blob: 4c361527e2c365653e5f1fd461d090dc19e638a9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dale Johannesen98738822008-02-22 22:17:59 +000021#include "llvm/ParamAttrsList.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000136 bool isSigned,
137 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000150 void writeMemoryAccess(Value *Operand, const Type *OperandType,
151 bool IsVolatile, unsigned Alignment);
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 private :
154 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
155
156 void lowerIntrinsics(Function &F);
157
158 void printModule(Module *M);
159 void printModuleTypes(const TypeSymbolTable &ST);
160 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
161 void printFloatingPointConstants(Function &F);
162 void printFunctionSignature(const Function *F, bool Prototype);
163
164 void printFunction(Function &);
165 void printBasicBlock(BasicBlock *BB);
166 void printLoop(Loop *L);
167
168 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
169 void printConstant(Constant *CPV);
170 void printConstantWithCast(Constant *CPV, unsigned Opcode);
171 bool printConstExprCast(const ConstantExpr *CE);
172 void printConstantArray(ConstantArray *CPA);
173 void printConstantVector(ConstantVector *CP);
174
175 // isInlinableInst - Attempt to inline instructions into their uses to build
176 // trees as much as possible. To do this, we have to consistently decide
177 // what is acceptable to inline, so that variable declarations don't get
178 // printed and an extra copy of the expr is not emitted.
179 //
180 static bool isInlinableInst(const Instruction &I) {
181 // Always inline cmp instructions, even if they are shared by multiple
182 // expressions. GCC generates horrible code if we don't.
183 if (isa<CmpInst>(I))
184 return true;
185
186 // Must be an expression, must be used exactly once. If it is dead, we
187 // emit it inline where it would go.
188 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
189 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
190 isa<LoadInst>(I) || isa<VAArgInst>(I))
191 // Don't inline a load across a store or other bad things!
192 return false;
193
194 // Must not be used in inline asm
195 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
196
197 // Only inline instruction it if it's use is in the same BB as the inst.
198 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
199 }
200
201 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
202 // variables which are accessed with the & operator. This causes GCC to
203 // generate significantly better code than to emit alloca calls directly.
204 //
205 static const AllocaInst *isDirectAlloca(const Value *V) {
206 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
207 if (!AI) return false;
208 if (AI->isArrayAllocation())
209 return 0; // FIXME: we can also inline fixed size array allocas!
210 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
211 return 0;
212 return AI;
213 }
214
215 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
216 static bool isInlineAsm(const Instruction& I) {
217 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
218 return true;
219 return false;
220 }
221
222 // Instruction visitation functions
223 friend class InstVisitor<CWriter>;
224
225 void visitReturnInst(ReturnInst &I);
226 void visitBranchInst(BranchInst &I);
227 void visitSwitchInst(SwitchInst &I);
228 void visitInvokeInst(InvokeInst &I) {
229 assert(0 && "Lowerinvoke pass didn't work!");
230 }
231
232 void visitUnwindInst(UnwindInst &I) {
233 assert(0 && "Lowerinvoke pass didn't work!");
234 }
235 void visitUnreachableInst(UnreachableInst &I);
236
237 void visitPHINode(PHINode &I);
238 void visitBinaryOperator(Instruction &I);
239 void visitICmpInst(ICmpInst &I);
240 void visitFCmpInst(FCmpInst &I);
241
242 void visitCastInst (CastInst &I);
243 void visitSelectInst(SelectInst &I);
244 void visitCallInst (CallInst &I);
245 void visitInlineAsm(CallInst &I);
246
247 void visitMallocInst(MallocInst &I);
248 void visitAllocaInst(AllocaInst &I);
249 void visitFreeInst (FreeInst &I);
250 void visitLoadInst (LoadInst &I);
251 void visitStoreInst (StoreInst &I);
252 void visitGetElementPtrInst(GetElementPtrInst &I);
253 void visitVAArgInst (VAArgInst &I);
254
255 void visitInstruction(Instruction &I) {
256 cerr << "C Writer does not know about " << I;
257 abort();
258 }
259
260 void outputLValue(Instruction *I) {
261 Out << " " << GetValueName(I) << " = ";
262 }
263
264 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
265 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
266 BasicBlock *Successor, unsigned Indent);
267 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
268 unsigned Indent);
269 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
270 gep_type_iterator E);
271
272 std::string GetValueName(const Value *Operand);
273 };
274}
275
276char CWriter::ID = 0;
277
278/// This method inserts names for any unnamed structure types that are used by
279/// the program, and removes names from structure types that are not used by the
280/// program.
281///
282bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
283 // Get a set of types that are used by the program...
284 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
285
286 // Loop over the module symbol table, removing types from UT that are
287 // already named, and removing names for types that are not used.
288 //
289 TypeSymbolTable &TST = M.getTypeSymbolTable();
290 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
291 TI != TE; ) {
292 TypeSymbolTable::iterator I = TI++;
293
294 // If this isn't a struct type, remove it from our set of types to name.
295 // This simplifies emission later.
296 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
297 TST.remove(I);
298 } else {
299 // If this is not used, remove it from the symbol table.
300 std::set<const Type *>::iterator UTI = UT.find(I->second);
301 if (UTI == UT.end())
302 TST.remove(I);
303 else
304 UT.erase(UTI); // Only keep one name for this type.
305 }
306 }
307
308 // UT now contains types that are not named. Loop over it, naming
309 // structure types.
310 //
311 bool Changed = false;
312 unsigned RenameCounter = 0;
313 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
314 I != E; ++I)
315 if (const StructType *ST = dyn_cast<StructType>(*I)) {
316 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
317 ++RenameCounter;
318 Changed = true;
319 }
320
321
322 // Loop over all external functions and globals. If we have two with
323 // identical names, merge them.
324 // FIXME: This code should disappear when we don't allow values with the same
325 // names when they have different types!
326 std::map<std::string, GlobalValue*> ExtSymbols;
327 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
328 Function *GV = I++;
329 if (GV->isDeclaration() && GV->hasName()) {
330 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
331 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
332 if (!X.second) {
333 // Found a conflict, replace this global with the previous one.
334 GlobalValue *OldGV = X.first->second;
335 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
336 GV->eraseFromParent();
337 Changed = true;
338 }
339 }
340 }
341 // Do the same for globals.
342 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
343 I != E;) {
344 GlobalVariable *GV = I++;
345 if (GV->isDeclaration() && GV->hasName()) {
346 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
347 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
348 if (!X.second) {
349 // Found a conflict, replace this global with the previous one.
350 GlobalValue *OldGV = X.first->second;
351 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
352 GV->eraseFromParent();
353 Changed = true;
354 }
355 }
356 }
357
358 return Changed;
359}
360
361/// printStructReturnPointerFunctionType - This is like printType for a struct
362/// return type, except, instead of printing the type as void (*)(Struct*, ...)
363/// print it as "Struct (*)(...)", for struct return functions.
364void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000365 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 const PointerType *TheTy) {
367 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
368 std::stringstream FunctionInnards;
369 FunctionInnards << " (*) (";
370 bool PrintedType = false;
371
372 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
373 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
374 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000375 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (PrintedType)
377 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000378 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000379 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
380 assert(isa<PointerType>(ArgTy));
381 ArgTy = cast<PointerType>(ArgTy)->getElementType();
382 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000383 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000384 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 PrintedType = true;
386 }
387 if (FTy->isVarArg()) {
388 if (PrintedType)
389 FunctionInnards << ", ...";
390 } else if (!PrintedType) {
391 FunctionInnards << "void";
392 }
393 FunctionInnards << ')';
394 std::string tstr = FunctionInnards.str();
395 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000396 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397}
398
399std::ostream &
400CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000401 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000402 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 "Invalid type for printSimpleType");
404 switch (Ty->getTypeID()) {
405 case Type::VoidTyID: return Out << "void " << NameSoFar;
406 case Type::IntegerTyID: {
407 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
408 if (NumBits == 1)
409 return Out << "bool " << NameSoFar;
410 else if (NumBits <= 8)
411 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
412 else if (NumBits <= 16)
413 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
414 else if (NumBits <= 32)
415 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
416 else {
417 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
418 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
419 }
420 }
421 case Type::FloatTyID: return Out << "float " << NameSoFar;
422 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000423 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
424 // present matches host 'long double'.
425 case Type::X86_FP80TyID:
426 case Type::PPC_FP128TyID:
427 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000428
429 case Type::VectorTyID: {
430 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000431 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000432 " __attribute__((vector_size(" +
433 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000434 }
435
436 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 cerr << "Unknown primitive type: " << *Ty << "\n";
438 abort();
439 }
440}
441
442// Pass the Type* and the variable name and this prints out the variable
443// declaration.
444//
445std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
446 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000447 bool IgnoreName, const ParamAttrsList* PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000448 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 printSimpleType(Out, Ty, isSigned, NameSoFar);
450 return Out;
451 }
452
453 // Check to see if the type is named.
454 if (!IgnoreName || isa<OpaqueType>(Ty)) {
455 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
456 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
457 }
458
459 switch (Ty->getTypeID()) {
460 case Type::FunctionTyID: {
461 const FunctionType *FTy = cast<FunctionType>(Ty);
462 std::stringstream FunctionInnards;
463 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 unsigned Idx = 1;
465 for (FunctionType::param_iterator I = FTy->param_begin(),
466 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000467 const Type *ArgTy = *I;
468 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
469 assert(isa<PointerType>(ArgTy));
470 ArgTy = cast<PointerType>(ArgTy)->getElementType();
471 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000472 if (I != FTy->param_begin())
473 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000474 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000475 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000476 ++Idx;
477 }
478 if (FTy->isVarArg()) {
479 if (FTy->getNumParams())
480 FunctionInnards << ", ...";
481 } else if (!FTy->getNumParams()) {
482 FunctionInnards << "void";
483 }
484 FunctionInnards << ')';
485 std::string tstr = FunctionInnards.str();
486 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000487 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000488 return Out;
489 }
490 case Type::StructTyID: {
491 const StructType *STy = cast<StructType>(Ty);
492 Out << NameSoFar + " {\n";
493 unsigned Idx = 0;
494 for (StructType::element_iterator I = STy->element_begin(),
495 E = STy->element_end(); I != E; ++I) {
496 Out << " ";
497 printType(Out, *I, false, "field" + utostr(Idx++));
498 Out << ";\n";
499 }
500 Out << '}';
501 if (STy->isPacked())
502 Out << " __attribute__ ((packed))";
503 return Out;
504 }
505
506 case Type::PointerTyID: {
507 const PointerType *PTy = cast<PointerType>(Ty);
508 std::string ptrName = "*" + NameSoFar;
509
510 if (isa<ArrayType>(PTy->getElementType()) ||
511 isa<VectorType>(PTy->getElementType()))
512 ptrName = "(" + ptrName + ")";
513
Evan Chengb8a072c2008-01-12 18:53:07 +0000514 if (PAL)
515 // Must be a function ptr cast!
516 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000517 return printType(Out, PTy->getElementType(), false, ptrName);
518 }
519
520 case Type::ArrayTyID: {
521 const ArrayType *ATy = cast<ArrayType>(Ty);
522 unsigned NumElements = ATy->getNumElements();
523 if (NumElements == 0) NumElements = 1;
524 return printType(Out, ATy->getElementType(), false,
525 NameSoFar + "[" + utostr(NumElements) + "]");
526 }
527
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000528 case Type::OpaqueTyID: {
529 static int Count = 0;
530 std::string TyName = "struct opaque_" + itostr(Count++);
531 assert(TypeNames.find(Ty) == TypeNames.end());
532 TypeNames[Ty] = TyName;
533 return Out << TyName << ' ' << NameSoFar;
534 }
535 default:
536 assert(0 && "Unhandled case in getTypeProps!");
537 abort();
538 }
539
540 return Out;
541}
542
543void CWriter::printConstantArray(ConstantArray *CPA) {
544
545 // As a special case, print the array as a string if it is an array of
546 // ubytes or an array of sbytes with positive values.
547 //
548 const Type *ETy = CPA->getType()->getElementType();
549 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
550
551 // Make sure the last character is a null char, as automatically added by C
552 if (isString && (CPA->getNumOperands() == 0 ||
553 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
554 isString = false;
555
556 if (isString) {
557 Out << '\"';
558 // Keep track of whether the last number was a hexadecimal escape
559 bool LastWasHex = false;
560
561 // Do not include the last character, which we know is null
562 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
563 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
564
565 // Print it out literally if it is a printable character. The only thing
566 // to be careful about is when the last letter output was a hex escape
567 // code, in which case we have to be careful not to print out hex digits
568 // explicitly (the C compiler thinks it is a continuation of the previous
569 // character, sheesh...)
570 //
571 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
572 LastWasHex = false;
573 if (C == '"' || C == '\\')
574 Out << "\\" << C;
575 else
576 Out << C;
577 } else {
578 LastWasHex = false;
579 switch (C) {
580 case '\n': Out << "\\n"; break;
581 case '\t': Out << "\\t"; break;
582 case '\r': Out << "\\r"; break;
583 case '\v': Out << "\\v"; break;
584 case '\a': Out << "\\a"; break;
585 case '\"': Out << "\\\""; break;
586 case '\'': Out << "\\\'"; break;
587 default:
588 Out << "\\x";
589 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
590 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
591 LastWasHex = true;
592 break;
593 }
594 }
595 }
596 Out << '\"';
597 } else {
598 Out << '{';
599 if (CPA->getNumOperands()) {
600 Out << ' ';
601 printConstant(cast<Constant>(CPA->getOperand(0)));
602 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
603 Out << ", ";
604 printConstant(cast<Constant>(CPA->getOperand(i)));
605 }
606 }
607 Out << " }";
608 }
609}
610
611void CWriter::printConstantVector(ConstantVector *CP) {
612 Out << '{';
613 if (CP->getNumOperands()) {
614 Out << ' ';
615 printConstant(cast<Constant>(CP->getOperand(0)));
616 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
617 Out << ", ";
618 printConstant(cast<Constant>(CP->getOperand(i)));
619 }
620 }
621 Out << " }";
622}
623
624// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
625// textually as a double (rather than as a reference to a stack-allocated
626// variable). We decide this by converting CFP to a string and back into a
627// double, and then checking whether the conversion results in a bit-equal
628// double to the original value of CFP. This depends on us and the target C
629// compiler agreeing on the conversion process (which is pretty likely since we
630// only deal in IEEE FP).
631//
632static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000633 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000634 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
635 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000636 APFloat APF = APFloat(CFP->getValueAPF()); // copy
637 if (CFP->getType()==Type::FloatTy)
638 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
640 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000641 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 if (!strncmp(Buffer, "0x", 2) ||
643 !strncmp(Buffer, "-0x", 3) ||
644 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000645 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 return false;
647#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000648 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649
650 while (StrVal[0] == ' ')
651 StrVal.erase(StrVal.begin());
652
653 // Check to make sure that the stringized number is not some string like "Inf"
654 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
655 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
656 ((StrVal[0] == '-' || StrVal[0] == '+') &&
657 (StrVal[1] >= '0' && StrVal[1] <= '9')))
658 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000659 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 return false;
661#endif
662}
663
664/// Print out the casting for a cast operation. This does the double casting
665/// necessary for conversion to the destination type, if necessary.
666/// @brief Print a cast
667void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
668 // Print the destination type cast
669 switch (opc) {
670 case Instruction::UIToFP:
671 case Instruction::SIToFP:
672 case Instruction::IntToPtr:
673 case Instruction::Trunc:
674 case Instruction::BitCast:
675 case Instruction::FPExt:
676 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
677 Out << '(';
678 printType(Out, DstTy);
679 Out << ')';
680 break;
681 case Instruction::ZExt:
682 case Instruction::PtrToInt:
683 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
684 Out << '(';
685 printSimpleType(Out, DstTy, false);
686 Out << ')';
687 break;
688 case Instruction::SExt:
689 case Instruction::FPToSI: // For these, make sure we get a signed dest
690 Out << '(';
691 printSimpleType(Out, DstTy, true);
692 Out << ')';
693 break;
694 default:
695 assert(0 && "Invalid cast opcode");
696 }
697
698 // Print the source type cast
699 switch (opc) {
700 case Instruction::UIToFP:
701 case Instruction::ZExt:
702 Out << '(';
703 printSimpleType(Out, SrcTy, false);
704 Out << ')';
705 break;
706 case Instruction::SIToFP:
707 case Instruction::SExt:
708 Out << '(';
709 printSimpleType(Out, SrcTy, true);
710 Out << ')';
711 break;
712 case Instruction::IntToPtr:
713 case Instruction::PtrToInt:
714 // Avoid "cast to pointer from integer of different size" warnings
715 Out << "(unsigned long)";
716 break;
717 case Instruction::Trunc:
718 case Instruction::BitCast:
719 case Instruction::FPExt:
720 case Instruction::FPTrunc:
721 case Instruction::FPToSI:
722 case Instruction::FPToUI:
723 break; // These don't need a source cast.
724 default:
725 assert(0 && "Invalid cast opcode");
726 break;
727 }
728}
729
730// printConstant - The LLVM Constant to C Constant converter.
731void CWriter::printConstant(Constant *CPV) {
732 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
733 switch (CE->getOpcode()) {
734 case Instruction::Trunc:
735 case Instruction::ZExt:
736 case Instruction::SExt:
737 case Instruction::FPTrunc:
738 case Instruction::FPExt:
739 case Instruction::UIToFP:
740 case Instruction::SIToFP:
741 case Instruction::FPToUI:
742 case Instruction::FPToSI:
743 case Instruction::PtrToInt:
744 case Instruction::IntToPtr:
745 case Instruction::BitCast:
746 Out << "(";
747 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
748 if (CE->getOpcode() == Instruction::SExt &&
749 CE->getOperand(0)->getType() == Type::Int1Ty) {
750 // Make sure we really sext from bool here by subtracting from 0
751 Out << "0-";
752 }
753 printConstant(CE->getOperand(0));
754 if (CE->getType() == Type::Int1Ty &&
755 (CE->getOpcode() == Instruction::Trunc ||
756 CE->getOpcode() == Instruction::FPToUI ||
757 CE->getOpcode() == Instruction::FPToSI ||
758 CE->getOpcode() == Instruction::PtrToInt)) {
759 // Make sure we really truncate to bool here by anding with 1
760 Out << "&1u";
761 }
762 Out << ')';
763 return;
764
765 case Instruction::GetElementPtr:
766 Out << "(&(";
767 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
768 gep_type_end(CPV));
769 Out << "))";
770 return;
771 case Instruction::Select:
772 Out << '(';
773 printConstant(CE->getOperand(0));
774 Out << '?';
775 printConstant(CE->getOperand(1));
776 Out << ':';
777 printConstant(CE->getOperand(2));
778 Out << ')';
779 return;
780 case Instruction::Add:
781 case Instruction::Sub:
782 case Instruction::Mul:
783 case Instruction::SDiv:
784 case Instruction::UDiv:
785 case Instruction::FDiv:
786 case Instruction::URem:
787 case Instruction::SRem:
788 case Instruction::FRem:
789 case Instruction::And:
790 case Instruction::Or:
791 case Instruction::Xor:
792 case Instruction::ICmp:
793 case Instruction::Shl:
794 case Instruction::LShr:
795 case Instruction::AShr:
796 {
797 Out << '(';
798 bool NeedsClosingParens = printConstExprCast(CE);
799 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
800 switch (CE->getOpcode()) {
801 case Instruction::Add: Out << " + "; break;
802 case Instruction::Sub: Out << " - "; break;
803 case Instruction::Mul: Out << " * "; break;
804 case Instruction::URem:
805 case Instruction::SRem:
806 case Instruction::FRem: Out << " % "; break;
807 case Instruction::UDiv:
808 case Instruction::SDiv:
809 case Instruction::FDiv: Out << " / "; break;
810 case Instruction::And: Out << " & "; break;
811 case Instruction::Or: Out << " | "; break;
812 case Instruction::Xor: Out << " ^ "; break;
813 case Instruction::Shl: Out << " << "; break;
814 case Instruction::LShr:
815 case Instruction::AShr: Out << " >> "; break;
816 case Instruction::ICmp:
817 switch (CE->getPredicate()) {
818 case ICmpInst::ICMP_EQ: Out << " == "; break;
819 case ICmpInst::ICMP_NE: Out << " != "; break;
820 case ICmpInst::ICMP_SLT:
821 case ICmpInst::ICMP_ULT: Out << " < "; break;
822 case ICmpInst::ICMP_SLE:
823 case ICmpInst::ICMP_ULE: Out << " <= "; break;
824 case ICmpInst::ICMP_SGT:
825 case ICmpInst::ICMP_UGT: Out << " > "; break;
826 case ICmpInst::ICMP_SGE:
827 case ICmpInst::ICMP_UGE: Out << " >= "; break;
828 default: assert(0 && "Illegal ICmp predicate");
829 }
830 break;
831 default: assert(0 && "Illegal opcode here!");
832 }
833 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
834 if (NeedsClosingParens)
835 Out << "))";
836 Out << ')';
837 return;
838 }
839 case Instruction::FCmp: {
840 Out << '(';
841 bool NeedsClosingParens = printConstExprCast(CE);
842 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
843 Out << "0";
844 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
845 Out << "1";
846 else {
847 const char* op = 0;
848 switch (CE->getPredicate()) {
849 default: assert(0 && "Illegal FCmp predicate");
850 case FCmpInst::FCMP_ORD: op = "ord"; break;
851 case FCmpInst::FCMP_UNO: op = "uno"; break;
852 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
853 case FCmpInst::FCMP_UNE: op = "une"; break;
854 case FCmpInst::FCMP_ULT: op = "ult"; break;
855 case FCmpInst::FCMP_ULE: op = "ule"; break;
856 case FCmpInst::FCMP_UGT: op = "ugt"; break;
857 case FCmpInst::FCMP_UGE: op = "uge"; break;
858 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
859 case FCmpInst::FCMP_ONE: op = "one"; break;
860 case FCmpInst::FCMP_OLT: op = "olt"; break;
861 case FCmpInst::FCMP_OLE: op = "ole"; break;
862 case FCmpInst::FCMP_OGT: op = "ogt"; break;
863 case FCmpInst::FCMP_OGE: op = "oge"; break;
864 }
865 Out << "llvm_fcmp_" << op << "(";
866 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
867 Out << ", ";
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 Out << ")";
870 }
871 if (NeedsClosingParens)
872 Out << "))";
873 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000874 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875 }
876 default:
877 cerr << "CWriter Error: Unhandled constant expression: "
878 << *CE << "\n";
879 abort();
880 }
881 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
882 Out << "((";
883 printType(Out, CPV->getType()); // sign doesn't matter
884 Out << ")/*UNDEF*/0)";
885 return;
886 }
887
888 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
889 const Type* Ty = CI->getType();
890 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000891 Out << (CI->getZExtValue() ? '1' : '0');
892 else if (Ty == Type::Int32Ty)
893 Out << CI->getZExtValue() << 'u';
894 else if (Ty->getPrimitiveSizeInBits() > 32)
895 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000896 else {
897 Out << "((";
898 printSimpleType(Out, Ty, false) << ')';
899 if (CI->isMinValue(true))
900 Out << CI->getZExtValue() << 'u';
901 else
902 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000903 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904 }
905 return;
906 }
907
908 switch (CPV->getType()->getTypeID()) {
909 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000910 case Type::DoubleTyID:
911 case Type::X86_FP80TyID:
912 case Type::PPC_FP128TyID:
913 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914 ConstantFP *FPC = cast<ConstantFP>(CPV);
915 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
916 if (I != FPConstantMap.end()) {
917 // Because of FP precision problems we must load from a stack allocated
918 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000919 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
920 FPC->getType() == Type::DoubleTy ? "double" :
921 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 << "*)&FPConstant" << I->second << ')';
923 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000924 assert(FPC->getType() == Type::FloatTy ||
925 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000926 double V = FPC->getType() == Type::FloatTy ?
927 FPC->getValueAPF().convertToFloat() :
928 FPC->getValueAPF().convertToDouble();
929 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 // The value is NaN
931
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000932 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
934 // it's 0x7ff4.
935 const unsigned long QuietNaN = 0x7ff8UL;
936 //const unsigned long SignalNaN = 0x7ff4UL;
937
938 // We need to grab the first part of the FP #
939 char Buffer[100];
940
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000941 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
943
944 std::string Num(&Buffer[0], &Buffer[6]);
945 unsigned long Val = strtoul(Num.c_str(), 0, 16);
946
947 if (FPC->getType() == Type::FloatTy)
948 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
949 << Buffer << "\") /*nan*/ ";
950 else
951 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
952 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000953 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000955 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000956 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
957 << " /*inf*/ ";
958 } else {
959 std::string Num;
960#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
961 // Print out the constant as a floating point number.
962 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000963 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 Num = Buffer;
965#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000966 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000968 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 }
970 }
971 break;
972 }
973
974 case Type::ArrayTyID:
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000975 if (ConstantArray *CA = cast<ConstantArray>(CPV)) {
976 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +0000977 } else {
978 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 const ArrayType *AT = cast<ArrayType>(CPV->getType());
980 Out << '{';
981 if (AT->getNumElements()) {
982 Out << ' ';
983 Constant *CZ = Constant::getNullValue(AT->getElementType());
984 printConstant(CZ);
985 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
986 Out << ", ";
987 printConstant(CZ);
988 }
989 }
990 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 }
992 break;
993
994 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +0000995 // Use C99 compound expression literal initializer syntax.
996 Out << "(";
997 printType(Out, CPV->getType());
998 Out << ")";
Chris Lattner6d4cd9b2008-03-02 03:18:46 +0000999 if (ConstantVector *CV = cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001000 printConstantVector(CV);
1001 } else {
1002 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1003 const VectorType *VT = cast<VectorType>(CPV->getType());
1004 Out << "{ ";
1005 Constant *CZ = Constant::getNullValue(VT->getElementType());
1006 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001007 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001008 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 }
1011 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 }
1013 break;
1014
1015 case Type::StructTyID:
1016 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1017 const StructType *ST = cast<StructType>(CPV->getType());
1018 Out << '{';
1019 if (ST->getNumElements()) {
1020 Out << ' ';
1021 printConstant(Constant::getNullValue(ST->getElementType(0)));
1022 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1023 Out << ", ";
1024 printConstant(Constant::getNullValue(ST->getElementType(i)));
1025 }
1026 }
1027 Out << " }";
1028 } else {
1029 Out << '{';
1030 if (CPV->getNumOperands()) {
1031 Out << ' ';
1032 printConstant(cast<Constant>(CPV->getOperand(0)));
1033 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1034 Out << ", ";
1035 printConstant(cast<Constant>(CPV->getOperand(i)));
1036 }
1037 }
1038 Out << " }";
1039 }
1040 break;
1041
1042 case Type::PointerTyID:
1043 if (isa<ConstantPointerNull>(CPV)) {
1044 Out << "((";
1045 printType(Out, CPV->getType()); // sign doesn't matter
1046 Out << ")/*NULL*/0)";
1047 break;
1048 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1049 writeOperand(GV);
1050 break;
1051 }
1052 // FALL THROUGH
1053 default:
1054 cerr << "Unknown constant type: " << *CPV << "\n";
1055 abort();
1056 }
1057}
1058
1059// Some constant expressions need to be casted back to the original types
1060// because their operands were casted to the expected type. This function takes
1061// care of detecting that case and printing the cast for the ConstantExpr.
1062bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1063 bool NeedsExplicitCast = false;
1064 const Type *Ty = CE->getOperand(0)->getType();
1065 bool TypeIsSigned = false;
1066 switch (CE->getOpcode()) {
1067 case Instruction::LShr:
1068 case Instruction::URem:
1069 case Instruction::UDiv: NeedsExplicitCast = true; break;
1070 case Instruction::AShr:
1071 case Instruction::SRem:
1072 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1073 case Instruction::SExt:
1074 Ty = CE->getType();
1075 NeedsExplicitCast = true;
1076 TypeIsSigned = true;
1077 break;
1078 case Instruction::ZExt:
1079 case Instruction::Trunc:
1080 case Instruction::FPTrunc:
1081 case Instruction::FPExt:
1082 case Instruction::UIToFP:
1083 case Instruction::SIToFP:
1084 case Instruction::FPToUI:
1085 case Instruction::FPToSI:
1086 case Instruction::PtrToInt:
1087 case Instruction::IntToPtr:
1088 case Instruction::BitCast:
1089 Ty = CE->getType();
1090 NeedsExplicitCast = true;
1091 break;
1092 default: break;
1093 }
1094 if (NeedsExplicitCast) {
1095 Out << "((";
1096 if (Ty->isInteger() && Ty != Type::Int1Ty)
1097 printSimpleType(Out, Ty, TypeIsSigned);
1098 else
1099 printType(Out, Ty); // not integer, sign doesn't matter
1100 Out << ")(";
1101 }
1102 return NeedsExplicitCast;
1103}
1104
1105// Print a constant assuming that it is the operand for a given Opcode. The
1106// opcodes that care about sign need to cast their operands to the expected
1107// type before the operation proceeds. This function does the casting.
1108void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1109
1110 // Extract the operand's type, we'll need it.
1111 const Type* OpTy = CPV->getType();
1112
1113 // Indicate whether to do the cast or not.
1114 bool shouldCast = false;
1115 bool typeIsSigned = false;
1116
1117 // Based on the Opcode for which this Constant is being written, determine
1118 // the new type to which the operand should be casted by setting the value
1119 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1120 // casted below.
1121 switch (Opcode) {
1122 default:
1123 // for most instructions, it doesn't matter
1124 break;
1125 case Instruction::LShr:
1126 case Instruction::UDiv:
1127 case Instruction::URem:
1128 shouldCast = true;
1129 break;
1130 case Instruction::AShr:
1131 case Instruction::SDiv:
1132 case Instruction::SRem:
1133 shouldCast = true;
1134 typeIsSigned = true;
1135 break;
1136 }
1137
1138 // Write out the casted constant if we should, otherwise just write the
1139 // operand.
1140 if (shouldCast) {
1141 Out << "((";
1142 printSimpleType(Out, OpTy, typeIsSigned);
1143 Out << ")";
1144 printConstant(CPV);
1145 Out << ")";
1146 } else
1147 printConstant(CPV);
1148}
1149
1150std::string CWriter::GetValueName(const Value *Operand) {
1151 std::string Name;
1152
1153 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1154 std::string VarName;
1155
1156 Name = Operand->getName();
1157 VarName.reserve(Name.capacity());
1158
1159 for (std::string::iterator I = Name.begin(), E = Name.end();
1160 I != E; ++I) {
1161 char ch = *I;
1162
1163 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001164 (ch >= '0' && ch <= '9') || ch == '_')) {
1165 char buffer[5];
1166 sprintf(buffer, "_%x_", ch);
1167 VarName += buffer;
1168 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 VarName += ch;
1170 }
1171
1172 Name = "llvm_cbe_" + VarName;
1173 } else {
1174 Name = Mang->getValueName(Operand);
1175 }
1176
1177 return Name;
1178}
1179
1180void CWriter::writeOperandInternal(Value *Operand) {
1181 if (Instruction *I = dyn_cast<Instruction>(Operand))
1182 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1183 // Should we inline this instruction to build a tree?
1184 Out << '(';
1185 visit(*I);
1186 Out << ')';
1187 return;
1188 }
1189
1190 Constant* CPV = dyn_cast<Constant>(Operand);
1191
1192 if (CPV && !isa<GlobalValue>(CPV))
1193 printConstant(CPV);
1194 else
1195 Out << GetValueName(Operand);
1196}
1197
1198void CWriter::writeOperandRaw(Value *Operand) {
1199 Constant* CPV = dyn_cast<Constant>(Operand);
1200 if (CPV && !isa<GlobalValue>(CPV)) {
1201 printConstant(CPV);
1202 } else {
1203 Out << GetValueName(Operand);
1204 }
1205}
1206
1207void CWriter::writeOperand(Value *Operand) {
Evan Chengc25c7742008-02-20 18:32:05 +00001208 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001209 Out << "(&"; // Global variables are referenced as their addresses by llvm
1210
1211 writeOperandInternal(Operand);
1212
Evan Chengc25c7742008-02-20 18:32:05 +00001213 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001214 Out << ')';
1215}
1216
1217// Some instructions need to have their result value casted back to the
1218// original types because their operands were casted to the expected type.
1219// This function takes care of detecting that case and printing the cast
1220// for the Instruction.
1221bool CWriter::writeInstructionCast(const Instruction &I) {
1222 const Type *Ty = I.getOperand(0)->getType();
1223 switch (I.getOpcode()) {
1224 case Instruction::LShr:
1225 case Instruction::URem:
1226 case Instruction::UDiv:
1227 Out << "((";
1228 printSimpleType(Out, Ty, false);
1229 Out << ")(";
1230 return true;
1231 case Instruction::AShr:
1232 case Instruction::SRem:
1233 case Instruction::SDiv:
1234 Out << "((";
1235 printSimpleType(Out, Ty, true);
1236 Out << ")(";
1237 return true;
1238 default: break;
1239 }
1240 return false;
1241}
1242
1243// Write the operand with a cast to another type based on the Opcode being used.
1244// This will be used in cases where an instruction has specific type
1245// requirements (usually signedness) for its operands.
1246void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1247
1248 // Extract the operand's type, we'll need it.
1249 const Type* OpTy = Operand->getType();
1250
1251 // Indicate whether to do the cast or not.
1252 bool shouldCast = false;
1253
1254 // Indicate whether the cast should be to a signed type or not.
1255 bool castIsSigned = false;
1256
1257 // Based on the Opcode for which this Operand is being written, determine
1258 // the new type to which the operand should be casted by setting the value
1259 // of OpTy. If we change OpTy, also set shouldCast to true.
1260 switch (Opcode) {
1261 default:
1262 // for most instructions, it doesn't matter
1263 break;
1264 case Instruction::LShr:
1265 case Instruction::UDiv:
1266 case Instruction::URem: // Cast to unsigned first
1267 shouldCast = true;
1268 castIsSigned = false;
1269 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001270 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 case Instruction::AShr:
1272 case Instruction::SDiv:
1273 case Instruction::SRem: // Cast to signed first
1274 shouldCast = true;
1275 castIsSigned = true;
1276 break;
1277 }
1278
1279 // Write out the casted operand if we should, otherwise just write the
1280 // operand.
1281 if (shouldCast) {
1282 Out << "((";
1283 printSimpleType(Out, OpTy, castIsSigned);
1284 Out << ")";
1285 writeOperand(Operand);
1286 Out << ")";
1287 } else
1288 writeOperand(Operand);
1289}
1290
1291// Write the operand with a cast to another type based on the icmp predicate
1292// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001293void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1294 // This has to do a cast to ensure the operand has the right signedness.
1295 // Also, if the operand is a pointer, we make sure to cast to an integer when
1296 // doing the comparison both for signedness and so that the C compiler doesn't
1297 // optimize things like "p < NULL" to false (p may contain an integer value
1298 // f.e.).
1299 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300
1301 // Write out the casted operand if we should, otherwise just write the
1302 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001303 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001305 return;
1306 }
1307
1308 // Should this be a signed comparison? If so, convert to signed.
1309 bool castIsSigned = Cmp.isSignedPredicate();
1310
1311 // If the operand was a pointer, convert to a large integer type.
1312 const Type* OpTy = Operand->getType();
1313 if (isa<PointerType>(OpTy))
1314 OpTy = TD->getIntPtrType();
1315
1316 Out << "((";
1317 printSimpleType(Out, OpTy, castIsSigned);
1318 Out << ")";
1319 writeOperand(Operand);
1320 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001321}
1322
1323// generateCompilerSpecificCode - This is where we add conditional compilation
1324// directives to cater to specific compilers as need be.
1325//
1326static void generateCompilerSpecificCode(std::ostream& Out) {
1327 // Alloca is hard to get, and we don't want to include stdlib.h here.
1328 Out << "/* get a declaration for alloca */\n"
1329 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1330 << "#define alloca(x) __builtin_alloca((x))\n"
1331 << "#define _alloca(x) __builtin_alloca((x))\n"
1332 << "#elif defined(__APPLE__)\n"
1333 << "extern void *__builtin_alloca(unsigned long);\n"
1334 << "#define alloca(x) __builtin_alloca(x)\n"
1335 << "#define longjmp _longjmp\n"
1336 << "#define setjmp _setjmp\n"
1337 << "#elif defined(__sun__)\n"
1338 << "#if defined(__sparcv9)\n"
1339 << "extern void *__builtin_alloca(unsigned long);\n"
1340 << "#else\n"
1341 << "extern void *__builtin_alloca(unsigned int);\n"
1342 << "#endif\n"
1343 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001344 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001345 << "#define alloca(x) __builtin_alloca(x)\n"
1346 << "#elif defined(_MSC_VER)\n"
1347 << "#define inline _inline\n"
1348 << "#define alloca(x) _alloca(x)\n"
1349 << "#else\n"
1350 << "#include <alloca.h>\n"
1351 << "#endif\n\n";
1352
1353 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1354 // If we aren't being compiled with GCC, just drop these attributes.
1355 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1356 << "#define __attribute__(X)\n"
1357 << "#endif\n\n";
1358
1359 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1360 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1361 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1362 << "#elif defined(__GNUC__)\n"
1363 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1364 << "#else\n"
1365 << "#define __EXTERNAL_WEAK__\n"
1366 << "#endif\n\n";
1367
1368 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1369 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1370 << "#define __ATTRIBUTE_WEAK__\n"
1371 << "#elif defined(__GNUC__)\n"
1372 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1373 << "#else\n"
1374 << "#define __ATTRIBUTE_WEAK__\n"
1375 << "#endif\n\n";
1376
1377 // Add hidden visibility support. FIXME: APPLE_CC?
1378 Out << "#if defined(__GNUC__)\n"
1379 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1380 << "#endif\n\n";
1381
1382 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1383 // From the GCC documentation:
1384 //
1385 // double __builtin_nan (const char *str)
1386 //
1387 // This is an implementation of the ISO C99 function nan.
1388 //
1389 // Since ISO C99 defines this function in terms of strtod, which we do
1390 // not implement, a description of the parsing is in order. The string is
1391 // parsed as by strtol; that is, the base is recognized by leading 0 or
1392 // 0x prefixes. The number parsed is placed in the significand such that
1393 // the least significant bit of the number is at the least significant
1394 // bit of the significand. The number is truncated to fit the significand
1395 // field provided. The significand is forced to be a quiet NaN.
1396 //
1397 // This function, if given a string literal, is evaluated early enough
1398 // that it is considered a compile-time constant.
1399 //
1400 // float __builtin_nanf (const char *str)
1401 //
1402 // Similar to __builtin_nan, except the return type is float.
1403 //
1404 // double __builtin_inf (void)
1405 //
1406 // Similar to __builtin_huge_val, except a warning is generated if the
1407 // target floating-point format does not support infinities. This
1408 // function is suitable for implementing the ISO C99 macro INFINITY.
1409 //
1410 // float __builtin_inff (void)
1411 //
1412 // Similar to __builtin_inf, except the return type is float.
1413 Out << "#ifdef __GNUC__\n"
1414 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1415 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1416 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1417 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1418 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1419 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1420 << "#define LLVM_PREFETCH(addr,rw,locality) "
1421 "__builtin_prefetch(addr,rw,locality)\n"
1422 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1423 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1424 << "#define LLVM_ASM __asm__\n"
1425 << "#else\n"
1426 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1427 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1428 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1429 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1430 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1431 << "#define LLVM_INFF 0.0F /* Float */\n"
1432 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1433 << "#define __ATTRIBUTE_CTOR__\n"
1434 << "#define __ATTRIBUTE_DTOR__\n"
1435 << "#define LLVM_ASM(X)\n"
1436 << "#endif\n\n";
1437
1438 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1439 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1440 << "#define __builtin_stack_restore(X) /* noop */\n"
1441 << "#endif\n\n";
1442
1443 // Output target-specific code that should be inserted into main.
1444 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001445}
1446
1447/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1448/// the StaticTors set.
1449static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1450 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1451 if (!InitList) return;
1452
1453 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1454 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1455 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1456
1457 if (CS->getOperand(1)->isNullValue())
1458 return; // Found a null terminator, exit printing.
1459 Constant *FP = CS->getOperand(1);
1460 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1461 if (CE->isCast())
1462 FP = CE->getOperand(0);
1463 if (Function *F = dyn_cast<Function>(FP))
1464 StaticTors.insert(F);
1465 }
1466}
1467
1468enum SpecialGlobalClass {
1469 NotSpecial = 0,
1470 GlobalCtors, GlobalDtors,
1471 NotPrinted
1472};
1473
1474/// getGlobalVariableClass - If this is a global that is specially recognized
1475/// by LLVM, return a code that indicates how we should handle it.
1476static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1477 // If this is a global ctors/dtors list, handle it now.
1478 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1479 if (GV->getName() == "llvm.global_ctors")
1480 return GlobalCtors;
1481 else if (GV->getName() == "llvm.global_dtors")
1482 return GlobalDtors;
1483 }
1484
1485 // Otherwise, it it is other metadata, don't print it. This catches things
1486 // like debug information.
1487 if (GV->getSection() == "llvm.metadata")
1488 return NotPrinted;
1489
1490 return NotSpecial;
1491}
1492
1493
1494bool CWriter::doInitialization(Module &M) {
1495 // Initialize
1496 TheModule = &M;
1497
1498 TD = new TargetData(&M);
1499 IL = new IntrinsicLowering(*TD);
1500 IL->AddPrototypes(M);
1501
1502 // Ensure that all structure types have names...
1503 Mang = new Mangler(M);
1504 Mang->markCharUnacceptable('.');
1505
1506 // Keep track of which functions are static ctors/dtors so they can have
1507 // an attribute added to their prototypes.
1508 std::set<Function*> StaticCtors, StaticDtors;
1509 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1510 I != E; ++I) {
1511 switch (getGlobalVariableClass(I)) {
1512 default: break;
1513 case GlobalCtors:
1514 FindStaticTors(I, StaticCtors);
1515 break;
1516 case GlobalDtors:
1517 FindStaticTors(I, StaticDtors);
1518 break;
1519 }
1520 }
1521
1522 // get declaration for alloca
1523 Out << "/* Provide Declarations */\n";
1524 Out << "#include <stdarg.h>\n"; // Varargs support
1525 Out << "#include <setjmp.h>\n"; // Unwind support
1526 generateCompilerSpecificCode(Out);
1527
1528 // Provide a definition for `bool' if not compiling with a C++ compiler.
1529 Out << "\n"
1530 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1531
1532 << "\n\n/* Support for floating point constants */\n"
1533 << "typedef unsigned long long ConstantDoubleTy;\n"
1534 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001535 << "typedef struct { unsigned long long f1; unsigned short f2; "
1536 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001537 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001538 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1539 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001540 << "\n\n/* Global Declarations */\n";
1541
1542 // First output all the declarations for the program, because C requires
1543 // Functions & globals to be declared before they are used.
1544 //
1545
1546 // Loop over the symbol table, emitting all named constants...
1547 printModuleTypes(M.getTypeSymbolTable());
1548
1549 // Global variable declarations...
1550 if (!M.global_empty()) {
1551 Out << "\n/* External Global Variable Declarations */\n";
1552 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1553 I != E; ++I) {
1554
1555 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1556 Out << "extern ";
1557 else if (I->hasDLLImportLinkage())
1558 Out << "__declspec(dllimport) ";
1559 else
1560 continue; // Internal Global
1561
1562 // Thread Local Storage
1563 if (I->isThreadLocal())
1564 Out << "__thread ";
1565
1566 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1567
1568 if (I->hasExternalWeakLinkage())
1569 Out << " __EXTERNAL_WEAK__";
1570 Out << ";\n";
1571 }
1572 }
1573
1574 // Function declarations
1575 Out << "\n/* Function Declarations */\n";
1576 Out << "double fmod(double, double);\n"; // Support for FP rem
1577 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001578 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001579
1580 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1581 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001582 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1584 if (I->hasExternalWeakLinkage())
1585 Out << "extern ";
1586 printFunctionSignature(I, true);
1587 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1588 Out << " __ATTRIBUTE_WEAK__";
1589 if (I->hasExternalWeakLinkage())
1590 Out << " __EXTERNAL_WEAK__";
1591 if (StaticCtors.count(I))
1592 Out << " __ATTRIBUTE_CTOR__";
1593 if (StaticDtors.count(I))
1594 Out << " __ATTRIBUTE_DTOR__";
1595 if (I->hasHiddenVisibility())
1596 Out << " __HIDDEN__";
1597
1598 if (I->hasName() && I->getName()[0] == 1)
1599 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1600
1601 Out << ";\n";
1602 }
1603 }
1604
1605 // Output the global variable declarations
1606 if (!M.global_empty()) {
1607 Out << "\n\n/* Global Variable Declarations */\n";
1608 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1609 I != E; ++I)
1610 if (!I->isDeclaration()) {
1611 // Ignore special globals, such as debug info.
1612 if (getGlobalVariableClass(I))
1613 continue;
1614
1615 if (I->hasInternalLinkage())
1616 Out << "static ";
1617 else
1618 Out << "extern ";
1619
1620 // Thread Local Storage
1621 if (I->isThreadLocal())
1622 Out << "__thread ";
1623
1624 printType(Out, I->getType()->getElementType(), false,
1625 GetValueName(I));
1626
1627 if (I->hasLinkOnceLinkage())
1628 Out << " __attribute__((common))";
1629 else if (I->hasWeakLinkage())
1630 Out << " __ATTRIBUTE_WEAK__";
1631 else if (I->hasExternalWeakLinkage())
1632 Out << " __EXTERNAL_WEAK__";
1633 if (I->hasHiddenVisibility())
1634 Out << " __HIDDEN__";
1635 Out << ";\n";
1636 }
1637 }
1638
1639 // Output the global variable definitions and contents...
1640 if (!M.global_empty()) {
1641 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1642 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1643 I != E; ++I)
1644 if (!I->isDeclaration()) {
1645 // Ignore special globals, such as debug info.
1646 if (getGlobalVariableClass(I))
1647 continue;
1648
1649 if (I->hasInternalLinkage())
1650 Out << "static ";
1651 else if (I->hasDLLImportLinkage())
1652 Out << "__declspec(dllimport) ";
1653 else if (I->hasDLLExportLinkage())
1654 Out << "__declspec(dllexport) ";
1655
1656 // Thread Local Storage
1657 if (I->isThreadLocal())
1658 Out << "__thread ";
1659
1660 printType(Out, I->getType()->getElementType(), false,
1661 GetValueName(I));
1662 if (I->hasLinkOnceLinkage())
1663 Out << " __attribute__((common))";
1664 else if (I->hasWeakLinkage())
1665 Out << " __ATTRIBUTE_WEAK__";
1666
1667 if (I->hasHiddenVisibility())
1668 Out << " __HIDDEN__";
1669
1670 // If the initializer is not null, emit the initializer. If it is null,
1671 // we try to avoid emitting large amounts of zeros. The problem with
1672 // this, however, occurs when the variable has weak linkage. In this
1673 // case, the assembler will complain about the variable being both weak
1674 // and common, so we disable this optimization.
1675 if (!I->getInitializer()->isNullValue()) {
1676 Out << " = " ;
1677 writeOperand(I->getInitializer());
1678 } else if (I->hasWeakLinkage()) {
1679 // We have to specify an initializer, but it doesn't have to be
1680 // complete. If the value is an aggregate, print out { 0 }, and let
1681 // the compiler figure out the rest of the zeros.
1682 Out << " = " ;
1683 if (isa<StructType>(I->getInitializer()->getType()) ||
1684 isa<ArrayType>(I->getInitializer()->getType()) ||
1685 isa<VectorType>(I->getInitializer()->getType())) {
1686 Out << "{ 0 }";
1687 } else {
1688 // Just print it out normally.
1689 writeOperand(I->getInitializer());
1690 }
1691 }
1692 Out << ";\n";
1693 }
1694 }
1695
1696 if (!M.empty())
1697 Out << "\n\n/* Function Bodies */\n";
1698
1699 // Emit some helper functions for dealing with FCMP instruction's
1700 // predicates
1701 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1702 Out << "return X == X && Y == Y; }\n";
1703 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1704 Out << "return X != X || Y != Y; }\n";
1705 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1706 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1707 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1708 Out << "return X != Y; }\n";
1709 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1710 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1711 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1712 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1713 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1714 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1715 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1716 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1717 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1718 Out << "return X == Y ; }\n";
1719 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1720 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1721 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1722 Out << "return X < Y ; }\n";
1723 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1724 Out << "return X > Y ; }\n";
1725 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1726 Out << "return X <= Y ; }\n";
1727 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1728 Out << "return X >= Y ; }\n";
1729 return false;
1730}
1731
1732
1733/// Output all floating point constants that cannot be printed accurately...
1734void CWriter::printFloatingPointConstants(Function &F) {
1735 // Scan the module for floating point constants. If any FP constant is used
1736 // in the function, we want to redirect it here so that we do not depend on
1737 // the precision of the printed form, unless the printed form preserves
1738 // precision.
1739 //
1740 static unsigned FPCounter = 0;
1741 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1742 I != E; ++I)
1743 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1744 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1745 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1747
1748 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001749 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001750 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001752 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 << "ULL; /* " << Val << " */\n";
1754 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001755 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001756 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1757 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001759 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001761 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001762 // api needed to prevent premature destruction
1763 APInt api = FPC->getValueAPF().convertToAPInt();
1764 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001765 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1766 << " = { 0x" << std::hex
1767 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1768 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1769 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001770 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1771 APInt api = FPC->getValueAPF().convertToAPInt();
1772 const uint64_t *p = api.getRawData();
1773 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1774 << " = { 0x" << std::hex
1775 << p[0] << ", 0x" << p[1]
1776 << "}; /* Long double constant */\n" << std::dec;
1777
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778 } else
1779 assert(0 && "Unknown float type!");
1780 }
1781
1782 Out << '\n';
1783}
1784
1785
1786/// printSymbolTable - Run through symbol table looking for type names. If a
1787/// type name is found, emit its declaration...
1788///
1789void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1790 Out << "/* Helper union for bitcasts */\n";
1791 Out << "typedef union {\n";
1792 Out << " unsigned int Int32;\n";
1793 Out << " unsigned long long Int64;\n";
1794 Out << " float Float;\n";
1795 Out << " double Double;\n";
1796 Out << "} llvmBitCastUnion;\n";
1797
1798 // We are only interested in the type plane of the symbol table.
1799 TypeSymbolTable::const_iterator I = TST.begin();
1800 TypeSymbolTable::const_iterator End = TST.end();
1801
1802 // If there are no type names, exit early.
1803 if (I == End) return;
1804
1805 // Print out forward declarations for structure types before anything else!
1806 Out << "/* Structure forward decls */\n";
1807 for (; I != End; ++I) {
1808 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1809 Out << Name << ";\n";
1810 TypeNames.insert(std::make_pair(I->second, Name));
1811 }
1812
1813 Out << '\n';
1814
1815 // Now we can print out typedefs. Above, we guaranteed that this can only be
1816 // for struct or opaque types.
1817 Out << "/* Typedefs */\n";
1818 for (I = TST.begin(); I != End; ++I) {
1819 std::string Name = "l_" + Mang->makeNameProper(I->first);
1820 Out << "typedef ";
1821 printType(Out, I->second, false, Name);
1822 Out << ";\n";
1823 }
1824
1825 Out << '\n';
1826
1827 // Keep track of which structures have been printed so far...
1828 std::set<const StructType *> StructPrinted;
1829
1830 // Loop over all structures then push them into the stack so they are
1831 // printed in the correct order.
1832 //
1833 Out << "/* Structure contents */\n";
1834 for (I = TST.begin(); I != End; ++I)
1835 if (const StructType *STy = dyn_cast<StructType>(I->second))
1836 // Only print out used types!
1837 printContainedStructs(STy, StructPrinted);
1838}
1839
1840// Push the struct onto the stack and recursively push all structs
1841// this one depends on.
1842//
1843// TODO: Make this work properly with vector types
1844//
1845void CWriter::printContainedStructs(const Type *Ty,
1846 std::set<const StructType*> &StructPrinted){
1847 // Don't walk through pointers.
1848 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1849
1850 // Print all contained types first.
1851 for (Type::subtype_iterator I = Ty->subtype_begin(),
1852 E = Ty->subtype_end(); I != E; ++I)
1853 printContainedStructs(*I, StructPrinted);
1854
1855 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1856 // Check to see if we have already printed this struct.
1857 if (StructPrinted.insert(STy).second) {
1858 // Print structure type out.
1859 std::string Name = TypeNames[STy];
1860 printType(Out, STy, false, Name, true);
1861 Out << ";\n\n";
1862 }
1863 }
1864}
1865
1866void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1867 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001868 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869
1870 if (F->hasInternalLinkage()) Out << "static ";
1871 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1872 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1873 switch (F->getCallingConv()) {
1874 case CallingConv::X86_StdCall:
1875 Out << "__stdcall ";
1876 break;
1877 case CallingConv::X86_FastCall:
1878 Out << "__fastcall ";
1879 break;
1880 }
1881
1882 // Loop over the arguments, printing them...
1883 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001884 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001885
1886 std::stringstream FunctionInnards;
1887
1888 // Print out the name...
1889 FunctionInnards << GetValueName(F) << '(';
1890
1891 bool PrintedArg = false;
1892 if (!F->isDeclaration()) {
1893 if (!F->arg_empty()) {
1894 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001895 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896
1897 // If this is a struct-return function, don't print the hidden
1898 // struct-return argument.
1899 if (isStructReturn) {
1900 assert(I != E && "Invalid struct return function!");
1901 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001902 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903 }
1904
1905 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001906 for (; I != E; ++I) {
1907 if (PrintedArg) FunctionInnards << ", ";
1908 if (I->hasName() || !Prototype)
1909 ArgName = GetValueName(I);
1910 else
1911 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001912 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001913 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1914 assert(isa<PointerType>(ArgTy));
1915 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1916 const Value *Arg = &(*I);
1917 ByValParams.insert(Arg);
1918 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001919 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001920 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921 ArgName);
1922 PrintedArg = true;
1923 ++Idx;
1924 }
1925 }
1926 } else {
1927 // Loop over the arguments, printing them.
1928 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001929 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930
1931 // If this is a struct-return function, don't print the hidden
1932 // struct-return argument.
1933 if (isStructReturn) {
1934 assert(I != E && "Invalid struct return function!");
1935 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001936 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937 }
1938
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001939 for (; I != E; ++I) {
1940 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001941 const Type *ArgTy = *I;
1942 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1943 assert(isa<PointerType>(ArgTy));
1944 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1945 }
1946 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001947 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001948 PrintedArg = true;
1949 ++Idx;
1950 }
1951 }
1952
1953 // Finish printing arguments... if this is a vararg function, print the ...,
1954 // unless there are no known types, in which case, we just emit ().
1955 //
1956 if (FT->isVarArg() && PrintedArg) {
1957 if (PrintedArg) FunctionInnards << ", ";
1958 FunctionInnards << "..."; // Output varargs portion of signature!
1959 } else if (!FT->isVarArg() && !PrintedArg) {
1960 FunctionInnards << "void"; // ret() -> ret(void) in C.
1961 }
1962 FunctionInnards << ')';
1963
1964 // Get the return tpe for the function.
1965 const Type *RetTy;
1966 if (!isStructReturn)
1967 RetTy = F->getReturnType();
1968 else {
1969 // If this is a struct-return function, print the struct-return type.
1970 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1971 }
1972
1973 // Print out the return type and the signature built above.
1974 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001975 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001976 FunctionInnards.str());
1977}
1978
1979static inline bool isFPIntBitCast(const Instruction &I) {
1980 if (!isa<BitCastInst>(I))
1981 return false;
1982 const Type *SrcTy = I.getOperand(0)->getType();
1983 const Type *DstTy = I.getType();
1984 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1985 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1986}
1987
1988void CWriter::printFunction(Function &F) {
1989 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001990 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001991
1992 printFunctionSignature(&F, false);
1993 Out << " {\n";
1994
1995 // If this is a struct return function, handle the result with magic.
1996 if (isStructReturn) {
1997 const Type *StructTy =
1998 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1999 Out << " ";
2000 printType(Out, StructTy, false, "StructReturn");
2001 Out << "; /* Struct return temporary */\n";
2002
2003 Out << " ";
2004 printType(Out, F.arg_begin()->getType(), false,
2005 GetValueName(F.arg_begin()));
2006 Out << " = &StructReturn;\n";
2007 }
2008
2009 bool PrintedVar = false;
2010
2011 // print local variable information for the function
2012 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2013 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2014 Out << " ";
2015 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2016 Out << "; /* Address-exposed local */\n";
2017 PrintedVar = true;
2018 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2019 Out << " ";
2020 printType(Out, I->getType(), false, GetValueName(&*I));
2021 Out << ";\n";
2022
2023 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2024 Out << " ";
2025 printType(Out, I->getType(), false,
2026 GetValueName(&*I)+"__PHI_TEMPORARY");
2027 Out << ";\n";
2028 }
2029 PrintedVar = true;
2030 }
2031 // We need a temporary for the BitCast to use so it can pluck a value out
2032 // of a union to do the BitCast. This is separate from the need for a
2033 // variable to hold the result of the BitCast.
2034 if (isFPIntBitCast(*I)) {
2035 Out << " llvmBitCastUnion " << GetValueName(&*I)
2036 << "__BITCAST_TEMPORARY;\n";
2037 PrintedVar = true;
2038 }
2039 }
2040
2041 if (PrintedVar)
2042 Out << '\n';
2043
2044 if (F.hasExternalLinkage() && F.getName() == "main")
2045 Out << " CODE_FOR_MAIN();\n";
2046
2047 // print the basic blocks
2048 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2049 if (Loop *L = LI->getLoopFor(BB)) {
2050 if (L->getHeader() == BB && L->getParentLoop() == 0)
2051 printLoop(L);
2052 } else {
2053 printBasicBlock(BB);
2054 }
2055 }
2056
2057 Out << "}\n\n";
2058}
2059
2060void CWriter::printLoop(Loop *L) {
2061 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2062 << "' to make GCC happy */\n";
2063 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2064 BasicBlock *BB = L->getBlocks()[i];
2065 Loop *BBLoop = LI->getLoopFor(BB);
2066 if (BBLoop == L)
2067 printBasicBlock(BB);
2068 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2069 printLoop(BBLoop);
2070 }
2071 Out << " } while (1); /* end of syntactic loop '"
2072 << L->getHeader()->getName() << "' */\n";
2073}
2074
2075void CWriter::printBasicBlock(BasicBlock *BB) {
2076
2077 // Don't print the label for the basic block if there are no uses, or if
2078 // the only terminator use is the predecessor basic block's terminator.
2079 // We have to scan the use list because PHI nodes use basic blocks too but
2080 // do not require a label to be generated.
2081 //
2082 bool NeedsLabel = false;
2083 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2084 if (isGotoCodeNecessary(*PI, BB)) {
2085 NeedsLabel = true;
2086 break;
2087 }
2088
2089 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2090
2091 // Output all of the instructions in the basic block...
2092 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2093 ++II) {
2094 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2095 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2096 outputLValue(II);
2097 else
2098 Out << " ";
2099 visit(*II);
2100 Out << ";\n";
2101 }
2102 }
2103
2104 // Don't emit prefix or suffix for the terminator...
2105 visit(*BB->getTerminator());
2106}
2107
2108
2109// Specific Instruction type classes... note that all of the casts are
2110// necessary because we use the instruction classes as opaque types...
2111//
2112void CWriter::visitReturnInst(ReturnInst &I) {
2113 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002114 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115
2116 if (isStructReturn) {
2117 Out << " return StructReturn;\n";
2118 return;
2119 }
2120
2121 // Don't output a void return if this is the last basic block in the function
2122 if (I.getNumOperands() == 0 &&
2123 &*--I.getParent()->getParent()->end() == I.getParent() &&
2124 !I.getParent()->size() == 1) {
2125 return;
2126 }
2127
2128 Out << " return";
2129 if (I.getNumOperands()) {
2130 Out << ' ';
2131 writeOperand(I.getOperand(0));
2132 }
2133 Out << ";\n";
2134}
2135
2136void CWriter::visitSwitchInst(SwitchInst &SI) {
2137
2138 Out << " switch (";
2139 writeOperand(SI.getOperand(0));
2140 Out << ") {\n default:\n";
2141 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2142 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2143 Out << ";\n";
2144 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2145 Out << " case ";
2146 writeOperand(SI.getOperand(i));
2147 Out << ":\n";
2148 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2149 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2150 printBranchToBlock(SI.getParent(), Succ, 2);
2151 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2152 Out << " break;\n";
2153 }
2154 Out << " }\n";
2155}
2156
2157void CWriter::visitUnreachableInst(UnreachableInst &I) {
2158 Out << " /*UNREACHABLE*/;\n";
2159}
2160
2161bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2162 /// FIXME: This should be reenabled, but loop reordering safe!!
2163 return true;
2164
2165 if (next(Function::iterator(From)) != Function::iterator(To))
2166 return true; // Not the direct successor, we need a goto.
2167
2168 //isa<SwitchInst>(From->getTerminator())
2169
2170 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2171 return true;
2172 return false;
2173}
2174
2175void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2176 BasicBlock *Successor,
2177 unsigned Indent) {
2178 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2179 PHINode *PN = cast<PHINode>(I);
2180 // Now we have to do the printing.
2181 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2182 if (!isa<UndefValue>(IV)) {
2183 Out << std::string(Indent, ' ');
2184 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2185 writeOperand(IV);
2186 Out << "; /* for PHI node */\n";
2187 }
2188 }
2189}
2190
2191void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2192 unsigned Indent) {
2193 if (isGotoCodeNecessary(CurBB, Succ)) {
2194 Out << std::string(Indent, ' ') << " goto ";
2195 writeOperand(Succ);
2196 Out << ";\n";
2197 }
2198}
2199
2200// Branch instruction printing - Avoid printing out a branch to a basic block
2201// that immediately succeeds the current one.
2202//
2203void CWriter::visitBranchInst(BranchInst &I) {
2204
2205 if (I.isConditional()) {
2206 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2207 Out << " if (";
2208 writeOperand(I.getCondition());
2209 Out << ") {\n";
2210
2211 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2212 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2213
2214 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2215 Out << " } else {\n";
2216 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2217 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2218 }
2219 } else {
2220 // First goto not necessary, assume second one is...
2221 Out << " if (!";
2222 writeOperand(I.getCondition());
2223 Out << ") {\n";
2224
2225 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2226 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2227 }
2228
2229 Out << " }\n";
2230 } else {
2231 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2232 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2233 }
2234 Out << "\n";
2235}
2236
2237// PHI nodes get copied into temporary values at the end of predecessor basic
2238// blocks. We now need to copy these temporary values into the REAL value for
2239// the PHI.
2240void CWriter::visitPHINode(PHINode &I) {
2241 writeOperand(&I);
2242 Out << "__PHI_TEMPORARY";
2243}
2244
2245
2246void CWriter::visitBinaryOperator(Instruction &I) {
2247 // binary instructions, shift instructions, setCond instructions.
2248 assert(!isa<PointerType>(I.getType()));
2249
2250 // We must cast the results of binary operations which might be promoted.
2251 bool needsCast = false;
2252 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2253 || (I.getType() == Type::FloatTy)) {
2254 needsCast = true;
2255 Out << "((";
2256 printType(Out, I.getType(), false);
2257 Out << ")(";
2258 }
2259
2260 // If this is a negation operation, print it out as such. For FP, we don't
2261 // want to print "-0.0 - X".
2262 if (BinaryOperator::isNeg(&I)) {
2263 Out << "-(";
2264 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2265 Out << ")";
2266 } else if (I.getOpcode() == Instruction::FRem) {
2267 // Output a call to fmod/fmodf instead of emitting a%b
2268 if (I.getType() == Type::FloatTy)
2269 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002270 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002271 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002272 else // all 3 flavors of long double
2273 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002274 writeOperand(I.getOperand(0));
2275 Out << ", ";
2276 writeOperand(I.getOperand(1));
2277 Out << ")";
2278 } else {
2279
2280 // Write out the cast of the instruction's value back to the proper type
2281 // if necessary.
2282 bool NeedsClosingParens = writeInstructionCast(I);
2283
2284 // Certain instructions require the operand to be forced to a specific type
2285 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2286 // below for operand 1
2287 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2288
2289 switch (I.getOpcode()) {
2290 case Instruction::Add: Out << " + "; break;
2291 case Instruction::Sub: Out << " - "; break;
2292 case Instruction::Mul: Out << " * "; break;
2293 case Instruction::URem:
2294 case Instruction::SRem:
2295 case Instruction::FRem: Out << " % "; break;
2296 case Instruction::UDiv:
2297 case Instruction::SDiv:
2298 case Instruction::FDiv: Out << " / "; break;
2299 case Instruction::And: Out << " & "; break;
2300 case Instruction::Or: Out << " | "; break;
2301 case Instruction::Xor: Out << " ^ "; break;
2302 case Instruction::Shl : Out << " << "; break;
2303 case Instruction::LShr:
2304 case Instruction::AShr: Out << " >> "; break;
2305 default: cerr << "Invalid operator type!" << I; abort();
2306 }
2307
2308 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2309 if (NeedsClosingParens)
2310 Out << "))";
2311 }
2312
2313 if (needsCast) {
2314 Out << "))";
2315 }
2316}
2317
2318void CWriter::visitICmpInst(ICmpInst &I) {
2319 // We must cast the results of icmp which might be promoted.
2320 bool needsCast = false;
2321
2322 // Write out the cast of the instruction's value back to the proper type
2323 // if necessary.
2324 bool NeedsClosingParens = writeInstructionCast(I);
2325
2326 // Certain icmp predicate require the operand to be forced to a specific type
2327 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2328 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002329 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330
2331 switch (I.getPredicate()) {
2332 case ICmpInst::ICMP_EQ: Out << " == "; break;
2333 case ICmpInst::ICMP_NE: Out << " != "; break;
2334 case ICmpInst::ICMP_ULE:
2335 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2336 case ICmpInst::ICMP_UGE:
2337 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2338 case ICmpInst::ICMP_ULT:
2339 case ICmpInst::ICMP_SLT: Out << " < "; break;
2340 case ICmpInst::ICMP_UGT:
2341 case ICmpInst::ICMP_SGT: Out << " > "; break;
2342 default: cerr << "Invalid icmp predicate!" << I; abort();
2343 }
2344
Chris Lattner389c9142007-09-15 06:51:03 +00002345 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002346 if (NeedsClosingParens)
2347 Out << "))";
2348
2349 if (needsCast) {
2350 Out << "))";
2351 }
2352}
2353
2354void CWriter::visitFCmpInst(FCmpInst &I) {
2355 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2356 Out << "0";
2357 return;
2358 }
2359 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2360 Out << "1";
2361 return;
2362 }
2363
2364 const char* op = 0;
2365 switch (I.getPredicate()) {
2366 default: assert(0 && "Illegal FCmp predicate");
2367 case FCmpInst::FCMP_ORD: op = "ord"; break;
2368 case FCmpInst::FCMP_UNO: op = "uno"; break;
2369 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2370 case FCmpInst::FCMP_UNE: op = "une"; break;
2371 case FCmpInst::FCMP_ULT: op = "ult"; break;
2372 case FCmpInst::FCMP_ULE: op = "ule"; break;
2373 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2374 case FCmpInst::FCMP_UGE: op = "uge"; break;
2375 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2376 case FCmpInst::FCMP_ONE: op = "one"; break;
2377 case FCmpInst::FCMP_OLT: op = "olt"; break;
2378 case FCmpInst::FCMP_OLE: op = "ole"; break;
2379 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2380 case FCmpInst::FCMP_OGE: op = "oge"; break;
2381 }
2382
2383 Out << "llvm_fcmp_" << op << "(";
2384 // Write the first operand
2385 writeOperand(I.getOperand(0));
2386 Out << ", ";
2387 // Write the second operand
2388 writeOperand(I.getOperand(1));
2389 Out << ")";
2390}
2391
2392static const char * getFloatBitCastField(const Type *Ty) {
2393 switch (Ty->getTypeID()) {
2394 default: assert(0 && "Invalid Type");
2395 case Type::FloatTyID: return "Float";
2396 case Type::DoubleTyID: return "Double";
2397 case Type::IntegerTyID: {
2398 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2399 if (NumBits <= 32)
2400 return "Int32";
2401 else
2402 return "Int64";
2403 }
2404 }
2405}
2406
2407void CWriter::visitCastInst(CastInst &I) {
2408 const Type *DstTy = I.getType();
2409 const Type *SrcTy = I.getOperand(0)->getType();
2410 Out << '(';
2411 if (isFPIntBitCast(I)) {
2412 // These int<->float and long<->double casts need to be handled specially
2413 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2414 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2415 writeOperand(I.getOperand(0));
2416 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2417 << getFloatBitCastField(I.getType());
2418 } else {
2419 printCast(I.getOpcode(), SrcTy, DstTy);
2420 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2421 // Make sure we really get a sext from bool by subtracing the bool from 0
2422 Out << "0-";
2423 }
Evan Cheng17254e62008-01-11 09:12:49 +00002424 // If it's a byval parameter being casted, then takes its address.
2425 bool isByVal = ByValParams.count(I.getOperand(0));
2426 if (isByVal) {
2427 assert(I.getOpcode() == Instruction::BitCast &&
2428 "ByVal aggregate parameter must ptr type");
2429 Out << '&';
2430 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002431 writeOperand(I.getOperand(0));
2432 if (DstTy == Type::Int1Ty &&
2433 (I.getOpcode() == Instruction::Trunc ||
2434 I.getOpcode() == Instruction::FPToUI ||
2435 I.getOpcode() == Instruction::FPToSI ||
2436 I.getOpcode() == Instruction::PtrToInt)) {
2437 // Make sure we really get a trunc to bool by anding the operand with 1
2438 Out << "&1u";
2439 }
2440 }
2441 Out << ')';
2442}
2443
2444void CWriter::visitSelectInst(SelectInst &I) {
2445 Out << "((";
2446 writeOperand(I.getCondition());
2447 Out << ") ? (";
2448 writeOperand(I.getTrueValue());
2449 Out << ") : (";
2450 writeOperand(I.getFalseValue());
2451 Out << "))";
2452}
2453
2454
2455void CWriter::lowerIntrinsics(Function &F) {
2456 // This is used to keep track of intrinsics that get generated to a lowered
2457 // function. We must generate the prototypes before the function body which
2458 // will only be expanded on first use (by the loop below).
2459 std::vector<Function*> prototypesToGen;
2460
2461 // Examine all the instructions in this function to find the intrinsics that
2462 // need to be lowered.
2463 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2464 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2465 if (CallInst *CI = dyn_cast<CallInst>(I++))
2466 if (Function *F = CI->getCalledFunction())
2467 switch (F->getIntrinsicID()) {
2468 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002469 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470 case Intrinsic::vastart:
2471 case Intrinsic::vacopy:
2472 case Intrinsic::vaend:
2473 case Intrinsic::returnaddress:
2474 case Intrinsic::frameaddress:
2475 case Intrinsic::setjmp:
2476 case Intrinsic::longjmp:
2477 case Intrinsic::prefetch:
2478 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002479 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480 // We directly implement these intrinsics
2481 break;
2482 default:
2483 // If this is an intrinsic that directly corresponds to a GCC
2484 // builtin, we handle it.
2485 const char *BuiltinName = "";
2486#define GET_GCC_BUILTIN_NAME
2487#include "llvm/Intrinsics.gen"
2488#undef GET_GCC_BUILTIN_NAME
2489 // If we handle it, don't lower it.
2490 if (BuiltinName[0]) break;
2491
2492 // All other intrinsic calls we must lower.
2493 Instruction *Before = 0;
2494 if (CI != &BB->front())
2495 Before = prior(BasicBlock::iterator(CI));
2496
2497 IL->LowerIntrinsicCall(CI);
2498 if (Before) { // Move iterator to instruction after call
2499 I = Before; ++I;
2500 } else {
2501 I = BB->begin();
2502 }
2503 // If the intrinsic got lowered to another call, and that call has
2504 // a definition then we need to make sure its prototype is emitted
2505 // before any calls to it.
2506 if (CallInst *Call = dyn_cast<CallInst>(I))
2507 if (Function *NewF = Call->getCalledFunction())
2508 if (!NewF->isDeclaration())
2509 prototypesToGen.push_back(NewF);
2510
2511 break;
2512 }
2513
2514 // We may have collected some prototypes to emit in the loop above.
2515 // Emit them now, before the function that uses them is emitted. But,
2516 // be careful not to emit them twice.
2517 std::vector<Function*>::iterator I = prototypesToGen.begin();
2518 std::vector<Function*>::iterator E = prototypesToGen.end();
2519 for ( ; I != E; ++I) {
2520 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2521 Out << '\n';
2522 printFunctionSignature(*I, true);
2523 Out << ";\n";
2524 }
2525 }
2526}
2527
2528
2529void CWriter::visitCallInst(CallInst &I) {
2530 //check if we have inline asm
2531 if (isInlineAsm(I)) {
2532 visitInlineAsm(I);
2533 return;
2534 }
2535
2536 bool WroteCallee = false;
2537
2538 // Handle intrinsic function calls first...
2539 if (Function *F = I.getCalledFunction())
2540 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2541 switch (ID) {
2542 default: {
2543 // If this is an intrinsic that directly corresponds to a GCC
2544 // builtin, we emit it here.
2545 const char *BuiltinName = "";
2546#define GET_GCC_BUILTIN_NAME
2547#include "llvm/Intrinsics.gen"
2548#undef GET_GCC_BUILTIN_NAME
2549 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2550
2551 Out << BuiltinName;
2552 WroteCallee = true;
2553 break;
2554 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002555 case Intrinsic::memory_barrier:
2556 Out << "0; __sync_syncronize()";
2557 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002558 case Intrinsic::vastart:
2559 Out << "0; ";
2560
2561 Out << "va_start(*(va_list*)";
2562 writeOperand(I.getOperand(1));
2563 Out << ", ";
2564 // Output the last argument to the enclosing function...
2565 if (I.getParent()->getParent()->arg_empty()) {
2566 cerr << "The C backend does not currently support zero "
2567 << "argument varargs functions, such as '"
2568 << I.getParent()->getParent()->getName() << "'!\n";
2569 abort();
2570 }
2571 writeOperand(--I.getParent()->getParent()->arg_end());
2572 Out << ')';
2573 return;
2574 case Intrinsic::vaend:
2575 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2576 Out << "0; va_end(*(va_list*)";
2577 writeOperand(I.getOperand(1));
2578 Out << ')';
2579 } else {
2580 Out << "va_end(*(va_list*)0)";
2581 }
2582 return;
2583 case Intrinsic::vacopy:
2584 Out << "0; ";
2585 Out << "va_copy(*(va_list*)";
2586 writeOperand(I.getOperand(1));
2587 Out << ", *(va_list*)";
2588 writeOperand(I.getOperand(2));
2589 Out << ')';
2590 return;
2591 case Intrinsic::returnaddress:
2592 Out << "__builtin_return_address(";
2593 writeOperand(I.getOperand(1));
2594 Out << ')';
2595 return;
2596 case Intrinsic::frameaddress:
2597 Out << "__builtin_frame_address(";
2598 writeOperand(I.getOperand(1));
2599 Out << ')';
2600 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002601 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602 Out << "__builtin_powi(";
2603 writeOperand(I.getOperand(1));
2604 Out << ", ";
2605 writeOperand(I.getOperand(2));
2606 Out << ')';
2607 return;
2608 case Intrinsic::setjmp:
2609 Out << "setjmp(*(jmp_buf*)";
2610 writeOperand(I.getOperand(1));
2611 Out << ')';
2612 return;
2613 case Intrinsic::longjmp:
2614 Out << "longjmp(*(jmp_buf*)";
2615 writeOperand(I.getOperand(1));
2616 Out << ", ";
2617 writeOperand(I.getOperand(2));
2618 Out << ')';
2619 return;
2620 case Intrinsic::prefetch:
2621 Out << "LLVM_PREFETCH((const void *)";
2622 writeOperand(I.getOperand(1));
2623 Out << ", ";
2624 writeOperand(I.getOperand(2));
2625 Out << ", ";
2626 writeOperand(I.getOperand(3));
2627 Out << ")";
2628 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002629 case Intrinsic::stacksave:
2630 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2631 // to work around GCC bugs (see PR1809).
2632 Out << "0; *((void**)&" << GetValueName(&I)
2633 << ") = __builtin_stack_save()";
2634 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002635 case Intrinsic::dbg_stoppoint: {
2636 // If we use writeOperand directly we get a "u" suffix which is rejected
2637 // by gcc.
2638 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2639
2640 Out << "\n#line "
2641 << SPI.getLine()
2642 << " \"" << SPI.getDirectory()
2643 << SPI.getFileName() << "\"\n";
2644 return;
2645 }
2646 }
2647 }
2648
2649 Value *Callee = I.getCalledValue();
2650
2651 const PointerType *PTy = cast<PointerType>(Callee->getType());
2652 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2653
2654 // If this is a call to a struct-return function, assign to the first
2655 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002656 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002657 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002658 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002659 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002660 bool isByVal = ByValParams.count(I.getOperand(1));
2661 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002662 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002663 if (!isByVal) Out << ")";
2664 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002665 }
2666
2667 if (I.isTailCall()) Out << " /*tail*/ ";
2668
2669 if (!WroteCallee) {
2670 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002671 // the pointer. Ditto for indirect calls with byval arguments.
2672 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673
2674 // GCC is a real PITA. It does not permit codegening casts of functions to
2675 // function pointers if they are in a call (it generates a trap instruction
2676 // instead!). We work around this by inserting a cast to void* in between
2677 // the function and the function pointer cast. Unfortunately, we can't just
2678 // form the constant expression here, because the folder will immediately
2679 // nuke it.
2680 //
2681 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2682 // that void* and function pointers have the same size. :( To deal with this
2683 // in the common case, we handle casts where the number of arguments passed
2684 // match exactly.
2685 //
2686 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2687 if (CE->isCast())
2688 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2689 NeedsCast = true;
2690 Callee = RF;
2691 }
2692
2693 if (NeedsCast) {
2694 // Ok, just cast the pointer type.
2695 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002696 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002697 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002699 else if (hasByVal)
2700 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2701 else
2702 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002703 Out << ")(void*)";
2704 }
2705 writeOperand(Callee);
2706 if (NeedsCast) Out << ')';
2707 }
2708
2709 Out << '(';
2710
2711 unsigned NumDeclaredParams = FTy->getNumParams();
2712
2713 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2714 unsigned ArgNo = 0;
2715 if (isStructRet) { // Skip struct return argument.
2716 ++AI;
2717 ++ArgNo;
2718 }
2719
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002720 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002721 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002722 if (PrintedArg) Out << ", ";
2723 if (ArgNo < NumDeclaredParams &&
2724 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2725 Out << '(';
2726 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002727 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002728 Out << ')';
2729 }
Evan Chengf8956382008-01-11 23:10:11 +00002730 // Check if the argument is expected to be passed by value.
2731 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2732 // Check if this argument itself is passed in by reference.
Evan Chengc25c7742008-02-20 18:32:05 +00002733 bool isInByVal = ByValParams.count(*AI);
2734 if (isOutByVal && !isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002735 Out << "*(";
Evan Chengc25c7742008-02-20 18:32:05 +00002736 else if (!isOutByVal && isInByVal)
2737 Out << "&(";
Evan Chengf8956382008-01-11 23:10:11 +00002738 writeOperand(*AI);
Evan Chengc25c7742008-02-20 18:32:05 +00002739 if (isOutByVal ^ isInByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002740 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002741 PrintedArg = true;
2742 }
2743 Out << ')';
2744}
2745
2746
2747//This converts the llvm constraint string to something gcc is expecting.
2748//TODO: work out platform independent constraints and factor those out
2749// of the per target tables
2750// handle multiple constraint codes
2751std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2752
2753 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2754
2755 const char** table = 0;
2756
2757 //Grab the translation table from TargetAsmInfo if it exists
2758 if (!TAsm) {
2759 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002760 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002761 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2762 if (Match) {
2763 //Per platform Target Machines don't exist, so create it
2764 // this must be done only once
2765 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2766 TAsm = TM->getTargetAsmInfo();
2767 }
2768 }
2769 if (TAsm)
2770 table = TAsm->getAsmCBE();
2771
2772 //Search the translation table if it exists
2773 for (int i = 0; table && table[i]; i += 2)
2774 if (c.Codes[0] == table[i])
2775 return table[i+1];
2776
2777 //default is identity
2778 return c.Codes[0];
2779}
2780
2781//TODO: import logic from AsmPrinter.cpp
2782static std::string gccifyAsm(std::string asmstr) {
2783 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2784 if (asmstr[i] == '\n')
2785 asmstr.replace(i, 1, "\\n");
2786 else if (asmstr[i] == '\t')
2787 asmstr.replace(i, 1, "\\t");
2788 else if (asmstr[i] == '$') {
2789 if (asmstr[i + 1] == '{') {
2790 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2791 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2792 std::string n = "%" +
2793 asmstr.substr(a + 1, b - a - 1) +
2794 asmstr.substr(i + 2, a - i - 2);
2795 asmstr.replace(i, b - i + 1, n);
2796 i += n.size() - 1;
2797 } else
2798 asmstr.replace(i, 1, "%");
2799 }
2800 else if (asmstr[i] == '%')//grr
2801 { asmstr.replace(i, 1, "%%"); ++i;}
2802
2803 return asmstr;
2804}
2805
2806//TODO: assumptions about what consume arguments from the call are likely wrong
2807// handle communitivity
2808void CWriter::visitInlineAsm(CallInst &CI) {
2809 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2810 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2811 std::vector<std::pair<std::string, Value*> > Input;
2812 std::vector<std::pair<std::string, Value*> > Output;
2813 std::string Clobber;
2814 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2815 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2816 E = Constraints.end(); I != E; ++I) {
2817 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2818 std::string c =
2819 InterpretASMConstraint(*I);
2820 switch(I->Type) {
2821 default:
2822 assert(0 && "Unknown asm constraint");
2823 break;
2824 case InlineAsm::isInput: {
2825 if (c.size()) {
2826 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2827 ++count; //consume arg
2828 }
2829 break;
2830 }
2831 case InlineAsm::isOutput: {
2832 if (c.size()) {
2833 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2834 count ? CI.getOperand(count) : &CI));
2835 ++count; //consume arg
2836 }
2837 break;
2838 }
2839 case InlineAsm::isClobber: {
2840 if (c.size())
2841 Clobber += ",\"" + c + "\"";
2842 break;
2843 }
2844 }
2845 }
2846
2847 //fix up the asm string for gcc
2848 std::string asmstr = gccifyAsm(as->getAsmString());
2849
2850 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2851 Out << " :";
2852 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2853 E = Output.end(); I != E; ++I) {
2854 Out << "\"" << I->first << "\"(";
2855 writeOperandRaw(I->second);
2856 Out << ")";
2857 if (I + 1 != E)
2858 Out << ",";
2859 }
2860 Out << "\n :";
2861 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2862 E = Input.end(); I != E; ++I) {
2863 Out << "\"" << I->first << "\"(";
2864 writeOperandRaw(I->second);
2865 Out << ")";
2866 if (I + 1 != E)
2867 Out << ",";
2868 }
2869 if (Clobber.size())
2870 Out << "\n :" << Clobber.substr(1);
2871 Out << ")";
2872}
2873
2874void CWriter::visitMallocInst(MallocInst &I) {
2875 assert(0 && "lowerallocations pass didn't work!");
2876}
2877
2878void CWriter::visitAllocaInst(AllocaInst &I) {
2879 Out << '(';
2880 printType(Out, I.getType());
2881 Out << ") alloca(sizeof(";
2882 printType(Out, I.getType()->getElementType());
2883 Out << ')';
2884 if (I.isArrayAllocation()) {
2885 Out << " * " ;
2886 writeOperand(I.getOperand(0));
2887 }
2888 Out << ')';
2889}
2890
2891void CWriter::visitFreeInst(FreeInst &I) {
2892 assert(0 && "lowerallocations pass didn't work!");
2893}
2894
2895void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2896 gep_type_iterator E) {
2897 bool HasImplicitAddress = false;
2898 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2899 if (isa<GlobalValue>(Ptr)) {
2900 HasImplicitAddress = true;
2901 } else if (isDirectAlloca(Ptr)) {
2902 HasImplicitAddress = true;
2903 }
2904
2905 if (I == E) {
2906 if (!HasImplicitAddress)
2907 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2908
2909 writeOperandInternal(Ptr);
2910 return;
2911 }
2912
2913 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2914 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2915 Out << "(&";
2916
2917 writeOperandInternal(Ptr);
2918
2919 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2920 Out << ')';
2921 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2922 }
2923
Anton Korobeynikov8c90d2a2008-02-20 11:22:39 +00002924 assert((!HasImplicitAddress || (CI && CI->isNullValue())) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002925 "Can only have implicit address with direct accessing");
2926
2927 if (HasImplicitAddress) {
2928 ++I;
2929 } else if (CI && CI->isNullValue()) {
2930 gep_type_iterator TmpI = I; ++TmpI;
2931
2932 // Print out the -> operator if possible...
2933 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002934 // Check if it's actually an aggregate parameter passed by value.
2935 bool isByVal = ByValParams.count(Ptr);
2936 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002937 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2938 I = ++TmpI;
2939 }
2940 }
2941
2942 for (; I != E; ++I)
2943 if (isa<StructType>(*I)) {
2944 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2945 } else {
2946 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002947 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002948 Out << ']';
2949 }
2950}
2951
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002952void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2953 bool IsVolatile, unsigned Alignment) {
2954
2955 bool IsUnaligned = Alignment &&
2956 Alignment < TD->getABITypeAlignment(OperandType);
2957
2958 if (!IsUnaligned)
2959 Out << '*';
2960 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002962 if (IsUnaligned)
2963 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
2964 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
2965 if (IsUnaligned) {
2966 Out << "; } ";
2967 if (IsVolatile) Out << "volatile ";
2968 Out << "*";
2969 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970 Out << ")";
2971 }
2972
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002973 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002974
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002975 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002976 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002977 if (IsUnaligned)
2978 Out << "->data";
2979 }
2980}
2981
2982void CWriter::visitLoadInst(LoadInst &I) {
2983
2984 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
2985 I.getAlignment());
2986
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987}
2988
2989void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002990
2991 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
2992 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002993 Out << " = ";
2994 Value *Operand = I.getOperand(0);
2995 Constant *BitMask = 0;
2996 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2997 if (!ITy->isPowerOf2ByteWidth())
2998 // We have a bit width that doesn't match an even power-of-2 byte
2999 // size. Consequently we must & the value with the type's bit mask
3000 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3001 if (BitMask)
3002 Out << "((";
3003 writeOperand(Operand);
3004 if (BitMask) {
3005 Out << ") & ";
3006 printConstant(BitMask);
3007 Out << ")";
3008 }
3009}
3010
3011void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3012 Out << '&';
3013 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
3014 gep_type_end(I));
3015}
3016
3017void CWriter::visitVAArgInst(VAArgInst &I) {
3018 Out << "va_arg(*(va_list*)";
3019 writeOperand(I.getOperand(0));
3020 Out << ", ";
3021 printType(Out, I.getType());
3022 Out << ");\n ";
3023}
3024
3025//===----------------------------------------------------------------------===//
3026// External Interface declaration
3027//===----------------------------------------------------------------------===//
3028
3029bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3030 std::ostream &o,
3031 CodeGenFileType FileType,
3032 bool Fast) {
3033 if (FileType != TargetMachine::AssemblyFile) return true;
3034
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003035 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 PM.add(createLowerAllocationsPass(true));
3037 PM.add(createLowerInvokePass());
3038 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3039 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3040 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003041 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003042 return false;
3043}