blob: f621aa8beceebb11aed008b732fa512156e6374a [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Andreas Herrmann23ac4ae2010-09-17 18:03:43 +02002#include <asm/amd_nb.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
Tejun Heoa29d8b82010-02-02 14:39:15 +090016static struct msr __percpu *msrs;
Borislav Petkov50542252009-12-11 18:14:40 +010017
Borislav Petkov360b7f32010-10-15 19:25:38 +020018/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
Borislav Petkovcc4d8862010-10-13 16:11:59 +020023/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +020025static struct ecc_settings **ecc_stngs;
Doug Thompson2bc65412009-05-04 20:11:14 +020026
27/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020028 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020030 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020031static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39};
40
41static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51};
52
53static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60};
61
62static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
Borislav Petkov24f9a7f2010-10-07 18:29:15 +020069 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020070};
71
72/*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
80struct scrubrate scrubrates[] = {
81 { 0x01, 1600000000UL},
82 { 0x02, 800000000UL},
83 { 0x03, 400000000UL},
84 { 0x04, 200000000UL},
85 { 0x05, 100000000UL},
86 { 0x06, 50000000UL},
87 { 0x07, 25000000UL},
88 { 0x08, 12284069UL},
89 { 0x09, 6274509UL},
90 { 0x0A, 3121951UL},
91 { 0x0B, 1560975UL},
92 { 0x0C, 781440UL},
93 { 0x0D, 390720UL},
94 { 0x0E, 195300UL},
95 { 0x0F, 97650UL},
96 { 0x10, 48854UL},
97 { 0x11, 24427UL},
98 { 0x12, 12213UL},
99 { 0x13, 6101UL},
100 { 0x14, 3051UL},
101 { 0x15, 1523UL},
102 { 0x16, 761UL},
103 { 0x00, 0UL}, /* scrubbing off */
104};
105
106/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200107 * Memory scrubber control interface. For K8, memory scrubbing is handled by
108 * hardware and can involve L2 cache, dcache as well as the main memory. With
109 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
110 * functionality.
111 *
112 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
113 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
114 * bytes/sec for the setting.
115 *
116 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
117 * other archs, we might not have access to the caches directly.
118 */
119
120/*
121 * scan the scrub rate mapping table for a close or matching bandwidth value to
122 * issue. If requested is too big, then use last maximum value found.
123 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200124static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200125{
126 u32 scrubval;
127 int i;
128
129 /*
130 * map the configured rate (new_bw) to a value specific to the AMD64
131 * memory controller and apply to register. Search for the first
132 * bandwidth entry that is greater or equal than the setting requested
133 * and program that. If at last entry, turn off DRAM scrubbing.
134 */
135 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
136 /*
137 * skip scrub rates which aren't recommended
138 * (see F10 BKDG, F3x58)
139 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200140 if (scrubrates[i].scrubval < min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200141 continue;
142
143 if (scrubrates[i].bandwidth <= new_bw)
144 break;
145
146 /*
147 * if no suitable bandwidth found, turn off DRAM scrubbing
148 * entirely by falling back to the last element in the
149 * scrubrates array.
150 */
151 }
152
153 scrubval = scrubrates[i].scrubval;
154 if (scrubval)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200155 amd64_info("Setting scrub rate bandwidth: %u\n",
156 scrubrates[i].bandwidth);
Doug Thompson2bc65412009-05-04 20:11:14 +0200157 else
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200158 amd64_info("Turning scrubbing off.\n");
Doug Thompson2bc65412009-05-04 20:11:14 +0200159
160 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
161
162 return 0;
163}
164
Borislav Petkov395ae782010-10-01 18:38:19 +0200165static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
Doug Thompson2bc65412009-05-04 20:11:14 +0200166{
167 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson2bc65412009-05-04 20:11:14 +0200168
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200169 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
Doug Thompson2bc65412009-05-04 20:11:14 +0200170}
171
172static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
173{
174 struct amd64_pvt *pvt = mci->pvt_info;
175 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200176 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200177
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200178 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200179
180 scrubval = scrubval & 0x001F;
181
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200182 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200183
Roel Kluin926311f2010-01-11 20:58:21 +0100184 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
Doug Thompson2bc65412009-05-04 20:11:14 +0200185 if (scrubrates[i].scrubval == scrubval) {
186 *bw = scrubrates[i].bandwidth;
187 status = 0;
188 break;
189 }
190 }
191
192 return status;
193}
194
Doug Thompson67757632009-04-27 15:53:22 +0200195/* Map from a CSROW entry to the mask entry that operates on it */
196static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
197{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200198 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200199 return csrow;
200 else
201 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200202}
203
204/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
205static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
206{
207 if (dct == 0)
208 return pvt->dcsb0[csrow];
209 else
210 return pvt->dcsb1[csrow];
211}
212
213/*
214 * Return the 'mask' address the i'th CS entry. This function is needed because
215 * there number of DCSM registers on Rev E and prior vs Rev F and later is
216 * different.
217 */
218static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
219{
220 if (dct == 0)
221 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
222 else
223 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224}
225
226
227/*
228 * In *base and *limit, pass back the full 40-bit base and limit physical
229 * addresses for the node given by node_id. This information is obtained from
230 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
231 * base and limit addresses are of type SysAddr, as defined at the start of
232 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
233 * in the address range they represent.
234 */
235static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
236 u64 *base, u64 *limit)
237{
238 *base = pvt->dram_base[node_id];
239 *limit = pvt->dram_limit[node_id];
240}
241
242/*
243 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
244 * with node_id
245 */
246static int amd64_base_limit_match(struct amd64_pvt *pvt,
247 u64 sys_addr, int node_id)
248{
249 u64 base, limit, addr;
250
251 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
252
253 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
254 * all ones if the most significant implemented address bit is 1.
255 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
256 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
257 * Application Programming.
258 */
259 addr = sys_addr & 0x000000ffffffffffull;
260
261 return (addr >= base) && (addr <= limit);
262}
263
264/*
265 * Attempt to map a SysAddr to a node. On success, return a pointer to the
266 * mem_ctl_info structure for the node that the SysAddr maps to.
267 *
268 * On failure, return NULL.
269 */
270static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
271 u64 sys_addr)
272{
273 struct amd64_pvt *pvt;
274 int node_id;
275 u32 intlv_en, bits;
276
277 /*
278 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
279 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 */
281 pvt = mci->pvt_info;
282
283 /*
284 * The value of this field should be the same for all DRAM Base
285 * registers. Therefore we arbitrarily choose to read it from the
286 * register for node 0.
287 */
288 intlv_en = pvt->dram_IntlvEn[0];
289
290 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200291 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200292 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200293 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200294 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200295 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200296 }
297
Borislav Petkov72f158f2009-09-18 12:27:27 +0200298 if (unlikely((intlv_en != 0x01) &&
299 (intlv_en != 0x03) &&
300 (intlv_en != 0x07))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200301 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200317 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
318 "range for node %d with node interleaving enabled.\n",
319 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200320 return NULL;
321 }
322
323found:
324 return edac_mc_find(node_id);
325
326err_no_match:
327 debugf2("sys_addr 0x%lx doesn't match any node\n",
328 (unsigned long)sys_addr);
329
330 return NULL;
331}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200332
333/*
334 * Extract the DRAM CS base address from selected csrow register.
335 */
336static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
337{
338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 pvt->dcs_shift;
340}
341
342/*
343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
344 */
345static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
346{
347 u64 dcsm_bits, other_bits;
348 u64 mask;
349
350 /* Extract bits from DRAM CS Mask. */
351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
352
353 other_bits = pvt->dcsm_mask;
354 other_bits = ~(other_bits << pvt->dcs_shift);
355
356 /*
357 * The extracted bits from DCSM belong in the spaces represented by
358 * the cleared bits in other_bits.
359 */
360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
361
362 return mask;
363}
364
365/*
366 * @input_addr is an InputAddr associated with the node given by mci. Return the
367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
368 */
369static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
370{
371 struct amd64_pvt *pvt;
372 int csrow;
373 u64 base, mask;
374
375 pvt = mci->pvt_info;
376
377 /*
378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 * base/mask register pair, test the condition shown near the start of
380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
381 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200382 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200383
384 /* This DRAM chip select is disabled on this node */
385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 continue;
387
388 base = base_from_dct_base(pvt, csrow);
389 mask = ~mask_from_dct_mask(pvt, csrow);
390
391 if ((input_addr & mask) == (base & mask)) {
392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 (unsigned long)input_addr, csrow,
394 pvt->mc_node_id);
395
396 return csrow;
397 }
398 }
399
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404}
405
406/*
407 * Return the base value defined by the DRAM Base register for the node
408 * represented by mci. This function returns the full 40-bit value despite the
409 * fact that the register only stores bits 39-24 of the value. See section
410 * 3.4.4.1 (BKDG #26094, K8, revA-E)
411 */
412static inline u64 get_dram_base(struct mem_ctl_info *mci)
413{
414 struct amd64_pvt *pvt = mci->pvt_info;
415
416 return pvt->dram_base[pvt->mc_node_id];
417}
418
419/*
420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421 * for the node represented by mci. Info is passed back in *hole_base,
422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
423 * info is invalid. Info may be invalid for either of the following reasons:
424 *
425 * - The revision of the node is not E or greater. In this case, the DRAM Hole
426 * Address Register does not exist.
427 *
428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429 * indicating that its contents are not valid.
430 *
431 * The values passed back in *hole_base, *hole_offset, and *hole_size are
432 * complete 32-bit values despite the fact that the bitfields in the DHAR
433 * only represent bits 31-24 of the base and offset values.
434 */
435int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 u64 *hole_offset, u64 *hole_size)
437{
438 struct amd64_pvt *pvt = mci->pvt_info;
439 u64 base;
440
441 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200443 debugf1(" revision %d for node %d does not support DHAR\n",
444 pvt->ext_model, pvt->mc_node_id);
445 return 1;
446 }
447
448 /* only valid for Fam10h */
449 if (boot_cpu_data.x86 == 0x10 &&
450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
452 return 1;
453 }
454
455 if ((pvt->dhar & DHAR_VALID) == 0) {
456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
457 pvt->mc_node_id);
458 return 1;
459 }
460
461 /* This node has Memory Hoisting */
462
463 /* +------------------+--------------------+--------------------+-----
464 * | memory | DRAM hole | relocated |
465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
466 * | | | DRAM hole |
467 * | | | [0x100000000, |
468 * | | | (0x100000000+ |
469 * | | | (0xffffffff-x))] |
470 * +------------------+--------------------+--------------------+-----
471 *
472 * Above is a diagram of physical memory showing the DRAM hole and the
473 * relocated addresses from the DRAM hole. As shown, the DRAM hole
474 * starts at address x (the base address) and extends through address
475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
476 * addresses in the hole so that they start at 0x100000000.
477 */
478
479 base = dhar_base(pvt->dhar);
480
481 *hole_base = base;
482 *hole_size = (0x1ull << 32) - base;
483
484 if (boot_cpu_data.x86 > 0xf)
485 *hole_offset = f10_dhar_offset(pvt->dhar);
486 else
487 *hole_offset = k8_dhar_offset(pvt->dhar);
488
489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 pvt->mc_node_id, (unsigned long)*hole_base,
491 (unsigned long)*hole_offset, (unsigned long)*hole_size);
492
493 return 0;
494}
495EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496
Doug Thompson93c2df52009-05-04 20:46:50 +0200497/*
498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
499 * assumed that sys_addr maps to the node given by mci.
500 *
501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504 * then it is also involved in translating a SysAddr to a DramAddr. Sections
505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506 * These parts of the documentation are unclear. I interpret them as follows:
507 *
508 * When node n receives a SysAddr, it processes the SysAddr as follows:
509 *
510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511 * Limit registers for node n. If the SysAddr is not within the range
512 * specified by the base and limit values, then node n ignores the Sysaddr
513 * (since it does not map to node n). Otherwise continue to step 2 below.
514 *
515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517 * the range of relocated addresses (starting at 0x100000000) from the DRAM
518 * hole. If not, skip to step 3 below. Else get the value of the
519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520 * offset defined by this value from the SysAddr.
521 *
522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523 * Base register for node n. To obtain the DramAddr, subtract the base
524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
525 */
526static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
527{
528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 int ret = 0;
530
531 dram_base = get_dram_base(mci);
532
533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 &hole_size);
535 if (!ret) {
536 if ((sys_addr >= (1ull << 32)) &&
537 (sys_addr < ((1ull << 32) + hole_size))) {
538 /* use DHAR to translate SysAddr to DramAddr */
539 dram_addr = sys_addr - hole_offset;
540
541 debugf2("using DHAR to translate SysAddr 0x%lx to "
542 "DramAddr 0x%lx\n",
543 (unsigned long)sys_addr,
544 (unsigned long)dram_addr);
545
546 return dram_addr;
547 }
548 }
549
550 /*
551 * Translate the SysAddr to a DramAddr as shown near the start of
552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
553 * only deals with 40-bit values. Therefore we discard bits 63-40 of
554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
555 * discard are all 1s. Otherwise the bits we discard are all 0s. See
556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 * Programmer's Manual Volume 1 Application Programming.
558 */
559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
560
561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 (unsigned long)dram_addr);
564 return dram_addr;
565}
566
567/*
568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
570 * for node interleaving.
571 */
572static int num_node_interleave_bits(unsigned intlv_en)
573{
574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 int n;
576
577 BUG_ON(intlv_en > 7);
578 n = intlv_shift_table[intlv_en];
579 return n;
580}
581
582/* Translate the DramAddr given by @dram_addr to an InputAddr. */
583static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
584{
585 struct amd64_pvt *pvt;
586 int intlv_shift;
587 u64 input_addr;
588
589 pvt = mci->pvt_info;
590
591 /*
592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 * concerning translating a DramAddr to an InputAddr.
594 */
595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 (dram_addr & 0xfff);
598
599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 intlv_shift, (unsigned long)dram_addr,
601 (unsigned long)input_addr);
602
603 return input_addr;
604}
605
606/*
607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
608 * assumed that @sys_addr maps to the node given by mci.
609 */
610static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
611{
612 u64 input_addr;
613
614 input_addr =
615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
616
617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 (unsigned long)sys_addr, (unsigned long)input_addr);
619
620 return input_addr;
621}
622
623
624/*
625 * @input_addr is an InputAddr associated with the node represented by mci.
626 * Translate @input_addr to a DramAddr and return the result.
627 */
628static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
629{
630 struct amd64_pvt *pvt;
631 int node_id, intlv_shift;
632 u64 bits, dram_addr;
633 u32 intlv_sel;
634
635 /*
636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 * this procedure. When translating from a DramAddr to an InputAddr, the
639 * bits used for node interleaving are discarded. Here we recover these
640 * bits from the IntlvSel field of the DRAM Limit register (section
641 * 3.4.4.2) for the node that input_addr is associated with.
642 */
643 pvt = mci->pvt_info;
644 node_id = pvt->mc_node_id;
645 BUG_ON((node_id < 0) || (node_id > 7));
646
647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
648
649 if (intlv_shift == 0) {
650 debugf1(" InputAddr 0x%lx translates to DramAddr of "
651 "same value\n", (unsigned long)input_addr);
652
653 return input_addr;
654 }
655
656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 (input_addr & 0xfff);
658
659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 dram_addr = bits + (intlv_sel << 12);
661
662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 "(%d node interleave bits)\n", (unsigned long)input_addr,
664 (unsigned long)dram_addr, intlv_shift);
665
666 return dram_addr;
667}
668
669/*
670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671 * @dram_addr to a SysAddr.
672 */
673static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
674{
675 struct amd64_pvt *pvt = mci->pvt_info;
676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 int ret = 0;
678
679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 &hole_size);
681 if (!ret) {
682 if ((dram_addr >= hole_base) &&
683 (dram_addr < (hole_base + hole_size))) {
684 sys_addr = dram_addr + hole_offset;
685
686 debugf1("using DHAR to translate DramAddr 0x%lx to "
687 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
689
690 return sys_addr;
691 }
692 }
693
694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 sys_addr = dram_addr + base;
696
697 /*
698 * The sys_addr we have computed up to this point is a 40-bit value
699 * because the k8 deals with 40-bit values. However, the value we are
700 * supposed to return is a full 64-bit physical address. The AMD
701 * x86-64 architecture specifies that the most significant implemented
702 * address bit through bit 63 of a physical address must be either all
703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
704 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 * Programming.
707 */
708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
709
710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 pvt->mc_node_id, (unsigned long)dram_addr,
712 (unsigned long)sys_addr);
713
714 return sys_addr;
715}
716
717/*
718 * @input_addr is an InputAddr associated with the node given by mci. Translate
719 * @input_addr to a SysAddr.
720 */
721static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 u64 input_addr)
723{
724 return dram_addr_to_sys_addr(mci,
725 input_addr_to_dram_addr(mci, input_addr));
726}
727
728/*
729 * Find the minimum and maximum InputAddr values that map to the given @csrow.
730 * Pass back these values in *input_addr_min and *input_addr_max.
731 */
732static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 u64 *input_addr_min, u64 *input_addr_max)
734{
735 struct amd64_pvt *pvt;
736 u64 base, mask;
737
738 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200740
741 base = base_from_dct_base(pvt, csrow);
742 mask = mask_from_dct_mask(pvt, csrow);
743
744 *input_addr_min = base & ~mask;
745 *input_addr_max = base | mask | pvt->dcs_mask_notused;
746}
747
Doug Thompson93c2df52009-05-04 20:46:50 +0200748/* Map the Error address to a PAGE and PAGE OFFSET. */
749static inline void error_address_to_page_and_offset(u64 error_address,
750 u32 *page, u32 *offset)
751{
752 *page = (u32) (error_address >> PAGE_SHIFT);
753 *offset = ((u32) error_address) & ~PAGE_MASK;
754}
755
756/*
757 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
758 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
759 * of a node that detected an ECC memory error. mci represents the node that
760 * the error address maps to (possibly different from the node that detected
761 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
762 * error.
763 */
764static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
765{
766 int csrow;
767
768 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
769
770 if (csrow == -1)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200771 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
772 "address 0x%lx\n", (unsigned long)sys_addr);
Doug Thompson93c2df52009-05-04 20:46:50 +0200773 return csrow;
774}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200775
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100776static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200777
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100778static u16 extract_syndrome(struct err_regs *err)
779{
780 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
781}
782
Doug Thompson2da11652009-04-27 16:09:09 +0200783/*
784 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
785 * are ECC capable.
786 */
787static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
788{
789 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200790 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200791
Borislav Petkov1433eb92009-10-21 13:44:36 +0200792 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200793 ? 19
794 : 17;
795
Borislav Petkov584fcff2009-06-10 18:29:54 +0200796 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200797 edac_cap = EDAC_FLAG_SECDED;
798
799 return edac_cap;
800}
801
802
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200803static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200804
Borislav Petkov68798e12009-11-03 16:18:33 +0100805static void amd64_dump_dramcfg_low(u32 dclr, int chan)
806{
807 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
808
809 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
810 (dclr & BIT(16)) ? "un" : "",
811 (dclr & BIT(19)) ? "yes" : "no");
812
813 debugf1(" PAR/ERR parity: %s\n",
814 (dclr & BIT(8)) ? "enabled" : "disabled");
815
816 debugf1(" DCT 128bit mode width: %s\n",
817 (dclr & BIT(11)) ? "128b" : "64b");
818
819 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
820 (dclr & BIT(12)) ? "yes" : "no",
821 (dclr & BIT(13)) ? "yes" : "no",
822 (dclr & BIT(14)) ? "yes" : "no",
823 (dclr & BIT(15)) ? "yes" : "no");
824}
825
Doug Thompson2da11652009-04-27 16:09:09 +0200826/* Display and decode various NB registers for debug purposes. */
827static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
828{
829 int ganged;
830
Borislav Petkov68798e12009-11-03 16:18:33 +0100831 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200832
Borislav Petkov68798e12009-11-03 16:18:33 +0100833 debugf1(" NB two channel DRAM capable: %s\n",
834 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
835
836 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
837 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
838 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
839
840 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200841
Borislav Petkov8de1d912009-10-16 13:39:30 +0200842 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200843
Borislav Petkov8de1d912009-10-16 13:39:30 +0200844 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
845 "offset: 0x%08x\n",
846 pvt->dhar,
847 dhar_base(pvt->dhar),
848 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
849 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200850
Borislav Petkov8de1d912009-10-16 13:39:30 +0200851 debugf1(" DramHoleValid: %s\n",
852 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200853
Borislav Petkov8de1d912009-10-16 13:39:30 +0200854 /* everything below this point is Fam10h and above */
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200855 if (boot_cpu_data.x86 == 0xf) {
856 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200857 return;
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200858 }
Doug Thompson2da11652009-04-27 16:09:09 +0200859
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200860 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100861
Borislav Petkov8de1d912009-10-16 13:39:30 +0200862 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100863 if (!dct_ganging_enabled(pvt))
864 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200865
866 /*
867 * Determine if ganged and then dump memory sizes for first controller,
868 * and if NOT ganged dump info for 2nd controller.
869 */
870 ganged = dct_ganging_enabled(pvt);
871
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200872 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200873
874 if (!ganged)
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200875 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200876}
877
878/* Read in both of DBAM registers */
879static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
880{
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200881 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200882
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200883 if (boot_cpu_data.x86 >= 0x10)
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200884 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200885}
886
Doug Thompson94be4bf2009-04-27 16:12:00 +0200887/*
888 * NOTE: CPU Revision Dependent code: Rev E and Rev F
889 *
890 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
891 * set the shift factor for the DCSB and DCSM values.
892 *
893 * ->dcs_mask_notused, RevE:
894 *
895 * To find the max InputAddr for the csrow, start with the base address and set
896 * all bits that are "don't care" bits in the test at the start of section
897 * 3.5.4 (p. 84).
898 *
899 * The "don't care" bits are all set bits in the mask and all bits in the gaps
900 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
901 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
902 * gaps.
903 *
904 * ->dcs_mask_notused, RevF and later:
905 *
906 * To find the max InputAddr for the csrow, start with the base address and set
907 * all bits that are "don't care" bits in the test at the start of NPT section
908 * 4.5.4 (p. 87).
909 *
910 * The "don't care" bits are all set bits in the mask and all bits in the gaps
911 * between bit ranges [36:27] and [21:13].
912 *
913 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
914 * which are all bits in the above-mentioned gaps.
915 */
916static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
917{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200918
Borislav Petkov1433eb92009-10-21 13:44:36 +0200919 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200920 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
921 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
922 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
923 pvt->dcs_shift = REV_E_DCS_SHIFT;
924 pvt->cs_count = 8;
925 pvt->num_dcsm = 8;
926 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200927 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
928 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
929 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
930 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
Borislav Petkov3ab0e7d2010-10-01 18:19:06 +0200931 pvt->cs_count = 8;
932 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200933 }
934}
935
936/*
937 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
938 */
939static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
940{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200941 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200942
943 amd64_set_dct_base_and_mask(pvt);
944
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200945 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200946 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200947 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200948 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
949 cs, pvt->dcsb0[cs], reg);
950
951 /* If DCT are NOT ganged, then read in DCT1's base */
952 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
953 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200954 if (!amd64_read_pci_cfg(pvt->F2, reg,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200955 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200956 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
957 cs, pvt->dcsb1[cs], reg);
958 } else {
959 pvt->dcsb1[cs] = 0;
960 }
961 }
962
963 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200964 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200965 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200966 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
967 cs, pvt->dcsm0[cs], reg);
968
969 /* If DCT are NOT ganged, then read in DCT1's mask */
970 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
971 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200972 if (!amd64_read_pci_cfg(pvt->F2, reg,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200973 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200974 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
975 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200976 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200977 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200978 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200979 }
980}
981
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200982static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
Doug Thompson94be4bf2009-04-27 16:12:00 +0200983{
984 enum mem_type type;
985
Borislav Petkov1433eb92009-10-21 13:44:36 +0200986 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +0100987 if (pvt->dchr0 & DDR3_MODE)
988 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
989 else
990 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200991 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200992 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
993 }
994
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200995 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +0200996
997 return type;
998}
999
Doug Thompsonddff8762009-04-27 16:14:52 +02001000/*
1001 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1002 * and the later RevF memory controllers (DDR vs DDR2)
1003 *
1004 * Return:
1005 * number of memory channels in operation
1006 * Pass back:
1007 * contents of the DCL0_LOW register
1008 */
1009static int k8_early_channel_count(struct amd64_pvt *pvt)
1010{
1011 int flag, err = 0;
1012
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001013 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001014 if (err)
1015 return err;
1016
Borislav Petkov9f56da02010-10-01 19:44:53 +02001017 if (pvt->ext_model >= K8_REV_F)
Doug Thompsonddff8762009-04-27 16:14:52 +02001018 /* RevF (NPT) and later */
1019 flag = pvt->dclr0 & F10_WIDTH_128;
Borislav Petkov9f56da02010-10-01 19:44:53 +02001020 else
Doug Thompsonddff8762009-04-27 16:14:52 +02001021 /* RevE and earlier */
1022 flag = pvt->dclr0 & REVE_WIDTH_128;
Doug Thompsonddff8762009-04-27 16:14:52 +02001023
1024 /* not used */
1025 pvt->dclr1 = 0;
1026
1027 return (flag) ? 2 : 1;
1028}
1029
1030/* extract the ERROR ADDRESS for the K8 CPUs */
1031static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001032 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001033{
1034 return (((u64) (info->nbeah & 0xff)) << 32) +
1035 (info->nbeal & ~0x03);
1036}
1037
1038/*
1039 * Read the Base and Limit registers for K8 based Memory controllers; extract
1040 * fields from the 'raw' reg into separate data fields
1041 *
1042 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1043 */
1044static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1045{
1046 u32 low;
1047 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001048
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001049 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001050
1051 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001052 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001053 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1054 pvt->dram_rw_en[dram] = (low & 0x3);
1055
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001056 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001057
1058 /*
1059 * Extract parts into separate data entries. Limit is the HIGHEST memory
1060 * location of the region, so lower 24 bits need to be all ones
1061 */
Borislav Petkov49978112009-10-12 17:23:03 +02001062 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001063 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1064 pvt->dram_DstNode[dram] = (low & 0x7);
1065}
1066
1067static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001068 struct err_regs *err_info, u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001069{
1070 struct mem_ctl_info *src_mci;
Doug Thompsonddff8762009-04-27 16:14:52 +02001071 int channel, csrow;
1072 u32 page, offset;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001073 u16 syndrome;
Doug Thompsonddff8762009-04-27 16:14:52 +02001074
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001075 syndrome = extract_syndrome(err_info);
Doug Thompsonddff8762009-04-27 16:14:52 +02001076
1077 /* CHIPKILL enabled */
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001078 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001079 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001080 if (channel < 0) {
1081 /*
1082 * Syndrome didn't map, so we don't know which of the
1083 * 2 DIMMs is in error. So we need to ID 'both' of them
1084 * as suspect.
1085 */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001086 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1087 "error reporting race\n", syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1089 return;
1090 }
1091 } else {
1092 /*
1093 * non-chipkill ecc mode
1094 *
1095 * The k8 documentation is unclear about how to determine the
1096 * channel number when using non-chipkill memory. This method
1097 * was obtained from email communication with someone at AMD.
1098 * (Wish the email was placed in this comment - norsk)
1099 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001100 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001101 }
1102
1103 /*
1104 * Find out which node the error address belongs to. This may be
1105 * different from the node that detected the error.
1106 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001107 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001108 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001109 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001110 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001111 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1112 return;
1113 }
1114
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001115 /* Now map the sys_addr to a CSROW */
1116 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001117 if (csrow < 0) {
1118 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1119 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001120 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001121
1122 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1123 channel, EDAC_MOD_STR);
1124 }
1125}
1126
Borislav Petkov1433eb92009-10-21 13:44:36 +02001127static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001128{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001129 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001130
Borislav Petkov1433eb92009-10-21 13:44:36 +02001131 if (pvt->ext_model >= K8_REV_F)
1132 dbam_map = ddr2_dbam;
1133 else if (pvt->ext_model >= K8_REV_D)
1134 dbam_map = ddr2_dbam_revD;
1135 else
1136 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001137
Borislav Petkov1433eb92009-10-21 13:44:36 +02001138 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001139}
1140
Doug Thompson1afd3c92009-04-27 16:16:50 +02001141/*
1142 * Get the number of DCT channels in use.
1143 *
1144 * Return:
1145 * number of Memory Channels in operation
1146 * Pass back:
1147 * contents of the DCL0_LOW register
1148 */
1149static int f10_early_channel_count(struct amd64_pvt *pvt)
1150{
Wan Wei57a30852009-08-07 17:04:49 +02001151 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001152 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001153 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001154
Doug Thompson1afd3c92009-04-27 16:16:50 +02001155 /* If we are in 128 bit mode, then we are using 2 channels */
1156 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001157 channels = 2;
1158 return channels;
1159 }
1160
1161 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001162 * Need to check if in unganged mode: In such, there are 2 channels,
1163 * but they are not in 128 bit mode and thus the above 'dclr0' status
1164 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001165 *
1166 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1167 * their CSEnable bit on. If so, then SINGLE DIMM case.
1168 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001169 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001170
1171 /*
1172 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1173 * is more than just one DIMM present in unganged mode. Need to check
1174 * both controllers since DIMMs can be placed in either one.
1175 */
Wan Wei57a30852009-08-07 17:04:49 +02001176 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001177 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001178 goto err_reg;
1179
Wan Wei57a30852009-08-07 17:04:49 +02001180 for (j = 0; j < 4; j++) {
1181 if (DBAM_DIMM(j, dbam) > 0) {
1182 channels++;
1183 break;
1184 }
1185 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001186 }
1187
Borislav Petkovd16149e2009-10-16 19:55:49 +02001188 if (channels > 2)
1189 channels = 2;
1190
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001191 amd64_info("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001192
1193 return channels;
1194
1195err_reg:
1196 return -1;
1197
1198}
1199
Borislav Petkov1433eb92009-10-21 13:44:36 +02001200static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001201{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001202 int *dbam_map;
1203
1204 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1205 dbam_map = ddr3_dbam;
1206 else
1207 dbam_map = ddr2_dbam;
1208
1209 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001210}
1211
Doug Thompson1afd3c92009-04-27 16:16:50 +02001212static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001213 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001214{
1215 return (((u64) (info->nbeah & 0xffff)) << 32) +
1216 (info->nbeal & ~0x01);
1217}
1218
1219/*
1220 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1221 * fields from the 'raw' reg into separate data fields.
1222 *
1223 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1224 */
1225static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1226{
1227 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1228
1229 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1230 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1231
1232 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001233 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001234 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001235
1236 /* Extract parts into separate data entries */
1237 pvt->dram_rw_en[dram] = (low_base & 0x3);
1238
1239 if (pvt->dram_rw_en[dram] == 0)
1240 return;
1241
1242 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1243
Borislav Petkov66216a72009-09-22 16:48:37 +02001244 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001245 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001246
1247 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1248 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1249
1250 /* read the 'raw' LIMIT registers */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001251 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001252 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001253
Doug Thompson1afd3c92009-04-27 16:16:50 +02001254 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1255 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1256
1257 /*
1258 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1259 * memory location of the region, so low 24 bits need to be all ones.
1260 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001261 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001262 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001263 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001264}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001265
1266static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1267{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001268
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001269 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001270 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001271 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1272 "High range addresses at: 0x%x\n",
1273 pvt->dram_ctl_select_low,
1274 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001275
Borislav Petkov72381bd2009-10-09 19:14:43 +02001276 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1277 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1278 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001279
Borislav Petkov72381bd2009-10-09 19:14:43 +02001280 if (!dct_ganging_enabled(pvt))
1281 debugf0(" Address range split per DCT: %s\n",
1282 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1283
1284 debugf0(" DCT data interleave for ECC: %s, "
1285 "DRAM cleared since last warm reset: %s\n",
1286 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1287 (dct_memory_cleared(pvt) ? "yes" : "no"));
1288
1289 debugf0(" DCT channel interleave: %s, "
1290 "DCT interleave bits selector: 0x%x\n",
1291 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001292 dct_sel_interleave_addr(pvt));
1293 }
1294
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001295 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001296 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001297}
1298
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001299/*
1300 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 * Interleaving Modes.
1302 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001303static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 int hi_range_sel, u32 intlv_en)
1305{
1306 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1307
1308 if (dct_ganging_enabled(pvt))
1309 cs = 0;
1310 else if (hi_range_sel)
1311 cs = dct_sel_high;
1312 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001313 /*
1314 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1315 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001316 if (dct_sel_interleave_addr(pvt) == 0)
1317 cs = sys_addr >> 6 & 1;
1318 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1319 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1320
1321 if (dct_sel_interleave_addr(pvt) & 1)
1322 cs = (sys_addr >> 9 & 1) ^ temp;
1323 else
1324 cs = (sys_addr >> 6 & 1) ^ temp;
1325 } else if (intlv_en & 4)
1326 cs = sys_addr >> 15 & 1;
1327 else if (intlv_en & 2)
1328 cs = sys_addr >> 14 & 1;
1329 else if (intlv_en & 1)
1330 cs = sys_addr >> 13 & 1;
1331 else
1332 cs = sys_addr >> 12 & 1;
1333 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1334 cs = ~dct_sel_high & 1;
1335 else
1336 cs = 0;
1337
1338 return cs;
1339}
1340
1341static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1342{
1343 if (intlv_en == 1)
1344 return 1;
1345 else if (intlv_en == 3)
1346 return 2;
1347 else if (intlv_en == 7)
1348 return 3;
1349
1350 return 0;
1351}
1352
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001353/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1354static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001355 u32 dct_sel_base_addr,
1356 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001357 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001358 u64 dram_base)
1359{
1360 u64 chan_off;
1361
1362 if (hi_range_sel) {
Borislav Petkov9975a5f2010-03-08 18:29:35 +01001363 if (!(dct_sel_base_addr & 0xFFFF0000) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001364 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001365 chan_off = hole_off << 16;
1366 else
1367 chan_off = dct_sel_base_off;
1368 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001369 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001370 chan_off = hole_off << 16;
1371 else
1372 chan_off = dram_base & 0xFFFFF8000000ULL;
1373 }
1374
1375 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1376 (chan_off & 0x0000FFFFFF800000ULL);
1377}
1378
1379/* Hack for the time being - Can we get this from BIOS?? */
1380#define CH0SPARE_RANK 0
1381#define CH1SPARE_RANK 1
1382
1383/*
1384 * checks if the csrow passed in is marked as SPARED, if so returns the new
1385 * spare row
1386 */
1387static inline int f10_process_possible_spare(int csrow,
1388 u32 cs, struct amd64_pvt *pvt)
1389{
1390 u32 swap_done;
1391 u32 bad_dram_cs;
1392
1393 /* Depending on channel, isolate respective SPARING info */
1394 if (cs) {
1395 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1396 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1397 if (swap_done && (csrow == bad_dram_cs))
1398 csrow = CH1SPARE_RANK;
1399 } else {
1400 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1401 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1402 if (swap_done && (csrow == bad_dram_cs))
1403 csrow = CH0SPARE_RANK;
1404 }
1405 return csrow;
1406}
1407
1408/*
1409 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1410 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1411 *
1412 * Return:
1413 * -EINVAL: NOT FOUND
1414 * 0..csrow = Chip-Select Row
1415 */
1416static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1417{
1418 struct mem_ctl_info *mci;
1419 struct amd64_pvt *pvt;
1420 u32 cs_base, cs_mask;
1421 int cs_found = -EINVAL;
1422 int csrow;
1423
Borislav Petkovcc4d8862010-10-13 16:11:59 +02001424 mci = mcis[nid];
Doug Thompson6163b5d2009-04-27 16:20:17 +02001425 if (!mci)
1426 return cs_found;
1427
1428 pvt = mci->pvt_info;
1429
1430 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1431
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001432 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001433
1434 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1435 if (!(cs_base & K8_DCSB_CS_ENABLE))
1436 continue;
1437
1438 /*
1439 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1440 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1441 * of the actual address.
1442 */
1443 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1444
1445 /*
1446 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1447 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1448 */
1449 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1450
1451 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1452 csrow, cs_base, cs_mask);
1453
1454 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1455
1456 debugf1(" Final CSMask=0x%x\n", cs_mask);
1457 debugf1(" (InputAddr & ~CSMask)=0x%x "
1458 "(CSBase & ~CSMask)=0x%x\n",
1459 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1460
1461 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1462 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1463
1464 debugf1(" MATCH csrow=%d\n", cs_found);
1465 break;
1466 }
1467 }
1468 return cs_found;
1469}
1470
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001471/* For a given @dram_range, check if @sys_addr falls within it. */
1472static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1473 u64 sys_addr, int *nid, int *chan_sel)
1474{
1475 int node_id, cs_found = -EINVAL, high_range = 0;
1476 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1477 u32 hole_valid, tmp, dct_sel_base, channel;
1478 u64 dram_base, chan_addr, dct_sel_base_off;
1479
1480 dram_base = pvt->dram_base[dram_range];
1481 intlv_en = pvt->dram_IntlvEn[dram_range];
1482
1483 node_id = pvt->dram_DstNode[dram_range];
1484 intlv_sel = pvt->dram_IntlvSel[dram_range];
1485
1486 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1487 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1488
1489 /*
1490 * This assumes that one node's DHAR is the same as all the other
1491 * nodes' DHAR.
1492 */
1493 hole_off = (pvt->dhar & 0x0000FF80);
1494 hole_valid = (pvt->dhar & 0x1);
1495 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1496
1497 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1498 hole_off, hole_valid, intlv_sel);
1499
Borislav Petkove726f3c2010-12-06 16:20:25 +01001500 if (intlv_en &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001501 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1502 return -EINVAL;
1503
1504 dct_sel_base = dct_sel_baseaddr(pvt);
1505
1506 /*
1507 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1508 * select between DCT0 and DCT1.
1509 */
1510 if (dct_high_range_enabled(pvt) &&
1511 !dct_ganging_enabled(pvt) &&
1512 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1513 high_range = 1;
1514
1515 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1516
1517 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1518 dct_sel_base_off, hole_valid,
1519 hole_off, dram_base);
1520
1521 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1522
1523 /* remove Node ID (in case of memory interleaving) */
1524 tmp = chan_addr & 0xFC0;
1525
1526 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1527
1528 /* remove channel interleave and hash */
1529 if (dct_interleave_enabled(pvt) &&
1530 !dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt)) {
1532 if (dct_sel_interleave_addr(pvt) != 1)
1533 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1534 else {
1535 tmp = chan_addr & 0xFC0;
1536 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1537 | tmp;
1538 }
1539 }
1540
1541 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1542 chan_addr, (u32)(chan_addr >> 8));
1543
1544 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1545
1546 if (cs_found >= 0) {
1547 *nid = node_id;
1548 *chan_sel = channel;
1549 }
1550 return cs_found;
1551}
1552
1553static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1554 int *node, int *chan_sel)
1555{
1556 int dram_range, cs_found = -EINVAL;
1557 u64 dram_base, dram_limit;
1558
1559 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1560
1561 if (!pvt->dram_rw_en[dram_range])
1562 continue;
1563
1564 dram_base = pvt->dram_base[dram_range];
1565 dram_limit = pvt->dram_limit[dram_range];
1566
1567 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1568
1569 cs_found = f10_match_to_this_node(pvt, dram_range,
1570 sys_addr, node,
1571 chan_sel);
1572 if (cs_found >= 0)
1573 break;
1574 }
1575 }
1576 return cs_found;
1577}
1578
1579/*
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001580 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1581 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001582 *
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001583 * The @sys_addr is usually an error address received from the hardware
1584 * (MCX_ADDR).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001585 */
1586static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001587 struct err_regs *err_info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001588 u64 sys_addr)
1589{
1590 struct amd64_pvt *pvt = mci->pvt_info;
1591 u32 page, offset;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001592 int nid, csrow, chan = 0;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001593 u16 syndrome;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001594
1595 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1596
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001597 if (csrow < 0) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001598 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001599 return;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001600 }
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001601
1602 error_address_to_page_and_offset(sys_addr, &page, &offset);
1603
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001604 syndrome = extract_syndrome(err_info);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001605
1606 /*
1607 * We need the syndromes for channel detection only when we're
1608 * ganged. Otherwise @chan should already contain the channel at
1609 * this point.
1610 */
Borislav Petkov962b70a2010-08-03 16:51:28 +02001611 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001612 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1613
1614 if (chan >= 0)
1615 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1616 EDAC_MOD_STR);
1617 else
1618 /*
1619 * Channel unknown, report all channels on this CSROW as failed.
1620 */
1621 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1622 edac_mc_handle_ce(mci, page, offset, syndrome,
1623 csrow, chan, EDAC_MOD_STR);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001624}
1625
1626/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001627 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001628 * CSROWs as well
1629 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001630static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001631{
Borislav Petkov603adaf2009-12-21 14:52:53 +01001632 int dimm, size0, size1, factor = 0;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001633 u32 dbam;
1634 u32 *dcsb;
1635
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001636 if (boot_cpu_data.x86 == 0xf) {
Borislav Petkov603adaf2009-12-21 14:52:53 +01001637 if (pvt->dclr0 & F10_WIDTH_128)
1638 factor = 1;
1639
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001640 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001641 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001642 return;
1643 else
1644 WARN_ON(ctrl != 0);
1645 }
1646
1647 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1648 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001649
1650 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1651 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1652
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001653 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1654
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001655 /* Dump memory sizes for DIMM and its CSROWs */
1656 for (dimm = 0; dimm < 4; dimm++) {
1657
1658 size0 = 0;
1659 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001660 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001661
1662 size1 = 0;
1663 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001664 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001665
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001666 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1667 dimm * 2, size0 << factor,
1668 dimm * 2 + 1, size1 << factor);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001669 }
1670}
1671
Doug Thompson4d376072009-04-27 16:25:05 +02001672static struct amd64_family_type amd64_family_types[] = {
1673 [K8_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001674 .ctl_name = "K8",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001675 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001677 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001678 .early_channel_count = k8_early_channel_count,
1679 .get_error_address = k8_get_error_address,
1680 .read_dram_base_limit = k8_read_dram_base_limit,
1681 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1682 .dbam_to_cs = k8_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001683 }
1684 },
1685 [F10_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001686 .ctl_name = "F10h",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001687 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1688 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001689 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001690 .early_channel_count = f10_early_channel_count,
1691 .get_error_address = f10_get_error_address,
1692 .read_dram_base_limit = f10_read_dram_base_limit,
1693 .read_dram_ctl_register = f10_read_dram_ctl_register,
1694 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1695 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001696 }
1697 },
Doug Thompson4d376072009-04-27 16:25:05 +02001698};
1699
1700static struct pci_dev *pci_get_related_function(unsigned int vendor,
1701 unsigned int device,
1702 struct pci_dev *related)
1703{
1704 struct pci_dev *dev = NULL;
1705
1706 dev = pci_get_device(vendor, device, dev);
1707 while (dev) {
1708 if ((dev->bus->number == related->bus->number) &&
1709 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1710 break;
1711 dev = pci_get_device(vendor, device, dev);
1712 }
1713
1714 return dev;
1715}
1716
Doug Thompsonb1289d62009-04-27 16:37:05 +02001717/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001718 * These are tables of eigenvectors (one per line) which can be used for the
1719 * construction of the syndrome tables. The modified syndrome search algorithm
1720 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001721 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001722 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001723 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001724static u16 x4_vectors[] = {
1725 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1726 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1727 0x0001, 0x0002, 0x0004, 0x0008,
1728 0x1013, 0x3032, 0x4044, 0x8088,
1729 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1730 0x4857, 0xc4fe, 0x13cc, 0x3288,
1731 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1732 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1733 0x15c1, 0x2a42, 0x89ac, 0x4758,
1734 0x2b03, 0x1602, 0x4f0c, 0xca08,
1735 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1736 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1737 0x2b87, 0x164e, 0x642c, 0xdc18,
1738 0x40b9, 0x80de, 0x1094, 0x20e8,
1739 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1740 0x11c1, 0x2242, 0x84ac, 0x4c58,
1741 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1742 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1743 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1744 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1745 0x16b3, 0x3d62, 0x4f34, 0x8518,
1746 0x1e2f, 0x391a, 0x5cac, 0xf858,
1747 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1748 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1749 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1750 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1751 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1752 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1753 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1754 0x185d, 0x2ca6, 0x7914, 0x9e28,
1755 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1756 0x4199, 0x82ee, 0x19f4, 0x2e58,
1757 0x4807, 0xc40e, 0x130c, 0x3208,
1758 0x1905, 0x2e0a, 0x5804, 0xac08,
1759 0x213f, 0x132a, 0xadfc, 0x5ba8,
1760 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001761};
1762
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001763static u16 x8_vectors[] = {
1764 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1765 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1766 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1767 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1768 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1769 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1770 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1771 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1772 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1773 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1774 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1775 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1776 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1777 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1778 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1779 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1780 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1781 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1782 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1783};
1784
1785static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001786 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001787{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001788 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001789
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001790 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1791 u16 s = syndrome;
1792 int v_idx = err_sym * v_dim;
1793 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001794
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001795 /* walk over all 16 bits of the syndrome */
1796 for (i = 1; i < (1U << 16); i <<= 1) {
1797
1798 /* if bit is set in that eigenvector... */
1799 if (v_idx < v_end && vectors[v_idx] & i) {
1800 u16 ev_comp = vectors[v_idx++];
1801
1802 /* ... and bit set in the modified syndrome, */
1803 if (s & i) {
1804 /* remove it. */
1805 s ^= ev_comp;
1806
1807 if (!s)
1808 return err_sym;
1809 }
1810
1811 } else if (s & i)
1812 /* can't get to zero, move to next symbol */
1813 break;
1814 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001815 }
1816
1817 debugf0("syndrome(%x) not found\n", syndrome);
1818 return -1;
1819}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001820
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001821static int map_err_sym_to_channel(int err_sym, int sym_size)
1822{
1823 if (sym_size == 4)
1824 switch (err_sym) {
1825 case 0x20:
1826 case 0x21:
1827 return 0;
1828 break;
1829 case 0x22:
1830 case 0x23:
1831 return 1;
1832 break;
1833 default:
1834 return err_sym >> 4;
1835 break;
1836 }
1837 /* x8 symbols */
1838 else
1839 switch (err_sym) {
1840 /* imaginary bits not in a DIMM */
1841 case 0x10:
1842 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1843 err_sym);
1844 return -1;
1845 break;
1846
1847 case 0x11:
1848 return 0;
1849 break;
1850 case 0x12:
1851 return 1;
1852 break;
1853 default:
1854 return err_sym >> 3;
1855 break;
1856 }
1857 return -1;
1858}
1859
1860static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1861{
1862 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001863 int err_sym = -1;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001864
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001865 if (pvt->syn_type == 8)
1866 err_sym = decode_syndrome(syndrome, x8_vectors,
1867 ARRAY_SIZE(x8_vectors),
1868 pvt->syn_type);
1869 else if (pvt->syn_type == 4)
1870 err_sym = decode_syndrome(syndrome, x4_vectors,
1871 ARRAY_SIZE(x4_vectors),
1872 pvt->syn_type);
1873 else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001874 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001875 return err_sym;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001876 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001877
1878 return map_err_sym_to_channel(err_sym, pvt->syn_type);
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001879}
1880
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001881/*
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001882 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1883 * ADDRESS and process.
1884 */
1885static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001886 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001887{
1888 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001889 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001890
1891 /* Ensure that the Error Address is VALID */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001892 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1893 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001894 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1895 return;
1896 }
1897
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001898 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001899
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001900 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001901
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001902 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001903}
1904
1905/* Handle any Un-correctable Errors (UEs) */
1906static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001907 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001908{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001909 struct amd64_pvt *pvt = mci->pvt_info;
1910 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001911 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001912 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001913 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001914
1915 log_mci = mci;
1916
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001919 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1920 return;
1921 }
1922
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001923 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001924
1925 /*
1926 * Find out which node the error address belongs to. This may be
1927 * different from the node that detected the error.
1928 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001929 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001930 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001931 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1932 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001933 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1934 return;
1935 }
1936
1937 log_mci = src_mci;
1938
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001939 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001940 if (csrow < 0) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001941 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1942 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001943 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1944 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001945 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001946 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1947 }
1948}
1949
Borislav Petkov549d0422009-07-24 13:51:42 +02001950static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02001951 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001952{
Borislav Petkovb70ef012009-06-25 19:32:38 +02001953 u32 ec = ERROR_CODE(info->nbsl);
1954 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01001955 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001956
Borislav Petkovb70ef012009-06-25 19:32:38 +02001957 /* Bail early out if this was an 'observed' error */
1958 if (PP(ec) == K8_NBSL_PP_OBS)
1959 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001960
Borislav Petkovecaf5602009-07-23 16:32:01 +02001961 /* Do only ECC errors */
1962 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001963 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001964
Borislav Petkovecaf5602009-07-23 16:32:01 +02001965 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001966 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02001967 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001968 amd64_handle_ue(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001969}
1970
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001971void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001972{
Borislav Petkovcc4d8862010-10-13 16:11:59 +02001973 struct mem_ctl_info *mci = mcis[node_id];
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001974 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001975
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001976 regs.nbsl = (u32) m->status;
1977 regs.nbsh = (u32)(m->status >> 32);
1978 regs.nbeal = (u32) m->addr;
1979 regs.nbeah = (u32)(m->addr >> 32);
1980 regs.nbcfg = nbcfg;
1981
1982 __amd64_decode_bus_error(mci, &regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001983
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001984 /*
1985 * Check the UE bit of the NB status high register, if set generate some
1986 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1987 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02001988 *
1989 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001990 */
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001991 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
Borislav Petkov5110dbd2009-06-25 19:51:04 +02001992 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02001993
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001994}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001995
Doug Thompson0ec449e2009-04-27 19:41:25 +02001996/*
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001997 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02001998 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
Doug Thompson0ec449e2009-04-27 19:41:25 +02001999 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002000static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002001{
Doug Thompson0ec449e2009-04-27 19:41:25 +02002002 /* Reserve the ADDRESS MAP Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002003 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2004 if (!pvt->F1) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002005 amd64_err("error address map device not found: "
2006 "vendor %x device 0x%x (broken BIOS?)\n",
2007 PCI_VENDOR_ID_AMD, f1_id);
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002008 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002009 }
2010
2011 /* Reserve the MISC Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002012 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2013 if (!pvt->F3) {
2014 pci_dev_put(pvt->F1);
2015 pvt->F1 = NULL;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002016
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002017 amd64_err("error F3 device not found: "
2018 "vendor %x device 0x%x (broken BIOS?)\n",
2019 PCI_VENDOR_ID_AMD, f3_id);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002020
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002021 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002022 }
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002023 debugf1("F1: %s\n", pci_name(pvt->F1));
2024 debugf1("F2: %s\n", pci_name(pvt->F2));
2025 debugf1("F3: %s\n", pci_name(pvt->F3));
Doug Thompson0ec449e2009-04-27 19:41:25 +02002026
2027 return 0;
2028}
2029
Borislav Petkov360b7f32010-10-15 19:25:38 +02002030static void free_mc_sibling_devs(struct amd64_pvt *pvt)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002031{
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002032 pci_dev_put(pvt->F1);
2033 pci_dev_put(pvt->F3);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002034}
2035
2036/*
2037 * Retrieve the hardware registers of the memory controller (this includes the
2038 * 'Address Map' and 'Misc' device regs)
2039 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002040static void read_mc_regs(struct amd64_pvt *pvt)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002041{
2042 u64 msr_val;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002043 u32 tmp;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002044 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002045
2046 /*
2047 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2048 * those are Read-As-Zero
2049 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002050 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2051 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002052
2053 /* check first whether TOP_MEM2 is enabled */
2054 rdmsrl(MSR_K8_SYSCFG, msr_val);
2055 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002056 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2057 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002058 } else
2059 debugf0(" TOP_MEM2 disabled.\n");
2060
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002061 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002062
2063 if (pvt->ops->read_dram_ctl_register)
2064 pvt->ops->read_dram_ctl_register(pvt);
2065
2066 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2067 /*
2068 * Call CPU specific READ function to get the DRAM Base and
2069 * Limit values from the DCT.
2070 */
2071 pvt->ops->read_dram_base_limit(pvt, dram);
2072
2073 /*
2074 * Only print out debug info on rows with both R and W Enabled.
2075 * Normal processing, compiler should optimize this whole 'if'
2076 * debug output block away.
2077 */
2078 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002079 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2080 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002081 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002082 pvt->dram_base[dram],
2083 pvt->dram_limit[dram]);
2084
Doug Thompson0ec449e2009-04-27 19:41:25 +02002085 debugf1(" IntlvEn=%s %s %s "
2086 "IntlvSel=%d DstNode=%d\n",
2087 pvt->dram_IntlvEn[dram] ?
2088 "Enabled" : "Disabled",
2089 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2090 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2091 pvt->dram_IntlvSel[dram],
2092 pvt->dram_DstNode[dram]);
2093 }
2094 }
2095
2096 amd64_read_dct_base_mask(pvt);
2097
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002098 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002099 amd64_read_dbam_reg(pvt);
2100
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002101 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002102
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002103 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2104 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002105
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002106 if (boot_cpu_data.x86 >= 0x10) {
2107 if (!dct_ganging_enabled(pvt)) {
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002108 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2109 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002110 }
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002111 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002112 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002113
2114 if (boot_cpu_data.x86 == 0x10 &&
2115 boot_cpu_data.x86_model > 7 &&
2116 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2117 tmp & BIT(25))
2118 pvt->syn_type = 8;
2119 else
2120 pvt->syn_type = 4;
2121
Doug Thompson0ec449e2009-04-27 19:41:25 +02002122 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002123}
2124
2125/*
2126 * NOTE: CPU Revision Dependent code
2127 *
2128 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002129 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002130 * k8 private pointer to -->
2131 * DRAM Bank Address mapping register
2132 * node_id
2133 * DCL register where dual_channel_active is
2134 *
2135 * The DBAM register consists of 4 sets of 4 bits each definitions:
2136 *
2137 * Bits: CSROWs
2138 * 0-3 CSROWs 0 and 1
2139 * 4-7 CSROWs 2 and 3
2140 * 8-11 CSROWs 4 and 5
2141 * 12-15 CSROWs 6 and 7
2142 *
2143 * Values range from: 0 to 15
2144 * The meaning of the values depends on CPU revision and dual-channel state,
2145 * see relevant BKDG more info.
2146 *
2147 * The memory controller provides for total of only 8 CSROWs in its current
2148 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2149 * single channel or two (2) DIMMs in dual channel mode.
2150 *
2151 * The following code logic collapses the various tables for CSROW based on CPU
2152 * revision.
2153 *
2154 * Returns:
2155 * The number of PAGE_SIZE pages on the specified CSROW number it
2156 * encompasses
2157 *
2158 */
2159static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2160{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002161 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002162
2163 /*
2164 * The math on this doesn't look right on the surface because x/2*4 can
2165 * be simplified to x*2 but this expression makes use of the fact that
2166 * it is integral math where 1/2=0. This intermediate value becomes the
2167 * number of bits to shift the DBAM register to extract the proper CSROW
2168 * field.
2169 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002170 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002171
Borislav Petkov1433eb92009-10-21 13:44:36 +02002172 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002173
2174 /*
2175 * If dual channel then double the memory size of single channel.
2176 * Channel count is 1 or 2
2177 */
2178 nr_pages <<= (pvt->channel_count - 1);
2179
Borislav Petkov1433eb92009-10-21 13:44:36 +02002180 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002181 debugf0(" nr_pages= %u channel-count = %d\n",
2182 nr_pages, pvt->channel_count);
2183
2184 return nr_pages;
2185}
2186
2187/*
2188 * Initialize the array of csrow attribute instances, based on the values
2189 * from pci config hardware registers.
2190 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002191static int init_csrows(struct mem_ctl_info *mci)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002192{
2193 struct csrow_info *csrow;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002194 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002195 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002196 u32 val;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002197 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002198
Borislav Petkov2299ef72010-10-15 17:44:04 +02002199 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002200
Borislav Petkov2299ef72010-10-15 17:44:04 +02002201 pvt->nbcfg = val;
2202 pvt->ctl_error_info.nbcfg = val;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002203
Borislav Petkov2299ef72010-10-15 17:44:04 +02002204 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2205 pvt->mc_node_id, val,
2206 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
Doug Thompson0ec449e2009-04-27 19:41:25 +02002207
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002208 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002209 csrow = &mci->csrows[i];
2210
2211 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2212 debugf1("----CSROW %d EMPTY for node %d\n", i,
2213 pvt->mc_node_id);
2214 continue;
2215 }
2216
2217 debugf1("----CSROW %d VALID for MC node %d\n",
2218 i, pvt->mc_node_id);
2219
2220 empty = 0;
2221 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2222 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2223 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2224 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2225 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2226 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2227 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2228 /* 8 bytes of resolution */
2229
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002230 csrow->mtype = amd64_determine_memory_type(pvt, i);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002231
2232 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2233 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2234 (unsigned long)input_addr_min,
2235 (unsigned long)input_addr_max);
2236 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2237 (unsigned long)sys_addr, csrow->page_mask);
2238 debugf1(" nr_pages: %u first_page: 0x%lx "
2239 "last_page: 0x%lx\n",
2240 (unsigned)csrow->nr_pages,
2241 csrow->first_page, csrow->last_page);
2242
2243 /*
2244 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2245 */
2246 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2247 csrow->edac_mode =
2248 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2249 EDAC_S4ECD4ED : EDAC_SECDED;
2250 else
2251 csrow->edac_mode = EDAC_NONE;
2252 }
2253
2254 return empty;
2255}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002256
Borislav Petkov06724532009-09-16 13:05:46 +02002257/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302258static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002259{
Borislav Petkov06724532009-09-16 13:05:46 +02002260 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002261
Borislav Petkov06724532009-09-16 13:05:46 +02002262 for_each_online_cpu(cpu)
2263 if (amd_get_nb_id(cpu) == nid)
2264 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002265}
2266
2267/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002268static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002269{
Rusty Russellba578cb2009-11-03 14:56:35 +10302270 cpumask_var_t mask;
Borislav Petkov50542252009-12-11 18:14:40 +01002271 int cpu, nbe;
Borislav Petkov06724532009-09-16 13:05:46 +02002272 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002273
Rusty Russellba578cb2009-11-03 14:56:35 +10302274 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002275 amd64_warn("%s: Error allocating mask\n", __func__);
Rusty Russellba578cb2009-11-03 14:56:35 +10302276 return false;
2277 }
Borislav Petkov06724532009-09-16 13:05:46 +02002278
Rusty Russellba578cb2009-11-03 14:56:35 +10302279 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002280
Rusty Russellba578cb2009-11-03 14:56:35 +10302281 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002282
Rusty Russellba578cb2009-11-03 14:56:35 +10302283 for_each_cpu(cpu, mask) {
Borislav Petkov50542252009-12-11 18:14:40 +01002284 struct msr *reg = per_cpu_ptr(msrs, cpu);
2285 nbe = reg->l & K8_MSR_MCGCTL_NBE;
Borislav Petkov06724532009-09-16 13:05:46 +02002286
2287 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
Borislav Petkov50542252009-12-11 18:14:40 +01002288 cpu, reg->q,
Borislav Petkov06724532009-09-16 13:05:46 +02002289 (nbe ? "enabled" : "disabled"));
2290
2291 if (!nbe)
2292 goto out;
Borislav Petkov06724532009-09-16 13:05:46 +02002293 }
2294 ret = true;
2295
2296out:
Rusty Russellba578cb2009-11-03 14:56:35 +10302297 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002298 return ret;
2299}
2300
Borislav Petkov2299ef72010-10-15 17:44:04 +02002301static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002302{
2303 cpumask_var_t cmask;
Borislav Petkov50542252009-12-11 18:14:40 +01002304 int cpu;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002305
2306 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002307 amd64_warn("%s: error allocating mask\n", __func__);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002308 return false;
2309 }
2310
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002311 get_cpus_on_this_dct_cpumask(cmask, nid);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002312
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002313 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2314
2315 for_each_cpu(cpu, cmask) {
2316
Borislav Petkov50542252009-12-11 18:14:40 +01002317 struct msr *reg = per_cpu_ptr(msrs, cpu);
2318
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002319 if (on) {
Borislav Petkov50542252009-12-11 18:14:40 +01002320 if (reg->l & K8_MSR_MCGCTL_NBE)
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002321 s->flags.nb_mce_enable = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002322
Borislav Petkov50542252009-12-11 18:14:40 +01002323 reg->l |= K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002324 } else {
2325 /*
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002326 * Turn off NB MCE reporting only when it was off before
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002327 */
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002328 if (!s->flags.nb_mce_enable)
Borislav Petkov50542252009-12-11 18:14:40 +01002329 reg->l &= ~K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002330 }
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002331 }
2332 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2333
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002334 free_cpumask_var(cmask);
2335
2336 return 0;
2337}
2338
Borislav Petkov2299ef72010-10-15 17:44:04 +02002339static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2340 struct pci_dev *F3)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002341{
Borislav Petkov2299ef72010-10-15 17:44:04 +02002342 bool ret = true;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002343 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2344
Borislav Petkov2299ef72010-10-15 17:44:04 +02002345 if (toggle_ecc_err_reporting(s, nid, ON)) {
2346 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2347 return false;
2348 }
2349
2350 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002351
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002352 /* turn on UECCEn and CECCEn bits */
2353 s->old_nbctl = value & mask;
2354 s->nbctl_valid = true;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002355
2356 value |= mask;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002357 pci_write_config_dword(F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002358
Borislav Petkov2299ef72010-10-15 17:44:04 +02002359 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002360
Borislav Petkov2299ef72010-10-15 17:44:04 +02002361 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2362 nid, value,
2363 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002364
2365 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002366 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002367
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002368 s->flags.nb_ecc_prev = 0;
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002369
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002370 /* Attempt to turn on DRAM ECC Enable */
2371 value |= K8_NBCFG_ECC_ENABLE;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002372 pci_write_config_dword(F3, K8_NBCFG, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002373
Borislav Petkov2299ef72010-10-15 17:44:04 +02002374 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002375
2376 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002377 amd64_warn("Hardware rejected DRAM ECC enable,"
2378 "check memory DIMM configuration.\n");
Borislav Petkov2299ef72010-10-15 17:44:04 +02002379 ret = false;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002380 } else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002381 amd64_info("Hardware accepted DRAM ECC Enable\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002382 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002383 } else {
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002384 s->flags.nb_ecc_prev = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002385 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002386
Borislav Petkov2299ef72010-10-15 17:44:04 +02002387 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2388 nid, value,
2389 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002390
Borislav Petkov2299ef72010-10-15 17:44:04 +02002391 return ret;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002392}
2393
Borislav Petkov360b7f32010-10-15 19:25:38 +02002394static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2395 struct pci_dev *F3)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002396{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002397 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2398
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002399 if (!s->nbctl_valid)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002400 return;
2401
Borislav Petkov360b7f32010-10-15 19:25:38 +02002402 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002403 value &= ~mask;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002404 value |= s->old_nbctl;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002405
Borislav Petkov360b7f32010-10-15 19:25:38 +02002406 pci_write_config_dword(F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002407
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002408 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2409 if (!s->flags.nb_ecc_prev) {
Borislav Petkov360b7f32010-10-15 19:25:38 +02002410 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002411 value &= ~K8_NBCFG_ECC_ENABLE;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002412 pci_write_config_dword(F3, K8_NBCFG, value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002413 }
2414
2415 /* restore the NB Enable MCGCTL bit */
Borislav Petkov2299ef72010-10-15 17:44:04 +02002416 if (toggle_ecc_err_reporting(s, nid, OFF))
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002417 amd64_warn("Error restoring NB MCGCTL settings!\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002418}
2419
Doug Thompsonf9431992009-04-27 19:46:08 +02002420/*
Borislav Petkov2299ef72010-10-15 17:44:04 +02002421 * EDAC requires that the BIOS have ECC enabled before
2422 * taking over the processing of ECC errors. A command line
2423 * option allows to force-enable hardware ECC later in
2424 * enable_ecc_error_reporting().
Doug Thompsonf9431992009-04-27 19:46:08 +02002425 */
Borislav Petkovcab4d272010-02-11 17:15:57 +01002426static const char *ecc_msg =
2427 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2428 " Either enable ECC checking or force module loading by setting "
2429 "'ecc_enable_override'.\n"
2430 " (Note that use of the override may cause unknown side effects.)\n";
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002431
Borislav Petkov2299ef72010-10-15 17:44:04 +02002432static bool ecc_enabled(struct pci_dev *F3, u8 nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002433{
2434 u32 value;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002435 u8 ecc_en = 0;
Borislav Petkov06724532009-09-16 13:05:46 +02002436 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002437
Borislav Petkov2299ef72010-10-15 17:44:04 +02002438 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002439
Borislav Petkov2299ef72010-10-15 17:44:04 +02002440 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2441 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
Doug Thompsonf9431992009-04-27 19:46:08 +02002442
Borislav Petkov2299ef72010-10-15 17:44:04 +02002443 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002444 if (!nb_mce_en)
Borislav Petkov2299ef72010-10-15 17:44:04 +02002445 amd64_notice("NB MCE bank disabled, set MSR "
2446 "0x%08x[4] on node %d to enable.\n",
2447 MSR_IA32_MCG_CTL, nid);
Doug Thompsonf9431992009-04-27 19:46:08 +02002448
Borislav Petkov2299ef72010-10-15 17:44:04 +02002449 if (!ecc_en || !nb_mce_en) {
2450 amd64_notice("%s", ecc_msg);
2451 return false;
Borislav Petkov43f5e682009-12-21 18:55:18 +01002452 }
Borislav Petkov2299ef72010-10-15 17:44:04 +02002453 return true;
Doug Thompsonf9431992009-04-27 19:46:08 +02002454}
2455
Doug Thompson7d6034d2009-04-27 20:01:01 +02002456struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2457 ARRAY_SIZE(amd64_inj_attrs) +
2458 1];
2459
2460struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2461
Borislav Petkov360b7f32010-10-15 19:25:38 +02002462static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002463{
2464 unsigned int i = 0, j = 0;
2465
2466 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2467 sysfs_attrs[i] = amd64_dbg_attrs[i];
2468
2469 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2470 sysfs_attrs[i] = amd64_inj_attrs[j];
2471
2472 sysfs_attrs[i] = terminator;
2473
2474 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2475}
2476
Borislav Petkov360b7f32010-10-15 19:25:38 +02002477static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002478{
2479 struct amd64_pvt *pvt = mci->pvt_info;
2480
2481 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2482 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002483
2484 if (pvt->nbcap & K8_NBCAP_SECDED)
2485 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2486
2487 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2488 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2489
2490 mci->edac_cap = amd64_determine_edac_cap(pvt);
2491 mci->mod_name = EDAC_MOD_STR;
2492 mci->mod_ver = EDAC_AMD64_VERSION;
Borislav Petkov0092b202010-10-01 19:20:05 +02002493 mci->ctl_name = pvt->ctl_name;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002494 mci->dev_name = pci_name(pvt->F2);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002495 mci->ctl_page_to_phys = NULL;
2496
Doug Thompson7d6034d2009-04-27 20:01:01 +02002497 /* memory scrubber interface */
2498 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2499 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2500}
2501
Borislav Petkov0092b202010-10-01 19:20:05 +02002502/*
2503 * returns a pointer to the family descriptor on success, NULL otherwise.
2504 */
2505static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
Borislav Petkov395ae782010-10-01 18:38:19 +02002506{
Borislav Petkov0092b202010-10-01 19:20:05 +02002507 u8 fam = boot_cpu_data.x86;
2508 struct amd64_family_type *fam_type = NULL;
2509
2510 switch (fam) {
Borislav Petkov395ae782010-10-01 18:38:19 +02002511 case 0xf:
Borislav Petkov0092b202010-10-01 19:20:05 +02002512 fam_type = &amd64_family_types[K8_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002513 pvt->ops = &amd64_family_types[K8_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002514 pvt->ctl_name = fam_type->ctl_name;
2515 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002516 break;
2517 case 0x10:
Borislav Petkov0092b202010-10-01 19:20:05 +02002518 fam_type = &amd64_family_types[F10_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002519 pvt->ops = &amd64_family_types[F10_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002520 pvt->ctl_name = fam_type->ctl_name;
2521 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002522 break;
2523
2524 default:
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002525 amd64_err("Unsupported family!\n");
Borislav Petkov0092b202010-10-01 19:20:05 +02002526 return NULL;
Borislav Petkov395ae782010-10-01 18:38:19 +02002527 }
Borislav Petkov0092b202010-10-01 19:20:05 +02002528
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002529 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2530
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002531 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
Borislav Petkov0092b202010-10-01 19:20:05 +02002532 (fam == 0xf ?
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002533 (pvt->ext_model >= K8_REV_F ? "revF or later "
2534 : "revE or earlier ")
2535 : ""), pvt->mc_node_id);
Borislav Petkov0092b202010-10-01 19:20:05 +02002536 return fam_type;
Borislav Petkov395ae782010-10-01 18:38:19 +02002537}
2538
Borislav Petkov2299ef72010-10-15 17:44:04 +02002539static int amd64_init_one_instance(struct pci_dev *F2)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002540{
2541 struct amd64_pvt *pvt = NULL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002542 struct amd64_family_type *fam_type = NULL;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002543 struct mem_ctl_info *mci = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002544 int err = 0, ret;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002545 u8 nid = get_node_id(F2);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002546
2547 ret = -ENOMEM;
2548 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2549 if (!pvt)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002550 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002551
Borislav Petkov360b7f32010-10-15 19:25:38 +02002552 pvt->mc_node_id = nid;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002553 pvt->F2 = F2;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002554
Borislav Petkov395ae782010-10-01 18:38:19 +02002555 ret = -EINVAL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002556 fam_type = amd64_per_family_init(pvt);
2557 if (!fam_type)
Borislav Petkov395ae782010-10-01 18:38:19 +02002558 goto err_free;
2559
Doug Thompson7d6034d2009-04-27 20:01:01 +02002560 ret = -ENODEV;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002561 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002562 if (err)
2563 goto err_free;
2564
Borislav Petkov360b7f32010-10-15 19:25:38 +02002565 read_mc_regs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002566
Doug Thompson7d6034d2009-04-27 20:01:01 +02002567 /*
2568 * We need to determine how many memory channels there are. Then use
2569 * that information for calculating the size of the dynamic instance
Borislav Petkov360b7f32010-10-15 19:25:38 +02002570 * tables in the 'mci' structure.
Doug Thompson7d6034d2009-04-27 20:01:01 +02002571 */
Borislav Petkov360b7f32010-10-15 19:25:38 +02002572 ret = -EINVAL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002573 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2574 if (pvt->channel_count < 0)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002575 goto err_siblings;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002576
2577 ret = -ENOMEM;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002578 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002579 if (!mci)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002580 goto err_siblings;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002581
2582 mci->pvt_info = pvt;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002583 mci->dev = &pvt->F2->dev;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002584
Borislav Petkov360b7f32010-10-15 19:25:38 +02002585 setup_mci_misc_attrs(mci);
2586
2587 if (init_csrows(mci))
Doug Thompson7d6034d2009-04-27 20:01:01 +02002588 mci->edac_cap = EDAC_FLAG_NONE;
2589
Borislav Petkov360b7f32010-10-15 19:25:38 +02002590 set_mc_sysfs_attrs(mci);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002591
2592 ret = -ENODEV;
2593 if (edac_mc_add_mc(mci)) {
2594 debugf1("failed edac_mc_add_mc()\n");
2595 goto err_add_mc;
2596 }
2597
Borislav Petkov549d0422009-07-24 13:51:42 +02002598 /* register stuff with EDAC MCE */
2599 if (report_gart_errors)
2600 amd_report_gart_errors(true);
2601
2602 amd_register_ecc_decoder(amd64_decode_bus_error);
2603
Borislav Petkov360b7f32010-10-15 19:25:38 +02002604 mcis[nid] = mci;
2605
2606 atomic_inc(&drv_instances);
2607
Doug Thompson7d6034d2009-04-27 20:01:01 +02002608 return 0;
2609
2610err_add_mc:
2611 edac_mc_free(mci);
2612
Borislav Petkov360b7f32010-10-15 19:25:38 +02002613err_siblings:
2614 free_mc_sibling_devs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002615
Borislav Petkov360b7f32010-10-15 19:25:38 +02002616err_free:
2617 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002618
Borislav Petkov360b7f32010-10-15 19:25:38 +02002619err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002620 return ret;
2621}
2622
Borislav Petkov2299ef72010-10-15 17:44:04 +02002623static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002624 const struct pci_device_id *mc_type)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002625{
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002626 u8 nid = get_node_id(pdev);
Borislav Petkov2299ef72010-10-15 17:44:04 +02002627 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002628 struct ecc_settings *s;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002629 int ret = 0;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002630
Doug Thompson7d6034d2009-04-27 20:01:01 +02002631 ret = pci_enable_device(pdev);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002632 if (ret < 0) {
Doug Thompson7d6034d2009-04-27 20:01:01 +02002633 debugf0("ret=%d\n", ret);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002634 return -EIO;
2635 }
2636
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002637 ret = -ENOMEM;
2638 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2639 if (!s)
Borislav Petkov2299ef72010-10-15 17:44:04 +02002640 goto err_out;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002641
2642 ecc_stngs[nid] = s;
2643
Borislav Petkov2299ef72010-10-15 17:44:04 +02002644 if (!ecc_enabled(F3, nid)) {
2645 ret = -ENODEV;
2646
2647 if (!ecc_enable_override)
2648 goto err_enable;
2649
2650 amd64_warn("Forcing ECC on!\n");
2651
2652 if (!enable_ecc_error_reporting(s, nid, F3))
2653 goto err_enable;
2654 }
2655
2656 ret = amd64_init_one_instance(pdev);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002657 if (ret < 0) {
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002658 amd64_err("Error probing instance: %d\n", nid);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002659 restore_ecc_error_reporting(s, nid, F3);
2660 }
Doug Thompson7d6034d2009-04-27 20:01:01 +02002661
2662 return ret;
Borislav Petkov2299ef72010-10-15 17:44:04 +02002663
2664err_enable:
2665 kfree(s);
2666 ecc_stngs[nid] = NULL;
2667
2668err_out:
2669 return ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002670}
2671
2672static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2673{
2674 struct mem_ctl_info *mci;
2675 struct amd64_pvt *pvt;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002676 u8 nid = get_node_id(pdev);
2677 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2678 struct ecc_settings *s = ecc_stngs[nid];
Doug Thompson7d6034d2009-04-27 20:01:01 +02002679
2680 /* Remove from EDAC CORE tracking list */
2681 mci = edac_mc_del_mc(&pdev->dev);
2682 if (!mci)
2683 return;
2684
2685 pvt = mci->pvt_info;
2686
Borislav Petkov360b7f32010-10-15 19:25:38 +02002687 restore_ecc_error_reporting(s, nid, F3);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002688
Borislav Petkov360b7f32010-10-15 19:25:38 +02002689 free_mc_sibling_devs(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002690
Borislav Petkov549d0422009-07-24 13:51:42 +02002691 /* unregister from EDAC MCE */
2692 amd_report_gart_errors(false);
2693 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2694
Borislav Petkov360b7f32010-10-15 19:25:38 +02002695 kfree(ecc_stngs[nid]);
2696 ecc_stngs[nid] = NULL;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002697
Doug Thompson7d6034d2009-04-27 20:01:01 +02002698 /* Free the EDAC CORE resources */
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002699 mci->pvt_info = NULL;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002700 mcis[nid] = NULL;
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002701
2702 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002703 edac_mc_free(mci);
2704}
2705
2706/*
2707 * This table is part of the interface for loading drivers for PCI devices. The
2708 * PCI core identifies what devices are on a system during boot, and then
2709 * inquiry this table to see if this driver is for a given device found.
2710 */
2711static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2712 {
2713 .vendor = PCI_VENDOR_ID_AMD,
2714 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2715 .subvendor = PCI_ANY_ID,
2716 .subdevice = PCI_ANY_ID,
2717 .class = 0,
2718 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002719 },
2720 {
2721 .vendor = PCI_VENDOR_ID_AMD,
2722 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2723 .subvendor = PCI_ANY_ID,
2724 .subdevice = PCI_ANY_ID,
2725 .class = 0,
2726 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002727 },
Doug Thompson7d6034d2009-04-27 20:01:01 +02002728 {0, }
2729};
2730MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2731
2732static struct pci_driver amd64_pci_driver = {
2733 .name = EDAC_MOD_STR,
Borislav Petkov2299ef72010-10-15 17:44:04 +02002734 .probe = amd64_probe_one_instance,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002735 .remove = __devexit_p(amd64_remove_one_instance),
2736 .id_table = amd64_pci_table,
2737};
2738
Borislav Petkov360b7f32010-10-15 19:25:38 +02002739static void setup_pci_device(void)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002740{
2741 struct mem_ctl_info *mci;
2742 struct amd64_pvt *pvt;
2743
2744 if (amd64_ctl_pci)
2745 return;
2746
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002747 mci = mcis[0];
Doug Thompson7d6034d2009-04-27 20:01:01 +02002748 if (mci) {
2749
2750 pvt = mci->pvt_info;
2751 amd64_ctl_pci =
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002752 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002753
2754 if (!amd64_ctl_pci) {
2755 pr_warning("%s(): Unable to create PCI control\n",
2756 __func__);
2757
2758 pr_warning("%s(): PCI error report via EDAC not set\n",
2759 __func__);
2760 }
2761 }
2762}
2763
2764static int __init amd64_edac_init(void)
2765{
Borislav Petkov360b7f32010-10-15 19:25:38 +02002766 int err = -ENODEV;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002767
2768 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2769
2770 opstate_init();
2771
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002772 if (amd_cache_northbridges() < 0)
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002773 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002774
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002775 err = -ENOMEM;
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002776 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2777 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
Borislav Petkov360b7f32010-10-15 19:25:38 +02002778 if (!(mcis && ecc_stngs))
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002779 goto err_ret;
2780
Borislav Petkov50542252009-12-11 18:14:40 +01002781 msrs = msrs_alloc();
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002782 if (!msrs)
Borislav Petkov360b7f32010-10-15 19:25:38 +02002783 goto err_free;
Borislav Petkov50542252009-12-11 18:14:40 +01002784
Doug Thompson7d6034d2009-04-27 20:01:01 +02002785 err = pci_register_driver(&amd64_pci_driver);
2786 if (err)
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002787 goto err_pci;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002788
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002789 err = -ENODEV;
Borislav Petkov360b7f32010-10-15 19:25:38 +02002790 if (!atomic_read(&drv_instances))
2791 goto err_no_instances;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002792
Borislav Petkov360b7f32010-10-15 19:25:38 +02002793 setup_pci_device();
2794 return 0;
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002795
Borislav Petkov360b7f32010-10-15 19:25:38 +02002796err_no_instances:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002797 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002798
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002799err_pci:
2800 msrs_free(msrs);
2801 msrs = NULL;
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002802
Borislav Petkov360b7f32010-10-15 19:25:38 +02002803err_free:
2804 kfree(mcis);
2805 mcis = NULL;
2806
2807 kfree(ecc_stngs);
2808 ecc_stngs = NULL;
2809
Borislav Petkov56b34b91e2009-12-21 18:13:01 +01002810err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002811 return err;
2812}
2813
2814static void __exit amd64_edac_exit(void)
2815{
2816 if (amd64_ctl_pci)
2817 edac_pci_release_generic_ctl(amd64_ctl_pci);
2818
2819 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov50542252009-12-11 18:14:40 +01002820
Borislav Petkovae7bb7c2010-10-14 16:01:30 +02002821 kfree(ecc_stngs);
2822 ecc_stngs = NULL;
2823
Borislav Petkovcc4d8862010-10-13 16:11:59 +02002824 kfree(mcis);
2825 mcis = NULL;
2826
Borislav Petkov50542252009-12-11 18:14:40 +01002827 msrs_free(msrs);
2828 msrs = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002829}
2830
2831module_init(amd64_edac_init);
2832module_exit(amd64_edac_exit);
2833
2834MODULE_LICENSE("GPL");
2835MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2836 "Dave Peterson, Thayne Harbaugh");
2837MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2838 EDAC_AMD64_VERSION);
2839
2840module_param(edac_op_state, int, 0444);
2841MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");