blob: 47011e2ef3c9216bba4e9a249e9e48070a131fba [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800176 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700206typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800245 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800246 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800247 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
Andrew Mortona737b3e2006-03-22 00:08:11 -0800276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800294 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800295 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Christoph Lametere498be72005-09-09 13:03:32 -0700303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
Christoph Lametered11d9e2006-06-30 01:55:45 -0700312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700316static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000317static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700318
Christoph Lametere498be72005-09-09 13:03:32 -0700319/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700322 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700323static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700324{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800325 extern void __bad_size(void);
326
Christoph Lametere498be72005-09-09 13:03:32 -0700327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800337 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700338 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800339 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700340 return 0;
341}
342
Ingo Molnare0a42722006-06-23 02:03:46 -0700343static int slab_early_init = 1;
344
Christoph Lametere498be72005-09-09 13:03:32 -0700345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
Pekka Enberg5295a742006-02-01 03:05:48 -0800348static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800355 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700365 } while (0)
366
Andrew Mortona737b3e2006-03-22 00:08:11 -0800367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
374/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800375 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 *
377 * manages a cache.
378 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800379
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800380struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800388 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800390 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391
Andrew Mortona737b3e2006-03-22 00:08:11 -0800392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800395/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800400 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
Andrew Mortona737b3e2006-03-22 00:08:11 -0800402 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800403 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800406 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
408 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800414/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800415 const char *name;
416 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800418/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700429 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100455 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700490#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700494#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800496#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
Nick Piggin84097512006-03-22 00:08:34 -0800593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700595 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
Nick Piggin84097512006-03-22 00:08:34 -0800606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700608 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800609 return (struct slab *)page->lru.prev;
610}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
Andrew Mortona737b3e2006-03-22 00:08:11 -0800636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800656 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800666static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800670 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800671 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#endif
675};
676
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700677#define BAD_ALIEN_MAGIC 0x01020304ul
678
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200691 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200694
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700695static inline void init_lock_keys(void)
696
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200697{
698 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700699 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200700
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200726 }
727}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200728#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700729static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200730{
731}
732#endif
733
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800734/*
735 * 1. Guard access to the cache-chain.
736 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800738static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739static struct list_head cache_chain;
740
741/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742 * chicken and egg problem: delay the per-cpu array allocation
743 * until the general caches are up.
744 */
745static enum {
746 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700747 PARTIAL_AC,
748 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749 FULL
750} g_cpucache_up;
751
Mike Kravetz39d24e62006-05-15 09:44:13 -0700752/*
753 * used by boot code to determine if it can use slab based allocator
754 */
755int slab_is_available(void)
756{
757 return g_cpucache_up == FULL;
758}
759
David Howells52bad642006-11-22 14:54:01 +0000760static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700761
Pekka Enberg343e0d72006-02-01 03:05:50 -0800762static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700763{
764 return cachep->array[smp_processor_id()];
765}
766
Andrew Mortona737b3e2006-03-22 00:08:11 -0800767static inline struct kmem_cache *__find_general_cachep(size_t size,
768 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769{
770 struct cache_sizes *csizep = malloc_sizes;
771
772#if DEBUG
773 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800774 * kmem_cache_create(), or __kmalloc(), before
775 * the generic caches are initialized.
776 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700777 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778#endif
779 while (size > csizep->cs_size)
780 csizep++;
781
782 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784 * has cs_{dma,}cachep==NULL. Thus no special case
785 * for large kmalloc calls required.
786 */
787 if (unlikely(gfpflags & GFP_DMA))
788 return csizep->cs_dmacachep;
789 return csizep->cs_cachep;
790}
791
Adrian Bunkb2213852006-09-25 23:31:02 -0700792static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700793{
794 return __find_general_cachep(size, gfpflags);
795}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700796
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800797static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800799 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
800}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801
Andrew Mortona737b3e2006-03-22 00:08:11 -0800802/*
803 * Calculate the number of objects and left-over bytes for a given buffer size.
804 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800805static void cache_estimate(unsigned long gfporder, size_t buffer_size,
806 size_t align, int flags, size_t *left_over,
807 unsigned int *num)
808{
809 int nr_objs;
810 size_t mgmt_size;
811 size_t slab_size = PAGE_SIZE << gfporder;
812
813 /*
814 * The slab management structure can be either off the slab or
815 * on it. For the latter case, the memory allocated for a
816 * slab is used for:
817 *
818 * - The struct slab
819 * - One kmem_bufctl_t for each object
820 * - Padding to respect alignment of @align
821 * - @buffer_size bytes for each object
822 *
823 * If the slab management structure is off the slab, then the
824 * alignment will already be calculated into the size. Because
825 * the slabs are all pages aligned, the objects will be at the
826 * correct alignment when allocated.
827 */
828 if (flags & CFLGS_OFF_SLAB) {
829 mgmt_size = 0;
830 nr_objs = slab_size / buffer_size;
831
832 if (nr_objs > SLAB_LIMIT)
833 nr_objs = SLAB_LIMIT;
834 } else {
835 /*
836 * Ignore padding for the initial guess. The padding
837 * is at most @align-1 bytes, and @buffer_size is at
838 * least @align. In the worst case, this result will
839 * be one greater than the number of objects that fit
840 * into the memory allocation when taking the padding
841 * into account.
842 */
843 nr_objs = (slab_size - sizeof(struct slab)) /
844 (buffer_size + sizeof(kmem_bufctl_t));
845
846 /*
847 * This calculated number will be either the right
848 * amount, or one greater than what we want.
849 */
850 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
851 > slab_size)
852 nr_objs--;
853
854 if (nr_objs > SLAB_LIMIT)
855 nr_objs = SLAB_LIMIT;
856
857 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800859 *num = nr_objs;
860 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861}
862
863#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
864
Andrew Mortona737b3e2006-03-22 00:08:11 -0800865static void __slab_error(const char *function, struct kmem_cache *cachep,
866 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867{
868 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800869 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870 dump_stack();
871}
872
Paul Menage3395ee02006-12-06 20:32:16 -0800873/*
874 * By default on NUMA we use alien caches to stage the freeing of
875 * objects allocated from other nodes. This causes massive memory
876 * inefficiencies when using fake NUMA setup to split memory into a
877 * large number of small nodes, so it can be disabled on the command
878 * line
879 */
880
881static int use_alien_caches __read_mostly = 1;
882static int __init noaliencache_setup(char *s)
883{
884 use_alien_caches = 0;
885 return 1;
886}
887__setup("noaliencache", noaliencache_setup);
888
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800889#ifdef CONFIG_NUMA
890/*
891 * Special reaping functions for NUMA systems called from cache_reap().
892 * These take care of doing round robin flushing of alien caches (containing
893 * objects freed on different nodes from which they were allocated) and the
894 * flushing of remote pcps by calling drain_node_pages.
895 */
896static DEFINE_PER_CPU(unsigned long, reap_node);
897
898static void init_reap_node(int cpu)
899{
900 int node;
901
902 node = next_node(cpu_to_node(cpu), node_online_map);
903 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800904 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800905
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800906 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800907}
908
909static void next_reap_node(void)
910{
911 int node = __get_cpu_var(reap_node);
912
913 /*
914 * Also drain per cpu pages on remote zones
915 */
916 if (node != numa_node_id())
917 drain_node_pages(node);
918
919 node = next_node(node, node_online_map);
920 if (unlikely(node >= MAX_NUMNODES))
921 node = first_node(node_online_map);
922 __get_cpu_var(reap_node) = node;
923}
924
925#else
926#define init_reap_node(cpu) do { } while (0)
927#define next_reap_node(void) do { } while (0)
928#endif
929
Linus Torvalds1da177e2005-04-16 15:20:36 -0700930/*
931 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
932 * via the workqueue/eventd.
933 * Add the CPU number into the expiration time to minimize the possibility of
934 * the CPUs getting into lockstep and contending for the global cache chain
935 * lock.
936 */
937static void __devinit start_cpu_timer(int cpu)
938{
David Howells52bad642006-11-22 14:54:01 +0000939 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940
941 /*
942 * When this gets called from do_initcalls via cpucache_init(),
943 * init_workqueues() has already run, so keventd will be setup
944 * at that time.
945 */
David Howells52bad642006-11-22 14:54:01 +0000946 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800947 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000948 INIT_DELAYED_WORK(reap_work, cache_reap);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
950 }
951}
952
Christoph Lametere498be72005-09-09 13:03:32 -0700953static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800954 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800956 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 struct array_cache *nc = NULL;
958
Christoph Lametere498be72005-09-09 13:03:32 -0700959 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 if (nc) {
961 nc->avail = 0;
962 nc->limit = entries;
963 nc->batchcount = batchcount;
964 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700965 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966 }
967 return nc;
968}
969
Christoph Lameter3ded1752006-03-25 03:06:44 -0800970/*
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
973 *
974 * Return the number of entries transferred.
975 */
976static int transfer_objects(struct array_cache *to,
977 struct array_cache *from, unsigned int max)
978{
979 /* Figure out how many entries to transfer */
980 int nr = min(min(from->avail, max), to->limit - to->avail);
981
982 if (!nr)
983 return 0;
984
985 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
986 sizeof(void *) *nr);
987
988 from->avail -= nr;
989 to->avail += nr;
990 to->touched = 1;
991 return nr;
992}
993
Christoph Lameter765c4502006-09-27 01:50:08 -0700994#ifndef CONFIG_NUMA
995
996#define drain_alien_cache(cachep, alien) do { } while (0)
997#define reap_alien(cachep, l3) do { } while (0)
998
999static inline struct array_cache **alloc_alien_cache(int node, int limit)
1000{
1001 return (struct array_cache **)BAD_ALIEN_MAGIC;
1002}
1003
1004static inline void free_alien_cache(struct array_cache **ac_ptr)
1005{
1006}
1007
1008static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1009{
1010 return 0;
1011}
1012
1013static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1014 gfp_t flags)
1015{
1016 return NULL;
1017}
1018
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001019static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001020 gfp_t flags, int nodeid)
1021{
1022 return NULL;
1023}
1024
1025#else /* CONFIG_NUMA */
1026
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001027static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001028static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001029
Pekka Enberg5295a742006-02-01 03:05:48 -08001030static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001031{
1032 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001033 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -07001034 int i;
1035
1036 if (limit > 1)
1037 limit = 12;
1038 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1039 if (ac_ptr) {
1040 for_each_node(i) {
1041 if (i == node || !node_online(i)) {
1042 ac_ptr[i] = NULL;
1043 continue;
1044 }
1045 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1046 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001047 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001048 kfree(ac_ptr[i]);
1049 kfree(ac_ptr);
1050 return NULL;
1051 }
1052 }
1053 }
1054 return ac_ptr;
1055}
1056
Pekka Enberg5295a742006-02-01 03:05:48 -08001057static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001058{
1059 int i;
1060
1061 if (!ac_ptr)
1062 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001063 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001064 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001065 kfree(ac_ptr);
1066}
1067
Pekka Enberg343e0d72006-02-01 03:05:50 -08001068static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001069 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001070{
1071 struct kmem_list3 *rl3 = cachep->nodelists[node];
1072
1073 if (ac->avail) {
1074 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001075 /*
1076 * Stuff objects into the remote nodes shared array first.
1077 * That way we could avoid the overhead of putting the objects
1078 * into the free lists and getting them back later.
1079 */
shin, jacob693f7d32006-04-28 10:54:37 -05001080 if (rl3->shared)
1081 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001082
Christoph Lameterff694162005-09-22 21:44:02 -07001083 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001084 ac->avail = 0;
1085 spin_unlock(&rl3->list_lock);
1086 }
1087}
1088
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001089/*
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1091 */
1092static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1093{
1094 int node = __get_cpu_var(reap_node);
1095
1096 if (l3->alien) {
1097 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001098
1099 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001100 __drain_alien_cache(cachep, ac, node);
1101 spin_unlock_irq(&ac->lock);
1102 }
1103 }
1104}
1105
Andrew Mortona737b3e2006-03-22 00:08:11 -08001106static void drain_alien_cache(struct kmem_cache *cachep,
1107 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001108{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001109 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001110 struct array_cache *ac;
1111 unsigned long flags;
1112
1113 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001114 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001115 if (ac) {
1116 spin_lock_irqsave(&ac->lock, flags);
1117 __drain_alien_cache(cachep, ac, i);
1118 spin_unlock_irqrestore(&ac->lock, flags);
1119 }
1120 }
1121}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001122
Ingo Molnar873623d2006-07-13 14:44:38 +02001123static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001124{
1125 struct slab *slabp = virt_to_slab(objp);
1126 int nodeid = slabp->nodeid;
1127 struct kmem_list3 *l3;
1128 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001129 int node;
1130
1131 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001132
1133 /*
1134 * Make sure we are not freeing a object from another node to the array
1135 * cache on this cpu.
1136 */
Paul Menage3395ee02006-12-06 20:32:16 -08001137 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001138 return 0;
1139
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001140 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001141 STATS_INC_NODEFREES(cachep);
1142 if (l3->alien && l3->alien[nodeid]) {
1143 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001144 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001145 if (unlikely(alien->avail == alien->limit)) {
1146 STATS_INC_ACOVERFLOW(cachep);
1147 __drain_alien_cache(cachep, alien, nodeid);
1148 }
1149 alien->entry[alien->avail++] = objp;
1150 spin_unlock(&alien->lock);
1151 } else {
1152 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1153 free_block(cachep, &objp, 1, nodeid);
1154 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1155 }
1156 return 1;
1157}
Christoph Lametere498be72005-09-09 13:03:32 -07001158#endif
1159
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001160static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001161 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162{
1163 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001164 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001165 struct kmem_list3 *l3 = NULL;
1166 int node = cpu_to_node(cpu);
1167 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168
1169 switch (action) {
1170 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001171 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001172 /*
1173 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001174 * alloc_arraycache's are going to use this list.
1175 * kmalloc_node allows us to add the slab to the right
1176 * kmem_list3 and not this cpu's kmem_list3
1177 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178
Christoph Lametere498be72005-09-09 13:03:32 -07001179 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001180 /*
1181 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001182 * begin anything. Make sure some other cpu on this
1183 * node has not already allocated this
1184 */
1185 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001186 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1187 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001188 goto bad;
1189 kmem_list3_init(l3);
1190 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001191 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001192
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001193 /*
1194 * The l3s don't come and go as CPUs come and
1195 * go. cache_chain_mutex is sufficient
1196 * protection here.
1197 */
Christoph Lametere498be72005-09-09 13:03:32 -07001198 cachep->nodelists[node] = l3;
1199 }
1200
1201 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1202 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001203 (1 + nr_cpus_node(node)) *
1204 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001205 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1206 }
1207
Andrew Mortona737b3e2006-03-22 00:08:11 -08001208 /*
1209 * Now we can go ahead with allocating the shared arrays and
1210 * array caches
1211 */
Christoph Lametere498be72005-09-09 13:03:32 -07001212 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001213 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001214 struct array_cache *shared;
Paul Menage3395ee02006-12-06 20:32:16 -08001215 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001216
Christoph Lametere498be72005-09-09 13:03:32 -07001217 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001218 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if (!nc)
1220 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001221 shared = alloc_arraycache(node,
1222 cachep->shared * cachep->batchcount,
1223 0xbaadf00d);
1224 if (!shared)
1225 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001226
Paul Menage3395ee02006-12-06 20:32:16 -08001227 if (use_alien_caches) {
1228 alien = alloc_alien_cache(node, cachep->limit);
1229 if (!alien)
1230 goto bad;
1231 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001233 l3 = cachep->nodelists[node];
1234 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001235
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001236 spin_lock_irq(&l3->list_lock);
1237 if (!l3->shared) {
1238 /*
1239 * We are serialised from CPU_DEAD or
1240 * CPU_UP_CANCELLED by the cpucontrol lock
1241 */
1242 l3->shared = shared;
1243 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001244 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001245#ifdef CONFIG_NUMA
1246 if (!l3->alien) {
1247 l3->alien = alien;
1248 alien = NULL;
1249 }
1250#endif
1251 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001252 kfree(shared);
1253 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 break;
1256 case CPU_ONLINE:
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001257 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001258 start_cpu_timer(cpu);
1259 break;
1260#ifdef CONFIG_HOTPLUG_CPU
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001261 case CPU_DOWN_PREPARE:
1262 mutex_lock(&cache_chain_mutex);
1263 break;
1264 case CPU_DOWN_FAILED:
1265 mutex_unlock(&cache_chain_mutex);
1266 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001268 /*
1269 * Even if all the cpus of a node are down, we don't free the
1270 * kmem_list3 of any cache. This to avoid a race between
1271 * cpu_down, and a kmalloc allocation from another cpu for
1272 * memory from the node of the cpu going down. The list3
1273 * structure is usually allocated from kmem_cache_create() and
1274 * gets destroyed at kmem_cache_destroy().
1275 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001277#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 case CPU_UP_CANCELED:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279 list_for_each_entry(cachep, &cache_chain, next) {
1280 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001281 struct array_cache *shared;
1282 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001283 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284
Christoph Lametere498be72005-09-09 13:03:32 -07001285 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286 /* cpu is dead; no one can alloc from it. */
1287 nc = cachep->array[cpu];
1288 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001289 l3 = cachep->nodelists[node];
1290
1291 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001292 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001293
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001294 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001295
1296 /* Free limit for this kmem_list3 */
1297 l3->free_limit -= cachep->batchcount;
1298 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001299 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001300
1301 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001302 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001303 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001304 }
Christoph Lametere498be72005-09-09 13:03:32 -07001305
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001306 shared = l3->shared;
1307 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001308 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001309 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001310 l3->shared = NULL;
1311 }
Christoph Lametere498be72005-09-09 13:03:32 -07001312
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001313 alien = l3->alien;
1314 l3->alien = NULL;
1315
1316 spin_unlock_irq(&l3->list_lock);
1317
1318 kfree(shared);
1319 if (alien) {
1320 drain_alien_cache(cachep, alien);
1321 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001322 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001323free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001324 kfree(nc);
1325 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001326 /*
1327 * In the previous loop, all the objects were freed to
1328 * the respective cache's slabs, now we can go ahead and
1329 * shrink each nodelist to its limit.
1330 */
1331 list_for_each_entry(cachep, &cache_chain, next) {
1332 l3 = cachep->nodelists[node];
1333 if (!l3)
1334 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001335 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001336 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001337 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339 }
1340 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001341bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001342 return NOTIFY_BAD;
1343}
1344
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001345static struct notifier_block __cpuinitdata cpucache_notifier = {
1346 &cpuup_callback, NULL, 0
1347};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348
Christoph Lametere498be72005-09-09 13:03:32 -07001349/*
1350 * swap the static kmem_list3 with kmalloced memory
1351 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001352static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1353 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001354{
1355 struct kmem_list3 *ptr;
1356
Christoph Lametere498be72005-09-09 13:03:32 -07001357 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1358 BUG_ON(!ptr);
1359
1360 local_irq_disable();
1361 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001362 /*
1363 * Do not assume that spinlocks can be initialized via memcpy:
1364 */
1365 spin_lock_init(&ptr->list_lock);
1366
Christoph Lametere498be72005-09-09 13:03:32 -07001367 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1368 cachep->nodelists[nodeid] = ptr;
1369 local_irq_enable();
1370}
1371
Andrew Mortona737b3e2006-03-22 00:08:11 -08001372/*
1373 * Initialisation. Called after the page allocator have been initialised and
1374 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 */
1376void __init kmem_cache_init(void)
1377{
1378 size_t left_over;
1379 struct cache_sizes *sizes;
1380 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001381 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001382 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001383 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001384
1385 for (i = 0; i < NUM_INIT_LISTS; i++) {
1386 kmem_list3_init(&initkmem_list3[i]);
1387 if (i < MAX_NUMNODES)
1388 cache_cache.nodelists[i] = NULL;
1389 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390
1391 /*
1392 * Fragmentation resistance on low memory - only use bigger
1393 * page orders on machines with more than 32MB of memory.
1394 */
1395 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1396 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1397
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398 /* Bootstrap is tricky, because several objects are allocated
1399 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001400 * 1) initialize the cache_cache cache: it contains the struct
1401 * kmem_cache structures of all caches, except cache_cache itself:
1402 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001403 * Initially an __init data area is used for the head array and the
1404 * kmem_list3 structures, it's replaced with a kmalloc allocated
1405 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001407 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001408 * An __init data area is used for the head array.
1409 * 3) Create the remaining kmalloc caches, with minimally sized
1410 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411 * 4) Replace the __init data head arrays for cache_cache and the first
1412 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001413 * 5) Replace the __init data for kmem_list3 for cache_cache and
1414 * the other cache's with kmalloc allocated memory.
1415 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 */
1417
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001418 node = numa_node_id();
1419
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 INIT_LIST_HEAD(&cache_chain);
1422 list_add(&cache_cache.next, &cache_chain);
1423 cache_cache.colour_off = cache_line_size();
1424 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001425 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426
Andrew Mortona737b3e2006-03-22 00:08:11 -08001427 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1428 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429
Jack Steiner07ed76b2006-03-07 21:55:46 -08001430 for (order = 0; order < MAX_ORDER; order++) {
1431 cache_estimate(order, cache_cache.buffer_size,
1432 cache_line_size(), 0, &left_over, &cache_cache.num);
1433 if (cache_cache.num)
1434 break;
1435 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001436 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001437 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001438 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001439 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1440 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441
1442 /* 2+3) create the kmalloc caches */
1443 sizes = malloc_sizes;
1444 names = cache_names;
1445
Andrew Mortona737b3e2006-03-22 00:08:11 -08001446 /*
1447 * Initialize the caches that provide memory for the array cache and the
1448 * kmem_list3 structures first. Without this, further allocations will
1449 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001450 */
1451
1452 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001453 sizes[INDEX_AC].cs_size,
1454 ARCH_KMALLOC_MINALIGN,
1455 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1456 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001457
Andrew Mortona737b3e2006-03-22 00:08:11 -08001458 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001459 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001460 kmem_cache_create(names[INDEX_L3].name,
1461 sizes[INDEX_L3].cs_size,
1462 ARCH_KMALLOC_MINALIGN,
1463 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1464 NULL, NULL);
1465 }
Christoph Lametere498be72005-09-09 13:03:32 -07001466
Ingo Molnare0a42722006-06-23 02:03:46 -07001467 slab_early_init = 0;
1468
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001470 /*
1471 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472 * This should be particularly beneficial on SMP boxes, as it
1473 * eliminates "false sharing".
1474 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001475 * allow tighter packing of the smaller caches.
1476 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001477 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001478 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001479 sizes->cs_size,
1480 ARCH_KMALLOC_MINALIGN,
1481 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1482 NULL, NULL);
1483 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001486 sizes->cs_size,
1487 ARCH_KMALLOC_MINALIGN,
1488 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1489 SLAB_PANIC,
1490 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001491 sizes++;
1492 names++;
1493 }
1494 /* 4) Replace the bootstrap head arrays */
1495 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001496 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001497
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001499
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001501 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1502 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001503 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001504 /*
1505 * Do not assume that spinlocks can be initialized via memcpy:
1506 */
1507 spin_lock_init(&ptr->lock);
1508
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509 cache_cache.array[smp_processor_id()] = ptr;
1510 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001511
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001513
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001515 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001516 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001517 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001518 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001519 /*
1520 * Do not assume that spinlocks can be initialized via memcpy:
1521 */
1522 spin_lock_init(&ptr->lock);
1523
Christoph Lametere498be72005-09-09 13:03:32 -07001524 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001525 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526 local_irq_enable();
1527 }
Christoph Lametere498be72005-09-09 13:03:32 -07001528 /* 5) Replace the bootstrap kmem_list3's */
1529 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001530 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001532 /* Replace the static kmem_list3 structures for the boot cpu */
1533 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1534
1535 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001536 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001537 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001538
1539 if (INDEX_AC != INDEX_L3) {
1540 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001541 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001542 }
1543 }
1544 }
1545
1546 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001547 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001548 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001549 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001551 if (enable_cpucache(cachep))
1552 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001553 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554 }
1555
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001556 /* Annotate slab for lockdep -- annotate the malloc caches */
1557 init_lock_keys();
1558
1559
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560 /* Done! */
1561 g_cpucache_up = FULL;
1562
Andrew Mortona737b3e2006-03-22 00:08:11 -08001563 /*
1564 * Register a cpu startup notifier callback that initializes
1565 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 */
1567 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568
Andrew Mortona737b3e2006-03-22 00:08:11 -08001569 /*
1570 * The reap timers are started later, with a module init call: That part
1571 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572 */
1573}
1574
1575static int __init cpucache_init(void)
1576{
1577 int cpu;
1578
Andrew Mortona737b3e2006-03-22 00:08:11 -08001579 /*
1580 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581 */
Christoph Lametere498be72005-09-09 13:03:32 -07001582 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001583 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584 return 0;
1585}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586__initcall(cpucache_init);
1587
1588/*
1589 * Interface to system's page allocator. No need to hold the cache-lock.
1590 *
1591 * If we requested dmaable memory, we will get it. Even if we
1592 * did not request dmaable memory, we might get it, but that
1593 * would be relatively rare and ignorable.
1594 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001595static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596{
1597 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001598 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599 int i;
1600
Luke Yangd6fef9d2006-04-10 22:52:56 -07001601#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001602 /*
1603 * Nommu uses slab's for process anonymous memory allocations, and thus
1604 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001605 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001606 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001607#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001608
Christoph Lameter3c517a62006-12-06 20:33:29 -08001609 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001610
1611 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612 if (!page)
1613 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001615 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001617 add_zone_page_state(page_zone(page),
1618 NR_SLAB_RECLAIMABLE, nr_pages);
1619 else
1620 add_zone_page_state(page_zone(page),
1621 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001622 for (i = 0; i < nr_pages; i++)
1623 __SetPageSlab(page + i);
1624 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625}
1626
1627/*
1628 * Interface to system's page release.
1629 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001630static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001632 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 struct page *page = virt_to_page(addr);
1634 const unsigned long nr_freed = i;
1635
Christoph Lameter972d1a72006-09-25 23:31:51 -07001636 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1637 sub_zone_page_state(page_zone(page),
1638 NR_SLAB_RECLAIMABLE, nr_freed);
1639 else
1640 sub_zone_page_state(page_zone(page),
1641 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001642 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001643 BUG_ON(!PageSlab(page));
1644 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 page++;
1646 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 if (current->reclaim_state)
1648 current->reclaim_state->reclaimed_slab += nr_freed;
1649 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650}
1651
1652static void kmem_rcu_free(struct rcu_head *head)
1653{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001654 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001655 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656
1657 kmem_freepages(cachep, slab_rcu->addr);
1658 if (OFF_SLAB(cachep))
1659 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1660}
1661
1662#if DEBUG
1663
1664#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001665static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001666 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001668 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001670 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001672 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673 return;
1674
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001675 *addr++ = 0x12345678;
1676 *addr++ = caller;
1677 *addr++ = smp_processor_id();
1678 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 {
1680 unsigned long *sptr = &caller;
1681 unsigned long svalue;
1682
1683 while (!kstack_end(sptr)) {
1684 svalue = *sptr++;
1685 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001686 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687 size -= sizeof(unsigned long);
1688 if (size <= sizeof(unsigned long))
1689 break;
1690 }
1691 }
1692
1693 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001694 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695}
1696#endif
1697
Pekka Enberg343e0d72006-02-01 03:05:50 -08001698static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001700 int size = obj_size(cachep);
1701 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001702
1703 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001704 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705}
1706
1707static void dump_line(char *data, int offset, int limit)
1708{
1709 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001710 unsigned char error = 0;
1711 int bad_count = 0;
1712
Linus Torvalds1da177e2005-04-16 15:20:36 -07001713 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001714 for (i = 0; i < limit; i++) {
1715 if (data[offset + i] != POISON_FREE) {
1716 error = data[offset + i];
1717 bad_count++;
1718 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001719 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001720 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001722
1723 if (bad_count == 1) {
1724 error ^= POISON_FREE;
1725 if (!(error & (error - 1))) {
1726 printk(KERN_ERR "Single bit error detected. Probably "
1727 "bad RAM.\n");
1728#ifdef CONFIG_X86
1729 printk(KERN_ERR "Run memtest86+ or a similar memory "
1730 "test tool.\n");
1731#else
1732 printk(KERN_ERR "Run a memory test tool.\n");
1733#endif
1734 }
1735 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736}
1737#endif
1738
1739#if DEBUG
1740
Pekka Enberg343e0d72006-02-01 03:05:50 -08001741static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742{
1743 int i, size;
1744 char *realobj;
1745
1746 if (cachep->flags & SLAB_RED_ZONE) {
1747 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001748 *dbg_redzone1(cachep, objp),
1749 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750 }
1751
1752 if (cachep->flags & SLAB_STORE_USER) {
1753 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001754 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001756 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 printk("\n");
1758 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001759 realobj = (char *)objp + obj_offset(cachep);
1760 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001761 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 int limit;
1763 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001764 if (i + limit > size)
1765 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 dump_line(realobj, i, limit);
1767 }
1768}
1769
Pekka Enberg343e0d72006-02-01 03:05:50 -08001770static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001771{
1772 char *realobj;
1773 int size, i;
1774 int lines = 0;
1775
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001776 realobj = (char *)objp + obj_offset(cachep);
1777 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001779 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001781 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 exp = POISON_END;
1783 if (realobj[i] != exp) {
1784 int limit;
1785 /* Mismatch ! */
1786 /* Print header */
1787 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001788 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001789 "Slab corruption: start=%p, len=%d\n",
1790 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 print_objinfo(cachep, objp, 0);
1792 }
1793 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001794 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001796 if (i + limit > size)
1797 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798 dump_line(realobj, i, limit);
1799 i += 16;
1800 lines++;
1801 /* Limit to 5 lines */
1802 if (lines > 5)
1803 break;
1804 }
1805 }
1806 if (lines != 0) {
1807 /* Print some data about the neighboring objects, if they
1808 * exist:
1809 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001810 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001811 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001813 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001815 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001816 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001818 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 print_objinfo(cachep, objp, 2);
1820 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001821 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001822 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001823 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001825 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001826 print_objinfo(cachep, objp, 2);
1827 }
1828 }
1829}
1830#endif
1831
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001833/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001834 * slab_destroy_objs - destroy a slab and its objects
1835 * @cachep: cache pointer being destroyed
1836 * @slabp: slab pointer being destroyed
1837 *
1838 * Call the registered destructor for each object in a slab that is being
1839 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001840 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001841static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001842{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843 int i;
1844 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001845 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846
1847 if (cachep->flags & SLAB_POISON) {
1848#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001849 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1850 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001851 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001852 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853 else
1854 check_poison_obj(cachep, objp);
1855#else
1856 check_poison_obj(cachep, objp);
1857#endif
1858 }
1859 if (cachep->flags & SLAB_RED_ZONE) {
1860 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1861 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001862 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1864 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001865 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001866 }
1867 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001868 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001869 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001870}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001872static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001873{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874 if (cachep->dtor) {
1875 int i;
1876 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001877 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001878 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 }
1880 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001881}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882#endif
1883
Randy Dunlap911851e2006-03-22 00:08:14 -08001884/**
1885 * slab_destroy - destroy and release all objects in a slab
1886 * @cachep: cache pointer being destroyed
1887 * @slabp: slab pointer being destroyed
1888 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001889 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001890 * Before calling the slab must have been unlinked from the cache. The
1891 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001892 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001893static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001894{
1895 void *addr = slabp->s_mem - slabp->colouroff;
1896
1897 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1899 struct slab_rcu *slab_rcu;
1900
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001901 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902 slab_rcu->cachep = cachep;
1903 slab_rcu->addr = addr;
1904 call_rcu(&slab_rcu->head, kmem_rcu_free);
1905 } else {
1906 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001907 if (OFF_SLAB(cachep))
1908 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 }
1910}
1911
Andrew Mortona737b3e2006-03-22 00:08:11 -08001912/*
1913 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1914 * size of kmem_list3.
1915 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001916static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001917{
1918 int node;
1919
1920 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001921 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001922 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001923 REAPTIMEOUT_LIST3 +
1924 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001925 }
1926}
1927
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001928static void __kmem_cache_destroy(struct kmem_cache *cachep)
1929{
1930 int i;
1931 struct kmem_list3 *l3;
1932
1933 for_each_online_cpu(i)
1934 kfree(cachep->array[i]);
1935
1936 /* NUMA: free the list3 structures */
1937 for_each_online_node(i) {
1938 l3 = cachep->nodelists[i];
1939 if (l3) {
1940 kfree(l3->shared);
1941 free_alien_cache(l3->alien);
1942 kfree(l3);
1943 }
1944 }
1945 kmem_cache_free(&cache_cache, cachep);
1946}
1947
1948
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001950 * calculate_slab_order - calculate size (page order) of slabs
1951 * @cachep: pointer to the cache that is being created
1952 * @size: size of objects to be created in this cache.
1953 * @align: required alignment for the objects.
1954 * @flags: slab allocation flags
1955 *
1956 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001957 *
1958 * This could be made much more intelligent. For now, try to avoid using
1959 * high order pages for slabs. When the gfp() functions are more friendly
1960 * towards high-order requests, this should be changed.
1961 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001962static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001963 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001964{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001965 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001966 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001967 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001968
Andrew Mortona737b3e2006-03-22 00:08:11 -08001969 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001970 unsigned int num;
1971 size_t remainder;
1972
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001973 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001974 if (!num)
1975 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001976
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001977 if (flags & CFLGS_OFF_SLAB) {
1978 /*
1979 * Max number of objs-per-slab for caches which
1980 * use off-slab slabs. Needed to avoid a possible
1981 * looping condition in cache_grow().
1982 */
1983 offslab_limit = size - sizeof(struct slab);
1984 offslab_limit /= sizeof(kmem_bufctl_t);
1985
1986 if (num > offslab_limit)
1987 break;
1988 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001989
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001990 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001991 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001992 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001993 left_over = remainder;
1994
1995 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001996 * A VFS-reclaimable slab tends to have most allocations
1997 * as GFP_NOFS and we really don't want to have to be allocating
1998 * higher-order pages when we are unable to shrink dcache.
1999 */
2000 if (flags & SLAB_RECLAIM_ACCOUNT)
2001 break;
2002
2003 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002004 * Large number of objects is good, but very large slabs are
2005 * currently bad for the gfp()s.
2006 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002007 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002008 break;
2009
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002010 /*
2011 * Acceptable internal fragmentation?
2012 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002013 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002014 break;
2015 }
2016 return left_over;
2017}
2018
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002019static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002020{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002021 if (g_cpucache_up == FULL)
2022 return enable_cpucache(cachep);
2023
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002024 if (g_cpucache_up == NONE) {
2025 /*
2026 * Note: the first kmem_cache_create must create the cache
2027 * that's used by kmalloc(24), otherwise the creation of
2028 * further caches will BUG().
2029 */
2030 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2031
2032 /*
2033 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2034 * the first cache, then we need to set up all its list3s,
2035 * otherwise the creation of further caches will BUG().
2036 */
2037 set_up_list3s(cachep, SIZE_AC);
2038 if (INDEX_AC == INDEX_L3)
2039 g_cpucache_up = PARTIAL_L3;
2040 else
2041 g_cpucache_up = PARTIAL_AC;
2042 } else {
2043 cachep->array[smp_processor_id()] =
2044 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2045
2046 if (g_cpucache_up == PARTIAL_AC) {
2047 set_up_list3s(cachep, SIZE_L3);
2048 g_cpucache_up = PARTIAL_L3;
2049 } else {
2050 int node;
2051 for_each_online_node(node) {
2052 cachep->nodelists[node] =
2053 kmalloc_node(sizeof(struct kmem_list3),
2054 GFP_KERNEL, node);
2055 BUG_ON(!cachep->nodelists[node]);
2056 kmem_list3_init(cachep->nodelists[node]);
2057 }
2058 }
2059 }
2060 cachep->nodelists[numa_node_id()]->next_reap =
2061 jiffies + REAPTIMEOUT_LIST3 +
2062 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2063
2064 cpu_cache_get(cachep)->avail = 0;
2065 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2066 cpu_cache_get(cachep)->batchcount = 1;
2067 cpu_cache_get(cachep)->touched = 0;
2068 cachep->batchcount = 1;
2069 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002070 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002071}
2072
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002073/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 * kmem_cache_create - Create a cache.
2075 * @name: A string which is used in /proc/slabinfo to identify this cache.
2076 * @size: The size of objects to be created in this cache.
2077 * @align: The required alignment for the objects.
2078 * @flags: SLAB flags
2079 * @ctor: A constructor for the objects.
2080 * @dtor: A destructor for the objects.
2081 *
2082 * Returns a ptr to the cache on success, NULL on failure.
2083 * Cannot be called within a int, but can be interrupted.
2084 * The @ctor is run when new pages are allocated by the cache
2085 * and the @dtor is run before the pages are handed back.
2086 *
2087 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002088 * the module calling this has to destroy the cache before getting unloaded.
2089 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 * The flags are
2091 *
2092 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2093 * to catch references to uninitialised memory.
2094 *
2095 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2096 * for buffer overruns.
2097 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2099 * cacheline. This can be beneficial if you're counting cycles as closely
2100 * as davem.
2101 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002102struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002104 unsigned long flags,
2105 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002106 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107{
2108 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002109 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110
2111 /*
2112 * Sanity checks... these are all serious usage bugs.
2113 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002114 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002115 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002116 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2117 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002118 BUG();
2119 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002120
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002121 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002122 * We use cache_chain_mutex to ensure a consistent view of
2123 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002124 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002125 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002126
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002127 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002128 char tmp;
2129 int res;
2130
2131 /*
2132 * This happens when the module gets unloaded and doesn't
2133 * destroy its slab cache and no-one else reuses the vmalloc
2134 * area of the module. Print a warning.
2135 */
Andrew Morton138ae662006-12-06 20:36:41 -08002136 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002137 if (res) {
2138 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002139 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002140 continue;
2141 }
2142
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002143 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002144 printk("kmem_cache_create: duplicate cache %s\n", name);
2145 dump_stack();
2146 goto oops;
2147 }
2148 }
2149
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150#if DEBUG
2151 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2152 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2153 /* No constructor, but inital state check requested */
2154 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002155 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156 flags &= ~SLAB_DEBUG_INITIAL;
2157 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002158#if FORCED_DEBUG
2159 /*
2160 * Enable redzoning and last user accounting, except for caches with
2161 * large objects, if the increased size would increase the object size
2162 * above the next power of two: caches with object sizes just above a
2163 * power of two have a significant amount of internal fragmentation.
2164 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002165 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002166 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 if (!(flags & SLAB_DESTROY_BY_RCU))
2168 flags |= SLAB_POISON;
2169#endif
2170 if (flags & SLAB_DESTROY_BY_RCU)
2171 BUG_ON(flags & SLAB_POISON);
2172#endif
2173 if (flags & SLAB_DESTROY_BY_RCU)
2174 BUG_ON(dtor);
2175
2176 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002177 * Always checks flags, a caller might be expecting debug support which
2178 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002180 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181
Andrew Mortona737b3e2006-03-22 00:08:11 -08002182 /*
2183 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 * unaligned accesses for some archs when redzoning is used, and makes
2185 * sure any on-slab bufctl's are also correctly aligned.
2186 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002187 if (size & (BYTES_PER_WORD - 1)) {
2188 size += (BYTES_PER_WORD - 1);
2189 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190 }
2191
Andrew Mortona737b3e2006-03-22 00:08:11 -08002192 /* calculate the final buffer alignment: */
2193
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 /* 1) arch recommendation: can be overridden for debug */
2195 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002196 /*
2197 * Default alignment: as specified by the arch code. Except if
2198 * an object is really small, then squeeze multiple objects into
2199 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 */
2201 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002202 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203 ralign /= 2;
2204 } else {
2205 ralign = BYTES_PER_WORD;
2206 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002207
2208 /*
2209 * Redzoning and user store require word alignment. Note this will be
2210 * overridden by architecture or caller mandated alignment if either
2211 * is greater than BYTES_PER_WORD.
2212 */
2213 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2214 ralign = BYTES_PER_WORD;
2215
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002216 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 if (ralign < ARCH_SLAB_MINALIGN) {
2218 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002220 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 if (ralign < align) {
2222 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002224 /* disable debug if necessary */
2225 if (ralign > BYTES_PER_WORD)
2226 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002227 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002228 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 */
2230 align = ralign;
2231
2232 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002233 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002235 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236
2237#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002238 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239
Pekka Enbergca5f9702006-09-25 23:31:25 -07002240 /*
2241 * Both debugging options require word-alignment which is calculated
2242 * into align above.
2243 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002246 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002247 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 }
2249 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002250 /* user store requires one word storage behind the end of
2251 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 size += BYTES_PER_WORD;
2254 }
2255#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002256 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002257 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2258 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 size = PAGE_SIZE;
2260 }
2261#endif
2262#endif
2263
Ingo Molnare0a42722006-06-23 02:03:46 -07002264 /*
2265 * Determine if the slab management is 'on' or 'off' slab.
2266 * (bootstrapping cannot cope with offslab caches so don't do
2267 * it too early on.)
2268 */
2269 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270 /*
2271 * Size is large, assume best to place the slab management obj
2272 * off-slab (should allow better packing of objs).
2273 */
2274 flags |= CFLGS_OFF_SLAB;
2275
2276 size = ALIGN(size, align);
2277
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002278 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279
2280 if (!cachep->num) {
2281 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2282 kmem_cache_free(&cache_cache, cachep);
2283 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002284 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002285 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002286 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2287 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288
2289 /*
2290 * If the slab has been placed off-slab, and we have enough space then
2291 * move it on-slab. This is at the expense of any extra colouring.
2292 */
2293 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2294 flags &= ~CFLGS_OFF_SLAB;
2295 left_over -= slab_size;
2296 }
2297
2298 if (flags & CFLGS_OFF_SLAB) {
2299 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002300 slab_size =
2301 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302 }
2303
2304 cachep->colour_off = cache_line_size();
2305 /* Offset must be a multiple of the alignment. */
2306 if (cachep->colour_off < align)
2307 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002308 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002309 cachep->slab_size = slab_size;
2310 cachep->flags = flags;
2311 cachep->gfpflags = 0;
2312 if (flags & SLAB_CACHE_DMA)
2313 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002314 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002316 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002317 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002318 /*
2319 * This is a possibility for one of the malloc_sizes caches.
2320 * But since we go off slab only for object size greater than
2321 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2322 * this should not happen at all.
2323 * But leave a BUG_ON for some lucky dude.
2324 */
2325 BUG_ON(!cachep->slabp_cache);
2326 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 cachep->ctor = ctor;
2328 cachep->dtor = dtor;
2329 cachep->name = name;
2330
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002331 if (setup_cpu_cache(cachep)) {
2332 __kmem_cache_destroy(cachep);
2333 cachep = NULL;
2334 goto oops;
2335 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 /* cache setup completed, link it into the list */
2338 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002339oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002340 if (!cachep && (flags & SLAB_PANIC))
2341 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002342 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002343 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344 return cachep;
2345}
2346EXPORT_SYMBOL(kmem_cache_create);
2347
2348#if DEBUG
2349static void check_irq_off(void)
2350{
2351 BUG_ON(!irqs_disabled());
2352}
2353
2354static void check_irq_on(void)
2355{
2356 BUG_ON(irqs_disabled());
2357}
2358
Pekka Enberg343e0d72006-02-01 03:05:50 -08002359static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360{
2361#ifdef CONFIG_SMP
2362 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002363 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364#endif
2365}
Christoph Lametere498be72005-09-09 13:03:32 -07002366
Pekka Enberg343e0d72006-02-01 03:05:50 -08002367static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002368{
2369#ifdef CONFIG_SMP
2370 check_irq_off();
2371 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2372#endif
2373}
2374
Linus Torvalds1da177e2005-04-16 15:20:36 -07002375#else
2376#define check_irq_off() do { } while(0)
2377#define check_irq_on() do { } while(0)
2378#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002379#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380#endif
2381
Christoph Lameteraab22072006-03-22 00:09:06 -08002382static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2383 struct array_cache *ac,
2384 int force, int node);
2385
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386static void do_drain(void *arg)
2387{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002388 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002390 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391
2392 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002393 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002394 spin_lock(&cachep->nodelists[node]->list_lock);
2395 free_block(cachep, ac->entry, ac->avail, node);
2396 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397 ac->avail = 0;
2398}
2399
Pekka Enberg343e0d72006-02-01 03:05:50 -08002400static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401{
Christoph Lametere498be72005-09-09 13:03:32 -07002402 struct kmem_list3 *l3;
2403 int node;
2404
Andrew Mortona07fa392006-03-22 00:08:17 -08002405 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002407 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002408 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002409 if (l3 && l3->alien)
2410 drain_alien_cache(cachep, l3->alien);
2411 }
2412
2413 for_each_online_node(node) {
2414 l3 = cachep->nodelists[node];
2415 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002416 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002417 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418}
2419
Christoph Lametered11d9e2006-06-30 01:55:45 -07002420/*
2421 * Remove slabs from the list of free slabs.
2422 * Specify the number of slabs to drain in tofree.
2423 *
2424 * Returns the actual number of slabs released.
2425 */
2426static int drain_freelist(struct kmem_cache *cache,
2427 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002428{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002429 struct list_head *p;
2430 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002432
Christoph Lametered11d9e2006-06-30 01:55:45 -07002433 nr_freed = 0;
2434 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435
Christoph Lametered11d9e2006-06-30 01:55:45 -07002436 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002437 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002438 if (p == &l3->slabs_free) {
2439 spin_unlock_irq(&l3->list_lock);
2440 goto out;
2441 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442
Christoph Lametered11d9e2006-06-30 01:55:45 -07002443 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002445 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446#endif
2447 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002448 /*
2449 * Safe to drop the lock. The slab is no longer linked
2450 * to the cache.
2451 */
2452 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002453 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002454 slab_destroy(cache, slabp);
2455 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002457out:
2458 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459}
2460
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002461/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002462static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002463{
2464 int ret = 0, i = 0;
2465 struct kmem_list3 *l3;
2466
2467 drain_cpu_caches(cachep);
2468
2469 check_irq_on();
2470 for_each_online_node(i) {
2471 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002472 if (!l3)
2473 continue;
2474
2475 drain_freelist(cachep, l3, l3->free_objects);
2476
2477 ret += !list_empty(&l3->slabs_full) ||
2478 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002479 }
2480 return (ret ? 1 : 0);
2481}
2482
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483/**
2484 * kmem_cache_shrink - Shrink a cache.
2485 * @cachep: The cache to shrink.
2486 *
2487 * Releases as many slabs as possible for a cache.
2488 * To help debugging, a zero exit status indicates all slabs were released.
2489 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002490int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002492 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002493 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002495 mutex_lock(&cache_chain_mutex);
2496 ret = __cache_shrink(cachep);
2497 mutex_unlock(&cache_chain_mutex);
2498 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002499}
2500EXPORT_SYMBOL(kmem_cache_shrink);
2501
2502/**
2503 * kmem_cache_destroy - delete a cache
2504 * @cachep: the cache to destroy
2505 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002506 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507 *
2508 * It is expected this function will be called by a module when it is
2509 * unloaded. This will remove the cache completely, and avoid a duplicate
2510 * cache being allocated each time a module is loaded and unloaded, if the
2511 * module doesn't have persistent in-kernel storage across loads and unloads.
2512 *
2513 * The cache must be empty before calling this function.
2514 *
2515 * The caller must guarantee that noone will allocate memory from the cache
2516 * during the kmem_cache_destroy().
2517 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002518void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002520 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002523 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 /*
2525 * the chain is never empty, cache_cache is never destroyed
2526 */
2527 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528 if (__cache_shrink(cachep)) {
2529 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002530 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002531 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002532 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 }
2534
2535 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002536 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002538 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002539 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540}
2541EXPORT_SYMBOL(kmem_cache_destroy);
2542
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002543/*
2544 * Get the memory for a slab management obj.
2545 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2546 * always come from malloc_sizes caches. The slab descriptor cannot
2547 * come from the same cache which is getting created because,
2548 * when we are searching for an appropriate cache for these
2549 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2550 * If we are creating a malloc_sizes cache here it would not be visible to
2551 * kmem_find_general_cachep till the initialization is complete.
2552 * Hence we cannot have slabp_cache same as the original cache.
2553 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002554static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002555 int colour_off, gfp_t local_flags,
2556 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557{
2558 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002559
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 if (OFF_SLAB(cachep)) {
2561 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002562 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002563 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564 if (!slabp)
2565 return NULL;
2566 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002567 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002568 colour_off += cachep->slab_size;
2569 }
2570 slabp->inuse = 0;
2571 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002572 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002573 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574 return slabp;
2575}
2576
2577static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2578{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002579 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580}
2581
Pekka Enberg343e0d72006-02-01 03:05:50 -08002582static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002583 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584{
2585 int i;
2586
2587 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002588 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589#if DEBUG
2590 /* need to poison the objs? */
2591 if (cachep->flags & SLAB_POISON)
2592 poison_obj(cachep, objp, POISON_FREE);
2593 if (cachep->flags & SLAB_STORE_USER)
2594 *dbg_userword(cachep, objp) = NULL;
2595
2596 if (cachep->flags & SLAB_RED_ZONE) {
2597 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2598 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2599 }
2600 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002601 * Constructors are not allowed to allocate memory from the same
2602 * cache which they are a constructor for. Otherwise, deadlock.
2603 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604 */
2605 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002606 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002607 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608
2609 if (cachep->flags & SLAB_RED_ZONE) {
2610 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2611 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002612 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2614 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002615 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002617 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2618 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002619 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002620 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621#else
2622 if (cachep->ctor)
2623 cachep->ctor(objp, cachep, ctor_flags);
2624#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002625 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002626 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002627 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628 slabp->free = 0;
2629}
2630
Pekka Enberg343e0d72006-02-01 03:05:50 -08002631static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632{
Christoph Lameter441e1432006-12-06 20:33:19 -08002633 if (flags & GFP_DMA)
Andrew Mortona737b3e2006-03-22 00:08:11 -08002634 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2635 else
2636 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637}
2638
Andrew Mortona737b3e2006-03-22 00:08:11 -08002639static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2640 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002641{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002642 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002643 kmem_bufctl_t next;
2644
2645 slabp->inuse++;
2646 next = slab_bufctl(slabp)[slabp->free];
2647#if DEBUG
2648 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2649 WARN_ON(slabp->nodeid != nodeid);
2650#endif
2651 slabp->free = next;
2652
2653 return objp;
2654}
2655
Andrew Mortona737b3e2006-03-22 00:08:11 -08002656static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2657 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002658{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002659 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002660
2661#if DEBUG
2662 /* Verify that the slab belongs to the intended node */
2663 WARN_ON(slabp->nodeid != nodeid);
2664
Al Viro871751e2006-03-25 03:06:39 -08002665 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002666 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002667 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002668 BUG();
2669 }
2670#endif
2671 slab_bufctl(slabp)[objnr] = slabp->free;
2672 slabp->free = objnr;
2673 slabp->inuse--;
2674}
2675
Pekka Enberg47768742006-06-23 02:03:07 -07002676/*
2677 * Map pages beginning at addr to the given cache and slab. This is required
2678 * for the slab allocator to be able to lookup the cache and slab of a
2679 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2680 */
2681static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2682 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683{
Pekka Enberg47768742006-06-23 02:03:07 -07002684 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 struct page *page;
2686
Pekka Enberg47768742006-06-23 02:03:07 -07002687 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002688
Pekka Enberg47768742006-06-23 02:03:07 -07002689 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002690 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002691 nr_pages <<= cache->gfporder;
2692
Linus Torvalds1da177e2005-04-16 15:20:36 -07002693 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002694 page_set_cache(page, cache);
2695 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002697 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698}
2699
2700/*
2701 * Grow (by 1) the number of slabs within a cache. This is called by
2702 * kmem_cache_alloc() when there are no active objs left in a cache.
2703 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002704static int cache_grow(struct kmem_cache *cachep,
2705 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002707 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002708 size_t offset;
2709 gfp_t local_flags;
2710 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002711 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712
Andrew Mortona737b3e2006-03-22 00:08:11 -08002713 /*
2714 * Be lazy and only check for valid flags here, keeping it out of the
2715 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 */
Christoph Lameter441e1432006-12-06 20:33:19 -08002717 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
Christoph Lameter6e0eaa42006-12-06 20:33:10 -08002718 if (flags & __GFP_NO_GROW)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 return 0;
2720
2721 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002722 local_flags = (flags & GFP_LEVEL_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 if (!(local_flags & __GFP_WAIT))
2724 /*
2725 * Not allowed to sleep. Need to tell a constructor about
2726 * this - it might need to know...
2727 */
2728 ctor_flags |= SLAB_CTOR_ATOMIC;
2729
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002730 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002732 l3 = cachep->nodelists[nodeid];
2733 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734
2735 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002736 offset = l3->colour_next;
2737 l3->colour_next++;
2738 if (l3->colour_next >= cachep->colour)
2739 l3->colour_next = 0;
2740 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002742 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743
2744 if (local_flags & __GFP_WAIT)
2745 local_irq_enable();
2746
2747 /*
2748 * The test for missing atomic flag is performed here, rather than
2749 * the more obvious place, simply to reduce the critical path length
2750 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2751 * will eventually be caught here (where it matters).
2752 */
2753 kmem_flagcheck(cachep, flags);
2754
Andrew Mortona737b3e2006-03-22 00:08:11 -08002755 /*
2756 * Get mem for the objs. Attempt to allocate a physical page from
2757 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002758 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002759 if (!objp)
2760 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002761 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762 goto failed;
2763
2764 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002765 slabp = alloc_slabmgmt(cachep, objp, offset,
2766 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002767 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 goto opps1;
2769
Christoph Lametere498be72005-09-09 13:03:32 -07002770 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002771 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002772
2773 cache_init_objs(cachep, slabp, ctor_flags);
2774
2775 if (local_flags & __GFP_WAIT)
2776 local_irq_disable();
2777 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002778 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779
2780 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002781 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002783 l3->free_objects += cachep->num;
2784 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002786opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002788failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789 if (local_flags & __GFP_WAIT)
2790 local_irq_disable();
2791 return 0;
2792}
2793
2794#if DEBUG
2795
2796/*
2797 * Perform extra freeing checks:
2798 * - detect bad pointers.
2799 * - POISON/RED_ZONE checking
2800 * - destructor calls, for caches with POISON+dtor
2801 */
2802static void kfree_debugcheck(const void *objp)
2803{
2804 struct page *page;
2805
2806 if (!virt_addr_valid(objp)) {
2807 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002808 (unsigned long)objp);
2809 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 }
2811 page = virt_to_page(objp);
2812 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002813 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2814 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 BUG();
2816 }
2817}
2818
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002819static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2820{
2821 unsigned long redzone1, redzone2;
2822
2823 redzone1 = *dbg_redzone1(cache, obj);
2824 redzone2 = *dbg_redzone2(cache, obj);
2825
2826 /*
2827 * Redzone is ok.
2828 */
2829 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2830 return;
2831
2832 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2833 slab_error(cache, "double free detected");
2834 else
2835 slab_error(cache, "memory outside object was overwritten");
2836
2837 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2838 obj, redzone1, redzone2);
2839}
2840
Pekka Enberg343e0d72006-02-01 03:05:50 -08002841static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002842 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843{
2844 struct page *page;
2845 unsigned int objnr;
2846 struct slab *slabp;
2847
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002848 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849 kfree_debugcheck(objp);
2850 page = virt_to_page(objp);
2851
Pekka Enberg065d41c2005-11-13 16:06:46 -08002852 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853
2854 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002855 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2857 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2858 }
2859 if (cachep->flags & SLAB_STORE_USER)
2860 *dbg_userword(cachep, objp) = caller;
2861
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002862 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863
2864 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002865 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866
2867 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002868 /*
2869 * Need to call the slab's constructor so the caller can
2870 * perform a verify of its state (debugging). Called without
2871 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002873 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002874 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875 }
2876 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2877 /* we want to cache poison the object,
2878 * call the destruction callback
2879 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002880 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002881 }
Al Viro871751e2006-03-25 03:06:39 -08002882#ifdef CONFIG_DEBUG_SLAB_LEAK
2883 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2884#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 if (cachep->flags & SLAB_POISON) {
2886#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002887 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002889 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002890 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002891 } else {
2892 poison_obj(cachep, objp, POISON_FREE);
2893 }
2894#else
2895 poison_obj(cachep, objp, POISON_FREE);
2896#endif
2897 }
2898 return objp;
2899}
2900
Pekka Enberg343e0d72006-02-01 03:05:50 -08002901static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902{
2903 kmem_bufctl_t i;
2904 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002905
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906 /* Check slab's freelist to see if this obj is there. */
2907 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2908 entries++;
2909 if (entries > cachep->num || i >= cachep->num)
2910 goto bad;
2911 }
2912 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002913bad:
2914 printk(KERN_ERR "slab: Internal list corruption detected in "
2915 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2916 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002917 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002918 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002919 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002920 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002922 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923 }
2924 printk("\n");
2925 BUG();
2926 }
2927}
2928#else
2929#define kfree_debugcheck(x) do { } while(0)
2930#define cache_free_debugcheck(x,objp,z) (objp)
2931#define check_slabp(x,y) do { } while(0)
2932#endif
2933
Pekka Enberg343e0d72006-02-01 03:05:50 -08002934static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935{
2936 int batchcount;
2937 struct kmem_list3 *l3;
2938 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002939 int node;
2940
2941 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942
2943 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002944 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002945retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002946 batchcount = ac->batchcount;
2947 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002948 /*
2949 * If there was little recent activity on this cache, then
2950 * perform only a partial refill. Otherwise we could generate
2951 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952 */
2953 batchcount = BATCHREFILL_LIMIT;
2954 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002955 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956
Christoph Lametere498be72005-09-09 13:03:32 -07002957 BUG_ON(ac->avail > 0 || !l3);
2958 spin_lock(&l3->list_lock);
2959
Christoph Lameter3ded1752006-03-25 03:06:44 -08002960 /* See if we can refill from the shared array */
2961 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2962 goto alloc_done;
2963
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964 while (batchcount > 0) {
2965 struct list_head *entry;
2966 struct slab *slabp;
2967 /* Get slab alloc is to come from. */
2968 entry = l3->slabs_partial.next;
2969 if (entry == &l3->slabs_partial) {
2970 l3->free_touched = 1;
2971 entry = l3->slabs_free.next;
2972 if (entry == &l3->slabs_free)
2973 goto must_grow;
2974 }
2975
2976 slabp = list_entry(entry, struct slab, list);
2977 check_slabp(cachep, slabp);
2978 check_spinlock_acquired(cachep);
2979 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002980 STATS_INC_ALLOCED(cachep);
2981 STATS_INC_ACTIVE(cachep);
2982 STATS_SET_HIGH(cachep);
2983
Matthew Dobson78d382d2006-02-01 03:05:47 -08002984 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002985 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986 }
2987 check_slabp(cachep, slabp);
2988
2989 /* move slabp to correct slabp list: */
2990 list_del(&slabp->list);
2991 if (slabp->free == BUFCTL_END)
2992 list_add(&slabp->list, &l3->slabs_full);
2993 else
2994 list_add(&slabp->list, &l3->slabs_partial);
2995 }
2996
Andrew Mortona737b3e2006-03-22 00:08:11 -08002997must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002998 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002999alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003000 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001
3002 if (unlikely(!ac->avail)) {
3003 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003004 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003005
Andrew Mortona737b3e2006-03-22 00:08:11 -08003006 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003007 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003008 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003009 return NULL;
3010
Andrew Mortona737b3e2006-03-22 00:08:11 -08003011 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012 goto retry;
3013 }
3014 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003015 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016}
3017
Andrew Mortona737b3e2006-03-22 00:08:11 -08003018static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3019 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003020{
3021 might_sleep_if(flags & __GFP_WAIT);
3022#if DEBUG
3023 kmem_flagcheck(cachep, flags);
3024#endif
3025}
3026
3027#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003028static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3029 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003030{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003031 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003032 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003033 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003035 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003036 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003037 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003038 else
3039 check_poison_obj(cachep, objp);
3040#else
3041 check_poison_obj(cachep, objp);
3042#endif
3043 poison_obj(cachep, objp, POISON_INUSE);
3044 }
3045 if (cachep->flags & SLAB_STORE_USER)
3046 *dbg_userword(cachep, objp) = caller;
3047
3048 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003049 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3050 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3051 slab_error(cachep, "double free, or memory outside"
3052 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003053 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003054 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3055 objp, *dbg_redzone1(cachep, objp),
3056 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057 }
3058 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3059 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3060 }
Al Viro871751e2006-03-25 03:06:39 -08003061#ifdef CONFIG_DEBUG_SLAB_LEAK
3062 {
3063 struct slab *slabp;
3064 unsigned objnr;
3065
3066 slabp = page_get_slab(virt_to_page(objp));
3067 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3068 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3069 }
3070#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003071 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003072 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003073 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074
3075 if (!(flags & __GFP_WAIT))
3076 ctor_flags |= SLAB_CTOR_ATOMIC;
3077
3078 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003079 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003080#if ARCH_SLAB_MINALIGN
3081 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3082 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3083 objp, ARCH_SLAB_MINALIGN);
3084 }
3085#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003086 return objp;
3087}
3088#else
3089#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3090#endif
3091
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003092#ifdef CONFIG_FAILSLAB
3093
3094static struct failslab_attr {
3095
3096 struct fault_attr attr;
3097
3098 u32 ignore_gfp_wait;
3099#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3100 struct dentry *ignore_gfp_wait_file;
3101#endif
3102
3103} failslab = {
3104 .attr = FAULT_ATTR_INITIALIZER,
3105};
3106
3107static int __init setup_failslab(char *str)
3108{
3109 return setup_fault_attr(&failslab.attr, str);
3110}
3111__setup("failslab=", setup_failslab);
3112
3113static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3114{
3115 if (cachep == &cache_cache)
3116 return 0;
3117 if (flags & __GFP_NOFAIL)
3118 return 0;
3119 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3120 return 0;
3121
3122 return should_fail(&failslab.attr, obj_size(cachep));
3123}
3124
3125#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3126
3127static int __init failslab_debugfs(void)
3128{
3129 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3130 struct dentry *dir;
3131 int err;
3132
3133 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3134 if (err)
3135 return err;
3136 dir = failslab.attr.dentries.dir;
3137
3138 failslab.ignore_gfp_wait_file =
3139 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3140 &failslab.ignore_gfp_wait);
3141
3142 if (!failslab.ignore_gfp_wait_file) {
3143 err = -ENOMEM;
3144 debugfs_remove(failslab.ignore_gfp_wait_file);
3145 cleanup_fault_attr_dentries(&failslab.attr);
3146 }
3147
3148 return err;
3149}
3150
3151late_initcall(failslab_debugfs);
3152
3153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3154
3155#else /* CONFIG_FAILSLAB */
3156
3157static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3158{
3159 return 0;
3160}
3161
3162#endif /* CONFIG_FAILSLAB */
3163
Pekka Enberg343e0d72006-02-01 03:05:50 -08003164static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003166 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167 struct array_cache *ac;
3168
Alok N Kataria5c382302005-09-27 21:45:46 -07003169 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003170
3171 if (should_failslab(cachep, flags))
3172 return NULL;
3173
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003174 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003175 if (likely(ac->avail)) {
3176 STATS_INC_ALLOCHIT(cachep);
3177 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003178 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003179 } else {
3180 STATS_INC_ALLOCMISS(cachep);
3181 objp = cache_alloc_refill(cachep, flags);
3182 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003183 return objp;
3184}
3185
Andrew Mortona737b3e2006-03-22 00:08:11 -08003186static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3187 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07003188{
3189 unsigned long save_flags;
Christoph Lameterde3083e2006-09-27 01:50:03 -07003190 void *objp = NULL;
Alok N Kataria5c382302005-09-27 21:45:46 -07003191
3192 cache_alloc_debugcheck_before(cachep, flags);
3193
3194 local_irq_save(save_flags);
Christoph Lameterde3083e2006-09-27 01:50:03 -07003195
Christoph Lameter765c4502006-09-27 01:50:08 -07003196 if (unlikely(NUMA_BUILD &&
3197 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
Christoph Lameterde3083e2006-09-27 01:50:03 -07003198 objp = alternate_node_alloc(cachep, flags);
Christoph Lameterde3083e2006-09-27 01:50:03 -07003199
3200 if (!objp)
3201 objp = ____cache_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003202 /*
3203 * We may just have run out of memory on the local node.
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003204 * ____cache_alloc_node() knows how to locate memory on other nodes
Christoph Lameter765c4502006-09-27 01:50:08 -07003205 */
3206 if (NUMA_BUILD && !objp)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003207 objp = ____cache_alloc_node(cachep, flags, numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07003209 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003210 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07003211 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212 return objp;
3213}
3214
Christoph Lametere498be72005-09-09 13:03:32 -07003215#ifdef CONFIG_NUMA
3216/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003217 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003218 *
3219 * If we are in_interrupt, then process context, including cpusets and
3220 * mempolicy, may not apply and should not be used for allocation policy.
3221 */
3222static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3223{
3224 int nid_alloc, nid_here;
3225
Christoph Lameter765c4502006-09-27 01:50:08 -07003226 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003227 return NULL;
3228 nid_alloc = nid_here = numa_node_id();
3229 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3230 nid_alloc = cpuset_mem_spread_node();
3231 else if (current->mempolicy)
3232 nid_alloc = slab_node(current->mempolicy);
3233 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003234 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003235 return NULL;
3236}
3237
3238/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003239 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003240 * certain node and fall back is permitted. First we scan all the
3241 * available nodelists for available objects. If that fails then we
3242 * perform an allocation without specifying a node. This allows the page
3243 * allocator to do its reclaim / fallback magic. We then insert the
3244 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003245 */
3246void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3247{
3248 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3249 ->node_zonelists[gfp_zone(flags)];
3250 struct zone **z;
3251 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003252 int nid;
Christoph Lameter765c4502006-09-27 01:50:08 -07003253
Christoph Lameter3c517a62006-12-06 20:33:29 -08003254retry:
3255 /*
3256 * Look through allowed nodes for objects available
3257 * from existing per node queues.
3258 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003259 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003260 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003261
Paul Jacksonb8b50b62006-12-08 02:35:53 -08003262 if (cpuset_zone_allowed(*z, flags | __GFP_HARDWALL) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003263 cache->nodelists[nid] &&
3264 cache->nodelists[nid]->free_objects)
3265 obj = ____cache_alloc_node(cache,
3266 flags | GFP_THISNODE, nid);
3267 }
3268
3269 if (!obj) {
3270 /*
3271 * This allocation will be performed within the constraints
3272 * of the current cpuset / memory policy requirements.
3273 * We may trigger various forms of reclaim on the allowed
3274 * set and go into memory reserves if necessary.
3275 */
3276 obj = kmem_getpages(cache, flags, -1);
3277 if (obj) {
3278 /*
3279 * Insert into the appropriate per node queues
3280 */
3281 nid = page_to_nid(virt_to_page(obj));
3282 if (cache_grow(cache, flags, nid, obj)) {
3283 obj = ____cache_alloc_node(cache,
3284 flags | GFP_THISNODE, nid);
3285 if (!obj)
3286 /*
3287 * Another processor may allocate the
3288 * objects in the slab since we are
3289 * not holding any locks.
3290 */
3291 goto retry;
3292 } else {
3293 kmem_freepages(cache, obj);
3294 obj = NULL;
3295 }
3296 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003297 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003298 return obj;
3299}
3300
3301/*
Christoph Lametere498be72005-09-09 13:03:32 -07003302 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003303 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003304static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003305 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003306{
3307 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003308 struct slab *slabp;
3309 struct kmem_list3 *l3;
3310 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003311 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003313 l3 = cachep->nodelists[nodeid];
3314 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003315
Andrew Mortona737b3e2006-03-22 00:08:11 -08003316retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003317 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003318 spin_lock(&l3->list_lock);
3319 entry = l3->slabs_partial.next;
3320 if (entry == &l3->slabs_partial) {
3321 l3->free_touched = 1;
3322 entry = l3->slabs_free.next;
3323 if (entry == &l3->slabs_free)
3324 goto must_grow;
3325 }
Christoph Lametere498be72005-09-09 13:03:32 -07003326
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003327 slabp = list_entry(entry, struct slab, list);
3328 check_spinlock_acquired_node(cachep, nodeid);
3329 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003330
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003331 STATS_INC_NODEALLOCS(cachep);
3332 STATS_INC_ACTIVE(cachep);
3333 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003334
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003335 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Matthew Dobson78d382d2006-02-01 03:05:47 -08003337 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003338 check_slabp(cachep, slabp);
3339 l3->free_objects--;
3340 /* move slabp to correct slabp list: */
3341 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003342
Andrew Mortona737b3e2006-03-22 00:08:11 -08003343 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003344 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003345 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003346 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003347
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003348 spin_unlock(&l3->list_lock);
3349 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003350
Andrew Mortona737b3e2006-03-22 00:08:11 -08003351must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003352 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003353 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003354 if (x)
3355 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003356
Christoph Lameter765c4502006-09-27 01:50:08 -07003357 if (!(flags & __GFP_THISNODE))
3358 /* Unable to grow the cache. Fall back to other nodes. */
3359 return fallback_alloc(cachep, flags);
Christoph Lametere498be72005-09-09 13:03:32 -07003360
Christoph Lameter765c4502006-09-27 01:50:08 -07003361 return NULL;
3362
Andrew Mortona737b3e2006-03-22 00:08:11 -08003363done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003364 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003365}
3366#endif
3367
3368/*
3369 * Caller needs to acquire correct kmem_list's list_lock
3370 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003371static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003372 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373{
3374 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003375 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003376
3377 for (i = 0; i < nr_objects; i++) {
3378 void *objp = objpp[i];
3379 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003381 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003382 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003384 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003385 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003386 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003388 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003389 check_slabp(cachep, slabp);
3390
3391 /* fixup slab chains */
3392 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003393 if (l3->free_objects > l3->free_limit) {
3394 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003395 /* No need to drop any previously held
3396 * lock here, even if we have a off-slab slab
3397 * descriptor it is guaranteed to come from
3398 * a different cache, refer to comments before
3399 * alloc_slabmgmt.
3400 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401 slab_destroy(cachep, slabp);
3402 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003403 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 }
3405 } else {
3406 /* Unconditionally move a slab to the end of the
3407 * partial list on free - maximum time for the
3408 * other objects to be freed, too.
3409 */
Christoph Lametere498be72005-09-09 13:03:32 -07003410 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003411 }
3412 }
3413}
3414
Pekka Enberg343e0d72006-02-01 03:05:50 -08003415static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416{
3417 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003418 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003419 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003420
3421 batchcount = ac->batchcount;
3422#if DEBUG
3423 BUG_ON(!batchcount || batchcount > ac->avail);
3424#endif
3425 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003426 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003427 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003428 if (l3->shared) {
3429 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003430 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003431 if (max) {
3432 if (batchcount > max)
3433 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003434 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003435 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003436 shared_array->avail += batchcount;
3437 goto free_done;
3438 }
3439 }
3440
Christoph Lameterff694162005-09-22 21:44:02 -07003441 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003442free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443#if STATS
3444 {
3445 int i = 0;
3446 struct list_head *p;
3447
Christoph Lametere498be72005-09-09 13:03:32 -07003448 p = l3->slabs_free.next;
3449 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003450 struct slab *slabp;
3451
3452 slabp = list_entry(p, struct slab, list);
3453 BUG_ON(slabp->inuse);
3454
3455 i++;
3456 p = p->next;
3457 }
3458 STATS_SET_FREEABLE(cachep, i);
3459 }
3460#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003461 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003462 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003463 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464}
3465
3466/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003467 * Release an obj back to its cache. If the obj has a constructed state, it must
3468 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003469 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003470static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003471{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003472 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473
3474 check_irq_off();
3475 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3476
Ingo Molnar873623d2006-07-13 14:44:38 +02003477 if (cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003478 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003479
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480 if (likely(ac->avail < ac->limit)) {
3481 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003482 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483 return;
3484 } else {
3485 STATS_INC_FREEMISS(cachep);
3486 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003487 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488 }
3489}
3490
3491/**
3492 * kmem_cache_alloc - Allocate an object
3493 * @cachep: The cache to allocate from.
3494 * @flags: See kmalloc().
3495 *
3496 * Allocate an object from this cache. The flags are only relevant
3497 * if the cache has no available objects.
3498 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003499void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003501 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502}
3503EXPORT_SYMBOL(kmem_cache_alloc);
3504
3505/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003506 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003507 * @cache: The cache to allocate from.
3508 * @flags: See kmalloc().
3509 *
3510 * Allocate an object from this cache and set the allocated memory to zero.
3511 * The flags are only relevant if the cache has no available objects.
3512 */
3513void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3514{
3515 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3516 if (ret)
3517 memset(ret, 0, obj_size(cache));
3518 return ret;
3519}
3520EXPORT_SYMBOL(kmem_cache_zalloc);
3521
3522/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523 * kmem_ptr_validate - check if an untrusted pointer might
3524 * be a slab entry.
3525 * @cachep: the cache we're checking against
3526 * @ptr: pointer to validate
3527 *
3528 * This verifies that the untrusted pointer looks sane:
3529 * it is _not_ a guarantee that the pointer is actually
3530 * part of the slab cache in question, but it at least
3531 * validates that the pointer can be dereferenced and
3532 * looks half-way sane.
3533 *
3534 * Currently only used for dentry validation.
3535 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003536int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003538 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003539 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003540 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003541 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542 struct page *page;
3543
3544 if (unlikely(addr < min_addr))
3545 goto out;
3546 if (unlikely(addr > (unsigned long)high_memory - size))
3547 goto out;
3548 if (unlikely(addr & align_mask))
3549 goto out;
3550 if (unlikely(!kern_addr_valid(addr)))
3551 goto out;
3552 if (unlikely(!kern_addr_valid(addr + size - 1)))
3553 goto out;
3554 page = virt_to_page(ptr);
3555 if (unlikely(!PageSlab(page)))
3556 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003557 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558 goto out;
3559 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003560out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003561 return 0;
3562}
3563
3564#ifdef CONFIG_NUMA
3565/**
3566 * kmem_cache_alloc_node - Allocate an object on the specified node
3567 * @cachep: The cache to allocate from.
3568 * @flags: See kmalloc().
3569 * @nodeid: node number of the target node.
3570 *
Christoph Lameter5bcd2342006-12-06 20:33:24 -08003571 * Identical to kmem_cache_alloc but it will allocate memory on the given
3572 * node, which can improve the performance for cpu bound structures.
3573 *
3574 * Fallback to other node is possible if __GFP_THISNODE is not set.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003576static __always_inline void *
3577__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3578 int nodeid, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579{
Christoph Lametere498be72005-09-09 13:03:32 -07003580 unsigned long save_flags;
Christoph Lameter5bcd2342006-12-06 20:33:24 -08003581 void *ptr = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582
Christoph Lametere498be72005-09-09 13:03:32 -07003583 cache_alloc_debugcheck_before(cachep, flags);
3584 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003585
Christoph Lameter5bcd2342006-12-06 20:33:24 -08003586 if (unlikely(nodeid == -1))
3587 nodeid = numa_node_id();
Christoph Lameter18f820f2006-02-01 03:05:43 -08003588
Christoph Lameter5bcd2342006-12-06 20:33:24 -08003589 if (likely(cachep->nodelists[nodeid])) {
3590 if (nodeid == numa_node_id()) {
3591 /*
3592 * Use the locally cached objects if possible.
3593 * However ____cache_alloc does not allow fallback
3594 * to other nodes. It may fail while we still have
3595 * objects on other nodes available.
3596 */
3597 ptr = ____cache_alloc(cachep, flags);
3598 }
3599 if (!ptr) {
3600 /* ___cache_alloc_node can fall back to other nodes */
3601 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3602 }
3603 } else {
3604 /* Node not bootstrapped yet */
3605 if (!(flags & __GFP_THISNODE))
3606 ptr = fallback_alloc(cachep, flags);
3607 }
3608
3609 local_irq_restore(save_flags);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003610 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003611
Christoph Lametere498be72005-09-09 13:03:32 -07003612 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003614
3615void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3616{
3617 return __cache_alloc_node(cachep, flags, nodeid,
3618 __builtin_return_address(0));
3619}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620EXPORT_SYMBOL(kmem_cache_alloc_node);
3621
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003622static __always_inline void *
3623__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003624{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003625 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003626
3627 cachep = kmem_find_general_cachep(size, flags);
3628 if (unlikely(cachep == NULL))
3629 return NULL;
3630 return kmem_cache_alloc_node(cachep, flags, node);
3631}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003632
3633#ifdef CONFIG_DEBUG_SLAB
3634void *__kmalloc_node(size_t size, gfp_t flags, int node)
3635{
3636 return __do_kmalloc_node(size, flags, node,
3637 __builtin_return_address(0));
3638}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003639EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003640
3641void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3642 int node, void *caller)
3643{
3644 return __do_kmalloc_node(size, flags, node, caller);
3645}
3646EXPORT_SYMBOL(__kmalloc_node_track_caller);
3647#else
3648void *__kmalloc_node(size_t size, gfp_t flags, int node)
3649{
3650 return __do_kmalloc_node(size, flags, node, NULL);
3651}
3652EXPORT_SYMBOL(__kmalloc_node);
3653#endif /* CONFIG_DEBUG_SLAB */
3654#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003655
3656/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003657 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003658 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003659 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003660 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003661 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003662static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3663 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003664{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003665 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003666
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003667 /* If you want to save a few bytes .text space: replace
3668 * __ with kmem_.
3669 * Then kmalloc uses the uninlined functions instead of the inline
3670 * functions.
3671 */
3672 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003673 if (unlikely(cachep == NULL))
3674 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003675 return __cache_alloc(cachep, flags, caller);
3676}
3677
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003678
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003679#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003680void *__kmalloc(size_t size, gfp_t flags)
3681{
Al Viro871751e2006-03-25 03:06:39 -08003682 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683}
3684EXPORT_SYMBOL(__kmalloc);
3685
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003686void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3687{
3688 return __do_kmalloc(size, flags, caller);
3689}
3690EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003691
3692#else
3693void *__kmalloc(size_t size, gfp_t flags)
3694{
3695 return __do_kmalloc(size, flags, NULL);
3696}
3697EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003698#endif
3699
Linus Torvalds1da177e2005-04-16 15:20:36 -07003700/**
3701 * kmem_cache_free - Deallocate an object
3702 * @cachep: The cache the allocation was from.
3703 * @objp: The previously allocated object.
3704 *
3705 * Free an object which was previously allocated from this
3706 * cache.
3707 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003708void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003709{
3710 unsigned long flags;
3711
Pekka Enbergddc2e812006-06-23 02:03:40 -07003712 BUG_ON(virt_to_cache(objp) != cachep);
3713
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714 local_irq_save(flags);
Ingo Molnar873623d2006-07-13 14:44:38 +02003715 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716 local_irq_restore(flags);
3717}
3718EXPORT_SYMBOL(kmem_cache_free);
3719
3720/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721 * kfree - free previously allocated memory
3722 * @objp: pointer returned by kmalloc.
3723 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003724 * If @objp is NULL, no operation is performed.
3725 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726 * Don't free memory not originally allocated by kmalloc()
3727 * or you will run into trouble.
3728 */
3729void kfree(const void *objp)
3730{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003731 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003732 unsigned long flags;
3733
3734 if (unlikely(!objp))
3735 return;
3736 local_irq_save(flags);
3737 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003738 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003739 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003740 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003741 local_irq_restore(flags);
3742}
3743EXPORT_SYMBOL(kfree);
3744
Pekka Enberg343e0d72006-02-01 03:05:50 -08003745unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003746{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003747 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003748}
3749EXPORT_SYMBOL(kmem_cache_size);
3750
Pekka Enberg343e0d72006-02-01 03:05:50 -08003751const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003752{
3753 return cachep->name;
3754}
3755EXPORT_SYMBOL_GPL(kmem_cache_name);
3756
Christoph Lametere498be72005-09-09 13:03:32 -07003757/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003758 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003759 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003760static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003761{
3762 int node;
3763 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003764 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003765 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003766
3767 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003768
Paul Menage3395ee02006-12-06 20:32:16 -08003769 if (use_alien_caches) {
3770 new_alien = alloc_alien_cache(node, cachep->limit);
3771 if (!new_alien)
3772 goto fail;
3773 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003774
Christoph Lameter0718dc22006-03-25 03:06:47 -08003775 new_shared = alloc_arraycache(node,
3776 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003777 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003778 if (!new_shared) {
3779 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003780 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003781 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003782
Andrew Mortona737b3e2006-03-22 00:08:11 -08003783 l3 = cachep->nodelists[node];
3784 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003785 struct array_cache *shared = l3->shared;
3786
Christoph Lametere498be72005-09-09 13:03:32 -07003787 spin_lock_irq(&l3->list_lock);
3788
Christoph Lametercafeb022006-03-25 03:06:46 -08003789 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003790 free_block(cachep, shared->entry,
3791 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003792
Christoph Lametercafeb022006-03-25 03:06:46 -08003793 l3->shared = new_shared;
3794 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003795 l3->alien = new_alien;
3796 new_alien = NULL;
3797 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003798 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003799 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003800 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003801 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003802 free_alien_cache(new_alien);
3803 continue;
3804 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003805 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003806 if (!l3) {
3807 free_alien_cache(new_alien);
3808 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003809 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003810 }
Christoph Lametere498be72005-09-09 13:03:32 -07003811
3812 kmem_list3_init(l3);
3813 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003814 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003815 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003816 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003817 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003818 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003819 cachep->nodelists[node] = l3;
3820 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003821 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003822
Andrew Mortona737b3e2006-03-22 00:08:11 -08003823fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003824 if (!cachep->next.next) {
3825 /* Cache is not active yet. Roll back what we did */
3826 node--;
3827 while (node >= 0) {
3828 if (cachep->nodelists[node]) {
3829 l3 = cachep->nodelists[node];
3830
3831 kfree(l3->shared);
3832 free_alien_cache(l3->alien);
3833 kfree(l3);
3834 cachep->nodelists[node] = NULL;
3835 }
3836 node--;
3837 }
3838 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003839 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003840}
3841
Linus Torvalds1da177e2005-04-16 15:20:36 -07003842struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003843 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003844 struct array_cache *new[NR_CPUS];
3845};
3846
3847static void do_ccupdate_local(void *info)
3848{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003849 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003850 struct array_cache *old;
3851
3852 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003853 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003854
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3856 new->new[smp_processor_id()] = old;
3857}
3858
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003859/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003860static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3861 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003862{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003863 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003864 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003866 new = kzalloc(sizeof(*new), GFP_KERNEL);
3867 if (!new)
3868 return -ENOMEM;
3869
Christoph Lametere498be72005-09-09 13:03:32 -07003870 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003871 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003872 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003873 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003874 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003875 kfree(new->new[i]);
3876 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003877 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003878 }
3879 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003880 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003881
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003882 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003883
Linus Torvalds1da177e2005-04-16 15:20:36 -07003884 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003885 cachep->batchcount = batchcount;
3886 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003887 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003888
Christoph Lametere498be72005-09-09 13:03:32 -07003889 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003890 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003891 if (!ccold)
3892 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003893 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003894 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003895 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003896 kfree(ccold);
3897 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003898 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003899 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003900}
3901
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003902/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003903static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003904{
3905 int err;
3906 int limit, shared;
3907
Andrew Mortona737b3e2006-03-22 00:08:11 -08003908 /*
3909 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003910 * - create a LIFO ordering, i.e. return objects that are cache-warm
3911 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003912 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003913 * bufctl chains: array operations are cheaper.
3914 * The numbers are guessed, we should auto-tune as described by
3915 * Bonwick.
3916 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003917 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003918 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003919 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003920 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003921 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003922 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003923 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003924 limit = 54;
3925 else
3926 limit = 120;
3927
Andrew Mortona737b3e2006-03-22 00:08:11 -08003928 /*
3929 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003930 * allocation behaviour: Most allocs on one cpu, most free operations
3931 * on another cpu. For these cases, an efficient object passing between
3932 * cpus is necessary. This is provided by a shared array. The array
3933 * replaces Bonwick's magazine layer.
3934 * On uniprocessor, it's functionally equivalent (but less efficient)
3935 * to a larger limit. Thus disabled by default.
3936 */
3937 shared = 0;
3938#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003939 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003940 shared = 8;
3941#endif
3942
3943#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003944 /*
3945 * With debugging enabled, large batchcount lead to excessively long
3946 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003947 */
3948 if (limit > 32)
3949 limit = 32;
3950#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003951 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952 if (err)
3953 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003954 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003955 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003956}
3957
Christoph Lameter1b552532006-03-22 00:09:07 -08003958/*
3959 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003960 * necessary. Note that the l3 listlock also protects the array_cache
3961 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003962 */
3963void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3964 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003965{
3966 int tofree;
3967
Christoph Lameter1b552532006-03-22 00:09:07 -08003968 if (!ac || !ac->avail)
3969 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003970 if (ac->touched && !force) {
3971 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003972 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003973 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003974 if (ac->avail) {
3975 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3976 if (tofree > ac->avail)
3977 tofree = (ac->avail + 1) / 2;
3978 free_block(cachep, ac->entry, tofree, node);
3979 ac->avail -= tofree;
3980 memmove(ac->entry, &(ac->entry[tofree]),
3981 sizeof(void *) * ac->avail);
3982 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003983 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984 }
3985}
3986
3987/**
3988 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003989 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003990 *
3991 * Called from workqueue/eventd every few seconds.
3992 * Purpose:
3993 * - clear the per-cpu caches for this CPU.
3994 * - return freeable pages to the main free memory pool.
3995 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003996 * If we cannot acquire the cache chain mutex then just give up - we'll try
3997 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998 */
David Howells65f27f32006-11-22 14:55:48 +00003999static void cache_reap(struct work_struct *unused)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004000{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004001 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004002 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004003 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004005 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004007 schedule_delayed_work(&__get_cpu_var(reap_work),
4008 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004009 return;
4010 }
4011
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004012 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004013 check_irq_on();
4014
Christoph Lameter35386e32006-03-22 00:09:05 -08004015 /*
4016 * We only take the l3 lock if absolutely necessary and we
4017 * have established with reasonable certainty that
4018 * we can do some work if the lock was obtained.
4019 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004020 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004021
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004022 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023
Christoph Lameteraab22072006-03-22 00:09:06 -08004024 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025
Christoph Lameter35386e32006-03-22 00:09:05 -08004026 /*
4027 * These are racy checks but it does not matter
4028 * if we skip one check or scan twice.
4029 */
Christoph Lametere498be72005-09-09 13:03:32 -07004030 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004031 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004032
Christoph Lametere498be72005-09-09 13:03:32 -07004033 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034
Christoph Lameteraab22072006-03-22 00:09:06 -08004035 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036
Christoph Lametered11d9e2006-06-30 01:55:45 -07004037 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004038 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004039 else {
4040 int freed;
4041
4042 freed = drain_freelist(searchp, l3, (l3->free_limit +
4043 5 * searchp->num - 1) / (5 * searchp->num));
4044 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004046next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004047 cond_resched();
4048 }
4049 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004050 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004051 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004052 refresh_cpu_vm_stats(smp_processor_id());
Andrew Mortona737b3e2006-03-22 00:08:11 -08004053 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08004054 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055}
4056
4057#ifdef CONFIG_PROC_FS
4058
Pekka Enberg85289f92006-01-08 01:00:36 -08004059static void print_slabinfo_header(struct seq_file *m)
4060{
4061 /*
4062 * Output format version, so at least we can change it
4063 * without _too_ many complaints.
4064 */
4065#if STATS
4066 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4067#else
4068 seq_puts(m, "slabinfo - version: 2.1\n");
4069#endif
4070 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4071 "<objperslab> <pagesperslab>");
4072 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4073 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4074#if STATS
4075 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004076 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004077 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4078#endif
4079 seq_putc(m, '\n');
4080}
4081
Linus Torvalds1da177e2005-04-16 15:20:36 -07004082static void *s_start(struct seq_file *m, loff_t *pos)
4083{
4084 loff_t n = *pos;
4085 struct list_head *p;
4086
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004087 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004088 if (!n)
4089 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090 p = cache_chain.next;
4091 while (n--) {
4092 p = p->next;
4093 if (p == &cache_chain)
4094 return NULL;
4095 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004096 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004097}
4098
4099static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4100{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004101 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004102 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004103 return cachep->next.next == &cache_chain ?
4104 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004105}
4106
4107static void s_stop(struct seq_file *m, void *p)
4108{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004109 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004110}
4111
4112static int s_show(struct seq_file *m, void *p)
4113{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004114 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004115 struct slab *slabp;
4116 unsigned long active_objs;
4117 unsigned long num_objs;
4118 unsigned long active_slabs = 0;
4119 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004120 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004121 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004122 int node;
4123 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125 active_objs = 0;
4126 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004127 for_each_online_node(node) {
4128 l3 = cachep->nodelists[node];
4129 if (!l3)
4130 continue;
4131
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004132 check_irq_on();
4133 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004134
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004135 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004136 if (slabp->inuse != cachep->num && !error)
4137 error = "slabs_full accounting error";
4138 active_objs += cachep->num;
4139 active_slabs++;
4140 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004141 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004142 if (slabp->inuse == cachep->num && !error)
4143 error = "slabs_partial inuse accounting error";
4144 if (!slabp->inuse && !error)
4145 error = "slabs_partial/inuse accounting error";
4146 active_objs += slabp->inuse;
4147 active_slabs++;
4148 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004149 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004150 if (slabp->inuse && !error)
4151 error = "slabs_free/inuse accounting error";
4152 num_slabs++;
4153 }
4154 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004155 if (l3->shared)
4156 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004157
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004158 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004159 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004160 num_slabs += active_slabs;
4161 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004162 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163 error = "free_objects accounting error";
4164
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004165 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004166 if (error)
4167 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4168
4169 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004170 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004171 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004172 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004173 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004174 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004175 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004176#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004177 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178 unsigned long high = cachep->high_mark;
4179 unsigned long allocs = cachep->num_allocations;
4180 unsigned long grown = cachep->grown;
4181 unsigned long reaped = cachep->reaped;
4182 unsigned long errors = cachep->errors;
4183 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004185 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004186 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187
Christoph Lametere498be72005-09-09 13:03:32 -07004188 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004189 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004190 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004191 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004192 }
4193 /* cpu stats */
4194 {
4195 unsigned long allochit = atomic_read(&cachep->allochit);
4196 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4197 unsigned long freehit = atomic_read(&cachep->freehit);
4198 unsigned long freemiss = atomic_read(&cachep->freemiss);
4199
4200 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004201 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004202 }
4203#endif
4204 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205 return 0;
4206}
4207
4208/*
4209 * slabinfo_op - iterator that generates /proc/slabinfo
4210 *
4211 * Output layout:
4212 * cache-name
4213 * num-active-objs
4214 * total-objs
4215 * object size
4216 * num-active-slabs
4217 * total-slabs
4218 * num-pages-per-slab
4219 * + further values on SMP and with statistics enabled
4220 */
4221
Helge Deller15ad7cd2006-12-06 20:40:36 -08004222const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004223 .start = s_start,
4224 .next = s_next,
4225 .stop = s_stop,
4226 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004227};
4228
4229#define MAX_SLABINFO_WRITE 128
4230/**
4231 * slabinfo_write - Tuning for the slab allocator
4232 * @file: unused
4233 * @buffer: user buffer
4234 * @count: data length
4235 * @ppos: unused
4236 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004237ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4238 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004239{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004240 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004242 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004243
Linus Torvalds1da177e2005-04-16 15:20:36 -07004244 if (count > MAX_SLABINFO_WRITE)
4245 return -EINVAL;
4246 if (copy_from_user(&kbuf, buffer, count))
4247 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004248 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249
4250 tmp = strchr(kbuf, ' ');
4251 if (!tmp)
4252 return -EINVAL;
4253 *tmp = '\0';
4254 tmp++;
4255 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4256 return -EINVAL;
4257
4258 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004259 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004260 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004261 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004262 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004263 if (limit < 1 || batchcount < 1 ||
4264 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004265 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004266 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004267 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004268 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 }
4270 break;
4271 }
4272 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004273 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274 if (res >= 0)
4275 res = count;
4276 return res;
4277}
Al Viro871751e2006-03-25 03:06:39 -08004278
4279#ifdef CONFIG_DEBUG_SLAB_LEAK
4280
4281static void *leaks_start(struct seq_file *m, loff_t *pos)
4282{
4283 loff_t n = *pos;
4284 struct list_head *p;
4285
4286 mutex_lock(&cache_chain_mutex);
4287 p = cache_chain.next;
4288 while (n--) {
4289 p = p->next;
4290 if (p == &cache_chain)
4291 return NULL;
4292 }
4293 return list_entry(p, struct kmem_cache, next);
4294}
4295
4296static inline int add_caller(unsigned long *n, unsigned long v)
4297{
4298 unsigned long *p;
4299 int l;
4300 if (!v)
4301 return 1;
4302 l = n[1];
4303 p = n + 2;
4304 while (l) {
4305 int i = l/2;
4306 unsigned long *q = p + 2 * i;
4307 if (*q == v) {
4308 q[1]++;
4309 return 1;
4310 }
4311 if (*q > v) {
4312 l = i;
4313 } else {
4314 p = q + 2;
4315 l -= i + 1;
4316 }
4317 }
4318 if (++n[1] == n[0])
4319 return 0;
4320 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4321 p[0] = v;
4322 p[1] = 1;
4323 return 1;
4324}
4325
4326static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4327{
4328 void *p;
4329 int i;
4330 if (n[0] == n[1])
4331 return;
4332 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4333 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4334 continue;
4335 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4336 return;
4337 }
4338}
4339
4340static void show_symbol(struct seq_file *m, unsigned long address)
4341{
4342#ifdef CONFIG_KALLSYMS
4343 char *modname;
4344 const char *name;
4345 unsigned long offset, size;
4346 char namebuf[KSYM_NAME_LEN+1];
4347
4348 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4349
4350 if (name) {
4351 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4352 if (modname)
4353 seq_printf(m, " [%s]", modname);
4354 return;
4355 }
4356#endif
4357 seq_printf(m, "%p", (void *)address);
4358}
4359
4360static int leaks_show(struct seq_file *m, void *p)
4361{
4362 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004363 struct slab *slabp;
4364 struct kmem_list3 *l3;
4365 const char *name;
4366 unsigned long *n = m->private;
4367 int node;
4368 int i;
4369
4370 if (!(cachep->flags & SLAB_STORE_USER))
4371 return 0;
4372 if (!(cachep->flags & SLAB_RED_ZONE))
4373 return 0;
4374
4375 /* OK, we can do it */
4376
4377 n[1] = 0;
4378
4379 for_each_online_node(node) {
4380 l3 = cachep->nodelists[node];
4381 if (!l3)
4382 continue;
4383
4384 check_irq_on();
4385 spin_lock_irq(&l3->list_lock);
4386
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004387 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004388 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004389 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004390 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004391 spin_unlock_irq(&l3->list_lock);
4392 }
4393 name = cachep->name;
4394 if (n[0] == n[1]) {
4395 /* Increase the buffer size */
4396 mutex_unlock(&cache_chain_mutex);
4397 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4398 if (!m->private) {
4399 /* Too bad, we are really out */
4400 m->private = n;
4401 mutex_lock(&cache_chain_mutex);
4402 return -ENOMEM;
4403 }
4404 *(unsigned long *)m->private = n[0] * 2;
4405 kfree(n);
4406 mutex_lock(&cache_chain_mutex);
4407 /* Now make sure this entry will be retried */
4408 m->count = m->size;
4409 return 0;
4410 }
4411 for (i = 0; i < n[1]; i++) {
4412 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4413 show_symbol(m, n[2*i+2]);
4414 seq_putc(m, '\n');
4415 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004416
Al Viro871751e2006-03-25 03:06:39 -08004417 return 0;
4418}
4419
Helge Deller15ad7cd2006-12-06 20:40:36 -08004420const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004421 .start = leaks_start,
4422 .next = s_next,
4423 .stop = s_stop,
4424 .show = leaks_show,
4425};
4426#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004427#endif
4428
Manfred Spraul00e145b2005-09-03 15:55:07 -07004429/**
4430 * ksize - get the actual amount of memory allocated for a given object
4431 * @objp: Pointer to the object
4432 *
4433 * kmalloc may internally round up allocations and return more memory
4434 * than requested. ksize() can be used to determine the actual amount of
4435 * memory allocated. The caller may use this additional memory, even though
4436 * a smaller amount of memory was initially specified with the kmalloc call.
4437 * The caller must guarantee that objp points to a valid object previously
4438 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4439 * must not be freed during the duration of the call.
4440 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004441unsigned int ksize(const void *objp)
4442{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004443 if (unlikely(objp == NULL))
4444 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004445
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08004446 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004447}