blob: 12711c5ea3d70d8ac07b4be9f8430f92c513c0f6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dale Johannesen98738822008-02-22 22:17:59 +000021#include "llvm/ParamAttrsList.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000090 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000126 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000136 bool isSigned,
137 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000142
143 /// writeOperandDeref - Print the result of dereferencing the specified
144 /// operand with '*'. This is equivalent to printing '*' then using
145 /// writeOperand, but avoids excess syntax in some cases.
146 void writeOperandDeref(Value *Operand) {
147 if (isAddressExposed(Operand)) {
148 // Already something with an address exposed.
149 writeOperandInternal(Operand);
150 } else {
151 Out << "*(";
152 writeOperand(Operand);
153 Out << ")";
154 }
155 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156
157 void writeOperand(Value *Operand);
158 void writeOperandRaw(Value *Operand);
159 void writeOperandInternal(Value *Operand);
160 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000161 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 bool writeInstructionCast(const Instruction &I);
163
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000164 void writeMemoryAccess(Value *Operand, const Type *OperandType,
165 bool IsVolatile, unsigned Alignment);
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 private :
168 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
169
170 void lowerIntrinsics(Function &F);
171
172 void printModule(Module *M);
173 void printModuleTypes(const TypeSymbolTable &ST);
174 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
175 void printFloatingPointConstants(Function &F);
176 void printFunctionSignature(const Function *F, bool Prototype);
177
178 void printFunction(Function &);
179 void printBasicBlock(BasicBlock *BB);
180 void printLoop(Loop *L);
181
182 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
183 void printConstant(Constant *CPV);
184 void printConstantWithCast(Constant *CPV, unsigned Opcode);
185 bool printConstExprCast(const ConstantExpr *CE);
186 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000187 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188
Chris Lattner8bbc8592008-03-02 08:07:24 +0000189 /// isAddressExposed - Return true if the specified value's name needs to
190 /// have its address taken in order to get a C value of the correct type.
191 /// This happens for global variables, byval parameters, and direct allocas.
192 bool isAddressExposed(const Value *V) const {
193 if (const Argument *A = dyn_cast<Argument>(V))
194 return ByValParams.count(A);
195 return isa<GlobalVariable>(V) || isDirectAlloca(V);
196 }
197
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 // isInlinableInst - Attempt to inline instructions into their uses to build
199 // trees as much as possible. To do this, we have to consistently decide
200 // what is acceptable to inline, so that variable declarations don't get
201 // printed and an extra copy of the expr is not emitted.
202 //
203 static bool isInlinableInst(const Instruction &I) {
204 // Always inline cmp instructions, even if they are shared by multiple
205 // expressions. GCC generates horrible code if we don't.
206 if (isa<CmpInst>(I))
207 return true;
208
209 // Must be an expression, must be used exactly once. If it is dead, we
210 // emit it inline where it would go.
211 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
212 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Chris Lattnerf41a7942008-03-02 03:52:39 +0000213 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 // Don't inline a load across a store or other bad things!
215 return false;
216
Chris Lattnerf858a042008-03-02 05:41:07 +0000217 // Must not be used in inline asm, extractelement, or shufflevector.
218 if (I.hasOneUse()) {
219 const Instruction &User = cast<Instruction>(*I.use_back());
220 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
221 isa<ShuffleVectorInst>(User))
222 return false;
223 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224
225 // Only inline instruction it if it's use is in the same BB as the inst.
226 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
227 }
228
229 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
230 // variables which are accessed with the & operator. This causes GCC to
231 // generate significantly better code than to emit alloca calls directly.
232 //
233 static const AllocaInst *isDirectAlloca(const Value *V) {
234 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
235 if (!AI) return false;
236 if (AI->isArrayAllocation())
237 return 0; // FIXME: we can also inline fixed size array allocas!
238 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
239 return 0;
240 return AI;
241 }
242
243 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
244 static bool isInlineAsm(const Instruction& I) {
245 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
246 return true;
247 return false;
248 }
249
250 // Instruction visitation functions
251 friend class InstVisitor<CWriter>;
252
253 void visitReturnInst(ReturnInst &I);
254 void visitBranchInst(BranchInst &I);
255 void visitSwitchInst(SwitchInst &I);
256 void visitInvokeInst(InvokeInst &I) {
257 assert(0 && "Lowerinvoke pass didn't work!");
258 }
259
260 void visitUnwindInst(UnwindInst &I) {
261 assert(0 && "Lowerinvoke pass didn't work!");
262 }
263 void visitUnreachableInst(UnreachableInst &I);
264
265 void visitPHINode(PHINode &I);
266 void visitBinaryOperator(Instruction &I);
267 void visitICmpInst(ICmpInst &I);
268 void visitFCmpInst(FCmpInst &I);
269
270 void visitCastInst (CastInst &I);
271 void visitSelectInst(SelectInst &I);
272 void visitCallInst (CallInst &I);
273 void visitInlineAsm(CallInst &I);
274
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000282
283 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000284 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 void visitInstruction(Instruction &I) {
288 cerr << "C Writer does not know about " << I;
289 abort();
290 }
291
292 void outputLValue(Instruction *I) {
293 Out << " " << GetValueName(I) << " = ";
294 }
295
296 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
297 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
298 BasicBlock *Successor, unsigned Indent);
299 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
300 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000301 void printGEPExpression(Value *Ptr, gep_type_iterator I,
302 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000303
304 std::string GetValueName(const Value *Operand);
305 };
306}
307
308char CWriter::ID = 0;
309
310/// This method inserts names for any unnamed structure types that are used by
311/// the program, and removes names from structure types that are not used by the
312/// program.
313///
314bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
315 // Get a set of types that are used by the program...
316 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
317
318 // Loop over the module symbol table, removing types from UT that are
319 // already named, and removing names for types that are not used.
320 //
321 TypeSymbolTable &TST = M.getTypeSymbolTable();
322 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
323 TI != TE; ) {
324 TypeSymbolTable::iterator I = TI++;
325
326 // If this isn't a struct type, remove it from our set of types to name.
327 // This simplifies emission later.
328 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
329 TST.remove(I);
330 } else {
331 // If this is not used, remove it from the symbol table.
332 std::set<const Type *>::iterator UTI = UT.find(I->second);
333 if (UTI == UT.end())
334 TST.remove(I);
335 else
336 UT.erase(UTI); // Only keep one name for this type.
337 }
338 }
339
340 // UT now contains types that are not named. Loop over it, naming
341 // structure types.
342 //
343 bool Changed = false;
344 unsigned RenameCounter = 0;
345 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
346 I != E; ++I)
347 if (const StructType *ST = dyn_cast<StructType>(*I)) {
348 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
349 ++RenameCounter;
350 Changed = true;
351 }
352
353
354 // Loop over all external functions and globals. If we have two with
355 // identical names, merge them.
356 // FIXME: This code should disappear when we don't allow values with the same
357 // names when they have different types!
358 std::map<std::string, GlobalValue*> ExtSymbols;
359 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
360 Function *GV = I++;
361 if (GV->isDeclaration() && GV->hasName()) {
362 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
363 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
364 if (!X.second) {
365 // Found a conflict, replace this global with the previous one.
366 GlobalValue *OldGV = X.first->second;
367 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
368 GV->eraseFromParent();
369 Changed = true;
370 }
371 }
372 }
373 // Do the same for globals.
374 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
375 I != E;) {
376 GlobalVariable *GV = I++;
377 if (GV->isDeclaration() && GV->hasName()) {
378 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
379 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
380 if (!X.second) {
381 // Found a conflict, replace this global with the previous one.
382 GlobalValue *OldGV = X.first->second;
383 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
384 GV->eraseFromParent();
385 Changed = true;
386 }
387 }
388 }
389
390 return Changed;
391}
392
393/// printStructReturnPointerFunctionType - This is like printType for a struct
394/// return type, except, instead of printing the type as void (*)(Struct*, ...)
395/// print it as "Struct (*)(...)", for struct return functions.
396void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000397 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 const PointerType *TheTy) {
399 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
400 std::stringstream FunctionInnards;
401 FunctionInnards << " (*) (";
402 bool PrintedType = false;
403
404 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
405 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
406 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000407 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 if (PrintedType)
409 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000410 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000411 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
412 assert(isa<PointerType>(ArgTy));
413 ArgTy = cast<PointerType>(ArgTy)->getElementType();
414 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000415 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000416 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 PrintedType = true;
418 }
419 if (FTy->isVarArg()) {
420 if (PrintedType)
421 FunctionInnards << ", ...";
422 } else if (!PrintedType) {
423 FunctionInnards << "void";
424 }
425 FunctionInnards << ')';
426 std::string tstr = FunctionInnards.str();
427 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000428 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429}
430
431std::ostream &
432CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000433 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000434 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 "Invalid type for printSimpleType");
436 switch (Ty->getTypeID()) {
437 case Type::VoidTyID: return Out << "void " << NameSoFar;
438 case Type::IntegerTyID: {
439 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
440 if (NumBits == 1)
441 return Out << "bool " << NameSoFar;
442 else if (NumBits <= 8)
443 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
444 else if (NumBits <= 16)
445 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
446 else if (NumBits <= 32)
447 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
448 else {
449 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
450 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
451 }
452 }
453 case Type::FloatTyID: return Out << "float " << NameSoFar;
454 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000455 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
456 // present matches host 'long double'.
457 case Type::X86_FP80TyID:
458 case Type::PPC_FP128TyID:
459 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000460
461 case Type::VectorTyID: {
462 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000463 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000464 " __attribute__((vector_size(" +
465 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000466 }
467
468 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 cerr << "Unknown primitive type: " << *Ty << "\n";
470 abort();
471 }
472}
473
474// Pass the Type* and the variable name and this prints out the variable
475// declaration.
476//
477std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
478 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000479 bool IgnoreName, const ParamAttrsList* PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000480 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481 printSimpleType(Out, Ty, isSigned, NameSoFar);
482 return Out;
483 }
484
485 // Check to see if the type is named.
486 if (!IgnoreName || isa<OpaqueType>(Ty)) {
487 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
488 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
489 }
490
491 switch (Ty->getTypeID()) {
492 case Type::FunctionTyID: {
493 const FunctionType *FTy = cast<FunctionType>(Ty);
494 std::stringstream FunctionInnards;
495 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000496 unsigned Idx = 1;
497 for (FunctionType::param_iterator I = FTy->param_begin(),
498 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000499 const Type *ArgTy = *I;
500 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
501 assert(isa<PointerType>(ArgTy));
502 ArgTy = cast<PointerType>(ArgTy)->getElementType();
503 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 if (I != FTy->param_begin())
505 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000506 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000507 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 ++Idx;
509 }
510 if (FTy->isVarArg()) {
511 if (FTy->getNumParams())
512 FunctionInnards << ", ...";
513 } else if (!FTy->getNumParams()) {
514 FunctionInnards << "void";
515 }
516 FunctionInnards << ')';
517 std::string tstr = FunctionInnards.str();
518 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000519 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520 return Out;
521 }
522 case Type::StructTyID: {
523 const StructType *STy = cast<StructType>(Ty);
524 Out << NameSoFar + " {\n";
525 unsigned Idx = 0;
526 for (StructType::element_iterator I = STy->element_begin(),
527 E = STy->element_end(); I != E; ++I) {
528 Out << " ";
529 printType(Out, *I, false, "field" + utostr(Idx++));
530 Out << ";\n";
531 }
532 Out << '}';
533 if (STy->isPacked())
534 Out << " __attribute__ ((packed))";
535 return Out;
536 }
537
538 case Type::PointerTyID: {
539 const PointerType *PTy = cast<PointerType>(Ty);
540 std::string ptrName = "*" + NameSoFar;
541
542 if (isa<ArrayType>(PTy->getElementType()) ||
543 isa<VectorType>(PTy->getElementType()))
544 ptrName = "(" + ptrName + ")";
545
Evan Chengb8a072c2008-01-12 18:53:07 +0000546 if (PAL)
547 // Must be a function ptr cast!
548 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000549 return printType(Out, PTy->getElementType(), false, ptrName);
550 }
551
552 case Type::ArrayTyID: {
553 const ArrayType *ATy = cast<ArrayType>(Ty);
554 unsigned NumElements = ATy->getNumElements();
555 if (NumElements == 0) NumElements = 1;
556 return printType(Out, ATy->getElementType(), false,
557 NameSoFar + "[" + utostr(NumElements) + "]");
558 }
559
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000560 case Type::OpaqueTyID: {
561 static int Count = 0;
562 std::string TyName = "struct opaque_" + itostr(Count++);
563 assert(TypeNames.find(Ty) == TypeNames.end());
564 TypeNames[Ty] = TyName;
565 return Out << TyName << ' ' << NameSoFar;
566 }
567 default:
568 assert(0 && "Unhandled case in getTypeProps!");
569 abort();
570 }
571
572 return Out;
573}
574
575void CWriter::printConstantArray(ConstantArray *CPA) {
576
577 // As a special case, print the array as a string if it is an array of
578 // ubytes or an array of sbytes with positive values.
579 //
580 const Type *ETy = CPA->getType()->getElementType();
581 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
582
583 // Make sure the last character is a null char, as automatically added by C
584 if (isString && (CPA->getNumOperands() == 0 ||
585 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
586 isString = false;
587
588 if (isString) {
589 Out << '\"';
590 // Keep track of whether the last number was a hexadecimal escape
591 bool LastWasHex = false;
592
593 // Do not include the last character, which we know is null
594 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
595 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
596
597 // Print it out literally if it is a printable character. The only thing
598 // to be careful about is when the last letter output was a hex escape
599 // code, in which case we have to be careful not to print out hex digits
600 // explicitly (the C compiler thinks it is a continuation of the previous
601 // character, sheesh...)
602 //
603 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
604 LastWasHex = false;
605 if (C == '"' || C == '\\')
606 Out << "\\" << C;
607 else
608 Out << C;
609 } else {
610 LastWasHex = false;
611 switch (C) {
612 case '\n': Out << "\\n"; break;
613 case '\t': Out << "\\t"; break;
614 case '\r': Out << "\\r"; break;
615 case '\v': Out << "\\v"; break;
616 case '\a': Out << "\\a"; break;
617 case '\"': Out << "\\\""; break;
618 case '\'': Out << "\\\'"; break;
619 default:
620 Out << "\\x";
621 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
622 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
623 LastWasHex = true;
624 break;
625 }
626 }
627 }
628 Out << '\"';
629 } else {
630 Out << '{';
631 if (CPA->getNumOperands()) {
632 Out << ' ';
633 printConstant(cast<Constant>(CPA->getOperand(0)));
634 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
635 Out << ", ";
636 printConstant(cast<Constant>(CPA->getOperand(i)));
637 }
638 }
639 Out << " }";
640 }
641}
642
643void CWriter::printConstantVector(ConstantVector *CP) {
644 Out << '{';
645 if (CP->getNumOperands()) {
646 Out << ' ';
647 printConstant(cast<Constant>(CP->getOperand(0)));
648 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
649 Out << ", ";
650 printConstant(cast<Constant>(CP->getOperand(i)));
651 }
652 }
653 Out << " }";
654}
655
656// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
657// textually as a double (rather than as a reference to a stack-allocated
658// variable). We decide this by converting CFP to a string and back into a
659// double, and then checking whether the conversion results in a bit-equal
660// double to the original value of CFP. This depends on us and the target C
661// compiler agreeing on the conversion process (which is pretty likely since we
662// only deal in IEEE FP).
663//
664static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000665 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000666 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
667 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000668 APFloat APF = APFloat(CFP->getValueAPF()); // copy
669 if (CFP->getType()==Type::FloatTy)
670 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
672 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000673 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674 if (!strncmp(Buffer, "0x", 2) ||
675 !strncmp(Buffer, "-0x", 3) ||
676 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000677 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678 return false;
679#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
682 while (StrVal[0] == ' ')
683 StrVal.erase(StrVal.begin());
684
685 // Check to make sure that the stringized number is not some string like "Inf"
686 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
687 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
688 ((StrVal[0] == '-' || StrVal[0] == '+') &&
689 (StrVal[1] >= '0' && StrVal[1] <= '9')))
690 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000691 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692 return false;
693#endif
694}
695
696/// Print out the casting for a cast operation. This does the double casting
697/// necessary for conversion to the destination type, if necessary.
698/// @brief Print a cast
699void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
700 // Print the destination type cast
701 switch (opc) {
702 case Instruction::UIToFP:
703 case Instruction::SIToFP:
704 case Instruction::IntToPtr:
705 case Instruction::Trunc:
706 case Instruction::BitCast:
707 case Instruction::FPExt:
708 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
709 Out << '(';
710 printType(Out, DstTy);
711 Out << ')';
712 break;
713 case Instruction::ZExt:
714 case Instruction::PtrToInt:
715 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
716 Out << '(';
717 printSimpleType(Out, DstTy, false);
718 Out << ')';
719 break;
720 case Instruction::SExt:
721 case Instruction::FPToSI: // For these, make sure we get a signed dest
722 Out << '(';
723 printSimpleType(Out, DstTy, true);
724 Out << ')';
725 break;
726 default:
727 assert(0 && "Invalid cast opcode");
728 }
729
730 // Print the source type cast
731 switch (opc) {
732 case Instruction::UIToFP:
733 case Instruction::ZExt:
734 Out << '(';
735 printSimpleType(Out, SrcTy, false);
736 Out << ')';
737 break;
738 case Instruction::SIToFP:
739 case Instruction::SExt:
740 Out << '(';
741 printSimpleType(Out, SrcTy, true);
742 Out << ')';
743 break;
744 case Instruction::IntToPtr:
745 case Instruction::PtrToInt:
746 // Avoid "cast to pointer from integer of different size" warnings
747 Out << "(unsigned long)";
748 break;
749 case Instruction::Trunc:
750 case Instruction::BitCast:
751 case Instruction::FPExt:
752 case Instruction::FPTrunc:
753 case Instruction::FPToSI:
754 case Instruction::FPToUI:
755 break; // These don't need a source cast.
756 default:
757 assert(0 && "Invalid cast opcode");
758 break;
759 }
760}
761
762// printConstant - The LLVM Constant to C Constant converter.
763void CWriter::printConstant(Constant *CPV) {
764 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
765 switch (CE->getOpcode()) {
766 case Instruction::Trunc:
767 case Instruction::ZExt:
768 case Instruction::SExt:
769 case Instruction::FPTrunc:
770 case Instruction::FPExt:
771 case Instruction::UIToFP:
772 case Instruction::SIToFP:
773 case Instruction::FPToUI:
774 case Instruction::FPToSI:
775 case Instruction::PtrToInt:
776 case Instruction::IntToPtr:
777 case Instruction::BitCast:
778 Out << "(";
779 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
780 if (CE->getOpcode() == Instruction::SExt &&
781 CE->getOperand(0)->getType() == Type::Int1Ty) {
782 // Make sure we really sext from bool here by subtracting from 0
783 Out << "0-";
784 }
785 printConstant(CE->getOperand(0));
786 if (CE->getType() == Type::Int1Ty &&
787 (CE->getOpcode() == Instruction::Trunc ||
788 CE->getOpcode() == Instruction::FPToUI ||
789 CE->getOpcode() == Instruction::FPToSI ||
790 CE->getOpcode() == Instruction::PtrToInt)) {
791 // Make sure we really truncate to bool here by anding with 1
792 Out << "&1u";
793 }
794 Out << ')';
795 return;
796
797 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000798 Out << "(";
799 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
800 gep_type_end(CPV));
801 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 return;
803 case Instruction::Select:
804 Out << '(';
805 printConstant(CE->getOperand(0));
806 Out << '?';
807 printConstant(CE->getOperand(1));
808 Out << ':';
809 printConstant(CE->getOperand(2));
810 Out << ')';
811 return;
812 case Instruction::Add:
813 case Instruction::Sub:
814 case Instruction::Mul:
815 case Instruction::SDiv:
816 case Instruction::UDiv:
817 case Instruction::FDiv:
818 case Instruction::URem:
819 case Instruction::SRem:
820 case Instruction::FRem:
821 case Instruction::And:
822 case Instruction::Or:
823 case Instruction::Xor:
824 case Instruction::ICmp:
825 case Instruction::Shl:
826 case Instruction::LShr:
827 case Instruction::AShr:
828 {
829 Out << '(';
830 bool NeedsClosingParens = printConstExprCast(CE);
831 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
832 switch (CE->getOpcode()) {
833 case Instruction::Add: Out << " + "; break;
834 case Instruction::Sub: Out << " - "; break;
835 case Instruction::Mul: Out << " * "; break;
836 case Instruction::URem:
837 case Instruction::SRem:
838 case Instruction::FRem: Out << " % "; break;
839 case Instruction::UDiv:
840 case Instruction::SDiv:
841 case Instruction::FDiv: Out << " / "; break;
842 case Instruction::And: Out << " & "; break;
843 case Instruction::Or: Out << " | "; break;
844 case Instruction::Xor: Out << " ^ "; break;
845 case Instruction::Shl: Out << " << "; break;
846 case Instruction::LShr:
847 case Instruction::AShr: Out << " >> "; break;
848 case Instruction::ICmp:
849 switch (CE->getPredicate()) {
850 case ICmpInst::ICMP_EQ: Out << " == "; break;
851 case ICmpInst::ICMP_NE: Out << " != "; break;
852 case ICmpInst::ICMP_SLT:
853 case ICmpInst::ICMP_ULT: Out << " < "; break;
854 case ICmpInst::ICMP_SLE:
855 case ICmpInst::ICMP_ULE: Out << " <= "; break;
856 case ICmpInst::ICMP_SGT:
857 case ICmpInst::ICMP_UGT: Out << " > "; break;
858 case ICmpInst::ICMP_SGE:
859 case ICmpInst::ICMP_UGE: Out << " >= "; break;
860 default: assert(0 && "Illegal ICmp predicate");
861 }
862 break;
863 default: assert(0 && "Illegal opcode here!");
864 }
865 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
866 if (NeedsClosingParens)
867 Out << "))";
868 Out << ')';
869 return;
870 }
871 case Instruction::FCmp: {
872 Out << '(';
873 bool NeedsClosingParens = printConstExprCast(CE);
874 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
875 Out << "0";
876 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
877 Out << "1";
878 else {
879 const char* op = 0;
880 switch (CE->getPredicate()) {
881 default: assert(0 && "Illegal FCmp predicate");
882 case FCmpInst::FCMP_ORD: op = "ord"; break;
883 case FCmpInst::FCMP_UNO: op = "uno"; break;
884 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
885 case FCmpInst::FCMP_UNE: op = "une"; break;
886 case FCmpInst::FCMP_ULT: op = "ult"; break;
887 case FCmpInst::FCMP_ULE: op = "ule"; break;
888 case FCmpInst::FCMP_UGT: op = "ugt"; break;
889 case FCmpInst::FCMP_UGE: op = "uge"; break;
890 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
891 case FCmpInst::FCMP_ONE: op = "one"; break;
892 case FCmpInst::FCMP_OLT: op = "olt"; break;
893 case FCmpInst::FCMP_OLE: op = "ole"; break;
894 case FCmpInst::FCMP_OGT: op = "ogt"; break;
895 case FCmpInst::FCMP_OGE: op = "oge"; break;
896 }
897 Out << "llvm_fcmp_" << op << "(";
898 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
899 Out << ", ";
900 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
901 Out << ")";
902 }
903 if (NeedsClosingParens)
904 Out << "))";
905 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000906 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907 }
908 default:
909 cerr << "CWriter Error: Unhandled constant expression: "
910 << *CE << "\n";
911 abort();
912 }
913 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
914 Out << "((";
915 printType(Out, CPV->getType()); // sign doesn't matter
916 Out << ")/*UNDEF*/0)";
917 return;
918 }
919
920 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
921 const Type* Ty = CI->getType();
922 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000923 Out << (CI->getZExtValue() ? '1' : '0');
924 else if (Ty == Type::Int32Ty)
925 Out << CI->getZExtValue() << 'u';
926 else if (Ty->getPrimitiveSizeInBits() > 32)
927 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 else {
929 Out << "((";
930 printSimpleType(Out, Ty, false) << ')';
931 if (CI->isMinValue(true))
932 Out << CI->getZExtValue() << 'u';
933 else
934 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000935 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 }
937 return;
938 }
939
940 switch (CPV->getType()->getTypeID()) {
941 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000942 case Type::DoubleTyID:
943 case Type::X86_FP80TyID:
944 case Type::PPC_FP128TyID:
945 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946 ConstantFP *FPC = cast<ConstantFP>(CPV);
947 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
948 if (I != FPConstantMap.end()) {
949 // Because of FP precision problems we must load from a stack allocated
950 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000951 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
952 FPC->getType() == Type::DoubleTy ? "double" :
953 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 << "*)&FPConstant" << I->second << ')';
955 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000956 assert(FPC->getType() == Type::FloatTy ||
957 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000958 double V = FPC->getType() == Type::FloatTy ?
959 FPC->getValueAPF().convertToFloat() :
960 FPC->getValueAPF().convertToDouble();
961 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962 // The value is NaN
963
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000964 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
966 // it's 0x7ff4.
967 const unsigned long QuietNaN = 0x7ff8UL;
968 //const unsigned long SignalNaN = 0x7ff4UL;
969
970 // We need to grab the first part of the FP #
971 char Buffer[100];
972
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000973 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
975
976 std::string Num(&Buffer[0], &Buffer[6]);
977 unsigned long Val = strtoul(Num.c_str(), 0, 16);
978
979 if (FPC->getType() == Type::FloatTy)
980 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
981 << Buffer << "\") /*nan*/ ";
982 else
983 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
984 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000985 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000986 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000987 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
989 << " /*inf*/ ";
990 } else {
991 std::string Num;
992#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
993 // Print out the constant as a floating point number.
994 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000995 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 Num = Buffer;
997#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000998 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001000 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 }
1002 }
1003 break;
1004 }
1005
1006 case Type::ArrayTyID:
Chris Lattner8673e322008-03-02 05:46:57 +00001007 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001008 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001009 } else {
1010 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1012 Out << '{';
1013 if (AT->getNumElements()) {
1014 Out << ' ';
1015 Constant *CZ = Constant::getNullValue(AT->getElementType());
1016 printConstant(CZ);
1017 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1018 Out << ", ";
1019 printConstant(CZ);
1020 }
1021 }
1022 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 }
1024 break;
1025
1026 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001027 // Use C99 compound expression literal initializer syntax.
1028 Out << "(";
1029 printType(Out, CPV->getType());
1030 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001031 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001032 printConstantVector(CV);
1033 } else {
1034 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1035 const VectorType *VT = cast<VectorType>(CPV->getType());
1036 Out << "{ ";
1037 Constant *CZ = Constant::getNullValue(VT->getElementType());
1038 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001039 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001040 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 }
1043 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001044 }
1045 break;
1046
1047 case Type::StructTyID:
1048 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1049 const StructType *ST = cast<StructType>(CPV->getType());
1050 Out << '{';
1051 if (ST->getNumElements()) {
1052 Out << ' ';
1053 printConstant(Constant::getNullValue(ST->getElementType(0)));
1054 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1055 Out << ", ";
1056 printConstant(Constant::getNullValue(ST->getElementType(i)));
1057 }
1058 }
1059 Out << " }";
1060 } else {
1061 Out << '{';
1062 if (CPV->getNumOperands()) {
1063 Out << ' ';
1064 printConstant(cast<Constant>(CPV->getOperand(0)));
1065 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1066 Out << ", ";
1067 printConstant(cast<Constant>(CPV->getOperand(i)));
1068 }
1069 }
1070 Out << " }";
1071 }
1072 break;
1073
1074 case Type::PointerTyID:
1075 if (isa<ConstantPointerNull>(CPV)) {
1076 Out << "((";
1077 printType(Out, CPV->getType()); // sign doesn't matter
1078 Out << ")/*NULL*/0)";
1079 break;
1080 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1081 writeOperand(GV);
1082 break;
1083 }
1084 // FALL THROUGH
1085 default:
1086 cerr << "Unknown constant type: " << *CPV << "\n";
1087 abort();
1088 }
1089}
1090
1091// Some constant expressions need to be casted back to the original types
1092// because their operands were casted to the expected type. This function takes
1093// care of detecting that case and printing the cast for the ConstantExpr.
1094bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1095 bool NeedsExplicitCast = false;
1096 const Type *Ty = CE->getOperand(0)->getType();
1097 bool TypeIsSigned = false;
1098 switch (CE->getOpcode()) {
1099 case Instruction::LShr:
1100 case Instruction::URem:
1101 case Instruction::UDiv: NeedsExplicitCast = true; break;
1102 case Instruction::AShr:
1103 case Instruction::SRem:
1104 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1105 case Instruction::SExt:
1106 Ty = CE->getType();
1107 NeedsExplicitCast = true;
1108 TypeIsSigned = true;
1109 break;
1110 case Instruction::ZExt:
1111 case Instruction::Trunc:
1112 case Instruction::FPTrunc:
1113 case Instruction::FPExt:
1114 case Instruction::UIToFP:
1115 case Instruction::SIToFP:
1116 case Instruction::FPToUI:
1117 case Instruction::FPToSI:
1118 case Instruction::PtrToInt:
1119 case Instruction::IntToPtr:
1120 case Instruction::BitCast:
1121 Ty = CE->getType();
1122 NeedsExplicitCast = true;
1123 break;
1124 default: break;
1125 }
1126 if (NeedsExplicitCast) {
1127 Out << "((";
1128 if (Ty->isInteger() && Ty != Type::Int1Ty)
1129 printSimpleType(Out, Ty, TypeIsSigned);
1130 else
1131 printType(Out, Ty); // not integer, sign doesn't matter
1132 Out << ")(";
1133 }
1134 return NeedsExplicitCast;
1135}
1136
1137// Print a constant assuming that it is the operand for a given Opcode. The
1138// opcodes that care about sign need to cast their operands to the expected
1139// type before the operation proceeds. This function does the casting.
1140void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1141
1142 // Extract the operand's type, we'll need it.
1143 const Type* OpTy = CPV->getType();
1144
1145 // Indicate whether to do the cast or not.
1146 bool shouldCast = false;
1147 bool typeIsSigned = false;
1148
1149 // Based on the Opcode for which this Constant is being written, determine
1150 // the new type to which the operand should be casted by setting the value
1151 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1152 // casted below.
1153 switch (Opcode) {
1154 default:
1155 // for most instructions, it doesn't matter
1156 break;
1157 case Instruction::LShr:
1158 case Instruction::UDiv:
1159 case Instruction::URem:
1160 shouldCast = true;
1161 break;
1162 case Instruction::AShr:
1163 case Instruction::SDiv:
1164 case Instruction::SRem:
1165 shouldCast = true;
1166 typeIsSigned = true;
1167 break;
1168 }
1169
1170 // Write out the casted constant if we should, otherwise just write the
1171 // operand.
1172 if (shouldCast) {
1173 Out << "((";
1174 printSimpleType(Out, OpTy, typeIsSigned);
1175 Out << ")";
1176 printConstant(CPV);
1177 Out << ")";
1178 } else
1179 printConstant(CPV);
1180}
1181
1182std::string CWriter::GetValueName(const Value *Operand) {
1183 std::string Name;
1184
1185 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1186 std::string VarName;
1187
1188 Name = Operand->getName();
1189 VarName.reserve(Name.capacity());
1190
1191 for (std::string::iterator I = Name.begin(), E = Name.end();
1192 I != E; ++I) {
1193 char ch = *I;
1194
1195 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001196 (ch >= '0' && ch <= '9') || ch == '_')) {
1197 char buffer[5];
1198 sprintf(buffer, "_%x_", ch);
1199 VarName += buffer;
1200 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001201 VarName += ch;
1202 }
1203
1204 Name = "llvm_cbe_" + VarName;
1205 } else {
1206 Name = Mang->getValueName(Operand);
1207 }
1208
1209 return Name;
1210}
1211
1212void CWriter::writeOperandInternal(Value *Operand) {
1213 if (Instruction *I = dyn_cast<Instruction>(Operand))
1214 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1215 // Should we inline this instruction to build a tree?
1216 Out << '(';
1217 visit(*I);
1218 Out << ')';
1219 return;
1220 }
1221
1222 Constant* CPV = dyn_cast<Constant>(Operand);
1223
1224 if (CPV && !isa<GlobalValue>(CPV))
1225 printConstant(CPV);
1226 else
1227 Out << GetValueName(Operand);
1228}
1229
1230void CWriter::writeOperandRaw(Value *Operand) {
1231 Constant* CPV = dyn_cast<Constant>(Operand);
1232 if (CPV && !isa<GlobalValue>(CPV)) {
1233 printConstant(CPV);
1234 } else {
1235 Out << GetValueName(Operand);
1236 }
1237}
1238
1239void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001240 bool isAddressImplicit = isAddressExposed(Operand);
1241 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 Out << "(&"; // Global variables are referenced as their addresses by llvm
1243
1244 writeOperandInternal(Operand);
1245
Chris Lattner8bbc8592008-03-02 08:07:24 +00001246 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 Out << ')';
1248}
1249
1250// Some instructions need to have their result value casted back to the
1251// original types because their operands were casted to the expected type.
1252// This function takes care of detecting that case and printing the cast
1253// for the Instruction.
1254bool CWriter::writeInstructionCast(const Instruction &I) {
1255 const Type *Ty = I.getOperand(0)->getType();
1256 switch (I.getOpcode()) {
1257 case Instruction::LShr:
1258 case Instruction::URem:
1259 case Instruction::UDiv:
1260 Out << "((";
1261 printSimpleType(Out, Ty, false);
1262 Out << ")(";
1263 return true;
1264 case Instruction::AShr:
1265 case Instruction::SRem:
1266 case Instruction::SDiv:
1267 Out << "((";
1268 printSimpleType(Out, Ty, true);
1269 Out << ")(";
1270 return true;
1271 default: break;
1272 }
1273 return false;
1274}
1275
1276// Write the operand with a cast to another type based on the Opcode being used.
1277// This will be used in cases where an instruction has specific type
1278// requirements (usually signedness) for its operands.
1279void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1280
1281 // Extract the operand's type, we'll need it.
1282 const Type* OpTy = Operand->getType();
1283
1284 // Indicate whether to do the cast or not.
1285 bool shouldCast = false;
1286
1287 // Indicate whether the cast should be to a signed type or not.
1288 bool castIsSigned = false;
1289
1290 // Based on the Opcode for which this Operand is being written, determine
1291 // the new type to which the operand should be casted by setting the value
1292 // of OpTy. If we change OpTy, also set shouldCast to true.
1293 switch (Opcode) {
1294 default:
1295 // for most instructions, it doesn't matter
1296 break;
1297 case Instruction::LShr:
1298 case Instruction::UDiv:
1299 case Instruction::URem: // Cast to unsigned first
1300 shouldCast = true;
1301 castIsSigned = false;
1302 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001303 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 case Instruction::AShr:
1305 case Instruction::SDiv:
1306 case Instruction::SRem: // Cast to signed first
1307 shouldCast = true;
1308 castIsSigned = true;
1309 break;
1310 }
1311
1312 // Write out the casted operand if we should, otherwise just write the
1313 // operand.
1314 if (shouldCast) {
1315 Out << "((";
1316 printSimpleType(Out, OpTy, castIsSigned);
1317 Out << ")";
1318 writeOperand(Operand);
1319 Out << ")";
1320 } else
1321 writeOperand(Operand);
1322}
1323
1324// Write the operand with a cast to another type based on the icmp predicate
1325// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001326void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1327 // This has to do a cast to ensure the operand has the right signedness.
1328 // Also, if the operand is a pointer, we make sure to cast to an integer when
1329 // doing the comparison both for signedness and so that the C compiler doesn't
1330 // optimize things like "p < NULL" to false (p may contain an integer value
1331 // f.e.).
1332 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001333
1334 // Write out the casted operand if we should, otherwise just write the
1335 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001336 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001338 return;
1339 }
1340
1341 // Should this be a signed comparison? If so, convert to signed.
1342 bool castIsSigned = Cmp.isSignedPredicate();
1343
1344 // If the operand was a pointer, convert to a large integer type.
1345 const Type* OpTy = Operand->getType();
1346 if (isa<PointerType>(OpTy))
1347 OpTy = TD->getIntPtrType();
1348
1349 Out << "((";
1350 printSimpleType(Out, OpTy, castIsSigned);
1351 Out << ")";
1352 writeOperand(Operand);
1353 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354}
1355
1356// generateCompilerSpecificCode - This is where we add conditional compilation
1357// directives to cater to specific compilers as need be.
1358//
1359static void generateCompilerSpecificCode(std::ostream& Out) {
1360 // Alloca is hard to get, and we don't want to include stdlib.h here.
1361 Out << "/* get a declaration for alloca */\n"
1362 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1363 << "#define alloca(x) __builtin_alloca((x))\n"
1364 << "#define _alloca(x) __builtin_alloca((x))\n"
1365 << "#elif defined(__APPLE__)\n"
1366 << "extern void *__builtin_alloca(unsigned long);\n"
1367 << "#define alloca(x) __builtin_alloca(x)\n"
1368 << "#define longjmp _longjmp\n"
1369 << "#define setjmp _setjmp\n"
1370 << "#elif defined(__sun__)\n"
1371 << "#if defined(__sparcv9)\n"
1372 << "extern void *__builtin_alloca(unsigned long);\n"
1373 << "#else\n"
1374 << "extern void *__builtin_alloca(unsigned int);\n"
1375 << "#endif\n"
1376 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001377 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 << "#define alloca(x) __builtin_alloca(x)\n"
1379 << "#elif defined(_MSC_VER)\n"
1380 << "#define inline _inline\n"
1381 << "#define alloca(x) _alloca(x)\n"
1382 << "#else\n"
1383 << "#include <alloca.h>\n"
1384 << "#endif\n\n";
1385
1386 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1387 // If we aren't being compiled with GCC, just drop these attributes.
1388 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1389 << "#define __attribute__(X)\n"
1390 << "#endif\n\n";
1391
1392 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1393 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1394 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1395 << "#elif defined(__GNUC__)\n"
1396 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1397 << "#else\n"
1398 << "#define __EXTERNAL_WEAK__\n"
1399 << "#endif\n\n";
1400
1401 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1402 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1403 << "#define __ATTRIBUTE_WEAK__\n"
1404 << "#elif defined(__GNUC__)\n"
1405 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1406 << "#else\n"
1407 << "#define __ATTRIBUTE_WEAK__\n"
1408 << "#endif\n\n";
1409
1410 // Add hidden visibility support. FIXME: APPLE_CC?
1411 Out << "#if defined(__GNUC__)\n"
1412 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1413 << "#endif\n\n";
1414
1415 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1416 // From the GCC documentation:
1417 //
1418 // double __builtin_nan (const char *str)
1419 //
1420 // This is an implementation of the ISO C99 function nan.
1421 //
1422 // Since ISO C99 defines this function in terms of strtod, which we do
1423 // not implement, a description of the parsing is in order. The string is
1424 // parsed as by strtol; that is, the base is recognized by leading 0 or
1425 // 0x prefixes. The number parsed is placed in the significand such that
1426 // the least significant bit of the number is at the least significant
1427 // bit of the significand. The number is truncated to fit the significand
1428 // field provided. The significand is forced to be a quiet NaN.
1429 //
1430 // This function, if given a string literal, is evaluated early enough
1431 // that it is considered a compile-time constant.
1432 //
1433 // float __builtin_nanf (const char *str)
1434 //
1435 // Similar to __builtin_nan, except the return type is float.
1436 //
1437 // double __builtin_inf (void)
1438 //
1439 // Similar to __builtin_huge_val, except a warning is generated if the
1440 // target floating-point format does not support infinities. This
1441 // function is suitable for implementing the ISO C99 macro INFINITY.
1442 //
1443 // float __builtin_inff (void)
1444 //
1445 // Similar to __builtin_inf, except the return type is float.
1446 Out << "#ifdef __GNUC__\n"
1447 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1448 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1449 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1450 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1451 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1452 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1453 << "#define LLVM_PREFETCH(addr,rw,locality) "
1454 "__builtin_prefetch(addr,rw,locality)\n"
1455 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1456 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1457 << "#define LLVM_ASM __asm__\n"
1458 << "#else\n"
1459 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1460 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1461 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1462 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1463 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1464 << "#define LLVM_INFF 0.0F /* Float */\n"
1465 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1466 << "#define __ATTRIBUTE_CTOR__\n"
1467 << "#define __ATTRIBUTE_DTOR__\n"
1468 << "#define LLVM_ASM(X)\n"
1469 << "#endif\n\n";
1470
1471 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1472 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1473 << "#define __builtin_stack_restore(X) /* noop */\n"
1474 << "#endif\n\n";
1475
1476 // Output target-specific code that should be inserted into main.
1477 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001478}
1479
1480/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1481/// the StaticTors set.
1482static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1483 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1484 if (!InitList) return;
1485
1486 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1487 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1488 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1489
1490 if (CS->getOperand(1)->isNullValue())
1491 return; // Found a null terminator, exit printing.
1492 Constant *FP = CS->getOperand(1);
1493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1494 if (CE->isCast())
1495 FP = CE->getOperand(0);
1496 if (Function *F = dyn_cast<Function>(FP))
1497 StaticTors.insert(F);
1498 }
1499}
1500
1501enum SpecialGlobalClass {
1502 NotSpecial = 0,
1503 GlobalCtors, GlobalDtors,
1504 NotPrinted
1505};
1506
1507/// getGlobalVariableClass - If this is a global that is specially recognized
1508/// by LLVM, return a code that indicates how we should handle it.
1509static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1510 // If this is a global ctors/dtors list, handle it now.
1511 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1512 if (GV->getName() == "llvm.global_ctors")
1513 return GlobalCtors;
1514 else if (GV->getName() == "llvm.global_dtors")
1515 return GlobalDtors;
1516 }
1517
1518 // Otherwise, it it is other metadata, don't print it. This catches things
1519 // like debug information.
1520 if (GV->getSection() == "llvm.metadata")
1521 return NotPrinted;
1522
1523 return NotSpecial;
1524}
1525
1526
1527bool CWriter::doInitialization(Module &M) {
1528 // Initialize
1529 TheModule = &M;
1530
1531 TD = new TargetData(&M);
1532 IL = new IntrinsicLowering(*TD);
1533 IL->AddPrototypes(M);
1534
1535 // Ensure that all structure types have names...
1536 Mang = new Mangler(M);
1537 Mang->markCharUnacceptable('.');
1538
1539 // Keep track of which functions are static ctors/dtors so they can have
1540 // an attribute added to their prototypes.
1541 std::set<Function*> StaticCtors, StaticDtors;
1542 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1543 I != E; ++I) {
1544 switch (getGlobalVariableClass(I)) {
1545 default: break;
1546 case GlobalCtors:
1547 FindStaticTors(I, StaticCtors);
1548 break;
1549 case GlobalDtors:
1550 FindStaticTors(I, StaticDtors);
1551 break;
1552 }
1553 }
1554
1555 // get declaration for alloca
1556 Out << "/* Provide Declarations */\n";
1557 Out << "#include <stdarg.h>\n"; // Varargs support
1558 Out << "#include <setjmp.h>\n"; // Unwind support
1559 generateCompilerSpecificCode(Out);
1560
1561 // Provide a definition for `bool' if not compiling with a C++ compiler.
1562 Out << "\n"
1563 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1564
1565 << "\n\n/* Support for floating point constants */\n"
1566 << "typedef unsigned long long ConstantDoubleTy;\n"
1567 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001568 << "typedef struct { unsigned long long f1; unsigned short f2; "
1569 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001570 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001571 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1572 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 << "\n\n/* Global Declarations */\n";
1574
1575 // First output all the declarations for the program, because C requires
1576 // Functions & globals to be declared before they are used.
1577 //
1578
1579 // Loop over the symbol table, emitting all named constants...
1580 printModuleTypes(M.getTypeSymbolTable());
1581
1582 // Global variable declarations...
1583 if (!M.global_empty()) {
1584 Out << "\n/* External Global Variable Declarations */\n";
1585 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1586 I != E; ++I) {
1587
1588 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1589 Out << "extern ";
1590 else if (I->hasDLLImportLinkage())
1591 Out << "__declspec(dllimport) ";
1592 else
1593 continue; // Internal Global
1594
1595 // Thread Local Storage
1596 if (I->isThreadLocal())
1597 Out << "__thread ";
1598
1599 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1600
1601 if (I->hasExternalWeakLinkage())
1602 Out << " __EXTERNAL_WEAK__";
1603 Out << ";\n";
1604 }
1605 }
1606
1607 // Function declarations
1608 Out << "\n/* Function Declarations */\n";
1609 Out << "double fmod(double, double);\n"; // Support for FP rem
1610 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001611 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612
1613 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1614 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001615 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1617 if (I->hasExternalWeakLinkage())
1618 Out << "extern ";
1619 printFunctionSignature(I, true);
1620 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1621 Out << " __ATTRIBUTE_WEAK__";
1622 if (I->hasExternalWeakLinkage())
1623 Out << " __EXTERNAL_WEAK__";
1624 if (StaticCtors.count(I))
1625 Out << " __ATTRIBUTE_CTOR__";
1626 if (StaticDtors.count(I))
1627 Out << " __ATTRIBUTE_DTOR__";
1628 if (I->hasHiddenVisibility())
1629 Out << " __HIDDEN__";
1630
1631 if (I->hasName() && I->getName()[0] == 1)
1632 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1633
1634 Out << ";\n";
1635 }
1636 }
1637
1638 // Output the global variable declarations
1639 if (!M.global_empty()) {
1640 Out << "\n\n/* Global Variable Declarations */\n";
1641 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1642 I != E; ++I)
1643 if (!I->isDeclaration()) {
1644 // Ignore special globals, such as debug info.
1645 if (getGlobalVariableClass(I))
1646 continue;
1647
1648 if (I->hasInternalLinkage())
1649 Out << "static ";
1650 else
1651 Out << "extern ";
1652
1653 // Thread Local Storage
1654 if (I->isThreadLocal())
1655 Out << "__thread ";
1656
1657 printType(Out, I->getType()->getElementType(), false,
1658 GetValueName(I));
1659
1660 if (I->hasLinkOnceLinkage())
1661 Out << " __attribute__((common))";
1662 else if (I->hasWeakLinkage())
1663 Out << " __ATTRIBUTE_WEAK__";
1664 else if (I->hasExternalWeakLinkage())
1665 Out << " __EXTERNAL_WEAK__";
1666 if (I->hasHiddenVisibility())
1667 Out << " __HIDDEN__";
1668 Out << ";\n";
1669 }
1670 }
1671
1672 // Output the global variable definitions and contents...
1673 if (!M.global_empty()) {
1674 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1675 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1676 I != E; ++I)
1677 if (!I->isDeclaration()) {
1678 // Ignore special globals, such as debug info.
1679 if (getGlobalVariableClass(I))
1680 continue;
1681
1682 if (I->hasInternalLinkage())
1683 Out << "static ";
1684 else if (I->hasDLLImportLinkage())
1685 Out << "__declspec(dllimport) ";
1686 else if (I->hasDLLExportLinkage())
1687 Out << "__declspec(dllexport) ";
1688
1689 // Thread Local Storage
1690 if (I->isThreadLocal())
1691 Out << "__thread ";
1692
1693 printType(Out, I->getType()->getElementType(), false,
1694 GetValueName(I));
1695 if (I->hasLinkOnceLinkage())
1696 Out << " __attribute__((common))";
1697 else if (I->hasWeakLinkage())
1698 Out << " __ATTRIBUTE_WEAK__";
1699
1700 if (I->hasHiddenVisibility())
1701 Out << " __HIDDEN__";
1702
1703 // If the initializer is not null, emit the initializer. If it is null,
1704 // we try to avoid emitting large amounts of zeros. The problem with
1705 // this, however, occurs when the variable has weak linkage. In this
1706 // case, the assembler will complain about the variable being both weak
1707 // and common, so we disable this optimization.
1708 if (!I->getInitializer()->isNullValue()) {
1709 Out << " = " ;
1710 writeOperand(I->getInitializer());
1711 } else if (I->hasWeakLinkage()) {
1712 // We have to specify an initializer, but it doesn't have to be
1713 // complete. If the value is an aggregate, print out { 0 }, and let
1714 // the compiler figure out the rest of the zeros.
1715 Out << " = " ;
1716 if (isa<StructType>(I->getInitializer()->getType()) ||
1717 isa<ArrayType>(I->getInitializer()->getType()) ||
1718 isa<VectorType>(I->getInitializer()->getType())) {
1719 Out << "{ 0 }";
1720 } else {
1721 // Just print it out normally.
1722 writeOperand(I->getInitializer());
1723 }
1724 }
1725 Out << ";\n";
1726 }
1727 }
1728
1729 if (!M.empty())
1730 Out << "\n\n/* Function Bodies */\n";
1731
1732 // Emit some helper functions for dealing with FCMP instruction's
1733 // predicates
1734 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1735 Out << "return X == X && Y == Y; }\n";
1736 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1737 Out << "return X != X || Y != Y; }\n";
1738 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1739 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1740 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1741 Out << "return X != Y; }\n";
1742 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1743 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1744 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1745 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1746 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1747 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1748 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1749 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1750 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1751 Out << "return X == Y ; }\n";
1752 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1753 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1754 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1755 Out << "return X < Y ; }\n";
1756 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1757 Out << "return X > Y ; }\n";
1758 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1759 Out << "return X <= Y ; }\n";
1760 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1761 Out << "return X >= Y ; }\n";
1762 return false;
1763}
1764
1765
1766/// Output all floating point constants that cannot be printed accurately...
1767void CWriter::printFloatingPointConstants(Function &F) {
1768 // Scan the module for floating point constants. If any FP constant is used
1769 // in the function, we want to redirect it here so that we do not depend on
1770 // the precision of the printed form, unless the printed form preserves
1771 // precision.
1772 //
1773 static unsigned FPCounter = 0;
1774 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1775 I != E; ++I)
1776 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1777 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1778 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001779 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1780
1781 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001782 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001783 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001785 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786 << "ULL; /* " << Val << " */\n";
1787 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001788 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001789 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1790 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001792 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001793 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001794 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001795 // api needed to prevent premature destruction
1796 APInt api = FPC->getValueAPF().convertToAPInt();
1797 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001798 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1799 << " = { 0x" << std::hex
1800 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1801 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1802 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001803 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1804 APInt api = FPC->getValueAPF().convertToAPInt();
1805 const uint64_t *p = api.getRawData();
1806 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1807 << " = { 0x" << std::hex
1808 << p[0] << ", 0x" << p[1]
1809 << "}; /* Long double constant */\n" << std::dec;
1810
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811 } else
1812 assert(0 && "Unknown float type!");
1813 }
1814
1815 Out << '\n';
1816}
1817
1818
1819/// printSymbolTable - Run through symbol table looking for type names. If a
1820/// type name is found, emit its declaration...
1821///
1822void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1823 Out << "/* Helper union for bitcasts */\n";
1824 Out << "typedef union {\n";
1825 Out << " unsigned int Int32;\n";
1826 Out << " unsigned long long Int64;\n";
1827 Out << " float Float;\n";
1828 Out << " double Double;\n";
1829 Out << "} llvmBitCastUnion;\n";
1830
1831 // We are only interested in the type plane of the symbol table.
1832 TypeSymbolTable::const_iterator I = TST.begin();
1833 TypeSymbolTable::const_iterator End = TST.end();
1834
1835 // If there are no type names, exit early.
1836 if (I == End) return;
1837
1838 // Print out forward declarations for structure types before anything else!
1839 Out << "/* Structure forward decls */\n";
1840 for (; I != End; ++I) {
1841 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1842 Out << Name << ";\n";
1843 TypeNames.insert(std::make_pair(I->second, Name));
1844 }
1845
1846 Out << '\n';
1847
1848 // Now we can print out typedefs. Above, we guaranteed that this can only be
1849 // for struct or opaque types.
1850 Out << "/* Typedefs */\n";
1851 for (I = TST.begin(); I != End; ++I) {
1852 std::string Name = "l_" + Mang->makeNameProper(I->first);
1853 Out << "typedef ";
1854 printType(Out, I->second, false, Name);
1855 Out << ";\n";
1856 }
1857
1858 Out << '\n';
1859
1860 // Keep track of which structures have been printed so far...
1861 std::set<const StructType *> StructPrinted;
1862
1863 // Loop over all structures then push them into the stack so they are
1864 // printed in the correct order.
1865 //
1866 Out << "/* Structure contents */\n";
1867 for (I = TST.begin(); I != End; ++I)
1868 if (const StructType *STy = dyn_cast<StructType>(I->second))
1869 // Only print out used types!
1870 printContainedStructs(STy, StructPrinted);
1871}
1872
1873// Push the struct onto the stack and recursively push all structs
1874// this one depends on.
1875//
1876// TODO: Make this work properly with vector types
1877//
1878void CWriter::printContainedStructs(const Type *Ty,
1879 std::set<const StructType*> &StructPrinted){
1880 // Don't walk through pointers.
1881 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1882
1883 // Print all contained types first.
1884 for (Type::subtype_iterator I = Ty->subtype_begin(),
1885 E = Ty->subtype_end(); I != E; ++I)
1886 printContainedStructs(*I, StructPrinted);
1887
1888 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1889 // Check to see if we have already printed this struct.
1890 if (StructPrinted.insert(STy).second) {
1891 // Print structure type out.
1892 std::string Name = TypeNames[STy];
1893 printType(Out, STy, false, Name, true);
1894 Out << ";\n\n";
1895 }
1896 }
1897}
1898
1899void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1900 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001901 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001902
1903 if (F->hasInternalLinkage()) Out << "static ";
1904 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1905 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1906 switch (F->getCallingConv()) {
1907 case CallingConv::X86_StdCall:
1908 Out << "__stdcall ";
1909 break;
1910 case CallingConv::X86_FastCall:
1911 Out << "__fastcall ";
1912 break;
1913 }
1914
1915 // Loop over the arguments, printing them...
1916 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001917 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001918
1919 std::stringstream FunctionInnards;
1920
1921 // Print out the name...
1922 FunctionInnards << GetValueName(F) << '(';
1923
1924 bool PrintedArg = false;
1925 if (!F->isDeclaration()) {
1926 if (!F->arg_empty()) {
1927 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001928 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929
1930 // If this is a struct-return function, don't print the hidden
1931 // struct-return argument.
1932 if (isStructReturn) {
1933 assert(I != E && "Invalid struct return function!");
1934 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001935 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936 }
1937
1938 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001939 for (; I != E; ++I) {
1940 if (PrintedArg) FunctionInnards << ", ";
1941 if (I->hasName() || !Prototype)
1942 ArgName = GetValueName(I);
1943 else
1944 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001945 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001946 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00001947 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00001948 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00001949 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001950 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001951 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952 ArgName);
1953 PrintedArg = true;
1954 ++Idx;
1955 }
1956 }
1957 } else {
1958 // Loop over the arguments, printing them.
1959 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001960 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001961
1962 // If this is a struct-return function, don't print the hidden
1963 // struct-return argument.
1964 if (isStructReturn) {
1965 assert(I != E && "Invalid struct return function!");
1966 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001967 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001968 }
1969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970 for (; I != E; ++I) {
1971 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001972 const Type *ArgTy = *I;
1973 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1974 assert(isa<PointerType>(ArgTy));
1975 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1976 }
1977 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001978 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001979 PrintedArg = true;
1980 ++Idx;
1981 }
1982 }
1983
1984 // Finish printing arguments... if this is a vararg function, print the ...,
1985 // unless there are no known types, in which case, we just emit ().
1986 //
1987 if (FT->isVarArg() && PrintedArg) {
1988 if (PrintedArg) FunctionInnards << ", ";
1989 FunctionInnards << "..."; // Output varargs portion of signature!
1990 } else if (!FT->isVarArg() && !PrintedArg) {
1991 FunctionInnards << "void"; // ret() -> ret(void) in C.
1992 }
1993 FunctionInnards << ')';
1994
1995 // Get the return tpe for the function.
1996 const Type *RetTy;
1997 if (!isStructReturn)
1998 RetTy = F->getReturnType();
1999 else {
2000 // If this is a struct-return function, print the struct-return type.
2001 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2002 }
2003
2004 // Print out the return type and the signature built above.
2005 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002006 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002007 FunctionInnards.str());
2008}
2009
2010static inline bool isFPIntBitCast(const Instruction &I) {
2011 if (!isa<BitCastInst>(I))
2012 return false;
2013 const Type *SrcTy = I.getOperand(0)->getType();
2014 const Type *DstTy = I.getType();
2015 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2016 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2017}
2018
2019void CWriter::printFunction(Function &F) {
2020 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002021 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002022
2023 printFunctionSignature(&F, false);
2024 Out << " {\n";
2025
2026 // If this is a struct return function, handle the result with magic.
2027 if (isStructReturn) {
2028 const Type *StructTy =
2029 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2030 Out << " ";
2031 printType(Out, StructTy, false, "StructReturn");
2032 Out << "; /* Struct return temporary */\n";
2033
2034 Out << " ";
2035 printType(Out, F.arg_begin()->getType(), false,
2036 GetValueName(F.arg_begin()));
2037 Out << " = &StructReturn;\n";
2038 }
2039
2040 bool PrintedVar = false;
2041
2042 // print local variable information for the function
2043 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2044 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2045 Out << " ";
2046 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2047 Out << "; /* Address-exposed local */\n";
2048 PrintedVar = true;
2049 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2050 Out << " ";
2051 printType(Out, I->getType(), false, GetValueName(&*I));
2052 Out << ";\n";
2053
2054 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2055 Out << " ";
2056 printType(Out, I->getType(), false,
2057 GetValueName(&*I)+"__PHI_TEMPORARY");
2058 Out << ";\n";
2059 }
2060 PrintedVar = true;
2061 }
2062 // We need a temporary for the BitCast to use so it can pluck a value out
2063 // of a union to do the BitCast. This is separate from the need for a
2064 // variable to hold the result of the BitCast.
2065 if (isFPIntBitCast(*I)) {
2066 Out << " llvmBitCastUnion " << GetValueName(&*I)
2067 << "__BITCAST_TEMPORARY;\n";
2068 PrintedVar = true;
2069 }
2070 }
2071
2072 if (PrintedVar)
2073 Out << '\n';
2074
2075 if (F.hasExternalLinkage() && F.getName() == "main")
2076 Out << " CODE_FOR_MAIN();\n";
2077
2078 // print the basic blocks
2079 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2080 if (Loop *L = LI->getLoopFor(BB)) {
2081 if (L->getHeader() == BB && L->getParentLoop() == 0)
2082 printLoop(L);
2083 } else {
2084 printBasicBlock(BB);
2085 }
2086 }
2087
2088 Out << "}\n\n";
2089}
2090
2091void CWriter::printLoop(Loop *L) {
2092 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2093 << "' to make GCC happy */\n";
2094 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2095 BasicBlock *BB = L->getBlocks()[i];
2096 Loop *BBLoop = LI->getLoopFor(BB);
2097 if (BBLoop == L)
2098 printBasicBlock(BB);
2099 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2100 printLoop(BBLoop);
2101 }
2102 Out << " } while (1); /* end of syntactic loop '"
2103 << L->getHeader()->getName() << "' */\n";
2104}
2105
2106void CWriter::printBasicBlock(BasicBlock *BB) {
2107
2108 // Don't print the label for the basic block if there are no uses, or if
2109 // the only terminator use is the predecessor basic block's terminator.
2110 // We have to scan the use list because PHI nodes use basic blocks too but
2111 // do not require a label to be generated.
2112 //
2113 bool NeedsLabel = false;
2114 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2115 if (isGotoCodeNecessary(*PI, BB)) {
2116 NeedsLabel = true;
2117 break;
2118 }
2119
2120 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2121
2122 // Output all of the instructions in the basic block...
2123 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2124 ++II) {
2125 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2126 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2127 outputLValue(II);
2128 else
2129 Out << " ";
2130 visit(*II);
2131 Out << ";\n";
2132 }
2133 }
2134
2135 // Don't emit prefix or suffix for the terminator...
2136 visit(*BB->getTerminator());
2137}
2138
2139
2140// Specific Instruction type classes... note that all of the casts are
2141// necessary because we use the instruction classes as opaque types...
2142//
2143void CWriter::visitReturnInst(ReturnInst &I) {
2144 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002145 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002146
2147 if (isStructReturn) {
2148 Out << " return StructReturn;\n";
2149 return;
2150 }
2151
2152 // Don't output a void return if this is the last basic block in the function
2153 if (I.getNumOperands() == 0 &&
2154 &*--I.getParent()->getParent()->end() == I.getParent() &&
2155 !I.getParent()->size() == 1) {
2156 return;
2157 }
2158
2159 Out << " return";
2160 if (I.getNumOperands()) {
2161 Out << ' ';
2162 writeOperand(I.getOperand(0));
2163 }
2164 Out << ";\n";
2165}
2166
2167void CWriter::visitSwitchInst(SwitchInst &SI) {
2168
2169 Out << " switch (";
2170 writeOperand(SI.getOperand(0));
2171 Out << ") {\n default:\n";
2172 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2173 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2174 Out << ";\n";
2175 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2176 Out << " case ";
2177 writeOperand(SI.getOperand(i));
2178 Out << ":\n";
2179 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2180 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2181 printBranchToBlock(SI.getParent(), Succ, 2);
2182 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2183 Out << " break;\n";
2184 }
2185 Out << " }\n";
2186}
2187
2188void CWriter::visitUnreachableInst(UnreachableInst &I) {
2189 Out << " /*UNREACHABLE*/;\n";
2190}
2191
2192bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2193 /// FIXME: This should be reenabled, but loop reordering safe!!
2194 return true;
2195
2196 if (next(Function::iterator(From)) != Function::iterator(To))
2197 return true; // Not the direct successor, we need a goto.
2198
2199 //isa<SwitchInst>(From->getTerminator())
2200
2201 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2202 return true;
2203 return false;
2204}
2205
2206void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2207 BasicBlock *Successor,
2208 unsigned Indent) {
2209 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2210 PHINode *PN = cast<PHINode>(I);
2211 // Now we have to do the printing.
2212 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2213 if (!isa<UndefValue>(IV)) {
2214 Out << std::string(Indent, ' ');
2215 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2216 writeOperand(IV);
2217 Out << "; /* for PHI node */\n";
2218 }
2219 }
2220}
2221
2222void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2223 unsigned Indent) {
2224 if (isGotoCodeNecessary(CurBB, Succ)) {
2225 Out << std::string(Indent, ' ') << " goto ";
2226 writeOperand(Succ);
2227 Out << ";\n";
2228 }
2229}
2230
2231// Branch instruction printing - Avoid printing out a branch to a basic block
2232// that immediately succeeds the current one.
2233//
2234void CWriter::visitBranchInst(BranchInst &I) {
2235
2236 if (I.isConditional()) {
2237 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2238 Out << " if (";
2239 writeOperand(I.getCondition());
2240 Out << ") {\n";
2241
2242 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2243 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2244
2245 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2246 Out << " } else {\n";
2247 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2248 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2249 }
2250 } else {
2251 // First goto not necessary, assume second one is...
2252 Out << " if (!";
2253 writeOperand(I.getCondition());
2254 Out << ") {\n";
2255
2256 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2257 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2258 }
2259
2260 Out << " }\n";
2261 } else {
2262 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2263 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2264 }
2265 Out << "\n";
2266}
2267
2268// PHI nodes get copied into temporary values at the end of predecessor basic
2269// blocks. We now need to copy these temporary values into the REAL value for
2270// the PHI.
2271void CWriter::visitPHINode(PHINode &I) {
2272 writeOperand(&I);
2273 Out << "__PHI_TEMPORARY";
2274}
2275
2276
2277void CWriter::visitBinaryOperator(Instruction &I) {
2278 // binary instructions, shift instructions, setCond instructions.
2279 assert(!isa<PointerType>(I.getType()));
2280
2281 // We must cast the results of binary operations which might be promoted.
2282 bool needsCast = false;
2283 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2284 || (I.getType() == Type::FloatTy)) {
2285 needsCast = true;
2286 Out << "((";
2287 printType(Out, I.getType(), false);
2288 Out << ")(";
2289 }
2290
2291 // If this is a negation operation, print it out as such. For FP, we don't
2292 // want to print "-0.0 - X".
2293 if (BinaryOperator::isNeg(&I)) {
2294 Out << "-(";
2295 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2296 Out << ")";
2297 } else if (I.getOpcode() == Instruction::FRem) {
2298 // Output a call to fmod/fmodf instead of emitting a%b
2299 if (I.getType() == Type::FloatTy)
2300 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002301 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002302 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002303 else // all 3 flavors of long double
2304 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002305 writeOperand(I.getOperand(0));
2306 Out << ", ";
2307 writeOperand(I.getOperand(1));
2308 Out << ")";
2309 } else {
2310
2311 // Write out the cast of the instruction's value back to the proper type
2312 // if necessary.
2313 bool NeedsClosingParens = writeInstructionCast(I);
2314
2315 // Certain instructions require the operand to be forced to a specific type
2316 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2317 // below for operand 1
2318 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2319
2320 switch (I.getOpcode()) {
2321 case Instruction::Add: Out << " + "; break;
2322 case Instruction::Sub: Out << " - "; break;
2323 case Instruction::Mul: Out << " * "; break;
2324 case Instruction::URem:
2325 case Instruction::SRem:
2326 case Instruction::FRem: Out << " % "; break;
2327 case Instruction::UDiv:
2328 case Instruction::SDiv:
2329 case Instruction::FDiv: Out << " / "; break;
2330 case Instruction::And: Out << " & "; break;
2331 case Instruction::Or: Out << " | "; break;
2332 case Instruction::Xor: Out << " ^ "; break;
2333 case Instruction::Shl : Out << " << "; break;
2334 case Instruction::LShr:
2335 case Instruction::AShr: Out << " >> "; break;
2336 default: cerr << "Invalid operator type!" << I; abort();
2337 }
2338
2339 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2340 if (NeedsClosingParens)
2341 Out << "))";
2342 }
2343
2344 if (needsCast) {
2345 Out << "))";
2346 }
2347}
2348
2349void CWriter::visitICmpInst(ICmpInst &I) {
2350 // We must cast the results of icmp which might be promoted.
2351 bool needsCast = false;
2352
2353 // Write out the cast of the instruction's value back to the proper type
2354 // if necessary.
2355 bool NeedsClosingParens = writeInstructionCast(I);
2356
2357 // Certain icmp predicate require the operand to be forced to a specific type
2358 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2359 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002360 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361
2362 switch (I.getPredicate()) {
2363 case ICmpInst::ICMP_EQ: Out << " == "; break;
2364 case ICmpInst::ICMP_NE: Out << " != "; break;
2365 case ICmpInst::ICMP_ULE:
2366 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2367 case ICmpInst::ICMP_UGE:
2368 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2369 case ICmpInst::ICMP_ULT:
2370 case ICmpInst::ICMP_SLT: Out << " < "; break;
2371 case ICmpInst::ICMP_UGT:
2372 case ICmpInst::ICMP_SGT: Out << " > "; break;
2373 default: cerr << "Invalid icmp predicate!" << I; abort();
2374 }
2375
Chris Lattner389c9142007-09-15 06:51:03 +00002376 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002377 if (NeedsClosingParens)
2378 Out << "))";
2379
2380 if (needsCast) {
2381 Out << "))";
2382 }
2383}
2384
2385void CWriter::visitFCmpInst(FCmpInst &I) {
2386 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2387 Out << "0";
2388 return;
2389 }
2390 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2391 Out << "1";
2392 return;
2393 }
2394
2395 const char* op = 0;
2396 switch (I.getPredicate()) {
2397 default: assert(0 && "Illegal FCmp predicate");
2398 case FCmpInst::FCMP_ORD: op = "ord"; break;
2399 case FCmpInst::FCMP_UNO: op = "uno"; break;
2400 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2401 case FCmpInst::FCMP_UNE: op = "une"; break;
2402 case FCmpInst::FCMP_ULT: op = "ult"; break;
2403 case FCmpInst::FCMP_ULE: op = "ule"; break;
2404 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2405 case FCmpInst::FCMP_UGE: op = "uge"; break;
2406 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2407 case FCmpInst::FCMP_ONE: op = "one"; break;
2408 case FCmpInst::FCMP_OLT: op = "olt"; break;
2409 case FCmpInst::FCMP_OLE: op = "ole"; break;
2410 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2411 case FCmpInst::FCMP_OGE: op = "oge"; break;
2412 }
2413
2414 Out << "llvm_fcmp_" << op << "(";
2415 // Write the first operand
2416 writeOperand(I.getOperand(0));
2417 Out << ", ";
2418 // Write the second operand
2419 writeOperand(I.getOperand(1));
2420 Out << ")";
2421}
2422
2423static const char * getFloatBitCastField(const Type *Ty) {
2424 switch (Ty->getTypeID()) {
2425 default: assert(0 && "Invalid Type");
2426 case Type::FloatTyID: return "Float";
2427 case Type::DoubleTyID: return "Double";
2428 case Type::IntegerTyID: {
2429 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2430 if (NumBits <= 32)
2431 return "Int32";
2432 else
2433 return "Int64";
2434 }
2435 }
2436}
2437
2438void CWriter::visitCastInst(CastInst &I) {
2439 const Type *DstTy = I.getType();
2440 const Type *SrcTy = I.getOperand(0)->getType();
2441 Out << '(';
2442 if (isFPIntBitCast(I)) {
2443 // These int<->float and long<->double casts need to be handled specially
2444 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2445 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2446 writeOperand(I.getOperand(0));
2447 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2448 << getFloatBitCastField(I.getType());
2449 } else {
2450 printCast(I.getOpcode(), SrcTy, DstTy);
2451 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2452 // Make sure we really get a sext from bool by subtracing the bool from 0
2453 Out << "0-";
2454 }
2455 writeOperand(I.getOperand(0));
2456 if (DstTy == Type::Int1Ty &&
2457 (I.getOpcode() == Instruction::Trunc ||
2458 I.getOpcode() == Instruction::FPToUI ||
2459 I.getOpcode() == Instruction::FPToSI ||
2460 I.getOpcode() == Instruction::PtrToInt)) {
2461 // Make sure we really get a trunc to bool by anding the operand with 1
2462 Out << "&1u";
2463 }
2464 }
2465 Out << ')';
2466}
2467
2468void CWriter::visitSelectInst(SelectInst &I) {
2469 Out << "((";
2470 writeOperand(I.getCondition());
2471 Out << ") ? (";
2472 writeOperand(I.getTrueValue());
2473 Out << ") : (";
2474 writeOperand(I.getFalseValue());
2475 Out << "))";
2476}
2477
2478
2479void CWriter::lowerIntrinsics(Function &F) {
2480 // This is used to keep track of intrinsics that get generated to a lowered
2481 // function. We must generate the prototypes before the function body which
2482 // will only be expanded on first use (by the loop below).
2483 std::vector<Function*> prototypesToGen;
2484
2485 // Examine all the instructions in this function to find the intrinsics that
2486 // need to be lowered.
2487 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2488 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2489 if (CallInst *CI = dyn_cast<CallInst>(I++))
2490 if (Function *F = CI->getCalledFunction())
2491 switch (F->getIntrinsicID()) {
2492 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002493 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 case Intrinsic::vastart:
2495 case Intrinsic::vacopy:
2496 case Intrinsic::vaend:
2497 case Intrinsic::returnaddress:
2498 case Intrinsic::frameaddress:
2499 case Intrinsic::setjmp:
2500 case Intrinsic::longjmp:
2501 case Intrinsic::prefetch:
2502 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002503 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 // We directly implement these intrinsics
2505 break;
2506 default:
2507 // If this is an intrinsic that directly corresponds to a GCC
2508 // builtin, we handle it.
2509 const char *BuiltinName = "";
2510#define GET_GCC_BUILTIN_NAME
2511#include "llvm/Intrinsics.gen"
2512#undef GET_GCC_BUILTIN_NAME
2513 // If we handle it, don't lower it.
2514 if (BuiltinName[0]) break;
2515
2516 // All other intrinsic calls we must lower.
2517 Instruction *Before = 0;
2518 if (CI != &BB->front())
2519 Before = prior(BasicBlock::iterator(CI));
2520
2521 IL->LowerIntrinsicCall(CI);
2522 if (Before) { // Move iterator to instruction after call
2523 I = Before; ++I;
2524 } else {
2525 I = BB->begin();
2526 }
2527 // If the intrinsic got lowered to another call, and that call has
2528 // a definition then we need to make sure its prototype is emitted
2529 // before any calls to it.
2530 if (CallInst *Call = dyn_cast<CallInst>(I))
2531 if (Function *NewF = Call->getCalledFunction())
2532 if (!NewF->isDeclaration())
2533 prototypesToGen.push_back(NewF);
2534
2535 break;
2536 }
2537
2538 // We may have collected some prototypes to emit in the loop above.
2539 // Emit them now, before the function that uses them is emitted. But,
2540 // be careful not to emit them twice.
2541 std::vector<Function*>::iterator I = prototypesToGen.begin();
2542 std::vector<Function*>::iterator E = prototypesToGen.end();
2543 for ( ; I != E; ++I) {
2544 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2545 Out << '\n';
2546 printFunctionSignature(*I, true);
2547 Out << ";\n";
2548 }
2549 }
2550}
2551
2552
2553void CWriter::visitCallInst(CallInst &I) {
2554 //check if we have inline asm
2555 if (isInlineAsm(I)) {
2556 visitInlineAsm(I);
2557 return;
2558 }
2559
2560 bool WroteCallee = false;
2561
2562 // Handle intrinsic function calls first...
2563 if (Function *F = I.getCalledFunction())
2564 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2565 switch (ID) {
2566 default: {
2567 // If this is an intrinsic that directly corresponds to a GCC
2568 // builtin, we emit it here.
2569 const char *BuiltinName = "";
2570#define GET_GCC_BUILTIN_NAME
2571#include "llvm/Intrinsics.gen"
2572#undef GET_GCC_BUILTIN_NAME
2573 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2574
2575 Out << BuiltinName;
2576 WroteCallee = true;
2577 break;
2578 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002579 case Intrinsic::memory_barrier:
2580 Out << "0; __sync_syncronize()";
2581 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002582 case Intrinsic::vastart:
2583 Out << "0; ";
2584
2585 Out << "va_start(*(va_list*)";
2586 writeOperand(I.getOperand(1));
2587 Out << ", ";
2588 // Output the last argument to the enclosing function...
2589 if (I.getParent()->getParent()->arg_empty()) {
2590 cerr << "The C backend does not currently support zero "
2591 << "argument varargs functions, such as '"
2592 << I.getParent()->getParent()->getName() << "'!\n";
2593 abort();
2594 }
2595 writeOperand(--I.getParent()->getParent()->arg_end());
2596 Out << ')';
2597 return;
2598 case Intrinsic::vaend:
2599 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2600 Out << "0; va_end(*(va_list*)";
2601 writeOperand(I.getOperand(1));
2602 Out << ')';
2603 } else {
2604 Out << "va_end(*(va_list*)0)";
2605 }
2606 return;
2607 case Intrinsic::vacopy:
2608 Out << "0; ";
2609 Out << "va_copy(*(va_list*)";
2610 writeOperand(I.getOperand(1));
2611 Out << ", *(va_list*)";
2612 writeOperand(I.getOperand(2));
2613 Out << ')';
2614 return;
2615 case Intrinsic::returnaddress:
2616 Out << "__builtin_return_address(";
2617 writeOperand(I.getOperand(1));
2618 Out << ')';
2619 return;
2620 case Intrinsic::frameaddress:
2621 Out << "__builtin_frame_address(";
2622 writeOperand(I.getOperand(1));
2623 Out << ')';
2624 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002625 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 Out << "__builtin_powi(";
2627 writeOperand(I.getOperand(1));
2628 Out << ", ";
2629 writeOperand(I.getOperand(2));
2630 Out << ')';
2631 return;
2632 case Intrinsic::setjmp:
2633 Out << "setjmp(*(jmp_buf*)";
2634 writeOperand(I.getOperand(1));
2635 Out << ')';
2636 return;
2637 case Intrinsic::longjmp:
2638 Out << "longjmp(*(jmp_buf*)";
2639 writeOperand(I.getOperand(1));
2640 Out << ", ";
2641 writeOperand(I.getOperand(2));
2642 Out << ')';
2643 return;
2644 case Intrinsic::prefetch:
2645 Out << "LLVM_PREFETCH((const void *)";
2646 writeOperand(I.getOperand(1));
2647 Out << ", ";
2648 writeOperand(I.getOperand(2));
2649 Out << ", ";
2650 writeOperand(I.getOperand(3));
2651 Out << ")";
2652 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002653 case Intrinsic::stacksave:
2654 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2655 // to work around GCC bugs (see PR1809).
2656 Out << "0; *((void**)&" << GetValueName(&I)
2657 << ") = __builtin_stack_save()";
2658 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002659 case Intrinsic::dbg_stoppoint: {
2660 // If we use writeOperand directly we get a "u" suffix which is rejected
2661 // by gcc.
2662 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2663
2664 Out << "\n#line "
2665 << SPI.getLine()
2666 << " \"" << SPI.getDirectory()
2667 << SPI.getFileName() << "\"\n";
2668 return;
2669 }
2670 }
2671 }
2672
2673 Value *Callee = I.getCalledValue();
2674
2675 const PointerType *PTy = cast<PointerType>(Callee->getType());
2676 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2677
2678 // If this is a call to a struct-return function, assign to the first
2679 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002680 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002681 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002682 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002683 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002684 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002685 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 }
2687
2688 if (I.isTailCall()) Out << " /*tail*/ ";
2689
2690 if (!WroteCallee) {
2691 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002692 // the pointer. Ditto for indirect calls with byval arguments.
2693 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694
2695 // GCC is a real PITA. It does not permit codegening casts of functions to
2696 // function pointers if they are in a call (it generates a trap instruction
2697 // instead!). We work around this by inserting a cast to void* in between
2698 // the function and the function pointer cast. Unfortunately, we can't just
2699 // form the constant expression here, because the folder will immediately
2700 // nuke it.
2701 //
2702 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2703 // that void* and function pointers have the same size. :( To deal with this
2704 // in the common case, we handle casts where the number of arguments passed
2705 // match exactly.
2706 //
2707 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2708 if (CE->isCast())
2709 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2710 NeedsCast = true;
2711 Callee = RF;
2712 }
2713
2714 if (NeedsCast) {
2715 // Ok, just cast the pointer type.
2716 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002717 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002718 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002719 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002720 else if (hasByVal)
2721 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2722 else
2723 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724 Out << ")(void*)";
2725 }
2726 writeOperand(Callee);
2727 if (NeedsCast) Out << ')';
2728 }
2729
2730 Out << '(';
2731
2732 unsigned NumDeclaredParams = FTy->getNumParams();
2733
2734 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2735 unsigned ArgNo = 0;
2736 if (isStructRet) { // Skip struct return argument.
2737 ++AI;
2738 ++ArgNo;
2739 }
2740
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002741 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002742 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002743 if (PrintedArg) Out << ", ";
2744 if (ArgNo < NumDeclaredParams &&
2745 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2746 Out << '(';
2747 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002748 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002749 Out << ')';
2750 }
Evan Chengf8956382008-01-11 23:10:11 +00002751 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002752 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2753 writeOperandDeref(*AI);
2754 else
2755 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002756 PrintedArg = true;
2757 }
2758 Out << ')';
2759}
2760
2761
2762//This converts the llvm constraint string to something gcc is expecting.
2763//TODO: work out platform independent constraints and factor those out
2764// of the per target tables
2765// handle multiple constraint codes
2766std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2767
2768 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2769
2770 const char** table = 0;
2771
2772 //Grab the translation table from TargetAsmInfo if it exists
2773 if (!TAsm) {
2774 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002775 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002776 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2777 if (Match) {
2778 //Per platform Target Machines don't exist, so create it
2779 // this must be done only once
2780 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2781 TAsm = TM->getTargetAsmInfo();
2782 }
2783 }
2784 if (TAsm)
2785 table = TAsm->getAsmCBE();
2786
2787 //Search the translation table if it exists
2788 for (int i = 0; table && table[i]; i += 2)
2789 if (c.Codes[0] == table[i])
2790 return table[i+1];
2791
2792 //default is identity
2793 return c.Codes[0];
2794}
2795
2796//TODO: import logic from AsmPrinter.cpp
2797static std::string gccifyAsm(std::string asmstr) {
2798 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2799 if (asmstr[i] == '\n')
2800 asmstr.replace(i, 1, "\\n");
2801 else if (asmstr[i] == '\t')
2802 asmstr.replace(i, 1, "\\t");
2803 else if (asmstr[i] == '$') {
2804 if (asmstr[i + 1] == '{') {
2805 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2806 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2807 std::string n = "%" +
2808 asmstr.substr(a + 1, b - a - 1) +
2809 asmstr.substr(i + 2, a - i - 2);
2810 asmstr.replace(i, b - i + 1, n);
2811 i += n.size() - 1;
2812 } else
2813 asmstr.replace(i, 1, "%");
2814 }
2815 else if (asmstr[i] == '%')//grr
2816 { asmstr.replace(i, 1, "%%"); ++i;}
2817
2818 return asmstr;
2819}
2820
2821//TODO: assumptions about what consume arguments from the call are likely wrong
2822// handle communitivity
2823void CWriter::visitInlineAsm(CallInst &CI) {
2824 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2825 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2826 std::vector<std::pair<std::string, Value*> > Input;
2827 std::vector<std::pair<std::string, Value*> > Output;
2828 std::string Clobber;
2829 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2830 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2831 E = Constraints.end(); I != E; ++I) {
2832 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2833 std::string c =
2834 InterpretASMConstraint(*I);
2835 switch(I->Type) {
2836 default:
2837 assert(0 && "Unknown asm constraint");
2838 break;
2839 case InlineAsm::isInput: {
2840 if (c.size()) {
2841 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2842 ++count; //consume arg
2843 }
2844 break;
2845 }
2846 case InlineAsm::isOutput: {
2847 if (c.size()) {
2848 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2849 count ? CI.getOperand(count) : &CI));
2850 ++count; //consume arg
2851 }
2852 break;
2853 }
2854 case InlineAsm::isClobber: {
2855 if (c.size())
2856 Clobber += ",\"" + c + "\"";
2857 break;
2858 }
2859 }
2860 }
2861
2862 //fix up the asm string for gcc
2863 std::string asmstr = gccifyAsm(as->getAsmString());
2864
2865 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2866 Out << " :";
Chris Lattner8bbc8592008-03-02 08:07:24 +00002867 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002868 E = Output.end(); I != E; ++I) {
2869 Out << "\"" << I->first << "\"(";
2870 writeOperandRaw(I->second);
2871 Out << ")";
2872 if (I + 1 != E)
2873 Out << ",";
2874 }
2875 Out << "\n :";
2876 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2877 E = Input.end(); I != E; ++I) {
2878 Out << "\"" << I->first << "\"(";
2879 writeOperandRaw(I->second);
2880 Out << ")";
2881 if (I + 1 != E)
2882 Out << ",";
2883 }
2884 if (Clobber.size())
2885 Out << "\n :" << Clobber.substr(1);
2886 Out << ")";
2887}
2888
2889void CWriter::visitMallocInst(MallocInst &I) {
2890 assert(0 && "lowerallocations pass didn't work!");
2891}
2892
2893void CWriter::visitAllocaInst(AllocaInst &I) {
2894 Out << '(';
2895 printType(Out, I.getType());
2896 Out << ") alloca(sizeof(";
2897 printType(Out, I.getType()->getElementType());
2898 Out << ')';
2899 if (I.isArrayAllocation()) {
2900 Out << " * " ;
2901 writeOperand(I.getOperand(0));
2902 }
2903 Out << ')';
2904}
2905
2906void CWriter::visitFreeInst(FreeInst &I) {
2907 assert(0 && "lowerallocations pass didn't work!");
2908}
2909
Chris Lattner8bbc8592008-03-02 08:07:24 +00002910void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
2911 gep_type_iterator E) {
2912
2913 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002915 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 return;
2917 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002918
2919 // Find out if the last index is into a vector. If so, we have to print this
2920 // specially. Since vectors can't have elements of indexable type, only the
2921 // last index could possibly be of a vector element.
2922 const VectorType *LastIndexIsVector = 0;
2923 {
2924 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
2925 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002926 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002927
2928 Out << "(";
2929
2930 // If the last index is into a vector, we can't print it as &a[i][j] because
2931 // we can't index into a vector with j in GCC. Instead, emit this as
2932 // (((float*)&a[i])+j)
2933 if (LastIndexIsVector) {
2934 Out << "((";
2935 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
2936 Out << ")(";
2937 }
2938
2939 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940
Chris Lattner8bbc8592008-03-02 08:07:24 +00002941 // If the first index is 0 (very typical) we can do a number of
2942 // simplifications to clean up the code.
2943 Value *FirstOp = I.getOperand();
2944 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
2945 // First index isn't simple, print it the hard way.
2946 writeOperand(Ptr);
2947 } else {
2948 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949
Chris Lattner8bbc8592008-03-02 08:07:24 +00002950 // Okay, emit the first operand. If Ptr is something that is already address
2951 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
2952 if (isAddressExposed(Ptr)) {
2953 writeOperandInternal(Ptr);
2954 } else if (I != E && isa<StructType>(*I)) {
2955 // If we didn't already emit the first operand, see if we can print it as
2956 // P->f instead of "P[0].f"
2957 writeOperand(Ptr);
2958 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2959 ++I; // eat the struct index as well.
2960 } else {
2961 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
2962 Out << "(*";
2963 writeOperand(Ptr);
2964 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002965 }
2966 }
2967
Chris Lattner8bbc8592008-03-02 08:07:24 +00002968 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002969 if (isa<StructType>(*I)) {
2970 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Chris Lattner8bbc8592008-03-02 08:07:24 +00002971 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002972 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002973 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00002975 } else {
2976 // If the last index is into a vector, then print it out as "+j)". This
2977 // works with the 'LastIndexIsVector' code above.
2978 if (isa<Constant>(I.getOperand()) &&
2979 cast<Constant>(I.getOperand())->isNullValue()) {
2980 Out << "))"; // avoid "+0".
2981 } else {
2982 Out << ")+(";
2983 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
2984 Out << "))";
2985 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00002987 }
2988 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002989}
2990
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002991void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2992 bool IsVolatile, unsigned Alignment) {
2993
2994 bool IsUnaligned = Alignment &&
2995 Alignment < TD->getABITypeAlignment(OperandType);
2996
2997 if (!IsUnaligned)
2998 Out << '*';
2999 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003001 if (IsUnaligned)
3002 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3003 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3004 if (IsUnaligned) {
3005 Out << "; } ";
3006 if (IsVolatile) Out << "volatile ";
3007 Out << "*";
3008 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003009 Out << ")";
3010 }
3011
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003012 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003013
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003014 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003015 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003016 if (IsUnaligned)
3017 Out << "->data";
3018 }
3019}
3020
3021void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003022 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3023 I.getAlignment());
3024
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003025}
3026
3027void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003028 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3029 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030 Out << " = ";
3031 Value *Operand = I.getOperand(0);
3032 Constant *BitMask = 0;
3033 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3034 if (!ITy->isPowerOf2ByteWidth())
3035 // We have a bit width that doesn't match an even power-of-2 byte
3036 // size. Consequently we must & the value with the type's bit mask
3037 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3038 if (BitMask)
3039 Out << "((";
3040 writeOperand(Operand);
3041 if (BitMask) {
3042 Out << ") & ";
3043 printConstant(BitMask);
3044 Out << ")";
3045 }
3046}
3047
3048void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003049 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3050 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003051}
3052
3053void CWriter::visitVAArgInst(VAArgInst &I) {
3054 Out << "va_arg(*(va_list*)";
3055 writeOperand(I.getOperand(0));
3056 Out << ", ";
3057 printType(Out, I.getType());
3058 Out << ");\n ";
3059}
3060
Chris Lattnerf41a7942008-03-02 03:52:39 +00003061void CWriter::visitInsertElementInst(InsertElementInst &I) {
3062 const Type *EltTy = I.getType()->getElementType();
3063 writeOperand(I.getOperand(0));
3064 Out << ";\n ";
3065 Out << "((";
3066 printType(Out, PointerType::getUnqual(EltTy));
3067 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003068 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003069 Out << "] = (";
3070 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003071 Out << ")";
3072}
3073
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003074void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3075 // We know that our operand is not inlined.
3076 Out << "((";
3077 const Type *EltTy =
3078 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3079 printType(Out, PointerType::getUnqual(EltTy));
3080 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3081 writeOperand(I.getOperand(1));
3082 Out << "]";
3083}
3084
Chris Lattnerf858a042008-03-02 05:41:07 +00003085void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3086 Out << "(";
3087 printType(Out, SVI.getType());
3088 Out << "){ ";
3089 const VectorType *VT = SVI.getType();
3090 unsigned NumElts = VT->getNumElements();
3091 const Type *EltTy = VT->getElementType();
3092
3093 for (unsigned i = 0; i != NumElts; ++i) {
3094 if (i) Out << ", ";
3095 int SrcVal = SVI.getMaskValue(i);
3096 if ((unsigned)SrcVal >= NumElts*2) {
3097 Out << " 0/*undef*/ ";
3098 } else {
3099 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3100 if (isa<Instruction>(Op)) {
3101 // Do an extractelement of this value from the appropriate input.
3102 Out << "((";
3103 printType(Out, PointerType::getUnqual(EltTy));
3104 Out << ")(&" << GetValueName(Op)
3105 << "))[" << (SrcVal & NumElts-1) << "]";
3106 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3107 Out << "0";
3108 } else {
3109 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3110 }
3111 }
3112 }
3113 Out << "}";
3114}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003115
Chris Lattnerf41a7942008-03-02 03:52:39 +00003116
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003117//===----------------------------------------------------------------------===//
3118// External Interface declaration
3119//===----------------------------------------------------------------------===//
3120
3121bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3122 std::ostream &o,
3123 CodeGenFileType FileType,
3124 bool Fast) {
3125 if (FileType != TargetMachine::AssemblyFile) return true;
3126
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003127 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003128 PM.add(createLowerAllocationsPass(true));
3129 PM.add(createLowerInvokePass());
3130 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3131 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3132 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003133 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134 return false;
3135}