blob: bb4119c767cf82b6cdea2148a28b0cf4033a3a6e [file] [log] [blame]
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Jim Laskeyb744c252006-12-15 10:40:48 +00005 <meta http-equiv="content-type" content="text/html; charset=utf-8">
Chris Lattnerce52b7e2004-06-01 06:48:00 +00006 <title>The LLVM Target-Independent Code Generator</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 The LLVM Target-Independent Code Generator
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction</a>
17 <ul>
18 <li><a href="#required">Required components in the code generator</a></li>
Chris Lattnere35d3bb2005-10-16 00:36:38 +000019 <li><a href="#high-level-design">The high-level design of the code
20 generator</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000021 <li><a href="#tablegen">Using TableGen for target description</a></li>
22 </ul>
23 </li>
24 <li><a href="#targetdesc">Target description classes</a>
25 <ul>
26 <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
27 <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000028 <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000029 <li><a href="#mregisterinfo">The <tt>MRegisterInfo</tt> class</a></li>
30 <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
31 <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
Chris Lattner47adebb2005-10-16 17:06:07 +000032 <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000033 <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
34 </ul>
35 </li>
36 <li><a href="#codegendesc">Machine code description classes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +000037 <ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000038 <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000039 <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
40 class</a></li>
41 <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
Chris Lattnerec94f802004-06-04 00:16:02 +000042 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000043 </li>
44 <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000045 <ul>
46 <li><a href="#instselect">Instruction Selection</a>
47 <ul>
48 <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
49 <li><a href="#selectiondag_process">SelectionDAG Code Generation
50 Process</a></li>
51 <li><a href="#selectiondag_build">Initial SelectionDAG
52 Construction</a></li>
53 <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
54 <li><a href="#selectiondag_optimize">SelectionDAG Optimization
Chris Lattnere35d3bb2005-10-16 00:36:38 +000055 Phase: the DAG Combiner</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000056 <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000057 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
Chris Lattnere35d3bb2005-10-16 00:36:38 +000058 Phase</a></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000059 <li><a href="#selectiondag_future">Future directions for the
60 SelectionDAG</a></li>
61 </ul></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000062 <li><a href="#liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +000063 <ul>
64 <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
Bill Wendling3fc488d2006-09-06 18:42:41 +000065 <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
Bill Wendling2f87a882006-09-04 23:35:52 +000066 </ul></li>
Bill Wendlinga396ee82006-09-01 21:46:00 +000067 <li><a href="#regalloc">Register Allocation</a>
68 <ul>
69 <li><a href="#regAlloc_represent">How registers are represented in
70 LLVM</a></li>
71 <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
72 registers</a></li>
73 <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
74 <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
75 <li><a href="#regAlloc_fold">Instruction folding</a></li>
76 <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
77 </ul></li>
Chris Lattner32e89f22005-10-16 18:31:08 +000078 <li><a href="#codeemit">Code Emission</a>
79 <ul>
80 <li><a href="#codeemit_asm">Generating Assembly Code</a></li>
81 <li><a href="#codeemit_bin">Generating Binary Machine Code</a></li>
82 </ul></li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000083 </ul>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000084 </li>
Chris Lattner32e89f22005-10-16 18:31:08 +000085 <li><a href="#targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000086 <ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +000087 <li><a href="#x86">The X86 backend</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +000088 <li><a href="#ppc">The PowerPC backend</a>
Jim Laskey762b6cb2006-12-14 17:19:50 +000089 <ul>
90 <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
91 <li><a href="#ppc_frame">Frame Layout</a></li>
92 <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
93 <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
Jim Laskeyb744c252006-12-15 10:40:48 +000094 </ul></li>
95 </ul></li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +000096
97</ol>
98
99<div class="doc_author">
Bill Wendlinga396ee82006-09-01 21:46:00 +0000100 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Jim Laskeyd201f4e2007-03-14 19:30:33 +0000101 <a href="mailto:isanbard@gmail.com">Bill Wendling</a>,
Bill Wendlinga396ee82006-09-01 21:46:00 +0000102 <a href="mailto:pronesto@gmail.com">Fernando Magno Quintao
Jim Laskeyd201f4e2007-03-14 19:30:33 +0000103 Pereira</a> and
104 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000105</div>
106
Chris Lattner10d68002004-06-01 17:18:11 +0000107<div class="doc_warning">
108 <p>Warning: This is a work in progress.</p>
109</div>
110
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000111<!-- *********************************************************************** -->
112<div class="doc_section">
113 <a name="introduction">Introduction</a>
114</div>
115<!-- *********************************************************************** -->
116
117<div class="doc_text">
118
119<p>The LLVM target-independent code generator is a framework that provides a
120suite of reusable components for translating the LLVM internal representation to
Bill Wendling91e10c42006-08-28 02:26:32 +0000121the machine code for a specified target&mdash;either in assembly form (suitable
122for a static compiler) or in binary machine code format (usable for a JIT
123compiler). The LLVM target-independent code generator consists of five main
124components:</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000125
126<ol>
127<li><a href="#targetdesc">Abstract target description</a> interfaces which
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000128capture important properties about various aspects of the machine, independently
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000129of how they will be used. These interfaces are defined in
130<tt>include/llvm/Target/</tt>.</li>
131
132<li>Classes used to represent the <a href="#codegendesc">machine code</a> being
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000133generated for a target. These classes are intended to be abstract enough to
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000134represent the machine code for <i>any</i> target machine. These classes are
135defined in <tt>include/llvm/CodeGen/</tt>.</li>
136
137<li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
138various phases of native code generation (register allocation, scheduling, stack
139frame representation, etc). This code lives in <tt>lib/CodeGen/</tt>.</li>
140
141<li><a href="#targetimpls">Implementations of the abstract target description
142interfaces</a> for particular targets. These machine descriptions make use of
143the components provided by LLVM, and can optionally provide custom
144target-specific passes, to build complete code generators for a specific target.
145Target descriptions live in <tt>lib/Target/</tt>.</li>
146
Chris Lattnerec94f802004-06-04 00:16:02 +0000147<li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
148completely target independent (it uses the <tt>TargetJITInfo</tt> structure to
149interface for target-specific issues. The code for the target-independent
150JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
151
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000152</ol>
153
154<p>
155Depending on which part of the code generator you are interested in working on,
156different pieces of this will be useful to you. In any case, you should be
157familiar with the <a href="#targetdesc">target description</a> and <a
158href="#codegendesc">machine code representation</a> classes. If you want to add
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000159a backend for a new target, you will need to <a href="#targetimpls">implement the
160target description</a> classes for your new target and understand the <a
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000161href="LangRef.html">LLVM code representation</a>. If you are interested in
162implementing a new <a href="#codegenalgs">code generation algorithm</a>, it
163should only depend on the target-description and machine code representation
164classes, ensuring that it is portable.
165</p>
166
167</div>
168
169<!-- ======================================================================= -->
170<div class="doc_subsection">
171 <a name="required">Required components in the code generator</a>
172</div>
173
174<div class="doc_text">
175
176<p>The two pieces of the LLVM code generator are the high-level interface to the
177code generator and the set of reusable components that can be used to build
178target-specific backends. The two most important interfaces (<a
179href="#targetmachine"><tt>TargetMachine</tt></a> and <a
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000180href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000181required to be defined for a backend to fit into the LLVM system, but the others
182must be defined if the reusable code generator components are going to be
183used.</p>
184
185<p>This design has two important implications. The first is that LLVM can
186support completely non-traditional code generation targets. For example, the C
187backend does not require register allocation, instruction selection, or any of
188the other standard components provided by the system. As such, it only
189implements these two interfaces, and does its own thing. Another example of a
190code generator like this is a (purely hypothetical) backend that converts LLVM
191to the GCC RTL form and uses GCC to emit machine code for a target.</p>
192
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000193<p>This design also implies that it is possible to design and
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000194implement radically different code generators in the LLVM system that do not
195make use of any of the built-in components. Doing so is not recommended at all,
196but could be required for radically different targets that do not fit into the
Bill Wendling91e10c42006-08-28 02:26:32 +0000197LLVM machine description model: FPGAs for example.</p>
Chris Lattner900bf8c2004-06-02 07:06:06 +0000198
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000199</div>
200
201<!-- ======================================================================= -->
202<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000203 <a name="high-level-design">The high-level design of the code generator</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000204</div>
205
206<div class="doc_text">
207
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000208<p>The LLVM target-independent code generator is designed to support efficient and
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000209quality code generation for standard register-based microprocessors. Code
210generation in this model is divided into the following stages:</p>
211
212<ol>
Chris Lattner32e89f22005-10-16 18:31:08 +0000213<li><b><a href="#instselect">Instruction Selection</a></b> - This phase
214determines an efficient way to express the input LLVM code in the target
215instruction set.
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000216This stage produces the initial code for the program in the target instruction
217set, then makes use of virtual registers in SSA form and physical registers that
218represent any required register assignments due to target constraints or calling
Chris Lattner32e89f22005-10-16 18:31:08 +0000219conventions. This step turns the LLVM code into a DAG of target
220instructions.</li>
221
222<li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> - This
223phase takes the DAG of target instructions produced by the instruction selection
224phase, determines an ordering of the instructions, then emits the instructions
Chris Lattnerc38959f2005-10-17 03:09:31 +0000225as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering. Note
226that we describe this in the <a href="#instselect">instruction selection
227section</a> because it operates on a <a
228href="#selectiondag_intro">SelectionDAG</a>.
Chris Lattner32e89f22005-10-16 18:31:08 +0000229</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000230
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000231<li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> - This
232optional stage consists of a series of machine-code optimizations that
233operate on the SSA-form produced by the instruction selector. Optimizations
Chris Lattner32e89f22005-10-16 18:31:08 +0000234like modulo-scheduling or peephole optimization work here.
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000235</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000236
Chris Lattner32e89f22005-10-16 18:31:08 +0000237<li><b><a href="#regalloc">Register Allocation</a></b> - The
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000238target code is transformed from an infinite virtual register file in SSA form
239to the concrete register file used by the target. This phase introduces spill
240code and eliminates all virtual register references from the program.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000241
Chris Lattner32e89f22005-10-16 18:31:08 +0000242<li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> - Once the
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000243machine code has been generated for the function and the amount of stack space
244required is known (used for LLVM alloca's and spill slots), the prolog and
245epilog code for the function can be inserted and "abstract stack location
246references" can be eliminated. This stage is responsible for implementing
247optimizations like frame-pointer elimination and stack packing.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000248
Chris Lattner32e89f22005-10-16 18:31:08 +0000249<li><b><a href="#latemco">Late Machine Code Optimizations</a></b> - Optimizations
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000250that operate on "final" machine code can go here, such as spill code scheduling
251and peephole optimizations.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000252
Chris Lattner32e89f22005-10-16 18:31:08 +0000253<li><b><a href="#codeemit">Code Emission</a></b> - The final stage actually
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000254puts out the code for the current function, either in the target assembler
255format or in machine code.</li>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000256
257</ol>
258
Bill Wendling91e10c42006-08-28 02:26:32 +0000259<p>The code generator is based on the assumption that the instruction selector
260will use an optimal pattern matching selector to create high-quality sequences of
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000261native instructions. Alternative code generator designs based on pattern
Bill Wendling91e10c42006-08-28 02:26:32 +0000262expansion and aggressive iterative peephole optimization are much slower. This
263design permits efficient compilation (important for JIT environments) and
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000264aggressive optimization (used when generating code offline) by allowing
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000265components of varying levels of sophistication to be used for any step of
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000266compilation.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000267
Bill Wendling91e10c42006-08-28 02:26:32 +0000268<p>In addition to these stages, target implementations can insert arbitrary
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000269target-specific passes into the flow. For example, the X86 target uses a
270special pass to handle the 80x87 floating point stack architecture. Other
Bill Wendling91e10c42006-08-28 02:26:32 +0000271targets with unusual requirements can be supported with custom passes as
272needed.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000273
274</div>
275
276
277<!-- ======================================================================= -->
278<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000279 <a name="tablegen">Using TableGen for target description</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000280</div>
281
282<div class="doc_text">
283
Chris Lattner5489e932004-06-01 18:35:00 +0000284<p>The target description classes require a detailed description of the target
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000285architecture. These target descriptions often have a large amount of common
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000286information (e.g., an <tt>add</tt> instruction is almost identical to a
287<tt>sub</tt> instruction).
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000288In order to allow the maximum amount of commonality to be factored out, the LLVM
289code generator uses the <a href="TableGenFundamentals.html">TableGen</a> tool to
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000290describe big chunks of the target machine, which allows the use of
291domain-specific and target-specific abstractions to reduce the amount of
Bill Wendling91e10c42006-08-28 02:26:32 +0000292repetition.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000293
Chris Lattner32e89f22005-10-16 18:31:08 +0000294<p>As LLVM continues to be developed and refined, we plan to move more and more
Bill Wendling91e10c42006-08-28 02:26:32 +0000295of the target description to the <tt>.td</tt> form. Doing so gives us a
Chris Lattner32e89f22005-10-16 18:31:08 +0000296number of advantages. The most important is that it makes it easier to port
Bill Wendling91e10c42006-08-28 02:26:32 +0000297LLVM because it reduces the amount of C++ code that has to be written, and the
Chris Lattner32e89f22005-10-16 18:31:08 +0000298surface area of the code generator that needs to be understood before someone
Bill Wendling91e10c42006-08-28 02:26:32 +0000299can get something working. Second, it makes it easier to change things. In
300particular, if tables and other things are all emitted by <tt>tblgen</tt>, we
301only need a change in one place (<tt>tblgen</tt>) to update all of the targets
302to a new interface.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000303
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000304</div>
305
306<!-- *********************************************************************** -->
307<div class="doc_section">
308 <a name="targetdesc">Target description classes</a>
309</div>
310<!-- *********************************************************************** -->
311
312<div class="doc_text">
313
Bill Wendling91e10c42006-08-28 02:26:32 +0000314<p>The LLVM target description classes (located in the
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000315<tt>include/llvm/Target</tt> directory) provide an abstract description of the
Bill Wendling91e10c42006-08-28 02:26:32 +0000316target machine independent of any particular client. These classes are
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000317designed to capture the <i>abstract</i> properties of the target (such as the
318instructions and registers it has), and do not incorporate any particular pieces
Chris Lattner32e89f22005-10-16 18:31:08 +0000319of code generation algorithms.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000320
321<p>All of the target description classes (except the <tt><a
322href="#targetdata">TargetData</a></tt> class) are designed to be subclassed by
323the concrete target implementation, and have virtual methods implemented. To
Reid Spencerbdbcb8a2004-06-05 14:39:24 +0000324get to these implementations, the <tt><a
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000325href="#targetmachine">TargetMachine</a></tt> class provides accessors that
326should be implemented by the target.</p>
327
328</div>
329
330<!-- ======================================================================= -->
331<div class="doc_subsection">
332 <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
333</div>
334
335<div class="doc_text">
336
337<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
338access the target-specific implementations of the various target description
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000339classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
340<tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
341designed to be specialized by
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000342a concrete target implementation (e.g., <tt>X86TargetMachine</tt>) which
343implements the various virtual methods. The only required target description
344class is the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the
345code generator components are to be used, the other interfaces should be
346implemented as well.</p>
347
348</div>
349
350
351<!-- ======================================================================= -->
352<div class="doc_subsection">
353 <a name="targetdata">The <tt>TargetData</tt> class</a>
354</div>
355
356<div class="doc_text">
357
358<p>The <tt>TargetData</tt> class is the only required target description class,
Chris Lattner32e89f22005-10-16 18:31:08 +0000359and it is the only class that is not extensible (you cannot derived a new
360class from it). <tt>TargetData</tt> specifies information about how the target
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000361lays out memory for structures, the alignment requirements for various data
362types, the size of pointers in the target, and whether the target is
363little-endian or big-endian.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000364
365</div>
366
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000367<!-- ======================================================================= -->
368<div class="doc_subsection">
369 <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
370</div>
371
372<div class="doc_text">
373
374<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
375selectors primarily to describe how LLVM code should be lowered to SelectionDAG
Bill Wendling91e10c42006-08-28 02:26:32 +0000376operations. Among other things, this class indicates:</p>
377
378<ul>
379 <li>an initial register class to use for various <tt>ValueType</tt>s</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000380 <li>which operations are natively supported by the target machine</li>
Bill Wendling91e10c42006-08-28 02:26:32 +0000381 <li>the return type of <tt>setcc</tt> operations</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000382 <li>the type to use for shift amounts</li>
383 <li>various high-level characteristics, like whether it is profitable to turn
384 division by a constant into a multiplication sequence</li>
Jim Laskeyb744c252006-12-15 10:40:48 +0000385</ul>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000386
387</div>
388
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000389<!-- ======================================================================= -->
390<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000391 <a name="mregisterinfo">The <tt>MRegisterInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000392</div>
393
394<div class="doc_text">
395
396<p>The <tt>MRegisterInfo</tt> class (which will eventually be renamed to
397<tt>TargetRegisterInfo</tt>) is used to describe the register file of the
398target and any interactions between the registers.</p>
399
400<p>Registers in the code generator are represented in the code generator by
Bill Wendling91e10c42006-08-28 02:26:32 +0000401unsigned integers. Physical registers (those that actually exist in the target
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000402description) are unique small numbers, and virtual registers are generally
Chris Lattner32e89f22005-10-16 18:31:08 +0000403large. Note that register #0 is reserved as a flag value.</p>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000404
405<p>Each register in the processor description has an associated
Bill Wendling91e10c42006-08-28 02:26:32 +0000406<tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
407register (used for assembly output and debugging dumps) and a set of aliases
408(used to indicate whether one register overlaps with another).
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000409</p>
410
411<p>In addition to the per-register description, the <tt>MRegisterInfo</tt> class
412exposes a set of processor specific register classes (instances of the
413<tt>TargetRegisterClass</tt> class). Each register class contains sets of
414registers that have the same properties (for example, they are all 32-bit
415integer registers). Each SSA virtual register created by the instruction
416selector has an associated register class. When the register allocator runs, it
417replaces virtual registers with a physical register in the set.</p>
418
419<p>
420The target-specific implementations of these classes is auto-generated from a <a
421href="TableGenFundamentals.html">TableGen</a> description of the register file.
422</p>
423
424</div>
425
426<!-- ======================================================================= -->
427<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000428 <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000429</div>
430
Reid Spencer627cd002005-07-19 01:36:35 +0000431<div class="doc_text">
432 <p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
433 instructions supported by the target. It is essentially an array of
434 <tt>TargetInstrDescriptor</tt> objects, each of which describes one
435 instruction the target supports. Descriptors define things like the mnemonic
Chris Lattnera3079782005-07-19 03:37:48 +0000436 for the opcode, the number of operands, the list of implicit register uses
437 and defs, whether the instruction has certain target-independent properties
Bill Wendling91e10c42006-08-28 02:26:32 +0000438 (accesses memory, is commutable, etc), and holds any target-specific
439 flags.</p>
Reid Spencer627cd002005-07-19 01:36:35 +0000440</div>
441
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000442<!-- ======================================================================= -->
443<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000444 <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000445</div>
446
Reid Spencer627cd002005-07-19 01:36:35 +0000447<div class="doc_text">
448 <p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
449 stack frame layout of the target. It holds the direction of stack growth,
450 the known stack alignment on entry to each function, and the offset to the
Bill Wendling91e10c42006-08-28 02:26:32 +0000451 local area. The offset to the local area is the offset from the stack
Reid Spencer627cd002005-07-19 01:36:35 +0000452 pointer on function entry to the first location where function data (local
453 variables, spill locations) can be stored.</p>
Reid Spencer627cd002005-07-19 01:36:35 +0000454</div>
Chris Lattner47adebb2005-10-16 17:06:07 +0000455
456<!-- ======================================================================= -->
457<div class="doc_subsection">
458 <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
459</div>
460
461<div class="doc_text">
Jim Laskey82d61a12005-10-17 12:19:10 +0000462 <p>The <tt>TargetSubtarget</tt> class is used to provide information about the
463 specific chip set being targeted. A sub-target informs code generation of
464 which instructions are supported, instruction latencies and instruction
465 execution itinerary; i.e., which processing units are used, in what order, and
Bill Wendling91e10c42006-08-28 02:26:32 +0000466 for how long.</p>
Chris Lattner47adebb2005-10-16 17:06:07 +0000467</div>
468
469
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000470<!-- ======================================================================= -->
471<div class="doc_subsection">
Chris Lattner10d68002004-06-01 17:18:11 +0000472 <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000473</div>
474
Bill Wendling91e10c42006-08-28 02:26:32 +0000475<div class="doc_text">
476 <p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
477 Just-In-Time code generator to perform target-specific activities, such as
478 emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
479 should provide one of these objects through the <tt>getJITInfo</tt>
480 method.</p>
481</div>
482
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000483<!-- *********************************************************************** -->
484<div class="doc_section">
485 <a name="codegendesc">Machine code description classes</a>
486</div>
487<!-- *********************************************************************** -->
488
Chris Lattnerec94f802004-06-04 00:16:02 +0000489<div class="doc_text">
Chris Lattnerce52b7e2004-06-01 06:48:00 +0000490
Bill Wendling91e10c42006-08-28 02:26:32 +0000491<p>At the high-level, LLVM code is translated to a machine specific
492representation formed out of
493<a href="#machinefunction"><tt>MachineFunction</tt></a>,
494<a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>, and <a
Chris Lattnerec94f802004-06-04 00:16:02 +0000495href="#machineinstr"><tt>MachineInstr</tt></a> instances
Bill Wendling91e10c42006-08-28 02:26:32 +0000496(defined in <tt>include/llvm/CodeGen</tt>). This representation is completely
497target agnostic, representing instructions in their most abstract form: an
498opcode and a series of operands. This representation is designed to support
499both an SSA representation for machine code, as well as a register allocated,
500non-SSA form.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000501
502</div>
503
504<!-- ======================================================================= -->
505<div class="doc_subsection">
506 <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
507</div>
508
509<div class="doc_text">
510
511<p>Target machine instructions are represented as instances of the
512<tt>MachineInstr</tt> class. This class is an extremely abstract way of
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000513representing machine instructions. In particular, it only keeps track of
514an opcode number and a set of operands.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000515
Bill Wendling91e10c42006-08-28 02:26:32 +0000516<p>The opcode number is a simple unsigned integer that only has meaning to a
Chris Lattnerec94f802004-06-04 00:16:02 +0000517specific backend. All of the instructions for a target should be defined in
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000518the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000519are auto-generated from this description. The <tt>MachineInstr</tt> class does
520not have any information about how to interpret the instruction (i.e., what the
Bill Wendling91e10c42006-08-28 02:26:32 +0000521semantics of the instruction are); for that you must refer to the
Chris Lattnerec94f802004-06-04 00:16:02 +0000522<tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
523
524<p>The operands of a machine instruction can be of several different types:
Bill Wendling91e10c42006-08-28 02:26:32 +0000525a register reference, a constant integer, a basic block reference, etc. In
526addition, a machine operand should be marked as a def or a use of the value
Chris Lattnerec94f802004-06-04 00:16:02 +0000527(though only registers are allowed to be defs).</p>
528
529<p>By convention, the LLVM code generator orders instruction operands so that
530all register definitions come before the register uses, even on architectures
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000531that are normally printed in other orders. For example, the SPARC add
Chris Lattnerec94f802004-06-04 00:16:02 +0000532instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
533and stores the result into the "%i3" register. In the LLVM code generator,
534the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the destination
535first.</p>
536
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000537<p>Keeping destination (definition) operands at the beginning of the operand
538list has several advantages. In particular, the debugging printer will print
539the instruction like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000540
Bill Wendling91e10c42006-08-28 02:26:32 +0000541<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000542<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000543%r3 = add %i1, %i2
Chris Lattnerec94f802004-06-04 00:16:02 +0000544</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000545</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000546
Bill Wendling91e10c42006-08-28 02:26:32 +0000547<p>Also if the first operand is a def, it is easier to <a
Chris Lattnerec94f802004-06-04 00:16:02 +0000548href="#buildmi">create instructions</a> whose only def is the first
549operand.</p>
550
551</div>
552
553<!-- _______________________________________________________________________ -->
554<div class="doc_subsubsection">
555 <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
556</div>
557
558<div class="doc_text">
559
560<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
561located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
562<tt>BuildMI</tt> functions make it easy to build arbitrary machine
Bill Wendling91e10c42006-08-28 02:26:32 +0000563instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +0000564
Bill Wendling91e10c42006-08-28 02:26:32 +0000565<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000566<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000567// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
568// instruction. The '1' specifies how many operands will be added.
569MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000570
Bill Wendling91e10c42006-08-28 02:26:32 +0000571// Create the same instr, but insert it at the end of a basic block.
572MachineBasicBlock &amp;MBB = ...
573BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000574
Bill Wendling91e10c42006-08-28 02:26:32 +0000575// Create the same instr, but insert it before a specified iterator point.
576MachineBasicBlock::iterator MBBI = ...
577BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
Chris Lattnerec94f802004-06-04 00:16:02 +0000578
Bill Wendling91e10c42006-08-28 02:26:32 +0000579// Create a 'cmp Reg, 0' instruction, no destination reg.
580MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
581// Create an 'sahf' instruction which takes no operands and stores nothing.
582MI = BuildMI(X86::SAHF, 0);
Chris Lattnerec94f802004-06-04 00:16:02 +0000583
Bill Wendling91e10c42006-08-28 02:26:32 +0000584// Create a self looping branch instruction.
585BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
Chris Lattnerec94f802004-06-04 00:16:02 +0000586</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000587</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000588
Bill Wendling91e10c42006-08-28 02:26:32 +0000589<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
590have to specify the number of operands that the machine instruction will take.
591This allows for efficient memory allocation. You also need to specify if
592operands default to be uses of values, not definitions. If you need to add a
593definition operand (other than the optional destination register), you must
594explicitly mark it as such:</p>
595
596<div class="doc_code">
597<pre>
598MI.addReg(Reg, MachineOperand::Def);
599</pre>
600</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000601
602</div>
603
604<!-- _______________________________________________________________________ -->
605<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000606 <a name="fixedregs">Fixed (preassigned) registers</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000607</div>
608
609<div class="doc_text">
610
611<p>One important issue that the code generator needs to be aware of is the
612presence of fixed registers. In particular, there are often places in the
613instruction stream where the register allocator <em>must</em> arrange for a
614particular value to be in a particular register. This can occur due to
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000615limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
Chris Lattnerec94f802004-06-04 00:16:02 +0000616with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like calling
617conventions. In any case, the instruction selector should emit code that
618copies a virtual register into or out of a physical register when needed.</p>
619
620<p>For example, consider this simple LLVM example:</p>
621
Bill Wendling91e10c42006-08-28 02:26:32 +0000622<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000623<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000624int %test(int %X, int %Y) {
625 %Z = div int %X, %Y
626 ret int %Z
627}
Chris Lattnerec94f802004-06-04 00:16:02 +0000628</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000629</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000630
Bill Wendling91e10c42006-08-28 02:26:32 +0000631<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
632and <tt>ret</tt> (use
Chris Lattnerec94f802004-06-04 00:16:02 +0000633"<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to get this):</p>
634
Bill Wendling91e10c42006-08-28 02:26:32 +0000635<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000636<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000637;; Start of div
638%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
639%reg1027 = sar %reg1024, 31
640%EDX = mov %reg1027 ;; Sign extend X into EDX
641idiv %reg1025 ;; Divide by Y (in reg1025)
642%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
Chris Lattnerec94f802004-06-04 00:16:02 +0000643
Bill Wendling91e10c42006-08-28 02:26:32 +0000644;; Start of ret
645%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
646ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000647</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000648</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000649
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000650<p>By the end of code generation, the register allocator has coalesced
Bill Wendling91e10c42006-08-28 02:26:32 +0000651the registers and deleted the resultant identity moves producing the
Chris Lattnerec94f802004-06-04 00:16:02 +0000652following code:</p>
653
Bill Wendling91e10c42006-08-28 02:26:32 +0000654<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +0000655<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000656;; X is in EAX, Y is in ECX
657mov %EAX, %EDX
658sar %EDX, 31
659idiv %ECX
660ret
Chris Lattnerec94f802004-06-04 00:16:02 +0000661</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000662</div>
Chris Lattnerec94f802004-06-04 00:16:02 +0000663
664<p>This approach is extremely general (if it can handle the X86 architecture,
665it can handle anything!) and allows all of the target specific
666knowledge about the instruction stream to be isolated in the instruction
667selector. Note that physical registers should have a short lifetime for good
Bill Wendling91e10c42006-08-28 02:26:32 +0000668code generation, and all physical registers are assumed dead on entry to and
669exit from basic blocks (before register allocation). Thus, if you need a value
Chris Lattnerec94f802004-06-04 00:16:02 +0000670to be live across basic block boundaries, it <em>must</em> live in a virtual
671register.</p>
672
673</div>
674
675<!-- _______________________________________________________________________ -->
676<div class="doc_subsubsection">
Bill Wendling91e10c42006-08-28 02:26:32 +0000677 <a name="ssa">Machine code in SSA form</a>
Chris Lattnerec94f802004-06-04 00:16:02 +0000678</div>
679
680<div class="doc_text">
681
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000682<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and
Chris Lattnerec94f802004-06-04 00:16:02 +0000683are maintained in SSA-form until register allocation happens. For the most
Bill Wendling91e10c42006-08-28 02:26:32 +0000684part, this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
Chris Lattnerec94f802004-06-04 00:16:02 +0000685become machine code PHI nodes, and virtual registers are only allowed to have a
686single definition.</p>
687
Bill Wendling91e10c42006-08-28 02:26:32 +0000688<p>After register allocation, machine code is no longer in SSA-form because there
Chris Lattnerec94f802004-06-04 00:16:02 +0000689are no virtual registers left in the code.</p>
690
691</div>
692
Chris Lattner32e89f22005-10-16 18:31:08 +0000693<!-- ======================================================================= -->
694<div class="doc_subsection">
695 <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
696</div>
697
698<div class="doc_text">
699
700<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
Bill Wendling91e10c42006-08-28 02:26:32 +0000701(<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
702corresponds to the LLVM code input to the instruction selector, but there can be
703a one-to-many mapping (i.e. one LLVM basic block can map to multiple machine
704basic blocks). The <tt>MachineBasicBlock</tt> class has a
705"<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
706comes from.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000707
708</div>
709
710<!-- ======================================================================= -->
711<div class="doc_subsection">
712 <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
713</div>
714
715<div class="doc_text">
716
717<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
Bill Wendling91e10c42006-08-28 02:26:32 +0000718(<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
719corresponds one-to-one with the LLVM function input to the instruction selector.
720In addition to a list of basic blocks, the <tt>MachineFunction</tt> contains a
721a <tt>MachineConstantPool</tt>, a <tt>MachineFrameInfo</tt>, a
722<tt>MachineFunctionInfo</tt>, a <tt>SSARegMap</tt>, and a set of live in and
723live out registers for the function. See
724<tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
Chris Lattner32e89f22005-10-16 18:31:08 +0000725
726</div>
727
Chris Lattnerec94f802004-06-04 00:16:02 +0000728<!-- *********************************************************************** -->
729<div class="doc_section">
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000730 <a name="codegenalgs">Target-independent code generation algorithms</a>
731</div>
732<!-- *********************************************************************** -->
733
734<div class="doc_text">
735
736<p>This section documents the phases described in the <a
Chris Lattner32e89f22005-10-16 18:31:08 +0000737href="#high-level-design">high-level design of the code generator</a>. It
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000738explains how they work and some of the rationale behind their design.</p>
739
740</div>
741
742<!-- ======================================================================= -->
743<div class="doc_subsection">
744 <a name="instselect">Instruction Selection</a>
745</div>
746
747<div class="doc_text">
748<p>
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000749Instruction Selection is the process of translating LLVM code presented to the
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000750code generator into target-specific machine instructions. There are several
Evan Cheng77949352007-10-08 17:54:24 +0000751well-known ways to do this in the literature. LLVM uses a SelectionDAG based
752instruction selector.
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000753</p>
754
Chris Lattnere35d3bb2005-10-16 00:36:38 +0000755<p>Portions of the DAG instruction selector are generated from the target
Bill Wendling91e10c42006-08-28 02:26:32 +0000756description (<tt>*.td</tt>) files. Our goal is for the entire instruction
757selector to be generated from these <tt>.td</tt> files.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000758</div>
759
760<!-- _______________________________________________________________________ -->
761<div class="doc_subsubsection">
762 <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
763</div>
764
765<div class="doc_text">
766
Bill Wendling91e10c42006-08-28 02:26:32 +0000767<p>The SelectionDAG provides an abstraction for code representation in a way
768that is amenable to instruction selection using automatic techniques
769(e.g. dynamic-programming based optimal pattern matching selectors). It is also
770well-suited to other phases of code generation; in particular,
Chris Lattner7a025c82005-10-16 20:02:19 +0000771instruction scheduling (SelectionDAG's are very close to scheduling DAGs
772post-selection). Additionally, the SelectionDAG provides a host representation
773where a large variety of very-low-level (but target-independent)
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000774<a href="#selectiondag_optimize">optimizations</a> may be
Bill Wendling91e10c42006-08-28 02:26:32 +0000775performed; ones which require extensive information about the instructions
776efficiently supported by the target.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000777
Bill Wendling91e10c42006-08-28 02:26:32 +0000778<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000779<tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
Chris Lattner7a025c82005-10-16 20:02:19 +0000780operation code (Opcode) that indicates what operation the node performs and
781the operands to the operation.
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000782The various operation node types are described at the top of the
Chris Lattner7a025c82005-10-16 20:02:19 +0000783<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> file.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000784
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000785<p>Although most operations define a single value, each node in the graph may
786define multiple values. For example, a combined div/rem operation will define
787both the dividend and the remainder. Many other situations require multiple
788values as well. Each node also has some number of operands, which are edges
789to the node defining the used value. Because nodes may define multiple values,
790edges are represented by instances of the <tt>SDOperand</tt> class, which is
Bill Wendling91e10c42006-08-28 02:26:32 +0000791a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node and result
792value being used, respectively. Each value produced by an <tt>SDNode</tt> has
793an associated <tt>MVT::ValueType</tt> indicating what type the value is.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000794
Bill Wendling91e10c42006-08-28 02:26:32 +0000795<p>SelectionDAGs contain two different kinds of values: those that represent
796data flow and those that represent control flow dependencies. Data values are
797simple edges with an integer or floating point value type. Control edges are
798represented as "chain" edges which are of type <tt>MVT::Other</tt>. These edges
799provide an ordering between nodes that have side effects (such as
800loads, stores, calls, returns, etc). All nodes that have side effects should
801take a token chain as input and produce a new one as output. By convention,
802token chain inputs are always operand #0, and chain results are always the last
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000803value produced by an operation.</p>
804
Bill Wendling91e10c42006-08-28 02:26:32 +0000805<p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is
806always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root node
807is the final side-effecting node in the token chain. For example, in a single
808basic block function it would be the return node.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000809
Bill Wendling91e10c42006-08-28 02:26:32 +0000810<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
811"illegal" DAG. A legal DAG for a target is one that only uses supported
812operations and supported types. On a 32-bit PowerPC, for example, a DAG with
813a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that uses a
814SREM or UREM operation. The
815<a href="#selectiondag_legalize">legalize</a> phase is responsible for turning
816an illegal DAG into a legal DAG.</p>
817
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000818</div>
819
820<!-- _______________________________________________________________________ -->
821<div class="doc_subsubsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000822 <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000823</div>
824
825<div class="doc_text">
826
Bill Wendling91e10c42006-08-28 02:26:32 +0000827<p>SelectionDAG-based instruction selection consists of the following steps:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000828
829<ol>
Bill Wendling91e10c42006-08-28 02:26:32 +0000830<li><a href="#selectiondag_build">Build initial DAG</a> - This stage
831 performs a simple translation from the input LLVM code to an illegal
832 SelectionDAG.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000833<li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> - This stage
Bill Wendling91e10c42006-08-28 02:26:32 +0000834 performs simple optimizations on the SelectionDAG to simplify it, and
835 recognize meta instructions (like rotates and <tt>div</tt>/<tt>rem</tt>
836 pairs) for targets that support these meta operations. This makes the
837 resultant code more efficient and the <a href="#selectiondag_select">select
838 instructions from DAG</a> phase (below) simpler.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000839<li><a href="#selectiondag_legalize">Legalize SelectionDAG</a> - This stage
Bill Wendling91e10c42006-08-28 02:26:32 +0000840 converts the illegal SelectionDAG to a legal SelectionDAG by eliminating
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000841 unsupported operations and data types.</li>
842<li><a href="#selectiondag_optimize">Optimize SelectionDAG (#2)</a> - This
Bill Wendling91e10c42006-08-28 02:26:32 +0000843 second run of the SelectionDAG optimizes the newly legalized DAG to
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000844 eliminate inefficiencies introduced by legalization.</li>
845<li><a href="#selectiondag_select">Select instructions from DAG</a> - Finally,
846 the target instruction selector matches the DAG operations to target
Chris Lattnere35d3bb2005-10-16 00:36:38 +0000847 instructions. This process translates the target-independent input DAG into
848 another DAG of target instructions.</li>
Chris Lattner32e89f22005-10-16 18:31:08 +0000849<li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
Chris Lattnere35d3bb2005-10-16 00:36:38 +0000850 - The last phase assigns a linear order to the instructions in the
851 target-instruction DAG and emits them into the MachineFunction being
852 compiled. This step uses traditional prepass scheduling techniques.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000853</ol>
854
855<p>After all of these steps are complete, the SelectionDAG is destroyed and the
856rest of the code generation passes are run.</p>
857
Chris Lattnerdf921f02005-10-17 01:40:33 +0000858<p>One great way to visualize what is going on here is to take advantage of a
859few LLC command line options. In particular, the <tt>-view-isel-dags</tt>
860option pops up a window with the SelectionDAG input to the Select phase for all
861of the code compiled (if you only get errors printed to the console while using
862this, you probably <a href="ProgrammersManual.html#ViewGraph">need to configure
863your system</a> to add support for it). The <tt>-view-sched-dags</tt> option
864views the SelectionDAG output from the Select phase and input to the Scheduler
Dan Gohmane9bb13d2007-10-15 21:07:59 +0000865phase. The <tt>-view-sunit-dags</tt> option views the ScheduleDAG, which is
866based on the final SelectionDAG, with nodes that must be scheduled as a unit
867bundled together into a single node, and with immediate operands and other
868nodes that aren't relevent for scheduling omitted.
869</p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000870
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000871</div>
872
873<!-- _______________________________________________________________________ -->
874<div class="doc_subsubsection">
875 <a name="selectiondag_build">Initial SelectionDAG Construction</a>
876</div>
877
878<div class="doc_text">
879
Bill Wendling16448772006-08-28 03:04:05 +0000880<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
881input by the <tt>SelectionDAGLowering</tt> class in the
Bill Wendling91e10c42006-08-28 02:26:32 +0000882<tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of this
883pass is to expose as much low-level, target-specific details to the SelectionDAG
884as possible. This pass is mostly hard-coded (e.g. an LLVM <tt>add</tt> turns
885into an <tt>SDNode add</tt> while a <tt>geteelementptr</tt> is expanded into the
886obvious arithmetic). This pass requires target-specific hooks to lower calls,
887returns, varargs, etc. For these features, the
888<tt><a href="#targetlowering">TargetLowering</a></tt> interface is used.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000889
890</div>
891
892<!-- _______________________________________________________________________ -->
893<div class="doc_subsubsection">
894 <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
895</div>
896
897<div class="doc_text">
898
899<p>The Legalize phase is in charge of converting a DAG to only use the types and
900operations that are natively supported by the target. This involves two major
901tasks:</p>
902
903<ol>
904<li><p>Convert values of unsupported types to values of supported types.</p>
Chris Lattner7a025c82005-10-16 20:02:19 +0000905 <p>There are two main ways of doing this: converting small types to
906 larger types ("promoting"), and breaking up large integer types
907 into smaller ones ("expanding"). For example, a target might require
908 that all f32 values are promoted to f64 and that all i1/i8/i16 values
909 are promoted to i32. The same target might require that all i64 values
910 be expanded into i32 values. These changes can insert sign and zero
Bill Wendling91e10c42006-08-28 02:26:32 +0000911 extensions as needed to make sure that the final code has the same
912 behavior as the input.</p>
Chris Lattner7a025c82005-10-16 20:02:19 +0000913 <p>A target implementation tells the legalizer which types are supported
914 (and which register class to use for them) by calling the
Bill Wendling91e10c42006-08-28 02:26:32 +0000915 <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000916</li>
917
Chris Lattner7a025c82005-10-16 20:02:19 +0000918<li><p>Eliminate operations that are not supported by the target.</p>
919 <p>Targets often have weird constraints, such as not supporting every
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000920 operation on every supported datatype (e.g. X86 does not support byte
Chris Lattner7a025c82005-10-16 20:02:19 +0000921 conditional moves and PowerPC does not support sign-extending loads from
Bill Wendling91e10c42006-08-28 02:26:32 +0000922 a 16-bit memory location). Legalize takes care of this by open-coding
Chris Lattner7a025c82005-10-16 20:02:19 +0000923 another sequence of operations to emulate the operation ("expansion"), by
Bill Wendling91e10c42006-08-28 02:26:32 +0000924 promoting one type to a larger type that supports the operation
925 ("promotion"), or by using a target-specific hook to implement the
926 legalization ("custom").</p>
Chris Lattner7a025c82005-10-16 20:02:19 +0000927 <p>A target implementation tells the legalizer which operations are not
928 supported (and which of the above three actions to take) by calling the
Bill Wendling91e10c42006-08-28 02:26:32 +0000929 <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
930 constructor.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000931</li>
932</ol>
933
Bill Wendling91e10c42006-08-28 02:26:32 +0000934<p>Prior to the existance of the Legalize pass, we required that every target
935<a href="#selectiondag_optimize">selector</a> supported and handled every
Chris Lattner7a025c82005-10-16 20:02:19 +0000936operator and type even if they are not natively supported. The introduction of
Bill Wendling91e10c42006-08-28 02:26:32 +0000937the Legalize phase allows all of the cannonicalization patterns to be shared
938across targets, and makes it very easy to optimize the cannonicalized code
939because it is still in the form of a DAG.</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000940
941</div>
942
943<!-- _______________________________________________________________________ -->
944<div class="doc_subsubsection">
Chris Lattnere35d3bb2005-10-16 00:36:38 +0000945 <a name="selectiondag_optimize">SelectionDAG Optimization Phase: the DAG
946 Combiner</a>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000947</div>
948
949<div class="doc_text">
950
Bill Wendling91e10c42006-08-28 02:26:32 +0000951<p>The SelectionDAG optimization phase is run twice for code generation: once
Reid Spencerad1f0cd2005-04-24 20:56:18 +0000952immediately after the DAG is built and once after legalization. The first run
953of the pass allows the initial code to be cleaned up (e.g. performing
954optimizations that depend on knowing that the operators have restricted type
955inputs). The second run of the pass cleans up the messy code generated by the
Chris Lattner7a025c82005-10-16 20:02:19 +0000956Legalize pass, which allows Legalize to be very simple (it can focus on making
Bill Wendling91e10c42006-08-28 02:26:32 +0000957code legal instead of focusing on generating <em>good</em> and legal code).</p>
958
959<p>One important class of optimizations performed is optimizing inserted sign
960and zero extension instructions. We currently use ad-hoc techniques, but could
961move to more rigorous techniques in the future. Here are some good papers on
962the subject:</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000963
964<p>
Bill Wendling91e10c42006-08-28 02:26:32 +0000965 "<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
966 integer arithmetic</a>"<br>
967 Kevin Redwine and Norman Ramsey<br>
968 International Conference on Compiler Construction (CC) 2004
Chris Lattneraa5bcb52005-01-28 17:22:53 +0000969</p>
970
971
972<p>
973 "<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
974 sign extension elimination</a>"<br>
975 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
976 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
977 and Implementation.
978</p>
979
980</div>
981
982<!-- _______________________________________________________________________ -->
983<div class="doc_subsubsection">
984 <a name="selectiondag_select">SelectionDAG Select Phase</a>
985</div>
986
987<div class="doc_text">
988
989<p>The Select phase is the bulk of the target-specific code for instruction
Bill Wendling91e10c42006-08-28 02:26:32 +0000990selection. This phase takes a legal SelectionDAG as input, pattern matches the
991instructions supported by the target to this DAG, and produces a new DAG of
992target code. For example, consider the following LLVM fragment:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +0000993
Bill Wendling91e10c42006-08-28 02:26:32 +0000994<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +0000995<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +0000996%t1 = add float %W, %X
997%t2 = mul float %t1, %Y
998%t3 = add float %t2, %Z
Chris Lattner7a025c82005-10-16 20:02:19 +0000999</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001000</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001001
Bill Wendling91e10c42006-08-28 02:26:32 +00001002<p>This LLVM code corresponds to a SelectionDAG that looks basically like
1003this:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001004
Bill Wendling91e10c42006-08-28 02:26:32 +00001005<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001006<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001007(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001008</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001009</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001010
Chris Lattnera1ff9312005-10-17 15:19:24 +00001011<p>If a target supports floating point multiply-and-add (FMA) operations, one
Chris Lattner7a025c82005-10-16 20:02:19 +00001012of the adds can be merged with the multiply. On the PowerPC, for example, the
1013output of the instruction selector might look like this DAG:</p>
1014
Bill Wendling91e10c42006-08-28 02:26:32 +00001015<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001016<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001017(FMADDS (FADDS W, X), Y, Z)
Chris Lattner7a025c82005-10-16 20:02:19 +00001018</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001019</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001020
Bill Wendling91e10c42006-08-28 02:26:32 +00001021<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1022first two operands and adds the third (as single-precision floating-point
1023numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision
1024add instruction. To perform this pattern match, the PowerPC backend includes
1025the following instruction definitions:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001026
Bill Wendling91e10c42006-08-28 02:26:32 +00001027<div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001028<pre>
1029def FMADDS : AForm_1&lt;59, 29,
1030 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1031 "fmadds $FRT, $FRA, $FRC, $FRB",
1032 [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1033 F4RC:$FRB))</b>]&gt;;
1034def FADDS : AForm_2&lt;59, 21,
1035 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1036 "fadds $FRT, $FRA, $FRB",
1037 [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1038</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001039</div>
Chris Lattner7a025c82005-10-16 20:02:19 +00001040
1041<p>The portion of the instruction definition in bold indicates the pattern used
1042to match the instruction. The DAG operators (like <tt>fmul</tt>/<tt>fadd</tt>)
1043are defined in the <tt>lib/Target/TargetSelectionDAG.td</tt> file.
1044"<tt>F4RC</tt>" is the register class of the input and result values.<p>
1045
1046<p>The TableGen DAG instruction selector generator reads the instruction
Bill Wendling91e10c42006-08-28 02:26:32 +00001047patterns in the <tt>.td</tt> file and automatically builds parts of the pattern
1048matching code for your target. It has the following strengths:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001049
1050<ul>
1051<li>At compiler-compiler time, it analyzes your instruction patterns and tells
Chris Lattner7d6915c2005-10-17 04:18:41 +00001052 you if your patterns make sense or not.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001053<li>It can handle arbitrary constraints on operands for the pattern match. In
Chris Lattner7d6915c2005-10-17 04:18:41 +00001054 particular, it is straight-forward to say things like "match any immediate
Chris Lattner7a025c82005-10-16 20:02:19 +00001055 that is a 13-bit sign-extended value". For examples, see the
Bill Wendling91e10c42006-08-28 02:26:32 +00001056 <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1057 backend.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001058<li>It knows several important identities for the patterns defined. For
1059 example, it knows that addition is commutative, so it allows the
1060 <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1061 well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1062 to specially handle this case.</li>
Chris Lattner7d6915c2005-10-17 04:18:41 +00001063<li>It has a full-featured type-inferencing system. In particular, you should
Chris Lattner7a025c82005-10-16 20:02:19 +00001064 rarely have to explicitly tell the system what type parts of your patterns
Bill Wendling91e10c42006-08-28 02:26:32 +00001065 are. In the <tt>FMADDS</tt> case above, we didn't have to tell
1066 <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'. It
1067 was able to infer and propagate this knowledge from the fact that
1068 <tt>F4RC</tt> has type 'f32'.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001069<li>Targets can define their own (and rely on built-in) "pattern fragments".
1070 Pattern fragments are chunks of reusable patterns that get inlined into your
Bill Wendling91e10c42006-08-28 02:26:32 +00001071 patterns during compiler-compiler time. For example, the integer
1072 "<tt>(not x)</tt>" operation is actually defined as a pattern fragment that
1073 expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not have a
1074 native '<tt>not</tt>' operation. Targets can define their own short-hand
1075 fragments as they see fit. See the definition of '<tt>not</tt>' and
1076 '<tt>ineg</tt>' for examples.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001077<li>In addition to instructions, targets can specify arbitrary patterns that
Bill Wendling91e10c42006-08-28 02:26:32 +00001078 map to one or more instructions using the 'Pat' class. For example,
Chris Lattner7d6915c2005-10-17 04:18:41 +00001079 the PowerPC has no way to load an arbitrary integer immediate into a
Chris Lattner7a025c82005-10-16 20:02:19 +00001080 register in one instruction. To tell tblgen how to do this, it defines:
Bill Wendling91e10c42006-08-28 02:26:32 +00001081 <br>
1082 <br>
1083 <div class="doc_code">
Chris Lattner7a025c82005-10-16 20:02:19 +00001084 <pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001085// Arbitrary immediate support. Implement in terms of LIS/ORI.
1086def : Pat&lt;(i32 imm:$imm),
1087 (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
Chris Lattner7a025c82005-10-16 20:02:19 +00001088 </pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001089 </div>
1090 <br>
Chris Lattner7a025c82005-10-16 20:02:19 +00001091 If none of the single-instruction patterns for loading an immediate into a
1092 register match, this will be used. This rule says "match an arbitrary i32
Bill Wendling91e10c42006-08-28 02:26:32 +00001093 immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and an
1094 <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to the
1095 left 16 bits') instruction". To make this work, the
1096 <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate the
1097 input immediate (in this case, take the high or low 16-bits of the
1098 immediate).</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001099<li>While the system does automate a lot, it still allows you to write custom
Bill Wendling91e10c42006-08-28 02:26:32 +00001100 C++ code to match special cases if there is something that is hard to
1101 express.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001102</ul>
1103
Bill Wendling91e10c42006-08-28 02:26:32 +00001104<p>While it has many strengths, the system currently has some limitations,
1105primarily because it is a work in progress and is not yet finished:</p>
Chris Lattner7a025c82005-10-16 20:02:19 +00001106
1107<ul>
1108<li>Overall, there is no way to define or match SelectionDAG nodes that define
Bill Wendling91e10c42006-08-28 02:26:32 +00001109 multiple values (e.g. <tt>ADD_PARTS</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
1110 etc). This is the biggest reason that you currently still <em>have to</em>
1111 write custom C++ code for your instruction selector.</li>
1112<li>There is no great way to support matching complex addressing modes yet. In
1113 the future, we will extend pattern fragments to allow them to define
1114 multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1115 addressing mode</a>). In addition, we'll extend fragments so that a
1116 fragment can match multiple different patterns.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001117<li>We don't automatically infer flags like isStore/isLoad yet.</li>
1118<li>We don't automatically generate the set of supported registers and
Jim Laskeyb744c252006-12-15 10:40:48 +00001119 operations for the <a href="#selectiondag_legalize">Legalizer</a> yet.</li>
Chris Lattner7a025c82005-10-16 20:02:19 +00001120<li>We don't have a way of tying in custom legalized nodes yet.</li>
Chris Lattner7d6915c2005-10-17 04:18:41 +00001121</ul>
Chris Lattner7a025c82005-10-16 20:02:19 +00001122
1123<p>Despite these limitations, the instruction selector generator is still quite
1124useful for most of the binary and logical operations in typical instruction
1125sets. If you run into any problems or can't figure out how to do something,
1126please let Chris know!</p>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001127
1128</div>
1129
1130<!-- _______________________________________________________________________ -->
1131<div class="doc_subsubsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001132 <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001133</div>
1134
1135<div class="doc_text">
1136
1137<p>The scheduling phase takes the DAG of target instructions from the selection
1138phase and assigns an order. The scheduler can pick an order depending on
1139various constraints of the machines (i.e. order for minimal register pressure or
1140try to cover instruction latencies). Once an order is established, the DAG is
Bill Wendling91e10c42006-08-28 02:26:32 +00001141converted to a list of <tt><a href="#machineinstr">MachineInstr</a></tt>s and
1142the SelectionDAG is destroyed.</p>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001143
Jeff Cohen0b81cda2005-10-24 16:54:55 +00001144<p>Note that this phase is logically separate from the instruction selection
Chris Lattnerc38959f2005-10-17 03:09:31 +00001145phase, but is tied to it closely in the code because it operates on
1146SelectionDAGs.</p>
1147
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001148</div>
1149
1150<!-- _______________________________________________________________________ -->
1151<div class="doc_subsubsection">
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001152 <a name="selectiondag_future">Future directions for the SelectionDAG</a>
1153</div>
1154
1155<div class="doc_text">
1156
1157<ol>
Chris Lattnere35d3bb2005-10-16 00:36:38 +00001158<li>Optional function-at-a-time selection.</li>
Bill Wendling91e10c42006-08-28 02:26:32 +00001159<li>Auto-generate entire selector from <tt>.td</tt> file.</li>
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001160</ol>
1161
1162</div>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001163
1164<!-- ======================================================================= -->
1165<div class="doc_subsection">
1166 <a name="ssamco">SSA-based Machine Code Optimizations</a>
1167</div>
1168<div class="doc_text"><p>To Be Written</p></div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001169
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001170<!-- ======================================================================= -->
1171<div class="doc_subsection">
Bill Wendling3fc488d2006-09-06 18:42:41 +00001172 <a name="liveintervals">Live Intervals</a>
Bill Wendling2f87a882006-09-04 23:35:52 +00001173</div>
1174
1175<div class="doc_text">
1176
Bill Wendling3fc488d2006-09-06 18:42:41 +00001177<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
1178They are used by some <a href="#regalloc">register allocator</a> passes to
Bill Wendlingbd0d7b52006-09-07 08:36:28 +00001179determine if two or more virtual registers which require the same physical
Bill Wendling41b32522006-09-07 08:39:35 +00001180register are live at the same point in the program (i.e., they conflict). When
Bill Wendlingbd0d7b52006-09-07 08:36:28 +00001181this situation occurs, one virtual register must be <i>spilled</i>.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001182
1183</div>
1184
1185<!-- _______________________________________________________________________ -->
1186<div class="doc_subsubsection">
1187 <a name="livevariable_analysis">Live Variable Analysis</a>
1188</div>
1189
1190<div class="doc_text">
1191
Bill Wendling3fc488d2006-09-06 18:42:41 +00001192<p>The first step in determining the live intervals of variables is to
Bill Wendling2f87a882006-09-04 23:35:52 +00001193calculate the set of registers that are immediately dead after the
Bill Wendling3fc488d2006-09-06 18:42:41 +00001194instruction (i.e., the instruction calculates the value, but it is
1195never used) and the set of registers that are used by the instruction,
1196but are never used after the instruction (i.e., they are killed). Live
Bill Wendlingbd0d7b52006-09-07 08:36:28 +00001197variable information is computed for each <i>virtual</i> register and
Bill Wendling3fc488d2006-09-06 18:42:41 +00001198<i>register allocatable</i> physical register in the function. This
1199is done in a very efficient manner because it uses SSA to sparsely
Bill Wendlingbd0d7b52006-09-07 08:36:28 +00001200compute lifetime information for virtual registers (which are in SSA
Bill Wendling3fc488d2006-09-06 18:42:41 +00001201form) and only has to track physical registers within a block. Before
1202register allocation, LLVM can assume that physical registers are only
1203live within a single basic block. This allows it to do a single,
1204local analysis to resolve physical register lifetimes within each
1205basic block. If a physical register is not register allocatable (e.g.,
Bill Wendling2f87a882006-09-04 23:35:52 +00001206a stack pointer or condition codes), it is not tracked.</p>
1207
1208<p>Physical registers may be live in to or out of a function. Live in values
Bill Wendling3fc488d2006-09-06 18:42:41 +00001209are typically arguments in registers. Live out values are typically return
Bill Wendling2f87a882006-09-04 23:35:52 +00001210values in registers. Live in values are marked as such, and are given a dummy
Bill Wendlingbd0d7b52006-09-07 08:36:28 +00001211"defining" instruction during live intervals analysis. If the last basic block
Bill Wendling3fc488d2006-09-06 18:42:41 +00001212of a function is a <tt>return</tt>, then it's marked as using all live out
Bill Wendling2f87a882006-09-04 23:35:52 +00001213values in the function.</p>
1214
1215<p><tt>PHI</tt> nodes need to be handled specially, because the calculation
1216of the live variable information from a depth first traversal of the CFG of
Bill Wendling3fc488d2006-09-06 18:42:41 +00001217the function won't guarantee that a virtual register used by the <tt>PHI</tt>
1218node is defined before it's used. When a <tt>PHI</tt> node is encounted, only
1219the definition is handled, because the uses will be handled in other basic
1220blocks.</p>
Bill Wendling2f87a882006-09-04 23:35:52 +00001221
1222<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
1223assignment at the end of the current basic block and traverse the successor
1224basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1225the <tt>PHI</tt> node's operands is coming from the current basic block,
1226then the variable is marked as <i>alive</i> within the current basic block
1227and all of its predecessor basic blocks, until the basic block with the
1228defining instruction is encountered.</p>
1229
1230</div>
1231
Bill Wendling3fc488d2006-09-06 18:42:41 +00001232<!-- _______________________________________________________________________ -->
1233<div class="doc_subsubsection">
1234 <a name="liveintervals_analysis">Live Intervals Analysis</a>
1235</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001236
Bill Wendling3fc488d2006-09-06 18:42:41 +00001237<div class="doc_text">
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001238
Bill Wendling82e2eea2006-10-11 18:00:22 +00001239<p>We now have the information available to perform the live intervals analysis
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001240and build the live intervals themselves. We start off by numbering the basic
1241blocks and machine instructions. We then handle the "live-in" values. These
1242are in physical registers, so the physical register is assumed to be killed by
1243the end of the basic block. Live intervals for virtual registers are computed
Bill Wendling82e2eea2006-10-11 18:00:22 +00001244for some ordering of the machine instructions <tt>[1, N]</tt>. A live interval
1245is an interval <tt>[i, j)</tt>, where <tt>1 <= i <= j < N</tt>, for which a
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001246variable is live.</p>
1247
Bill Wendling82e2eea2006-10-11 18:00:22 +00001248<p><i><b>More to come...</b></i></p>
1249
Bill Wendling3fc488d2006-09-06 18:42:41 +00001250</div>
Bill Wendling2f87a882006-09-04 23:35:52 +00001251
1252<!-- ======================================================================= -->
1253<div class="doc_subsection">
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001254 <a name="regalloc">Register Allocation</a>
1255</div>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001256
1257<div class="doc_text">
1258
Bill Wendling3cd5ca62006-10-11 06:30:10 +00001259<p>The <i>Register Allocation problem</i> consists in mapping a program
1260<i>P<sub>v</sub></i>, that can use an unbounded number of virtual
1261registers, to a program <i>P<sub>p</sub></i> that contains a finite
1262(possibly small) number of physical registers. Each target architecture has
1263a different number of physical registers. If the number of physical
1264registers is not enough to accommodate all the virtual registers, some of
1265them will have to be mapped into memory. These virtuals are called
1266<i>spilled virtuals</i>.</p>
Bill Wendlinga396ee82006-09-01 21:46:00 +00001267
1268</div>
1269
1270<!-- _______________________________________________________________________ -->
1271
1272<div class="doc_subsubsection">
1273 <a name="regAlloc_represent">How registers are represented in LLVM</a>
1274</div>
1275
1276<div class="doc_text">
1277
1278<p>In LLVM, physical registers are denoted by integer numbers that
1279normally range from 1 to 1023. To see how this numbering is defined
1280for a particular architecture, you can read the
1281<tt>GenRegisterNames.inc</tt> file for that architecture. For
1282instance, by inspecting
1283<tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the 32-bit
1284register <tt>EAX</tt> is denoted by 15, and the MMX register
1285<tt>MM0</tt> is mapped to 48.</p>
1286
1287<p>Some architectures contain registers that share the same physical
1288location. A notable example is the X86 platform. For instance, in the
1289X86 architecture, the registers <tt>EAX</tt>, <tt>AX</tt> and
1290<tt>AL</tt> share the first eight bits. These physical registers are
1291marked as <i>aliased</i> in LLVM. Given a particular architecture, you
1292can check which registers are aliased by inspecting its
1293<tt>RegisterInfo.td</tt> file. Moreover, the method
1294<tt>MRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1295all the physical registers aliased to the register <tt>p_reg</tt>.</p>
1296
1297<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
1298Elements in the same register class are functionally equivalent, and can
1299be interchangeably used. Each virtual register can only be mapped to
1300physical registers of a particular class. For instance, in the X86
1301architecture, some virtuals can only be allocated to 8 bit registers.
1302A register class is described by <tt>TargetRegisterClass</tt> objects.
1303To discover if a virtual register is compatible with a given physical,
1304this code can be used:
1305</p>
1306
1307<div class="doc_code">
1308<pre>
Jim Laskeyb744c252006-12-15 10:40:48 +00001309bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
Bill Wendlinga396ee82006-09-01 21:46:00 +00001310 unsigned v_reg,
1311 unsigned p_reg) {
Jim Laskeyb744c252006-12-15 10:40:48 +00001312 assert(MRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
Bill Wendlinga396ee82006-09-01 21:46:00 +00001313 "Target register must be physical");
1314 const TargetRegisterClass *trc = mf.getSSARegMap()->getRegClass(v_reg);
1315 return trc->contains(p_reg);
1316}
1317</pre>
1318</div>
1319
1320<p>Sometimes, mostly for debugging purposes, it is useful to change
1321the number of physical registers available in the target
1322architecture. This must be done statically, inside the
1323<tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt> for
1324<tt>RegisterClass</tt>, the last parameter of which is a list of
1325registers. Just commenting some out is one simple way to avoid them
1326being used. A more polite way is to explicitly exclude some registers
1327from the <i>allocation order</i>. See the definition of the
1328<tt>GR</tt> register class in
1329<tt>lib/Target/IA64/IA64RegisterInfo.td</tt> for an example of this
1330(e.g., <tt>numReservedRegs</tt> registers are hidden.)</p>
1331
1332<p>Virtual registers are also denoted by integer numbers. Contrary to
1333physical registers, different virtual registers never share the same
1334number. The smallest virtual register is normally assigned the number
13351024. This may change, so, in order to know which is the first virtual
1336register, you should access
1337<tt>MRegisterInfo::FirstVirtualRegister</tt>. Any register whose
1338number is greater than or equal to
1339<tt>MRegisterInfo::FirstVirtualRegister</tt> is considered a virtual
1340register. Whereas physical registers are statically defined in a
1341<tt>TargetRegisterInfo.td</tt> file and cannot be created by the
1342application developer, that is not the case with virtual registers.
1343In order to create new virtual registers, use the method
1344<tt>SSARegMap::createVirtualRegister()</tt>. This method will return a
1345virtual register with the highest code.
1346</p>
1347
1348<p>Before register allocation, the operands of an instruction are
1349mostly virtual registers, although physical registers may also be
1350used. In order to check if a given machine operand is a register, use
1351the boolean function <tt>MachineOperand::isRegister()</tt>. To obtain
1352the integer code of a register, use
1353<tt>MachineOperand::getReg()</tt>. An instruction may define or use a
1354register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1355defines the registers 1024, and uses registers 1025 and 1026. Given a
1356register operand, the method <tt>MachineOperand::isUse()</tt> informs
1357if that register is being used by the instruction. The method
1358<tt>MachineOperand::isDef()</tt> informs if that registers is being
1359defined.</p>
1360
Gabor Greif04367bf2007-07-06 22:07:22 +00001361<p>We will call physical registers present in the LLVM bitcode before
Bill Wendlinga396ee82006-09-01 21:46:00 +00001362register allocation <i>pre-colored registers</i>. Pre-colored
1363registers are used in many different situations, for instance, to pass
1364parameters of functions calls, and to store results of particular
1365instructions. There are two types of pre-colored registers: the ones
1366<i>implicitly</i> defined, and those <i>explicitly</i>
1367defined. Explicitly defined registers are normal operands, and can be
1368accessed with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In
1369order to check which registers are implicitly defined by an
1370instruction, use the
1371<tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>, where
1372<tt>opcode</tt> is the opcode of the target instruction. One important
1373difference between explicit and implicit physical registers is that
1374the latter are defined statically for each instruction, whereas the
1375former may vary depending on the program being compiled. For example,
1376an instruction that represents a function call will always implicitly
1377define or use the same set of physical registers. To read the
1378registers implicitly used by an instruction, use
1379<tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1380registers impose constraints on any register allocation algorithm. The
1381register allocator must make sure that none of them is been
1382overwritten by the values of virtual registers while still alive.</p>
1383
1384</div>
1385
1386<!-- _______________________________________________________________________ -->
1387
1388<div class="doc_subsubsection">
1389 <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
1390</div>
1391
1392<div class="doc_text">
1393
1394<p>There are two ways to map virtual registers to physical registers (or to
1395memory slots). The first way, that we will call <i>direct mapping</i>,
1396is based on the use of methods of the classes <tt>MRegisterInfo</tt>,
1397and <tt>MachineOperand</tt>. The second way, that we will call
1398<i>indirect mapping</i>, relies on the <tt>VirtRegMap</tt> class in
1399order to insert loads and stores sending and getting values to and from
1400memory.</p>
1401
1402<p>The direct mapping provides more flexibility to the developer of
1403the register allocator; however, it is more error prone, and demands
1404more implementation work. Basically, the programmer will have to
1405specify where load and store instructions should be inserted in the
1406target function being compiled in order to get and store values in
1407memory. To assign a physical register to a virtual register present in
1408a given operand, use <tt>MachineOperand::setReg(p_reg)</tt>. To insert
1409a store instruction, use
1410<tt>MRegisterInfo::storeRegToStackSlot(...)</tt>, and to insert a load
1411instruction, use <tt>MRegisterInfo::loadRegFromStackSlot</tt>.</p>
1412
1413<p>The indirect mapping shields the application developer from the
1414complexities of inserting load and store instructions. In order to map
1415a virtual register to a physical one, use
1416<tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In order to map a
1417certain virtual register to memory, use
1418<tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will
1419return the stack slot where <tt>vreg</tt>'s value will be located. If
1420it is necessary to map another virtual register to the same stack
1421slot, use <tt>VirtRegMap::assignVirt2StackSlot(vreg,
1422stack_location)</tt>. One important point to consider when using the
1423indirect mapping, is that even if a virtual register is mapped to
1424memory, it still needs to be mapped to a physical register. This
1425physical register is the location where the virtual register is
1426supposed to be found before being stored or after being reloaded.</p>
1427
1428<p>If the indirect strategy is used, after all the virtual registers
1429have been mapped to physical registers or stack slots, it is necessary
1430to use a spiller object to place load and store instructions in the
1431code. Every virtual that has been mapped to a stack slot will be
1432stored to memory after been defined and will be loaded before being
1433used. The implementation of the spiller tries to recycle load/store
1434instructions, avoiding unnecessary instructions. For an example of how
1435to invoke the spiller, see
1436<tt>RegAllocLinearScan::runOnMachineFunction</tt> in
1437<tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
1438
1439</div>
1440
1441<!-- _______________________________________________________________________ -->
1442<div class="doc_subsubsection">
1443 <a name="regAlloc_twoAddr">Handling two address instructions</a>
1444</div>
1445
1446<div class="doc_text">
1447
1448<p>With very rare exceptions (e.g., function calls), the LLVM machine
1449code instructions are three address instructions. That is, each
1450instruction is expected to define at most one register, and to use at
1451most two registers. However, some architectures use two address
1452instructions. In this case, the defined register is also one of the
1453used register. For instance, an instruction such as <tt>ADD %EAX,
1454%EBX</tt>, in X86 is actually equivalent to <tt>%EAX = %EAX +
1455%EBX</tt>.</p>
1456
1457<p>In order to produce correct code, LLVM must convert three address
1458instructions that represent two address instructions into true two
1459address instructions. LLVM provides the pass
1460<tt>TwoAddressInstructionPass</tt> for this specific purpose. It must
1461be run before register allocation takes place. After its execution,
1462the resulting code may no longer be in SSA form. This happens, for
1463instance, in situations where an instruction such as <tt>%a = ADD %b
1464%c</tt> is converted to two instructions such as:</p>
1465
1466<div class="doc_code">
1467<pre>
1468%a = MOVE %b
1469%a = ADD %a %b
1470</pre>
1471</div>
1472
1473<p>Notice that, internally, the second instruction is represented as
1474<tt>ADD %a[def/use] %b</tt>. I.e., the register operand <tt>%a</tt> is
1475both used and defined by the instruction.</p>
1476
1477</div>
1478
1479<!-- _______________________________________________________________________ -->
1480<div class="doc_subsubsection">
1481 <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
1482</div>
1483
1484<div class="doc_text">
1485
1486<p>An important transformation that happens during register allocation is called
1487the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many
1488analyses that are performed on the control flow graph of
1489programs. However, traditional instruction sets do not implement
1490PHI instructions. Thus, in order to generate executable code, compilers
1491must replace PHI instructions with other instructions that preserve their
1492semantics.</p>
1493
1494<p>There are many ways in which PHI instructions can safely be removed
1495from the target code. The most traditional PHI deconstruction
1496algorithm replaces PHI instructions with copy instructions. That is
1497the strategy adopted by LLVM. The SSA deconstruction algorithm is
1498implemented in n<tt>lib/CodeGen/>PHIElimination.cpp</tt>. In order to
1499invoke this pass, the identifier <tt>PHIEliminationID</tt> must be
1500marked as required in the code of the register allocator.</p>
1501
1502</div>
1503
1504<!-- _______________________________________________________________________ -->
1505<div class="doc_subsubsection">
1506 <a name="regAlloc_fold">Instruction folding</a>
1507</div>
1508
1509<div class="doc_text">
1510
1511<p><i>Instruction folding</i> is an optimization performed during
1512register allocation that removes unnecessary copy instructions. For
1513instance, a sequence of instructions such as:</p>
1514
1515<div class="doc_code">
1516<pre>
1517%EBX = LOAD %mem_address
1518%EAX = COPY %EBX
1519</pre>
1520</div>
1521
1522<p>can be safely substituted by the single instruction:
1523
1524<div class="doc_code">
1525<pre>
1526%EAX = LOAD %mem_address
1527</pre>
1528</div>
1529
1530<p>Instructions can be folded with the
1531<tt>MRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1532taken when folding instructions; a folded instruction can be quite
1533different from the original instruction. See
1534<tt>LiveIntervals::addIntervalsForSpills</tt> in
1535<tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its use.</p>
1536
1537</div>
1538
1539<!-- _______________________________________________________________________ -->
1540
1541<div class="doc_subsubsection">
1542 <a name="regAlloc_builtIn">Built in register allocators</a>
1543</div>
1544
1545<div class="doc_text">
1546
1547<p>The LLVM infrastructure provides the application developer with
1548three different register allocators:</p>
1549
1550<ul>
1551 <li><i>Simple</i> - This is a very simple implementation that does
1552 not keep values in registers across instructions. This register
1553 allocator immediately spills every value right after it is
1554 computed, and reloads all used operands from memory to temporary
1555 registers before each instruction.</li>
1556 <li><i>Local</i> - This register allocator is an improvement on the
1557 <i>Simple</i> implementation. It allocates registers on a basic
1558 block level, attempting to keep values in registers and reusing
1559 registers as appropriate.</li>
1560 <li><i>Linear Scan</i> - <i>The default allocator</i>. This is the
1561 well-know linear scan register allocator. Whereas the
1562 <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
1563 implementation technique, the <i>Linear Scan</i> implementation
1564 uses a spiller in order to place load and stores.</li>
1565</ul>
1566
1567<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
1568command line option <tt>-regalloc=...</tt>:</p>
1569
1570<div class="doc_code">
1571<pre>
1572$ llc -f -regalloc=simple file.bc -o sp.s;
1573$ llc -f -regalloc=local file.bc -o lc.s;
1574$ llc -f -regalloc=linearscan file.bc -o ln.s;
1575</pre>
1576</div>
1577
1578</div>
1579
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001580<!-- ======================================================================= -->
1581<div class="doc_subsection">
1582 <a name="proepicode">Prolog/Epilog Code Insertion</a>
1583</div>
1584<div class="doc_text"><p>To Be Written</p></div>
1585<!-- ======================================================================= -->
1586<div class="doc_subsection">
1587 <a name="latemco">Late Machine Code Optimizations</a>
1588</div>
1589<div class="doc_text"><p>To Be Written</p></div>
1590<!-- ======================================================================= -->
1591<div class="doc_subsection">
Chris Lattner32e89f22005-10-16 18:31:08 +00001592 <a name="codeemit">Code Emission</a>
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001593</div>
Bill Wendling91e10c42006-08-28 02:26:32 +00001594<div class="doc_text"><p>To Be Written</p></div>
Chris Lattner32e89f22005-10-16 18:31:08 +00001595<!-- _______________________________________________________________________ -->
1596<div class="doc_subsubsection">
1597 <a name="codeemit_asm">Generating Assembly Code</a>
1598</div>
Bill Wendling91e10c42006-08-28 02:26:32 +00001599<div class="doc_text"><p>To Be Written</p></div>
Chris Lattner32e89f22005-10-16 18:31:08 +00001600<!-- _______________________________________________________________________ -->
1601<div class="doc_subsubsection">
1602 <a name="codeemit_bin">Generating Binary Machine Code</a>
1603</div>
1604
1605<div class="doc_text">
Bill Wendling91e10c42006-08-28 02:26:32 +00001606 <p>For the JIT or <tt>.o</tt> file writer</p>
Chris Lattner32e89f22005-10-16 18:31:08 +00001607</div>
1608
1609
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001610<!-- *********************************************************************** -->
1611<div class="doc_section">
Chris Lattner32e89f22005-10-16 18:31:08 +00001612 <a name="targetimpls">Target-specific Implementation Notes</a>
Chris Lattnerec94f802004-06-04 00:16:02 +00001613</div>
1614<!-- *********************************************************************** -->
1615
1616<div class="doc_text">
1617
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001618<p>This section of the document explains features or design decisions that
Chris Lattnerec94f802004-06-04 00:16:02 +00001619are specific to the code generator for a particular target.</p>
1620
1621</div>
1622
1623
1624<!-- ======================================================================= -->
1625<div class="doc_subsection">
1626 <a name="x86">The X86 backend</a>
1627</div>
1628
1629<div class="doc_text">
1630
Bill Wendling91e10c42006-08-28 02:26:32 +00001631<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This
Chris Lattnerec94f802004-06-04 00:16:02 +00001632code generator currently targets a generic P6-like processor. As such, it
1633produces a few P6-and-above instructions (like conditional moves), but it does
1634not make use of newer features like MMX or SSE. In the future, the X86 backend
Chris Lattneraa5bcb52005-01-28 17:22:53 +00001635will have sub-target support added for specific processor families and
Chris Lattnerec94f802004-06-04 00:16:02 +00001636implementations.</p>
1637
1638</div>
1639
1640<!-- _______________________________________________________________________ -->
1641<div class="doc_subsubsection">
Chris Lattner9b988be2005-07-12 00:20:49 +00001642 <a name="x86_tt">X86 Target Triples Supported</a>
1643</div>
1644
1645<div class="doc_text">
Bill Wendling91e10c42006-08-28 02:26:32 +00001646
1647<p>The following are the known target triples that are supported by the X86
1648backend. This is not an exhaustive list, and it would be useful to add those
1649that people test.</p>
Chris Lattner9b988be2005-07-12 00:20:49 +00001650
1651<ul>
1652<li><b>i686-pc-linux-gnu</b> - Linux</li>
1653<li><b>i386-unknown-freebsd5.3</b> - FreeBSD 5.3</li>
1654<li><b>i686-pc-cygwin</b> - Cygwin on Win32</li>
1655<li><b>i686-pc-mingw32</b> - MingW on Win32</li>
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00001656<li><b>i386-pc-mingw32msvc</b> - MingW crosscompiler on Linux</li>
Chris Lattner32e89f22005-10-16 18:31:08 +00001657<li><b>i686-apple-darwin*</b> - Apple Darwin on X86</li>
Chris Lattner9b988be2005-07-12 00:20:49 +00001658</ul>
1659
1660</div>
1661
1662<!-- _______________________________________________________________________ -->
1663<div class="doc_subsubsection">
Anton Korobeynikovbcb97702006-09-17 20:25:45 +00001664 <a name="x86_cc">X86 Calling Conventions supported</a>
1665</div>
1666
1667
1668<div class="doc_text">
1669
1670<p>The folowing target-specific calling conventions are known to backend:</p>
1671
1672<ul>
1673<li><b>x86_StdCall</b> - stdcall calling convention seen on Microsoft Windows
1674platform (CC ID = 64).</li>
1675<li><b>x86_FastCall</b> - fastcall calling convention seen on Microsoft Windows
1676platform (CC ID = 65).</li>
1677</ul>
1678
1679</div>
1680
1681<!-- _______________________________________________________________________ -->
1682<div class="doc_subsubsection">
Chris Lattnerec94f802004-06-04 00:16:02 +00001683 <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
1684</div>
1685
1686<div class="doc_text">
1687
Misha Brukman600df452005-02-17 22:22:24 +00001688<p>The x86 has a very flexible way of accessing memory. It is capable of
Chris Lattnerec94f802004-06-04 00:16:02 +00001689forming memory addresses of the following expression directly in integer
1690instructions (which use ModR/M addressing):</p>
1691
Bill Wendling91e10c42006-08-28 02:26:32 +00001692<div class="doc_code">
Chris Lattnerec94f802004-06-04 00:16:02 +00001693<pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001694Base + [1,2,4,8] * IndexReg + Disp32
Chris Lattnerec94f802004-06-04 00:16:02 +00001695</pre>
Bill Wendling91e10c42006-08-28 02:26:32 +00001696</div>
Chris Lattnerec94f802004-06-04 00:16:02 +00001697
Misha Brukman600df452005-02-17 22:22:24 +00001698<p>In order to represent this, LLVM tracks no less than 4 operands for each
Bill Wendling91e10c42006-08-28 02:26:32 +00001699memory operand of this form. This means that the "load" form of '<tt>mov</tt>'
1700has the following <tt>MachineOperand</tt>s in this order:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001701
1702<pre>
1703Index: 0 | 1 2 3 4
1704Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement
1705OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm
1706</pre>
1707
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001708<p>Stores, and all other instructions, treat the four memory operands in the
Bill Wendling91e10c42006-08-28 02:26:32 +00001709same way and in the same order.</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001710
1711</div>
1712
1713<!-- _______________________________________________________________________ -->
1714<div class="doc_subsubsection">
1715 <a name="x86_names">Instruction naming</a>
1716</div>
1717
1718<div class="doc_text">
1719
Bill Wendling91e10c42006-08-28 02:26:32 +00001720<p>An instruction name consists of the base name, a default operand size, and a
Reid Spencerad1f0cd2005-04-24 20:56:18 +00001721a character per operand with an optional special size. For example:</p>
Chris Lattnerec94f802004-06-04 00:16:02 +00001722
1723<p>
1724<tt>ADD8rr</tt> -&gt; add, 8-bit register, 8-bit register<br>
1725<tt>IMUL16rmi</tt> -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate<br>
1726<tt>IMUL16rmi8</tt> -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate<br>
1727<tt>MOVSX32rm16</tt> -&gt; movsx, 32-bit register, 16-bit memory
1728</p>
1729
1730</div>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001731
Jim Laskey762b6cb2006-12-14 17:19:50 +00001732<!-- ======================================================================= -->
1733<div class="doc_subsection">
1734 <a name="ppc">The PowerPC backend</a>
1735</div>
1736
1737<div class="doc_text">
1738<p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The
1739code generation is retargetable to several variations or <i>subtargets</i> of
1740the PowerPC ISA; including ppc32, ppc64 and altivec.
1741</p>
1742</div>
1743
1744<!-- _______________________________________________________________________ -->
1745<div class="doc_subsubsection">
1746 <a name="ppc_abi">LLVM PowerPC ABI</a>
1747</div>
1748
1749<div class="doc_text">
1750<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
1751relative (PIC) or static addressing for accessing global values, so no TOC (r2)
1752is used. Second, r31 is used as a frame pointer to allow dynamic growth of a
1753stack frame. LLVM takes advantage of having no TOC to provide space to save
1754the frame pointer in the PowerPC linkage area of the caller frame. Other
Jim Laskeyb744c252006-12-15 10:40:48 +00001755details of PowerPC ABI can be found at <a href=
1756"http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
1757>PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The
175864 bit ABI is similar except space for GPRs are 8 bytes wide (not 4) and r13 is
1759reserved for system use.</p>
Jim Laskey762b6cb2006-12-14 17:19:50 +00001760</div>
1761
1762<!-- _______________________________________________________________________ -->
1763<div class="doc_subsubsection">
1764 <a name="ppc_frame">Frame Layout</a>
1765</div>
1766
1767<div class="doc_text">
1768<p>The size of a PowerPC frame is usually fixed for the duration of a
Jim Laskeyb744c252006-12-15 10:40:48 +00001769function&rsquo;s invocation. Since the frame is fixed size, all references into
Jim Laskey762b6cb2006-12-14 17:19:50 +00001770the frame can be accessed via fixed offsets from the stack pointer. The
1771exception to this is when dynamic alloca or variable sized arrays are present,
1772then a base pointer (r31) is used as a proxy for the stack pointer and stack
1773pointer is free to grow or shrink. A base pointer is also used if llvm-gcc is
1774not passed the -fomit-frame-pointer flag. The stack pointer is always aligned to
177516 bytes, so that space allocated for altivec vectors will be properly
1776aligned.</p>
1777<p>An invocation frame is layed out as follows (low memory at top);</p>
1778</div>
1779
1780<div class="doc_text">
1781<table class="layout">
1782 <tr>
1783 <td>Linkage<br><br></td>
1784 </tr>
1785 <tr>
1786 <td>Parameter area<br><br></td>
1787 </tr>
1788 <tr>
1789 <td>Dynamic area<br><br></td>
1790 </tr>
1791 <tr>
1792 <td>Locals area<br><br></td>
1793 </tr>
1794 <tr>
1795 <td>Saved registers area<br><br></td>
1796 </tr>
1797 <tr style="border-style: none hidden none hidden;">
1798 <td><br></td>
1799 </tr>
1800 <tr>
1801 <td>Previous Frame<br><br></td>
1802 </tr>
1803</table>
1804</div>
1805
1806<div class="doc_text">
1807<p>The <i>linkage</i> area is used by a callee to save special registers prior
1808to allocating its own frame. Only three entries are relevant to LLVM. The
1809first entry is the previous stack pointer (sp), aka link. This allows probing
1810tools like gdb or exception handlers to quickly scan the frames in the stack. A
1811function epilog can also use the link to pop the frame from the stack. The
1812third entry in the linkage area is used to save the return address from the lr
1813register. Finally, as mentioned above, the last entry is used to save the
1814previous frame pointer (r31.) The entries in the linkage area are the size of a
1815GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64
1816bit mode.</p>
1817</div>
1818
1819<div class="doc_text">
1820<p>32 bit linkage area</p>
1821<table class="layout">
1822 <tr>
1823 <td>0</td>
1824 <td>Saved SP (r1)</td>
1825 </tr>
1826 <tr>
1827 <td>4</td>
1828 <td>Saved CR</td>
1829 </tr>
1830 <tr>
1831 <td>8</td>
1832 <td>Saved LR</td>
1833 </tr>
1834 <tr>
1835 <td>12</td>
1836 <td>Reserved</td>
1837 </tr>
1838 <tr>
1839 <td>16</td>
1840 <td>Reserved</td>
1841 </tr>
1842 <tr>
1843 <td>20</td>
1844 <td>Saved FP (r31)</td>
1845 </tr>
1846</table>
1847</div>
1848
1849<div class="doc_text">
1850<p>64 bit linkage area</p>
1851<table class="layout">
1852 <tr>
1853 <td>0</td>
1854 <td>Saved SP (r1)</td>
1855 </tr>
1856 <tr>
1857 <td>8</td>
1858 <td>Saved CR</td>
1859 </tr>
1860 <tr>
1861 <td>16</td>
1862 <td>Saved LR</td>
1863 </tr>
1864 <tr>
1865 <td>24</td>
1866 <td>Reserved</td>
1867 </tr>
1868 <tr>
1869 <td>32</td>
1870 <td>Reserved</td>
1871 </tr>
1872 <tr>
1873 <td>40</td>
1874 <td>Saved FP (r31)</td>
1875 </tr>
1876</table>
1877</div>
1878
1879<div class="doc_text">
1880<p>The <i>parameter area</i> is used to store arguments being passed to a callee
1881function. Following the PowerPC ABI, the first few arguments are actually
1882passed in registers, with the space in the parameter area unused. However, if
1883there are not enough registers or the callee is a thunk or vararg function,
1884these register arguments can be spilled into the parameter area. Thus, the
1885parameter area must be large enough to store all the parameters for the largest
1886call sequence made by the caller. The size must also be mimimally large enough
1887to spill registers r3-r10. This allows callees blind to the call signature,
1888such as thunks and vararg functions, enough space to cache the argument
1889registers. Therefore, the parameter area is minimally 32 bytes (64 bytes in 64
1890bit mode.) Also note that since the parameter area is a fixed offset from the
1891top of the frame, that a callee can access its spilt arguments using fixed
1892offsets from the stack pointer (or base pointer.)</p>
1893</div>
1894
1895<div class="doc_text">
1896<p>Combining the information about the linkage, parameter areas and alignment. A
1897stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
1898mode.</p>
1899</div>
1900
1901<div class="doc_text">
1902<p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic
1903alloca then space is added to the stack, the linkage and parameter areas are
1904shifted to top of stack, and the new space is available immediately below the
1905linkage and parameter areas. The cost of shifting the linkage and parameter
1906areas is minor since only the link value needs to be copied. The link value can
1907be easily fetched by adding the original frame size to the base pointer. Note
1908that allocations in the dynamic space need to observe 16 byte aligment.</p>
1909</div>
1910
1911<div class="doc_text">
1912<p>The <i>locals area</i> is where the llvm compiler reserves space for local
1913variables.</p>
1914</div>
1915
1916<div class="doc_text">
1917<p>The <i>saved registers area</i> is where the llvm compiler spills callee saved
1918registers on entry to the callee.</p>
1919</div>
1920
1921<!-- _______________________________________________________________________ -->
1922<div class="doc_subsubsection">
1923 <a name="ppc_prolog">Prolog/Epilog</a>
1924</div>
1925
1926<div class="doc_text">
1927<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
1928the following exceptions. Callee saved registers are spilled after the frame is
1929created. This allows the llvm epilog/prolog support to be common with other
1930targets. The base pointer callee saved register r31 is saved in the TOC slot of
1931linkage area. This simplifies allocation of space for the base pointer and
1932makes it convenient to locate programatically and during debugging.</p>
1933</div>
1934
1935<!-- _______________________________________________________________________ -->
1936<div class="doc_subsubsection">
1937 <a name="ppc_dynamic">Dynamic Allocation</a>
1938</div>
1939
1940<div class="doc_text">
1941<p></p>
1942</div>
1943
Jim Laskeyb744c252006-12-15 10:40:48 +00001944<div class="doc_text">
1945<p><i>TODO - More to come.</i></p>
1946</div>
Jim Laskey762b6cb2006-12-14 17:19:50 +00001947
1948
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001949<!-- *********************************************************************** -->
1950<hr>
1951<address>
1952 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1953 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1954 <a href="http://validator.w3.org/check/referer"><img
1955 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
1956
1957 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00001958 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Chris Lattnerce52b7e2004-06-01 06:48:00 +00001959 Last modified: $Date$
1960</address>
1961
1962</body>
1963</html>