blob: 54cf29229d7916f7202f34434304387632beb79c [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000023#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000024#include "llvm/Target/MRegisterInfo.h"
25#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000026
Chris Lattner06925362002-11-17 21:56:38 +000027using namespace MOTy; // Get Use, Def, UseAndDef
28
Chris Lattner72614082002-10-25 22:55:53 +000029namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000030 struct ISel : public FunctionPass, InstVisitor<ISel> {
31 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000032 MachineFunction *F; // The function we are compiling into
33 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000034
35 unsigned CurReg;
36 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
37
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000038 ISel(TargetMachine &tm)
39 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000040
41 /// runOnFunction - Top level implementation of instruction selection for
42 /// the entire function.
43 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000044 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000045 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000046 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000047 RegMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000048 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000049 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000050 return false; // We never modify the LLVM itself.
51 }
52
53 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000054 /// block. This simply creates a new MachineBasicBlock to emit code into
55 /// and adds it to the current MachineFunction. Subsequent visit* for
56 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000057 ///
58 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000059 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000060 // FIXME: Use the auto-insert form when it's available
61 F->getBasicBlockList().push_back(BB);
62 }
63
64 // Visitation methods for various instructions. These methods simply emit
65 // fixed X86 code for each instruction.
66 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000067
68 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +000069 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000070 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +000071 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000072
73 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000074 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000075 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
76 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Brian Gaeke20244b72002-12-12 15:33:40 +000077 void doMultiply(unsigned destReg, const Type *resultType,
78 unsigned op0Reg, unsigned op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +000079 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000080
Chris Lattnerf01729e2002-11-02 20:54:46 +000081 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
82 void visitRem(BinaryOperator &B) { visitDivRem(B); }
83 void visitDivRem(BinaryOperator &B);
84
Chris Lattnere2954c82002-11-02 20:04:26 +000085 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000086 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
87 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
88 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000089
90 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +000091 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
92 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
93 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
94 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
95 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
96 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
97 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +000098
99 // Memory Instructions
100 void visitLoadInst(LoadInst &I);
101 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000102 void visitGetElementPtrInst(GetElementPtrInst &I);
103 void visitMallocInst(MallocInst &I);
Brian Gaekee48ec012002-12-13 06:46:31 +0000104 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000105 void visitAllocaInst(AllocaInst &I);
106
Chris Lattnere2954c82002-11-02 20:04:26 +0000107 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000108 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000109 void visitPHINode(PHINode &I);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000110 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000111
112 void visitInstruction(Instruction &I) {
113 std::cerr << "Cannot instruction select: " << I;
114 abort();
115 }
116
Brian Gaeke95780cc2002-12-13 07:56:18 +0000117 /// promote32 - Make a value 32-bits wide, and put it somewhere.
118 void promote32 (const unsigned targetReg, Value *v);
119
120 // emitGEPOperation - Common code shared between visitGetElementPtrInst and
Chris Lattnerc0812d82002-12-13 06:56:29 +0000121 // constant expression GEP support.
122 //
123 void emitGEPOperation(Value *Src, User::op_iterator IdxBegin,
124 User::op_iterator IdxEnd, unsigned TargetReg);
125
Chris Lattnerc5291f52002-10-27 21:16:59 +0000126 /// copyConstantToRegister - Output the instructions required to put the
127 /// specified constant into the specified register.
128 ///
129 void copyConstantToRegister(Constant *C, unsigned Reg);
130
Brian Gaeke20244b72002-12-12 15:33:40 +0000131 /// makeAnotherReg - This method returns the next register number
132 /// we haven't yet used.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000133 unsigned makeAnotherReg(const Type *Ty) {
134 // Add the mapping of regnumber => reg class to MachineFunction
135 F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
136 return CurReg++;
Brian Gaeke20244b72002-12-12 15:33:40 +0000137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// getReg - This method turns an LLVM value into a register number. This
140 /// is guaranteed to produce the same register number for a particular value
141 /// every time it is queried.
142 ///
143 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
144 unsigned getReg(Value *V) {
145 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000146 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000147 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000148 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000149 }
Chris Lattner72614082002-10-25 22:55:53 +0000150
Chris Lattner6f8fd252002-10-27 21:23:43 +0000151 // If this operand is a constant, emit the code to copy the constant into
152 // the register here...
153 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000154 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnerc5291f52002-10-27 21:16:59 +0000155 copyConstantToRegister(C, Reg);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000156 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
157 // Move the address of the global into the register
158 BuildMI(BB, X86::MOVir32, 1, Reg).addReg(GV);
Chris Lattnerd6c4cfa2002-12-04 17:15:34 +0000159 } else if (Argument *A = dyn_cast<Argument>(V)) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000160 // Find the position of the argument in the argument list.
161 const Function *f = F->getFunction ();
Brian Gaekeed6902c2002-12-13 09:28:50 +0000162 // The function's arguments look like this:
163 // [EBP] -- copy of old EBP
164 // [EBP + 4] -- return address
165 // [EBP + 8] -- first argument (leftmost lexically)
166 // So we want to start with counter = 2.
167 int counter = 2, argPosition = -1;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000168 for (Function::const_aiterator ai = f->abegin (), ae = f->aend ();
169 ai != ae; ++ai) {
Brian Gaeke95780cc2002-12-13 07:56:18 +0000170 if (&(*ai) == A) {
171 argPosition = counter;
Brian Gaekeed6902c2002-12-13 09:28:50 +0000172 break; // Only need to find it once. ;-)
Brian Gaeke95780cc2002-12-13 07:56:18 +0000173 }
Brian Gaekeed6902c2002-12-13 09:28:50 +0000174 ++counter;
Brian Gaeke95780cc2002-12-13 07:56:18 +0000175 }
176 assert (argPosition != -1
177 && "Argument not found in current function's argument list");
178 // Load it out of the stack frame at EBP + 4*argPosition.
Brian Gaekeed6902c2002-12-13 09:28:50 +0000179 addRegOffset (BuildMI (BB, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPosition);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000180 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000181
Chris Lattner72614082002-10-25 22:55:53 +0000182 return Reg;
183 }
Chris Lattner72614082002-10-25 22:55:53 +0000184 };
185}
186
Chris Lattner43189d12002-11-17 20:07:45 +0000187/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
188/// Representation.
189///
190enum TypeClass {
191 cByte, cShort, cInt, cLong, cFloat, cDouble
192};
193
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000194/// getClass - Turn a primitive type into a "class" number which is based on the
195/// size of the type, and whether or not it is floating point.
196///
Chris Lattner43189d12002-11-17 20:07:45 +0000197static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000198 switch (Ty->getPrimitiveID()) {
199 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000200 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000201 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000202 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000203 case Type::IntTyID:
204 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000205 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000206
207 case Type::LongTyID:
Chris Lattnerc0812d82002-12-13 06:56:29 +0000208 case Type::ULongTyID: //return cLong; // Longs are class #3
209 return cInt; // FIXME: LONGS ARE TREATED AS INTS!
210
Chris Lattner43189d12002-11-17 20:07:45 +0000211 case Type::FloatTyID: return cFloat; // Float is class #4
212 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000213 default:
214 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000215 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000216 }
217}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000218
Chris Lattner06925362002-11-17 21:56:38 +0000219
Chris Lattnerc5291f52002-10-27 21:16:59 +0000220/// copyConstantToRegister - Output the instructions required to put the
221/// specified constant into the specified register.
222///
223void ISel::copyConstantToRegister(Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000224 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
225 if (CE->getOpcode() == Instruction::GetElementPtr) {
226 emitGEPOperation(CE->getOperand(0), CE->op_begin()+1, CE->op_end(), R);
227 return;
228 }
229
Brian Gaeke20244b72002-12-12 15:33:40 +0000230 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerc0812d82002-12-13 06:56:29 +0000231 assert (0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000232 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000233
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000234 if (C->getType()->isIntegral()) {
235 unsigned Class = getClass(C->getType());
236 assert(Class != 3 && "Type not handled yet!");
237
238 static const unsigned IntegralOpcodeTab[] = {
239 X86::MOVir8, X86::MOVir16, X86::MOVir32
240 };
241
242 if (C->getType()->isSigned()) {
243 ConstantSInt *CSI = cast<ConstantSInt>(C);
244 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
245 } else {
246 ConstantUInt *CUI = cast<ConstantUInt>(C);
247 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
248 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000249 } else if (isa <ConstantPointerNull> (C)) {
250 // Copy zero (null pointer) to the register.
251 BuildMI (BB, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000252 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
253 unsigned SrcReg = getReg(CPR->getValue());
254 BuildMI (BB, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000255 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000256 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000257 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000258 }
259}
260
Chris Lattner06925362002-11-17 21:56:38 +0000261
Brian Gaeke1749d632002-11-07 17:59:21 +0000262/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
263/// register, then move it to wherever the result should be.
264/// We handle FP setcc instructions by pushing them, doing a
265/// compare-and-pop-twice, and then copying the concodes to the main
266/// processor's concodes (I didn't make this up, it's in the Intel manual)
267///
Chris Lattner05093a52002-11-21 15:52:38 +0000268void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000269 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000270 const Type *CompTy = I.getOperand(0)->getType();
271 unsigned reg1 = getReg(I.getOperand(0));
272 unsigned reg2 = getReg(I.getOperand(1));
273
274 unsigned Class = getClass(CompTy);
275 switch (Class) {
276 // Emit: cmp <var1>, <var2> (do the comparison). We can
277 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
278 // 32-bit.
279 case cByte:
280 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
281 break;
282 case cShort:
283 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
284 break;
285 case cInt:
286 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
287 break;
288
289 // Push the variables on the stack with fldl opcodes.
290 // FIXME: assuming var1, var2 are in memory, if not, spill to
291 // stack first
292 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000293 BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
294 BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000295 break;
296 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000297 BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
298 BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000299 break;
300 case cLong:
301 default:
302 visitInstruction(I);
303 }
304
305 if (CompTy->isFloatingPoint()) {
306 // (Non-trapping) compare and pop twice.
307 BuildMI (BB, X86::FUCOMPP, 0);
308 // Move fp status word (concodes) to ax.
309 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
310 // Load real concodes from ax.
311 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
312 }
313
Brian Gaeke1749d632002-11-07 17:59:21 +0000314 // Emit setOp instruction (extract concode; clobbers ax),
315 // using the following mapping:
316 // LLVM -> X86 signed X86 unsigned
317 // ----- ----- -----
318 // seteq -> sete sete
319 // setne -> setne setne
320 // setlt -> setl setb
321 // setgt -> setg seta
322 // setle -> setle setbe
323 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000324
325 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000326 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
327 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000328 };
329
330 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
331
Brian Gaeke1749d632002-11-07 17:59:21 +0000332 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000333 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000334}
Chris Lattner51b49a92002-11-02 19:45:49 +0000335
Brian Gaekec2505982002-11-30 11:57:28 +0000336/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
337/// operand, in the specified target register.
338void
Chris Lattnerc0812d82002-12-13 06:56:29 +0000339ISel::promote32 (unsigned targetReg, Value *v)
Brian Gaekec2505982002-11-30 11:57:28 +0000340{
341 unsigned vReg = getReg (v);
342 unsigned Class = getClass (v->getType ());
343 bool isUnsigned = v->getType ()->isUnsigned ();
344 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
345 && "Unpromotable operand class in promote32");
346 switch (Class)
347 {
348 case cByte:
349 // Extend value into target register (8->32)
350 if (isUnsigned)
351 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
352 else
353 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
354 break;
355 case cShort:
356 // Extend value into target register (16->32)
357 if (isUnsigned)
358 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
359 else
360 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
361 break;
362 case cInt:
363 // Move value into target register (32->32)
364 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
365 break;
366 }
367}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000368
Chris Lattner72614082002-10-25 22:55:53 +0000369/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
370/// we have the following possibilities:
371///
372/// ret void: No return value, simply emit a 'ret' instruction
373/// ret sbyte, ubyte : Extend value into EAX and return
374/// ret short, ushort: Extend value into EAX and return
375/// ret int, uint : Move value into EAX and return
376/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000377/// ret long, ulong : Move value into EAX/EDX and return
378/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000379///
Brian Gaekec2505982002-11-30 11:57:28 +0000380void
381ISel::visitReturnInst (ReturnInst &I)
382{
383 if (I.getNumOperands () == 0)
384 {
385 // Emit a 'ret' instruction
386 BuildMI (BB, X86::RET, 0);
387 return;
388 }
389 Value *rv = I.getOperand (0);
390 unsigned Class = getClass (rv->getType ());
391 switch (Class)
392 {
393 // integral return values: extend or move into EAX and return.
394 case cByte:
395 case cShort:
396 case cInt:
397 promote32 (X86::EAX, rv);
398 break;
399 // ret float/double: top of FP stack
400 // FLD <val>
401 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000402 BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000403 break;
404 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000405 BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000406 break;
407 case cLong:
408 // ret long: use EAX(least significant 32 bits)/EDX (most
409 // significant 32)...uh, I think so Brain, but how do i call
410 // up the two parts of the value from inside this mouse
411 // cage? *zort*
412 default:
413 visitInstruction (I);
414 }
Chris Lattner43189d12002-11-17 20:07:45 +0000415 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000416 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000417}
418
Chris Lattner51b49a92002-11-02 19:45:49 +0000419/// visitBranchInst - Handle conditional and unconditional branches here. Note
420/// that since code layout is frozen at this point, that if we are trying to
421/// jump to a block that is the immediate successor of the current block, we can
422/// just make a fall-through. (but we don't currently).
423///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000424void
425ISel::visitBranchInst (BranchInst & BI)
426{
427 if (BI.isConditional ())
428 {
429 BasicBlock *ifTrue = BI.getSuccessor (0);
430 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000431
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000432 // simplest thing I can think of: compare condition with zero,
433 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
434 // ifTrue
435 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000436 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000437 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
438 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
439 }
440 else // unconditional branch
441 {
442 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
443 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000444}
445
Brian Gaeke18a20212002-11-29 12:01:58 +0000446/// visitCallInst - Push args on stack and do a procedure call instruction.
447void
448ISel::visitCallInst (CallInst & CI)
449{
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000450 // keep a counter of how many bytes we pushed on the stack
451 unsigned bytesPushed = 0;
452
Brian Gaeke18a20212002-11-29 12:01:58 +0000453 // Push the arguments on the stack in reverse order, as specified by
454 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000455 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000456 {
457 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000458 switch (getClass (v->getType ()))
459 {
Brian Gaekec2505982002-11-30 11:57:28 +0000460 case cByte:
461 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000462 // Promote V to 32 bits wide, and move the result into EAX,
463 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000464 promote32 (X86::EAX, v);
465 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000466 bytesPushed += 4;
Brian Gaekec2505982002-11-30 11:57:28 +0000467 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000468 case cInt:
Chris Lattner33ced562002-12-04 06:56:56 +0000469 case cFloat: {
470 unsigned Reg = getReg(v);
471 BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000472 bytesPushed += 4;
Brian Gaeke18a20212002-11-29 12:01:58 +0000473 break;
Chris Lattner33ced562002-12-04 06:56:56 +0000474 }
Brian Gaeke18a20212002-11-29 12:01:58 +0000475 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000476 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000477 visitInstruction (CI);
478 break;
479 }
480 }
481 // Emit a CALL instruction with PC-relative displacement.
482 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000483
484 // Adjust the stack by `bytesPushed' amount if non-zero
485 if (bytesPushed > 0)
486 BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);
Chris Lattnera3243642002-12-04 23:45:28 +0000487
488 // If there is a return value, scavenge the result from the location the call
489 // leaves it in...
490 //
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000491 if (CI.getType() != Type::VoidTy) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000492 unsigned resultTypeClass = getClass (CI.getType ());
493 switch (resultTypeClass) {
494 case cByte:
495 case cShort:
496 case cInt: {
497 // Integral results are in %eax, or the appropriate portion
498 // thereof.
499 static const unsigned regRegMove[] = {
500 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
501 };
502 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
503 BuildMI (BB, regRegMove[resultTypeClass], 1,
504 getReg (CI)).addReg (AReg[resultTypeClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000505 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000506 }
507 case cFloat:
508 // Floating-point return values live in %st(0) (i.e., the top of
509 // the FP stack.) The general way to approach this is to do a
510 // FSTP to save the top of the FP stack on the real stack, then
511 // do a MOV to load the top of the real stack into the target
512 // register.
513 visitInstruction (CI); // FIXME: add the right args for the calls below
514 // BuildMI (BB, X86::FSTPm32, 0);
515 // BuildMI (BB, X86::MOVmr32, 0);
516 break;
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000517 default:
518 std::cerr << "Cannot get return value for call of type '"
519 << *CI.getType() << "'\n";
520 visitInstruction(CI);
521 }
Chris Lattnera3243642002-12-04 23:45:28 +0000522 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000523}
Chris Lattner2df035b2002-11-02 19:27:56 +0000524
Chris Lattner68aad932002-11-02 20:13:22 +0000525/// visitSimpleBinary - Implement simple binary operators for integral types...
526/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
527/// 4 for Xor.
528///
529void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
530 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000531 visitInstruction(B);
532
533 unsigned Class = getClass(B.getType());
534 if (Class > 2) // FIXME: Handle longs
535 visitInstruction(B);
536
537 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000538 // Arithmetic operators
539 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
540 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
541
542 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000543 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
544 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
545 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
546 };
547
548 unsigned Opcode = OpcodeTab[OperatorClass][Class];
549 unsigned Op0r = getReg(B.getOperand(0));
550 unsigned Op1r = getReg(B.getOperand(1));
551 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
552}
553
Brian Gaeke20244b72002-12-12 15:33:40 +0000554/// doMultiply - Emit appropriate instructions to multiply together
555/// the registers op0Reg and op1Reg, and put the result in destReg.
556/// The type of the result should be given as resultType.
557void
558ISel::doMultiply(unsigned destReg, const Type *resultType,
559 unsigned op0Reg, unsigned op1Reg)
560{
561 unsigned Class = getClass (resultType);
562
563 // FIXME:
564 assert (Class <= 2 && "Someday, we will learn how to multiply"
565 "longs and floating-point numbers. This is not that day.");
566
567 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
568 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
569 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
570 unsigned Reg = Regs[Class];
571
572 // Emit a MOV to put the first operand into the appropriately-sized
573 // subreg of EAX.
574 BuildMI (BB, MovOpcode[Class], 1, Reg).addReg (op0Reg);
575
576 // Emit the appropriate multiply instruction.
577 BuildMI (BB, MulOpcode[Class], 1).addReg (op1Reg);
578
579 // Emit another MOV to put the result into the destination register.
580 BuildMI (BB, MovOpcode[Class], 1, destReg).addReg (Reg);
581}
582
Chris Lattnerca9671d2002-11-02 20:28:58 +0000583/// visitMul - Multiplies are not simple binary operators because they must deal
584/// with the EAX register explicitly.
585///
586void ISel::visitMul(BinaryOperator &I) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000587 doMultiply (getReg (I), I.getType (),
588 getReg (I.getOperand (0)), getReg (I.getOperand (1)));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000589}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000590
Chris Lattner06925362002-11-17 21:56:38 +0000591
Chris Lattnerf01729e2002-11-02 20:54:46 +0000592/// visitDivRem - Handle division and remainder instructions... these
593/// instruction both require the same instructions to be generated, they just
594/// select the result from a different register. Note that both of these
595/// instructions work differently for signed and unsigned operands.
596///
597void ISel::visitDivRem(BinaryOperator &I) {
598 unsigned Class = getClass(I.getType());
599 if (Class > 2) // FIXME: Handle longs
600 visitInstruction(I);
601
602 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
603 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000604 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000605 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
606 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
607
608 static const unsigned DivOpcode[][4] = {
609 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
610 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
611 };
612
613 bool isSigned = I.getType()->isSigned();
614 unsigned Reg = Regs[Class];
615 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000616 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000617 unsigned Op1Reg = getReg(I.getOperand(1));
618
619 // Put the first operand into one of the A registers...
620 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
621
622 if (isSigned) {
623 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000624 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000625 } else {
626 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
627 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
628 }
629
Chris Lattner06925362002-11-17 21:56:38 +0000630 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000631 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000632
Chris Lattnerf01729e2002-11-02 20:54:46 +0000633 // Figure out which register we want to pick the result out of...
634 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
635
Chris Lattnerf01729e2002-11-02 20:54:46 +0000636 // Put the result into the destination register...
637 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000638}
Chris Lattnere2954c82002-11-02 20:04:26 +0000639
Chris Lattner06925362002-11-17 21:56:38 +0000640
Brian Gaekea1719c92002-10-31 23:03:59 +0000641/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
642/// for constant immediate shift values, and for constant immediate
643/// shift values equal to 1. Even the general case is sort of special,
644/// because the shift amount has to be in CL, not just any old register.
645///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000646void ISel::visitShiftInst (ShiftInst &I) {
647 unsigned Op0r = getReg (I.getOperand(0));
648 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000649 bool isLeftShift = I.getOpcode() == Instruction::Shl;
650 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000651 unsigned OperandClass = getClass(I.getType());
652
653 if (OperandClass > 2)
654 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000655
Brian Gaekea1719c92002-10-31 23:03:59 +0000656 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
657 {
Chris Lattner796df732002-11-02 00:44:25 +0000658 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
659 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
660 unsigned char shAmt = CUI->getValue();
661
Chris Lattnere9913f22002-11-02 01:41:55 +0000662 static const unsigned ConstantOperand[][4] = {
663 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
664 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
665 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
666 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000667 };
668
Chris Lattnere9913f22002-11-02 01:41:55 +0000669 const unsigned *OpTab = // Figure out the operand table to use
670 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000671
Brian Gaekea1719c92002-10-31 23:03:59 +0000672 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000673 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000674 }
675 else
676 {
677 // The shift amount is non-constant.
678 //
679 // In fact, you can only shift with a variable shift amount if
680 // that amount is already in the CL register, so we have to put it
681 // there first.
682 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000683
Brian Gaekea1719c92002-10-31 23:03:59 +0000684 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000685 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000686
687 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000688 static const unsigned NonConstantOperand[][4] = {
689 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
690 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
691 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
692 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000693 };
694
Chris Lattnere9913f22002-11-02 01:41:55 +0000695 const unsigned *OpTab = // Figure out the operand table to use
696 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000697
Chris Lattner3a9a6932002-11-21 22:49:20 +0000698 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000699 }
700}
701
Chris Lattner06925362002-11-17 21:56:38 +0000702
Chris Lattner6fc3c522002-11-17 21:11:55 +0000703/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
704/// instruction.
705///
706void ISel::visitLoadInst(LoadInst &I) {
707 unsigned Class = getClass(I.getType());
708 if (Class > 2) // FIXME: Handle longs and others...
709 visitInstruction(I);
710
711 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
712
713 unsigned AddressReg = getReg(I.getOperand(0));
714 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
715}
716
Chris Lattner06925362002-11-17 21:56:38 +0000717
Chris Lattner6fc3c522002-11-17 21:11:55 +0000718/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
719/// instruction.
720///
721void ISel::visitStoreInst(StoreInst &I) {
722 unsigned Class = getClass(I.getOperand(0)->getType());
723 if (Class > 2) // FIXME: Handle longs and others...
724 visitInstruction(I);
725
726 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
727
728 unsigned ValReg = getReg(I.getOperand(0));
729 unsigned AddressReg = getReg(I.getOperand(1));
730 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
731}
732
733
Chris Lattnere2954c82002-11-02 20:04:26 +0000734/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
735///
736void ISel::visitPHINode(PHINode &PN) {
737 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000738
Chris Lattnere2954c82002-11-02 20:04:26 +0000739 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
740 // FIXME: This will put constants after the PHI nodes in the block, which
741 // is invalid. They should be put inline into the PHI node eventually.
742 //
743 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
744 MI->addPCDispOperand(PN.getIncomingBlock(i));
745 }
Chris Lattner72614082002-10-25 22:55:53 +0000746}
747
Brian Gaekec11232a2002-11-26 10:43:30 +0000748/// visitCastInst - Here we have various kinds of copying with or without
749/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000750void
751ISel::visitCastInst (CastInst &CI)
752{
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000753 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000754 Value *operand = CI.getOperand (0);
755 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000756 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000757 unsigned int destReg = getReg (CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000758 //
759 // Currently we handle:
760 //
761 // 1) cast * to bool
762 //
763 // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
764 // cast {short, ushort} to {ushort, short}
765 // cast {int, uint, ptr} to {int, uint, ptr}
766 //
767 // 3) cast {sbyte, ubyte} to {ushort, short}
768 // cast {sbyte, ubyte} to {int, uint, ptr}
769 // cast {short, ushort} to {int, uint, ptr}
770 //
771 // 4) cast {int, uint, ptr} to {short, ushort}
772 // cast {int, uint, ptr} to {sbyte, ubyte}
773 // cast {short, ushort} to {sbyte, ubyte}
774 //
775 // 1) Implement casts to bool by using compare on the operand followed
776 // by set if not zero on the result.
777 if (targetType == Type::BoolTy)
778 {
779 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
780 BuildMI (BB, X86::SETNEr, 1, destReg);
781 return;
782 }
783 // 2) Implement casts between values of the same type class (as determined
784 // by getClass) by using a register-to-register move.
785 unsigned int srcClass = getClass (sourceType);
786 unsigned int targClass = getClass (targetType);
787 static const unsigned regRegMove[] = {
788 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
789 };
790 if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
791 {
792 BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
793 return;
794 }
795 // 3) Handle cast of SMALLER int to LARGER int using a move with sign
796 // extension or zero extension, depending on whether the source type
797 // was signed.
798 if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
799 {
800 static const unsigned ops[] = {
801 X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
802 X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
803 };
804 unsigned srcSigned = sourceType->isSigned ();
805 BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
806 destReg).addReg (operandReg);
807 return;
808 }
809 // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
810 // followed by a move out of AX or AL.
811 if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
812 {
813 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
814 BuildMI (BB, regRegMove[srcClass], 1,
815 AReg[srcClass]).addReg (operandReg);
816 BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
817 return;
818 }
819 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaeke20244b72002-12-12 15:33:40 +0000820 //
821 // FP to integral casts can be handled with FISTP to store onto the
822 // stack while converting to integer, followed by a MOV to load from
823 // the stack into the result register. Integral to FP casts can be
824 // handled with MOV to store onto the stack, followed by a FILD to
825 // load from the stack while converting to FP. For the moment, I
826 // can't quite get straight in my head how to borrow myself some
827 // stack space and write on it. Otherwise, this would be trivial.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000828 visitInstruction (CI);
829}
Brian Gaekea1719c92002-10-31 23:03:59 +0000830
Brian Gaeke20244b72002-12-12 15:33:40 +0000831/// visitGetElementPtrInst - I don't know, most programs don't have
832/// getelementptr instructions, right? That means we can put off
833/// implementing this, right? Right. This method emits machine
834/// instructions to perform type-safe pointer arithmetic. I am
835/// guessing this could be cleaned up somewhat to use fewer temporary
836/// registers.
837void
838ISel::visitGetElementPtrInst (GetElementPtrInst &I)
839{
Chris Lattnerc0812d82002-12-13 06:56:29 +0000840 emitGEPOperation(I.getOperand(0), I.op_begin()+1, I.op_end(), getReg(I));
841}
842
843void ISel::emitGEPOperation(Value *Src, User::op_iterator IdxBegin,
844 User::op_iterator IdxEnd, unsigned TargetReg) {
845 const TargetData &TD = TM.getTargetData();
846 const Type *Ty = Src->getType();
847 unsigned basePtrReg = getReg(Src);
848
Brian Gaeke20244b72002-12-12 15:33:40 +0000849 // GEPs have zero or more indices; we must perform a struct access
850 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000851 for (GetElementPtrInst::op_iterator oi = IdxBegin,
852 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000853 Value *idx = *oi;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000854 unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000855 if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
856 // It's a struct access. idx is the index into the structure,
857 // which names the field. This index must have ubyte type.
858 const ConstantUInt *CUI = cast <ConstantUInt> (idx);
859 assert (CUI->getType () == Type::UByteTy
860 && "Funny-looking structure index in GEP");
861 // Use the TargetData structure to pick out what the layout of
862 // the structure is in memory. Since the structure index must
863 // be constant, we can get its value and use it to find the
864 // right byte offset from the StructLayout class's list of
865 // structure member offsets.
866 unsigned idxValue = CUI->getValue ();
867 unsigned memberOffset =
868 TD.getStructLayout (StTy)->MemberOffsets[idxValue];
869 // Emit an ADD to add memberOffset to the basePtr.
870 BuildMI (BB, X86::ADDri32, 2,
871 nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
872 // The next type is the member of the structure selected by the
873 // index.
874 Ty = StTy->getElementTypes ()[idxValue];
875 } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
876 // It's an array or pointer access: [ArraySize x ElementType].
Brian Gaeke20244b72002-12-12 15:33:40 +0000877 const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
878 // idx is the index into the array. Unlike with structure
879 // indices, we may not know its actual value at code-generation
880 // time.
881 assert (idx->getType () == typeOfSequentialTypeIndex
882 && "Funny-looking array index in GEP");
883 // We want to add basePtrReg to (idxReg * sizeof
884 // ElementType). First, we must find the size of the pointed-to
885 // type. (Not coincidentally, the next type is the type of the
886 // elements in the array.)
887 Ty = SqTy->getElementType ();
888 unsigned elementSize = TD.getTypeSize (Ty);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000889 unsigned elementSizeReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000890 copyConstantToRegister (ConstantInt::get (typeOfSequentialTypeIndex,
891 elementSize),
892 elementSizeReg);
893 unsigned idxReg = getReg (idx);
894 // Emit a MUL to multiply the register holding the index by
895 // elementSize, putting the result in memberOffsetReg.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000896 unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy);
Brian Gaeke20244b72002-12-12 15:33:40 +0000897 doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
898 elementSizeReg, idxReg);
899 // Emit an ADD to add memberOffsetReg to the basePtr.
900 BuildMI (BB, X86::ADDrr32, 2,
901 nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
902 }
903 // Now that we are here, further indices refer to subtypes of this
904 // one, so we don't need to worry about basePtrReg itself, anymore.
905 basePtrReg = nextBasePtrReg;
906 }
907 // After we have processed all the indices, the result is left in
908 // basePtrReg. Move it to the register where we were expected to
909 // put the answer. A 32-bit move should do it, because we are in
910 // ILP32 land.
Chris Lattnerc0812d82002-12-13 06:56:29 +0000911 BuildMI (BB, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000912}
913
914
915/// visitMallocInst - I know that personally, whenever I want to remember
916/// something, I have to clear off some space in my brain.
917void
918ISel::visitMallocInst (MallocInst &I)
919{
Brian Gaekee48ec012002-12-13 06:46:31 +0000920 // We assume that by this point, malloc instructions have been
921 // lowered to calls, and dlsym will magically find malloc for us.
922 // So we do not want to see malloc instructions here.
923 visitInstruction (I);
924}
925
926
927/// visitFreeInst - same story as MallocInst
928void
929ISel::visitFreeInst (FreeInst &I)
930{
931 // We assume that by this point, free instructions have been
932 // lowered to calls, and dlsym will magically find free for us.
933 // So we do not want to see free instructions here.
Brian Gaeke20244b72002-12-12 15:33:40 +0000934 visitInstruction (I);
935}
936
937
938/// visitAllocaInst - I want some stack space. Come on, man, I said I
939/// want some freakin' stack space.
940void
941ISel::visitAllocaInst (AllocaInst &I)
942{
Brian Gaekee48ec012002-12-13 06:46:31 +0000943 // Find the data size of the alloca inst's getAllocatedType.
944 const Type *allocatedType = I.getAllocatedType ();
945 const TargetData &TD = TM.DataLayout;
946 unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
947 // Keep stack 32-bit aligned.
948 unsigned int allocatedTypeWords = allocatedTypeSize / 4;
949 if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
950 // Subtract size from stack pointer, thereby allocating some space.
951 BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
952 // Put a pointer to the space into the result register, by copying
953 // the stack pointer.
954 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000955}
956
957
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000958/// createSimpleX86InstructionSelector - This pass converts an LLVM function
959/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000960/// generated code sucks but the implementation is nice and simple.
961///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000962Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
963 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000964}