blob: de73b7254362ccf174c49f607b104bdbd67fe1c0 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
24TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +000025 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +000026 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +000027 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +000028 // All operations default to being supported.
29 memset(OpActions, 0, sizeof(OpActions));
Chris Lattner310968c2005-01-07 07:44:53 +000030
Owen Andersona69571c2006-05-03 01:29:57 +000031 IsLittleEndian = TD->isLittleEndian();
32 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +000033 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +000034 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +000035 memset(TargetDAGCombineArray, 0,
36 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +000037 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +000038 allowUnalignedMemoryAccesses = false;
Chris Lattner8e6be8b2005-09-27 22:13:56 +000039 UseUnderscoreSetJmpLongJmp = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +000040 IntDivIsCheap = false;
41 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +000042 StackPointerRegisterToSaveRestore = 0;
Evan Cheng0577a222006-01-25 18:52:42 +000043 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner310968c2005-01-07 07:44:53 +000044}
45
Chris Lattnercba82f92005-01-16 07:28:11 +000046TargetLowering::~TargetLowering() {}
47
Chris Lattnerbb97d812005-01-16 01:10:58 +000048/// setValueTypeAction - Set the action for a particular value type. This
49/// assumes an action has not already been set for this value type.
Chris Lattnercba82f92005-01-16 07:28:11 +000050static void SetValueTypeAction(MVT::ValueType VT,
51 TargetLowering::LegalizeAction Action,
Chris Lattnerbb97d812005-01-16 01:10:58 +000052 TargetLowering &TLI,
53 MVT::ValueType *TransformToType,
Chris Lattner3e6e8cc2006-01-29 08:41:12 +000054 TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
55 ValueTypeActions.setTypeAction(VT, Action);
Chris Lattnercba82f92005-01-16 07:28:11 +000056 if (Action == TargetLowering::Promote) {
Chris Lattnerbb97d812005-01-16 01:10:58 +000057 MVT::ValueType PromoteTo;
58 if (VT == MVT::f32)
59 PromoteTo = MVT::f64;
60 else {
61 unsigned LargerReg = VT+1;
Chris Lattner9ed62c12005-08-24 16:34:12 +000062 while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
Chris Lattnerbb97d812005-01-16 01:10:58 +000063 ++LargerReg;
64 assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
65 "Nothing to promote to??");
66 }
67 PromoteTo = (MVT::ValueType)LargerReg;
68 }
69
70 assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
71 MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
72 "Can only promote from int->int or fp->fp!");
73 assert(VT < PromoteTo && "Must promote to a larger type!");
74 TransformToType[VT] = PromoteTo;
Chris Lattnercba82f92005-01-16 07:28:11 +000075 } else if (Action == TargetLowering::Expand) {
Nate Begeman4ef3b812005-11-22 01:29:36 +000076 assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +000077 "Cannot expand this type: target must support SOME integer reg!");
78 // Expand to the next smaller integer type!
79 TransformToType[VT] = (MVT::ValueType)(VT-1);
80 }
81}
82
83
Chris Lattner310968c2005-01-07 07:44:53 +000084/// computeRegisterProperties - Once all of the register classes are added,
85/// this allows us to compute derived properties we expose.
86void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +000087 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +000088 "Too many value types for ValueTypeActions to hold!");
89
Chris Lattner310968c2005-01-07 07:44:53 +000090 // Everything defaults to one.
91 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
92 NumElementsForVT[i] = 1;
Misha Brukmanf976c852005-04-21 22:55:34 +000093
Chris Lattner310968c2005-01-07 07:44:53 +000094 // Find the largest integer register class.
95 unsigned LargestIntReg = MVT::i128;
96 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
97 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
98
99 // Every integer value type larger than this largest register takes twice as
100 // many registers to represent as the previous ValueType.
101 unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
102 for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
103 NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
Chris Lattner310968c2005-01-07 07:44:53 +0000104
Chris Lattnerbb97d812005-01-16 01:10:58 +0000105 // Inspect all of the ValueType's possible, deciding how to process them.
106 for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
107 // If we are expanding this type, expand it!
108 if (getNumElements((MVT::ValueType)IntReg) != 1)
Chris Lattnercba82f92005-01-16 07:28:11 +0000109 SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000110 ValueTypeActions);
Chris Lattner9ed62c12005-08-24 16:34:12 +0000111 else if (!isTypeLegal((MVT::ValueType)IntReg))
Chris Lattnerbb97d812005-01-16 01:10:58 +0000112 // Otherwise, if we don't have native support, we must promote to a
113 // larger type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000114 SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
115 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000116 else
117 TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
Misha Brukmanf976c852005-04-21 22:55:34 +0000118
Chris Lattnerbb97d812005-01-16 01:10:58 +0000119 // If the target does not have native support for F32, promote it to F64.
Chris Lattner9ed62c12005-08-24 16:34:12 +0000120 if (!isTypeLegal(MVT::f32))
Chris Lattnercba82f92005-01-16 07:28:11 +0000121 SetValueTypeAction(MVT::f32, Promote, *this,
122 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000123 else
124 TransformToType[MVT::f32] = MVT::f32;
Nate Begeman4ef3b812005-11-22 01:29:36 +0000125
126 // Set MVT::Vector to always be Expanded
127 SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
128 ValueTypeActions);
Chris Lattner3a5935842006-03-16 19:50:01 +0000129
130 // Loop over all of the legal vector value types, specifying an identity type
131 // transformation.
132 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000133 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Chris Lattner3a5935842006-03-16 19:50:01 +0000134 if (isTypeLegal((MVT::ValueType)i))
135 TransformToType[i] = (MVT::ValueType)i;
136 }
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000137
Chris Lattner9ed62c12005-08-24 16:34:12 +0000138 assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000139 TransformToType[MVT::f64] = MVT::f64;
Chris Lattnerbb97d812005-01-16 01:10:58 +0000140}
Chris Lattnercba82f92005-01-16 07:28:11 +0000141
Evan Cheng72261582005-12-20 06:22:03 +0000142const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
143 return NULL;
144}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000145
Chris Lattnerdc879292006-03-31 00:28:56 +0000146/// getPackedTypeBreakdown - Packed types are broken down into some number of
Evan Chenge9b3da12006-05-17 18:10:06 +0000147/// legal first class types. For example, <8 x float> maps to 2 MVT::v2f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000148/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
149///
150/// This method returns the number and type of the resultant breakdown.
151///
Chris Lattner79227e22006-03-31 00:46:36 +0000152unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy,
153 MVT::ValueType &PTyElementVT,
154 MVT::ValueType &PTyLegalElementVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000155 // Figure out the right, legal destination reg to copy into.
156 unsigned NumElts = PTy->getNumElements();
157 MVT::ValueType EltTy = getValueType(PTy->getElementType());
158
159 unsigned NumVectorRegs = 1;
160
161 // Divide the input until we get to a supported size. This will always
162 // end with a scalar if the target doesn't support vectors.
163 while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
164 NumElts >>= 1;
165 NumVectorRegs <<= 1;
166 }
167
168 MVT::ValueType VT;
Chris Lattnera6c9de42006-03-31 01:50:09 +0000169 if (NumElts == 1) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000170 VT = EltTy;
Chris Lattnera6c9de42006-03-31 01:50:09 +0000171 } else {
172 VT = getVectorType(EltTy, NumElts);
173 }
174 PTyElementVT = VT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000175
176 MVT::ValueType DestVT = getTypeToTransformTo(VT);
Chris Lattner79227e22006-03-31 00:46:36 +0000177 PTyLegalElementVT = DestVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000178 if (DestVT < VT) {
179 // Value is expanded, e.g. i64 -> i16.
Chris Lattner79227e22006-03-31 00:46:36 +0000180 return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000181 } else {
182 // Otherwise, promotion or legal types use the same number of registers as
183 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000184 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000185 }
186
Evan Chenge9b3da12006-05-17 18:10:06 +0000187 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000188}
189
Chris Lattnereb8146b2006-02-04 02:13:02 +0000190//===----------------------------------------------------------------------===//
191// Optimization Methods
192//===----------------------------------------------------------------------===//
193
Nate Begeman368e18d2006-02-16 21:11:51 +0000194/// ShrinkDemandedConstant - Check to see if the specified operand of the
195/// specified instruction is a constant integer. If so, check to see if there
196/// are any bits set in the constant that are not demanded. If so, shrink the
197/// constant and return true.
198bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
199 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000200 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000201 switch(Op.getOpcode()) {
202 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000203 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000204 case ISD::OR:
205 case ISD::XOR:
206 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
207 if ((~Demanded & C->getValue()) != 0) {
208 MVT::ValueType VT = Op.getValueType();
209 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
210 DAG.getConstant(Demanded & C->getValue(),
211 VT));
212 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000213 }
Nate Begemande996292006-02-03 22:24:05 +0000214 break;
215 }
216 return false;
217}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000218
Nate Begeman368e18d2006-02-16 21:11:51 +0000219/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
220/// DemandedMask bits of the result of Op are ever used downstream. If we can
221/// use this information to simplify Op, create a new simplified DAG node and
222/// return true, returning the original and new nodes in Old and New. Otherwise,
223/// analyze the expression and return a mask of KnownOne and KnownZero bits for
224/// the expression (used to simplify the caller). The KnownZero/One bits may
225/// only be accurate for those bits in the DemandedMask.
226bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
227 uint64_t &KnownZero,
228 uint64_t &KnownOne,
229 TargetLoweringOpt &TLO,
230 unsigned Depth) const {
231 KnownZero = KnownOne = 0; // Don't know anything.
232 // Other users may use these bits.
233 if (!Op.Val->hasOneUse()) {
234 if (Depth != 0) {
235 // If not at the root, Just compute the KnownZero/KnownOne bits to
236 // simplify things downstream.
237 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
238 return false;
239 }
240 // If this is the root being simplified, allow it to have multiple uses,
241 // just set the DemandedMask to all bits.
242 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
243 } else if (DemandedMask == 0) {
244 // Not demanding any bits from Op.
245 if (Op.getOpcode() != ISD::UNDEF)
246 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
247 return false;
248 } else if (Depth == 6) { // Limit search depth.
249 return false;
250 }
251
252 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000253 switch (Op.getOpcode()) {
254 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000255 // We know all of the bits for a constant!
256 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
257 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000258 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000259 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000260 // If the RHS is a constant, check to see if the LHS would be zero without
261 // using the bits from the RHS. Below, we use knowledge about the RHS to
262 // simplify the LHS, here we're using information from the LHS to simplify
263 // the RHS.
264 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
265 uint64_t LHSZero, LHSOne;
266 ComputeMaskedBits(Op.getOperand(0), DemandedMask,
267 LHSZero, LHSOne, Depth+1);
268 // If the LHS already has zeros where RHSC does, this and is dead.
269 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
270 return TLO.CombineTo(Op, Op.getOperand(0));
271 // If any of the set bits in the RHS are known zero on the LHS, shrink
272 // the constant.
273 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
274 return true;
275 }
276
Nate Begeman368e18d2006-02-16 21:11:51 +0000277 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
278 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000279 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000280 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000281 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
282 KnownZero2, KnownOne2, TLO, Depth+1))
283 return true;
284 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
285
286 // If all of the demanded bits are known one on one side, return the other.
287 // These bits cannot contribute to the result of the 'and'.
288 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
289 return TLO.CombineTo(Op, Op.getOperand(0));
290 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
291 return TLO.CombineTo(Op, Op.getOperand(1));
292 // If all of the demanded bits in the inputs are known zeros, return zero.
293 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
294 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
295 // If the RHS is a constant, see if we can simplify it.
296 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
297 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000298
Nate Begeman368e18d2006-02-16 21:11:51 +0000299 // Output known-1 bits are only known if set in both the LHS & RHS.
300 KnownOne &= KnownOne2;
301 // Output known-0 are known to be clear if zero in either the LHS | RHS.
302 KnownZero |= KnownZero2;
303 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000304 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000305 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
306 KnownOne, TLO, Depth+1))
307 return true;
308 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
309 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
310 KnownZero2, KnownOne2, TLO, Depth+1))
311 return true;
312 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
313
314 // If all of the demanded bits are known zero on one side, return the other.
315 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000316 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000317 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000318 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000319 return TLO.CombineTo(Op, Op.getOperand(1));
320 // If all of the potentially set bits on one side are known to be set on
321 // the other side, just use the 'other' side.
322 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
323 (DemandedMask & (~KnownZero)))
324 return TLO.CombineTo(Op, Op.getOperand(0));
325 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
326 (DemandedMask & (~KnownZero2)))
327 return TLO.CombineTo(Op, Op.getOperand(1));
328 // If the RHS is a constant, see if we can simplify it.
329 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
330 return true;
331
332 // Output known-0 bits are only known if clear in both the LHS & RHS.
333 KnownZero &= KnownZero2;
334 // Output known-1 are known to be set if set in either the LHS | RHS.
335 KnownOne |= KnownOne2;
336 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000337 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000338 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
339 KnownOne, TLO, Depth+1))
340 return true;
341 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
342 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
343 KnownOne2, TLO, Depth+1))
344 return true;
345 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
346
347 // If all of the demanded bits are known zero on one side, return the other.
348 // These bits cannot contribute to the result of the 'xor'.
349 if ((DemandedMask & KnownZero) == DemandedMask)
350 return TLO.CombineTo(Op, Op.getOperand(0));
351 if ((DemandedMask & KnownZero2) == DemandedMask)
352 return TLO.CombineTo(Op, Op.getOperand(1));
353
354 // Output known-0 bits are known if clear or set in both the LHS & RHS.
355 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
356 // Output known-1 are known to be set if set in only one of the LHS, RHS.
357 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
358
359 // If all of the unknown bits are known to be zero on one side or the other
360 // (but not both) turn this into an *inclusive* or.
361 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
362 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
363 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
364 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
365 Op.getOperand(0),
366 Op.getOperand(1)));
367 // If all of the demanded bits on one side are known, and all of the set
368 // bits on that side are also known to be set on the other side, turn this
369 // into an AND, as we know the bits will be cleared.
370 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
371 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
372 if ((KnownOne & KnownOne2) == KnownOne) {
373 MVT::ValueType VT = Op.getValueType();
374 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
375 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
376 ANDC));
377 }
378 }
379
380 // If the RHS is a constant, see if we can simplify it.
381 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
382 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
383 return true;
384
385 KnownZero = KnownZeroOut;
386 KnownOne = KnownOneOut;
387 break;
388 case ISD::SETCC:
389 // If we know the result of a setcc has the top bits zero, use this info.
390 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
391 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
392 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000393 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000394 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
395 KnownOne, TLO, Depth+1))
396 return true;
397 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
398 KnownOne2, TLO, Depth+1))
399 return true;
400 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
401 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
402
403 // If the operands are constants, see if we can simplify them.
404 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
405 return true;
406
407 // Only known if known in both the LHS and RHS.
408 KnownOne &= KnownOne2;
409 KnownZero &= KnownZero2;
410 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000411 case ISD::SELECT_CC:
412 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
413 KnownOne, TLO, Depth+1))
414 return true;
415 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
416 KnownOne2, TLO, Depth+1))
417 return true;
418 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
419 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
420
421 // If the operands are constants, see if we can simplify them.
422 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
423 return true;
424
425 // Only known if known in both the LHS and RHS.
426 KnownOne &= KnownOne2;
427 KnownZero &= KnownZero2;
428 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000429 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000430 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
431 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
432 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000433 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000434 KnownZero <<= SA->getValue();
435 KnownOne <<= SA->getValue();
436 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000437 }
438 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000439 case ISD::SRL:
440 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
441 MVT::ValueType VT = Op.getValueType();
442 unsigned ShAmt = SA->getValue();
443
444 // Compute the new bits that are at the top now.
445 uint64_t HighBits = (1ULL << ShAmt)-1;
446 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
447 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
448
449 if (SimplifyDemandedBits(Op.getOperand(0),
450 (DemandedMask << ShAmt) & TypeMask,
451 KnownZero, KnownOne, TLO, Depth+1))
452 return true;
453 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
454 KnownZero &= TypeMask;
455 KnownOne &= TypeMask;
456 KnownZero >>= ShAmt;
457 KnownOne >>= ShAmt;
458 KnownZero |= HighBits; // high bits known zero.
459 }
460 break;
461 case ISD::SRA:
462 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
463 MVT::ValueType VT = Op.getValueType();
464 unsigned ShAmt = SA->getValue();
465
466 // Compute the new bits that are at the top now.
467 uint64_t HighBits = (1ULL << ShAmt)-1;
468 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
469 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
470
Chris Lattner1b737132006-05-08 17:22:53 +0000471 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
472
473 // If any of the demanded bits are produced by the sign extension, we also
474 // demand the input sign bit.
475 if (HighBits & DemandedMask)
476 InDemandedMask |= MVT::getIntVTSignBit(VT);
477
478 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000479 KnownZero, KnownOne, TLO, Depth+1))
480 return true;
481 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
482 KnownZero &= TypeMask;
483 KnownOne &= TypeMask;
484 KnownZero >>= SA->getValue();
485 KnownOne >>= SA->getValue();
486
487 // Handle the sign bits.
488 uint64_t SignBit = MVT::getIntVTSignBit(VT);
489 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
490
491 // If the input sign bit is known to be zero, or if none of the top bits
492 // are demanded, turn this into an unsigned shift right.
493 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
494 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
495 Op.getOperand(1)));
496 } else if (KnownOne & SignBit) { // New bits are known one.
497 KnownOne |= HighBits;
498 }
499 }
500 break;
501 case ISD::SIGN_EXTEND_INREG: {
502 MVT::ValueType VT = Op.getValueType();
503 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
504
Chris Lattnerec665152006-02-26 23:36:02 +0000505 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000506 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000507 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000508
Chris Lattnerec665152006-02-26 23:36:02 +0000509 // If none of the extended bits are demanded, eliminate the sextinreg.
510 if (NewBits == 0)
511 return TLO.CombineTo(Op, Op.getOperand(0));
512
Nate Begeman368e18d2006-02-16 21:11:51 +0000513 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
514 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
515
Chris Lattnerec665152006-02-26 23:36:02 +0000516 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000517 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000518 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000519
520 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
521 KnownZero, KnownOne, TLO, Depth+1))
522 return true;
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524
525 // If the sign bit of the input is known set or clear, then we know the
526 // top bits of the result.
527
Chris Lattnerec665152006-02-26 23:36:02 +0000528 // If the input sign bit is known zero, convert this into a zero extension.
529 if (KnownZero & InSignBit)
530 return TLO.CombineTo(Op,
531 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
532
533 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000534 KnownOne |= NewBits;
535 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000536 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000537 KnownZero &= ~NewBits;
538 KnownOne &= ~NewBits;
539 }
540 break;
541 }
Chris Lattnerec665152006-02-26 23:36:02 +0000542 case ISD::CTTZ:
543 case ISD::CTLZ:
544 case ISD::CTPOP: {
545 MVT::ValueType VT = Op.getValueType();
546 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
547 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
548 KnownOne = 0;
549 break;
550 }
551 case ISD::ZEXTLOAD: {
552 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
553 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
554 break;
555 }
556 case ISD::ZERO_EXTEND: {
557 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
558
559 // If none of the top bits are demanded, convert this into an any_extend.
560 uint64_t NewBits = (~InMask) & DemandedMask;
561 if (NewBits == 0)
562 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
563 Op.getValueType(),
564 Op.getOperand(0)));
565
566 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
567 KnownZero, KnownOne, TLO, Depth+1))
568 return true;
569 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
570 KnownZero |= NewBits;
571 break;
572 }
573 case ISD::SIGN_EXTEND: {
574 MVT::ValueType InVT = Op.getOperand(0).getValueType();
575 uint64_t InMask = MVT::getIntVTBitMask(InVT);
576 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
577 uint64_t NewBits = (~InMask) & DemandedMask;
578
579 // If none of the top bits are demanded, convert this into an any_extend.
580 if (NewBits == 0)
581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
582 Op.getOperand(0)));
583
584 // Since some of the sign extended bits are demanded, we know that the sign
585 // bit is demanded.
586 uint64_t InDemandedBits = DemandedMask & InMask;
587 InDemandedBits |= InSignBit;
588
589 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
590 KnownOne, TLO, Depth+1))
591 return true;
592
593 // If the sign bit is known zero, convert this to a zero extend.
594 if (KnownZero & InSignBit)
595 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
596 Op.getValueType(),
597 Op.getOperand(0)));
598
599 // If the sign bit is known one, the top bits match.
600 if (KnownOne & InSignBit) {
601 KnownOne |= NewBits;
602 KnownZero &= ~NewBits;
603 } else { // Otherwise, top bits aren't known.
604 KnownOne &= ~NewBits;
605 KnownZero &= ~NewBits;
606 }
607 break;
608 }
609 case ISD::ANY_EXTEND: {
610 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
611 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
612 KnownZero, KnownOne, TLO, Depth+1))
613 return true;
614 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
615 break;
616 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000617 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000618 // Simplify the input, using demanded bit information, and compute the known
619 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000620 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
621 KnownZero, KnownOne, TLO, Depth+1))
622 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000623
624 // If the input is only used by this truncate, see if we can shrink it based
625 // on the known demanded bits.
626 if (Op.getOperand(0).Val->hasOneUse()) {
627 SDOperand In = Op.getOperand(0);
628 switch (In.getOpcode()) {
629 default: break;
630 case ISD::SRL:
631 // Shrink SRL by a constant if none of the high bits shifted in are
632 // demanded.
633 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
634 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
635 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
636 HighBits >>= ShAmt->getValue();
637
638 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
639 (DemandedMask & HighBits) == 0) {
640 // None of the shifted in bits are needed. Add a truncate of the
641 // shift input, then shift it.
642 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
643 Op.getValueType(),
644 In.getOperand(0));
645 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
646 NewTrunc, In.getOperand(1)));
647 }
648 }
649 break;
650 }
651 }
652
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000653 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
654 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
655 KnownZero &= OutMask;
656 KnownOne &= OutMask;
657 break;
658 }
Chris Lattnerec665152006-02-26 23:36:02 +0000659 case ISD::AssertZext: {
660 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
661 uint64_t InMask = MVT::getIntVTBitMask(VT);
662 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
663 KnownZero, KnownOne, TLO, Depth+1))
664 return true;
665 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
666 KnownZero |= ~InMask & DemandedMask;
667 break;
668 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000669 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000670 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000671 case ISD::INTRINSIC_WO_CHAIN:
672 case ISD::INTRINSIC_W_CHAIN:
673 case ISD::INTRINSIC_VOID:
674 // Just use ComputeMaskedBits to compute output bits.
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000675 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
676 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000677 }
Chris Lattnerec665152006-02-26 23:36:02 +0000678
679 // If we know the value of all of the demanded bits, return this as a
680 // constant.
681 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
682 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
683
Nate Begeman368e18d2006-02-16 21:11:51 +0000684 return false;
685}
686
687/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
688/// this predicate to simplify operations downstream. Mask is known to be zero
689/// for bits that V cannot have.
690bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
691 unsigned Depth) const {
692 uint64_t KnownZero, KnownOne;
693 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
694 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
695 return (KnownZero & Mask) == Mask;
696}
697
698/// ComputeMaskedBits - Determine which of the bits specified in Mask are
699/// known to be either zero or one and return them in the KnownZero/KnownOne
700/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
701/// processing.
702void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
703 uint64_t &KnownZero, uint64_t &KnownOne,
704 unsigned Depth) const {
705 KnownZero = KnownOne = 0; // Don't know anything.
706 if (Depth == 6 || Mask == 0)
707 return; // Limit search depth.
708
709 uint64_t KnownZero2, KnownOne2;
710
711 switch (Op.getOpcode()) {
712 case ISD::Constant:
713 // We know all of the bits for a constant!
714 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
715 KnownZero = ~KnownOne & Mask;
716 return;
717 case ISD::AND:
718 // If either the LHS or the RHS are Zero, the result is zero.
719 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
720 Mask &= ~KnownZero;
721 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
722 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
723 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
724
725 // Output known-1 bits are only known if set in both the LHS & RHS.
726 KnownOne &= KnownOne2;
727 // Output known-0 are known to be clear if zero in either the LHS | RHS.
728 KnownZero |= KnownZero2;
729 return;
730 case ISD::OR:
731 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
732 Mask &= ~KnownOne;
733 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
734 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
735 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
736
737 // Output known-0 bits are only known if clear in both the LHS & RHS.
738 KnownZero &= KnownZero2;
739 // Output known-1 are known to be set if set in either the LHS | RHS.
740 KnownOne |= KnownOne2;
741 return;
742 case ISD::XOR: {
743 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
744 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
745 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
746 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
747
748 // Output known-0 bits are known if clear or set in both the LHS & RHS.
749 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
750 // Output known-1 are known to be set if set in only one of the LHS, RHS.
751 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
752 KnownZero = KnownZeroOut;
753 return;
754 }
755 case ISD::SELECT:
756 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
757 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
758 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
759 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
760
761 // Only known if known in both the LHS and RHS.
762 KnownOne &= KnownOne2;
763 KnownZero &= KnownZero2;
764 return;
765 case ISD::SELECT_CC:
766 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
767 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
768 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
769 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
770
771 // Only known if known in both the LHS and RHS.
772 KnownOne &= KnownOne2;
773 KnownZero &= KnownZero2;
774 return;
775 case ISD::SETCC:
776 // If we know the result of a setcc has the top bits zero, use this info.
777 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
778 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
779 return;
780 case ISD::SHL:
781 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
782 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
783 Mask >>= SA->getValue();
784 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
785 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
786 KnownZero <<= SA->getValue();
787 KnownOne <<= SA->getValue();
788 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
789 }
Nate Begeman003a2722006-02-18 02:43:25 +0000790 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000791 case ISD::SRL:
792 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
793 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
794 uint64_t HighBits = (1ULL << SA->getValue())-1;
795 HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
796 Mask <<= SA->getValue();
797 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Nate Begeman003a2722006-02-18 02:43:25 +0000798 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000799 KnownZero >>= SA->getValue();
800 KnownOne >>= SA->getValue();
801 KnownZero |= HighBits; // high bits known zero.
802 }
Nate Begeman003a2722006-02-18 02:43:25 +0000803 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000804 case ISD::SRA:
805 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
806 uint64_t HighBits = (1ULL << SA->getValue())-1;
807 HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
808 Mask <<= SA->getValue();
809 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
810 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
811 KnownZero >>= SA->getValue();
812 KnownOne >>= SA->getValue();
813
814 // Handle the sign bits.
815 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
816 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
817
818 if (KnownZero & SignBit) { // New bits are known zero.
819 KnownZero |= HighBits;
820 } else if (KnownOne & SignBit) { // New bits are known one.
821 KnownOne |= HighBits;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000822 }
823 }
Nate Begeman003a2722006-02-18 02:43:25 +0000824 return;
Chris Lattnerec665152006-02-26 23:36:02 +0000825 case ISD::SIGN_EXTEND_INREG: {
826 MVT::ValueType VT = Op.getValueType();
827 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
828
829 // Sign extension. Compute the demanded bits in the result that are not
830 // present in the input.
831 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
832
833 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
834 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
835
836 // If the sign extended bits are demanded, we know that the sign
837 // bit is demanded.
838 if (NewBits)
839 InputDemandedBits |= InSignBit;
840
841 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
842 KnownZero, KnownOne, Depth+1);
843 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844
845 // If the sign bit of the input is known set or clear, then we know the
846 // top bits of the result.
847 if (KnownZero & InSignBit) { // Input sign bit known clear
848 KnownZero |= NewBits;
849 KnownOne &= ~NewBits;
850 } else if (KnownOne & InSignBit) { // Input sign bit known set
851 KnownOne |= NewBits;
852 KnownZero &= ~NewBits;
853 } else { // Input sign bit unknown
854 KnownZero &= ~NewBits;
855 KnownOne &= ~NewBits;
856 }
857 return;
858 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000859 case ISD::CTTZ:
860 case ISD::CTLZ:
Nate Begeman368e18d2006-02-16 21:11:51 +0000861 case ISD::CTPOP: {
862 MVT::ValueType VT = Op.getValueType();
863 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
864 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
865 KnownOne = 0;
866 return;
867 }
868 case ISD::ZEXTLOAD: {
Chris Lattnerec665152006-02-26 23:36:02 +0000869 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
870 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000871 return;
872 }
873 case ISD::ZERO_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +0000874 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
875 uint64_t NewBits = (~InMask) & Mask;
876 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
877 KnownOne, Depth+1);
878 KnownZero |= NewBits & Mask;
879 KnownOne &= ~NewBits;
880 return;
881 }
882 case ISD::SIGN_EXTEND: {
883 MVT::ValueType InVT = Op.getOperand(0).getValueType();
884 unsigned InBits = MVT::getSizeInBits(InVT);
885 uint64_t InMask = MVT::getIntVTBitMask(InVT);
886 uint64_t InSignBit = 1ULL << (InBits-1);
887 uint64_t NewBits = (~InMask) & Mask;
888 uint64_t InDemandedBits = Mask & InMask;
889
890 // If any of the sign extended bits are demanded, we know that the sign
891 // bit is demanded.
892 if (NewBits & Mask)
893 InDemandedBits |= InSignBit;
894
895 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
896 KnownOne, Depth+1);
897 // If the sign bit is known zero or one, the top bits match.
898 if (KnownZero & InSignBit) {
899 KnownZero |= NewBits;
900 KnownOne &= ~NewBits;
901 } else if (KnownOne & InSignBit) {
902 KnownOne |= NewBits;
903 KnownZero &= ~NewBits;
904 } else { // Otherwise, top bits aren't known.
905 KnownOne &= ~NewBits;
906 KnownZero &= ~NewBits;
907 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000908 return;
909 }
910 case ISD::ANY_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +0000911 MVT::ValueType VT = Op.getOperand(0).getValueType();
912 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
913 KnownZero, KnownOne, Depth+1);
Nate Begeman368e18d2006-02-16 21:11:51 +0000914 return;
915 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000916 case ISD::TRUNCATE: {
917 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
918 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
919 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
920 KnownZero &= OutMask;
921 KnownOne &= OutMask;
922 break;
923 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000924 case ISD::AssertZext: {
Chris Lattnerec665152006-02-26 23:36:02 +0000925 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
926 uint64_t InMask = MVT::getIntVTBitMask(VT);
927 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
928 KnownOne, Depth+1);
929 KnownZero |= (~InMask) & Mask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000930 return;
931 }
932 case ISD::ADD: {
933 // If either the LHS or the RHS are Zero, the result is zero.
934 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
935 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
936 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
937 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
938
939 // Output known-0 bits are known if clear or set in both the low clear bits
Chris Lattnerb6b17ff2006-03-13 06:42:16 +0000940 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
941 // low 3 bits clear.
Nate Begeman368e18d2006-02-16 21:11:51 +0000942 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
943 CountTrailingZeros_64(~KnownZero2));
944
945 KnownZero = (1ULL << KnownZeroOut) - 1;
946 KnownOne = 0;
947 return;
948 }
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000949 case ISD::SUB: {
950 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
951 if (!CLHS) return;
952
Nate Begeman368e18d2006-02-16 21:11:51 +0000953 // We know that the top bits of C-X are clear if X contains less bits
954 // than C (i.e. no wrap-around can happen). For example, 20-X is
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000955 // positive if we can prove that X is >= 0 and < 16.
956 MVT::ValueType VT = CLHS->getValueType(0);
957 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
958 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
959 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
960 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
961 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
962
963 // If all of the MaskV bits are known to be zero, then we know the output
964 // top bits are zero, because we now know that the output is from [0-C].
965 if ((KnownZero & MaskV) == MaskV) {
966 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
967 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
968 KnownOne = 0; // No one bits known.
969 } else {
970 KnownOne = KnownOne = 0; // Otherwise, nothing known.
971 }
972 }
Nate Begeman003a2722006-02-18 02:43:25 +0000973 return;
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000974 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000975 default:
976 // Allow the target to implement this method for its nodes.
Chris Lattner1482b5f2006-04-02 06:15:09 +0000977 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
978 case ISD::INTRINSIC_WO_CHAIN:
979 case ISD::INTRINSIC_W_CHAIN:
980 case ISD::INTRINSIC_VOID:
Nate Begeman368e18d2006-02-16 21:11:51 +0000981 computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
Chris Lattner1482b5f2006-04-02 06:15:09 +0000982 }
Nate Begeman003a2722006-02-18 02:43:25 +0000983 return;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000984 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000985}
986
Nate Begeman368e18d2006-02-16 21:11:51 +0000987/// computeMaskedBitsForTargetNode - Determine which of the bits specified
988/// in Mask are known to be either zero or one and return them in the
989/// KnownZero/KnownOne bitsets.
990void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
991 uint64_t Mask,
992 uint64_t &KnownZero,
993 uint64_t &KnownOne,
994 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000995 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
996 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
997 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
998 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000999 "Should use MaskedValueIsZero if you don't know whether Op"
1000 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +00001001 KnownZero = 0;
1002 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +00001003}
Chris Lattner4ccb0702006-01-26 20:37:03 +00001004
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001005/// ComputeNumSignBits - Return the number of times the sign bit of the
1006/// register is replicated into the other bits. We know that at least 1 bit
1007/// is always equal to the sign bit (itself), but other cases can give us
1008/// information. For example, immediately after an "SRA X, 2", we know that
1009/// the top 3 bits are all equal to each other, so we return 3.
1010unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1011 MVT::ValueType VT = Op.getValueType();
1012 assert(MVT::isInteger(VT) && "Invalid VT!");
1013 unsigned VTBits = MVT::getSizeInBits(VT);
1014 unsigned Tmp, Tmp2;
1015
1016 if (Depth == 6)
1017 return 1; // Limit search depth.
1018
1019 switch (Op.getOpcode()) {
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001020 default: break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001021 case ISD::AssertSext:
1022 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1023 return VTBits-Tmp+1;
1024 case ISD::AssertZext:
1025 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1026 return VTBits-Tmp;
1027
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001028 case ISD::SEXTLOAD: // '17' bits known
1029 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1030 return VTBits-Tmp+1;
1031 case ISD::ZEXTLOAD: // '16' bits known
1032 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1033 return VTBits-Tmp;
1034
1035 case ISD::Constant: {
1036 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1037 // If negative, invert the bits, then look at it.
1038 if (Val & MVT::getIntVTSignBit(VT))
1039 Val = ~Val;
1040
1041 // Shift the bits so they are the leading bits in the int64_t.
1042 Val <<= 64-VTBits;
1043
1044 // Return # leading zeros. We use 'min' here in case Val was zero before
1045 // shifting. We don't want to return '64' as for an i32 "0".
1046 return std::min(VTBits, CountLeadingZeros_64(Val));
1047 }
1048
1049 case ISD::SIGN_EXTEND:
1050 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1051 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1052
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001053 case ISD::SIGN_EXTEND_INREG:
1054 // Max of the input and what this extends.
1055 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1056 Tmp = VTBits-Tmp+1;
1057
1058 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1059 return std::max(Tmp, Tmp2);
1060
1061 case ISD::SRA:
1062 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1063 // SRA X, C -> adds C sign bits.
1064 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1065 Tmp += C->getValue();
1066 if (Tmp > VTBits) Tmp = VTBits;
1067 }
1068 return Tmp;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001069 case ISD::SHL:
1070 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1071 // shl destroys sign bits.
1072 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1073 if (C->getValue() >= VTBits || // Bad shift.
1074 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1075 return Tmp - C->getValue();
1076 }
1077 break;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001078 case ISD::AND:
1079 case ISD::OR:
1080 case ISD::XOR: // NOT is handled here.
1081 // Logical binary ops preserve the number of sign bits.
1082 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1083 if (Tmp == 1) return 1; // Early out.
1084 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1085 return std::min(Tmp, Tmp2);
1086
1087 case ISD::SELECT:
1088 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1089 if (Tmp == 1) return 1; // Early out.
1090 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1091 return std::min(Tmp, Tmp2);
1092
1093 case ISD::SETCC:
1094 // If setcc returns 0/-1, all bits are sign bits.
1095 if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1096 return VTBits;
1097 break;
Chris Lattnere60351b2006-05-06 23:40:29 +00001098 case ISD::ROTL:
1099 case ISD::ROTR:
1100 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1101 unsigned RotAmt = C->getValue() & (VTBits-1);
1102
1103 // Handle rotate right by N like a rotate left by 32-N.
1104 if (Op.getOpcode() == ISD::ROTR)
1105 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1106
1107 // If we aren't rotating out all of the known-in sign bits, return the
1108 // number that are left. This handles rotl(sext(x), 1) for example.
1109 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1110 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1111 }
1112 break;
1113 case ISD::ADD:
1114 // Add can have at most one carry bit. Thus we know that the output
1115 // is, at worst, one more bit than the inputs.
1116 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1117 if (Tmp == 1) return 1; // Early out.
1118
1119 // Special case decrementing a value (ADD X, -1):
1120 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1121 if (CRHS->isAllOnesValue()) {
1122 uint64_t KnownZero, KnownOne;
1123 uint64_t Mask = MVT::getIntVTBitMask(VT);
1124 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1125
1126 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1127 // sign bits set.
1128 if ((KnownZero|1) == Mask)
1129 return VTBits;
1130
1131 // If we are subtracting one from a positive number, there is no carry
1132 // out of the result.
1133 if (KnownZero & MVT::getIntVTSignBit(VT))
1134 return Tmp;
1135 }
1136
1137 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1138 if (Tmp2 == 1) return 1;
1139 return std::min(Tmp, Tmp2)-1;
1140 break;
1141
1142 case ISD::SUB:
1143 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1144 if (Tmp2 == 1) return 1;
1145
1146 // Handle NEG.
1147 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1148 if (CLHS->getValue() == 0) {
1149 uint64_t KnownZero, KnownOne;
1150 uint64_t Mask = MVT::getIntVTBitMask(VT);
1151 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1152 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1153 // sign bits set.
1154 if ((KnownZero|1) == Mask)
1155 return VTBits;
1156
1157 // If the input is known to be positive (the sign bit is known clear),
1158 // the output of the NEG has the same number of sign bits as the input.
1159 if (KnownZero & MVT::getIntVTSignBit(VT))
1160 return Tmp2;
1161
1162 // Otherwise, we treat this like a SUB.
1163 }
1164
1165 // Sub can have at most one carry bit. Thus we know that the output
1166 // is, at worst, one more bit than the inputs.
1167 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1168 if (Tmp == 1) return 1; // Early out.
1169 return std::min(Tmp, Tmp2)-1;
1170 break;
1171 case ISD::TRUNCATE:
1172 // FIXME: it's tricky to do anything useful for this, but it is an important
1173 // case for targets like X86.
1174 break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001175 }
1176
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001177 // Allow the target to implement this method for its nodes.
1178 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1179 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1180 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1181 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1182 unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1183 if (NumBits > 1) return NumBits;
1184 }
1185
Chris Lattner822db932006-05-06 23:48:13 +00001186 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1187 // use this information.
1188 uint64_t KnownZero, KnownOne;
1189 uint64_t Mask = MVT::getIntVTBitMask(VT);
1190 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1191
1192 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1193 if (KnownZero & SignBit) { // SignBit is 0
1194 Mask = KnownZero;
1195 } else if (KnownOne & SignBit) { // SignBit is 1;
1196 Mask = KnownOne;
1197 } else {
1198 // Nothing known.
1199 return 1;
1200 }
1201
1202 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1203 // the number of identical bits in the top of the input value.
1204 Mask ^= ~0ULL;
1205 Mask <<= 64-VTBits;
1206 // Return # leading zeros. We use 'min' here in case Val was zero before
1207 // shifting. We don't want to return '64' as for an i32 "0".
1208 return std::min(VTBits, CountLeadingZeros_64(Mask));
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001209}
1210
1211
1212
1213/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1214/// targets that want to expose additional information about sign bits to the
1215/// DAG Combiner.
1216unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1217 unsigned Depth) const {
1218 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1219 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1220 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1221 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1222 "Should use ComputeNumSignBits if you don't know whether Op"
1223 " is a target node!");
1224 return 1;
1225}
1226
1227
Chris Lattner00ffed02006-03-01 04:52:55 +00001228SDOperand TargetLowering::
1229PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1230 // Default implementation: no optimization.
1231 return SDOperand();
1232}
1233
Chris Lattnereb8146b2006-02-04 02:13:02 +00001234//===----------------------------------------------------------------------===//
1235// Inline Assembler Implementation Methods
1236//===----------------------------------------------------------------------===//
1237
1238TargetLowering::ConstraintType
1239TargetLowering::getConstraintType(char ConstraintLetter) const {
1240 // FIXME: lots more standard ones to handle.
1241 switch (ConstraintLetter) {
1242 default: return C_Unknown;
1243 case 'r': return C_RegisterClass;
Chris Lattner2b7401e2006-02-24 01:10:46 +00001244 case 'm': // memory
1245 case 'o': // offsetable
1246 case 'V': // not offsetable
1247 return C_Memory;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001248 case 'i': // Simple Integer or Relocatable Constant
1249 case 'n': // Simple Integer
1250 case 's': // Relocatable Constant
1251 case 'I': // Target registers.
1252 case 'J':
1253 case 'K':
1254 case 'L':
1255 case 'M':
1256 case 'N':
1257 case 'O':
Chris Lattner2b7401e2006-02-24 01:10:46 +00001258 case 'P':
1259 return C_Other;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001260 }
1261}
1262
1263bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
1264 char ConstraintLetter) {
1265 switch (ConstraintLetter) {
1266 default: return false;
1267 case 'i': // Simple Integer or Relocatable Constant
1268 case 'n': // Simple Integer
1269 case 's': // Relocatable Constant
1270 return true; // FIXME: not right.
1271 }
1272}
1273
1274
Chris Lattner4ccb0702006-01-26 20:37:03 +00001275std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001276getRegClassForInlineAsmConstraint(const std::string &Constraint,
1277 MVT::ValueType VT) const {
1278 return std::vector<unsigned>();
1279}
1280
1281
1282std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001283getRegForInlineAsmConstraint(const std::string &Constraint,
1284 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001285 if (Constraint[0] != '{')
1286 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001287 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1288
1289 // Remove the braces from around the name.
1290 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001291
1292 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001293 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001294 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1295 E = RI->regclass_end(); RCI != E; ++RCI) {
1296 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001297
1298 // If none of the the value types for this register class are valid, we
1299 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1300 bool isLegal = false;
1301 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1302 I != E; ++I) {
1303 if (isTypeLegal(*I)) {
1304 isLegal = true;
1305 break;
1306 }
1307 }
1308
1309 if (!isLegal) continue;
1310
Chris Lattner1efa40f2006-02-22 00:56:39 +00001311 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1312 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001313 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001314 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001315 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001316 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001317
Chris Lattner1efa40f2006-02-22 00:56:39 +00001318 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001319}
Evan Cheng30b37b52006-03-13 23:18:16 +00001320
1321//===----------------------------------------------------------------------===//
1322// Loop Strength Reduction hooks
1323//===----------------------------------------------------------------------===//
1324
1325/// isLegalAddressImmediate - Return true if the integer value or
1326/// GlobalValue can be used as the offset of the target addressing mode.
1327bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
1328 return false;
1329}
1330bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
1331 return false;
1332}
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001333
1334
1335// Magic for divide replacement
1336
1337struct ms {
1338 int64_t m; // magic number
1339 int64_t s; // shift amount
1340};
1341
1342struct mu {
1343 uint64_t m; // magic number
1344 int64_t a; // add indicator
1345 int64_t s; // shift amount
1346};
1347
1348/// magic - calculate the magic numbers required to codegen an integer sdiv as
1349/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1350/// or -1.
1351static ms magic32(int32_t d) {
1352 int32_t p;
1353 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1354 const uint32_t two31 = 0x80000000U;
1355 struct ms mag;
1356
1357 ad = abs(d);
1358 t = two31 + ((uint32_t)d >> 31);
1359 anc = t - 1 - t%ad; // absolute value of nc
1360 p = 31; // initialize p
1361 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1362 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1363 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1364 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1365 do {
1366 p = p + 1;
1367 q1 = 2*q1; // update q1 = 2p/abs(nc)
1368 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1369 if (r1 >= anc) { // must be unsigned comparison
1370 q1 = q1 + 1;
1371 r1 = r1 - anc;
1372 }
1373 q2 = 2*q2; // update q2 = 2p/abs(d)
1374 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1375 if (r2 >= ad) { // must be unsigned comparison
1376 q2 = q2 + 1;
1377 r2 = r2 - ad;
1378 }
1379 delta = ad - r2;
1380 } while (q1 < delta || (q1 == delta && r1 == 0));
1381
1382 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1383 if (d < 0) mag.m = -mag.m; // resulting magic number
1384 mag.s = p - 32; // resulting shift
1385 return mag;
1386}
1387
1388/// magicu - calculate the magic numbers required to codegen an integer udiv as
1389/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1390static mu magicu32(uint32_t d) {
1391 int32_t p;
1392 uint32_t nc, delta, q1, r1, q2, r2;
1393 struct mu magu;
1394 magu.a = 0; // initialize "add" indicator
1395 nc = - 1 - (-d)%d;
1396 p = 31; // initialize p
1397 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1398 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1399 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1400 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1401 do {
1402 p = p + 1;
1403 if (r1 >= nc - r1 ) {
1404 q1 = 2*q1 + 1; // update q1
1405 r1 = 2*r1 - nc; // update r1
1406 }
1407 else {
1408 q1 = 2*q1; // update q1
1409 r1 = 2*r1; // update r1
1410 }
1411 if (r2 + 1 >= d - r2) {
1412 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1413 q2 = 2*q2 + 1; // update q2
1414 r2 = 2*r2 + 1 - d; // update r2
1415 }
1416 else {
1417 if (q2 >= 0x80000000) magu.a = 1;
1418 q2 = 2*q2; // update q2
1419 r2 = 2*r2 + 1; // update r2
1420 }
1421 delta = d - 1 - r2;
1422 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1423 magu.m = q2 + 1; // resulting magic number
1424 magu.s = p - 32; // resulting shift
1425 return magu;
1426}
1427
1428/// magic - calculate the magic numbers required to codegen an integer sdiv as
1429/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1430/// or -1.
1431static ms magic64(int64_t d) {
1432 int64_t p;
1433 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1434 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1435 struct ms mag;
1436
1437 ad = d >= 0 ? d : -d;
1438 t = two63 + ((uint64_t)d >> 63);
1439 anc = t - 1 - t%ad; // absolute value of nc
1440 p = 63; // initialize p
1441 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1442 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1443 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1444 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1445 do {
1446 p = p + 1;
1447 q1 = 2*q1; // update q1 = 2p/abs(nc)
1448 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1449 if (r1 >= anc) { // must be unsigned comparison
1450 q1 = q1 + 1;
1451 r1 = r1 - anc;
1452 }
1453 q2 = 2*q2; // update q2 = 2p/abs(d)
1454 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1455 if (r2 >= ad) { // must be unsigned comparison
1456 q2 = q2 + 1;
1457 r2 = r2 - ad;
1458 }
1459 delta = ad - r2;
1460 } while (q1 < delta || (q1 == delta && r1 == 0));
1461
1462 mag.m = q2 + 1;
1463 if (d < 0) mag.m = -mag.m; // resulting magic number
1464 mag.s = p - 64; // resulting shift
1465 return mag;
1466}
1467
1468/// magicu - calculate the magic numbers required to codegen an integer udiv as
1469/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1470static mu magicu64(uint64_t d)
1471{
1472 int64_t p;
1473 uint64_t nc, delta, q1, r1, q2, r2;
1474 struct mu magu;
1475 magu.a = 0; // initialize "add" indicator
1476 nc = - 1 - (-d)%d;
1477 p = 63; // initialize p
1478 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1479 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1480 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1481 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1482 do {
1483 p = p + 1;
1484 if (r1 >= nc - r1 ) {
1485 q1 = 2*q1 + 1; // update q1
1486 r1 = 2*r1 - nc; // update r1
1487 }
1488 else {
1489 q1 = 2*q1; // update q1
1490 r1 = 2*r1; // update r1
1491 }
1492 if (r2 + 1 >= d - r2) {
1493 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1494 q2 = 2*q2 + 1; // update q2
1495 r2 = 2*r2 + 1 - d; // update r2
1496 }
1497 else {
1498 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1499 q2 = 2*q2; // update q2
1500 r2 = 2*r2 + 1; // update r2
1501 }
1502 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001503 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001504 magu.m = q2 + 1; // resulting magic number
1505 magu.s = p - 64; // resulting shift
1506 return magu;
1507}
1508
1509/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1510/// return a DAG expression to select that will generate the same value by
1511/// multiplying by a magic number. See:
1512/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1513SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1514 std::list<SDNode*>* Created) const {
1515 MVT::ValueType VT = N->getValueType(0);
1516
1517 // Check to see if we can do this.
1518 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1519 return SDOperand(); // BuildSDIV only operates on i32 or i64
1520 if (!isOperationLegal(ISD::MULHS, VT))
1521 return SDOperand(); // Make sure the target supports MULHS.
1522
1523 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1524 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1525
1526 // Multiply the numerator (operand 0) by the magic value
1527 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1528 DAG.getConstant(magics.m, VT));
1529 // If d > 0 and m < 0, add the numerator
1530 if (d > 0 && magics.m < 0) {
1531 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1532 if (Created)
1533 Created->push_back(Q.Val);
1534 }
1535 // If d < 0 and m > 0, subtract the numerator.
1536 if (d < 0 && magics.m > 0) {
1537 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1538 if (Created)
1539 Created->push_back(Q.Val);
1540 }
1541 // Shift right algebraic if shift value is nonzero
1542 if (magics.s > 0) {
1543 Q = DAG.getNode(ISD::SRA, VT, Q,
1544 DAG.getConstant(magics.s, getShiftAmountTy()));
1545 if (Created)
1546 Created->push_back(Q.Val);
1547 }
1548 // Extract the sign bit and add it to the quotient
1549 SDOperand T =
1550 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1551 getShiftAmountTy()));
1552 if (Created)
1553 Created->push_back(T.Val);
1554 return DAG.getNode(ISD::ADD, VT, Q, T);
1555}
1556
1557/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1558/// return a DAG expression to select that will generate the same value by
1559/// multiplying by a magic number. See:
1560/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1561SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1562 std::list<SDNode*>* Created) const {
1563 MVT::ValueType VT = N->getValueType(0);
1564
1565 // Check to see if we can do this.
1566 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1567 return SDOperand(); // BuildUDIV only operates on i32 or i64
1568 if (!isOperationLegal(ISD::MULHU, VT))
1569 return SDOperand(); // Make sure the target supports MULHU.
1570
1571 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1572 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1573
1574 // Multiply the numerator (operand 0) by the magic value
1575 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1576 DAG.getConstant(magics.m, VT));
1577 if (Created)
1578 Created->push_back(Q.Val);
1579
1580 if (magics.a == 0) {
1581 return DAG.getNode(ISD::SRL, VT, Q,
1582 DAG.getConstant(magics.s, getShiftAmountTy()));
1583 } else {
1584 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1585 if (Created)
1586 Created->push_back(NPQ.Val);
1587 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1588 DAG.getConstant(1, getShiftAmountTy()));
1589 if (Created)
1590 Created->push_back(NPQ.Val);
1591 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1592 if (Created)
1593 Created->push_back(NPQ.Val);
1594 return DAG.getNode(ISD::SRL, VT, NPQ,
1595 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1596 }
1597}