blob: fbdc294e4a208dc6b2cf2465bb6c416fae16586e [file] [log] [blame]
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Jim Laskeyb744c252006-12-15 10:40:48 +00005 <meta http-equiv="content-type" content="text/html; charset=utf-8">
Chris Lattnerce52b7e2004-06-01 06:48:00 +00006 <title>The LLVM Target-Independent Code Generator</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 The LLVM Target-Independent Code Generator
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction</a>
17 <ul>
18 <li><a href="#required">Required components in the code generator</a></li>
Chris Lattnere35d3bb2005-10-16 00:36:38 +000019 <li><a href="#high-level-design">The high-level design of the code
20 generator</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000021 <li><a href="#tablegen">Using TableGen for target description</a></li>
22 </ul>
23 </li>
24 <li><a href="#targetdesc">Target description classes</a>
25 <ul>
26 <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
27 <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000028 <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
Dan Gohman6f0d0242008-02-10 18:45:23 +000029 <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000030 <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
31 <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
Chris Lattner47adebb2005-10-16 17:06:07 +000032 <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000033 <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
34 </ul>
35 </li>
36 <li><a href="#codegendesc">Machine code description classes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +000037 <ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000038 <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000039 <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
40 class</a></li>
41 <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
Chris Lattnerec94f802004-06-04 00:16:02 +000042 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000043 </li>
44 <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000045 <ul>
46 <li><a href="#instselect">Instruction Selection</a>
47 <ul>
48 <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
49 <li><a href="#selectiondag_process">SelectionDAG Code Generation
50 Process</a></li>
51 <li><a href="#selectiondag_build">Initial SelectionDAG
52 Construction</a></li>
Dan Gohman641b2792008-11-24 16:27:17 +000053 <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000054 <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
55 <li><a href="#selectiondag_optimize">SelectionDAG Optimization
Chris Lattnere35d3bb2005-10-16 00:36:38 +000056 Phase: the DAG Combiner</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000057 <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000058 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
Chris Lattnere35d3bb2005-10-16 00:36:38 +000059 Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000060 <li><a href="#selectiondag_future">Future directions for the
61 SelectionDAG</a></li>
62 </ul></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000063 <li><a href="#liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +000064 <ul>
65 <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000066 <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
Bill Wendling2f87a882006-09-04 23:35:52 +000067 </ul></li>
Bill Wendlinga396ee82006-09-01 21:46:00 +000068 <li><a href="#regalloc">Register Allocation</a>
69 <ul>
70 <li><a href="#regAlloc_represent">How registers are represented in
71 LLVM</a></li>
72 <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
73 registers</a></li>
74 <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
75 <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
76 <li><a href="#regAlloc_fold">Instruction folding</a></li>
77 <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
78 </ul></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000079 <li><a href="#codeemit">Code Emission</a>
80 <ul>
81 <li><a href="#codeemit_asm">Generating Assembly Code</a></li>
82 <li><a href="#codeemit_bin">Generating Binary Machine Code</a></li>
83 </ul></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000084 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000085 </li>
Chris Lattner32e89f22005-10-16 18:31:08 +000086 <li><a href="#targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000087 <ul>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +000088 <li><a href="#tailcallopt">Tail call optimization</a></li>
Evan Chengdc444e92010-03-08 21:05:02 +000089 <li><a href="#sibcallopt">Sibling call optimization</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000090 <li><a href="#x86">The X86 backend</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +000091 <li><a href="#ppc">The PowerPC backend</a>
Jim Laskey762b6cb2006-12-14 17:19:50 +000092 <ul>
93 <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
94 <li><a href="#ppc_frame">Frame Layout</a></li>
95 <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
96 <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +000097 </ul></li>
98 </ul></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000099
100</ol>
101
102<div class="doc_author">
Bill Wendlinga396ee82006-09-01 21:46:00 +0000103 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Jim Laskeyd201f4e2007-03-14 19:30:33 +0000104 <a href="mailto:isanbard@gmail.com">Bill Wendling</a>,
Bill Wendlinga396ee82006-09-01 21:46:00 +0000105 <a href="mailto:pronesto@gmail.com">Fernando Magno Quintao
Jim Laskeyd201f4e2007-03-14 19:30:33 +0000106 Pereira</a> and
107 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000108</div>
109
Chris Lattner10d68002004-06-01 17:18:11 +0000110<div class="doc_warning">
111 <p>Warning: This is a work in progress.</p>
112</div>
113
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000114<!-- *********************************************************************** -->
115<div class="doc_section">
116 <a name="introduction">Introduction</a>
117</div>
118<!-- *********************************************************************** -->
119
120<div class="doc_text">
121
122<p>The LLVM target-independent code generator is a framework that provides a
Bill Wendling80118802009-04-15 02:12:37 +0000123 suite of reusable components for translating the LLVM internal representation
124 to the machine code for a specified target&mdash;either in assembly form
125 (suitable for a static compiler) or in binary machine code format (usable for
126 a JIT compiler). The LLVM target-independent code generator consists of five
127 main components:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000128
129<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000130 <li><a href="#targetdesc">Abstract target description</a> interfaces which
131 capture important properties about various aspects of the machine,
132 independently of how they will be used. These interfaces are defined in
133 <tt>include/llvm/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000134
Bill Wendling80118802009-04-15 02:12:37 +0000135 <li>Classes used to represent the <a href="#codegendesc">machine code</a>
136 being generated for a target. These classes are intended to be abstract
137 enough to represent the machine code for <i>any</i> target machine. These
138 classes are defined in <tt>include/llvm/CodeGen/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000139
Bill Wendling80118802009-04-15 02:12:37 +0000140 <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
141 various phases of native code generation (register allocation, scheduling,
142 stack frame representation, etc). This code lives
143 in <tt>lib/CodeGen/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000144
Bill Wendling80118802009-04-15 02:12:37 +0000145 <li><a href="#targetimpls">Implementations of the abstract target description
146 interfaces</a> for particular targets. These machine descriptions make
147 use of the components provided by LLVM, and can optionally provide custom
148 target-specific passes, to build complete code generators for a specific
149 target. Target descriptions live in <tt>lib/Target/</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000150
Bill Wendling80118802009-04-15 02:12:37 +0000151 <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
152 completely target independent (it uses the <tt>TargetJITInfo</tt>
153 structure to interface for target-specific issues. The code for the
154 target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000155</ol>
156
Bill Wendling80118802009-04-15 02:12:37 +0000157<p>Depending on which part of the code generator you are interested in working
158 on, different pieces of this will be useful to you. In any case, you should
159 be familiar with the <a href="#targetdesc">target description</a>
160 and <a href="#codegendesc">machine code representation</a> classes. If you
161 want to add a backend for a new target, you will need
162 to <a href="#targetimpls">implement the target description</a> classes for
163 your new target and understand the <a href="LangRef.html">LLVM code
164 representation</a>. If you are interested in implementing a
165 new <a href="#codegenalgs">code generation algorithm</a>, it should only
166 depend on the target-description and machine code representation classes,
167 ensuring that it is portable.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000168
169</div>
170
171<!-- ======================================================================= -->
172<div class="doc_subsection">
173 <a name="required">Required components in the code generator</a>
174</div>
175
176<div class="doc_text">
177
178<p>The two pieces of the LLVM code generator are the high-level interface to the
Bill Wendling80118802009-04-15 02:12:37 +0000179 code generator and the set of reusable components that can be used to build
180 target-specific backends. The two most important interfaces
181 (<a href="#targetmachine"><tt>TargetMachine</tt></a>
182 and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
183 required to be defined for a backend to fit into the LLVM system, but the
184 others must be defined if the reusable code generator components are going to
185 be used.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000186
187<p>This design has two important implications. The first is that LLVM can
Bill Wendling80118802009-04-15 02:12:37 +0000188 support completely non-traditional code generation targets. For example, the
189 C backend does not require register allocation, instruction selection, or any
190 of the other standard components provided by the system. As such, it only
191 implements these two interfaces, and does its own thing. Another example of
192 a code generator like this is a (purely hypothetical) backend that converts
193 LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000194
Bill Wendling80118802009-04-15 02:12:37 +0000195<p>This design also implies that it is possible to design and implement
196 radically different code generators in the LLVM system that do not make use
197 of any of the built-in components. Doing so is not recommended at all, but
198 could be required for radically different targets that do not fit into the
199 LLVM machine description model: FPGAs for example.</p>
Chris Lattner900bf8c2004-06-02 07:06:06 +0000200
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000201</div>
202
203<!-- ======================================================================= -->
204<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000205 <a name="high-level-design">The high-level design of the code generator</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000206</div>
207
208<div class="doc_text">
209
Bill Wendling80118802009-04-15 02:12:37 +0000210<p>The LLVM target-independent code generator is designed to support efficient
211 and quality code generation for standard register-based microprocessors.
212 Code generation in this model is divided into the following stages:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000213
214<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000215 <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
216 determines an efficient way to express the input LLVM code in the target
217 instruction set. This stage produces the initial code for the program in
218 the target instruction set, then makes use of virtual registers in SSA
219 form and physical registers that represent any required register
220 assignments due to target constraints or calling conventions. This step
221 turns the LLVM code into a DAG of target instructions.</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000222
Bill Wendling80118802009-04-15 02:12:37 +0000223 <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
224 This phase takes the DAG of target instructions produced by the
225 instruction selection phase, determines an ordering of the instructions,
226 then emits the instructions
227 as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
228 Note that we describe this in the <a href="#instselect">instruction
229 selection section</a> because it operates on
230 a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000231
Bill Wendling80118802009-04-15 02:12:37 +0000232 <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
233 This optional stage consists of a series of machine-code optimizations
234 that operate on the SSA-form produced by the instruction selector.
235 Optimizations like modulo-scheduling or peephole optimization work
236 here.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000237
Bill Wendling80118802009-04-15 02:12:37 +0000238 <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
239 is transformed from an infinite virtual register file in SSA form to the
240 concrete register file used by the target. This phase introduces spill
241 code and eliminates all virtual register references from the program.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000242
Bill Wendling80118802009-04-15 02:12:37 +0000243 <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
244 the machine code has been generated for the function and the amount of
245 stack space required is known (used for LLVM alloca's and spill slots),
246 the prolog and epilog code for the function can be inserted and "abstract
247 stack location references" can be eliminated. This stage is responsible
248 for implementing optimizations like frame-pointer elimination and stack
249 packing.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000250
Bill Wendling80118802009-04-15 02:12:37 +0000251 <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
252 Optimizations that operate on "final" machine code can go here, such as
253 spill code scheduling and peephole optimizations.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000254
Bill Wendling80118802009-04-15 02:12:37 +0000255 <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
256 actually puts out the code for the current function, either in the target
257 assembler format or in machine code.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000258</ol>
259
Bill Wendling91e10c42006-08-28 02:26:32 +0000260<p>The code generator is based on the assumption that the instruction selector
Bill Wendling80118802009-04-15 02:12:37 +0000261 will use an optimal pattern matching selector to create high-quality
262 sequences of native instructions. Alternative code generator designs based
263 on pattern expansion and aggressive iterative peephole optimization are much
264 slower. This design permits efficient compilation (important for JIT
265 environments) and aggressive optimization (used when generating code offline)
266 by allowing components of varying levels of sophistication to be used for any
267 step of compilation.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000268
Bill Wendling91e10c42006-08-28 02:26:32 +0000269<p>In addition to these stages, target implementations can insert arbitrary
Bill Wendling80118802009-04-15 02:12:37 +0000270 target-specific passes into the flow. For example, the X86 target uses a
271 special pass to handle the 80x87 floating point stack architecture. Other
272 targets with unusual requirements can be supported with custom passes as
273 needed.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000274
275</div>
276
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000277<!-- ======================================================================= -->
278<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000279 <a name="tablegen">Using TableGen for target description</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000280</div>
281
282<div class="doc_text">
283
Chris Lattner5489e932004-06-01 18:35:00 +0000284<p>The target description classes require a detailed description of the target
Bill Wendling80118802009-04-15 02:12:37 +0000285 architecture. These target descriptions often have a large amount of common
286 information (e.g., an <tt>add</tt> instruction is almost identical to a
287 <tt>sub</tt> instruction). In order to allow the maximum amount of
288 commonality to be factored out, the LLVM code generator uses
289 the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
290 chunks of the target machine, which allows the use of domain-specific and
291 target-specific abstractions to reduce the amount of repetition.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000292
Chris Lattner32e89f22005-10-16 18:31:08 +0000293<p>As LLVM continues to be developed and refined, we plan to move more and more
Bill Wendling80118802009-04-15 02:12:37 +0000294 of the target description to the <tt>.td</tt> form. Doing so gives us a
295 number of advantages. The most important is that it makes it easier to port
296 LLVM because it reduces the amount of C++ code that has to be written, and
297 the surface area of the code generator that needs to be understood before
298 someone can get something working. Second, it makes it easier to change
299 things. In particular, if tables and other things are all emitted
300 by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
301 update all of the targets to a new interface.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000302
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000303</div>
304
305<!-- *********************************************************************** -->
306<div class="doc_section">
307 <a name="targetdesc">Target description classes</a>
308</div>
309<!-- *********************************************************************** -->
310
311<div class="doc_text">
312
Bill Wendling91e10c42006-08-28 02:26:32 +0000313<p>The LLVM target description classes (located in the
Bill Wendling80118802009-04-15 02:12:37 +0000314 <tt>include/llvm/Target</tt> directory) provide an abstract description of
315 the target machine independent of any particular client. These classes are
316 designed to capture the <i>abstract</i> properties of the target (such as the
317 instructions and registers it has), and do not incorporate any particular
318 pieces of code generation algorithms.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000319
Bill Wendling80118802009-04-15 02:12:37 +0000320<p>All of the target description classes (except the
321 <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
322 subclassed by the concrete target implementation, and have virtual methods
323 implemented. To get to these implementations, the
324 <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
325 that should be implemented by the target.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000326
327</div>
328
329<!-- ======================================================================= -->
330<div class="doc_subsection">
331 <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
332</div>
333
334<div class="doc_text">
335
336<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
Bill Wendling80118802009-04-15 02:12:37 +0000337 access the target-specific implementations of the various target description
338 classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
339 <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
340 designed to be specialized by a concrete target implementation
341 (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
342 methods. The only required target description class is
343 the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
344 generator components are to be used, the other interfaces should be
345 implemented as well.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000346
347</div>
348
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000349<!-- ======================================================================= -->
350<div class="doc_subsection">
351 <a name="targetdata">The <tt>TargetData</tt> class</a>
352</div>
353
354<div class="doc_text">
355
356<p>The <tt>TargetData</tt> class is the only required target description class,
Bill Wendling80118802009-04-15 02:12:37 +0000357 and it is the only class that is not extensible (you cannot derived a new
358 class from it). <tt>TargetData</tt> specifies information about how the
359 target lays out memory for structures, the alignment requirements for various
360 data types, the size of pointers in the target, and whether the target is
361 little-endian or big-endian.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000362
363</div>
364
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000365<!-- ======================================================================= -->
366<div class="doc_subsection">
367 <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
368</div>
369
370<div class="doc_text">
371
372<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
Bill Wendling80118802009-04-15 02:12:37 +0000373 selectors primarily to describe how LLVM code should be lowered to
374 SelectionDAG operations. Among other things, this class indicates:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000375
376<ul>
Bill Wendling80118802009-04-15 02:12:37 +0000377 <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
378
379 <li>which operations are natively supported by the target machine,</li>
380
381 <li>the return type of <tt>setcc</tt> operations,</li>
382
383 <li>the type to use for shift amounts, and</li>
384
Chris Lattner32e89f22005-10-16 18:31:08 +0000385 <li>various high-level characteristics, like whether it is profitable to turn
386 division by a constant into a multiplication sequence</li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000387</ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000388
389</div>
390
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000391<!-- ======================================================================= -->
392<div class="doc_subsection">
Dan Gohman6f0d0242008-02-10 18:45:23 +0000393 <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000394</div>
395
396<div class="doc_text">
397
Bill Wendling80118802009-04-15 02:12:37 +0000398<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
399 of the target and any interactions between the registers.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000400
401<p>Registers in the code generator are represented in the code generator by
Bill Wendling80118802009-04-15 02:12:37 +0000402 unsigned integers. Physical registers (those that actually exist in the
403 target description) are unique small numbers, and virtual registers are
404 generally large. Note that register #0 is reserved as a flag value.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000405
406<p>Each register in the processor description has an associated
Bill Wendling80118802009-04-15 02:12:37 +0000407 <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
408 register (used for assembly output and debugging dumps) and a set of aliases
409 (used to indicate whether one register overlaps with another).</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000410
Dan Gohman6f0d0242008-02-10 18:45:23 +0000411<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000412 class exposes a set of processor specific register classes (instances of the
413 <tt>TargetRegisterClass</tt> class). Each register class contains sets of
414 registers that have the same properties (for example, they are all 32-bit
415 integer registers). Each SSA virtual register created by the instruction
416 selector has an associated register class. When the register allocator runs,
417 it replaces virtual registers with a physical register in the set.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000418
Bill Wendling80118802009-04-15 02:12:37 +0000419<p>The target-specific implementations of these classes is auto-generated from
420 a <a href="TableGenFundamentals.html">TableGen</a> description of the
421 register file.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000422
423</div>
424
425<!-- ======================================================================= -->
426<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000427 <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000428</div>
429
Reid Spencer627cd002005-07-19 01:36:35 +0000430<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000431
432<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
433 instructions supported by the target. It is essentially an array of
434 <tt>TargetInstrDescriptor</tt> objects, each of which describes one
435 instruction the target supports. Descriptors define things like the mnemonic
436 for the opcode, the number of operands, the list of implicit register uses
437 and defs, whether the instruction has certain target-independent properties
438 (accesses memory, is commutable, etc), and holds any target-specific
439 flags.</p>
440
Reid Spencer627cd002005-07-19 01:36:35 +0000441</div>
442
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000443<!-- ======================================================================= -->
444<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000445 <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000446</div>
447
Reid Spencer627cd002005-07-19 01:36:35 +0000448<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000449
450<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
451 stack frame layout of the target. It holds the direction of stack growth, the
452 known stack alignment on entry to each function, and the offset to the local
453 area. The offset to the local area is the offset from the stack pointer on
454 function entry to the first location where function data (local variables,
455 spill locations) can be stored.</p>
456
Reid Spencer627cd002005-07-19 01:36:35 +0000457</div>
Chris Lattner47adebb2005-10-16 17:06:07 +0000458
459<!-- ======================================================================= -->
460<div class="doc_subsection">
461 <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
462</div>
463
464<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000465
466<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
467 specific chip set being targeted. A sub-target informs code generation of
468 which instructions are supported, instruction latencies and instruction
469 execution itinerary; i.e., which processing units are used, in what order,
470 and for how long.</p>
471
Chris Lattner47adebb2005-10-16 17:06:07 +0000472</div>
473
474
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000475<!-- ======================================================================= -->
476<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000477 <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000478</div>
479
Bill Wendling91e10c42006-08-28 02:26:32 +0000480<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +0000481
482<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
483 Just-In-Time code generator to perform target-specific activities, such as
484 emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
485 should provide one of these objects through the <tt>getJITInfo</tt>
486 method.</p>
487
Bill Wendling91e10c42006-08-28 02:26:32 +0000488</div>
489
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000490<!-- *********************************************************************** -->
491<div class="doc_section">
492 <a name="codegendesc">Machine code description classes</a>
493</div>
494<!-- *********************************************************************** -->
495
Chris Lattnerec94f802004-06-04 00:16:02 +0000496<div class="doc_text">
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000497
Bill Wendling91e10c42006-08-28 02:26:32 +0000498<p>At the high-level, LLVM code is translated to a machine specific
Bill Wendling80118802009-04-15 02:12:37 +0000499 representation formed out of
500 <a href="#machinefunction"><tt>MachineFunction</tt></a>,
501 <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
502 and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
503 in <tt>include/llvm/CodeGen</tt>). This representation is completely target
504 agnostic, representing instructions in their most abstract form: an opcode
505 and a series of operands. This representation is designed to support both an
506 SSA representation for machine code, as well as a register allocated, non-SSA
507 form.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000508
509</div>
510
511<!-- ======================================================================= -->
512<div class="doc_subsection">
513 <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
514</div>
515
516<div class="doc_text">
517
518<p>Target machine instructions are represented as instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000519 <tt>MachineInstr</tt> class. This class is an extremely abstract way of
520 representing machine instructions. In particular, it only keeps track of an
521 opcode number and a set of operands.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000522
Bill Wendling80118802009-04-15 02:12:37 +0000523<p>The opcode number is a simple unsigned integer that only has meaning to a
524 specific backend. All of the instructions for a target should be defined in
525 the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
526 auto-generated from this description. The <tt>MachineInstr</tt> class does
527 not have any information about how to interpret the instruction (i.e., what
528 the semantics of the instruction are); for that you must refer to the
529 <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000530
Bill Wendling80118802009-04-15 02:12:37 +0000531<p>The operands of a machine instruction can be of several different types: a
532 register reference, a constant integer, a basic block reference, etc. In
533 addition, a machine operand should be marked as a def or a use of the value
534 (though only registers are allowed to be defs).</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000535
536<p>By convention, the LLVM code generator orders instruction operands so that
Bill Wendling80118802009-04-15 02:12:37 +0000537 all register definitions come before the register uses, even on architectures
538 that are normally printed in other orders. For example, the SPARC add
539 instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
540 and stores the result into the "%i3" register. In the LLVM code generator,
541 the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
542 destination first.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000543
Bill Wendling80118802009-04-15 02:12:37 +0000544<p>Keeping destination (definition) operands at the beginning of the operand
545 list has several advantages. In particular, the debugging printer will print
546 the instruction like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000547
Bill Wendling91e10c42006-08-28 02:26:32 +0000548<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000549<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000550%r3 = add %i1, %i2
Chris Lattnerec94f802004-06-04 00:16:02 +0000551</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000552</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000553
Bill Wendling80118802009-04-15 02:12:37 +0000554<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
555 instructions</a> whose only def is the first operand.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000556
557</div>
558
559<!-- _______________________________________________________________________ -->
560<div class="doc_subsubsection">
561 <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
562</div>
563
564<div class="doc_text">
565
566<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
Bill Wendling80118802009-04-15 02:12:37 +0000567 located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
568 <tt>BuildMI</tt> functions make it easy to build arbitrary machine
569 instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000570
Bill Wendling91e10c42006-08-28 02:26:32 +0000571<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000572<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000573// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
574// instruction. The '1' specifies how many operands will be added.
575MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000576
Bill Wendling91e10c42006-08-28 02:26:32 +0000577// Create the same instr, but insert it at the end of a basic block.
578MachineBasicBlock &amp;MBB = ...
579BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000580
Bill Wendling91e10c42006-08-28 02:26:32 +0000581// Create the same instr, but insert it before a specified iterator point.
582MachineBasicBlock::iterator MBBI = ...
583BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000584
Bill Wendling91e10c42006-08-28 02:26:32 +0000585// Create a 'cmp Reg, 0' instruction, no destination reg.
586MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
587// Create an 'sahf' instruction which takes no operands and stores nothing.
588MI = BuildMI(X86::SAHF, 0);
Chris Lattnerec94f802004-06-04 00:16:02 +0000589
Bill Wendling91e10c42006-08-28 02:26:32 +0000590// Create a self looping branch instruction.
591BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
Chris Lattnerec94f802004-06-04 00:16:02 +0000592</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000593</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000594
Bill Wendling91e10c42006-08-28 02:26:32 +0000595<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
Bill Wendling80118802009-04-15 02:12:37 +0000596 have to specify the number of operands that the machine instruction will
597 take. This allows for efficient memory allocation. You also need to specify
598 if operands default to be uses of values, not definitions. If you need to
599 add a definition operand (other than the optional destination register), you
600 must explicitly mark it as such:</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000601
602<div class="doc_code">
603<pre>
Bill Wendling587daed2009-05-13 21:33:08 +0000604MI.addReg(Reg, RegState::Define);
Bill Wendling91e10c42006-08-28 02:26:32 +0000605</pre>
606</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000607
608</div>
609
610<!-- _______________________________________________________________________ -->
611<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000612 <a name="fixedregs">Fixed (preassigned) registers</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000613</div>
614
615<div class="doc_text">
616
617<p>One important issue that the code generator needs to be aware of is the
Bill Wendling80118802009-04-15 02:12:37 +0000618 presence of fixed registers. In particular, there are often places in the
619 instruction stream where the register allocator <em>must</em> arrange for a
620 particular value to be in a particular register. This can occur due to
621 limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
622 with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
623 calling conventions. In any case, the instruction selector should emit code
624 that copies a virtual register into or out of a physical register when
625 needed.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000626
627<p>For example, consider this simple LLVM example:</p>
628
Bill Wendling91e10c42006-08-28 02:26:32 +0000629<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000630<pre>
Matthijs Kooijman61399af2008-06-04 15:46:35 +0000631define i32 @test(i32 %X, i32 %Y) {
632 %Z = udiv i32 %X, %Y
633 ret i32 %Z
Bill Wendling91e10c42006-08-28 02:26:32 +0000634}
Chris Lattnerec94f802004-06-04 00:16:02 +0000635</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000636</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000637
Bill Wendling91e10c42006-08-28 02:26:32 +0000638<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
Bill Wendling80118802009-04-15 02:12:37 +0000639 and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
640 get this):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000641
Bill Wendling91e10c42006-08-28 02:26:32 +0000642<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000643<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000644;; Start of div
645%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
646%reg1027 = sar %reg1024, 31
647%EDX = mov %reg1027 ;; Sign extend X into EDX
648idiv %reg1025 ;; Divide by Y (in reg1025)
649%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
Chris Lattnerec94f802004-06-04 00:16:02 +0000650
Bill Wendling91e10c42006-08-28 02:26:32 +0000651;; Start of ret
652%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
653ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000654</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000655</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000656
Bill Wendling80118802009-04-15 02:12:37 +0000657<p>By the end of code generation, the register allocator has coalesced the
658 registers and deleted the resultant identity moves producing the following
659 code:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000660
Bill Wendling91e10c42006-08-28 02:26:32 +0000661<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000662<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000663;; X is in EAX, Y is in ECX
664mov %EAX, %EDX
665sar %EDX, 31
666idiv %ECX
667ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000668</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000669</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000670
Bill Wendling80118802009-04-15 02:12:37 +0000671<p>This approach is extremely general (if it can handle the X86 architecture, it
672 can handle anything!) and allows all of the target specific knowledge about
673 the instruction stream to be isolated in the instruction selector. Note that
674 physical registers should have a short lifetime for good code generation, and
675 all physical registers are assumed dead on entry to and exit from basic
676 blocks (before register allocation). Thus, if you need a value to be live
677 across basic block boundaries, it <em>must</em> live in a virtual
678 register.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000679
680</div>
681
682<!-- _______________________________________________________________________ -->
683<div class="doc_subsubsection">
Bill Wendling91e10c42006-08-28 02:26:32 +0000684 <a name="ssa">Machine code in SSA form</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000685</div>
686
687<div class="doc_text">
688
Bill Wendling80118802009-04-15 02:12:37 +0000689<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
690 maintained in SSA-form until register allocation happens. For the most part,
691 this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
692 become machine code PHI nodes, and virtual registers are only allowed to have
693 a single definition.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000694
Bill Wendling80118802009-04-15 02:12:37 +0000695<p>After register allocation, machine code is no longer in SSA-form because
696 there are no virtual registers left in the code.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000697
698</div>
699
Chris Lattner32e89f22005-10-16 18:31:08 +0000700<!-- ======================================================================= -->
701<div class="doc_subsection">
702 <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
703</div>
704
705<div class="doc_text">
706
707<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
Bill Wendling80118802009-04-15 02:12:37 +0000708 (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
709 corresponds to the LLVM code input to the instruction selector, but there can
710 be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
711 machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
712 "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
713 comes from.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000714
715</div>
716
717<!-- ======================================================================= -->
718<div class="doc_subsection">
719 <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
720</div>
721
722<div class="doc_text">
723
724<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
Bill Wendling80118802009-04-15 02:12:37 +0000725 (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
726 corresponds one-to-one with the LLVM function input to the instruction
727 selector. In addition to a list of basic blocks,
728 the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
729 a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
730 <tt>MachineRegisterInfo</tt>. See
731 <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000732
733</div>
734
Chris Lattnerec94f802004-06-04 00:16:02 +0000735<!-- *********************************************************************** -->
736<div class="doc_section">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000737 <a name="codegenalgs">Target-independent code generation algorithms</a>
738</div>
739<!-- *********************************************************************** -->
740
741<div class="doc_text">
742
Bill Wendling80118802009-04-15 02:12:37 +0000743<p>This section documents the phases described in the
744 <a href="#high-level-design">high-level design of the code generator</a>.
745 It explains how they work and some of the rationale behind their design.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000746
747</div>
748
749<!-- ======================================================================= -->
750<div class="doc_subsection">
751 <a name="instselect">Instruction Selection</a>
752</div>
753
754<div class="doc_text">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000755
Bill Wendling80118802009-04-15 02:12:37 +0000756<p>Instruction Selection is the process of translating LLVM code presented to
757 the code generator into target-specific machine instructions. There are
758 several well-known ways to do this in the literature. LLVM uses a
759 SelectionDAG based instruction selector.</p>
760
761<p>Portions of the DAG instruction selector are generated from the target
762 description (<tt>*.td</tt>) files. Our goal is for the entire instruction
763 selector to be generated from these <tt>.td</tt> files, though currently
764 there are still things that require custom C++ code.</p>
765
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000766</div>
767
768<!-- _______________________________________________________________________ -->
769<div class="doc_subsubsection">
770 <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
771</div>
772
773<div class="doc_text">
774
Bill Wendling91e10c42006-08-28 02:26:32 +0000775<p>The SelectionDAG provides an abstraction for code representation in a way
Bill Wendling80118802009-04-15 02:12:37 +0000776 that is amenable to instruction selection using automatic techniques
777 (e.g. dynamic-programming based optimal pattern matching selectors). It is
778 also well-suited to other phases of code generation; in particular,
779 instruction scheduling (SelectionDAG's are very close to scheduling DAGs
780 post-selection). Additionally, the SelectionDAG provides a host
781 representation where a large variety of very-low-level (but
782 target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
783 performed; ones which require extensive information about the instructions
784 efficiently supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000785
Bill Wendling91e10c42006-08-28 02:26:32 +0000786<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
Bill Wendling80118802009-04-15 02:12:37 +0000787 <tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
788 operation code (Opcode) that indicates what operation the node performs and
789 the operands to the operation. The various operation node types are
790 described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
791 file.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000792
Bill Wendling80118802009-04-15 02:12:37 +0000793<p>Although most operations define a single value, each node in the graph may
794 define multiple values. For example, a combined div/rem operation will
795 define both the dividend and the remainder. Many other situations require
796 multiple values as well. Each node also has some number of operands, which
797 are edges to the node defining the used value. Because nodes may define
798 multiple values, edges are represented by instances of the <tt>SDValue</tt>
799 class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
800 and result value being used, respectively. Each value produced by
801 an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
802 indicating what the type of the value is.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000803
Bill Wendling91e10c42006-08-28 02:26:32 +0000804<p>SelectionDAGs contain two different kinds of values: those that represent
Bill Wendling80118802009-04-15 02:12:37 +0000805 data flow and those that represent control flow dependencies. Data values
806 are simple edges with an integer or floating point value type. Control edges
807 are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
808 These edges provide an ordering between nodes that have side effects (such as
809 loads, stores, calls, returns, etc). All nodes that have side effects should
810 take a token chain as input and produce a new one as output. By convention,
811 token chain inputs are always operand #0, and chain results are always the
812 last value produced by an operation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000813
Bill Wendling91e10c42006-08-28 02:26:32 +0000814<p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is
Bill Wendling80118802009-04-15 02:12:37 +0000815 always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root
816 node is the final side-effecting node in the token chain. For example, in a
817 single basic block function it would be the return node.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000818
Bill Wendling91e10c42006-08-28 02:26:32 +0000819<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
Bill Wendling80118802009-04-15 02:12:37 +0000820 "illegal" DAG. A legal DAG for a target is one that only uses supported
821 operations and supported types. On a 32-bit PowerPC, for example, a DAG with
822 a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
823 uses a SREM or UREM operation. The
824 <a href="#selectinodag_legalize_types">legalize types</a> and
825 <a href="#selectiondag_legalize">legalize operations</a> phases are
826 responsible for turning an illegal DAG into a legal DAG.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000827
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000828</div>
829
830<!-- _______________________________________________________________________ -->
831<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000832 <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000833</div>
834
835<div class="doc_text">
836
Bill Wendling91e10c42006-08-28 02:26:32 +0000837<p>SelectionDAG-based instruction selection consists of the following steps:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000838
839<ol>
Bill Wendling80118802009-04-15 02:12:37 +0000840 <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
841 performs a simple translation from the input LLVM code to an illegal
842 SelectionDAG.</li>
843
844 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
845 stage performs simple optimizations on the SelectionDAG to simplify it,
846 and recognize meta instructions (like rotates
847 and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
848 operations. This makes the resultant code more efficient and
849 the <a href="#selectiondag_select">select instructions from DAG</a> phase
850 (below) simpler.</li>
851
852 <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
853 &mdash; This stage transforms SelectionDAG nodes to eliminate any types
854 that are unsupported on the target.</li>
855
856 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
857 SelectionDAG optimizer is run to clean up redundancies exposed by type
858 legalization.</li>
859
860 <li><a href="#selectiondag_legalize">Legalize SelectionDAG Types</a> &mdash;
861 This stage transforms SelectionDAG nodes to eliminate any types that are
862 unsupported on the target.</li>
863
864 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
865 SelectionDAG optimizer is run to eliminate inefficiencies introduced by
866 operation legalization.</li>
867
868 <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
869 Finally, the target instruction selector matches the DAG operations to
870 target instructions. This process translates the target-independent input
871 DAG into another DAG of target instructions.</li>
872
873 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
874 &mdash; The last phase assigns a linear order to the instructions in the
875 target-instruction DAG and emits them into the MachineFunction being
876 compiled. This step uses traditional prepass scheduling techniques.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000877</ol>
878
879<p>After all of these steps are complete, the SelectionDAG is destroyed and the
Bill Wendling80118802009-04-15 02:12:37 +0000880 rest of the code generation passes are run.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000881
Bill Wendling80118802009-04-15 02:12:37 +0000882<p>One great way to visualize what is going on here is to take advantage of a
883 few LLC command line options. The following options pop up a window
884 displaying the SelectionDAG at specific times (if you only get errors printed
885 to the console while using this, you probably
886 <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
887 to add support for it).</p>
Dan Gohman8c9c55f2008-09-10 22:23:41 +0000888
889<ul>
Bill Wendling80118802009-04-15 02:12:37 +0000890 <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
891 before the first optimization pass.</li>
892
893 <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
894
895 <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
896 optimization pass.</li>
897
898 <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
899
900 <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
Dan Gohman8c9c55f2008-09-10 22:23:41 +0000901</ul>
902
903<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
Bill Wendling80118802009-04-15 02:12:37 +0000904 This graph is based on the final SelectionDAG, with nodes that must be
905 scheduled together bundled into a single scheduling-unit node, and with
906 immediate operands and other nodes that aren't relevant for scheduling
907 omitted.</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000908
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000909</div>
910
911<!-- _______________________________________________________________________ -->
912<div class="doc_subsubsection">
913 <a name="selectiondag_build">Initial SelectionDAG Construction</a>
914</div>
915
916<div class="doc_text">
917
Bill Wendling16448772006-08-28 03:04:05 +0000918<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
Bill Wendling80118802009-04-15 02:12:37 +0000919 input by the <tt>SelectionDAGLowering</tt> class in the
920 <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of
921 this pass is to expose as much low-level, target-specific details to the
922 SelectionDAG as possible. This pass is mostly hard-coded (e.g. an
923 LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
924 <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
925 requires target-specific hooks to lower calls, returns, varargs, etc. For
926 these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
927 interface is used.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000928
929</div>
930
931<!-- _______________________________________________________________________ -->
932<div class="doc_subsubsection">
Dan Gohman641b2792008-11-24 16:27:17 +0000933 <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
934</div>
935
936<div class="doc_text">
937
938<p>The Legalize phase is in charge of converting a DAG to only use the types
Bill Wendling80118802009-04-15 02:12:37 +0000939 that are natively supported by the target.</p>
Dan Gohman641b2792008-11-24 16:27:17 +0000940
Bill Wendling80118802009-04-15 02:12:37 +0000941<p>There are two main ways of converting values of unsupported scalar types to
942 values of supported types: converting small types to larger types
943 ("promoting"), and breaking up large integer types into smaller ones
944 ("expanding"). For example, a target might require that all f32 values are
945 promoted to f64 and that all i1/i8/i16 values are promoted to i32. The same
946 target might require that all i64 values be expanded into pairs of i32
947 values. These changes can insert sign and zero extensions as needed to make
948 sure that the final code has the same behavior as the input.</p>
Dan Gohman641b2792008-11-24 16:27:17 +0000949
Bill Wendling80118802009-04-15 02:12:37 +0000950<p>There are two main ways of converting values of unsupported vector types to
951 value of supported types: splitting vector types, multiple times if
952 necessary, until a legal type is found, and extending vector types by adding
953 elements to the end to round them out to legal types ("widening"). If a
954 vector gets split all the way down to single-element parts with no supported
955 vector type being found, the elements are converted to scalars
956 ("scalarizing").</p>
Dan Gohman641b2792008-11-24 16:27:17 +0000957
Bill Wendling80118802009-04-15 02:12:37 +0000958<p>A target implementation tells the legalizer which types are supported (and
959 which register class to use for them) by calling the
Dan Gohman641b2792008-11-24 16:27:17 +0000960 <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
961
962</div>
963
964<!-- _______________________________________________________________________ -->
965<div class="doc_subsubsection">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000966 <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
967</div>
968
969<div class="doc_text">
970
Dan Gohman641b2792008-11-24 16:27:17 +0000971<p>The Legalize phase is in charge of converting a DAG to only use the
Bill Wendling80118802009-04-15 02:12:37 +0000972 operations that are natively supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000973
Bill Wendling80118802009-04-15 02:12:37 +0000974<p>Targets often have weird constraints, such as not supporting every operation
975 on every supported datatype (e.g. X86 does not support byte conditional moves
976 and PowerPC does not support sign-extending loads from a 16-bit memory
977 location). Legalize takes care of this by open-coding another sequence of
978 operations to emulate the operation ("expansion"), by promoting one type to a
979 larger type that supports the operation ("promotion"), or by using a
980 target-specific hook to implement the legalization ("custom").</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000981
Dan Gohman641b2792008-11-24 16:27:17 +0000982<p>A target implementation tells the legalizer which operations are not
983 supported (and which of the above three actions to take) by calling the
984 <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
985 constructor.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000986
Dan Gohman641b2792008-11-24 16:27:17 +0000987<p>Prior to the existence of the Legalize passes, we required that every target
Bill Wendling80118802009-04-15 02:12:37 +0000988 <a href="#selectiondag_optimize">selector</a> supported and handled every
989 operator and type even if they are not natively supported. The introduction
990 of the Legalize phases allows all of the canonicalization patterns to be
991 shared across targets, and makes it very easy to optimize the canonicalized
992 code because it is still in the form of a DAG.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000993
994</div>
995
996<!-- _______________________________________________________________________ -->
997<div class="doc_subsubsection">
Chris Lattnere35d3bb2005-10-16 00:36:38 +0000998 <a name="selectiondag_optimize">SelectionDAG Optimization Phase: the DAG
999 Combiner</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001000</div>
1001
1002<div class="doc_text">
1003
Bill Wendling80118802009-04-15 02:12:37 +00001004<p>The SelectionDAG optimization phase is run multiple times for code
1005 generation, immediately after the DAG is built and once after each
1006 legalization. The first run of the pass allows the initial code to be
1007 cleaned up (e.g. performing optimizations that depend on knowing that the
1008 operators have restricted type inputs). Subsequent runs of the pass clean up
1009 the messy code generated by the Legalize passes, which allows Legalize to be
1010 very simple (it can focus on making code legal instead of focusing on
1011 generating <em>good</em> and legal code).</p>
Bill Wendling91e10c42006-08-28 02:26:32 +00001012
1013<p>One important class of optimizations performed is optimizing inserted sign
Bill Wendling80118802009-04-15 02:12:37 +00001014 and zero extension instructions. We currently use ad-hoc techniques, but
1015 could move to more rigorous techniques in the future. Here are some good
1016 papers on the subject:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001017
Bill Wendling80118802009-04-15 02:12:37 +00001018<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
1019 integer arithmetic</a>"<br>
1020 Kevin Redwine and Norman Ramsey<br>
1021 International Conference on Compiler Construction (CC) 2004</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001022
Bill Wendling80118802009-04-15 02:12:37 +00001023<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
1024 sign extension elimination</a>"<br>
1025 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
1026 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
1027 and Implementation.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001028
1029</div>
1030
1031<!-- _______________________________________________________________________ -->
1032<div class="doc_subsubsection">
1033 <a name="selectiondag_select">SelectionDAG Select Phase</a>
1034</div>
1035
1036<div class="doc_text">
1037
1038<p>The Select phase is the bulk of the target-specific code for instruction
Bill Wendling80118802009-04-15 02:12:37 +00001039 selection. This phase takes a legal SelectionDAG as input, pattern matches
1040 the instructions supported by the target to this DAG, and produces a new DAG
1041 of target code. For example, consider the following LLVM fragment:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001042
Bill Wendling91e10c42006-08-28 02:26:32 +00001043<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001044<pre>
Dan Gohmana9445e12010-03-02 01:11:08 +00001045%t1 = fadd float %W, %X
1046%t2 = fmul float %t1, %Y
1047%t3 = fadd float %t2, %Z
Chris Lattner7a025c82005-10-16 20:02:19 +00001048</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001049</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001050
Bill Wendling91e10c42006-08-28 02:26:32 +00001051<p>This LLVM code corresponds to a SelectionDAG that looks basically like
Bill Wendling80118802009-04-15 02:12:37 +00001052 this:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001053
Bill Wendling91e10c42006-08-28 02:26:32 +00001054<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001055<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001056(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001057</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001058</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001059
Bill Wendling80118802009-04-15 02:12:37 +00001060<p>If a target supports floating point multiply-and-add (FMA) operations, one of
1061 the adds can be merged with the multiply. On the PowerPC, for example, the
1062 output of the instruction selector might look like this DAG:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001063
Bill Wendling91e10c42006-08-28 02:26:32 +00001064<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001065<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001066(FMADDS (FADDS W, X), Y, Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001067</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001068</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001069
Bill Wendling91e10c42006-08-28 02:26:32 +00001070<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1071first two operands and adds the third (as single-precision floating-point
1072numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision
1073add instruction. To perform this pattern match, the PowerPC backend includes
1074the following instruction definitions:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001075
Bill Wendling91e10c42006-08-28 02:26:32 +00001076<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001077<pre>
1078def FMADDS : AForm_1&lt;59, 29,
1079 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1080 "fmadds $FRT, $FRA, $FRC, $FRB",
1081 [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1082 F4RC:$FRB))</b>]&gt;;
1083def FADDS : AForm_2&lt;59, 21,
1084 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1085 "fadds $FRT, $FRA, $FRB",
1086 [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1087</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001088</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001089
1090<p>The portion of the instruction definition in bold indicates the pattern used
Bill Wendling80118802009-04-15 02:12:37 +00001091 to match the instruction. The DAG operators
1092 (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
Dan Gohman6a4824c2010-03-25 00:03:04 +00001093 the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file. "
1094 <tt>F4RC</tt>" is the register class of the input and result values.</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001095
Bill Wendling80118802009-04-15 02:12:37 +00001096<p>The TableGen DAG instruction selector generator reads the instruction
1097 patterns in the <tt>.td</tt> file and automatically builds parts of the
1098 pattern matching code for your target. It has the following strengths:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001099
1100<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001101 <li>At compiler-compiler time, it analyzes your instruction patterns and tells
1102 you if your patterns make sense or not.</li>
1103
1104 <li>It can handle arbitrary constraints on operands for the pattern match. In
1105 particular, it is straight-forward to say things like "match any immediate
1106 that is a 13-bit sign-extended value". For examples, see the
1107 <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1108 backend.</li>
1109
1110 <li>It knows several important identities for the patterns defined. For
1111 example, it knows that addition is commutative, so it allows the
1112 <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1113 well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1114 to specially handle this case.</li>
1115
1116 <li>It has a full-featured type-inferencing system. In particular, you should
1117 rarely have to explicitly tell the system what type parts of your patterns
1118 are. In the <tt>FMADDS</tt> case above, we didn't have to tell
1119 <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
1120 It was able to infer and propagate this knowledge from the fact that
1121 <tt>F4RC</tt> has type 'f32'.</li>
1122
1123 <li>Targets can define their own (and rely on built-in) "pattern fragments".
1124 Pattern fragments are chunks of reusable patterns that get inlined into
1125 your patterns during compiler-compiler time. For example, the integer
1126 "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
1127 that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
1128 have a native '<tt>not</tt>' operation. Targets can define their own
1129 short-hand fragments as they see fit. See the definition of
1130 '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
1131
1132 <li>In addition to instructions, targets can specify arbitrary patterns that
1133 map to one or more instructions using the 'Pat' class. For example, the
1134 PowerPC has no way to load an arbitrary integer immediate into a register
1135 in one instruction. To tell tblgen how to do this, it defines:
1136 <br>
1137 <br>
1138<div class="doc_code">
1139<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001140// Arbitrary immediate support. Implement in terms of LIS/ORI.
1141def : Pat&lt;(i32 imm:$imm),
1142 (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
Bill Wendling80118802009-04-15 02:12:37 +00001143</pre>
1144</div>
1145 <br>
1146 If none of the single-instruction patterns for loading an immediate into a
1147 register match, this will be used. This rule says "match an arbitrary i32
1148 immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
1149 an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
1150 the left 16 bits') instruction". To make this work, the
1151 <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
1152 the input immediate (in this case, take the high or low 16-bits of the
1153 immediate).</li>
1154
1155 <li>While the system does automate a lot, it still allows you to write custom
1156 C++ code to match special cases if there is something that is hard to
1157 express.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001158</ul>
1159
Bill Wendling91e10c42006-08-28 02:26:32 +00001160<p>While it has many strengths, the system currently has some limitations,
Bill Wendling80118802009-04-15 02:12:37 +00001161 primarily because it is a work in progress and is not yet finished:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001162
1163<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001164 <li>Overall, there is no way to define or match SelectionDAG nodes that define
Dan Gohmane370c802009-04-22 15:55:31 +00001165 multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
Bill Wendling80118802009-04-15 02:12:37 +00001166 etc). This is the biggest reason that you currently still <em>have
1167 to</em> write custom C++ code for your instruction selector.</li>
1168
1169 <li>There is no great way to support matching complex addressing modes yet.
1170 In the future, we will extend pattern fragments to allow them to define
1171 multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1172 addressing mode</a>, which are currently matched with custom C++ code).
1173 In addition, we'll extend fragments so that a fragment can match multiple
1174 different patterns.</li>
1175
1176 <li>We don't automatically infer flags like isStore/isLoad yet.</li>
1177
1178 <li>We don't automatically generate the set of supported registers and
1179 operations for the <a href="#selectiondag_legalize">Legalizer</a>
1180 yet.</li>
1181
1182 <li>We don't have a way of tying in custom legalized nodes yet.</li>
Chris Lattner7d6915c2005-10-17 04:18:41 +00001183</ul>
Chris Lattner7a025c82005-10-16 20:02:19 +00001184
1185<p>Despite these limitations, the instruction selector generator is still quite
Bill Wendling80118802009-04-15 02:12:37 +00001186 useful for most of the binary and logical operations in typical instruction
1187 sets. If you run into any problems or can't figure out how to do something,
1188 please let Chris know!</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001189
1190</div>
1191
1192<!-- _______________________________________________________________________ -->
1193<div class="doc_subsubsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001194 <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001195</div>
1196
1197<div class="doc_text">
1198
1199<p>The scheduling phase takes the DAG of target instructions from the selection
Bill Wendling80118802009-04-15 02:12:37 +00001200 phase and assigns an order. The scheduler can pick an order depending on
1201 various constraints of the machines (i.e. order for minimal register pressure
1202 or try to cover instruction latencies). Once an order is established, the
1203 DAG is converted to a list
1204 of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
1205 destroyed.</p>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001206
Jeff Cohen0b81cda2005-10-24 16:54:55 +00001207<p>Note that this phase is logically separate from the instruction selection
Bill Wendling80118802009-04-15 02:12:37 +00001208 phase, but is tied to it closely in the code because it operates on
1209 SelectionDAGs.</p>
Chris Lattnerc38959f2005-10-17 03:09:31 +00001210
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001211</div>
1212
1213<!-- _______________________________________________________________________ -->
1214<div class="doc_subsubsection">
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001215 <a name="selectiondag_future">Future directions for the SelectionDAG</a>
1216</div>
1217
1218<div class="doc_text">
1219
1220<ol>
Bill Wendling80118802009-04-15 02:12:37 +00001221 <li>Optional function-at-a-time selection.</li>
1222
1223 <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001224</ol>
1225
1226</div>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001227
1228<!-- ======================================================================= -->
1229<div class="doc_subsection">
1230 <a name="ssamco">SSA-based Machine Code Optimizations</a>
1231</div>
1232<div class="doc_text"><p>To Be Written</p></div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001233
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001234<!-- ======================================================================= -->
1235<div class="doc_subsection">
Bill Wendling3fc488d2006-09-06 18:42:41 +00001236 <a name="liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +00001237</div>
1238
1239<div class="doc_text">
1240
Bill Wendling3fc488d2006-09-06 18:42:41 +00001241<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001242 They are used by some <a href="#regalloc">register allocator</a> passes to
1243 determine if two or more virtual registers which require the same physical
1244 register are live at the same point in the program (i.e., they conflict).
1245 When this situation occurs, one virtual register must be <i>spilled</i>.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001246
1247</div>
1248
1249<!-- _______________________________________________________________________ -->
1250<div class="doc_subsubsection">
1251 <a name="livevariable_analysis">Live Variable Analysis</a>
1252</div>
1253
1254<div class="doc_text">
1255
Bill Wendling80118802009-04-15 02:12:37 +00001256<p>The first step in determining the live intervals of variables is to calculate
1257 the set of registers that are immediately dead after the instruction (i.e.,
1258 the instruction calculates the value, but it is never used) and the set of
1259 registers that are used by the instruction, but are never used after the
1260 instruction (i.e., they are killed). Live variable information is computed
1261 for each <i>virtual</i> register and <i>register allocatable</i> physical
1262 register in the function. This is done in a very efficient manner because it
1263 uses SSA to sparsely compute lifetime information for virtual registers
1264 (which are in SSA form) and only has to track physical registers within a
1265 block. Before register allocation, LLVM can assume that physical registers
1266 are only live within a single basic block. This allows it to do a single,
1267 local analysis to resolve physical register lifetimes within each basic
1268 block. If a physical register is not register allocatable (e.g., a stack
1269 pointer or condition codes), it is not tracked.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001270
Bill Wendling80118802009-04-15 02:12:37 +00001271<p>Physical registers may be live in to or out of a function. Live in values are
1272 typically arguments in registers. Live out values are typically return values
1273 in registers. Live in values are marked as such, and are given a dummy
1274 "defining" instruction during live intervals analysis. If the last basic
1275 block of a function is a <tt>return</tt>, then it's marked as using all live
1276 out values in the function.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001277
Bill Wendling80118802009-04-15 02:12:37 +00001278<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
1279 the live variable information from a depth first traversal of the CFG of the
1280 function won't guarantee that a virtual register used by the <tt>PHI</tt>
1281 node is defined before it's used. When a <tt>PHI</tt> node is encountered,
1282 only the definition is handled, because the uses will be handled in other
1283 basic blocks.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001284
1285<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
Bill Wendling80118802009-04-15 02:12:37 +00001286 assignment at the end of the current basic block and traverse the successor
1287 basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1288 the <tt>PHI</tt> node's operands is coming from the current basic block, then
1289 the variable is marked as <i>alive</i> within the current basic block and all
1290 of its predecessor basic blocks, until the basic block with the defining
1291 instruction is encountered.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001292
1293</div>
1294
Bill Wendling3fc488d2006-09-06 18:42:41 +00001295<!-- _______________________________________________________________________ -->
1296<div class="doc_subsubsection">
1297 <a name="liveintervals_analysis">Live Intervals Analysis</a>
1298</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001299
Bill Wendling3fc488d2006-09-06 18:42:41 +00001300<div class="doc_text">
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001301
Bill Wendling82e2eea2006-10-11 18:00:22 +00001302<p>We now have the information available to perform the live intervals analysis
Bill Wendling80118802009-04-15 02:12:37 +00001303 and build the live intervals themselves. We start off by numbering the basic
1304 blocks and machine instructions. We then handle the "live-in" values. These
1305 are in physical registers, so the physical register is assumed to be killed
1306 by the end of the basic block. Live intervals for virtual registers are
1307 computed for some ordering of the machine instructions <tt>[1, N]</tt>. A
1308 live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
1309 &lt; N</tt>, for which a variable is live.</p>
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001310
Bill Wendling82e2eea2006-10-11 18:00:22 +00001311<p><i><b>More to come...</b></i></p>
1312
Bill Wendling3fc488d2006-09-06 18:42:41 +00001313</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001314
1315<!-- ======================================================================= -->
1316<div class="doc_subsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001317 <a name="regalloc">Register Allocation</a>
1318</div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001319
1320<div class="doc_text">
1321
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001322<p>The <i>Register Allocation problem</i> consists in mapping a program
Bill Wendling80118802009-04-15 02:12:37 +00001323 <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
1324 to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
1325 number of physical registers. Each target architecture has a different number
1326 of physical registers. If the number of physical registers is not enough to
1327 accommodate all the virtual registers, some of them will have to be mapped
1328 into memory. These virtuals are called <i>spilled virtuals</i>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001329
1330</div>
1331
1332<!-- _______________________________________________________________________ -->
1333
1334<div class="doc_subsubsection">
1335 <a name="regAlloc_represent">How registers are represented in LLVM</a>
1336</div>
1337
1338<div class="doc_text">
1339
Bill Wendling80118802009-04-15 02:12:37 +00001340<p>In LLVM, physical registers are denoted by integer numbers that normally
1341 range from 1 to 1023. To see how this numbering is defined for a particular
1342 architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
1343 architecture. For instance, by
1344 inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
1345 32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
1346 <tt>MM0</tt> is mapped to 48.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001347
Bill Wendling80118802009-04-15 02:12:37 +00001348<p>Some architectures contain registers that share the same physical location. A
1349 notable example is the X86 platform. For instance, in the X86 architecture,
1350 the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
1351 bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
1352 particular architecture, you can check which registers are aliased by
1353 inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
1354 <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1355 all the physical registers aliased to the register <tt>p_reg</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001356
1357<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
Bill Wendling80118802009-04-15 02:12:37 +00001358 Elements in the same register class are functionally equivalent, and can be
1359 interchangeably used. Each virtual register can only be mapped to physical
1360 registers of a particular class. For instance, in the X86 architecture, some
1361 virtuals can only be allocated to 8 bit registers. A register class is
1362 described by <tt>TargetRegisterClass</tt> objects. To discover if a virtual
1363 register is compatible with a given physical, this code can be used:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001364
1365<div class="doc_code">
1366<pre>
Jim Laskeyb744c252006-12-15 10:40:48 +00001367bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
Bill Wendlinga396ee82006-09-01 21:46:00 +00001368 unsigned v_reg,
1369 unsigned p_reg) {
Dan Gohman6f0d0242008-02-10 18:45:23 +00001370 assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001371 "Target register must be physical");
Chris Lattner534bcfb2007-12-31 04:16:08 +00001372 const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1373 return trc-&gt;contains(p_reg);
Bill Wendlinga396ee82006-09-01 21:46:00 +00001374}
1375</pre>
1376</div>
1377
Bill Wendling80118802009-04-15 02:12:37 +00001378<p>Sometimes, mostly for debugging purposes, it is useful to change the number
1379 of physical registers available in the target architecture. This must be done
1380 statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
1381 for <tt>RegisterClass</tt>, the last parameter of which is a list of
1382 registers. Just commenting some out is one simple way to avoid them being
1383 used. A more polite way is to explicitly exclude some registers from
Dan Gohmand2cb3d22009-07-24 00:30:09 +00001384 the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
1385 class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
1386 </p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001387
Bill Wendling80118802009-04-15 02:12:37 +00001388<p>Virtual registers are also denoted by integer numbers. Contrary to physical
1389 registers, different virtual registers never share the same number. The
1390 smallest virtual register is normally assigned the number 1024. This may
1391 change, so, in order to know which is the first virtual register, you should
1392 access <tt>TargetRegisterInfo::FirstVirtualRegister</tt>. Any register whose
1393 number is greater than or equal
1394 to <tt>TargetRegisterInfo::FirstVirtualRegister</tt> is considered a virtual
1395 register. Whereas physical registers are statically defined in
1396 a <tt>TargetRegisterInfo.td</tt> file and cannot be created by the
1397 application developer, that is not the case with virtual registers. In order
1398 to create new virtual registers, use the
1399 method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
1400 will return a virtual register with the highest code.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001401
Bill Wendling80118802009-04-15 02:12:37 +00001402<p>Before register allocation, the operands of an instruction are mostly virtual
1403 registers, although physical registers may also be used. In order to check if
1404 a given machine operand is a register, use the boolean
1405 function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
1406 a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
1407 or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1408 defines the registers 1024, and uses registers 1025 and 1026. Given a
1409 register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
1410 register is being used by the instruction. The
1411 method <tt>MachineOperand::isDef()</tt> informs if that registers is being
1412 defined.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001413
Bill Wendling80118802009-04-15 02:12:37 +00001414<p>We will call physical registers present in the LLVM bitcode before register
1415 allocation <i>pre-colored registers</i>. Pre-colored registers are used in
1416 many different situations, for instance, to pass parameters of functions
1417 calls, and to store results of particular instructions. There are two types
1418 of pre-colored registers: the ones <i>implicitly</i> defined, and
1419 those <i>explicitly</i> defined. Explicitly defined registers are normal
1420 operands, and can be accessed
1421 with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In order to check
1422 which registers are implicitly defined by an instruction, use
1423 the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
1424 where <tt>opcode</tt> is the opcode of the target instruction. One important
1425 difference between explicit and implicit physical registers is that the
1426 latter are defined statically for each instruction, whereas the former may
1427 vary depending on the program being compiled. For example, an instruction
1428 that represents a function call will always implicitly define or use the same
1429 set of physical registers. To read the registers implicitly used by an
1430 instruction,
1431 use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1432 registers impose constraints on any register allocation algorithm. The
Bob Wilson04738682010-04-09 18:39:54 +00001433 register allocator must make sure that none of them are overwritten by
Bill Wendling80118802009-04-15 02:12:37 +00001434 the values of virtual registers while still alive.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001435
1436</div>
1437
1438<!-- _______________________________________________________________________ -->
1439
1440<div class="doc_subsubsection">
1441 <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
1442</div>
1443
1444<div class="doc_text">
1445
1446<p>There are two ways to map virtual registers to physical registers (or to
Bill Wendling80118802009-04-15 02:12:37 +00001447 memory slots). The first way, that we will call <i>direct mapping</i>, is
1448 based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
1449 and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
1450 mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
1451 and stores sending and getting values to and from memory.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001452
Bill Wendling80118802009-04-15 02:12:37 +00001453<p>The direct mapping provides more flexibility to the developer of the register
1454 allocator; however, it is more error prone, and demands more implementation
1455 work. Basically, the programmer will have to specify where load and store
1456 instructions should be inserted in the target function being compiled in
1457 order to get and store values in memory. To assign a physical register to a
1458 virtual register present in a given operand,
1459 use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
1460 use <tt>TargetRegisterInfo::storeRegToStackSlot(...)</tt>, and to insert a
1461 load instruction, use <tt>TargetRegisterInfo::loadRegFromStackSlot</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001462
Bill Wendling80118802009-04-15 02:12:37 +00001463<p>The indirect mapping shields the application developer from the complexities
1464 of inserting load and store instructions. In order to map a virtual register
1465 to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In
1466 order to map a certain virtual register to memory,
1467 use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
1468 the stack slot where <tt>vreg</tt>'s value will be located. If it is
1469 necessary to map another virtual register to the same stack slot,
1470 use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
1471 important point to consider when using the indirect mapping, is that even if
1472 a virtual register is mapped to memory, it still needs to be mapped to a
1473 physical register. This physical register is the location where the virtual
1474 register is supposed to be found before being stored or after being
1475 reloaded.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001476
Bill Wendling80118802009-04-15 02:12:37 +00001477<p>If the indirect strategy is used, after all the virtual registers have been
1478 mapped to physical registers or stack slots, it is necessary to use a spiller
1479 object to place load and store instructions in the code. Every virtual that
1480 has been mapped to a stack slot will be stored to memory after been defined
1481 and will be loaded before being used. The implementation of the spiller tries
1482 to recycle load/store instructions, avoiding unnecessary instructions. For an
1483 example of how to invoke the spiller,
1484 see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
1485 in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001486
1487</div>
1488
1489<!-- _______________________________________________________________________ -->
1490<div class="doc_subsubsection">
1491 <a name="regAlloc_twoAddr">Handling two address instructions</a>
1492</div>
1493
1494<div class="doc_text">
1495
Bill Wendling80118802009-04-15 02:12:37 +00001496<p>With very rare exceptions (e.g., function calls), the LLVM machine code
1497 instructions are three address instructions. That is, each instruction is
1498 expected to define at most one register, and to use at most two registers.
1499 However, some architectures use two address instructions. In this case, the
1500 defined register is also one of the used register. For instance, an
1501 instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
1502 to <tt>%EAX = %EAX + %EBX</tt>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001503
1504<p>In order to produce correct code, LLVM must convert three address
Bill Wendling80118802009-04-15 02:12:37 +00001505 instructions that represent two address instructions into true two address
1506 instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
1507 this specific purpose. It must be run before register allocation takes
1508 place. After its execution, the resulting code may no longer be in SSA
1509 form. This happens, for instance, in situations where an instruction such
1510 as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001511
1512<div class="doc_code">
1513<pre>
1514%a = MOVE %b
Dan Gohman03e58572008-06-13 17:55:57 +00001515%a = ADD %a %c
Bill Wendlinga396ee82006-09-01 21:46:00 +00001516</pre>
1517</div>
1518
1519<p>Notice that, internally, the second instruction is represented as
Bill Wendling80118802009-04-15 02:12:37 +00001520 <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
1521 used and defined by the instruction.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001522
1523</div>
1524
1525<!-- _______________________________________________________________________ -->
1526<div class="doc_subsubsection">
1527 <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
1528</div>
1529
1530<div class="doc_text">
1531
1532<p>An important transformation that happens during register allocation is called
Bill Wendling80118802009-04-15 02:12:37 +00001533 the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
1534 that are performed on the control flow graph of programs. However,
1535 traditional instruction sets do not implement PHI instructions. Thus, in
1536 order to generate executable code, compilers must replace PHI instructions
1537 with other instructions that preserve their semantics.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001538
Bill Wendling80118802009-04-15 02:12:37 +00001539<p>There are many ways in which PHI instructions can safely be removed from the
1540 target code. The most traditional PHI deconstruction algorithm replaces PHI
1541 instructions with copy instructions. That is the strategy adopted by
1542 LLVM. The SSA deconstruction algorithm is implemented
1543 in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
1544 identifier <tt>PHIEliminationID</tt> must be marked as required in the code
1545 of the register allocator.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001546
1547</div>
1548
1549<!-- _______________________________________________________________________ -->
1550<div class="doc_subsubsection">
1551 <a name="regAlloc_fold">Instruction folding</a>
1552</div>
1553
1554<div class="doc_text">
1555
Bill Wendling80118802009-04-15 02:12:37 +00001556<p><i>Instruction folding</i> is an optimization performed during register
1557 allocation that removes unnecessary copy instructions. For instance, a
1558 sequence of instructions such as:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001559
1560<div class="doc_code">
1561<pre>
1562%EBX = LOAD %mem_address
1563%EAX = COPY %EBX
1564</pre>
1565</div>
1566
Dan Gohmana7ab2bf2008-11-24 16:35:31 +00001567<p>can be safely substituted by the single instruction:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001568
1569<div class="doc_code">
1570<pre>
1571%EAX = LOAD %mem_address
1572</pre>
1573</div>
1574
Bill Wendling80118802009-04-15 02:12:37 +00001575<p>Instructions can be folded with
1576 the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1577 taken when folding instructions; a folded instruction can be quite different
1578 from the original
1579 instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
1580 in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
1581 use.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001582
1583</div>
1584
1585<!-- _______________________________________________________________________ -->
1586
1587<div class="doc_subsubsection">
1588 <a name="regAlloc_builtIn">Built in register allocators</a>
1589</div>
1590
1591<div class="doc_text">
1592
Bill Wendling80118802009-04-15 02:12:37 +00001593<p>The LLVM infrastructure provides the application developer with three
1594 different register allocators:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001595
1596<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001597 <li><i>Simple</i> &mdash; This is a very simple implementation that does not
1598 keep values in registers across instructions. This register allocator
1599 immediately spills every value right after it is computed, and reloads all
1600 used operands from memory to temporary registers before each
1601 instruction.</li>
1602
1603 <li><i>Local</i> &mdash; This register allocator is an improvement on the
1604 <i>Simple</i> implementation. It allocates registers on a basic block
1605 level, attempting to keep values in registers and reusing registers as
1606 appropriate.</li>
1607
1608 <li><i>Linear Scan</i> &mdash; <i>The default allocator</i>. This is the
Bill Wendlinga396ee82006-09-01 21:46:00 +00001609 well-know linear scan register allocator. Whereas the
1610 <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
1611 implementation technique, the <i>Linear Scan</i> implementation
1612 uses a spiller in order to place load and stores.</li>
1613</ul>
1614
1615<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
Bill Wendling80118802009-04-15 02:12:37 +00001616 command line option <tt>-regalloc=...</tt>:</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001617
1618<div class="doc_code">
1619<pre>
Dan Gohman0cabaa52009-08-25 15:54:01 +00001620$ llc -regalloc=simple file.bc -o sp.s;
1621$ llc -regalloc=local file.bc -o lc.s;
1622$ llc -regalloc=linearscan file.bc -o ln.s;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001623</pre>
1624</div>
1625
1626</div>
1627
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001628<!-- ======================================================================= -->
1629<div class="doc_subsection">
1630 <a name="proepicode">Prolog/Epilog Code Insertion</a>
1631</div>
1632<div class="doc_text"><p>To Be Written</p></div>
1633<!-- ======================================================================= -->
1634<div class="doc_subsection">
1635 <a name="latemco">Late Machine Code Optimizations</a>
1636</div>
1637<div class="doc_text"><p>To Be Written</p></div>
1638<!-- ======================================================================= -->
1639<div class="doc_subsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001640 <a name="codeemit">Code Emission</a>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001641</div>
Bill Wendling91e10c42006-08-28 02:26:32 +00001642<div class="doc_text"><p>To Be Written</p></div>
Chris Lattner32e89f22005-10-16 18:31:08 +00001643<!-- _______________________________________________________________________ -->
1644<div class="doc_subsubsection">
1645 <a name="codeemit_asm">Generating Assembly Code</a>
1646</div>
Bill Wendling91e10c42006-08-28 02:26:32 +00001647<div class="doc_text"><p>To Be Written</p></div>
Chris Lattner32e89f22005-10-16 18:31:08 +00001648<!-- _______________________________________________________________________ -->
1649<div class="doc_subsubsection">
1650 <a name="codeemit_bin">Generating Binary Machine Code</a>
1651</div>
1652
1653<div class="doc_text">
Bill Wendling91e10c42006-08-28 02:26:32 +00001654 <p>For the JIT or <tt>.o</tt> file writer</p>
Chris Lattner32e89f22005-10-16 18:31:08 +00001655</div>
1656
1657
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001658<!-- *********************************************************************** -->
1659<div class="doc_section">
Chris Lattner32e89f22005-10-16 18:31:08 +00001660 <a name="targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +00001661</div>
1662<!-- *********************************************************************** -->
1663
1664<div class="doc_text">
1665
Bill Wendling80118802009-04-15 02:12:37 +00001666<p>This section of the document explains features or design decisions that are
1667 specific to the code generator for a particular target.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001668
1669</div>
1670
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001671<!-- ======================================================================= -->
1672<div class="doc_subsection">
1673 <a name="tailcallopt">Tail call optimization</a>
1674</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001675
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001676<div class="doc_text">
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001677
Bill Wendling80118802009-04-15 02:12:37 +00001678<p>Tail call optimization, callee reusing the stack of the caller, is currently
1679 supported on x86/x86-64 and PowerPC. It is performed if:</p>
1680
1681<ul>
Chris Lattner29689432010-03-11 00:22:57 +00001682 <li>Caller and callee have the calling convention <tt>fastcc</tt> or
1683 <tt>cc 10</tt> (GHC call convention).</li>
Bill Wendling80118802009-04-15 02:12:37 +00001684
1685 <li>The call is a tail call - in tail position (ret immediately follows call
1686 and ret uses value of call or is void).</li>
1687
1688 <li>Option <tt>-tailcallopt</tt> is enabled.</li>
1689
1690 <li>Platform specific constraints are met.</li>
1691</ul>
1692
1693<p>x86/x86-64 constraints:</p>
1694
1695<ul>
1696 <li>No variable argument lists are used.</li>
1697
1698 <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
1699 = hidden or protected) are supported.</li>
1700</ul>
1701
1702<p>PowerPC constraints:</p>
1703
1704<ul>
1705 <li>No variable argument lists are used.</li>
1706
1707 <li>No byval parameters are used.</li>
1708
1709 <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
1710</ul>
1711
1712<p>Example:</p>
1713
1714<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
1715
1716<div class="doc_code">
1717<pre>
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001718declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
1719
1720define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
1721 %l1 = add i32 %in1, %in2
1722 %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
1723 ret i32 %tmp
Bill Wendling80118802009-04-15 02:12:37 +00001724}
1725</pre>
1726</div>
1727
1728<p>Implications of <tt>-tailcallopt</tt>:</p>
1729
1730<p>To support tail call optimization in situations where the callee has more
1731 arguments than the caller a 'callee pops arguments' convention is used. This
1732 currently causes each <tt>fastcc</tt> call that is not tail call optimized
1733 (because one or more of above constraints are not met) to be followed by a
1734 readjustment of the stack. So performance might be worse in such cases.</p>
1735
Arnold Schwaighofer9097d142008-05-14 09:17:12 +00001736</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001737<!-- ======================================================================= -->
1738<div class="doc_subsection">
Evan Chengdc444e92010-03-08 21:05:02 +00001739 <a name="sibcallopt">Sibling call optimization</a>
1740</div>
1741
1742<div class="doc_text">
1743
1744<p>Sibling call optimization is a restricted form of tail call optimization.
1745 Unlike tail call optimization described in the previous section, it can be
1746 performed automatically on any tail calls when <tt>-tailcallopt</tt> option
1747 is not specified.</p>
1748
1749<p>Sibling call optimization is currently performed on x86/x86-64 when the
1750 following constraints are met:</p>
1751
1752<ul>
1753 <li>Caller and callee have the same calling convention. It can be either
1754 <tt>c</tt> or <tt>fastcc</tt>.
1755
1756 <li>The call is a tail call - in tail position (ret immediately follows call
1757 and ret uses value of call or is void).</li>
1758
1759 <li>Caller and callee have matching return type or the callee result is not
1760 used.
1761
1762 <li>If any of the callee arguments are being passed in stack, they must be
1763 available in caller's own incoming argument stack and the frame offsets
1764 must be the same.
1765</ul>
1766
1767<p>Example:</p>
1768<div class="doc_code">
1769<pre>
1770declare i32 @bar(i32, i32)
1771
1772define i32 @foo(i32 %a, i32 %b, i32 %c) {
1773entry:
1774 %0 = tail call i32 @bar(i32 %a, i32 %b)
1775 ret i32 %0
1776}
1777</pre>
1778</div>
1779
1780</div>
1781<!-- ======================================================================= -->
1782<div class="doc_subsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00001783 <a name="x86">The X86 backend</a>
1784</div>
1785
1786<div class="doc_text">
1787
Bill Wendling91e10c42006-08-28 02:26:32 +00001788<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This
Bill Wendling80118802009-04-15 02:12:37 +00001789 code generator is capable of targeting a variety of x86-32 and x86-64
1790 processors, and includes support for ISA extensions such as MMX and SSE.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001791
1792</div>
1793
1794<!-- _______________________________________________________________________ -->
1795<div class="doc_subsubsection">
Nate Begeman34509842009-01-26 02:54:45 +00001796 <a name="x86_tt">X86 Target Triples supported</a>
Chris Lattner9b988be2005-07-12 00:20:49 +00001797</div>
1798
1799<div class="doc_text">
Bill Wendling91e10c42006-08-28 02:26:32 +00001800
Bill Wendling80118802009-04-15 02:12:37 +00001801<p>The following are the known target triples that are supported by the X86
1802 backend. This is not an exhaustive list, and it would be useful to add those
1803 that people test.</p>
Chris Lattner9b988be2005-07-12 00:20:49 +00001804
1805<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001806 <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
1807
1808 <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
1809
1810 <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
1811
1812 <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
1813
1814 <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
1815
1816 <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
Torok Edwinc457b652009-06-15 12:17:44 +00001817
1818 <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
Chris Lattner9b988be2005-07-12 00:20:49 +00001819</ul>
1820
1821</div>
1822
1823<!-- _______________________________________________________________________ -->
1824<div class="doc_subsubsection">
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00001825 <a name="x86_cc">X86 Calling Conventions supported</a>
1826</div>
1827
1828
1829<div class="doc_text">
1830
Dan Gohman641b2792008-11-24 16:27:17 +00001831<p>The following target-specific calling conventions are known to backend:</p>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00001832
1833<ul>
Bill Wendling80118802009-04-15 02:12:37 +00001834 <li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
1835 Windows platform (CC ID = 64).</li>
1836
1837 <li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
1838 Windows platform (CC ID = 65).</li>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00001839</ul>
1840
1841</div>
1842
1843<!-- _______________________________________________________________________ -->
1844<div class="doc_subsubsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00001845 <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
1846</div>
1847
1848<div class="doc_text">
1849
Misha Brukman600df452005-02-17 22:22:24 +00001850<p>The x86 has a very flexible way of accessing memory. It is capable of
Bill Wendling80118802009-04-15 02:12:37 +00001851 forming memory addresses of the following expression directly in integer
1852 instructions (which use ModR/M addressing):</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001853
Bill Wendling91e10c42006-08-28 02:26:32 +00001854<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00001855<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00001856SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
Chris Lattnerec94f802004-06-04 00:16:02 +00001857</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001858</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001859
Chris Lattnerb91227d2009-10-10 21:30:55 +00001860<p>In order to represent this, LLVM tracks no less than 5 operands for each
Bill Wendling80118802009-04-15 02:12:37 +00001861 memory operand of this form. This means that the "load" form of
1862 '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001863
Bill Wendling80118802009-04-15 02:12:37 +00001864<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00001865<pre>
Chris Lattnerb91227d2009-10-10 21:30:55 +00001866Index: 0 | 1 2 3 4 5
1867Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment
1868OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg
Chris Lattnerec94f802004-06-04 00:16:02 +00001869</pre>
Bill Wendling80118802009-04-15 02:12:37 +00001870</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001871
Bill Wendling80118802009-04-15 02:12:37 +00001872<p>Stores, and all other instructions, treat the four memory operands in the
Chris Lattnerb91227d2009-10-10 21:30:55 +00001873 same way and in the same order. If the segment register is unspecified
1874 (regno = 0), then no segment override is generated. "Lea" operations do not
1875 have a segment register specified, so they only have 4 operands for their
1876 memory reference.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001877
1878</div>
1879
1880<!-- _______________________________________________________________________ -->
1881<div class="doc_subsubsection">
Nate Begeman34509842009-01-26 02:54:45 +00001882 <a name="x86_memory">X86 address spaces supported</a>
1883</div>
1884
1885<div class="doc_text">
1886
Dan Gohmand26795a2009-05-05 20:48:47 +00001887<p>x86 has an experimental feature which provides
1888 the ability to perform loads and stores to different address spaces
Bill Wendling80118802009-04-15 02:12:37 +00001889 via the x86 segment registers. A segment override prefix byte on an
1890 instruction causes the instruction's memory access to go to the specified
1891 segment. LLVM address space 0 is the default address space, which includes
1892 the stack, and any unqualified memory accesses in a program. Address spaces
1893 1-255 are currently reserved for user-defined code. The GS-segment is
Chris Lattner1777d0c2009-05-05 18:52:19 +00001894 represented by address space 256, while the FS-segment is represented by
1895 address space 257. Other x86 segments have yet to be allocated address space
1896 numbers.</p>
Nate Begeman34509842009-01-26 02:54:45 +00001897
Dan Gohmand26795a2009-05-05 20:48:47 +00001898<p>While these address spaces may seem similar to TLS via the
1899 <tt>thread_local</tt> keyword, and often use the same underlying hardware,
1900 there are some fundamental differences.</p>
1901
1902<p>The <tt>thread_local</tt> keyword applies to global variables and
1903 specifies that they are to be allocated in thread-local memory. There are
1904 no type qualifiers involved, and these variables can be pointed to with
1905 normal pointers and accessed with normal loads and stores.
1906 The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
1907 level (though LLVM doesn't yet have implementations of it for some
1908 configurations).<p>
1909
1910<p>Special address spaces, in contrast, apply to static types. Every
1911 load and store has a particular address space in its address operand type,
1912 and this is what determines which address space is accessed.
1913 LLVM ignores these special address space qualifiers on global variables,
1914 and does not provide a way to directly allocate storage in them.
1915 At the LLVM IR level, the behavior of these special address spaces depends
1916 in part on the underlying OS or runtime environment, and they are specific
1917 to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
1918
1919<p>Some operating systems and runtime environments use (or may in the future
1920 use) the FS/GS-segment registers for various low-level purposes, so care
1921 should be taken when considering them.</p>
Nate Begeman34509842009-01-26 02:54:45 +00001922
1923</div>
1924
1925<!-- _______________________________________________________________________ -->
1926<div class="doc_subsubsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00001927 <a name="x86_names">Instruction naming</a>
1928</div>
1929
1930<div class="doc_text">
1931
Bill Wendling91e10c42006-08-28 02:26:32 +00001932<p>An instruction name consists of the base name, a default operand size, and a
Bill Wendling80118802009-04-15 02:12:37 +00001933 a character per operand with an optional special size. For example:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001934
Bill Wendling80118802009-04-15 02:12:37 +00001935<div class="doc_code">
1936<pre>
1937ADD8rr -&gt; add, 8-bit register, 8-bit register
1938IMUL16rmi -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
1939IMUL16rmi8 -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
1940MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
1941</pre>
1942</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001943
1944</div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001945
Jim Laskey762b6cb2006-12-14 17:19:50 +00001946<!-- ======================================================================= -->
1947<div class="doc_subsection">
1948 <a name="ppc">The PowerPC backend</a>
1949</div>
1950
1951<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00001952
Jim Laskey762b6cb2006-12-14 17:19:50 +00001953<p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The
Bill Wendling80118802009-04-15 02:12:37 +00001954 code generation is retargetable to several variations or <i>subtargets</i> of
1955 the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
1956
Jim Laskey762b6cb2006-12-14 17:19:50 +00001957</div>
1958
1959<!-- _______________________________________________________________________ -->
1960<div class="doc_subsubsection">
1961 <a name="ppc_abi">LLVM PowerPC ABI</a>
1962</div>
1963
1964<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00001965
Jim Laskey762b6cb2006-12-14 17:19:50 +00001966<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
Bill Wendling80118802009-04-15 02:12:37 +00001967 relative (PIC) or static addressing for accessing global values, so no TOC
1968 (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
1969 of a stack frame. LLVM takes advantage of having no TOC to provide space to
1970 save the frame pointer in the PowerPC linkage area of the caller frame.
1971 Other details of PowerPC ABI can be found at <a href=
1972 "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
1973 >PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The 64 bit ABI
1974 is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
1975 for system use.</p>
1976
Jim Laskey762b6cb2006-12-14 17:19:50 +00001977</div>
1978
1979<!-- _______________________________________________________________________ -->
1980<div class="doc_subsubsection">
1981 <a name="ppc_frame">Frame Layout</a>
1982</div>
1983
1984<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00001985
Jim Laskey762b6cb2006-12-14 17:19:50 +00001986<p>The size of a PowerPC frame is usually fixed for the duration of a
Bill Wendling80118802009-04-15 02:12:37 +00001987 function's invocation. Since the frame is fixed size, all references
1988 into the frame can be accessed via fixed offsets from the stack pointer. The
1989 exception to this is when dynamic alloca or variable sized arrays are
1990 present, then a base pointer (r31) is used as a proxy for the stack pointer
1991 and stack pointer is free to grow or shrink. A base pointer is also used if
1992 llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
1993 always aligned to 16 bytes, so that space allocated for altivec vectors will
1994 be properly aligned.</p>
1995
Dan Gohman641b2792008-11-24 16:27:17 +00001996<p>An invocation frame is laid out as follows (low memory at top);</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00001997
Jim Laskey762b6cb2006-12-14 17:19:50 +00001998<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00001999 <tr>
2000 <td>Linkage<br><br></td>
2001 </tr>
2002 <tr>
2003 <td>Parameter area<br><br></td>
2004 </tr>
2005 <tr>
2006 <td>Dynamic area<br><br></td>
2007 </tr>
2008 <tr>
2009 <td>Locals area<br><br></td>
2010 </tr>
2011 <tr>
2012 <td>Saved registers area<br><br></td>
2013 </tr>
2014 <tr style="border-style: none hidden none hidden;">
2015 <td><br></td>
2016 </tr>
2017 <tr>
2018 <td>Previous Frame<br><br></td>
2019 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002020</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002021
Jim Laskey762b6cb2006-12-14 17:19:50 +00002022<p>The <i>linkage</i> area is used by a callee to save special registers prior
Bill Wendling80118802009-04-15 02:12:37 +00002023 to allocating its own frame. Only three entries are relevant to LLVM. The
2024 first entry is the previous stack pointer (sp), aka link. This allows
2025 probing tools like gdb or exception handlers to quickly scan the frames in
2026 the stack. A function epilog can also use the link to pop the frame from the
2027 stack. The third entry in the linkage area is used to save the return
2028 address from the lr register. Finally, as mentioned above, the last entry is
2029 used to save the previous frame pointer (r31.) The entries in the linkage
2030 area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
2031 mode and 48 bytes in 64 bit mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002032
Jim Laskey762b6cb2006-12-14 17:19:50 +00002033<p>32 bit linkage area</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002034
Bill Wendling80118802009-04-15 02:12:37 +00002035<table class="layout">
2036 <tr>
2037 <td>0</td>
2038 <td>Saved SP (r1)</td>
2039 </tr>
2040 <tr>
2041 <td>4</td>
2042 <td>Saved CR</td>
2043 </tr>
2044 <tr>
2045 <td>8</td>
2046 <td>Saved LR</td>
2047 </tr>
2048 <tr>
2049 <td>12</td>
2050 <td>Reserved</td>
2051 </tr>
2052 <tr>
2053 <td>16</td>
2054 <td>Reserved</td>
2055 </tr>
2056 <tr>
2057 <td>20</td>
2058 <td>Saved FP (r31)</td>
2059 </tr>
2060</table>
2061
Jim Laskey762b6cb2006-12-14 17:19:50 +00002062<p>64 bit linkage area</p>
Bill Wendling80118802009-04-15 02:12:37 +00002063
Jim Laskey762b6cb2006-12-14 17:19:50 +00002064<table class="layout">
Bill Wendling80118802009-04-15 02:12:37 +00002065 <tr>
2066 <td>0</td>
2067 <td>Saved SP (r1)</td>
2068 </tr>
2069 <tr>
2070 <td>8</td>
2071 <td>Saved CR</td>
2072 </tr>
2073 <tr>
2074 <td>16</td>
2075 <td>Saved LR</td>
2076 </tr>
2077 <tr>
2078 <td>24</td>
2079 <td>Reserved</td>
2080 </tr>
2081 <tr>
2082 <td>32</td>
2083 <td>Reserved</td>
2084 </tr>
2085 <tr>
2086 <td>40</td>
2087 <td>Saved FP (r31)</td>
2088 </tr>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002089</table>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002090
Jim Laskey762b6cb2006-12-14 17:19:50 +00002091<p>The <i>parameter area</i> is used to store arguments being passed to a callee
Bill Wendling80118802009-04-15 02:12:37 +00002092 function. Following the PowerPC ABI, the first few arguments are actually
2093 passed in registers, with the space in the parameter area unused. However,
2094 if there are not enough registers or the callee is a thunk or vararg
2095 function, these register arguments can be spilled into the parameter area.
2096 Thus, the parameter area must be large enough to store all the parameters for
2097 the largest call sequence made by the caller. The size must also be
2098 minimally large enough to spill registers r3-r10. This allows callees blind
2099 to the call signature, such as thunks and vararg functions, enough space to
2100 cache the argument registers. Therefore, the parameter area is minimally 32
2101 bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is
2102 a fixed offset from the top of the frame, that a callee can access its spilt
2103 arguments using fixed offsets from the stack pointer (or base pointer.)</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002104
Jim Laskey762b6cb2006-12-14 17:19:50 +00002105<p>Combining the information about the linkage, parameter areas and alignment. A
Bill Wendling80118802009-04-15 02:12:37 +00002106 stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
2107 mode.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002108
Jim Laskey762b6cb2006-12-14 17:19:50 +00002109<p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic
Bill Wendling80118802009-04-15 02:12:37 +00002110 alloca then space is added to the stack, the linkage and parameter areas are
2111 shifted to top of stack, and the new space is available immediately below the
2112 linkage and parameter areas. The cost of shifting the linkage and parameter
2113 areas is minor since only the link value needs to be copied. The link value
2114 can be easily fetched by adding the original frame size to the base pointer.
2115 Note that allocations in the dynamic space need to observe 16 byte
2116 alignment.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002117
Jim Laskey762b6cb2006-12-14 17:19:50 +00002118<p>The <i>locals area</i> is where the llvm compiler reserves space for local
Bill Wendling80118802009-04-15 02:12:37 +00002119 variables.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002120
Bill Wendling80118802009-04-15 02:12:37 +00002121<p>The <i>saved registers area</i> is where the llvm compiler spills callee
2122 saved registers on entry to the callee.</p>
2123
Jim Laskey762b6cb2006-12-14 17:19:50 +00002124</div>
2125
2126<!-- _______________________________________________________________________ -->
2127<div class="doc_subsubsection">
2128 <a name="ppc_prolog">Prolog/Epilog</a>
2129</div>
2130
2131<div class="doc_text">
Bill Wendling80118802009-04-15 02:12:37 +00002132
Jim Laskey762b6cb2006-12-14 17:19:50 +00002133<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
Bill Wendling80118802009-04-15 02:12:37 +00002134 the following exceptions. Callee saved registers are spilled after the frame
2135 is created. This allows the llvm epilog/prolog support to be common with
2136 other targets. The base pointer callee saved register r31 is saved in the
2137 TOC slot of linkage area. This simplifies allocation of space for the base
2138 pointer and makes it convenient to locate programatically and during
2139 debugging.</p>
2140
Jim Laskey762b6cb2006-12-14 17:19:50 +00002141</div>
2142
2143<!-- _______________________________________________________________________ -->
2144<div class="doc_subsubsection">
2145 <a name="ppc_dynamic">Dynamic Allocation</a>
2146</div>
2147
2148<div class="doc_text">
Jim Laskey762b6cb2006-12-14 17:19:50 +00002149
Jim Laskeyb744c252006-12-15 10:40:48 +00002150<p><i>TODO - More to come.</i></p>
Bill Wendling80118802009-04-15 02:12:37 +00002151
Jim Laskeyb744c252006-12-15 10:40:48 +00002152</div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00002153
2154
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002155<!-- *********************************************************************** -->
2156<hr>
2157<address>
2158 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00002159 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002160 <a href="http://validator.w3.org/check/referer"><img
Misha Brukmanf00ddb02008-12-11 18:23:24 +00002161 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002162
2163 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00002164 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00002165 Last modified: $Date$
2166</address>
2167
2168</body>
2169</html>