<h5>Syntax:</h5>
Nick Lewycky29aaef82009-05-30 05:06:04 +00001551<pre>
1552 metadata
1553</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001554
Nick Lewycky29aaef82009-05-30 05:06:04 +00001555</div>
1556
Chris Lattner488772f2008-01-04 04:32:38 +00001557
1558<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001559<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1560
1561<div class="doc_text">
1562
Bill Wendlingf85859d2009-07-20 02:29:24 +00001563<p>The real power in LLVM comes from the derived types in the system. This is
1564 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky244cf482009-09-27 00:45:11 +00001565 useful types. Each of these types contain one or more element types which
1566 may be a primitive type, or another derived type. For example, it is
1567 possible to have a two dimensional array, using an array as the element type
1568 of another array.</p>
djge93155c2009-01-24 15:58:40 +00001569
Chris Lattnerd5d51722010-02-12 20:49:41 +00001570
1571</div>
1572
1573<!-- _______________________________________________________________________ -->
1574<div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1575
1576<div class="doc_text">
1577
1578<p>Aggregate Types are a subset of derived types that can contain multiple
1579 member types. <a href="#t_array">Arrays</a>,
1580 <a href="#t_struct">structs</a>, <a href="#t_vector">vectors</a> and
1581 <a href="#t_union">unions</a> are aggregate types.</p>
1582
1583</div>
1584
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001585</div>
1586
1587<!-- _______________________________________________________________________ -->
1588<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1589
1590<div class="doc_text">
1591
1592<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001593<p>The array type is a very simple derived type that arranges elements
Bill Wendlingf85859d2009-07-20 02:29:24 +00001594 sequentially in memory. The array type requires a size (number of elements)
1595 and an underlying data type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001596
1597<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001598<pre>
1599 [&lt;# elements&gt; x &lt;elementtype&gt;]
1600</pre>
1601
Bill Wendlingf85859d2009-07-20 02:29:24 +00001602<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1603 be any type with a size.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604
1605<h5>Examples:</h5>
1606<table class="layout">
1607 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001608 <td class="left"><tt>[40 x i32]</tt></td>
1609 <td class="left">Array of 40 32-bit integer values.</td>
1610 </tr>
1611 <tr class="layout">
1612 <td class="left"><tt>[41 x i32]</tt></td>
1613 <td class="left">Array of 41 32-bit integer values.</td>
1614 </tr>
1615 <tr class="layout">
1616 <td class="left"><tt>[4 x i8]</tt></td>
1617 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 </tr>
1619</table>
1620<p>Here are some examples of multidimensional arrays:</p>
1621<table class="layout">
1622 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001623 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1624 <td class="left">3x4 array of 32-bit integer values.</td>
1625 </tr>
1626 <tr class="layout">
1627 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1628 <td class="left">12x10 array of single precision floating point values.</td>
1629 </tr>
1630 <tr class="layout">
1631 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1632 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633 </tr>
1634</table>
1635
Dan Gohman87ec5ad2009-11-09 19:01:53 +00001636<p>There is no restriction on indexing beyond the end of the array implied by
1637 a static type (though there are restrictions on indexing beyond the bounds
1638 of an allocated object in some cases). This means that single-dimension
1639 'variable sized array' addressing can be implemented in LLVM with a zero
1640 length array type. An implementation of 'pascal style arrays' in LLVM could
1641 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642
1643</div>
1644
1645<!-- _______________________________________________________________________ -->
1646<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001648<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001649
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001651<p>The function type can be thought of as a function signature. It consists of
1652 a return type and a list of formal parameter types. The return type of a
Chris Lattnerd5d51722010-02-12 20:49:41 +00001653 function type is a scalar type, a void type, a struct type, or a union
1654 type. If the return type is a struct type then all struct elements must be
1655 of first class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001656
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001657<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001658<pre>
Nick Lewycky3b3b54d2009-09-27 07:55:32 +00001659 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattner43030e72008-04-23 04:59:35 +00001660</pre>
1661
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001662<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingf85859d2009-07-20 02:29:24 +00001663 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1664 which indicates that the function takes a variable number of arguments.
1665 Variable argument functions can access their arguments with
1666 the <a href="#int_varargs">variable argument handling intrinsic</a>
Nick Lewycky3b3b54d2009-09-27 07:55:32 +00001667 functions. '<tt>&lt;returntype&gt;</tt>' is a any type except
Nick Lewyckyeb021882009-09-27 23:27:42 +00001668 <a href="#t_label">label</a>.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670<h5>Examples:</h5>
1671<table class="layout">
1672 <tr class="layout">
1673 <td class="left"><tt>i32 (i32)</tt></td>
1674 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1675 </td>
1676 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001677 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001678 </tt></td>
Eric Christophera1151bf2009-12-05 02:46:03 +00001679 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1680 an <tt>i16</tt> that should be sign extended and a
1681 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 <tt>float</tt>.
1683 </td>
1684 </tr><tr class="layout">
1685 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christophera1151bf2009-12-05 02:46:03 +00001686 <td class="left">A vararg function that takes at least one
1687 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1688 which returns an integer. This is the signature for <tt>printf</tt> in
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689 LLVM.
1690 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001691 </tr><tr class="layout">
1692 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky3b3b54d2009-09-27 07:55:32 +00001693 <td class="left">A function taking an <tt>i32</tt>, returning a
1694 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Pateld4ba41d2008-03-24 05:35:41 +00001695 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001696 </tr>
1697</table>
1698
1699</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001700
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701<!-- _______________________________________________________________________ -->
1702<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001703
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001707<p>The structure type is used to represent a collection of data members together
1708 in memory. The packing of the field types is defined to match the ABI of the
1709 underlying processor. The elements of a structure may be any type that has a
1710 size.</p>
1711
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00001712<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1713 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1714 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1715 Structures in registers are accessed using the
1716 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1717 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001718<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001719<pre>
1720 { &lt;type list&gt; }
1721</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001722
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723<h5>Examples:</h5>
1724<table class="layout">
1725 <tr class="layout">
1726 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1727 <td class="left">A triple of three <tt>i32</tt> values</td>
1728 </tr><tr class="layout">
1729 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1730 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1731 second element is a <a href="#t_pointer">pointer</a> to a
1732 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1733 an <tt>i32</tt>.</td>
1734 </tr>
1735</table>
djge93155c2009-01-24 15:58:40 +00001736
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737</div>
1738
1739<!-- _______________________________________________________________________ -->
1740<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1741</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001742
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001744
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745<h5>Overview:</h5>
1746<p>The packed structure type is used to represent a collection of data members
Bill Wendlingf85859d2009-07-20 02:29:24 +00001747 together in memory. There is no padding between fields. Further, the
1748 alignment of a packed structure is 1 byte. The elements of a packed
1749 structure may be any type that has a size.</p>
1750
1751<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1752 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1753 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1754
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001756<pre>
1757 &lt; { &lt;type list&gt; } &gt;
1758</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001759
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760<h5>Examples:</h5>
1761<table class="layout">
1762 <tr class="layout">
1763 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1764 <td class="left">A triple of three <tt>i32</tt> values</td>
1765 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001766 <td class="left">
1767<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1769 second element is a <a href="#t_pointer">pointer</a> to a
1770 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1771 an <tt>i32</tt>.</td>
1772 </tr>
1773</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775</div>
1776
1777<!-- _______________________________________________________________________ -->
Chris Lattnerd5d51722010-02-12 20:49:41 +00001778<div class="doc_subsubsection"> <a name="t_union">Union Type</a> </div>
1779
1780<div class="doc_text">
1781
1782<h5>Overview:</h5>
1783<p>A union type describes an object with size and alignment suitable for
1784 an object of any one of a given set of types (also known as an "untagged"
1785 union). It is similar in concept and usage to a
1786 <a href="#t_struct">struct</a>, except that all members of the union
1787 have an offset of zero. The elements of a union may be any type that has a
1788 size. Unions must have at least one member - empty unions are not allowed.
1789 </p>
1790
1791<p>The size of the union as a whole will be the size of its largest member,
1792 and the alignment requirements of the union as a whole will be the largest
1793 alignment requirement of any member.</p>
1794
1795<p>Unions members are accessed using '<tt><a href="#i_load">load</a></tt> and
1796 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1797 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1798 Since all members are at offset zero, the getelementptr instruction does
1799 not affect the address, only the type of the resulting pointer.</p>
1800
1801<h5>Syntax:</h5>
1802<pre>
1803 union { &lt;type list&gt; }
1804</pre>
1805
1806<h5>Examples:</h5>
1807<table class="layout">
1808 <tr class="layout">
1809 <td class="left"><tt>union { i32, i32*, float }</tt></td>
1810 <td class="left">A union of three types: an <tt>i32</tt>, a pointer to
1811 an <tt>i32</tt>, and a <tt>float</tt>.</td>
1812 </tr><tr class="layout">
1813 <td class="left">
1814 <tt>union {&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1815 <td class="left">A union, where the first element is a <tt>float</tt> and the
1816 second element is a <a href="#t_pointer">pointer</a> to a
1817 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1818 an <tt>i32</tt>.</td>
1819 </tr>
1820</table>
1821
1822</div>
1823
1824<!-- _______________________________________________________________________ -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001825<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner96edbd32009-02-08 19:53:29 +00001826
Bill Wendlingf85859d2009-07-20 02:29:24 +00001827<div class="doc_text">
1828
1829<h5>Overview:</h5>
Dan Gohmanb2f72c82010-02-25 16:50:07 +00001830<p>The pointer type is used to specify memory locations.
1831 Pointers are commonly used to reference objects in memory.</p>
1832
1833<p>Pointer types may have an optional address space attribute defining the
1834 numbered address space where the pointed-to object resides. The default
1835 address space is number zero. The semantics of non-zero address
1836 spaces are target-specific.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001837
1838<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1839 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner96edbd32009-02-08 19:53:29 +00001840
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001842<pre>
1843 &lt;type&gt; *
1844</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001845
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001846<h5>Examples:</h5>
1847<table class="layout">
1848 <tr class="layout">
Dan Gohman01852382009-01-04 23:44:43 +00001849 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner7311d222007-12-19 05:04:11 +00001850 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1851 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1852 </tr>
1853 <tr class="layout">
1854 <td class="left"><tt>i32 (i32 *) *</tt></td>
1855 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001856 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001857 <tt>i32</tt>.</td>
1858 </tr>
1859 <tr class="layout">
1860 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1861 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1862 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001863 </tr>
1864</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001865
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001866</div>
1867
1868<!-- _______________________________________________________________________ -->
1869<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001870
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001871<div class="doc_text">
1872
1873<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001874<p>A vector type is a simple derived type that represents a vector of elements.
1875 Vector types are used when multiple primitive data are operated in parallel
1876 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands87598b02009-11-27 13:38:03 +00001877 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingf85859d2009-07-20 02:29:24 +00001878 <a href="#t_firstclass">first class</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001879
1880<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881<pre>
1882 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1883</pre>
1884
Bill Wendlingf85859d2009-07-20 02:29:24 +00001885<p>The number of elements is a constant integer value; elementtype may be any
1886 integer or floating point type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887
1888<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889<table class="layout">
1890 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001891 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1892 <td class="left">Vector of 4 32-bit integer values.</td>
1893 </tr>
1894 <tr class="layout">
1895 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1896 <td class="left">Vector of 8 32-bit floating-point values.</td>
1897 </tr>
1898 <tr class="layout">
1899 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1900 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001901 </tr>
1902</table>
djge93155c2009-01-24 15:58:40 +00001903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904</div>
1905
1906<!-- _______________________________________________________________________ -->
1907<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1908<div class="doc_text">
1909
1910<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00001912 corresponds (for example) to the C notion of a forward declared structure
1913 type. In LLVM, opaque types can eventually be resolved to any type (not just
1914 a structure type).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001915
1916<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001917<pre>
1918 opaque
1919</pre>
1920
1921<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001922<table class="layout">
1923 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001924 <td class="left"><tt>opaque</tt></td>
1925 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001926 </tr>
1927</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001928
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929</div>
1930
Chris Lattner515195a2009-02-02 07:32:36 +00001931<!-- ======================================================================= -->
1932<div class="doc_subsection">
1933 <a name="t_uprefs">Type Up-references</a>
1934</div>
1935
1936<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001937
Chris Lattner515195a2009-02-02 07:32:36 +00001938<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001939<p>An "up reference" allows you to refer to a lexically enclosing type without
1940 requiring it to have a name. For instance, a structure declaration may
1941 contain a pointer to any of the types it is lexically a member of. Example
1942 of up references (with their equivalent as named type declarations)
1943 include:</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001944
1945<pre>
Chris Lattner5ad632d2009-02-09 10:00:56 +00001946 { \2 * } %x = type { %x* }
Chris Lattner515195a2009-02-02 07:32:36 +00001947 { \2 }* %y = type { %y }*
1948 \1* %z = type %z*
1949</pre>
1950
Bill Wendlingf85859d2009-07-20 02:29:24 +00001951<p>An up reference is needed by the asmprinter for printing out cyclic types
1952 when there is no declared name for a type in the cycle. Because the
1953 asmprinter does not want to print out an infinite type string, it needs a
1954 syntax to handle recursive types that have no names (all names are optional
1955 in llvm IR).</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001956
1957<h5>Syntax:</h5>
1958<pre>
1959 \&lt;level&gt;
1960</pre>
1961
Bill Wendlingf85859d2009-07-20 02:29:24 +00001962<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001963
1964<h5>Examples:</h5>
Chris Lattner515195a2009-02-02 07:32:36 +00001965<table class="layout">
1966 <tr class="layout">
1967 <td class="left"><tt>\1*</tt></td>
1968 <td class="left">Self-referential pointer.</td>
1969 </tr>
1970 <tr class="layout">
1971 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1972 <td class="left">Recursive structure where the upref refers to the out-most
1973 structure.</td>
1974 </tr>
1975</table>
Chris Lattner515195a2009-02-02 07:32:36 +00001976
Bill Wendlingf85859d2009-07-20 02:29:24 +00001977</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001978
1979<!-- *********************************************************************** -->
1980<div class="doc_section"> <a name="constants">Constants</a> </div>
1981<!-- *********************************************************************** -->
1982
1983<div class="doc_text">
1984
1985<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingf85859d2009-07-20 02:29:24 +00001986 them all and their syntax.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987
1988</div>
1989
1990<!-- ======================================================================= -->
1991<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1992
1993<div class="doc_text">
1994
1995<dl>
1996 <dt><b>Boolean constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001997 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky244cf482009-09-27 00:45:11 +00001998 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001999
2000 <dt><b>Integer constants</b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002001 <dd>Standard integers (such as '4') are constants of
2002 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2003 with integer types.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004
2005 <dt><b>Floating point constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingf85859d2009-07-20 02:29:24 +00002007 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2008 notation (see below). The assembler requires the exact decimal value of a
2009 floating-point constant. For example, the assembler accepts 1.25 but
2010 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2011 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002012
2013 <dt><b>Null pointer constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00002015 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002016</dl>
2017
Bill Wendlingf85859d2009-07-20 02:29:24 +00002018<p>The one non-intuitive notation for constants is the hexadecimal form of
2019 floating point constants. For example, the form '<tt>double
2020 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2021 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2022 constants are required (and the only time that they are generated by the
2023 disassembler) is when a floating point constant must be emitted but it cannot
2024 be represented as a decimal floating point number in a reasonable number of
2025 digits. For example, NaN's, infinities, and other special values are
2026 represented in their IEEE hexadecimal format so that assembly and disassembly
2027 do not cause any bits to change in the constants.</p>
2028
Dale Johannesenf82a52f2009-02-11 22:14:51 +00002029<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingf85859d2009-07-20 02:29:24 +00002030 represented using the 16-digit form shown above (which matches the IEEE754
2031 representation for double); float values must, however, be exactly
2032 representable as IEE754 single precision. Hexadecimal format is always used
2033 for long double, and there are three forms of long double. The 80-bit format
2034 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2035 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2036 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2037 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2038 currently supported target uses this format. Long doubles will only work if
2039 they match the long double format on your target. All hexadecimal formats
2040 are big-endian (sign bit at the left).</p>
2041
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002042</div>
2043
2044<!-- ======================================================================= -->
Chris Lattner97063852009-02-28 18:32:25 +00002045<div class="doc_subsection">
Bill Wendling1a2630a2009-07-20 02:32:41 +00002046<a name="aggregateconstants"></a> <!-- old anchor -->
2047<a name="complexconstants">Complex Constants</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002048</div>
2049
2050<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002051
Chris Lattner97063852009-02-28 18:32:25 +00002052<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingf85859d2009-07-20 02:29:24 +00002053 constants and smaller complex constants.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054
2055<dl>
2056 <dt><b>Structure constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002057 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingf85859d2009-07-20 02:29:24 +00002058 type definitions (a comma separated list of elements, surrounded by braces
2059 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2060 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2061 Structure constants must have <a href="#t_struct">structure type</a>, and
2062 the number and types of elements must match those specified by the
2063 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002064
Chris Lattnerd5d51722010-02-12 20:49:41 +00002065 <dt><b>Union constants</b></dt>
2066 <dd>Union constants are represented with notation similar to a structure with
2067 a single element - that is, a single typed element surrounded
2068 by braces (<tt>{}</tt>)). For example: "<tt>{ i32 4 }</tt>". The
2069 <a href="#t_union">union type</a> can be initialized with a single-element
2070 struct as long as the type of the struct element matches the type of
2071 one of the union members.</dd>
2072
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002073 <dt><b>Array constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002074 <dd>Array constants are represented with notation similar to array type
Bill Wendlingf85859d2009-07-20 02:29:24 +00002075 definitions (a comma separated list of elements, surrounded by square
2076 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2077 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2078 the number and types of elements must match those specified by the
2079 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002080
2081 <dt><b>Vector constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002082 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingf85859d2009-07-20 02:29:24 +00002083 definitions (a comma separated list of elements, surrounded by
2084 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2085 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2086 have <a href="#t_vector">vector type</a>, and the number and types of
2087 elements must match those specified by the type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002088
2089 <dt><b>Zero initialization</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattnerd5d51722010-02-12 20:49:41 +00002091 value to zero of <em>any</em> type, including scalar and
2092 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingf85859d2009-07-20 02:29:24 +00002093 This is often used to avoid having to print large zero initializers
2094 (e.g. for large arrays) and is always exactly equivalent to using explicit
2095 zero initializers.</dd>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002096
2097 <dt><b>Metadata node</b></dt>
Nick Lewyckyf122c7e2009-05-30 16:08:30 +00002098 <dd>A metadata node is a structure-like constant with
Bill Wendlingf85859d2009-07-20 02:29:24 +00002099 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2100 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2101 be interpreted as part of the instruction stream, metadata is a place to
2102 attach additional information such as debug info.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002103</dl>
2104
2105</div>
2106
2107<!-- ======================================================================= -->
2108<div class="doc_subsection">
2109 <a name="globalconstants">Global Variable and Function Addresses</a>
2110</div>
2111
2112<div class="doc_text">
2113
Bill Wendlingf85859d2009-07-20 02:29:24 +00002114<p>The addresses of <a href="#globalvars">global variables</a>
2115 and <a href="#functionstructure">functions</a> are always implicitly valid
2116 (link-time) constants. These constants are explicitly referenced when
2117 the <a href="#identifiers">identifier for the global</a> is used and always
2118 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2119 legal LLVM file:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002120
2121<div class="doc_code">
2122<pre>
2123@X = global i32 17
2124@Y = global i32 42
2125@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2126</pre>
2127</div>
2128
2129</div>
2130
2131<!-- ======================================================================= -->
2132<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2133<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002134
Chris Lattner3d72cd82009-09-07 22:52:39 +00002135<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002136 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattner3d72cd82009-09-07 22:52:39 +00002137 Undefined values may be of any type (other than label or void) and be used
2138 anywhere a constant is permitted.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002139
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002140<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner3d72cd82009-09-07 22:52:39 +00002141 program is well defined no matter what value is used. This gives the
2142 compiler more freedom to optimize. Here are some examples of (potentially
2143 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002144
Chris Lattner3d72cd82009-09-07 22:52:39 +00002145
2146<div class="doc_code">
2147<pre>
2148 %A = add %X, undef
2149 %B = sub %X, undef
2150 %C = xor %X, undef
2151Safe:
2152 %A = undef
2153 %B = undef
2154 %C = undef
2155</pre>
2156</div>
2157
2158<p>This is safe because all of the output bits are affected by the undef bits.
2159Any output bit can have a zero or one depending on the input bits.</p>
2160
2161<div class="doc_code">
2162<pre>
2163 %A = or %X, undef
2164 %B = and %X, undef
2165Safe:
2166 %A = -1
2167 %B = 0
2168Unsafe:
2169 %A = undef
2170 %B = undef
2171</pre>
2172</div>
2173
2174<p>These logical operations have bits that are not always affected by the input.
2175For example, if "%X" has a zero bit, then the output of the 'and' operation will
2176always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002177such, it is unsafe to optimize or assume that the result of the and is undef.
Eric Christophera1151bf2009-12-05 02:46:03 +00002178However, it is safe to assume that all bits of the undef could be 0, and
2179optimize the and to 0. Likewise, it is safe to assume that all the bits of
2180the undef operand to the or could be set, allowing the or to be folded to
Chris Lattner9d1e4fa2009-09-11 01:49:31 +00002181-1.</p>
Chris Lattner3d72cd82009-09-07 22:52:39 +00002182
2183<div class="doc_code">
2184<pre>
2185 %A = select undef, %X, %Y
2186 %B = select undef, 42, %Y
2187 %C = select %X, %Y, undef
2188Safe:
2189 %A = %X (or %Y)
2190 %B = 42 (or %Y)
2191 %C = %Y
2192Unsafe:
2193 %A = undef
2194 %B = undef
2195 %C = undef
2196</pre>
2197</div>
2198
2199<p>This set of examples show that undefined select (and conditional branch)
2200conditions can go "either way" but they have to come from one of the two
2201operands. In the %A example, if %X and %Y were both known to have a clear low
2202bit, then %A would have to have a cleared low bit. However, in the %C example,
2203the optimizer is allowed to assume that the undef operand could be the same as
2204%Y, allowing the whole select to be eliminated.</p>
2205
2206
2207<div class="doc_code">
2208<pre>
2209 %A = xor undef, undef
Eric Christophera1151bf2009-12-05 02:46:03 +00002210
Chris Lattner3d72cd82009-09-07 22:52:39 +00002211 %B = undef
2212 %C = xor %B, %B
2213
2214 %D = undef
2215 %E = icmp lt %D, 4
2216 %F = icmp gte %D, 4
2217
2218Safe:
2219 %A = undef
2220 %B = undef
2221 %C = undef
2222 %D = undef
2223 %E = undef
2224 %F = undef
2225</pre>
2226</div>
2227
2228<p>This example points out that two undef operands are not necessarily the same.
2229This can be surprising to people (and also matches C semantics) where they
2230assume that "X^X" is always zero, even if X is undef. This isn't true for a
2231number of reasons, but the short answer is that an undef "variable" can
2232arbitrarily change its value over its "live range". This is true because the
2233"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2234logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002235so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattnerc802e482009-09-08 15:13:16 +00002236to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattner3d72cd82009-09-07 22:52:39 +00002237would not hold.</p>
Chris Lattner466291f2009-09-07 23:33:52 +00002238
2239<div class="doc_code">
2240<pre>
2241 %A = fdiv undef, %X
2242 %B = fdiv %X, undef
2243Safe:
2244 %A = undef
2245b: unreachable
2246</pre>
2247</div>
2248
2249<p>These examples show the crucial difference between an <em>undefined
2250value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2251allowed to have an arbitrary bit-pattern. This means that the %A operation
2252can be constant folded to undef because the undef could be an SNaN, and fdiv is
2253not (currently) defined on SNaN's. However, in the second example, we can make
2254a more aggressive assumption: because the undef is allowed to be an arbitrary
2255value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner83d45d72009-09-08 19:45:34 +00002256has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattner466291f2009-09-07 23:33:52 +00002257does not execute at all. This allows us to delete the divide and all code after
2258it: since the undefined operation "can't happen", the optimizer can assume that
2259it occurs in dead code.
2260</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002261
Chris Lattner466291f2009-09-07 23:33:52 +00002262<div class="doc_code">
2263<pre>
2264a: store undef -> %X
2265b: store %X -> undef
2266Safe:
2267a: &lt;deleted&gt;
2268b: unreachable
2269</pre>
2270</div>
2271
2272<p>These examples reiterate the fdiv example: a store "of" an undefined value
Eric Christophera1151bf2009-12-05 02:46:03 +00002273can be assumed to not have any effect: we can assume that the value is
Chris Lattner466291f2009-09-07 23:33:52 +00002274overwritten with bits that happen to match what was already there. However, a
2275store "to" an undefined location could clobber arbitrary memory, therefore, it
2276has undefined behavior.</p>
2277
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002278</div>
2279
2280<!-- ======================================================================= -->
Chris Lattner29246b52009-10-27 21:19:13 +00002281<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2282 Blocks</a></div>
Chris Lattnerd07c8372009-10-27 21:01:34 +00002283<div class="doc_text">
2284
Chris Lattner620cead2009-11-01 01:27:45 +00002285<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnerd07c8372009-10-27 21:01:34 +00002286
2287<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner24f2e852009-10-27 21:49:40 +00002288 basic block in the specified function, and always has an i8* type. Taking
Chris Lattner620cead2009-11-01 01:27:45 +00002289 the address of the entry block is illegal.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002290
Chris Lattnerd07c8372009-10-27 21:01:34 +00002291<p>This value only has defined behavior when used as an operand to the
Chris Lattner4c3800f2009-10-28 00:19:10 +00002292 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
Chris Lattnerd07c8372009-10-27 21:01:34 +00002293 against null. Pointer equality tests between labels addresses is undefined
2294 behavior - though, again, comparison against null is ok, and no label is
Chris Lattner29246b52009-10-27 21:19:13 +00002295 equal to the null pointer. This may also be passed around as an opaque
2296 pointer sized value as long as the bits are not inspected. This allows
Chris Lattner0bae7b32009-10-27 21:44:20 +00002297 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
Chris Lattner4c3800f2009-10-28 00:19:10 +00002298 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002299
Chris Lattner29246b52009-10-27 21:19:13 +00002300<p>Finally, some targets may provide defined semantics when
Chris Lattnerd07c8372009-10-27 21:01:34 +00002301 using the value as the operand to an inline assembly, but that is target
2302 specific.
2303 </p>
2304
2305</div>
2306
2307
2308<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2310</div>
2311
2312<div class="doc_text">
2313
2314<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingf85859d2009-07-20 02:29:24 +00002315 to be used as constants. Constant expressions may be of
2316 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2317 operation that does not have side effects (e.g. load and call are not
2318 supported). The following is the syntax for constant expressions:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002319
2320<dl>
2321 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002322 <dd>Truncate a constant to another type. The bit size of CST must be larger
2323 than the bit size of TYPE. Both types must be integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002324
2325 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002326 <dd>Zero extend a constant to another type. The bit size of CST must be
2327 smaller or equal to the bit size of TYPE. Both types must be
2328 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002329
2330 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002331 <dd>Sign extend a constant to another type. The bit size of CST must be
2332 smaller or equal to the bit size of TYPE. Both types must be
2333 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002334
2335 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002336 <dd>Truncate a floating point constant to another floating point type. The
2337 size of CST must be larger than the size of TYPE. Both types must be
2338 floating point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339
2340 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002341 <dd>Floating point extend a constant to another type. The size of CST must be
2342 smaller or equal to the size of TYPE. Both types must be floating
2343 point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002344
Reid Spencere6adee82007-07-31 14:40:14 +00002345 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002346 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002347 constant. TYPE must be a scalar or vector integer type. CST must be of
2348 scalar or vector floating point type. Both CST and TYPE must be scalars,
2349 or vectors of the same number of elements. If the value won't fit in the
2350 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351
2352 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
2353 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002354 constant. TYPE must be a scalar or vector integer type. CST must be of
2355 scalar or vector floating point type. Both CST and TYPE must be scalars,
2356 or vectors of the same number of elements. If the value won't fit in the
2357 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358
2359 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
2360 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002361 constant. TYPE must be a scalar or vector floating point type. CST must be
2362 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2363 vectors of the same number of elements. If the value won't fit in the
2364 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365
2366 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
2367 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002368 constant. TYPE must be a scalar or vector floating point type. CST must be
2369 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2370 vectors of the same number of elements. If the value won't fit in the
2371 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372
2373 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2374 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00002375 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2376 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2377 make it fit in <tt>TYPE</tt>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002378
2379 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002380 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2381 type. CST must be of integer type. The CST value is zero extended,
2382 truncated, or unchanged to make it fit in a pointer size. This one is
2383 <i>really</i> dangerous!</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002384
2385 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner557bc5d2009-02-28 18:27:03 +00002386 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2387 are the same as those for the <a href="#i_bitcast">bitcast
2388 instruction</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002389
2390 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman106b2ae2009-07-27 21:53:46 +00002391 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingf85859d2009-07-20 02:29:24 +00002393 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2394 instruction, the index list may have zero or more indexes, which are
2395 required to make sense for the type of "CSTPTR".</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002396
2397 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002398 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399
2400 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2401 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2402
2403 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2404 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2405
2406 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002407 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2408 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409
2410 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002411 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2412 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002413
2414 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002415 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2416 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417
2418 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002419 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2420 be any of the <a href="#binaryops">binary</a>
2421 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2422 on operands are the same as those for the corresponding instruction
2423 (e.g. no bitwise operations on floating point values are allowed).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426</div>
2427
2428<!-- *********************************************************************** -->
2429<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2430<!-- *********************************************************************** -->
2431
2432<!-- ======================================================================= -->
2433<div class="doc_subsection">
2434<a name="inlineasm">Inline Assembler Expressions</a>
2435</div>
2436
2437<div class="doc_text">
2438
Bill Wendlingf85859d2009-07-20 02:29:24 +00002439<p>LLVM supports inline assembler expressions (as opposed
2440 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2441 a special value. This value represents the inline assembler as a string
2442 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen648950f2009-10-13 21:56:55 +00002443 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002444 expression has side effects, and a flag indicating whether the function
2445 containing the asm needs to align its stack conservatively. An example
2446 inline assembler expression is:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002447
2448<div class="doc_code">
2449<pre>
2450i32 (i32) asm "bswap $0", "=r,r"
2451</pre>
2452</div>
2453
Bill Wendlingf85859d2009-07-20 02:29:24 +00002454<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2455 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2456 have:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457
2458<div class="doc_code">
2459<pre>
2460%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2461</pre>
2462</div>
2463
Bill Wendlingf85859d2009-07-20 02:29:24 +00002464<p>Inline asms with side effects not visible in the constraint list must be
2465 marked as having side effects. This is done through the use of the
2466 '<tt>sideeffect</tt>' keyword, like so:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467
2468<div class="doc_code">
2469<pre>
2470call void asm sideeffect "eieio", ""()
2471</pre>
2472</div>
2473
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002474<p>In some cases inline asms will contain code that will not work unless the
2475 stack is aligned in some way, such as calls or SSE instructions on x86,
2476 yet will not contain code that does that alignment within the asm.
2477 The compiler should make conservative assumptions about what the asm might
2478 contain and should generate its usual stack alignment code in the prologue
2479 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen648950f2009-10-13 21:56:55 +00002480
2481<div class="doc_code">
2482<pre>
Dale Johannesen5ee3e4b2009-10-21 23:28:00 +00002483call void asm alignstack "eieio", ""()
Dale Johannesen648950f2009-10-13 21:56:55 +00002484</pre>
2485</div>
2486
2487<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2488 first.</p>
2489
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002490<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002491 documented here. Constraints on what can be done (e.g. duplication, moving,
2492 etc need to be documented). This is probably best done by reference to
2493 another document that covers inline asm from a holistic perspective.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494
2495</div>
2496
Chris Lattnerd0d96292010-01-15 21:50:19 +00002497<!-- ======================================================================= -->
2498<div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2499 Strings</a>
2500</div>
2501
2502<div class="doc_text">
2503
2504<p>LLVM IR allows metadata to be attached to instructions in the program that
2505 can convey extra information about the code to the optimizers and code
2506 generator. One example application of metadata is source-level debug
2507 information. There are two metadata primitives: strings and nodes. All
2508 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2509 preceding exclamation point ('<tt>!</tt>').</p>
2510
2511<p>A metadata string is a string surrounded by double quotes. It can contain
2512 any character by escaping non-printable characters with "\xx" where "xx" is
2513 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2514
2515<p>Metadata nodes are represented with notation similar to structure constants
2516 (a comma separated list of elements, surrounded by braces and preceded by an
2517 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2518 10}</tt>". Metadata nodes can have any values as their operand.</p>
2519
2520<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2521 metadata nodes, which can be looked up in the module symbol table. For
2522 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2523
2524</div>
2525
Chris Lattner75c24e02009-07-20 05:55:19 +00002526
2527<!-- *********************************************************************** -->
2528<div class="doc_section">
2529 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2530</div>
2531<!-- *********************************************************************** -->
2532
2533<p>LLVM has a number of "magic" global variables that contain data that affect
2534code generation or other IR semantics. These are documented here. All globals
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002535of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2536section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2537by LLVM.</p>
Chris Lattner75c24e02009-07-20 05:55:19 +00002538
2539<!-- ======================================================================= -->
2540<div class="doc_subsection">
2541<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2542</div>
2543
2544<div class="doc_text">
2545
2546<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2547href="#linkage_appending">appending linkage</a>. This array contains a list of
2548pointers to global variables and functions which may optionally have a pointer
2549cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2550
2551<pre>
2552 @X = global i8 4
2553 @Y = global i32 123
2554
2555 @llvm.used = appending global [2 x i8*] [
2556 i8* @X,
2557 i8* bitcast (i32* @Y to i8*)
2558 ], section "llvm.metadata"
2559</pre>
2560
2561<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2562compiler, assembler, and linker are required to treat the symbol as if there is
2563a reference to the global that it cannot see. For example, if a variable has
2564internal linkage and no references other than that from the <tt>@llvm.used</tt>
2565list, it cannot be deleted. This is commonly used to represent references from
2566inline asms and other things the compiler cannot "see", and corresponds to
2567"attribute((used))" in GNU C.</p>
2568
2569<p>On some targets, the code generator must emit a directive to the assembler or
2570object file to prevent the assembler and linker from molesting the symbol.</p>
2571
2572</div>
2573
2574<!-- ======================================================================= -->
2575<div class="doc_subsection">
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002576<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2577</div>
2578
2579<div class="doc_text">
2580
2581<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2582<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2583touching the symbol. On targets that support it, this allows an intelligent
2584linker to optimize references to the symbol without being impeded as it would be
2585by <tt>@llvm.used</tt>.</p>
2586
2587<p>This is a rare construct that should only be used in rare circumstances, and
2588should not be exposed to source languages.</p>
2589
2590</div>
2591
2592<!-- ======================================================================= -->
2593<div class="doc_subsection">
Chris Lattner75c24e02009-07-20 05:55:19 +00002594<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2595</div>
2596
2597<div class="doc_text">
2598
2599<p>TODO: Describe this.</p>
2600
2601</div>
2602
2603<!-- ======================================================================= -->
2604<div class="doc_subsection">
2605<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2606</div>
2607
2608<div class="doc_text">
2609
2610<p>TODO: Describe this.</p>
2611
2612</div>
2613
2614
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002615<!-- *********************************************************************** -->
2616<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2617<!-- *********************************************************************** -->
2618
2619<div class="doc_text">
2620
Bill Wendlingf85859d2009-07-20 02:29:24 +00002621<p>The LLVM instruction set consists of several different classifications of
2622 instructions: <a href="#terminators">terminator
2623 instructions</a>, <a href="#binaryops">binary instructions</a>,
2624 <a href="#bitwiseops">bitwise binary instructions</a>,
2625 <a href="#memoryops">memory instructions</a>, and
2626 <a href="#otherops">other instructions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627
2628</div>
2629
2630<!-- ======================================================================= -->
2631<div class="doc_subsection"> <a name="terminators">Terminator
2632Instructions</a> </div>
2633
2634<div class="doc_text">
2635
Bill Wendlingf85859d2009-07-20 02:29:24 +00002636<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2637 in a program ends with a "Terminator" instruction, which indicates which
2638 block should be executed after the current block is finished. These
2639 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2640 control flow, not values (the one exception being the
2641 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2642
2643<p>There are six different terminator instructions: the
2644 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2645 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2646 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendlingb4ae2292009-11-02 00:25:26 +00002647 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002648 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2649 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2650 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002651
2652</div>
2653
2654<!-- _______________________________________________________________________ -->
2655<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2656Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002657
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002659
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660<h5>Syntax:</h5>
Dan Gohman3e700032008-10-04 19:00:07 +00002661<pre>
2662 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 ret void <i>; Return from void function</i>
2664</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00002665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002667<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2668 a value) from a function back to the caller.</p>
2669
2670<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2671 value and then causes control flow, and one that just causes control flow to
2672 occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002673
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002674<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002675<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2676 return value. The type of the return value must be a
2677 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohman3e700032008-10-04 19:00:07 +00002678
Bill Wendlingf85859d2009-07-20 02:29:24 +00002679<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2680 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2681 value or a return value with a type that does not match its type, or if it
2682 has a void return type and contains a '<tt>ret</tt>' instruction with a
2683 return value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002684
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002686<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2687 the calling function's context. If the caller is a
2688 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2689 instruction after the call. If the caller was an
2690 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2691 the beginning of the "normal" destination block. If the instruction returns
2692 a value, that value shall set the call or invoke instruction's return
2693 value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002694
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002695<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00002696<pre>
2697 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698 ret void <i>; Return from a void function</i>
Bill Wendlingd163e2d2009-02-28 22:12:54 +00002699 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002700</pre>
Dan Gohman60967192009-01-12 23:12:39 +00002701
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002702</div>
2703<!-- _______________________________________________________________________ -->
2704<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002706<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002708<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002709<pre>
2710 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002711</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002712
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002713<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002714<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2715 different basic block in the current function. There are two forms of this
2716 instruction, corresponding to a conditional branch and an unconditional
2717 branch.</p>
2718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002720<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2721 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2722 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2723 target.</p>
2724
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725<h5>Semantics:</h5>
2726<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00002727 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2728 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2729 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2730
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002731<h5>Example:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00002732<pre>
2733Test:
2734 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2735 br i1 %cond, label %IfEqual, label %IfUnequal
2736IfEqual:
2737 <a href="#i_ret">ret</a> i32 1
2738IfUnequal:
2739 <a href="#i_ret">ret</a> i32 0
2740</pre>
2741
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002742</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002743
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002744<!-- _______________________________________________________________________ -->
2745<div class="doc_subsubsection">
2746 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2747</div>
2748
2749<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750
Bill Wendlingf85859d2009-07-20 02:29:24 +00002751<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002752<pre>
2753 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2754</pre>
2755
2756<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002757<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingf85859d2009-07-20 02:29:24 +00002758 several different places. It is a generalization of the '<tt>br</tt>'
2759 instruction, allowing a branch to occur to one of many possible
2760 destinations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002761
2762<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002763<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002764 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2765 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2766 The table is not allowed to contain duplicate constant entries.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002767
2768<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002769<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingf85859d2009-07-20 02:29:24 +00002770 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2771 is searched for the given value. If the value is found, control flow is
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00002772 transferred to the corresponding destination; otherwise, control flow is
2773 transferred to the default destination.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002774
2775<h5>Implementation:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002776<p>Depending on properties of the target machine and the particular
Bill Wendlingf85859d2009-07-20 02:29:24 +00002777 <tt>switch</tt> instruction, this instruction may be code generated in
2778 different ways. For example, it could be generated as a series of chained
2779 conditional branches or with a lookup table.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780
2781<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782<pre>
2783 <i>; Emulate a conditional br instruction</i>
2784 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman01852382009-01-04 23:44:43 +00002785 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002786
2787 <i>; Emulate an unconditional br instruction</i>
2788 switch i32 0, label %dest [ ]
2789
2790 <i>; Implement a jump table:</i>
Dan Gohman01852382009-01-04 23:44:43 +00002791 switch i32 %val, label %otherwise [ i32 0, label %onzero
2792 i32 1, label %onone
2793 i32 2, label %ontwo ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002794</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002795
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002796</div>
2797
Chris Lattnere0787282009-10-27 19:13:16 +00002798
2799<!-- _______________________________________________________________________ -->
2800<div class="doc_subsubsection">
Chris Lattner4c3800f2009-10-28 00:19:10 +00002801 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattnere0787282009-10-27 19:13:16 +00002802</div>
2803
2804<div class="doc_text">
2805
2806<h5>Syntax:</h5>
2807<pre>
Chris Lattner4c3800f2009-10-28 00:19:10 +00002808 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattnere0787282009-10-27 19:13:16 +00002809</pre>
2810
2811<h5>Overview:</h5>
2812
Chris Lattner4c3800f2009-10-28 00:19:10 +00002813<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattnere0787282009-10-27 19:13:16 +00002814 within the current function, whose address is specified by
Chris Lattnerd07c8372009-10-27 21:01:34 +00002815 "<tt>address</tt>". Address must be derived from a <a
2816 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnere0787282009-10-27 19:13:16 +00002817
2818<h5>Arguments:</h5>
2819
2820<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2821 rest of the arguments indicate the full set of possible destinations that the
2822 address may point to. Blocks are allowed to occur multiple times in the
2823 destination list, though this isn't particularly useful.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00002824
Chris Lattnere0787282009-10-27 19:13:16 +00002825<p>This destination list is required so that dataflow analysis has an accurate
2826 understanding of the CFG.</p>
2827
2828<h5>Semantics:</h5>
2829
2830<p>Control transfers to the block specified in the address argument. All
2831 possible destination blocks must be listed in the label list, otherwise this
2832 instruction has undefined behavior. This implies that jumps to labels
2833 defined in other functions have undefined behavior as well.</p>
2834
2835<h5>Implementation:</h5>
2836
2837<p>This is typically implemented with a jump through a register.</p>
2838
2839<h5>Example:</h5>
2840<pre>
Chris Lattner4c3800f2009-10-28 00:19:10 +00002841 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnere0787282009-10-27 19:13:16 +00002842</pre>
2843
2844</div>
2845
2846
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002847<!-- _______________________________________________________________________ -->
2848<div class="doc_subsubsection">
2849 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2850</div>
2851
2852<div class="doc_text">
2853
2854<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002855<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00002856 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2858</pre>
2859
2860<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002861<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingf85859d2009-07-20 02:29:24 +00002862 function, with the possibility of control flow transfer to either the
2863 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2864 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2865 control flow will return to the "normal" label. If the callee (or any
2866 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2867 instruction, control is interrupted and continued at the dynamically nearest
2868 "exception" label.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002869
2870<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002871<p>This instruction requires several arguments:</p>
2872
2873<ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002874 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2875 convention</a> the call should use. If none is specified, the call
2876 defaults to using C calling conventions.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002877
2878 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingf85859d2009-07-20 02:29:24 +00002879 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2880 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002881
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002882 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002883 function value being invoked. In most cases, this is a direct function
2884 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2885 off an arbitrary pointer to function value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002886
2887 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingf85859d2009-07-20 02:29:24 +00002888 function to be invoked. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889
2890 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingf85859d2009-07-20 02:29:24 +00002891 signature argument types. If the function signature indicates the
2892 function accepts a variable number of arguments, the extra arguments can
2893 be specified.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002894
2895 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingf85859d2009-07-20 02:29:24 +00002896 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002897
2898 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingf85859d2009-07-20 02:29:24 +00002899 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002900
Devang Pateld0bfcc72008-10-07 17:48:33 +00002901 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingf85859d2009-07-20 02:29:24 +00002902 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2903 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002904</ol>
2905
2906<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002907<p>This instruction is designed to operate as a standard
2908 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2909 primary difference is that it establishes an association with a label, which
2910 is used by the runtime library to unwind the stack.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911
2912<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingf85859d2009-07-20 02:29:24 +00002913 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2914 exception. Additionally, this is important for implementation of
2915 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916
Bill Wendlingf85859d2009-07-20 02:29:24 +00002917<p>For the purposes of the SSA form, the definition of the value returned by the
2918 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2919 block to the "normal" label. If the callee unwinds then no return value is
2920 available.</p>
Dan Gohman140ba5d2009-05-22 21:47:08 +00002921
Chris Lattner4a91ef42010-01-15 18:08:37 +00002922<p>Note that the code generator does not yet completely support unwind, and
2923that the invoke/unwind semantics are likely to change in future versions.</p>
2924
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002925<h5>Example:</h5>
2926<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002927 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002928 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002929 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930 unwind label %TestCleanup <i>; {i32}:retval set</i>
2931</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932
Bill Wendlingf85859d2009-07-20 02:29:24 +00002933</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934
2935<!-- _______________________________________________________________________ -->
2936
2937<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2938Instruction</a> </div>
2939
2940<div class="doc_text">
2941
2942<h5>Syntax:</h5>
2943<pre>
2944 unwind
2945</pre>
2946
2947<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002948<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingf85859d2009-07-20 02:29:24 +00002949 at the first callee in the dynamic call stack which used
2950 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2951 This is primarily used to implement exception handling.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002952
2953<h5>Semantics:</h5>
Chris Lattner8b094fc2008-04-19 21:01:16 +00002954<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002955 immediately halt. The dynamic call stack is then searched for the
2956 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2957 Once found, execution continues at the "exceptional" destination block
2958 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2959 instruction in the dynamic call chain, undefined behavior results.</p>
2960
Chris Lattner4a91ef42010-01-15 18:08:37 +00002961<p>Note that the code generator does not yet completely support unwind, and
2962that the invoke/unwind semantics are likely to change in future versions.</p>
2963
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964</div>
2965
2966<!-- _______________________________________________________________________ -->
2967
2968<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2969Instruction</a> </div>
2970
2971<div class="doc_text">
2972
2973<h5>Syntax:</h5>
2974<pre>
2975 unreachable
2976</pre>
2977
2978<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002979<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00002980 instruction is used to inform the optimizer that a particular portion of the
2981 code is not reachable. This can be used to indicate that the code after a
2982 no-return function cannot be reached, and other facts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002983
2984<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002985<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002986
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987</div>
2988
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002989<!-- ======================================================================= -->
2990<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002991
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002992<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002993
2994<p>Binary operators are used to do most of the computation in a program. They
2995 require two operands of the same type, execute an operation on them, and
2996 produce a single value. The operands might represent multiple data, as is
2997 the case with the <a href="#t_vector">vector</a> data type. The result value
2998 has the same type as its operands.</p>
2999
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000<p>There are several different binary operators:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003001
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003002</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003003
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003005<div class="doc_subsubsection">
3006 <a name="i_add">'<tt>add</tt>' Instruction</a>
3007</div>
3008
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003009<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003010
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003012<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003013 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003014 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3015 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3016 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003017</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003018
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003019<h5>Overview:</h5>
3020<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003021
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003022<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003023<p>The two arguments to the '<tt>add</tt>' instruction must
3024 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3025 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003026
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003028<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003029
Bill Wendlingf85859d2009-07-20 02:29:24 +00003030<p>If the sum has unsigned overflow, the result returned is the mathematical
3031 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003032
Bill Wendlingf85859d2009-07-20 02:29:24 +00003033<p>Because LLVM integers use a two's complement representation, this instruction
3034 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003035
Dan Gohman46e96012009-07-22 22:44:56 +00003036<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3037 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3038 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3039 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003040
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003041<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003042<pre>
3043 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003044</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003045
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003046</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003047
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003048<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003049<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00003050 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3051</div>
3052
3053<div class="doc_text">
3054
3055<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003056<pre>
3057 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3058</pre>
3059
3060<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003061<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3062
3063<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003064<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003065 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3066 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003067
3068<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003069<p>The value produced is the floating point sum of the two operands.</p>
3070
3071<h5>Example:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003072<pre>
3073 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3074</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003075
Dan Gohman7ce405e2009-06-04 22:49:04 +00003076</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003077
Dan Gohman7ce405e2009-06-04 22:49:04 +00003078<!-- _______________________________________________________________________ -->
3079<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00003080 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3081</div>
3082
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003083<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003084
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003085<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003086<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00003087 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003088 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3089 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3090 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003092
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003093<h5>Overview:</h5>
3094<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00003095 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003096
3097<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003098 '<tt>neg</tt>' instruction present in most other intermediate
3099 representations.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003101<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003102<p>The two arguments to the '<tt>sub</tt>' instruction must
3103 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3104 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003105
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003106<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003107<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003108
Dan Gohman7ce405e2009-06-04 22:49:04 +00003109<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003110 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3111 result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003112
Bill Wendlingf85859d2009-07-20 02:29:24 +00003113<p>Because LLVM integers use a two's complement representation, this instruction
3114 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003115
Dan Gohman46e96012009-07-22 22:44:56 +00003116<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3117 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3118 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3119 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121<h5>Example:</h5>
3122<pre>
3123 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
3124 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
3125</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003126
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003127</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003129<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003130<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00003131 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3132</div>
3133
3134<div class="doc_text">
3135
3136<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003137<pre>
3138 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3139</pre>
3140
3141<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003142<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00003143 operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003144
3145<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003146 '<tt>fneg</tt>' instruction present in most other intermediate
3147 representations.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003148
3149<h5>Arguments:</h5>
Bill Wendling1a2630a2009-07-20 02:32:41 +00003150<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003151 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3152 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003153
3154<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003155<p>The value produced is the floating point difference of the two operands.</p>
3156
3157<h5>Example:</h5>
3158<pre>
3159 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3160 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3161</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003162
Dan Gohman7ce405e2009-06-04 22:49:04 +00003163</div>
3164
3165<!-- _______________________________________________________________________ -->
3166<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00003167 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3168</div>
3169
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003170<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003171
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003173<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00003174 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003175 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3176 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3177 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003178</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003179
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003180<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003181<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003182
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003184<p>The two arguments to the '<tt>mul</tt>' instruction must
3185 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3186 integer values. Both arguments must have identical types.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00003187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003189<p>The value produced is the integer product of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003190
Bill Wendlingf85859d2009-07-20 02:29:24 +00003191<p>If the result of the multiplication has unsigned overflow, the result
3192 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3193 width of the result.</p>
3194
3195<p>Because LLVM integers use a two's complement representation, and the result
3196 is the same width as the operands, this instruction returns the correct
3197 result for both signed and unsigned integers. If a full product
3198 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3199 be sign-extended or zero-extended as appropriate to the width of the full
3200 product.</p>
3201
Dan Gohman46e96012009-07-22 22:44:56 +00003202<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3203 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3204 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3205 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003206
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003207<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003208<pre>
3209 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003210</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003211
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003212</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003213
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003214<!-- _______________________________________________________________________ -->
Dan Gohman7ce405e2009-06-04 22:49:04 +00003215<div class="doc_subsubsection">
3216 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3217</div>
3218
3219<div class="doc_text">
3220
3221<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003222<pre>
3223 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003224</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003225
Dan Gohman7ce405e2009-06-04 22:49:04 +00003226<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003227<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003228
3229<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003230<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003231 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3232 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003233
3234<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003235<p>The value produced is the floating point product of the two operands.</p>
3236
3237<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003238<pre>
3239 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00003240</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003241
Dan Gohman7ce405e2009-06-04 22:49:04 +00003242</div>
3243
3244<!-- _______________________________________________________________________ -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003245<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3246</a></div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003248<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003249
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003251<pre>
3252 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003253</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003254
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003256<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003257
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003258<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003259<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003260 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3261 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003262
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003263<h5>Semantics:</h5>
Chris Lattner9aba1e22008-01-28 00:36:27 +00003264<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003265
Chris Lattner9aba1e22008-01-28 00:36:27 +00003266<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00003267 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3268
Chris Lattner9aba1e22008-01-28 00:36:27 +00003269<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003270
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003271<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003272<pre>
3273 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003274</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003275
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003276</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003277
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003278<!-- _______________________________________________________________________ -->
3279<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3280</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003281
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003282<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003284<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003285<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003286 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanb3b03482009-09-02 17:31:42 +00003287 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003288</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003289
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003290<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003291<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003292
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003293<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003294<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003295 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3296 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003298<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003299<p>The value produced is the signed integer quotient of the two operands rounded
3300 towards zero.</p>
3301
Chris Lattner9aba1e22008-01-28 00:36:27 +00003302<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00003303 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3304
Chris Lattner9aba1e22008-01-28 00:36:27 +00003305<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingf85859d2009-07-20 02:29:24 +00003306 undefined behavior; this is a rare case, but can occur, for example, by doing
3307 a 32-bit division of -2147483648 by -1.</p>
3308
Dan Gohman67fa48e2009-07-22 00:04:19 +00003309<p>If the <tt>exact</tt> keyword is present, the result value of the
3310 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3311 would occur.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00003312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003313<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003314<pre>
3315 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003316</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003320<!-- _______________________________________________________________________ -->
3321<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
3322Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003323
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003326<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003327<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003328 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003329</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003330
Bill Wendlingf85859d2009-07-20 02:29:24 +00003331<h5>Overview:</h5>
3332<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003333
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003334<h5>Arguments:</h5>
3335<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003336 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3337 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003338
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003339<h5>Semantics:</h5>
3340<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003341
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003342<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003343<pre>
3344 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003345</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003346
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003347</div>
Chris Lattner6704c212008-05-20 20:48:21 +00003348
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003349<!-- _______________________________________________________________________ -->
3350<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3351</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003353<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003354
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003356<pre>
3357 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003359
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003361<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3362 division of its two arguments.</p>
3363
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003364<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003365<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003366 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3367 values. Both arguments must have identical types.</p>
3368
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003369<h5>Semantics:</h5>
3370<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003371 This instruction always performs an unsigned division to get the
3372 remainder.</p>
3373
Chris Lattner9aba1e22008-01-28 00:36:27 +00003374<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003375 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3376
Chris Lattner9aba1e22008-01-28 00:36:27 +00003377<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003378
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003379<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003380<pre>
3381 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003382</pre>
3383
3384</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003387<div class="doc_subsubsection">
3388 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3389</div>
3390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003391<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003392
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003393<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003394<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003395 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003396</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003397
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003398<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003399<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3400 division of its two operands. This instruction can also take
3401 <a href="#t_vector">vector</a> versions of the values in which case the
3402 elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00003403
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003404<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003405<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003406 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3407 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003408
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003409<h5>Semantics:</h5>
3410<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingf85859d2009-07-20 02:29:24 +00003411 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3412 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3413 a value. For more information about the difference,
3414 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3415 Math Forum</a>. For a table of how this is implemented in various languages,
3416 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3417 Wikipedia: modulo operation</a>.</p>
3418
Chris Lattner9aba1e22008-01-28 00:36:27 +00003419<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003420 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3421
Chris Lattner9aba1e22008-01-28 00:36:27 +00003422<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003423 Overflow also leads to undefined behavior; this is a rare case, but can
3424 occur, for example, by taking the remainder of a 32-bit division of
3425 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3426 lets srem be implemented using instructions that return both the result of
3427 the division and the remainder.)</p>
3428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003429<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003430<pre>
3431 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003432</pre>
3433
3434</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003435
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003436<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003437<div class="doc_subsubsection">
3438 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003441
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003443<pre>
3444 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003446
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003447<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003448<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3449 its two operands.</p>
3450
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003451<h5>Arguments:</h5>
3452<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003453 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3454 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003455
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003457<p>This instruction returns the <i>remainder</i> of a division. The remainder
3458 has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003459
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003461<pre>
3462 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003463</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003465</div>
3466
3467<!-- ======================================================================= -->
3468<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3469Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003470
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003471<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003472
3473<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3474 program. They are generally very efficient instructions and can commonly be
3475 strength reduced from other instructions. They require two operands of the
3476 same type, execute an operation on them, and produce a single value. The
3477 resulting value is the same type as its operands.</p>
3478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003479</div>
3480
3481<!-- _______________________________________________________________________ -->
3482<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3483Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003484
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003485<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003486
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003487<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003488<pre>
3489 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003493<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3494 a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003495
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003497<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3498 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3499 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christophera1151bf2009-12-05 02:46:03 +00003500
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003501<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003502<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3503 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3504 is (statically or dynamically) negative or equal to or larger than the number
3505 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3506 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3507 shift amount in <tt>op2</tt>.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003508
Bill Wendlingf85859d2009-07-20 02:29:24 +00003509<h5>Example:</h5>
3510<pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3512 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3513 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003514 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003515 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003517
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003518</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003519
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003520<!-- _______________________________________________________________________ -->
3521<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3522Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003523
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003524<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003525
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003526<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003527<pre>
3528 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003529</pre>
3530
3531<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003532<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3533 operand shifted to the right a specified number of bits with zero fill.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534
3535<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003536<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003537 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3538 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003539
3540<h5>Semantics:</h5>
3541<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingf85859d2009-07-20 02:29:24 +00003542 significant bits of the result will be filled with zero bits after the shift.
3543 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3544 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3545 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3546 shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003547
3548<h5>Example:</h5>
3549<pre>
3550 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3551 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3552 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3553 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003554 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003555 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003557
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003558</div>
3559
3560<!-- _______________________________________________________________________ -->
3561<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3562Instruction</a> </div>
3563<div class="doc_text">
3564
3565<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003566<pre>
3567 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003568</pre>
3569
3570<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003571<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3572 operand shifted to the right a specified number of bits with sign
3573 extension.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003574
3575<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003576<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003577 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3578 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003579
3580<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003581<p>This instruction always performs an arithmetic shift right operation, The
3582 most significant bits of the result will be filled with the sign bit
3583 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3584 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3585 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3586 the corresponding shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003587
3588<h5>Example:</h5>
3589<pre>
3590 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3591 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3592 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3593 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003594 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003595 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003596</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003597
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003598</div>
3599
3600<!-- _______________________________________________________________________ -->
3601<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3602Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003603
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003604<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003606<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003607<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003608 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003609</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003611<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003612<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3613 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003614
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003615<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003616<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003617 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3618 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003619
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003620<h5>Semantics:</h5>
3621<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003622
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003623<table border="1" cellspacing="0" cellpadding="4">
3624 <tbody>
3625 <tr>
3626 <td>In0</td>
3627 <td>In1</td>
3628 <td>Out</td>
3629 </tr>
3630 <tr>
3631 <td>0</td>
3632 <td>0</td>
3633 <td>0</td>
3634 </tr>
3635 <tr>
3636 <td>0</td>
3637 <td>1</td>
3638 <td>0</td>
3639 </tr>
3640 <tr>
3641 <td>1</td>
3642 <td>0</td>
3643 <td>0</td>
3644 </tr>
3645 <tr>
3646 <td>1</td>
3647 <td>1</td>
3648 <td>1</td>
3649 </tr>
3650 </tbody>
3651</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003652
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003653<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003654<pre>
3655 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3657 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3658</pre>
3659</div>
3660<!-- _______________________________________________________________________ -->
3661<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003662
Bill Wendlingf85859d2009-07-20 02:29:24 +00003663<div class="doc_text">
3664
3665<h5>Syntax:</h5>
3666<pre>
3667 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3668</pre>
3669
3670<h5>Overview:</h5>
3671<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3672 two operands.</p>
3673
3674<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003675<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003676 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3677 values. Both arguments must have identical types.</p>
3678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003679<h5>Semantics:</h5>
3680<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003681
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682<table border="1" cellspacing="0" cellpadding="4">
3683 <tbody>
3684 <tr>
3685 <td>In0</td>
3686 <td>In1</td>
3687 <td>Out</td>
3688 </tr>
3689 <tr>
3690 <td>0</td>
3691 <td>0</td>
3692 <td>0</td>
3693 </tr>
3694 <tr>
3695 <td>0</td>
3696 <td>1</td>
3697 <td>1</td>
3698 </tr>
3699 <tr>
3700 <td>1</td>
3701 <td>0</td>
3702 <td>1</td>
3703 </tr>
3704 <tr>
3705 <td>1</td>
3706 <td>1</td>
3707 <td>1</td>
3708 </tr>
3709 </tbody>
3710</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003711
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003713<pre>
3714 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003715 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3716 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3717</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003719</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003720
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003721<!-- _______________________________________________________________________ -->
3722<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3723Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003724
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003725<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003727<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003728<pre>
3729 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003731
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003733<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3734 its two operands. The <tt>xor</tt> is used to implement the "one's
3735 complement" operation, which is the "~" operator in C.</p>
3736
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003737<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00003738<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003739 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3740 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003741
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003742<h5>Semantics:</h5>
3743<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003744
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003745<table border="1" cellspacing="0" cellpadding="4">
3746 <tbody>
3747 <tr>
3748 <td>In0</td>
3749 <td>In1</td>
3750 <td>Out</td>
3751 </tr>
3752 <tr>
3753 <td>0</td>
3754 <td>0</td>
3755 <td>0</td>
3756 </tr>
3757 <tr>
3758 <td>0</td>
3759 <td>1</td>
3760 <td>1</td>
3761 </tr>
3762 <tr>
3763 <td>1</td>
3764 <td>0</td>
3765 <td>1</td>
3766 </tr>
3767 <tr>
3768 <td>1</td>
3769 <td>1</td>
3770 <td>0</td>
3771 </tr>
3772 </tbody>
3773</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003775<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003776<pre>
3777 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3779 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3780 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3781</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003782
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783</div>
3784
3785<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00003786<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003787 <a name="vectorops">Vector Operations</a>
3788</div>
3789
3790<div class="doc_text">
3791
3792<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00003793 target-independent manner. These instructions cover the element-access and
3794 vector-specific operations needed to process vectors effectively. While LLVM
3795 does directly support these vector operations, many sophisticated algorithms
3796 will want to use target-specific intrinsics to take full advantage of a
3797 specific target.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798
3799</div>
3800
3801<!-- _______________________________________________________________________ -->
3802<div class="doc_subsubsection">
3803 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3804</div>
3805
3806<div class="doc_text">
3807
3808<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809<pre>
3810 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
3811</pre>
3812
3813<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003814<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3815 from a vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816
3817
3818<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003819<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3820 of <a href="#t_vector">vector</a> type. The second operand is an index
3821 indicating the position from which to extract the element. The index may be
3822 a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003823
3824<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003825<p>The result is a scalar of the same type as the element type of
3826 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3827 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3828 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003829
3830<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003831<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00003832 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003833</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003834
Bill Wendlingf85859d2009-07-20 02:29:24 +00003835</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003836
3837<!-- _______________________________________________________________________ -->
3838<div class="doc_subsubsection">
3839 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3840</div>
3841
3842<div class="doc_text">
3843
3844<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003845<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00003846 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003847</pre>
3848
3849<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003850<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3851 vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003852
3853<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003854<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3855 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3856 whose type must equal the element type of the first operand. The third
3857 operand is an index indicating the position at which to insert the value.
3858 The index may be a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003859
3860<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003861<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3862 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3863 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3864 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003865
3866<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003867<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00003868 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003869</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003870
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003871</div>
3872
3873<!-- _______________________________________________________________________ -->
3874<div class="doc_subsubsection">
3875 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3876</div>
3877
3878<div class="doc_text">
3879
3880<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003881<pre>
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003882 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883</pre>
3884
3885<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003886<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3887 from two input vectors, returning a vector with the same element type as the
3888 input and length that is the same as the shuffle mask.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889
3890<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003891<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3892 with types that match each other. The third argument is a shuffle mask whose
3893 element type is always 'i32'. The result of the instruction is a vector
3894 whose length is the same as the shuffle mask and whose element type is the
3895 same as the element type of the first two operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896
Bill Wendlingf85859d2009-07-20 02:29:24 +00003897<p>The shuffle mask operand is required to be a constant vector with either
3898 constant integer or undef values.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003899
3900<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003901<p>The elements of the two input vectors are numbered from left to right across
3902 both of the vectors. The shuffle mask operand specifies, for each element of
3903 the result vector, which element of the two input vectors the result element
3904 gets. The element selector may be undef (meaning "don't care") and the
3905 second operand may be undef if performing a shuffle from only one vector.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003906
3907<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003908<pre>
Eric Christophera1151bf2009-12-05 02:46:03 +00003909 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003910 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00003911 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003912 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christophera1151bf2009-12-05 02:46:03 +00003913 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003914 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00003915 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003916 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003918
Bill Wendlingf85859d2009-07-20 02:29:24 +00003919</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003920
3921<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00003922<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00003923 <a name="aggregateops">Aggregate Operations</a>
3924</div>
3925
3926<div class="doc_text">
3927
Chris Lattnerd5d51722010-02-12 20:49:41 +00003928<p>LLVM supports several instructions for working with
3929 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003930
3931</div>
3932
3933<!-- _______________________________________________________________________ -->
3934<div class="doc_subsubsection">
3935 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3936</div>
3937
3938<div class="doc_text">
3939
3940<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003941<pre>
3942 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3943</pre>
3944
3945<h5>Overview:</h5>
Chris Lattnerd5d51722010-02-12 20:49:41 +00003946<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
3947 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003948
3949<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003950<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattnerd5d51722010-02-12 20:49:41 +00003951 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
3952 <a href="#t_array">array</a> type. The operands are constant indices to
3953 specify which value to extract in a similar manner as indices in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00003954 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003955
3956<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003957<p>The result is the value at the position in the aggregate specified by the
3958 index operands.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003959
3960<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003961<pre>
Gabor Greifb2c73142009-10-28 13:14:50 +00003962 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003963</pre>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003964
Bill Wendlingf85859d2009-07-20 02:29:24 +00003965</div>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003966
3967<!-- _______________________________________________________________________ -->
3968<div class="doc_subsubsection">
3969 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3970</div>
3971
3972<div class="doc_text">
3973
3974<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003975<pre>
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00003976 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003977</pre>
3978
3979<h5>Overview:</h5>
Chris Lattnerd5d51722010-02-12 20:49:41 +00003980<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
3981 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003982
3983<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003984<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattnerd5d51722010-02-12 20:49:41 +00003985 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
3986 <a href="#t_array">array</a> type. The second operand is a first-class
3987 value to insert. The following operands are constant indices indicating
3988 the position at which to insert the value in a similar manner as indices in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00003989 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3990 value to insert must have the same type as the value identified by the
3991 indices.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003992
3993<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003994<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3995 that of <tt>val</tt> except that the value at the position specified by the
3996 indices is that of <tt>elt</tt>.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003997
3998<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003999<pre>
Jeffrey Yasskine05d7732010-01-11 19:19:26 +00004000 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4001 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00004002</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004003
Dan Gohman74d6faf2008-05-12 23:51:09 +00004004</div>
4005
4006
4007<!-- ======================================================================= -->
Eric Christophera1151bf2009-12-05 02:46:03 +00004008<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004009 <a name="memoryops">Memory Access and Addressing Operations</a>
4010</div>
4011
4012<div class="doc_text">
4013
Bill Wendlingf85859d2009-07-20 02:29:24 +00004014<p>A key design point of an SSA-based representation is how it represents
4015 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez6b054092009-10-26 23:44:29 +00004016 very simple. This section describes how to read, write, and allocate
Bill Wendlingf85859d2009-07-20 02:29:24 +00004017 memory in LLVM.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004018
4019</div>
4020
4021<!-- _______________________________________________________________________ -->
4022<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004023 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4024</div>
4025
4026<div class="doc_text">
4027
4028<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004029<pre>
4030 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
4031</pre>
4032
4033<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004034<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004035 currently executing function, to be automatically released when this function
4036 returns to its caller. The object is always allocated in the generic address
4037 space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004038
4039<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004040<p>The '<tt>alloca</tt>' instruction
4041 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4042 runtime stack, returning a pointer of the appropriate type to the program.
4043 If "NumElements" is specified, it is the number of elements allocated,
4044 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4045 specified, the value result of the allocation is guaranteed to be aligned to
4046 at least that boundary. If not specified, or if zero, the target can choose
4047 to align the allocation on any convenient boundary compatible with the
4048 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004049
4050<p>'<tt>type</tt>' may be any sized type.</p>
4051
4052<h5>Semantics:</h5>
Bill Wendling2a454572009-05-08 20:49:29 +00004053<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingf85859d2009-07-20 02:29:24 +00004054 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4055 memory is automatically released when the function returns. The
4056 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4057 variables that must have an address available. When the function returns
4058 (either with the <tt><a href="#i_ret">ret</a></tt>
4059 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4060 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004061
4062<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004063<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00004064 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4065 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4066 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4067 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004068</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004069
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004070</div>
4071
4072<!-- _______________________________________________________________________ -->
4073<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4074Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004075
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004076<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004077
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004078<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004079<pre>
David Greene02dfe202010-02-16 20:50:18 +00004080 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>]
4081 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>]
4082 !<index> = !{ i32 1 }
Bill Wendlingf85859d2009-07-20 02:29:24 +00004083</pre>
4084
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004085<h5>Overview:</h5>
4086<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004087
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004088<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004089<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4090 from which to load. The pointer must point to
4091 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4092 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4093 number or order of execution of this <tt>load</tt> with other
4094 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
David Greene02dfe202010-02-16 20:50:18 +00004095 instructions.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004096
4097<p>The optional constant "align" argument specifies the alignment of the
4098 operation (that is, the alignment of the memory address). A value of 0 or an
4099 omitted "align" argument means that the operation has the preferential
4100 alignment for the target. It is the responsibility of the code emitter to
4101 ensure that the alignment information is correct. Overestimating the
4102 alignment results in an undefined behavior. Underestimating the alignment may
4103 produce less efficient code. An alignment of 1 is always safe.</p>
4104
David Greene02dfe202010-02-16 20:50:18 +00004105<p>The optional !nontemporal metadata must reference a single metatadata
4106 name <index> corresponding to a metadata node with one i32 entry of
4107 value 1. The existance of the !nontemporal metatadata on the
4108 instruction tells the optimizer and code generator that this load is
4109 not expected to be reused in the cache. The code generator may
4110 select special instructions to save cache bandwidth, such as the
4111 MOVNT intruction on x86.</p>
4112
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004113<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004114<p>The location of memory pointed to is loaded. If the value being loaded is of
4115 scalar type then the number of bytes read does not exceed the minimum number
4116 of bytes needed to hold all bits of the type. For example, loading an
4117 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4118 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4119 is undefined if the value was not originally written using a store of the
4120 same type.</p>
4121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004122<h5>Examples:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004123<pre>
4124 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4125 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004126 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
4127</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004129</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004130
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004131<!-- _______________________________________________________________________ -->
4132<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4133Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004135<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004136
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004137<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004138<pre>
David Greene02dfe202010-02-16 20:50:18 +00004139 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
4140 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004141</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004142
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004143<h5>Overview:</h5>
4144<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004145
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004146<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004147<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4148 and an address at which to store it. The type of the
4149 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4150 the <a href="#t_firstclass">first class</a> type of the
4151 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4152 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4153 or order of execution of this <tt>store</tt> with other
4154 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4155 instructions.</p>
4156
4157<p>The optional constant "align" argument specifies the alignment of the
4158 operation (that is, the alignment of the memory address). A value of 0 or an
4159 omitted "align" argument means that the operation has the preferential
4160 alignment for the target. It is the responsibility of the code emitter to
4161 ensure that the alignment information is correct. Overestimating the
4162 alignment results in an undefined behavior. Underestimating the alignment may
4163 produce less efficient code. An alignment of 1 is always safe.</p>
4164
David Greene02dfe202010-02-16 20:50:18 +00004165<p>The optional !nontemporal metadata must reference a single metatadata
4166 name <index> corresponding to a metadata node with one i32 entry of
4167 value 1. The existance of the !nontemporal metatadata on the
4168 instruction tells the optimizer and code generator that this load is
4169 not expected to be reused in the cache. The code generator may
4170 select special instructions to save cache bandwidth, such as the
4171 MOVNT intruction on x86.</p>
4172
4173
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004174<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004175<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4176 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4177 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4178 does not exceed the minimum number of bytes needed to hold all bits of the
4179 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4180 writing a value of a type like <tt>i20</tt> with a size that is not an
4181 integral number of bytes, it is unspecified what happens to the extra bits
4182 that do not belong to the type, but they will typically be overwritten.</p>
4183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004184<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004185<pre>
4186 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00004187 store i32 3, i32* %ptr <i>; yields {void}</i>
4188 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004189</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004191</div>
4192
4193<!-- _______________________________________________________________________ -->
4194<div class="doc_subsubsection">
4195 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4196</div>
4197
4198<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004199
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200<h5>Syntax:</h5>
4201<pre>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004202 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman106b2ae2009-07-27 21:53:46 +00004203 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204</pre>
4205
4206<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004207<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattnerd5d51722010-02-12 20:49:41 +00004208 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4209 It performs address calculation only and does not access memory.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004210
4211<h5>Arguments:</h5>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004212<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnere92fc832009-07-29 06:44:13 +00004213 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004214 elements of the aggregate object are indexed. The interpretation of each
4215 index is dependent on the type being indexed into. The first index always
4216 indexes the pointer value given as the first argument, the second index
4217 indexes a value of the type pointed to (not necessarily the value directly
4218 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattnerd5d51722010-02-12 20:49:41 +00004219 indexed into must be a pointer value, subsequent types can be arrays,
4220 vectors, structs and unions. Note that subsequent types being indexed into
4221 can never be pointers, since that would require loading the pointer before
4222 continuing calculation.</p>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004223
4224<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnerd5d51722010-02-12 20:49:41 +00004225 When indexing into a (optionally packed) structure or union, only <tt>i32</tt>
4226 integer <b>constants</b> are allowed. When indexing into an array, pointer
4227 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnere92fc832009-07-29 06:44:13 +00004228 constant.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229
Bill Wendlingf85859d2009-07-20 02:29:24 +00004230<p>For example, let's consider a C code fragment and how it gets compiled to
4231 LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004232
4233<div class="doc_code">
4234<pre>
4235struct RT {
4236 char A;
4237 int B[10][20];
4238 char C;
4239};
4240struct ST {
4241 int X;
4242 double Y;
4243 struct RT Z;
4244};
4245
4246int *foo(struct ST *s) {
4247 return &amp;s[1].Z.B[5][13];
4248}
4249</pre>
4250</div>
4251
4252<p>The LLVM code generated by the GCC frontend is:</p>
4253
4254<div class="doc_code">
4255<pre>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +00004256%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4257%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004258
Dan Gohman47360842009-07-25 02:23:48 +00004259define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004260entry:
4261 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4262 ret i32* %reg
4263}
4264</pre>
4265</div>
4266
4267<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004268<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00004269 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4270 }</tt>' type, a structure. The second index indexes into the third element
4271 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4272 i8 }</tt>' type, another structure. The third index indexes into the second
4273 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4274 array. The two dimensions of the array are subscripted into, yielding an
4275 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4276 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004277
Bill Wendlingf85859d2009-07-20 02:29:24 +00004278<p>Note that it is perfectly legal to index partially through a structure,
4279 returning a pointer to an inner element. Because of this, the LLVM code for
4280 the given testcase is equivalent to:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004281
4282<pre>
Dan Gohman47360842009-07-25 02:23:48 +00004283 define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004284 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
4285 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4286 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
4287 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4288 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4289 ret i32* %t5
4290 }
4291</pre>
4292
Dan Gohman106b2ae2009-07-27 21:53:46 +00004293<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman4cba1562009-07-29 16:00:30 +00004294 <tt>getelementptr</tt> is undefined if the base pointer is not an
4295 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohmanbc4c87f2009-08-20 17:08:17 +00004296 that would be formed by successive addition of the offsets implied by the
4297 indices to the base address with infinitely precise arithmetic are not an
4298 <i>in bounds</i> address of that allocated object.
Dan Gohman4cba1562009-07-29 16:00:30 +00004299 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohmanbc4c87f2009-08-20 17:08:17 +00004300 that point into the object, plus the address one byte past the end.</p>
Dan Gohman106b2ae2009-07-27 21:53:46 +00004301
4302<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4303 the base address with silently-wrapping two's complement arithmetic, and
4304 the result value of the <tt>getelementptr</tt> may be outside the object
4305 pointed to by the base pointer. The result value may not necessarily be
4306 used to access memory though, even if it happens to point into allocated
4307 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4308 section for more information.</p>
4309
Bill Wendlingf85859d2009-07-20 02:29:24 +00004310<p>The getelementptr instruction is often confusing. For some more insight into
4311 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004312
4313<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004314<pre>
4315 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004316 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4317 <i>; yields i8*:vptr</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004318 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004319 <i>; yields i8*:eptr</i>
4320 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta4f9a0dc2009-04-25 07:27:44 +00004321 <i>; yields i32*:iptr</i>
Sanjiv Gupta1e46c582009-04-24 16:38:13 +00004322 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004323</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004324
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004325</div>
4326
4327<!-- ======================================================================= -->
4328<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4329</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004330
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004331<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004333<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingf85859d2009-07-20 02:29:24 +00004334 which all take a single operand and a type. They perform various bit
4335 conversions on the operand.</p>
4336
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004337</div>
4338
4339<!-- _______________________________________________________________________ -->
4340<div class="doc_subsubsection">
4341 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4342</div>
4343<div class="doc_text">
4344
4345<h5>Syntax:</h5>
4346<pre>
4347 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4348</pre>
4349
4350<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004351<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4352 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004353
4354<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004355<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4356 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4357 size and type of the result, which must be
4358 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4359 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4360 allowed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004361
4362<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004363<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4364 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4365 source size must be larger than the destination size, <tt>trunc</tt> cannot
4366 be a <i>no-op cast</i>. It will always truncate bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004367
4368<h5>Example:</h5>
4369<pre>
4370 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4371 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004372 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004373</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004374
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004375</div>
4376
4377<!-- _______________________________________________________________________ -->
4378<div class="doc_subsubsection">
4379 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4380</div>
4381<div class="doc_text">
4382
4383<h5>Syntax:</h5>
4384<pre>
4385 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4386</pre>
4387
4388<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004389<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004390 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004391
4392
4393<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004394<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingf85859d2009-07-20 02:29:24 +00004395 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4396 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christophera1151bf2009-12-05 02:46:03 +00004397 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004398 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004399
4400<h5>Semantics:</h5>
4401<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingf85859d2009-07-20 02:29:24 +00004402 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004403
4404<p>When zero extending from i1, the result will always be either 0 or 1.</p>
4405
4406<h5>Example:</h5>
4407<pre>
4408 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4409 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4410</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004411
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004412</div>
4413
4414<!-- _______________________________________________________________________ -->
4415<div class="doc_subsubsection">
4416 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4417</div>
4418<div class="doc_text">
4419
4420<h5>Syntax:</h5>
4421<pre>
4422 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4423</pre>
4424
4425<h5>Overview:</h5>
4426<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4427
4428<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004429<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingf85859d2009-07-20 02:29:24 +00004430 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4431 also be of <a href="#t_integer">integer</a> type. The bit size of the
Eric Christophera1151bf2009-12-05 02:46:03 +00004432 <tt>value</tt> must be smaller than the bit size of the destination type,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004433 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004434
4435<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004436<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4437 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4438 of the type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004439
4440<p>When sign extending from i1, the extension always results in -1 or 0.</p>
4441
4442<h5>Example:</h5>
4443<pre>
4444 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4445 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4446</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004447
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004448</div>
4449
4450<!-- _______________________________________________________________________ -->
4451<div class="doc_subsubsection">
4452 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4453</div>
4454
4455<div class="doc_text">
4456
4457<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004458<pre>
4459 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4460</pre>
4461
4462<h5>Overview:</h5>
4463<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004464 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004465
4466<h5>Arguments:</h5>
4467<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingf85859d2009-07-20 02:29:24 +00004468 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4469 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christophera1151bf2009-12-05 02:46:03 +00004470 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004471 <i>no-op cast</i>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004472
4473<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004474<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christophera1151bf2009-12-05 02:46:03 +00004475 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingf85859d2009-07-20 02:29:24 +00004476 <a href="#t_floating">floating point</a> type. If the value cannot fit
4477 within the destination type, <tt>ty2</tt>, then the results are
4478 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004479
4480<h5>Example:</h5>
4481<pre>
4482 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4483 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4484</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004485
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004486</div>
4487
4488<!-- _______________________________________________________________________ -->
4489<div class="doc_subsubsection">
4490 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4491</div>
4492<div class="doc_text">
4493
4494<h5>Syntax:</h5>
4495<pre>
4496 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4497</pre>
4498
4499<h5>Overview:</h5>
4500<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingf85859d2009-07-20 02:29:24 +00004501 floating point value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004502
4503<h5>Arguments:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004504<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004505 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4506 a <a href="#t_floating">floating point</a> type to cast it to. The source
4507 type must be smaller than the destination type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004508
4509<h5>Semantics:</h5>
4510<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingf85859d2009-07-20 02:29:24 +00004511 <a href="#t_floating">floating point</a> type to a larger
4512 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4513 used to make a <i>no-op cast</i> because it always changes bits. Use
4514 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004515
4516<h5>Example:</h5>
4517<pre>
4518 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4519 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4520</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004521
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004522</div>
4523
4524<!-- _______________________________________________________________________ -->
4525<div class="doc_subsubsection">
4526 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4527</div>
4528<div class="doc_text">
4529
4530<h5>Syntax:</h5>
4531<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004532 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004533</pre>
4534
4535<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00004536<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004537 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004538
4539<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004540<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4541 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4542 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4543 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4544 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545
4546<h5>Semantics:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004547<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004548 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4549 towards zero) unsigned integer value. If the value cannot fit
4550 in <tt>ty2</tt>, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004551
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004552<h5>Example:</h5>
4553<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004554 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004555 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004556 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004558
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004559</div>
4560
4561<!-- _______________________________________________________________________ -->
4562<div class="doc_subsubsection">
4563 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4564</div>
4565<div class="doc_text">
4566
4567<h5>Syntax:</h5>
4568<pre>
4569 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4570</pre>
4571
4572<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004573<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingf85859d2009-07-20 02:29:24 +00004574 <a href="#t_floating">floating point</a> <tt>value</tt> to
4575 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004576
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004577<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004578<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4579 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4580 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4581 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4582 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004583
4584<h5>Semantics:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00004585<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004586 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4587 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4588 the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004589
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004590<h5>Example:</h5>
4591<pre>
4592 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004593 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004594 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004595</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004596
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004597</div>
4598
4599<!-- _______________________________________________________________________ -->
4600<div class="doc_subsubsection">
4601 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4602</div>
4603<div class="doc_text">
4604
4605<h5>Syntax:</h5>
4606<pre>
4607 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4608</pre>
4609
4610<h5>Overview:</h5>
4611<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004612 integer and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004613
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004614<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004615<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004616 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4617 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4618 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4619 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004620
4621<h5>Semantics:</h5>
4622<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004623 integer quantity and converts it to the corresponding floating point
4624 value. If the value cannot fit in the floating point value, the results are
4625 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004627<h5>Example:</h5>
4628<pre>
4629 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004630 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004631</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004632
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633</div>
4634
4635<!-- _______________________________________________________________________ -->
4636<div class="doc_subsubsection">
4637 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4638</div>
4639<div class="doc_text">
4640
4641<h5>Syntax:</h5>
4642<pre>
4643 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4644</pre>
4645
4646<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004647<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4648 and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004649
4650<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004651<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004652 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4653 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4654 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4655 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004656
4657<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004658<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4659 quantity and converts it to the corresponding floating point value. If the
4660 value cannot fit in the floating point value, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004661
4662<h5>Example:</h5>
4663<pre>
4664 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004665 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004666</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004667
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004668</div>
4669
4670<!-- _______________________________________________________________________ -->
4671<div class="doc_subsubsection">
4672 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4673</div>
4674<div class="doc_text">
4675
4676<h5>Syntax:</h5>
4677<pre>
4678 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4679</pre>
4680
4681<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004682<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4683 the integer type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004684
4685<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004686<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4687 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4688 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004689
4690<h5>Semantics:</h5>
4691<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004692 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4693 truncating or zero extending that value to the size of the integer type. If
4694 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4695 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4696 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4697 change.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004698
4699<h5>Example:</h5>
4700<pre>
4701 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4702 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4703</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705</div>
4706
4707<!-- _______________________________________________________________________ -->
4708<div class="doc_subsubsection">
4709 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4710</div>
4711<div class="doc_text">
4712
4713<h5>Syntax:</h5>
4714<pre>
4715 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4716</pre>
4717
4718<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004719<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4720 pointer type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004721
4722<h5>Arguments:</h5>
4723<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004724 value to cast, and a type to cast it to, which must be a
4725 <a href="#t_pointer">pointer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726
4727<h5>Semantics:</h5>
4728<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004729 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4730 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4731 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4732 than the size of a pointer then a zero extension is done. If they are the
4733 same size, nothing is done (<i>no-op cast</i>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004734
4735<h5>Example:</h5>
4736<pre>
4737 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greif463c9342009-10-28 09:21:30 +00004738 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4739 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004740</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004741
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742</div>
4743
4744<!-- _______________________________________________________________________ -->
4745<div class="doc_subsubsection">
4746 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4747</div>
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<pre>
4752 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4753</pre>
4754
4755<h5>Overview:</h5>
4756<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004757 <tt>ty2</tt> without changing any bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004758
4759<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004760<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4761 non-aggregate first class value, and a type to cast it to, which must also be
4762 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4763 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4764 identical. If the source type is a pointer, the destination type must also be
4765 a pointer. This instruction supports bitwise conversion of vectors to
4766 integers and to vectors of other types (as long as they have the same
4767 size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004768
4769<h5>Semantics:</h5>
4770<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004771 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4772 this conversion. The conversion is done as if the <tt>value</tt> had been
4773 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4774 be converted to other pointer types with this instruction. To convert
4775 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4776 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004777
4778<h5>Example:</h5>
4779<pre>
4780 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4781 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christophera1151bf2009-12-05 02:46:03 +00004782 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004783</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004784
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004785</div>
4786
4787<!-- ======================================================================= -->
4788<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004789
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004790<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004791
4792<p>The instructions in this category are the "miscellaneous" instructions, which
4793 defy better classification.</p>
4794
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004795</div>
4796
4797<!-- _______________________________________________________________________ -->
4798<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4799</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004800
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004801<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004802
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004803<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004804<pre>
4805 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004806</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004807
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004808<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004809<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4810 boolean values based on comparison of its two integer, integer vector, or
4811 pointer operands.</p>
4812
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004813<h5>Arguments:</h5>
4814<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00004815 the condition code indicating the kind of comparison to perform. It is not a
4816 value, just a keyword. The possible condition code are:</p>
4817
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004818<ol>
4819 <li><tt>eq</tt>: equal</li>
4820 <li><tt>ne</tt>: not equal </li>
4821 <li><tt>ugt</tt>: unsigned greater than</li>
4822 <li><tt>uge</tt>: unsigned greater or equal</li>
4823 <li><tt>ult</tt>: unsigned less than</li>
4824 <li><tt>ule</tt>: unsigned less or equal</li>
4825 <li><tt>sgt</tt>: signed greater than</li>
4826 <li><tt>sge</tt>: signed greater or equal</li>
4827 <li><tt>slt</tt>: signed less than</li>
4828 <li><tt>sle</tt>: signed less or equal</li>
4829</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004830
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004831<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004832 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4833 typed. They must also be identical types.</p>
4834
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004836<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4837 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky244cf482009-09-27 00:45:11 +00004838 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004839 result, as follows:</p>
4840
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841<ol>
Eric Christophera1151bf2009-12-05 02:46:03 +00004842 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004843 <tt>false</tt> otherwise. No sign interpretation is necessary or
4844 performed.</li>
4845
Eric Christophera1151bf2009-12-05 02:46:03 +00004846 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004847 <tt>false</tt> otherwise. No sign interpretation is necessary or
4848 performed.</li>
4849
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004850 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004851 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4852
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004853 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004854 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4855 to <tt>op2</tt>.</li>
4856
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004857 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004858 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4859
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004860 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004861 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4862
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004863 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004864 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4865
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004866 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004867 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4868 to <tt>op2</tt>.</li>
4869
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004870 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004871 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4872
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004873 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004874 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004875</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004876
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingf85859d2009-07-20 02:29:24 +00004878 values are compared as if they were integers.</p>
4879
4880<p>If the operands are integer vectors, then they are compared element by
4881 element. The result is an <tt>i1</tt> vector with the same number of elements
4882 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004883
4884<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004885<pre>
4886 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004887 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4888 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4889 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4890 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4891 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
4892</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00004893
4894<p>Note that the code generator does not yet support vector types with
4895 the <tt>icmp</tt> instruction.</p>
4896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004897</div>
4898
4899<!-- _______________________________________________________________________ -->
4900<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4901</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004902
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004903<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004904
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004905<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004906<pre>
4907 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004908</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004909
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004910<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004911<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4912 values based on comparison of its operands.</p>
4913
4914<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky244cf482009-09-27 00:45:11 +00004915(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004916
4917<p>If the operands are floating point vectors, then the result type is a vector
4918 of boolean with the same number of elements as the operands being
4919 compared.</p>
4920
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004921<h5>Arguments:</h5>
4922<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00004923 the condition code indicating the kind of comparison to perform. It is not a
4924 value, just a keyword. The possible condition code are:</p>
4925
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004926<ol>
4927 <li><tt>false</tt>: no comparison, always returns false</li>
4928 <li><tt>oeq</tt>: ordered and equal</li>
4929 <li><tt>ogt</tt>: ordered and greater than </li>
4930 <li><tt>oge</tt>: ordered and greater than or equal</li>
4931 <li><tt>olt</tt>: ordered and less than </li>
4932 <li><tt>ole</tt>: ordered and less than or equal</li>
4933 <li><tt>one</tt>: ordered and not equal</li>
4934 <li><tt>ord</tt>: ordered (no nans)</li>
4935 <li><tt>ueq</tt>: unordered or equal</li>
4936 <li><tt>ugt</tt>: unordered or greater than </li>
4937 <li><tt>uge</tt>: unordered or greater than or equal</li>
4938 <li><tt>ult</tt>: unordered or less than </li>
4939 <li><tt>ule</tt>: unordered or less than or equal</li>
4940 <li><tt>une</tt>: unordered or not equal</li>
4941 <li><tt>uno</tt>: unordered (either nans)</li>
4942 <li><tt>true</tt>: no comparison, always returns true</li>
4943</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004944
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004945<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingf85859d2009-07-20 02:29:24 +00004946 <i>unordered</i> means that either operand may be a QNAN.</p>
4947
4948<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4949 a <a href="#t_floating">floating point</a> type or
4950 a <a href="#t_vector">vector</a> of floating point type. They must have
4951 identical types.</p>
4952
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004953<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004954<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004955 according to the condition code given as <tt>cond</tt>. If the operands are
4956 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky244cf482009-09-27 00:45:11 +00004957 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingf85859d2009-07-20 02:29:24 +00004958 follows:</p>
4959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004960<ol>
4961 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004962
Eric Christophera1151bf2009-12-05 02:46:03 +00004963 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004964 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4965
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004966 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004967 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4968
Eric Christophera1151bf2009-12-05 02:46:03 +00004969 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004970 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4971
Eric Christophera1151bf2009-12-05 02:46:03 +00004972 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004973 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4974
Eric Christophera1151bf2009-12-05 02:46:03 +00004975 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004976 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4977
Eric Christophera1151bf2009-12-05 02:46:03 +00004978 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004979 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4980
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004981 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004982
Eric Christophera1151bf2009-12-05 02:46:03 +00004983 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004984 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4985
Eric Christophera1151bf2009-12-05 02:46:03 +00004986 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004987 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4988
Eric Christophera1151bf2009-12-05 02:46:03 +00004989 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004990 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4991
Eric Christophera1151bf2009-12-05 02:46:03 +00004992 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004993 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4994
Eric Christophera1151bf2009-12-05 02:46:03 +00004995 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004996 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4997
Eric Christophera1151bf2009-12-05 02:46:03 +00004998 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004999 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5000
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005001 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005002
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5004</ol>
5005
5006<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005007<pre>
5008 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00005009 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5010 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5011 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005012</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00005013
5014<p>Note that the code generator does not yet support vector types with
5015 the <tt>fcmp</tt> instruction.</p>
5016
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005017</div>
5018
5019<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00005020<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00005021 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5022</div>
5023
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00005025
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005026<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005027<pre>
5028 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5029</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00005030
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005031<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005032<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5033 SSA graph representing the function.</p>
5034
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005035<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005036<p>The type of the incoming values is specified with the first type field. After
5037 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5038 one pair for each predecessor basic block of the current block. Only values
5039 of <a href="#t_firstclass">first class</a> type may be used as the value
5040 arguments to the PHI node. Only labels may be used as the label
5041 arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005042
Bill Wendlingf85859d2009-07-20 02:29:24 +00005043<p>There must be no non-phi instructions between the start of a basic block and
5044 the PHI instructions: i.e. PHI instructions must be first in a basic
5045 block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005046
Bill Wendlingf85859d2009-07-20 02:29:24 +00005047<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5048 occur on the edge from the corresponding predecessor block to the current
5049 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5050 value on the same edge).</p>
Jay Foad8e2fd2c2009-06-03 10:20:10 +00005051
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005052<h5>Semantics:</h5>
5053<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingf85859d2009-07-20 02:29:24 +00005054 specified by the pair corresponding to the predecessor basic block that
5055 executed just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00005056
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005057<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00005058<pre>
5059Loop: ; Infinite loop that counts from 0 on up...
5060 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5061 %nextindvar = add i32 %indvar, 1
5062 br label %Loop
5063</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005064
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005065</div>
5066
5067<!-- _______________________________________________________________________ -->
5068<div class="doc_subsubsection">
5069 <a name="i_select">'<tt>select</tt>' Instruction</a>
5070</div>
5071
5072<div class="doc_text">
5073
5074<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005075<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00005076 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5077
Dan Gohman2672f3e2008-10-14 16:51:45 +00005078 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005079</pre>
5080
5081<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005082<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5083 condition, without branching.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084
5085
5086<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005087<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5088 values indicating the condition, and two values of the
5089 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5090 vectors and the condition is a scalar, then entire vectors are selected, not
5091 individual elements.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005092
5093<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005094<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5095 first value argument; otherwise, it returns the second value argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005096
Bill Wendlingf85859d2009-07-20 02:29:24 +00005097<p>If the condition is a vector of i1, then the value arguments must be vectors
5098 of the same size, and the selection is done element by element.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005099
5100<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005101<pre>
5102 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
5103</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00005104
5105<p>Note that the code generator does not yet support conditions
5106 with vector type.</p>
5107
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005108</div>
5109
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005110<!-- _______________________________________________________________________ -->
5111<div class="doc_subsubsection">
5112 <a name="i_call">'<tt>call</tt>' Instruction</a>
5113</div>
5114
5115<div class="doc_text">
5116
5117<h5>Syntax:</h5>
5118<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00005119 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005120</pre>
5121
5122<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005123<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5124
5125<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126<p>This instruction requires several arguments:</p>
5127
5128<ol>
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005129 <li>The optional "tail" marker indicates that the callee function does not
5130 access any allocas or varargs in the caller. Note that calls may be
5131 marked "tail" even if they do not occur before
5132 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5133 present, the function call is eligible for tail call optimization,
5134 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5135 optimized into a jump</a>. As of this writing, the extra requirements for
5136 a call to actually be optimized are:
5137 <ul>
5138 <li>Caller and callee both have the calling
5139 convention <tt>fastcc</tt>.</li>
5140 <li>The call is in tail position (ret immediately follows call and ret
5141 uses value of call or is void).</li>
5142 <li>Option <tt>-tailcallopt</tt> is enabled,
5143 or <code>llvm::PerformTailCallOpt</code> is <code>true</code>.</li>
5144 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5145 constraints are met.</a></li>
5146 </ul>
5147 </li>
Devang Patelac2fc272008-10-06 18:50:38 +00005148
Bill Wendlingf85859d2009-07-20 02:29:24 +00005149 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5150 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskin3e1a3a02010-01-09 19:44:16 +00005151 defaults to using C calling conventions. The calling convention of the
5152 call must match the calling convention of the target function, or else the
5153 behavior is undefined.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00005154
Bill Wendlingf85859d2009-07-20 02:29:24 +00005155 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5156 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5157 '<tt>inreg</tt>' attributes are valid here.</li>
5158
5159 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5160 type of the return value. Functions that return no value are marked
5161 <tt><a href="#t_void">void</a></tt>.</li>
5162
5163 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5164 being invoked. The argument types must match the types implied by this
5165 signature. This type can be omitted if the function is not varargs and if
5166 the function type does not return a pointer to a function.</li>
5167
5168 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5169 be invoked. In most cases, this is a direct function invocation, but
5170 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5171 to function value.</li>
5172
5173 <li>'<tt>function args</tt>': argument list whose types match the function
5174 signature argument types. All arguments must be of
5175 <a href="#t_firstclass">first class</a> type. If the function signature
5176 indicates the function accepts a variable number of arguments, the extra
5177 arguments can be specified.</li>
5178
5179 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5180 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5181 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005182</ol>
5183
5184<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005185<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5186 a specified function, with its incoming arguments bound to the specified
5187 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5188 function, control flow continues with the instruction after the function
5189 call, and the return value of the function is bound to the result
5190 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005191
5192<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005193<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00005194 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00005195 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5196 %X = tail call i32 @foo() <i>; yields i32</i>
5197 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5198 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00005199
5200 %struct.A = type { i32, i8 }
Devang Patelac2fc272008-10-06 18:50:38 +00005201 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohman3e700032008-10-04 19:00:07 +00005202 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5203 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattnerac454b32008-10-08 06:26:11 +00005204 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijman2c4e05a2008-10-07 10:03:45 +00005205 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005206</pre>
5207
Dale Johannesen9fcf4a92009-09-24 18:38:21 +00005208<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen4730cd32009-09-25 17:04:42 +00005209standard C99 library as being the C99 library functions, and may perform
5210optimizations or generate code for them under that assumption. This is
5211something we'd like to change in the future to provide better support for
5212freestanding environments and non-C-based langauges.</p>
Dale Johannesen9fcf4a92009-09-24 18:38:21 +00005213
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005214</div>
5215
5216<!-- _______________________________________________________________________ -->
5217<div class="doc_subsubsection">
5218 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5219</div>
5220
5221<div class="doc_text">
5222
5223<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005224<pre>
5225 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5226</pre>
5227
5228<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005229<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingf85859d2009-07-20 02:29:24 +00005230 the "variable argument" area of a function call. It is used to implement the
5231 <tt>va_arg</tt> macro in C.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005232
5233<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005234<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5235 argument. It returns a value of the specified argument type and increments
5236 the <tt>va_list</tt> to point to the next argument. The actual type
5237 of <tt>va_list</tt> is target specific.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005238
5239<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005240<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5241 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5242 to the next argument. For more information, see the variable argument
5243 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005244
5245<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingf85859d2009-07-20 02:29:24 +00005246 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5247 function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005248
Bill Wendlingf85859d2009-07-20 02:29:24 +00005249<p><tt>va_arg</tt> is an LLVM instruction instead of
5250 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5251 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005252
5253<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005254<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5255
Bill Wendlingf85859d2009-07-20 02:29:24 +00005256<p>Note that the code generator does not yet fully support va_arg on many
5257 targets. Also, it does not currently support va_arg with aggregate types on
5258 any target.</p>
Dan Gohman60967192009-01-12 23:12:39 +00005259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005260</div>
5261
5262<!-- *********************************************************************** -->
5263<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5264<!-- *********************************************************************** -->
5265
5266<div class="doc_text">
5267
5268<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingf85859d2009-07-20 02:29:24 +00005269 well known names and semantics and are required to follow certain
5270 restrictions. Overall, these intrinsics represent an extension mechanism for
5271 the LLVM language that does not require changing all of the transformations
5272 in LLVM when adding to the language (or the bitcode reader/writer, the
5273 parser, etc...).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005274
5275<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00005276 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5277 begin with this prefix. Intrinsic functions must always be external
5278 functions: you cannot define the body of intrinsic functions. Intrinsic
5279 functions may only be used in call or invoke instructions: it is illegal to
5280 take the address of an intrinsic function. Additionally, because intrinsic
5281 functions are part of the LLVM language, it is required if any are added that
5282 they be documented here.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005283
Bill Wendlingf85859d2009-07-20 02:29:24 +00005284<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5285 family of functions that perform the same operation but on different data
5286 types. Because LLVM can represent over 8 million different integer types,
5287 overloading is used commonly to allow an intrinsic function to operate on any
5288 integer type. One or more of the argument types or the result type can be
5289 overloaded to accept any integer type. Argument types may also be defined as
5290 exactly matching a previous argument's type or the result type. This allows
5291 an intrinsic function which accepts multiple arguments, but needs all of them
5292 to be of the same type, to only be overloaded with respect to a single
5293 argument or the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005294
Bill Wendlingf85859d2009-07-20 02:29:24 +00005295<p>Overloaded intrinsics will have the names of its overloaded argument types
5296 encoded into its function name, each preceded by a period. Only those types
5297 which are overloaded result in a name suffix. Arguments whose type is matched
5298 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5299 can take an integer of any width and returns an integer of exactly the same
5300 integer width. This leads to a family of functions such as
5301 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5302 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5303 suffix is required. Because the argument's type is matched against the return
5304 type, it does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005305
Eric Christophera1151bf2009-12-05 02:46:03 +00005306<p>To learn how to add an intrinsic function, please see the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005307 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005308
5309</div>
5310
5311<!-- ======================================================================= -->
5312<div class="doc_subsection">
5313 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5314</div>
5315
5316<div class="doc_text">
5317
Bill Wendlingf85859d2009-07-20 02:29:24 +00005318<p>Variable argument support is defined in LLVM with
5319 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5320 intrinsic functions. These functions are related to the similarly named
5321 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005322
Bill Wendlingf85859d2009-07-20 02:29:24 +00005323<p>All of these functions operate on arguments that use a target-specific value
5324 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5325 not define what this type is, so all transformations should be prepared to
5326 handle these functions regardless of the type used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005327
5328<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005329 instruction and the variable argument handling intrinsic functions are
5330 used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005331
5332<div class="doc_code">
5333<pre>
5334define i32 @test(i32 %X, ...) {
5335 ; Initialize variable argument processing
5336 %ap = alloca i8*
5337 %ap2 = bitcast i8** %ap to i8*
5338 call void @llvm.va_start(i8* %ap2)
5339
5340 ; Read a single integer argument
5341 %tmp = va_arg i8** %ap, i32
5342
5343 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5344 %aq = alloca i8*
5345 %aq2 = bitcast i8** %aq to i8*
5346 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5347 call void @llvm.va_end(i8* %aq2)
5348
5349 ; Stop processing of arguments.
5350 call void @llvm.va_end(i8* %ap2)
5351 ret i32 %tmp
5352}
5353
5354declare void @llvm.va_start(i8*)
5355declare void @llvm.va_copy(i8*, i8*)
5356declare void @llvm.va_end(i8*)
5357</pre>
5358</div>
5359
5360</div>
5361
5362<!-- _______________________________________________________________________ -->
5363<div class="doc_subsubsection">
5364 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5365</div>
5366
5367
5368<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005369
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005370<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005371<pre>
5372 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5373</pre>
5374
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005375<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005376<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5377 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005378
5379<h5>Arguments:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005380<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005381
5382<h5>Semantics:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005383<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005384 macro available in C. In a target-dependent way, it initializes
5385 the <tt>va_list</tt> element to which the argument points, so that the next
5386 call to <tt>va_arg</tt> will produce the first variable argument passed to
5387 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5388 need to know the last argument of the function as the compiler can figure
5389 that out.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005390
5391</div>
5392
5393<!-- _______________________________________________________________________ -->
5394<div class="doc_subsubsection">
5395 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5396</div>
5397
5398<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005399
Bill Wendlingf85859d2009-07-20 02:29:24 +00005400<h5>Syntax:</h5>
5401<pre>
5402 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5403</pre>
5404
5405<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005406<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005407 which has been initialized previously
5408 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5409 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005410
5411<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005412<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5413
5414<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005415<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005416 macro available in C. In a target-dependent way, it destroys
5417 the <tt>va_list</tt> element to which the argument points. Calls
5418 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5419 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5420 with calls to <tt>llvm.va_end</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005421
5422</div>
5423
5424<!-- _______________________________________________________________________ -->
5425<div class="doc_subsubsection">
5426 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5427</div>
5428
5429<div class="doc_text">
5430
5431<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005432<pre>
5433 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5434</pre>
5435
5436<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005437<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingf85859d2009-07-20 02:29:24 +00005438 from the source argument list to the destination argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005439
5440<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005441<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingf85859d2009-07-20 02:29:24 +00005442 The second argument is a pointer to a <tt>va_list</tt> element to copy
5443 from.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005444
5445<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005446<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005447 macro available in C. In a target-dependent way, it copies the
5448 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5449 element. This intrinsic is necessary because
5450 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5451 arbitrarily complex and require, for example, memory allocation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005452
5453</div>
5454
5455<!-- ======================================================================= -->
5456<div class="doc_subsection">
5457 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5458</div>
5459
5460<div class="doc_text">
5461
Bill Wendlingf85859d2009-07-20 02:29:24 +00005462<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00005463Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingf85859d2009-07-20 02:29:24 +00005464intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5465roots on the stack</a>, as well as garbage collector implementations that
5466require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5467barriers. Front-ends for type-safe garbage collected languages should generate
5468these intrinsics to make use of the LLVM garbage collectors. For more details,
5469see <a href="GarbageCollection.html">Accurate Garbage Collection with
5470LLVM</a>.</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005471
Bill Wendlingf85859d2009-07-20 02:29:24 +00005472<p>The garbage collection intrinsics only operate on objects in the generic
5473 address space (address space zero).</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005474
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005475</div>
5476
5477<!-- _______________________________________________________________________ -->
5478<div class="doc_subsubsection">
5479 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5480</div>
5481
5482<div class="doc_text">
5483
5484<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005485<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005486 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005487</pre>
5488
5489<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005490<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingf85859d2009-07-20 02:29:24 +00005491 the code generator, and allows some metadata to be associated with it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005492
5493<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005494<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005495 root pointer. The second pointer (which must be either a constant or a
5496 global value address) contains the meta-data to be associated with the
5497 root.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005498
5499<h5>Semantics:</h5>
Chris Lattnera7d94ba2008-04-24 05:59:56 +00005500<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingf85859d2009-07-20 02:29:24 +00005501 location. At compile-time, the code generator generates information to allow
5502 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5503 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5504 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005505
5506</div>
5507
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005508<!-- _______________________________________________________________________ -->
5509<div class="doc_subsubsection">
5510 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5511</div>
5512
5513<div class="doc_text">
5514
5515<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005516<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005517 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005518</pre>
5519
5520<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005521<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005522 locations, allowing garbage collector implementations that require read
5523 barriers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005524
5525<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005526<p>The second argument is the address to read from, which should be an address
Bill Wendlingf85859d2009-07-20 02:29:24 +00005527 allocated from the garbage collector. The first object is a pointer to the
5528 start of the referenced object, if needed by the language runtime (otherwise
5529 null).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005530
5531<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005532<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingf85859d2009-07-20 02:29:24 +00005533 instruction, but may be replaced with substantially more complex code by the
5534 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5535 may only be used in a function which <a href="#gc">specifies a GC
5536 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005537
5538</div>
5539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005540<!-- _______________________________________________________________________ -->
5541<div class="doc_subsubsection">
5542 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5543</div>
5544
5545<div class="doc_text">
5546
5547<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005548<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005549 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005550</pre>
5551
5552<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005553<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005554 locations, allowing garbage collector implementations that require write
5555 barriers (such as generational or reference counting collectors).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005556
5557<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005558<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005559 object to store it to, and the third is the address of the field of Obj to
5560 store to. If the runtime does not require a pointer to the object, Obj may
5561 be null.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005562
5563<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005564<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingf85859d2009-07-20 02:29:24 +00005565 instruction, but may be replaced with substantially more complex code by the
5566 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5567 may only be used in a function which <a href="#gc">specifies a GC
5568 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005569
5570</div>
5571
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005572<!-- ======================================================================= -->
5573<div class="doc_subsection">
5574 <a name="int_codegen">Code Generator Intrinsics</a>
5575</div>
5576
5577<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005578
5579<p>These intrinsics are provided by LLVM to expose special features that may
5580 only be implemented with code generator support.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005581
5582</div>
5583
5584<!-- _______________________________________________________________________ -->
5585<div class="doc_subsubsection">
5586 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5587</div>
5588
5589<div class="doc_text">
5590
5591<h5>Syntax:</h5>
5592<pre>
5593 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5594</pre>
5595
5596<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005597<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5598 target-specific value indicating the return address of the current function
5599 or one of its callers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005600
5601<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005602<p>The argument to this intrinsic indicates which function to return the address
5603 for. Zero indicates the calling function, one indicates its caller, etc.
5604 The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005605
5606<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005607<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5608 indicating the return address of the specified call frame, or zero if it
5609 cannot be identified. The value returned by this intrinsic is likely to be
5610 incorrect or 0 for arguments other than zero, so it should only be used for
5611 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005612
Bill Wendlingf85859d2009-07-20 02:29:24 +00005613<p>Note that calling this intrinsic does not prevent function inlining or other
5614 aggressive transformations, so the value returned may not be that of the
5615 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005616
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005617</div>
5618
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005619<!-- _______________________________________________________________________ -->
5620<div class="doc_subsubsection">
5621 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5622</div>
5623
5624<div class="doc_text">
5625
5626<h5>Syntax:</h5>
5627<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005628 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005629</pre>
5630
5631<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005632<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5633 target-specific frame pointer value for the specified stack frame.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005634
5635<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005636<p>The argument to this intrinsic indicates which function to return the frame
5637 pointer for. Zero indicates the calling function, one indicates its caller,
5638 etc. The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005639
5640<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005641<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5642 indicating the frame address of the specified call frame, or zero if it
5643 cannot be identified. The value returned by this intrinsic is likely to be
5644 incorrect or 0 for arguments other than zero, so it should only be used for
5645 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005646
Bill Wendlingf85859d2009-07-20 02:29:24 +00005647<p>Note that calling this intrinsic does not prevent function inlining or other
5648 aggressive transformations, so the value returned may not be that of the
5649 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005650
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005651</div>
5652
5653<!-- _______________________________________________________________________ -->
5654<div class="doc_subsubsection">
5655 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5656</div>
5657
5658<div class="doc_text">
5659
5660<h5>Syntax:</h5>
5661<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005662 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005663</pre>
5664
5665<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005666<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5667 of the function stack, for use
5668 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5669 useful for implementing language features like scoped automatic variable
5670 sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005671
5672<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005673<p>This intrinsic returns a opaque pointer value that can be passed
5674 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5675 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5676 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5677 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5678 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5679 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005680
5681</div>
5682
5683<!-- _______________________________________________________________________ -->
5684<div class="doc_subsubsection">
5685 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5686</div>
5687
5688<div class="doc_text">
5689
5690<h5>Syntax:</h5>
5691<pre>
5692 declare void @llvm.stackrestore(i8 * %ptr)
5693</pre>
5694
5695<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005696<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5697 the function stack to the state it was in when the
5698 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5699 executed. This is useful for implementing language features like scoped
5700 automatic variable sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005701
5702<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005703<p>See the description
5704 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005705
5706</div>
5707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005708<!-- _______________________________________________________________________ -->
5709<div class="doc_subsubsection">
5710 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5711</div>
5712
5713<div class="doc_text">
5714
5715<h5>Syntax:</h5>
5716<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005717 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005718</pre>
5719
5720<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005721<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5722 insert a prefetch instruction if supported; otherwise, it is a noop.
5723 Prefetches have no effect on the behavior of the program but can change its
5724 performance characteristics.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005725
5726<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005727<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5728 specifier determining if the fetch should be for a read (0) or write (1),
5729 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5730 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5731 and <tt>locality</tt> arguments must be constant integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005732
5733<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005734<p>This intrinsic does not modify the behavior of the program. In particular,
5735 prefetches cannot trap and do not produce a value. On targets that support
5736 this intrinsic, the prefetch can provide hints to the processor cache for
5737 better performance.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005738
5739</div>
5740
5741<!-- _______________________________________________________________________ -->
5742<div class="doc_subsubsection">
5743 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5744</div>
5745
5746<div class="doc_text">
5747
5748<h5>Syntax:</h5>
5749<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005750 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005751</pre>
5752
5753<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005754<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5755 Counter (PC) in a region of code to simulators and other tools. The method
5756 is target specific, but it is expected that the marker will use exported
5757 symbols to transmit the PC of the marker. The marker makes no guarantees
5758 that it will remain with any specific instruction after optimizations. It is
5759 possible that the presence of a marker will inhibit optimizations. The
5760 intended use is to be inserted after optimizations to allow correlations of
5761 simulation runs.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005762
5763<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005764<p><tt>id</tt> is a numerical id identifying the marker.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005765
5766<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005767<p>This intrinsic does not modify the behavior of the program. Backends that do
5768 not support this intrinisic may ignore it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005769
5770</div>
5771
5772<!-- _______________________________________________________________________ -->
5773<div class="doc_subsubsection">
5774 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5775</div>
5776
5777<div class="doc_text">
5778
5779<h5>Syntax:</h5>
5780<pre>
5781 declare i64 @llvm.readcyclecounter( )
5782</pre>
5783
5784<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005785<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5786 counter register (or similar low latency, high accuracy clocks) on those
5787 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5788 should map to RPCC. As the backing counters overflow quickly (on the order
5789 of 9 seconds on alpha), this should only be used for small timings.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005790
5791<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005792<p>When directly supported, reading the cycle counter should not modify any
5793 memory. Implementations are allowed to either return a application specific
5794 value or a system wide value. On backends without support, this is lowered
5795 to a constant 0.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005796
5797</div>
5798
5799<!-- ======================================================================= -->
5800<div class="doc_subsection">
5801 <a name="int_libc">Standard C Library Intrinsics</a>
5802</div>
5803
5804<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005805
5806<p>LLVM provides intrinsics for a few important standard C library functions.
5807 These intrinsics allow source-language front-ends to pass information about
5808 the alignment of the pointer arguments to the code generator, providing
5809 opportunity for more efficient code generation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005810
5811</div>
5812
5813<!-- _______________________________________________________________________ -->
5814<div class="doc_subsubsection">
5815 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5816</div>
5817
5818<div class="doc_text">
5819
5820<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005821<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5822 integer bit width. Not all targets support all bit widths however.</p>
5823
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005824<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005825 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005826 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005827 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5828 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005829 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5830 i32 &lt;len&gt;, i32 &lt;align&gt;)
5831 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5832 i64 &lt;len&gt;, i32 &lt;align&gt;)
5833</pre>
5834
5835<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005836<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5837 source location to the destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005838
Bill Wendlingf85859d2009-07-20 02:29:24 +00005839<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5840 intrinsics do not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005841
5842<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005843<p>The first argument is a pointer to the destination, the second is a pointer
5844 to the source. The third argument is an integer argument specifying the
5845 number of bytes to copy, and the fourth argument is the alignment of the
5846 source and destination locations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005847
Bill Wendlingf85859d2009-07-20 02:29:24 +00005848<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5849 then the caller guarantees that both the source and destination pointers are
5850 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005851
5852<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005853<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5854 source location to the destination location, which are not allowed to
5855 overlap. It copies "len" bytes of memory over. If the argument is known to
5856 be aligned to some boundary, this can be specified as the fourth argument,
5857 otherwise it should be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005859</div>
5860
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005861<!-- _______________________________________________________________________ -->
5862<div class="doc_subsubsection">
5863 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5864</div>
5865
5866<div class="doc_text">
5867
5868<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00005869<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00005870 width. Not all targets support all bit widths however.</p>
5871
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005872<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005873 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005874 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005875 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5876 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005877 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5878 i32 &lt;len&gt;, i32 &lt;align&gt;)
5879 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5880 i64 &lt;len&gt;, i32 &lt;align&gt;)
5881</pre>
5882
5883<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005884<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5885 source location to the destination location. It is similar to the
5886 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5887 overlap.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005888
Bill Wendlingf85859d2009-07-20 02:29:24 +00005889<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5890 intrinsics do not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005891
5892<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005893<p>The first argument is a pointer to the destination, the second is a pointer
5894 to the source. The third argument is an integer argument specifying the
5895 number of bytes to copy, and the fourth argument is the alignment of the
5896 source and destination locations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005897
Bill Wendlingf85859d2009-07-20 02:29:24 +00005898<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5899 then the caller guarantees that the source and destination pointers are
5900 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005901
5902<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005903<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5904 source location to the destination location, which may overlap. It copies
5905 "len" bytes of memory over. If the argument is known to be aligned to some
5906 boundary, this can be specified as the fourth argument, otherwise it should
5907 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005908
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005909</div>
5910
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005911<!-- _______________________________________________________________________ -->
5912<div class="doc_subsubsection">
5913 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5914</div>
5915
5916<div class="doc_text">
5917
5918<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00005919<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00005920 width. Not all targets support all bit widths however.</p>
5921
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005922<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005923 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005924 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005925 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5926 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005927 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5928 i32 &lt;len&gt;, i32 &lt;align&gt;)
5929 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5930 i64 &lt;len&gt;, i32 &lt;align&gt;)
5931</pre>
5932
5933<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005934<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5935 particular byte value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005936
Bill Wendlingf85859d2009-07-20 02:29:24 +00005937<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5938 intrinsic does not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005939
5940<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005941<p>The first argument is a pointer to the destination to fill, the second is the
5942 byte value to fill it with, the third argument is an integer argument
5943 specifying the number of bytes to fill, and the fourth argument is the known
5944 alignment of destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005945
Bill Wendlingf85859d2009-07-20 02:29:24 +00005946<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5947 then the caller guarantees that the destination pointer is aligned to that
5948 boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005949
5950<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005951<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5952 at the destination location. If the argument is known to be aligned to some
5953 boundary, this can be specified as the fourth argument, otherwise it should
5954 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005955
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005956</div>
5957
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005958<!-- _______________________________________________________________________ -->
5959<div class="doc_subsubsection">
5960 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5961</div>
5962
5963<div class="doc_text">
5964
5965<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005966<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5967 floating point or vector of floating point type. Not all targets support all
5968 types however.</p>
5969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005970<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005971 declare float @llvm.sqrt.f32(float %Val)
5972 declare double @llvm.sqrt.f64(double %Val)
5973 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5974 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5975 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005976</pre>
5977
5978<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005979<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5980 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5981 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5982 behavior for negative numbers other than -0.0 (which allows for better
5983 optimization, because there is no need to worry about errno being
5984 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005985
5986<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005987<p>The argument and return value are floating point numbers of the same
5988 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005989
5990<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005991<p>This function returns the sqrt of the specified operand if it is a
5992 nonnegative floating point number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005993
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005994</div>
5995
5996<!-- _______________________________________________________________________ -->
5997<div class="doc_subsubsection">
5998 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5999</div>
6000
6001<div class="doc_text">
6002
6003<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006004<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6005 floating point or vector of floating point type. Not all targets support all
6006 types however.</p>
6007
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006008<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00006009 declare float @llvm.powi.f32(float %Val, i32 %power)
6010 declare double @llvm.powi.f64(double %Val, i32 %power)
6011 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6012 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6013 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006014</pre>
6015
6016<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006017<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6018 specified (positive or negative) power. The order of evaluation of
6019 multiplications is not defined. When a vector of floating point type is
6020 used, the second argument remains a scalar integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006021
6022<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006023<p>The second argument is an integer power, and the first is a value to raise to
6024 that power.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006025
6026<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006027<p>This function returns the first value raised to the second power with an
6028 unspecified sequence of rounding operations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006029
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006030</div>
6031
Dan Gohman361079c2007-10-15 20:30:11 +00006032<!-- _______________________________________________________________________ -->
6033<div class="doc_subsubsection">
6034 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6035</div>
6036
6037<div class="doc_text">
6038
6039<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006040<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6041 floating point or vector of floating point type. Not all targets support all
6042 types however.</p>
6043
Dan Gohman361079c2007-10-15 20:30:11 +00006044<pre>
6045 declare float @llvm.sin.f32(float %Val)
6046 declare double @llvm.sin.f64(double %Val)
6047 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6048 declare fp128 @llvm.sin.f128(fp128 %Val)
6049 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6050</pre>
6051
6052<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006053<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006054
6055<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006056<p>The argument and return value are floating point numbers of the same
6057 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006058
6059<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006060<p>This function returns the sine of the specified operand, returning the same
6061 values as the libm <tt>sin</tt> functions would, and handles error conditions
6062 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006063
Dan Gohman361079c2007-10-15 20:30:11 +00006064</div>
6065
6066<!-- _______________________________________________________________________ -->
6067<div class="doc_subsubsection">
6068 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6069</div>
6070
6071<div class="doc_text">
6072
6073<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006074<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6075 floating point or vector of floating point type. Not all targets support all
6076 types however.</p>
6077
Dan Gohman361079c2007-10-15 20:30:11 +00006078<pre>
6079 declare float @llvm.cos.f32(float %Val)
6080 declare double @llvm.cos.f64(double %Val)
6081 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6082 declare fp128 @llvm.cos.f128(fp128 %Val)
6083 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6084</pre>
6085
6086<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006087<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006088
6089<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006090<p>The argument and return value are floating point numbers of the same
6091 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006092
6093<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006094<p>This function returns the cosine of the specified operand, returning the same
6095 values as the libm <tt>cos</tt> functions would, and handles error conditions
6096 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006097
Dan Gohman361079c2007-10-15 20:30:11 +00006098</div>
6099
6100<!-- _______________________________________________________________________ -->
6101<div class="doc_subsubsection">
6102 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6103</div>
6104
6105<div class="doc_text">
6106
6107<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006108<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6109 floating point or vector of floating point type. Not all targets support all
6110 types however.</p>
6111
Dan Gohman361079c2007-10-15 20:30:11 +00006112<pre>
6113 declare float @llvm.pow.f32(float %Val, float %Power)
6114 declare double @llvm.pow.f64(double %Val, double %Power)
6115 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6116 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6117 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6118</pre>
6119
6120<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006121<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6122 specified (positive or negative) power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006123
6124<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006125<p>The second argument is a floating point power, and the first is a value to
6126 raise to that power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006127
6128<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006129<p>This function returns the first value raised to the second power, returning
6130 the same values as the libm <tt>pow</tt> functions would, and handles error
6131 conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00006132
Dan Gohman361079c2007-10-15 20:30:11 +00006133</div>
6134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006135<!-- ======================================================================= -->
6136<div class="doc_subsection">
6137 <a name="int_manip">Bit Manipulation Intrinsics</a>
6138</div>
6139
6140<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006141
6142<p>LLVM provides intrinsics for a few important bit manipulation operations.
6143 These allow efficient code generation for some algorithms.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006144
6145</div>
6146
6147<!-- _______________________________________________________________________ -->
6148<div class="doc_subsubsection">
6149 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6150</div>
6151
6152<div class="doc_text">
6153
6154<h5>Syntax:</h5>
6155<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00006156 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6157
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006158<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006159 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6160 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6161 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006162</pre>
6163
6164<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006165<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6166 values with an even number of bytes (positive multiple of 16 bits). These
6167 are useful for performing operations on data that is not in the target's
6168 native byte order.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006169
6170<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006171<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6172 and low byte of the input i16 swapped. Similarly,
6173 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6174 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6175 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6176 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6177 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6178 more, respectively).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006179
6180</div>
6181
6182<!-- _______________________________________________________________________ -->
6183<div class="doc_subsubsection">
6184 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6185</div>
6186
6187<div class="doc_text">
6188
6189<h5>Syntax:</h5>
6190<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00006191 width. Not all targets support all bit widths however.</p>
6192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006193<pre>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006194 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006195 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006196 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006197 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6198 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006199</pre>
6200
6201<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006202<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6203 in a value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006204
6205<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006206<p>The only argument is the value to be counted. The argument may be of any
6207 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006208
6209<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006210<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006211
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006212</div>
6213
6214<!-- _______________________________________________________________________ -->
6215<div class="doc_subsubsection">
6216 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6217</div>
6218
6219<div class="doc_text">
6220
6221<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006222<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6223 integer bit width. Not all targets support all bit widths however.</p>
6224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006225<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006226 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6227 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006228 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006229 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6230 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006231</pre>
6232
6233<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006234<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6235 leading zeros in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006236
6237<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006238<p>The only argument is the value to be counted. The argument may be of any
6239 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006240
6241<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006242<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6243 zeros in a variable. If the src == 0 then the result is the size in bits of
6244 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006245
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006246</div>
6247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006248<!-- _______________________________________________________________________ -->
6249<div class="doc_subsubsection">
6250 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6251</div>
6252
6253<div class="doc_text">
6254
6255<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006256<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6257 integer bit width. Not all targets support all bit widths however.</p>
6258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006259<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00006260 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6261 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006262 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00006263 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6264 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006265</pre>
6266
6267<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006268<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6269 trailing zeros.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006270
6271<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006272<p>The only argument is the value to be counted. The argument may be of any
6273 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274
6275<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006276<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6277 zeros in a variable. If the src == 0 then the result is the size in bits of
6278 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006279
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006280</div>
6281
Bill Wendling3e1258b2009-02-08 04:04:40 +00006282<!-- ======================================================================= -->
6283<div class="doc_subsection">
6284 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6285</div>
6286
6287<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006288
6289<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendling3e1258b2009-02-08 04:04:40 +00006290
6291</div>
6292
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006293<!-- _______________________________________________________________________ -->
6294<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006295 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006296</div>
6297
6298<div class="doc_text">
6299
6300<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006301<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006302 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006303
6304<pre>
6305 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6306 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6307 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6308</pre>
6309
6310<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006311<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006312 a signed addition of the two arguments, and indicate whether an overflow
6313 occurred during the signed summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006314
6315<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006316<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006317 be of integer types of any bit width, but they must have the same bit
6318 width. The second element of the result structure must be of
6319 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6320 undergo signed addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006321
6322<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006323<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006324 a signed addition of the two variables. They return a structure &mdash; the
6325 first element of which is the signed summation, and the second element of
6326 which is a bit specifying if the signed summation resulted in an
6327 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006328
6329<h5>Examples:</h5>
6330<pre>
6331 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6332 %sum = extractvalue {i32, i1} %res, 0
6333 %obit = extractvalue {i32, i1} %res, 1
6334 br i1 %obit, label %overflow, label %normal
6335</pre>
6336
6337</div>
6338
6339<!-- _______________________________________________________________________ -->
6340<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006341 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006342</div>
6343
6344<div class="doc_text">
6345
6346<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006347<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006348 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006349
6350<pre>
6351 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6352 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6353 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6354</pre>
6355
6356<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006357<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006358 an unsigned addition of the two arguments, and indicate whether a carry
6359 occurred during the unsigned summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006360
6361<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006362<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006363 be of integer types of any bit width, but they must have the same bit
6364 width. The second element of the result structure must be of
6365 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6366 undergo unsigned addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006367
6368<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006369<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006370 an unsigned addition of the two arguments. They return a structure &mdash;
6371 the first element of which is the sum, and the second element of which is a
6372 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006373
6374<h5>Examples:</h5>
6375<pre>
6376 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6377 %sum = extractvalue {i32, i1} %res, 0
6378 %obit = extractvalue {i32, i1} %res, 1
6379 br i1 %obit, label %carry, label %normal
6380</pre>
6381
6382</div>
6383
6384<!-- _______________________________________________________________________ -->
6385<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006386 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006387</div>
6388
6389<div class="doc_text">
6390
6391<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006392<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006393 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006394
6395<pre>
6396 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6397 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6398 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6399</pre>
6400
6401<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006402<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006403 a signed subtraction of the two arguments, and indicate whether an overflow
6404 occurred during the signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006405
6406<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006407<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006408 be of integer types of any bit width, but they must have the same bit
6409 width. The second element of the result structure must be of
6410 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6411 undergo signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006412
6413<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006414<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006415 a signed subtraction of the two arguments. They return a structure &mdash;
6416 the first element of which is the subtraction, and the second element of
6417 which is a bit specifying if the signed subtraction resulted in an
6418 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006419
6420<h5>Examples:</h5>
6421<pre>
6422 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6423 %sum = extractvalue {i32, i1} %res, 0
6424 %obit = extractvalue {i32, i1} %res, 1
6425 br i1 %obit, label %overflow, label %normal
6426</pre>
6427
6428</div>
6429
6430<!-- _______________________________________________________________________ -->
6431<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006432 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006433</div>
6434
6435<div class="doc_text">
6436
6437<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006438<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006439 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006440
6441<pre>
6442 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6443 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6444 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6445</pre>
6446
6447<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006448<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006449 an unsigned subtraction of the two arguments, and indicate whether an
6450 overflow occurred during the unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006451
6452<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006453<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006454 be of integer types of any bit width, but they must have the same bit
6455 width. The second element of the result structure must be of
6456 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6457 undergo unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006458
6459<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006460<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006461 an unsigned subtraction of the two arguments. They return a structure &mdash;
6462 the first element of which is the subtraction, and the second element of
6463 which is a bit specifying if the unsigned subtraction resulted in an
6464 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006465
6466<h5>Examples:</h5>
6467<pre>
6468 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6469 %sum = extractvalue {i32, i1} %res, 0
6470 %obit = extractvalue {i32, i1} %res, 1
6471 br i1 %obit, label %overflow, label %normal
6472</pre>
6473
6474</div>
6475
6476<!-- _______________________________________________________________________ -->
6477<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006478 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006479</div>
6480
6481<div class="doc_text">
6482
6483<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006484<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006485 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006486
6487<pre>
6488 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6489 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6490 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6491</pre>
6492
6493<h5>Overview:</h5>
6494
6495<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006496 a signed multiplication of the two arguments, and indicate whether an
6497 overflow occurred during the signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006498
6499<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006500<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006501 be of integer types of any bit width, but they must have the same bit
6502 width. The second element of the result structure must be of
6503 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6504 undergo signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006505
6506<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006507<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006508 a signed multiplication of the two arguments. They return a structure &mdash;
6509 the first element of which is the multiplication, and the second element of
6510 which is a bit specifying if the signed multiplication resulted in an
6511 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006512
6513<h5>Examples:</h5>
6514<pre>
6515 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6516 %sum = extractvalue {i32, i1} %res, 0
6517 %obit = extractvalue {i32, i1} %res, 1
6518 br i1 %obit, label %overflow, label %normal
6519</pre>
6520
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006521</div>
6522
Bill Wendlingbda98b62009-02-08 23:00:09 +00006523<!-- _______________________________________________________________________ -->
6524<div class="doc_subsubsection">
6525 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6526</div>
6527
6528<div class="doc_text">
6529
6530<h5>Syntax:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006531<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006532 on any integer bit width.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006533
6534<pre>
6535 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6536 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6537 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6538</pre>
6539
6540<h5>Overview:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006541<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006542 a unsigned multiplication of the two arguments, and indicate whether an
6543 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006544
6545<h5>Arguments:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006546<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006547 be of integer types of any bit width, but they must have the same bit
6548 width. The second element of the result structure must be of
6549 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6550 undergo unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006551
6552<h5>Semantics:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006553<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006554 an unsigned multiplication of the two arguments. They return a structure
6555 &mdash; the first element of which is the multiplication, and the second
6556 element of which is a bit specifying if the unsigned multiplication resulted
6557 in an overflow.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006558
6559<h5>Examples:</h5>
6560<pre>
6561 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6562 %sum = extractvalue {i32, i1} %res, 0
6563 %obit = extractvalue {i32, i1} %res, 1
6564 br i1 %obit, label %overflow, label %normal
6565</pre>
6566
6567</div>
6568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006569<!-- ======================================================================= -->
6570<div class="doc_subsection">
6571 <a name="int_debugger">Debugger Intrinsics</a>
6572</div>
6573
6574<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006575
Bill Wendlingf85859d2009-07-20 02:29:24 +00006576<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6577 prefix), are described in
6578 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6579 Level Debugging</a> document.</p>
6580
6581</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006582
6583<!-- ======================================================================= -->
6584<div class="doc_subsection">
6585 <a name="int_eh">Exception Handling Intrinsics</a>
6586</div>
6587
6588<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006589
6590<p>The LLVM exception handling intrinsics (which all start with
6591 <tt>llvm.eh.</tt> prefix), are described in
6592 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6593 Handling</a> document.</p>
6594
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006595</div>
6596
6597<!-- ======================================================================= -->
6598<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00006599 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00006600</div>
6601
6602<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006603
6604<p>This intrinsic makes it possible to excise one parameter, marked with
6605 the <tt>nest</tt> attribute, from a function. The result is a callable
6606 function pointer lacking the nest parameter - the caller does not need to
6607 provide a value for it. Instead, the value to use is stored in advance in a
6608 "trampoline", a block of memory usually allocated on the stack, which also
6609 contains code to splice the nest value into the argument list. This is used
6610 to implement the GCC nested function address extension.</p>
6611
6612<p>For example, if the function is
6613 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6614 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6615 follows:</p>
6616
6617<div class="doc_code">
Duncan Sands38947cd2007-07-27 12:58:54 +00006618<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00006619 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6620 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6621 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6622 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00006623</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006624</div>
6625
6626<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6627 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6628
Duncan Sands38947cd2007-07-27 12:58:54 +00006629</div>
6630
6631<!-- _______________________________________________________________________ -->
6632<div class="doc_subsubsection">
6633 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6634</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006635
Duncan Sands38947cd2007-07-27 12:58:54 +00006636<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006637
Duncan Sands38947cd2007-07-27 12:58:54 +00006638<h5>Syntax:</h5>
6639<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006640 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00006641</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006642
Duncan Sands38947cd2007-07-27 12:58:54 +00006643<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006644<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6645 function pointer suitable for executing it.</p>
6646
Duncan Sands38947cd2007-07-27 12:58:54 +00006647<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006648<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6649 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6650 sufficiently aligned block of memory; this memory is written to by the
6651 intrinsic. Note that the size and the alignment are target-specific - LLVM
6652 currently provides no portable way of determining them, so a front-end that
6653 generates this intrinsic needs to have some target-specific knowledge.
6654 The <tt>func</tt> argument must hold a function bitcast to
6655 an <tt>i8*</tt>.</p>
6656
Duncan Sands38947cd2007-07-27 12:58:54 +00006657<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006658<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6659 dependent code, turning it into a function. A pointer to this function is
6660 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6661 function pointer type</a> before being called. The new function's signature
6662 is the same as that of <tt>func</tt> with any arguments marked with
6663 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6664 is allowed, and it must be of pointer type. Calling the new function is
6665 equivalent to calling <tt>func</tt> with the same argument list, but
6666 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6667 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6668 by <tt>tramp</tt> is modified, then the effect of any later call to the
6669 returned function pointer is undefined.</p>
6670
Duncan Sands38947cd2007-07-27 12:58:54 +00006671</div>
6672
6673<!-- ======================================================================= -->
6674<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006675 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6676</div>
6677
6678<div class="doc_text">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006679
Bill Wendlingf85859d2009-07-20 02:29:24 +00006680<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6681 hardware constructs for atomic operations and memory synchronization. This
6682 provides an interface to the hardware, not an interface to the programmer. It
6683 is aimed at a low enough level to allow any programming models or APIs
6684 (Application Programming Interfaces) which need atomic behaviors to map
6685 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6686 hardware provides a "universal IR" for source languages, it also provides a
6687 starting point for developing a "universal" atomic operation and
6688 synchronization IR.</p>
6689
6690<p>These do <em>not</em> form an API such as high-level threading libraries,
6691 software transaction memory systems, atomic primitives, and intrinsic
6692 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6693 application libraries. The hardware interface provided by LLVM should allow
6694 a clean implementation of all of these APIs and parallel programming models.
6695 No one model or paradigm should be selected above others unless the hardware
6696 itself ubiquitously does so.</p>
6697
Andrew Lenharth785610d2008-02-16 01:24:58 +00006698</div>
6699
6700<!-- _______________________________________________________________________ -->
6701<div class="doc_subsubsection">
6702 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6703</div>
6704<div class="doc_text">
6705<h5>Syntax:</h5>
6706<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006707 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth785610d2008-02-16 01:24:58 +00006708</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006709
Andrew Lenharth785610d2008-02-16 01:24:58 +00006710<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006711<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6712 specific pairs of memory access types.</p>
6713
Andrew Lenharth785610d2008-02-16 01:24:58 +00006714<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006715<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6716 The first four arguments enables a specific barrier as listed below. The
6717 fith argument specifies that the barrier applies to io or device or uncached
6718 memory.</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006719
Bill Wendlingf85859d2009-07-20 02:29:24 +00006720<ul>
6721 <li><tt>ll</tt>: load-load barrier</li>
6722 <li><tt>ls</tt>: load-store barrier</li>
6723 <li><tt>sl</tt>: store-load barrier</li>
6724 <li><tt>ss</tt>: store-store barrier</li>
6725 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6726</ul>
6727
Andrew Lenharth785610d2008-02-16 01:24:58 +00006728<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006729<p>This intrinsic causes the system to enforce some ordering constraints upon
6730 the loads and stores of the program. This barrier does not
6731 indicate <em>when</em> any events will occur, it only enforces
6732 an <em>order</em> in which they occur. For any of the specified pairs of load
6733 and store operations (f.ex. load-load, or store-load), all of the first
6734 operations preceding the barrier will complete before any of the second
6735 operations succeeding the barrier begin. Specifically the semantics for each
6736 pairing is as follows:</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006737
Bill Wendlingf85859d2009-07-20 02:29:24 +00006738<ul>
6739 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6740 after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006741 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006742 store after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006743 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006744 store after the barrier begins.</li>
Eric Christophera1151bf2009-12-05 02:46:03 +00006745 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingf85859d2009-07-20 02:29:24 +00006746 load after the barrier begins.</li>
6747</ul>
6748
6749<p>These semantics are applied with a logical "and" behavior when more than one
6750 is enabled in a single memory barrier intrinsic.</p>
6751
6752<p>Backends may implement stronger barriers than those requested when they do
6753 not support as fine grained a barrier as requested. Some architectures do
6754 not need all types of barriers and on such architectures, these become
6755 noops.</p>
6756
Andrew Lenharth785610d2008-02-16 01:24:58 +00006757<h5>Example:</h5>
6758<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006759%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6760%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth785610d2008-02-16 01:24:58 +00006761 store i32 4, %ptr
6762
6763%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6764 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6765 <i>; guarantee the above finishes</i>
6766 store i32 8, %ptr <i>; before this begins</i>
6767</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006768
Andrew Lenharth785610d2008-02-16 01:24:58 +00006769</div>
6770
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006771<!-- _______________________________________________________________________ -->
6772<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006773 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006774</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006775
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006776<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006777
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006778<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006779<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6780 any integer bit width and for different address spaces. Not all targets
6781 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006782
6783<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006784 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6785 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6786 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6787 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006788</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006789
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006790<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006791<p>This loads a value in memory and compares it to a given value. If they are
6792 equal, it stores a new value into the memory.</p>
6793
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006794<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006795<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6796 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6797 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6798 this integer type. While any bit width integer may be used, targets may only
6799 lower representations they support in hardware.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006800
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006801<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006802<p>This entire intrinsic must be executed atomically. It first loads the value
6803 in memory pointed to by <tt>ptr</tt> and compares it with the
6804 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6805 memory. The loaded value is yielded in all cases. This provides the
6806 equivalent of an atomic compare-and-swap operation within the SSA
6807 framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006808
Bill Wendlingf85859d2009-07-20 02:29:24 +00006809<h5>Examples:</h5>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006810<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006811%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6812%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006813 store i32 4, %ptr
6814
6815%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006816%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006817 <i>; yields {i32}:result1 = 4</i>
6818%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6819%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6820
6821%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006822%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006823 <i>; yields {i32}:result2 = 8</i>
6824%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6825
6826%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6827</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006828
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006829</div>
6830
6831<!-- _______________________________________________________________________ -->
6832<div class="doc_subsubsection">
6833 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6834</div>
6835<div class="doc_text">
6836<h5>Syntax:</h5>
6837
Bill Wendlingf85859d2009-07-20 02:29:24 +00006838<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6839 integer bit width. Not all targets support all bit widths however.</p>
6840
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006841<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006842 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6843 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6844 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6845 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006846</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006847
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006848<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006849<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6850 the value from memory. It then stores the value in <tt>val</tt> in the memory
6851 at <tt>ptr</tt>.</p>
6852
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006853<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006854<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6855 the <tt>val</tt> argument and the result must be integers of the same bit
6856 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6857 integer type. The targets may only lower integer representations they
6858 support.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006859
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006860<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006861<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6862 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6863 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006864
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006865<h5>Examples:</h5>
6866<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006867%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6868%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006869 store i32 4, %ptr
6870
6871%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006872%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006873 <i>; yields {i32}:result1 = 4</i>
6874%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6875%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6876
6877%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006878%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006879 <i>; yields {i32}:result2 = 8</i>
6880
6881%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6882%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6883</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006884
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006885</div>
6886
6887<!-- _______________________________________________________________________ -->
6888<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006889 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006890
6891</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006892
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006893<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006894
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006895<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006896<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6897 any integer bit width. Not all targets support all bit widths however.</p>
6898
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006899<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006900 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6901 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6902 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6903 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006904</pre>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006905
Bill Wendlingf85859d2009-07-20 02:29:24 +00006906<h5>Overview:</h5>
6907<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6908 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6909
6910<h5>Arguments:</h5>
6911<p>The intrinsic takes two arguments, the first a pointer to an integer value
6912 and the second an integer value. The result is also an integer value. These
6913 integer types can have any bit width, but they must all have the same bit
6914 width. The targets may only lower integer representations they support.</p>
6915
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006916<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006917<p>This intrinsic does a series of operations atomically. It first loads the
6918 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6919 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006920
6921<h5>Examples:</h5>
6922<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006923%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6924%ptr = bitcast i8* %mallocP to i32*
6925 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006926%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006927 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006928%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006929 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006930%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006931 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006932%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006933</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006934
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006935</div>
6936
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006937<!-- _______________________________________________________________________ -->
6938<div class="doc_subsubsection">
6939 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6940
6941</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006942
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006943<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006944
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006945<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006946<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6947 any integer bit width and for different address spaces. Not all targets
6948 support all bit widths however.</p>
6949
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006950<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006951 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6952 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6953 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6954 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006955</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006956
Bill Wendlingf85859d2009-07-20 02:29:24 +00006957<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00006958<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingf85859d2009-07-20 02:29:24 +00006959 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6960
6961<h5>Arguments:</h5>
6962<p>The intrinsic takes two arguments, the first a pointer to an integer value
6963 and the second an integer value. The result is also an integer value. These
6964 integer types can have any bit width, but they must all have the same bit
6965 width. The targets may only lower integer representations they support.</p>
6966
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006967<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006968<p>This intrinsic does a series of operations atomically. It first loads the
6969 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6970 result to <tt>ptr</tt>. It yields the original value stored
6971 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006972
6973<h5>Examples:</h5>
6974<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00006975%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6976%ptr = bitcast i8* %mallocP to i32*
6977 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006978%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006979 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006980%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006981 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006982%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006983 <i>; yields {i32}:result3 = 2</i>
6984%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6985</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006986
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006987</div>
6988
6989<!-- _______________________________________________________________________ -->
6990<div class="doc_subsubsection">
6991 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6992 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6993 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6994 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006995</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006996
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006997<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006998
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006999<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007000<p>These are overloaded intrinsics. You can
7001 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7002 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7003 bit width and for different address spaces. Not all targets support all bit
7004 widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007005
Bill Wendlingf85859d2009-07-20 02:29:24 +00007006<pre>
7007 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7008 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7009 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7010 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007011</pre>
7012
7013<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007014 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7015 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7016 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7017 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007018</pre>
7019
7020<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007021 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7022 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7023 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7024 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007025</pre>
7026
7027<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007028 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7029 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7030 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7031 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007032</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007033
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007034<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007035<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7036 the value stored in memory at <tt>ptr</tt>. It yields the original value
7037 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007038
Bill Wendlingf85859d2009-07-20 02:29:24 +00007039<h5>Arguments:</h5>
7040<p>These intrinsics take two arguments, the first a pointer to an integer value
7041 and the second an integer value. The result is also an integer value. These
7042 integer types can have any bit width, but they must all have the same bit
7043 width. The targets may only lower integer representations they support.</p>
7044
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007045<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007046<p>These intrinsics does a series of operations atomically. They first load the
7047 value stored at <tt>ptr</tt>. They then do the bitwise
7048 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7049 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007050
7051<h5>Examples:</h5>
7052<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007053%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7054%ptr = bitcast i8* %mallocP to i32*
7055 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007056%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007057 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007058%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007059 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007060%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007061 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007062%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007063 <i>; yields {i32}:result3 = FF</i>
7064%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7065</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007066
Bill Wendlingf85859d2009-07-20 02:29:24 +00007067</div>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007068
7069<!-- _______________________________________________________________________ -->
7070<div class="doc_subsubsection">
7071 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7072 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7073 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7074 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007075</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007076
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007077<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007078
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007079<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007080<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7081 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7082 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7083 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007084
Bill Wendlingf85859d2009-07-20 02:29:24 +00007085<pre>
7086 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7087 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7088 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7089 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007090</pre>
7091
7092<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007093 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7094 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7095 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7096 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007097</pre>
7098
7099<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007100 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7101 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7102 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7103 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007104</pre>
7105
7106<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007107 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7108 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7109 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7110 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007111</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007112
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007113<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00007114<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingf85859d2009-07-20 02:29:24 +00007115 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7116 original value at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007117
Bill Wendlingf85859d2009-07-20 02:29:24 +00007118<h5>Arguments:</h5>
7119<p>These intrinsics take two arguments, the first a pointer to an integer value
7120 and the second an integer value. The result is also an integer value. These
7121 integer types can have any bit width, but they must all have the same bit
7122 width. The targets may only lower integer representations they support.</p>
7123
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007124<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007125<p>These intrinsics does a series of operations atomically. They first load the
7126 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7127 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7128 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007129
7130<h5>Examples:</h5>
7131<pre>
Victor Hernandez6b054092009-10-26 23:44:29 +00007132%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7133%ptr = bitcast i8* %mallocP to i32*
7134 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00007135%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007136 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007137%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007138 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007139%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007140 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00007141%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007142 <i>; yields {i32}:result3 = 8</i>
7143%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7144</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007145
Mon P Wang6bde9ec2008-06-25 08:15:39 +00007146</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00007147
Nick Lewyckyc888d352009-10-13 07:03:23 +00007148
7149<!-- ======================================================================= -->
7150<div class="doc_subsection">
7151 <a name="int_memorymarkers">Memory Use Markers</a>
7152</div>
7153
7154<div class="doc_text">
7155
7156<p>This class of intrinsics exists to information about the lifetime of memory
7157 objects and ranges where variables are immutable.</p>
7158
7159</div>
7160
7161<!-- _______________________________________________________________________ -->
7162<div class="doc_subsubsection">
7163 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7164</div>
7165
7166<div class="doc_text">
7167
7168<h5>Syntax:</h5>
7169<pre>
7170 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7171</pre>
7172
7173<h5>Overview:</h5>
7174<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7175 object's lifetime.</p>
7176
7177<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007178<p>The first argument is a constant integer representing the size of the
7179 object, or -1 if it is variable sized. The second argument is a pointer to
7180 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007181
7182<h5>Semantics:</h5>
7183<p>This intrinsic indicates that before this point in the code, the value of the
7184 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyf8a5f302009-10-27 16:56:58 +00007185 never be used and has an undefined value. A load from the pointer that
7186 precedes this intrinsic can be replaced with
Nick Lewyckyc888d352009-10-13 07:03:23 +00007187 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7188
7189</div>
7190
7191<!-- _______________________________________________________________________ -->
7192<div class="doc_subsubsection">
7193 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7194</div>
7195
7196<div class="doc_text">
7197
7198<h5>Syntax:</h5>
7199<pre>
7200 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7201</pre>
7202
7203<h5>Overview:</h5>
7204<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7205 object's lifetime.</p>
7206
7207<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007208<p>The first argument is a constant integer representing the size of the
7209 object, or -1 if it is variable sized. The second argument is a pointer to
7210 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007211
7212<h5>Semantics:</h5>
7213<p>This intrinsic indicates that after this point in the code, the value of the
7214 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7215 never be used and has an undefined value. Any stores into the memory object
7216 following this intrinsic may be removed as dead.
7217
7218</div>
7219
7220<!-- _______________________________________________________________________ -->
7221<div class="doc_subsubsection">
7222 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7223</div>
7224
7225<div class="doc_text">
7226
7227<h5>Syntax:</h5>
7228<pre>
7229 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7230</pre>
7231
7232<h5>Overview:</h5>
7233<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7234 a memory object will not change.</p>
7235
7236<h5>Arguments:</h5>
Nick Lewycky23f49982009-10-13 07:57:33 +00007237<p>The first argument is a constant integer representing the size of the
7238 object, or -1 if it is variable sized. The second argument is a pointer to
7239 the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007240
7241<h5>Semantics:</h5>
7242<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7243 the return value, the referenced memory location is constant and
7244 unchanging.</p>
7245
7246</div>
7247
7248<!-- _______________________________________________________________________ -->
7249<div class="doc_subsubsection">
7250 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7251</div>
7252
7253<div class="doc_text">
7254
7255<h5>Syntax:</h5>
7256<pre>
7257 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7258</pre>
7259
7260<h5>Overview:</h5>
7261<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7262 a memory object are mutable.</p>
7263
7264<h5>Arguments:</h5>
7265<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky23f49982009-10-13 07:57:33 +00007266 The second argument is a constant integer representing the size of the
7267 object, or -1 if it is variable sized and the third argument is a pointer
7268 to the object.</p>
Nick Lewyckyc888d352009-10-13 07:03:23 +00007269
7270<h5>Semantics:</h5>
7271<p>This intrinsic indicates that the memory is mutable again.</p>
7272
7273</div>
7274
Andrew Lenharth785610d2008-02-16 01:24:58 +00007275<!-- ======================================================================= -->
7276<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007277 <a name="int_general">General Intrinsics</a>
7278</div>
7279
7280<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007281
7282<p>This class of intrinsics is designed to be generic and has no specific
7283 purpose.</p>
7284
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007285</div>
7286
7287<!-- _______________________________________________________________________ -->
7288<div class="doc_subsubsection">
7289 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7290</div>
7291
7292<div class="doc_text">
7293
7294<h5>Syntax:</h5>
7295<pre>
7296 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7297</pre>
7298
7299<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007300<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007301
7302<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007303<p>The first argument is a pointer to a value, the second is a pointer to a
7304 global string, the third is a pointer to a global string which is the source
7305 file name, and the last argument is the line number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007306
7307<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007308<p>This intrinsic allows annotation of local variables with arbitrary strings.
7309 This can be useful for special purpose optimizations that want to look for
7310 these annotations. These have no other defined use, they are ignored by code
7311 generation and optimization.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007312
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007313</div>
7314
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007315<!-- _______________________________________________________________________ -->
7316<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00007317 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007318</div>
7319
7320<div class="doc_text">
7321
7322<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007323<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7324 any integer bit width.</p>
7325
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007326<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00007327 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7328 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7329 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7330 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7331 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007332</pre>
7333
7334<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007335<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007336
7337<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007338<p>The first argument is an integer value (result of some expression), the
7339 second is a pointer to a global string, the third is a pointer to a global
7340 string which is the source file name, and the last argument is the line
7341 number. It returns the value of the first argument.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007342
7343<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007344<p>This intrinsic allows annotations to be put on arbitrary expressions with
7345 arbitrary strings. This can be useful for special purpose optimizations that
7346 want to look for these annotations. These have no other defined use, they
7347 are ignored by code generation and optimization.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007348
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00007349</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007350
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007351<!-- _______________________________________________________________________ -->
7352<div class="doc_subsubsection">
7353 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7354</div>
7355
7356<div class="doc_text">
7357
7358<h5>Syntax:</h5>
7359<pre>
7360 declare void @llvm.trap()
7361</pre>
7362
7363<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007364<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007365
7366<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007367<p>None.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007368
7369<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007370<p>This intrinsics is lowered to the target dependent trap instruction. If the
7371 target does not have a trap instruction, this intrinsic will be lowered to
7372 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007373
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00007374</div>
7375
Bill Wendlinge4164592008-11-19 05:56:17 +00007376<!-- _______________________________________________________________________ -->
7377<div class="doc_subsubsection">
Misha Brukman5dd7f4d2008-11-22 23:55:29 +00007378 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendlinge4164592008-11-19 05:56:17 +00007379</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007380
Bill Wendlinge4164592008-11-19 05:56:17 +00007381<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00007382
Bill Wendlinge4164592008-11-19 05:56:17 +00007383<h5>Syntax:</h5>
7384<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007385 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendlinge4164592008-11-19 05:56:17 +00007386</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007387
Bill Wendlinge4164592008-11-19 05:56:17 +00007388<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007389<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7390 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7391 ensure that it is placed on the stack before local variables.</p>
7392
Bill Wendlinge4164592008-11-19 05:56:17 +00007393<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007394<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7395 arguments. The first argument is the value loaded from the stack
7396 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7397 that has enough space to hold the value of the guard.</p>
7398
Bill Wendlinge4164592008-11-19 05:56:17 +00007399<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00007400<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7401 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7402 stack. This is to ensure that if a local variable on the stack is
7403 overwritten, it will destroy the value of the guard. When the function exits,
7404 the guard on the stack is checked against the original guard. If they're
7405 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7406 function.</p>
7407
Bill Wendlinge4164592008-11-19 05:56:17 +00007408</div>
7409
Eric Christopher767a3722009-11-30 08:03:53 +00007410<!-- _______________________________________________________________________ -->
7411<div class="doc_subsubsection">
7412 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7413</div>
7414
7415<div class="doc_text">
7416
7417<h5>Syntax:</h5>
7418<pre>
Eric Christopher0101f9d2009-12-23 00:29:49 +00007419 declare i32 @llvm.objectsize.i32( i8* &lt;object&gt;, i1 &lt;type&gt; )
7420 declare i64 @llvm.objectsize.i64( i8* &lt;object&gt;, i1 &lt;type&gt; )
Eric Christopher767a3722009-11-30 08:03:53 +00007421</pre>
7422
7423<h5>Overview:</h5>
Eric Christophera1151bf2009-12-05 02:46:03 +00007424<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
Eric Christopher184f44d2010-01-08 21:42:39 +00007425 to the optimizers to discover at compile time either a) when an
Eric Christophera1151bf2009-12-05 02:46:03 +00007426 operation like memcpy will either overflow a buffer that corresponds to
7427 an object, or b) to determine that a runtime check for overflow isn't
7428 necessary. An object in this context means an allocation of a
Eric Christopher0101f9d2009-12-23 00:29:49 +00007429 specific class, structure, array, or other object.</p>
Eric Christopher767a3722009-11-30 08:03:53 +00007430
7431<h5>Arguments:</h5>
7432<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher0101f9d2009-12-23 00:29:49 +00007433 argument is a pointer to or into the <tt>object</tt>. The second argument
7434 is a boolean 0 or 1. This argument determines whether you want the
7435 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7436 1, variables are not allowed.</p>
7437
Eric Christopher767a3722009-11-30 08:03:53 +00007438<h5>Semantics:</h5>
7439<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Eric Christophera1151bf2009-12-05 02:46:03 +00007440 representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
7441 (depending on the <tt>type</tt> argument if the size cannot be determined
7442 at compile time.</p>
Eric Christopher767a3722009-11-30 08:03:53 +00007443
7444</div>
7445
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007446<!-- *********************************************************************** -->
7447<hr>
7448<address>
7449 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00007450 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007451 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00007452 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007453
7454 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7455 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
7456 Last modified: $Date$
7457</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00007458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007459</body>
7460</html>