blob: d14d7d99f2714dbe82aab3021da43023aa140237 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000115 void DropRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana2086b32010-05-19 23:43:12 +0000116 void DropUse(size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000123
Dan Gohman572645c2010-02-12 10:34:29 +0000124 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126 iterator begin() { return RegSequence.begin(); }
127 iterator end() { return RegSequence.end(); }
128 const_iterator begin() const { return RegSequence.begin(); }
129 const_iterator end() const { return RegSequence.end(); }
130};
Dan Gohmana10756e2010-01-21 02:09:26 +0000131
Dan Gohmana10756e2010-01-21 02:09:26 +0000132}
133
Dan Gohman572645c2010-02-12 10:34:29 +0000134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000137 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000138 RegSortData &RSD = Pair.first->second;
139 if (Pair.second)
140 RegSequence.push_back(Reg);
141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000143}
144
Dan Gohmanb2df4332010-05-18 23:42:37 +0000145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147 RegUsesTy::iterator It = RegUsesMap.find(Reg);
148 assert(It != RegUsesMap.end());
149 RegSortData &RSD = It->second;
150 assert(RSD.UsedByIndices.size() > LUIdx);
151 RSD.UsedByIndices.reset(LUIdx);
152}
153
Dan Gohmana2086b32010-05-19 23:43:12 +0000154void
155RegUseTracker::DropUse(size_t LUIdx) {
156 // Remove the use index from every register's use list.
157 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158 I != E; ++I)
159 I->second.UsedByIndices.reset(LUIdx);
160}
161
Dan Gohman572645c2010-02-12 10:34:29 +0000162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000164 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000165 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000166 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000167 int i = UsedByIndices.find_first();
168 if (i == -1) return false;
169 if ((size_t)i != LUIdx) return true;
170 return UsedByIndices.find_next(i) != -1;
171}
Dan Gohmana10756e2010-01-21 02:09:26 +0000172
Dan Gohman572645c2010-02-12 10:34:29 +0000173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000174 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000176 return I->second.UsedByIndices;
177}
Dan Gohmana10756e2010-01-21 02:09:26 +0000178
Dan Gohman572645c2010-02-12 10:34:29 +0000179void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000180 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000181 RegSequence.clear();
182}
Dan Gohmana10756e2010-01-21 02:09:26 +0000183
Dan Gohman572645c2010-02-12 10:34:29 +0000184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190 /// AM - This is used to represent complex addressing, as well as other kinds
191 /// of interesting uses.
192 TargetLowering::AddrMode AM;
193
194 /// BaseRegs - The list of "base" registers for this use. When this is
195 /// non-empty, AM.HasBaseReg should be set to true.
196 SmallVector<const SCEV *, 2> BaseRegs;
197
198 /// ScaledReg - The 'scaled' register for this use. This should be non-null
199 /// when AM.Scale is not zero.
200 const SCEV *ScaledReg;
201
202 Formula() : ScaledReg(0) {}
203
204 void InitialMatch(const SCEV *S, Loop *L,
205 ScalarEvolution &SE, DominatorTree &DT);
206
207 unsigned getNumRegs() const;
208 const Type *getType() const;
209
Dan Gohman5ce6d052010-05-20 15:17:54 +0000210 void DeleteBaseReg(const SCEV *&S);
211
Dan Gohman572645c2010-02-12 10:34:29 +0000212 bool referencesReg(const SCEV *S) const;
213 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214 const RegUseTracker &RegUses) const;
215
216 void print(raw_ostream &OS) const;
217 void dump() const;
218};
219
220}
221
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000222/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000223static void DoInitialMatch(const SCEV *S, Loop *L,
224 SmallVectorImpl<const SCEV *> &Good,
225 SmallVectorImpl<const SCEV *> &Bad,
226 ScalarEvolution &SE, DominatorTree &DT) {
227 // Collect expressions which properly dominate the loop header.
228 if (S->properlyDominates(L->getHeader(), &DT)) {
229 Good.push_back(S);
230 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000231 }
Dan Gohman572645c2010-02-12 10:34:29 +0000232
233 // Look at add operands.
234 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236 I != E; ++I)
237 DoInitialMatch(*I, L, Good, Bad, SE, DT);
238 return;
239 }
240
241 // Look at addrec operands.
242 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243 if (!AR->getStart()->isZero()) {
244 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000245 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000246 AR->getStepRecurrence(SE),
247 AR->getLoop()),
248 L, Good, Bad, SE, DT);
249 return;
250 }
251
252 // Handle a multiplication by -1 (negation) if it didn't fold.
253 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254 if (Mul->getOperand(0)->isAllOnesValue()) {
255 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256 const SCEV *NewMul = SE.getMulExpr(Ops);
257
258 SmallVector<const SCEV *, 4> MyGood;
259 SmallVector<const SCEV *, 4> MyBad;
260 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262 SE.getEffectiveSCEVType(NewMul->getType())));
263 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264 E = MyGood.end(); I != E; ++I)
265 Good.push_back(SE.getMulExpr(NegOne, *I));
266 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267 E = MyBad.end(); I != E; ++I)
268 Bad.push_back(SE.getMulExpr(NegOne, *I));
269 return;
270 }
271
272 // Ok, we can't do anything interesting. Just stuff the whole thing into a
273 // register and hope for the best.
274 Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281 ScalarEvolution &SE, DominatorTree &DT) {
282 SmallVector<const SCEV *, 4> Good;
283 SmallVector<const SCEV *, 4> Bad;
284 DoInitialMatch(S, L, Good, Bad, SE, DT);
285 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000286 const SCEV *Sum = SE.getAddExpr(Good);
287 if (!Sum->isZero())
288 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000289 AM.HasBaseReg = true;
290 }
291 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000292 const SCEV *Sum = SE.getAddExpr(Bad);
293 if (!Sum->isZero())
294 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000295 AM.HasBaseReg = true;
296 }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303 return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310 ScaledReg ? ScaledReg->getType() :
311 AM.BaseGV ? AM.BaseGV->getType() :
312 0;
313}
314
Dan Gohman5ce6d052010-05-20 15:17:54 +0000315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317 if (&S != &BaseRegs.back())
318 std::swap(S, BaseRegs.back());
319 BaseRegs.pop_back();
320}
321
Dan Gohman572645c2010-02-12 10:34:29 +0000322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324 return S == ScaledReg ||
325 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331 const RegUseTracker &RegUses) const {
332 if (ScaledReg)
333 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334 return true;
335 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336 E = BaseRegs.end(); I != E; ++I)
337 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338 return true;
339 return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343 bool First = true;
344 if (AM.BaseGV) {
345 if (!First) OS << " + "; else First = false;
346 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347 }
348 if (AM.BaseOffs != 0) {
349 if (!First) OS << " + "; else First = false;
350 OS << AM.BaseOffs;
351 }
352 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353 E = BaseRegs.end(); I != E; ++I) {
354 if (!First) OS << " + "; else First = false;
355 OS << "reg(" << **I << ')';
356 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000357 if (AM.HasBaseReg && BaseRegs.empty()) {
358 if (!First) OS << " + "; else First = false;
359 OS << "**error: HasBaseReg**";
360 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361 if (!First) OS << " + "; else First = false;
362 OS << "**error: !HasBaseReg**";
363 }
Dan Gohman572645c2010-02-12 10:34:29 +0000364 if (AM.Scale != 0) {
365 if (!First) OS << " + "; else First = false;
366 OS << AM.Scale << "*reg(";
367 if (ScaledReg)
368 OS << *ScaledReg;
369 else
370 OS << "<unknown>";
371 OS << ')';
372 }
373}
374
375void Formula::dump() const {
376 print(errs()); errs() << '\n';
377}
378
Dan Gohmanaae01f12010-02-19 19:32:49 +0000379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000383 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000384 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000391 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000392 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
398 const Type *WideTy =
Dan Gohmanea507f52010-05-20 19:44:23 +0000399 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000400 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
Dan Gohmanf09b7122010-02-19 19:35:48 +0000403/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
404/// and if the remainder is known to be zero, or null otherwise. If
405/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
406/// to Y, ignoring that the multiplication may overflow, which is useful when
407/// the result will be used in a context where the most significant bits are
408/// ignored.
409static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
410 ScalarEvolution &SE,
411 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000412 // Handle the trivial case, which works for any SCEV type.
413 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000414 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000415
416 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
417 // folding.
418 if (RHS->isAllOnesValue())
419 return SE.getMulExpr(LHS, RHS);
420
421 // Check for a division of a constant by a constant.
422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
423 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
424 if (!RC)
425 return 0;
426 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
427 return 0;
428 return SE.getConstant(C->getValue()->getValue()
429 .sdiv(RC->getValue()->getValue()));
430 }
431
Dan Gohmanaae01f12010-02-19 19:32:49 +0000432 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000433 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000434 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000435 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
436 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000437 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000438 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
439 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000440 if (!Step) return 0;
441 return SE.getAddRecExpr(Start, Step, AR->getLoop());
442 }
Dan Gohman572645c2010-02-12 10:34:29 +0000443 }
444
Dan Gohmanaae01f12010-02-19 19:32:49 +0000445 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000446 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000447 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
448 SmallVector<const SCEV *, 8> Ops;
449 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
450 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000451 const SCEV *Op = getExactSDiv(*I, RHS, SE,
452 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000453 if (!Op) return 0;
454 Ops.push_back(Op);
455 }
456 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000457 }
Dan Gohman572645c2010-02-12 10:34:29 +0000458 }
459
460 // Check for a multiply operand that we can pull RHS out of.
461 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000462 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000463 SmallVector<const SCEV *, 4> Ops;
464 bool Found = false;
465 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
466 I != E; ++I) {
Dan Gohman47667442010-05-20 16:23:28 +0000467 const SCEV *S = *I;
Dan Gohman572645c2010-02-12 10:34:29 +0000468 if (!Found)
Dan Gohman47667442010-05-20 16:23:28 +0000469 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
Dan Gohmanf09b7122010-02-19 19:35:48 +0000470 IgnoreSignificantBits)) {
Dan Gohman47667442010-05-20 16:23:28 +0000471 S = Q;
Dan Gohman572645c2010-02-12 10:34:29 +0000472 Found = true;
Dan Gohman572645c2010-02-12 10:34:29 +0000473 }
Dan Gohman47667442010-05-20 16:23:28 +0000474 Ops.push_back(S);
Dan Gohman572645c2010-02-12 10:34:29 +0000475 }
476 return Found ? SE.getMulExpr(Ops) : 0;
477 }
478
479 // Otherwise we don't know.
480 return 0;
481}
482
483/// ExtractImmediate - If S involves the addition of a constant integer value,
484/// return that integer value, and mutate S to point to a new SCEV with that
485/// value excluded.
486static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
488 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000489 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000490 return C->getValue()->getSExtValue();
491 }
492 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
493 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
494 int64_t Result = ExtractImmediate(NewOps.front(), SE);
495 S = SE.getAddExpr(NewOps);
496 return Result;
497 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
498 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
499 int64_t Result = ExtractImmediate(NewOps.front(), SE);
500 S = SE.getAddRecExpr(NewOps, AR->getLoop());
501 return Result;
502 }
503 return 0;
504}
505
506/// ExtractSymbol - If S involves the addition of a GlobalValue address,
507/// return that symbol, and mutate S to point to a new SCEV with that
508/// value excluded.
509static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
510 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
511 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000512 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000513 return GV;
514 }
515 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
516 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
517 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
518 S = SE.getAddExpr(NewOps);
519 return Result;
520 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
523 S = SE.getAddRecExpr(NewOps, AR->getLoop());
524 return Result;
525 }
526 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000527}
528
Dan Gohmanf284ce22009-02-18 00:08:39 +0000529/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000530/// specified value as an address.
531static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
532 bool isAddress = isa<LoadInst>(Inst);
533 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534 if (SI->getOperand(1) == OperandVal)
535 isAddress = true;
536 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
537 // Addressing modes can also be folded into prefetches and a variety
538 // of intrinsics.
539 switch (II->getIntrinsicID()) {
540 default: break;
541 case Intrinsic::prefetch:
542 case Intrinsic::x86_sse2_loadu_dq:
543 case Intrinsic::x86_sse2_loadu_pd:
544 case Intrinsic::x86_sse_loadu_ps:
545 case Intrinsic::x86_sse_storeu_ps:
546 case Intrinsic::x86_sse2_storeu_pd:
547 case Intrinsic::x86_sse2_storeu_dq:
548 case Intrinsic::x86_sse2_storel_dq:
549 if (II->getOperand(1) == OperandVal)
550 isAddress = true;
551 break;
552 }
553 }
554 return isAddress;
555}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000556
Dan Gohman21e77222009-03-09 21:01:17 +0000557/// getAccessType - Return the type of the memory being accessed.
558static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000559 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000560 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000561 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000562 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563 // Addressing modes can also be folded into prefetches and a variety
564 // of intrinsics.
565 switch (II->getIntrinsicID()) {
566 default: break;
567 case Intrinsic::x86_sse_storeu_ps:
568 case Intrinsic::x86_sse2_storeu_pd:
569 case Intrinsic::x86_sse2_storeu_dq:
570 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000571 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000572 break;
573 }
574 }
Dan Gohman572645c2010-02-12 10:34:29 +0000575
576 // All pointers have the same requirements, so canonicalize them to an
577 // arbitrary pointer type to minimize variation.
578 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
579 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
580 PTy->getAddressSpace());
581
Dan Gohmana537bf82009-05-18 16:45:28 +0000582 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000583}
584
Dan Gohman572645c2010-02-12 10:34:29 +0000585/// DeleteTriviallyDeadInstructions - If any of the instructions is the
586/// specified set are trivially dead, delete them and see if this makes any of
587/// their operands subsequently dead.
588static bool
589DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
590 bool Changed = false;
591
592 while (!DeadInsts.empty()) {
593 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
594
595 if (I == 0 || !isInstructionTriviallyDead(I))
596 continue;
597
598 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
599 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
600 *OI = 0;
601 if (U->use_empty())
602 DeadInsts.push_back(U);
603 }
604
605 I->eraseFromParent();
606 Changed = true;
607 }
608
609 return Changed;
610}
611
Dan Gohman7979b722010-01-22 00:46:49 +0000612namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000613
Dan Gohman572645c2010-02-12 10:34:29 +0000614/// Cost - This class is used to measure and compare candidate formulae.
615class Cost {
616 /// TODO: Some of these could be merged. Also, a lexical ordering
617 /// isn't always optimal.
618 unsigned NumRegs;
619 unsigned AddRecCost;
620 unsigned NumIVMuls;
621 unsigned NumBaseAdds;
622 unsigned ImmCost;
623 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000624
Dan Gohman572645c2010-02-12 10:34:29 +0000625public:
626 Cost()
627 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
628 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000629
Dan Gohman572645c2010-02-12 10:34:29 +0000630 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000631
Dan Gohman572645c2010-02-12 10:34:29 +0000632 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000633
Dan Gohman572645c2010-02-12 10:34:29 +0000634 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000635
Dan Gohman572645c2010-02-12 10:34:29 +0000636 void RateFormula(const Formula &F,
637 SmallPtrSet<const SCEV *, 16> &Regs,
638 const DenseSet<const SCEV *> &VisitedRegs,
639 const Loop *L,
640 const SmallVectorImpl<int64_t> &Offsets,
641 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000642
Dan Gohman572645c2010-02-12 10:34:29 +0000643 void print(raw_ostream &OS) const;
644 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000645
Dan Gohman572645c2010-02-12 10:34:29 +0000646private:
647 void RateRegister(const SCEV *Reg,
648 SmallPtrSet<const SCEV *, 16> &Regs,
649 const Loop *L,
650 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000651 void RatePrimaryRegister(const SCEV *Reg,
652 SmallPtrSet<const SCEV *, 16> &Regs,
653 const Loop *L,
654 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000655};
656
657}
658
659/// RateRegister - Tally up interesting quantities from the given register.
660void Cost::RateRegister(const SCEV *Reg,
661 SmallPtrSet<const SCEV *, 16> &Regs,
662 const Loop *L,
663 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
665 if (AR->getLoop() == L)
666 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000667
Dan Gohman9214b822010-02-13 02:06:02 +0000668 // If this is an addrec for a loop that's already been visited by LSR,
669 // don't second-guess its addrec phi nodes. LSR isn't currently smart
670 // enough to reason about more than one loop at a time. Consider these
671 // registers free and leave them alone.
672 else if (L->contains(AR->getLoop()) ||
673 (!AR->getLoop()->contains(L) &&
674 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
675 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
676 PHINode *PN = dyn_cast<PHINode>(I); ++I)
677 if (SE.isSCEVable(PN->getType()) &&
678 (SE.getEffectiveSCEVType(PN->getType()) ==
679 SE.getEffectiveSCEVType(AR->getType())) &&
680 SE.getSCEV(PN) == AR)
681 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000682
Dan Gohman9214b822010-02-13 02:06:02 +0000683 // If this isn't one of the addrecs that the loop already has, it
684 // would require a costly new phi and add. TODO: This isn't
685 // precisely modeled right now.
686 ++NumBaseAdds;
687 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000688 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000689 }
Dan Gohman572645c2010-02-12 10:34:29 +0000690
Dan Gohman9214b822010-02-13 02:06:02 +0000691 // Add the step value register, if it needs one.
692 // TODO: The non-affine case isn't precisely modeled here.
693 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
694 if (!Regs.count(AR->getStart()))
695 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000696 }
Dan Gohman9214b822010-02-13 02:06:02 +0000697 ++NumRegs;
698
699 // Rough heuristic; favor registers which don't require extra setup
700 // instructions in the preheader.
701 if (!isa<SCEVUnknown>(Reg) &&
702 !isa<SCEVConstant>(Reg) &&
703 !(isa<SCEVAddRecExpr>(Reg) &&
704 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
705 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
706 ++SetupCost;
707}
708
709/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
710/// before, rate it.
711void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000712 SmallPtrSet<const SCEV *, 16> &Regs,
713 const Loop *L,
714 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000715 if (Regs.insert(Reg))
716 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000717}
718
719void Cost::RateFormula(const Formula &F,
720 SmallPtrSet<const SCEV *, 16> &Regs,
721 const DenseSet<const SCEV *> &VisitedRegs,
722 const Loop *L,
723 const SmallVectorImpl<int64_t> &Offsets,
724 ScalarEvolution &SE, DominatorTree &DT) {
725 // Tally up the registers.
726 if (const SCEV *ScaledReg = F.ScaledReg) {
727 if (VisitedRegs.count(ScaledReg)) {
728 Loose();
729 return;
730 }
Dan Gohman9214b822010-02-13 02:06:02 +0000731 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000732 }
733 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
734 E = F.BaseRegs.end(); I != E; ++I) {
735 const SCEV *BaseReg = *I;
736 if (VisitedRegs.count(BaseReg)) {
737 Loose();
738 return;
739 }
Dan Gohman9214b822010-02-13 02:06:02 +0000740 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000741
742 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
743 BaseReg->hasComputableLoopEvolution(L);
744 }
745
746 if (F.BaseRegs.size() > 1)
747 NumBaseAdds += F.BaseRegs.size() - 1;
748
749 // Tally up the non-zero immediates.
750 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
751 E = Offsets.end(); I != E; ++I) {
752 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
753 if (F.AM.BaseGV)
754 ImmCost += 64; // Handle symbolic values conservatively.
755 // TODO: This should probably be the pointer size.
756 else if (Offset != 0)
757 ImmCost += APInt(64, Offset, true).getMinSignedBits();
758 }
759}
760
761/// Loose - Set this cost to a loosing value.
762void Cost::Loose() {
763 NumRegs = ~0u;
764 AddRecCost = ~0u;
765 NumIVMuls = ~0u;
766 NumBaseAdds = ~0u;
767 ImmCost = ~0u;
768 SetupCost = ~0u;
769}
770
771/// operator< - Choose the lower cost.
772bool Cost::operator<(const Cost &Other) const {
773 if (NumRegs != Other.NumRegs)
774 return NumRegs < Other.NumRegs;
775 if (AddRecCost != Other.AddRecCost)
776 return AddRecCost < Other.AddRecCost;
777 if (NumIVMuls != Other.NumIVMuls)
778 return NumIVMuls < Other.NumIVMuls;
779 if (NumBaseAdds != Other.NumBaseAdds)
780 return NumBaseAdds < Other.NumBaseAdds;
781 if (ImmCost != Other.ImmCost)
782 return ImmCost < Other.ImmCost;
783 if (SetupCost != Other.SetupCost)
784 return SetupCost < Other.SetupCost;
785 return false;
786}
787
788void Cost::print(raw_ostream &OS) const {
789 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
790 if (AddRecCost != 0)
791 OS << ", with addrec cost " << AddRecCost;
792 if (NumIVMuls != 0)
793 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
794 if (NumBaseAdds != 0)
795 OS << ", plus " << NumBaseAdds << " base add"
796 << (NumBaseAdds == 1 ? "" : "s");
797 if (ImmCost != 0)
798 OS << ", plus " << ImmCost << " imm cost";
799 if (SetupCost != 0)
800 OS << ", plus " << SetupCost << " setup cost";
801}
802
803void Cost::dump() const {
804 print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// LSRFixup - An operand value in an instruction which is to be replaced
810/// with some equivalent, possibly strength-reduced, replacement.
811struct LSRFixup {
812 /// UserInst - The instruction which will be updated.
813 Instruction *UserInst;
814
815 /// OperandValToReplace - The operand of the instruction which will
816 /// be replaced. The operand may be used more than once; every instance
817 /// will be replaced.
818 Value *OperandValToReplace;
819
Dan Gohman448db1c2010-04-07 22:27:08 +0000820 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000821 /// induction variable, this variable is non-null and holds the loop
822 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000823 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000824
825 /// LUIdx - The index of the LSRUse describing the expression which
826 /// this fixup needs, minus an offset (below).
827 size_t LUIdx;
828
829 /// Offset - A constant offset to be added to the LSRUse expression.
830 /// This allows multiple fixups to share the same LSRUse with different
831 /// offsets, for example in an unrolled loop.
832 int64_t Offset;
833
Dan Gohman448db1c2010-04-07 22:27:08 +0000834 bool isUseFullyOutsideLoop(const Loop *L) const;
835
Dan Gohman572645c2010-02-12 10:34:29 +0000836 LSRFixup();
837
838 void print(raw_ostream &OS) const;
839 void dump() const;
840};
841
842}
843
844LSRFixup::LSRFixup()
Dan Gohmanea507f52010-05-20 19:44:23 +0000845 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
Dan Gohman572645c2010-02-12 10:34:29 +0000846
Dan Gohman448db1c2010-04-07 22:27:08 +0000847/// isUseFullyOutsideLoop - Test whether this fixup always uses its
848/// value outside of the given loop.
849bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
850 // PHI nodes use their value in their incoming blocks.
851 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
853 if (PN->getIncomingValue(i) == OperandValToReplace &&
854 L->contains(PN->getIncomingBlock(i)))
855 return false;
856 return true;
857 }
858
859 return !L->contains(UserInst);
860}
861
Dan Gohman572645c2010-02-12 10:34:29 +0000862void LSRFixup::print(raw_ostream &OS) const {
863 OS << "UserInst=";
864 // Store is common and interesting enough to be worth special-casing.
865 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
866 OS << "store ";
867 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
868 } else if (UserInst->getType()->isVoidTy())
869 OS << UserInst->getOpcodeName();
870 else
871 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
872
873 OS << ", OperandValToReplace=";
874 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
875
Dan Gohman448db1c2010-04-07 22:27:08 +0000876 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
877 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000878 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000879 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000880 }
881
882 if (LUIdx != ~size_t(0))
883 OS << ", LUIdx=" << LUIdx;
884
885 if (Offset != 0)
886 OS << ", Offset=" << Offset;
887}
888
889void LSRFixup::dump() const {
890 print(errs()); errs() << '\n';
891}
892
893namespace {
894
895/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
896/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
897struct UniquifierDenseMapInfo {
898 static SmallVector<const SCEV *, 2> getEmptyKey() {
899 SmallVector<const SCEV *, 2> V;
900 V.push_back(reinterpret_cast<const SCEV *>(-1));
901 return V;
902 }
903
904 static SmallVector<const SCEV *, 2> getTombstoneKey() {
905 SmallVector<const SCEV *, 2> V;
906 V.push_back(reinterpret_cast<const SCEV *>(-2));
907 return V;
908 }
909
910 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
911 unsigned Result = 0;
912 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
913 E = V.end(); I != E; ++I)
914 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
915 return Result;
916 }
917
918 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
919 const SmallVector<const SCEV *, 2> &RHS) {
920 return LHS == RHS;
921 }
922};
923
924/// LSRUse - This class holds the state that LSR keeps for each use in
925/// IVUsers, as well as uses invented by LSR itself. It includes information
926/// about what kinds of things can be folded into the user, information about
927/// the user itself, and information about how the use may be satisfied.
928/// TODO: Represent multiple users of the same expression in common?
929class LSRUse {
930 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
931
932public:
933 /// KindType - An enum for a kind of use, indicating what types of
934 /// scaled and immediate operands it might support.
935 enum KindType {
936 Basic, ///< A normal use, with no folding.
937 Special, ///< A special case of basic, allowing -1 scales.
938 Address, ///< An address use; folding according to TargetLowering
939 ICmpZero ///< An equality icmp with both operands folded into one.
940 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000941 };
Dan Gohman572645c2010-02-12 10:34:29 +0000942
943 KindType Kind;
944 const Type *AccessTy;
945
946 SmallVector<int64_t, 8> Offsets;
947 int64_t MinOffset;
948 int64_t MaxOffset;
949
950 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
951 /// LSRUse are outside of the loop, in which case some special-case heuristics
952 /// may be used.
953 bool AllFixupsOutsideLoop;
954
955 /// Formulae - A list of ways to build a value that can satisfy this user.
956 /// After the list is populated, one of these is selected heuristically and
957 /// used to formulate a replacement for OperandValToReplace in UserInst.
958 SmallVector<Formula, 12> Formulae;
959
960 /// Regs - The set of register candidates used by all formulae in this LSRUse.
961 SmallPtrSet<const SCEV *, 4> Regs;
962
963 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
964 MinOffset(INT64_MAX),
965 MaxOffset(INT64_MIN),
966 AllFixupsOutsideLoop(true) {}
967
Dan Gohmana2086b32010-05-19 23:43:12 +0000968 bool HasFormulaWithSameRegs(const Formula &F) const;
Dan Gohman454d26d2010-02-22 04:11:59 +0000969 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000970 void DeleteFormula(Formula &F);
Dan Gohmanb2df4332010-05-18 23:42:37 +0000971 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
Dan Gohman572645c2010-02-12 10:34:29 +0000972
973 void check() const;
974
975 void print(raw_ostream &OS) const;
976 void dump() const;
977};
978
Dan Gohmanb6211712010-06-19 21:21:39 +0000979}
980
Dan Gohmana2086b32010-05-19 23:43:12 +0000981/// HasFormula - Test whether this use as a formula which has the same
982/// registers as the given formula.
983bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
984 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
985 if (F.ScaledReg) Key.push_back(F.ScaledReg);
986 // Unstable sort by host order ok, because this is only used for uniquifying.
987 std::sort(Key.begin(), Key.end());
988 return Uniquifier.count(Key);
989}
990
Dan Gohman572645c2010-02-12 10:34:29 +0000991/// InsertFormula - If the given formula has not yet been inserted, add it to
992/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000993bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000994 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
995 if (F.ScaledReg) Key.push_back(F.ScaledReg);
996 // Unstable sort by host order ok, because this is only used for uniquifying.
997 std::sort(Key.begin(), Key.end());
998
999 if (!Uniquifier.insert(Key).second)
1000 return false;
1001
1002 // Using a register to hold the value of 0 is not profitable.
1003 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1004 "Zero allocated in a scaled register!");
1005#ifndef NDEBUG
1006 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1007 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1008 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1009#endif
1010
1011 // Add the formula to the list.
1012 Formulae.push_back(F);
1013
1014 // Record registers now being used by this use.
1015 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1016 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1017
1018 return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001019}
1020
Dan Gohmand69d6282010-05-18 22:39:15 +00001021/// DeleteFormula - Remove the given formula from this use's list.
1022void LSRUse::DeleteFormula(Formula &F) {
Dan Gohman5ce6d052010-05-20 15:17:54 +00001023 if (&F != &Formulae.back())
1024 std::swap(F, Formulae.back());
Dan Gohmand69d6282010-05-18 22:39:15 +00001025 Formulae.pop_back();
Dan Gohmana2086b32010-05-19 23:43:12 +00001026 assert(!Formulae.empty() && "LSRUse has no formulae left!");
Dan Gohmand69d6282010-05-18 22:39:15 +00001027}
1028
Dan Gohmanb2df4332010-05-18 23:42:37 +00001029/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1030void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1031 // Now that we've filtered out some formulae, recompute the Regs set.
1032 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1033 Regs.clear();
Dan Gohman402d4352010-05-20 20:33:18 +00001034 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1035 E = Formulae.end(); I != E; ++I) {
1036 const Formula &F = *I;
Dan Gohmanb2df4332010-05-18 23:42:37 +00001037 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1038 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1039 }
1040
1041 // Update the RegTracker.
1042 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1043 E = OldRegs.end(); I != E; ++I)
1044 if (!Regs.count(*I))
1045 RegUses.DropRegister(*I, LUIdx);
1046}
1047
Dan Gohman572645c2010-02-12 10:34:29 +00001048void LSRUse::print(raw_ostream &OS) const {
1049 OS << "LSR Use: Kind=";
1050 switch (Kind) {
1051 case Basic: OS << "Basic"; break;
1052 case Special: OS << "Special"; break;
1053 case ICmpZero: OS << "ICmpZero"; break;
1054 case Address:
1055 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +00001056 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +00001057 OS << "pointer"; // the full pointer type could be really verbose
1058 else
1059 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001060 }
1061
Dan Gohman572645c2010-02-12 10:34:29 +00001062 OS << ", Offsets={";
1063 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1064 E = Offsets.end(); I != E; ++I) {
1065 OS << *I;
1066 if (next(I) != E)
1067 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001068 }
Dan Gohman572645c2010-02-12 10:34:29 +00001069 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001070
Dan Gohman572645c2010-02-12 10:34:29 +00001071 if (AllFixupsOutsideLoop)
1072 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001073}
1074
Dan Gohman572645c2010-02-12 10:34:29 +00001075void LSRUse::dump() const {
1076 print(errs()); errs() << '\n';
1077}
Dan Gohman7979b722010-01-22 00:46:49 +00001078
Dan Gohman572645c2010-02-12 10:34:29 +00001079/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1080/// be completely folded into the user instruction at isel time. This includes
1081/// address-mode folding and special icmp tricks.
1082static bool isLegalUse(const TargetLowering::AddrMode &AM,
1083 LSRUse::KindType Kind, const Type *AccessTy,
1084 const TargetLowering *TLI) {
1085 switch (Kind) {
1086 case LSRUse::Address:
1087 // If we have low-level target information, ask the target if it can
1088 // completely fold this address.
1089 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1090
1091 // Otherwise, just guess that reg+reg addressing is legal.
1092 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1093
1094 case LSRUse::ICmpZero:
1095 // There's not even a target hook for querying whether it would be legal to
1096 // fold a GV into an ICmp.
1097 if (AM.BaseGV)
1098 return false;
1099
1100 // ICmp only has two operands; don't allow more than two non-trivial parts.
1101 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1102 return false;
1103
1104 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1105 // putting the scaled register in the other operand of the icmp.
1106 if (AM.Scale != 0 && AM.Scale != -1)
1107 return false;
1108
1109 // If we have low-level target information, ask the target if it can fold an
1110 // integer immediate on an icmp.
1111 if (AM.BaseOffs != 0) {
1112 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1113 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001114 }
Dan Gohman572645c2010-02-12 10:34:29 +00001115
1116 return true;
1117
1118 case LSRUse::Basic:
1119 // Only handle single-register values.
1120 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1121
1122 case LSRUse::Special:
1123 // Only handle -1 scales, or no scale.
1124 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001125 }
1126
Dan Gohman7979b722010-01-22 00:46:49 +00001127 return false;
1128}
1129
Dan Gohman572645c2010-02-12 10:34:29 +00001130static bool isLegalUse(TargetLowering::AddrMode AM,
1131 int64_t MinOffset, int64_t MaxOffset,
1132 LSRUse::KindType Kind, const Type *AccessTy,
1133 const TargetLowering *TLI) {
1134 // Check for overflow.
1135 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1136 (MinOffset > 0))
1137 return false;
1138 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1139 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1140 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1141 // Check for overflow.
1142 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1143 (MaxOffset > 0))
1144 return false;
1145 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1146 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001147 }
Dan Gohman572645c2010-02-12 10:34:29 +00001148 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001149}
1150
Dan Gohman572645c2010-02-12 10:34:29 +00001151static bool isAlwaysFoldable(int64_t BaseOffs,
1152 GlobalValue *BaseGV,
1153 bool HasBaseReg,
1154 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001155 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001156 // Fast-path: zero is always foldable.
1157 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001158
Dan Gohman572645c2010-02-12 10:34:29 +00001159 // Conservatively, create an address with an immediate and a
1160 // base and a scale.
1161 TargetLowering::AddrMode AM;
1162 AM.BaseOffs = BaseOffs;
1163 AM.BaseGV = BaseGV;
1164 AM.HasBaseReg = HasBaseReg;
1165 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001166
Dan Gohmana2086b32010-05-19 23:43:12 +00001167 // Canonicalize a scale of 1 to a base register if the formula doesn't
1168 // already have a base register.
1169 if (!AM.HasBaseReg && AM.Scale == 1) {
1170 AM.Scale = 0;
1171 AM.HasBaseReg = true;
1172 }
1173
Dan Gohman572645c2010-02-12 10:34:29 +00001174 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001175}
1176
Dan Gohman572645c2010-02-12 10:34:29 +00001177static bool isAlwaysFoldable(const SCEV *S,
1178 int64_t MinOffset, int64_t MaxOffset,
1179 bool HasBaseReg,
1180 LSRUse::KindType Kind, const Type *AccessTy,
1181 const TargetLowering *TLI,
1182 ScalarEvolution &SE) {
1183 // Fast-path: zero is always foldable.
1184 if (S->isZero()) return true;
1185
1186 // Conservatively, create an address with an immediate and a
1187 // base and a scale.
1188 int64_t BaseOffs = ExtractImmediate(S, SE);
1189 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1190
1191 // If there's anything else involved, it's not foldable.
1192 if (!S->isZero()) return false;
1193
1194 // Fast-path: zero is always foldable.
1195 if (BaseOffs == 0 && !BaseGV) return true;
1196
1197 // Conservatively, create an address with an immediate and a
1198 // base and a scale.
1199 TargetLowering::AddrMode AM;
1200 AM.BaseOffs = BaseOffs;
1201 AM.BaseGV = BaseGV;
1202 AM.HasBaseReg = HasBaseReg;
1203 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1204
1205 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001206}
1207
Dan Gohmanb6211712010-06-19 21:21:39 +00001208namespace {
1209
Dan Gohman1e3121c2010-06-19 21:29:59 +00001210/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1211/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1212struct UseMapDenseMapInfo {
1213 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1214 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1215 }
1216
1217 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1218 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1219 }
1220
1221 static unsigned
1222 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1223 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1224 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1225 return Result;
1226 }
1227
1228 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1229 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1230 return LHS == RHS;
1231 }
1232};
1233
Dan Gohman572645c2010-02-12 10:34:29 +00001234/// FormulaSorter - This class implements an ordering for formulae which sorts
1235/// the by their standalone cost.
1236class FormulaSorter {
1237 /// These two sets are kept empty, so that we compute standalone costs.
1238 DenseSet<const SCEV *> VisitedRegs;
1239 SmallPtrSet<const SCEV *, 16> Regs;
1240 Loop *L;
1241 LSRUse *LU;
1242 ScalarEvolution &SE;
1243 DominatorTree &DT;
1244
1245public:
1246 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1247 : L(l), LU(&lu), SE(se), DT(dt) {}
1248
1249 bool operator()(const Formula &A, const Formula &B) {
1250 Cost CostA;
1251 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1252 Regs.clear();
1253 Cost CostB;
1254 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1255 Regs.clear();
1256 return CostA < CostB;
1257 }
1258};
1259
1260/// LSRInstance - This class holds state for the main loop strength reduction
1261/// logic.
1262class LSRInstance {
1263 IVUsers &IU;
1264 ScalarEvolution &SE;
1265 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001266 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001267 const TargetLowering *const TLI;
1268 Loop *const L;
1269 bool Changed;
1270
1271 /// IVIncInsertPos - This is the insert position that the current loop's
1272 /// induction variable increment should be placed. In simple loops, this is
1273 /// the latch block's terminator. But in more complicated cases, this is a
1274 /// position which will dominate all the in-loop post-increment users.
1275 Instruction *IVIncInsertPos;
1276
1277 /// Factors - Interesting factors between use strides.
1278 SmallSetVector<int64_t, 8> Factors;
1279
1280 /// Types - Interesting use types, to facilitate truncation reuse.
1281 SmallSetVector<const Type *, 4> Types;
1282
1283 /// Fixups - The list of operands which are to be replaced.
1284 SmallVector<LSRFixup, 16> Fixups;
1285
1286 /// Uses - The list of interesting uses.
1287 SmallVector<LSRUse, 16> Uses;
1288
1289 /// RegUses - Track which uses use which register candidates.
1290 RegUseTracker RegUses;
1291
1292 void OptimizeShadowIV();
1293 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1294 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
Dan Gohmanc6519f92010-05-20 20:05:31 +00001295 void OptimizeLoopTermCond();
Dan Gohman572645c2010-02-12 10:34:29 +00001296
1297 void CollectInterestingTypesAndFactors();
1298 void CollectFixupsAndInitialFormulae();
1299
1300 LSRFixup &getNewFixup() {
1301 Fixups.push_back(LSRFixup());
1302 return Fixups.back();
1303 }
1304
1305 // Support for sharing of LSRUses between LSRFixups.
Dan Gohman1e3121c2010-06-19 21:29:59 +00001306 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1307 size_t,
1308 UseMapDenseMapInfo> UseMapTy;
Dan Gohman572645c2010-02-12 10:34:29 +00001309 UseMapTy UseMap;
1310
Dan Gohmanea507f52010-05-20 19:44:23 +00001311 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001312 LSRUse::KindType Kind, const Type *AccessTy);
1313
1314 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1315 LSRUse::KindType Kind,
1316 const Type *AccessTy);
1317
Dan Gohman5ce6d052010-05-20 15:17:54 +00001318 void DeleteUse(LSRUse &LU);
1319
Dan Gohmana2086b32010-05-19 23:43:12 +00001320 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1321
Dan Gohman572645c2010-02-12 10:34:29 +00001322public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001323 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001324 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1325 void CountRegisters(const Formula &F, size_t LUIdx);
1326 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1327
1328 void CollectLoopInvariantFixupsAndFormulae();
1329
1330 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1331 unsigned Depth = 0);
1332 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1333 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1334 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1335 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1336 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1337 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1338 void GenerateCrossUseConstantOffsets();
1339 void GenerateAllReuseFormulae();
1340
1341 void FilterOutUndesirableDedicatedRegisters();
Dan Gohmand079c302010-05-18 22:51:59 +00001342
1343 size_t EstimateSearchSpaceComplexity() const;
Dan Gohman572645c2010-02-12 10:34:29 +00001344 void NarrowSearchSpaceUsingHeuristics();
1345
1346 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1347 Cost &SolutionCost,
1348 SmallVectorImpl<const Formula *> &Workspace,
1349 const Cost &CurCost,
1350 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1351 DenseSet<const SCEV *> &VisitedRegs) const;
1352 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1353
Dan Gohmane5f76872010-04-09 22:07:05 +00001354 BasicBlock::iterator
1355 HoistInsertPosition(BasicBlock::iterator IP,
1356 const SmallVectorImpl<Instruction *> &Inputs) const;
1357 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1358 const LSRFixup &LF,
1359 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001360
Dan Gohman572645c2010-02-12 10:34:29 +00001361 Value *Expand(const LSRFixup &LF,
1362 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001363 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001364 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001365 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001366 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1367 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001368 SCEVExpander &Rewriter,
1369 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001370 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001371 void Rewrite(const LSRFixup &LF,
1372 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001373 SCEVExpander &Rewriter,
1374 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001375 Pass *P) const;
1376 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1377 Pass *P);
1378
1379 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1380
1381 bool getChanged() const { return Changed; }
1382
1383 void print_factors_and_types(raw_ostream &OS) const;
1384 void print_fixups(raw_ostream &OS) const;
1385 void print_uses(raw_ostream &OS) const;
1386 void print(raw_ostream &OS) const;
1387 void dump() const;
1388};
1389
1390}
1391
1392/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001393/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001394void LSRInstance::OptimizeShadowIV() {
1395 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1396 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1397 return;
1398
1399 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1400 UI != E; /* empty */) {
1401 IVUsers::const_iterator CandidateUI = UI;
1402 ++UI;
1403 Instruction *ShadowUse = CandidateUI->getUser();
1404 const Type *DestTy = NULL;
1405
1406 /* If shadow use is a int->float cast then insert a second IV
1407 to eliminate this cast.
1408
1409 for (unsigned i = 0; i < n; ++i)
1410 foo((double)i);
1411
1412 is transformed into
1413
1414 double d = 0.0;
1415 for (unsigned i = 0; i < n; ++i, ++d)
1416 foo(d);
1417 */
1418 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1419 DestTy = UCast->getDestTy();
1420 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1421 DestTy = SCast->getDestTy();
1422 if (!DestTy) continue;
1423
1424 if (TLI) {
1425 // If target does not support DestTy natively then do not apply
1426 // this transformation.
1427 EVT DVT = TLI->getValueType(DestTy);
1428 if (!TLI->isTypeLegal(DVT)) continue;
1429 }
1430
1431 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1432 if (!PH) continue;
1433 if (PH->getNumIncomingValues() != 2) continue;
1434
1435 const Type *SrcTy = PH->getType();
1436 int Mantissa = DestTy->getFPMantissaWidth();
1437 if (Mantissa == -1) continue;
1438 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1439 continue;
1440
1441 unsigned Entry, Latch;
1442 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1443 Entry = 0;
1444 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001445 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001446 Entry = 1;
1447 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001448 }
Dan Gohman7979b722010-01-22 00:46:49 +00001449
Dan Gohman572645c2010-02-12 10:34:29 +00001450 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1451 if (!Init) continue;
1452 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001453
Dan Gohman572645c2010-02-12 10:34:29 +00001454 BinaryOperator *Incr =
1455 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1456 if (!Incr) continue;
1457 if (Incr->getOpcode() != Instruction::Add
1458 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001459 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001460
Dan Gohman572645c2010-02-12 10:34:29 +00001461 /* Initialize new IV, double d = 0.0 in above example. */
1462 ConstantInt *C = NULL;
1463 if (Incr->getOperand(0) == PH)
1464 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1465 else if (Incr->getOperand(1) == PH)
1466 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001467 else
Dan Gohman7979b722010-01-22 00:46:49 +00001468 continue;
1469
Dan Gohman572645c2010-02-12 10:34:29 +00001470 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001471
Dan Gohman572645c2010-02-12 10:34:29 +00001472 // Ignore negative constants, as the code below doesn't handle them
1473 // correctly. TODO: Remove this restriction.
1474 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001475
Dan Gohman572645c2010-02-12 10:34:29 +00001476 /* Add new PHINode. */
1477 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001478
Dan Gohman572645c2010-02-12 10:34:29 +00001479 /* create new increment. '++d' in above example. */
1480 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1481 BinaryOperator *NewIncr =
1482 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1483 Instruction::FAdd : Instruction::FSub,
1484 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001485
Dan Gohman572645c2010-02-12 10:34:29 +00001486 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1487 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001488
Dan Gohman572645c2010-02-12 10:34:29 +00001489 /* Remove cast operation */
1490 ShadowUse->replaceAllUsesWith(NewPH);
1491 ShadowUse->eraseFromParent();
Dan Gohmanc6519f92010-05-20 20:05:31 +00001492 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00001493 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001494 }
1495}
1496
1497/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1498/// set the IV user and stride information and return true, otherwise return
1499/// false.
Dan Gohmanea507f52010-05-20 19:44:23 +00001500bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
Dan Gohman572645c2010-02-12 10:34:29 +00001501 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1502 if (UI->getUser() == Cond) {
1503 // NOTE: we could handle setcc instructions with multiple uses here, but
1504 // InstCombine does it as well for simple uses, it's not clear that it
1505 // occurs enough in real life to handle.
1506 CondUse = UI;
1507 return true;
1508 }
Dan Gohman7979b722010-01-22 00:46:49 +00001509 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001510}
1511
Dan Gohman7979b722010-01-22 00:46:49 +00001512/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1513/// a max computation.
1514///
1515/// This is a narrow solution to a specific, but acute, problem. For loops
1516/// like this:
1517///
1518/// i = 0;
1519/// do {
1520/// p[i] = 0.0;
1521/// } while (++i < n);
1522///
1523/// the trip count isn't just 'n', because 'n' might not be positive. And
1524/// unfortunately this can come up even for loops where the user didn't use
1525/// a C do-while loop. For example, seemingly well-behaved top-test loops
1526/// will commonly be lowered like this:
1527//
1528/// if (n > 0) {
1529/// i = 0;
1530/// do {
1531/// p[i] = 0.0;
1532/// } while (++i < n);
1533/// }
1534///
1535/// and then it's possible for subsequent optimization to obscure the if
1536/// test in such a way that indvars can't find it.
1537///
1538/// When indvars can't find the if test in loops like this, it creates a
1539/// max expression, which allows it to give the loop a canonical
1540/// induction variable:
1541///
1542/// i = 0;
1543/// max = n < 1 ? 1 : n;
1544/// do {
1545/// p[i] = 0.0;
1546/// } while (++i != max);
1547///
1548/// Canonical induction variables are necessary because the loop passes
1549/// are designed around them. The most obvious example of this is the
1550/// LoopInfo analysis, which doesn't remember trip count values. It
1551/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001552/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001553/// the loop has a canonical induction variable.
1554///
1555/// However, when it comes time to generate code, the maximum operation
1556/// can be quite costly, especially if it's inside of an outer loop.
1557///
1558/// This function solves this problem by detecting this type of loop and
1559/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1560/// the instructions for the maximum computation.
1561///
Dan Gohman572645c2010-02-12 10:34:29 +00001562ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001563 // Check that the loop matches the pattern we're looking for.
1564 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1565 Cond->getPredicate() != CmpInst::ICMP_NE)
1566 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001567
Dan Gohman7979b722010-01-22 00:46:49 +00001568 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1569 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001570
Dan Gohman572645c2010-02-12 10:34:29 +00001571 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001572 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1573 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001574 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001575
Dan Gohman7979b722010-01-22 00:46:49 +00001576 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001577 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001578 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001579
Dan Gohman1d367982010-04-24 03:13:44 +00001580 // Check for a max calculation that matches the pattern. There's no check
1581 // for ICMP_ULE here because the comparison would be with zero, which
1582 // isn't interesting.
1583 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1584 const SCEVNAryExpr *Max = 0;
1585 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1586 Pred = ICmpInst::ICMP_SLE;
1587 Max = S;
1588 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1589 Pred = ICmpInst::ICMP_SLT;
1590 Max = S;
1591 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1592 Pred = ICmpInst::ICMP_ULT;
1593 Max = U;
1594 } else {
1595 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001596 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001597 }
Dan Gohman7979b722010-01-22 00:46:49 +00001598
1599 // To handle a max with more than two operands, this optimization would
1600 // require additional checking and setup.
1601 if (Max->getNumOperands() != 2)
1602 return Cond;
1603
1604 const SCEV *MaxLHS = Max->getOperand(0);
1605 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001606
1607 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1608 // for a comparison with 1. For <= and >=, a comparison with zero.
1609 if (!MaxLHS ||
1610 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1611 return Cond;
1612
Dan Gohman7979b722010-01-22 00:46:49 +00001613 // Check the relevant induction variable for conformance to
1614 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001615 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001616 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1617 if (!AR || !AR->isAffine() ||
1618 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001619 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001620 return Cond;
1621
1622 assert(AR->getLoop() == L &&
1623 "Loop condition operand is an addrec in a different loop!");
1624
1625 // Check the right operand of the select, and remember it, as it will
1626 // be used in the new comparison instruction.
1627 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001628 if (ICmpInst::isTrueWhenEqual(Pred)) {
1629 // Look for n+1, and grab n.
1630 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1631 if (isa<ConstantInt>(BO->getOperand(1)) &&
1632 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1633 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1634 NewRHS = BO->getOperand(0);
1635 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1636 if (isa<ConstantInt>(BO->getOperand(1)) &&
1637 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1638 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1639 NewRHS = BO->getOperand(0);
1640 if (!NewRHS)
1641 return Cond;
1642 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001643 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001644 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001645 NewRHS = Sel->getOperand(2);
Dan Gohman1d367982010-04-24 03:13:44 +00001646 else
1647 llvm_unreachable("Max doesn't match expected pattern!");
Dan Gohman7979b722010-01-22 00:46:49 +00001648
1649 // Determine the new comparison opcode. It may be signed or unsigned,
1650 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001651 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1652 Pred = CmpInst::getInversePredicate(Pred);
1653
1654 // Ok, everything looks ok to change the condition into an SLT or SGE and
1655 // delete the max calculation.
1656 ICmpInst *NewCond =
1657 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1658
1659 // Delete the max calculation instructions.
1660 Cond->replaceAllUsesWith(NewCond);
1661 CondUse->setUser(NewCond);
1662 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1663 Cond->eraseFromParent();
1664 Sel->eraseFromParent();
1665 if (Cmp->use_empty())
1666 Cmp->eraseFromParent();
1667 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001668}
1669
Jim Grosbach56a1f802009-11-17 17:53:56 +00001670/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001671/// postinc iv when possible.
Dan Gohmanc6519f92010-05-20 20:05:31 +00001672void
Dan Gohman572645c2010-02-12 10:34:29 +00001673LSRInstance::OptimizeLoopTermCond() {
1674 SmallPtrSet<Instruction *, 4> PostIncs;
1675
Evan Cheng586f69a2009-11-12 07:35:05 +00001676 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001677 SmallVector<BasicBlock*, 8> ExitingBlocks;
1678 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001679
Evan Cheng076e0852009-11-17 18:10:11 +00001680 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1681 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001682
Dan Gohman572645c2010-02-12 10:34:29 +00001683 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001684 // can, we want to change it to use a post-incremented version of its
1685 // induction variable, to allow coalescing the live ranges for the IV into
1686 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001687
Evan Cheng076e0852009-11-17 18:10:11 +00001688 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1689 if (!TermBr)
1690 continue;
1691 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1692 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1693 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001694
Evan Cheng076e0852009-11-17 18:10:11 +00001695 // Search IVUsesByStride to find Cond's IVUse if there is one.
1696 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001697 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001698 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001699 continue;
1700
Evan Cheng076e0852009-11-17 18:10:11 +00001701 // If the trip count is computed in terms of a max (due to ScalarEvolution
1702 // being unable to find a sufficient guard, for example), change the loop
1703 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001704 // One consequence of doing this now is that it disrupts the count-down
1705 // optimization. That's not always a bad thing though, because in such
1706 // cases it may still be worthwhile to avoid a max.
1707 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001708
Dan Gohman572645c2010-02-12 10:34:29 +00001709 // If this exiting block dominates the latch block, it may also use
1710 // the post-inc value if it won't be shared with other uses.
1711 // Check for dominance.
1712 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001713 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001714
Dan Gohman572645c2010-02-12 10:34:29 +00001715 // Conservatively avoid trying to use the post-inc value in non-latch
1716 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001717 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001718 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1719 // Test if the use is reachable from the exiting block. This dominator
1720 // query is a conservative approximation of reachability.
1721 if (&*UI != CondUse &&
1722 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1723 // Conservatively assume there may be reuse if the quotient of their
1724 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001725 const SCEV *A = IU.getStride(*CondUse, L);
1726 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001727 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001728 if (SE.getTypeSizeInBits(A->getType()) !=
1729 SE.getTypeSizeInBits(B->getType())) {
1730 if (SE.getTypeSizeInBits(A->getType()) >
1731 SE.getTypeSizeInBits(B->getType()))
1732 B = SE.getSignExtendExpr(B, A->getType());
1733 else
1734 A = SE.getSignExtendExpr(A, B->getType());
1735 }
1736 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001737 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00001738 const ConstantInt *C = D->getValue();
Dan Gohman572645c2010-02-12 10:34:29 +00001739 // Stride of one or negative one can have reuse with non-addresses.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001740 if (C->isOne() || C->isAllOnesValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001741 goto decline_post_inc;
1742 // Avoid weird situations.
Dan Gohman9f383eb2010-05-20 22:25:20 +00001743 if (C->getValue().getMinSignedBits() >= 64 ||
1744 C->getValue().isMinSignedValue())
Dan Gohman572645c2010-02-12 10:34:29 +00001745 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001746 // Without TLI, assume that any stride might be valid, and so any
1747 // use might be shared.
1748 if (!TLI)
1749 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001750 // Check for possible scaled-address reuse.
1751 const Type *AccessTy = getAccessType(UI->getUser());
1752 TargetLowering::AddrMode AM;
Dan Gohman9f383eb2010-05-20 22:25:20 +00001753 AM.Scale = C->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001754 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001755 goto decline_post_inc;
1756 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001757 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001758 goto decline_post_inc;
1759 }
1760 }
1761
David Greene63c94632009-12-23 22:58:38 +00001762 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001763 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001764
1765 // It's possible for the setcc instruction to be anywhere in the loop, and
1766 // possible for it to have multiple users. If it is not immediately before
1767 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001768 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1769 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001770 Cond->moveBefore(TermBr);
1771 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001772 // Clone the terminating condition and insert into the loopend.
1773 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001774 Cond = cast<ICmpInst>(Cond->clone());
1775 Cond->setName(L->getHeader()->getName() + ".termcond");
1776 ExitingBlock->getInstList().insert(TermBr, Cond);
1777
1778 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001779 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001780 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001781 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001782 }
1783
Evan Cheng076e0852009-11-17 18:10:11 +00001784 // If we get to here, we know that we can transform the setcc instruction to
1785 // use the post-incremented version of the IV, allowing us to coalesce the
1786 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001787 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001788 Changed = true;
1789
Dan Gohman572645c2010-02-12 10:34:29 +00001790 PostIncs.insert(Cond);
1791 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001792 }
Dan Gohman572645c2010-02-12 10:34:29 +00001793
1794 // Determine an insertion point for the loop induction variable increment. It
1795 // must dominate all the post-inc comparisons we just set up, and it must
1796 // dominate the loop latch edge.
1797 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1798 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1799 E = PostIncs.end(); I != E; ++I) {
1800 BasicBlock *BB =
1801 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1802 (*I)->getParent());
1803 if (BB == (*I)->getParent())
1804 IVIncInsertPos = *I;
1805 else if (BB != IVIncInsertPos->getParent())
1806 IVIncInsertPos = BB->getTerminator();
1807 }
Dan Gohmana10756e2010-01-21 02:09:26 +00001808}
1809
Dan Gohman76c315a2010-05-20 20:52:00 +00001810/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1811/// at the given offset and other details. If so, update the use and
1812/// return true.
Dan Gohman572645c2010-02-12 10:34:29 +00001813bool
Dan Gohmanea507f52010-05-20 19:44:23 +00001814LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
Dan Gohman572645c2010-02-12 10:34:29 +00001815 LSRUse::KindType Kind, const Type *AccessTy) {
1816 int64_t NewMinOffset = LU.MinOffset;
1817 int64_t NewMaxOffset = LU.MaxOffset;
1818 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001819
Dan Gohman572645c2010-02-12 10:34:29 +00001820 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1821 // something conservative, however this can pessimize in the case that one of
1822 // the uses will have all its uses outside the loop, for example.
1823 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001824 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001825 // Conservatively assume HasBaseReg is true for now.
1826 if (NewOffset < LU.MinOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001827 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001828 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001829 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001830 NewMinOffset = NewOffset;
1831 } else if (NewOffset > LU.MaxOffset) {
Dan Gohmana2086b32010-05-19 23:43:12 +00001832 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
Dan Gohman454d26d2010-02-22 04:11:59 +00001833 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001834 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001835 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001836 }
Dan Gohman572645c2010-02-12 10:34:29 +00001837 // Check for a mismatched access type, and fall back conservatively as needed.
Dan Gohman74e5ef02010-06-19 21:30:18 +00001838 // TODO: Be less conservative when the type is similar and can use the same
1839 // addressing modes.
Dan Gohman572645c2010-02-12 10:34:29 +00001840 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1841 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001842
Dan Gohman572645c2010-02-12 10:34:29 +00001843 // Update the use.
1844 LU.MinOffset = NewMinOffset;
1845 LU.MaxOffset = NewMaxOffset;
1846 LU.AccessTy = NewAccessTy;
1847 if (NewOffset != LU.Offsets.back())
1848 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001849 return true;
1850}
1851
Dan Gohman572645c2010-02-12 10:34:29 +00001852/// getUse - Return an LSRUse index and an offset value for a fixup which
1853/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001854/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001855std::pair<size_t, int64_t>
1856LSRInstance::getUse(const SCEV *&Expr,
1857 LSRUse::KindType Kind, const Type *AccessTy) {
1858 const SCEV *Copy = Expr;
1859 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001860
Dan Gohman572645c2010-02-12 10:34:29 +00001861 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001862 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001863 Expr = Copy;
1864 Offset = 0;
1865 }
1866
1867 std::pair<UseMapTy::iterator, bool> P =
Dan Gohman1e3121c2010-06-19 21:29:59 +00001868 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
Dan Gohman572645c2010-02-12 10:34:29 +00001869 if (!P.second) {
1870 // A use already existed with this base.
1871 size_t LUIdx = P.first->second;
1872 LSRUse &LU = Uses[LUIdx];
Dan Gohmana2086b32010-05-19 23:43:12 +00001873 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001874 // Reuse this use.
1875 return std::make_pair(LUIdx, Offset);
1876 }
1877
1878 // Create a new use.
1879 size_t LUIdx = Uses.size();
1880 P.first->second = LUIdx;
1881 Uses.push_back(LSRUse(Kind, AccessTy));
1882 LSRUse &LU = Uses[LUIdx];
1883
1884 // We don't need to track redundant offsets, but we don't need to go out
1885 // of our way here to avoid them.
1886 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1887 LU.Offsets.push_back(Offset);
1888
1889 LU.MinOffset = Offset;
1890 LU.MaxOffset = Offset;
1891 return std::make_pair(LUIdx, Offset);
1892}
1893
Dan Gohman5ce6d052010-05-20 15:17:54 +00001894/// DeleteUse - Delete the given use from the Uses list.
1895void LSRInstance::DeleteUse(LSRUse &LU) {
1896 if (&LU != &Uses.back())
1897 std::swap(LU, Uses.back());
1898 Uses.pop_back();
1899}
1900
Dan Gohmana2086b32010-05-19 23:43:12 +00001901/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1902/// a formula that has the same registers as the given formula.
1903LSRUse *
1904LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1905 const LSRUse &OrigLU) {
1906 // Search all uses for the formula. This could be more clever. Ignore
1907 // ICmpZero uses because they may contain formulae generated by
1908 // GenerateICmpZeroScales, in which case adding fixup offsets may
1909 // be invalid.
1910 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1911 LSRUse &LU = Uses[LUIdx];
1912 if (&LU != &OrigLU &&
1913 LU.Kind != LSRUse::ICmpZero &&
1914 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1915 LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman402d4352010-05-20 20:33:18 +00001916 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1917 E = LU.Formulae.end(); I != E; ++I) {
1918 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00001919 if (F.BaseRegs == OrigF.BaseRegs &&
1920 F.ScaledReg == OrigF.ScaledReg &&
1921 F.AM.BaseGV == OrigF.AM.BaseGV &&
1922 F.AM.Scale == OrigF.AM.Scale &&
1923 LU.Kind) {
1924 if (F.AM.BaseOffs == 0)
1925 return &LU;
1926 break;
1927 }
1928 }
1929 }
1930 }
1931
1932 return 0;
1933}
1934
Dan Gohman572645c2010-02-12 10:34:29 +00001935void LSRInstance::CollectInterestingTypesAndFactors() {
1936 SmallSetVector<const SCEV *, 4> Strides;
1937
Dan Gohman1b7bf182010-02-19 00:05:23 +00001938 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001939 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001940 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001941 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001942
1943 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001944 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001945
Dan Gohman448db1c2010-04-07 22:27:08 +00001946 // Add strides for mentioned loops.
1947 Worklist.push_back(Expr);
1948 do {
1949 const SCEV *S = Worklist.pop_back_val();
1950 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1951 Strides.insert(AR->getStepRecurrence(SE));
1952 Worklist.push_back(AR->getStart());
1953 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001954 Worklist.append(Add->op_begin(), Add->op_end());
Dan Gohman448db1c2010-04-07 22:27:08 +00001955 }
1956 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001957 }
1958
1959 // Compute interesting factors from the set of interesting strides.
1960 for (SmallSetVector<const SCEV *, 4>::const_iterator
1961 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001962 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001963 next(I); NewStrideIter != E; ++NewStrideIter) {
1964 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001965 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001966
1967 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1968 SE.getTypeSizeInBits(NewStride->getType())) {
1969 if (SE.getTypeSizeInBits(OldStride->getType()) >
1970 SE.getTypeSizeInBits(NewStride->getType()))
1971 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1972 else
1973 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1974 }
1975 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001976 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1977 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001978 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1979 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1980 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001981 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1982 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001983 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001984 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1985 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1986 }
1987 }
Dan Gohman572645c2010-02-12 10:34:29 +00001988
1989 // If all uses use the same type, don't bother looking for truncation-based
1990 // reuse.
1991 if (Types.size() == 1)
1992 Types.clear();
1993
1994 DEBUG(print_factors_and_types(dbgs()));
1995}
1996
1997void LSRInstance::CollectFixupsAndInitialFormulae() {
1998 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1999 // Record the uses.
2000 LSRFixup &LF = getNewFixup();
2001 LF.UserInst = UI->getUser();
2002 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00002003 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00002004
2005 LSRUse::KindType Kind = LSRUse::Basic;
2006 const Type *AccessTy = 0;
2007 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2008 Kind = LSRUse::Address;
2009 AccessTy = getAccessType(LF.UserInst);
2010 }
2011
Dan Gohmanc0564542010-04-19 21:48:58 +00002012 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00002013
2014 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2015 // (N - i == 0), and this allows (N - i) to be the expression that we work
2016 // with rather than just N or i, so we can consider the register
2017 // requirements for both N and i at the same time. Limiting this code to
2018 // equality icmps is not a problem because all interesting loops use
2019 // equality icmps, thanks to IndVarSimplify.
2020 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2021 if (CI->isEquality()) {
2022 // Swap the operands if needed to put the OperandValToReplace on the
2023 // left, for consistency.
2024 Value *NV = CI->getOperand(1);
2025 if (NV == LF.OperandValToReplace) {
2026 CI->setOperand(1, CI->getOperand(0));
2027 CI->setOperand(0, NV);
Dan Gohmanf182b232010-05-20 19:26:52 +00002028 NV = CI->getOperand(1);
Dan Gohman9da1bf42010-05-20 19:16:03 +00002029 Changed = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002030 }
2031
2032 // x == y --> x - y == 0
2033 const SCEV *N = SE.getSCEV(NV);
2034 if (N->isLoopInvariant(L)) {
2035 Kind = LSRUse::ICmpZero;
2036 S = SE.getMinusSCEV(N, S);
2037 }
2038
2039 // -1 and the negations of all interesting strides (except the negation
2040 // of -1) are now also interesting.
2041 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2042 if (Factors[i] != -1)
2043 Factors.insert(-(uint64_t)Factors[i]);
2044 Factors.insert(-1);
2045 }
2046
2047 // Set up the initial formula for this use.
2048 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2049 LF.LUIdx = P.first;
2050 LF.Offset = P.second;
2051 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002052 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002053
2054 // If this is the first use of this LSRUse, give it a formula.
2055 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002056 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00002057 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2058 }
2059 }
2060
2061 DEBUG(print_fixups(dbgs()));
2062}
2063
Dan Gohman76c315a2010-05-20 20:52:00 +00002064/// InsertInitialFormula - Insert a formula for the given expression into
2065/// the given use, separating out loop-variant portions from loop-invariant
2066/// and loop-computable portions.
Dan Gohman572645c2010-02-12 10:34:29 +00002067void
Dan Gohman454d26d2010-02-22 04:11:59 +00002068LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00002069 Formula F;
2070 F.InitialMatch(S, L, SE, DT);
2071 bool Inserted = InsertFormula(LU, LUIdx, F);
2072 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2073}
2074
Dan Gohman76c315a2010-05-20 20:52:00 +00002075/// InsertSupplementalFormula - Insert a simple single-register formula for
2076/// the given expression into the given use.
Dan Gohman572645c2010-02-12 10:34:29 +00002077void
2078LSRInstance::InsertSupplementalFormula(const SCEV *S,
2079 LSRUse &LU, size_t LUIdx) {
2080 Formula F;
2081 F.BaseRegs.push_back(S);
2082 F.AM.HasBaseReg = true;
2083 bool Inserted = InsertFormula(LU, LUIdx, F);
2084 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2085}
2086
2087/// CountRegisters - Note which registers are used by the given formula,
2088/// updating RegUses.
2089void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2090 if (F.ScaledReg)
2091 RegUses.CountRegister(F.ScaledReg, LUIdx);
2092 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2093 E = F.BaseRegs.end(); I != E; ++I)
2094 RegUses.CountRegister(*I, LUIdx);
2095}
2096
2097/// InsertFormula - If the given formula has not yet been inserted, add it to
2098/// the list, and return true. Return false otherwise.
2099bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00002100 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00002101 return false;
2102
2103 CountRegisters(F, LUIdx);
2104 return true;
2105}
2106
2107/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2108/// loop-invariant values which we're tracking. These other uses will pin these
2109/// values in registers, making them less profitable for elimination.
2110/// TODO: This currently misses non-constant addrec step registers.
2111/// TODO: Should this give more weight to users inside the loop?
2112void
2113LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2114 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2115 SmallPtrSet<const SCEV *, 8> Inserted;
2116
2117 while (!Worklist.empty()) {
2118 const SCEV *S = Worklist.pop_back_val();
2119
2120 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Dan Gohman403a8cd2010-06-21 19:47:52 +00002121 Worklist.append(N->op_begin(), N->op_end());
Dan Gohman572645c2010-02-12 10:34:29 +00002122 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2123 Worklist.push_back(C->getOperand());
2124 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2125 Worklist.push_back(D->getLHS());
2126 Worklist.push_back(D->getRHS());
2127 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2128 if (!Inserted.insert(U)) continue;
2129 const Value *V = U->getValue();
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002130 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2131 // Look for instructions defined outside the loop.
Dan Gohman572645c2010-02-12 10:34:29 +00002132 if (L->contains(Inst)) continue;
Dan Gohmana15ec5d2010-06-04 23:16:05 +00002133 } else if (isa<UndefValue>(V))
2134 // Undef doesn't have a live range, so it doesn't matter.
2135 continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00002136 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00002137 UI != UE; ++UI) {
2138 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2139 // Ignore non-instructions.
2140 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00002141 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002142 // Ignore instructions in other functions (as can happen with
2143 // Constants).
2144 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00002145 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002146 // Ignore instructions not dominated by the loop.
2147 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2148 UserInst->getParent() :
2149 cast<PHINode>(UserInst)->getIncomingBlock(
2150 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2151 if (!DT.dominates(L->getHeader(), UseBB))
2152 continue;
2153 // Ignore uses which are part of other SCEV expressions, to avoid
2154 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002155 if (SE.isSCEVable(UserInst->getType())) {
2156 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2157 // If the user is a no-op, look through to its uses.
2158 if (!isa<SCEVUnknown>(UserS))
2159 continue;
2160 if (UserS == U) {
2161 Worklist.push_back(
2162 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2163 continue;
2164 }
2165 }
Dan Gohman572645c2010-02-12 10:34:29 +00002166 // Ignore icmp instructions which are already being analyzed.
2167 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2168 unsigned OtherIdx = !UI.getOperandNo();
2169 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2170 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2171 continue;
2172 }
2173
2174 LSRFixup &LF = getNewFixup();
2175 LF.UserInst = const_cast<Instruction *>(UserInst);
2176 LF.OperandValToReplace = UI.getUse();
2177 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2178 LF.LUIdx = P.first;
2179 LF.Offset = P.second;
2180 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002181 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002182 InsertSupplementalFormula(U, LU, LF.LUIdx);
2183 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2184 break;
2185 }
2186 }
2187 }
2188}
2189
2190/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2191/// separate registers. If C is non-null, multiply each subexpression by C.
2192static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2193 SmallVectorImpl<const SCEV *> &Ops,
2194 ScalarEvolution &SE) {
2195 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2196 // Break out add operands.
2197 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2198 I != E; ++I)
2199 CollectSubexprs(*I, C, Ops, SE);
2200 return;
2201 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2202 // Split a non-zero base out of an addrec.
2203 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002204 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002205 AR->getStepRecurrence(SE),
2206 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002207 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002208 return;
2209 }
2210 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2211 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2212 if (Mul->getNumOperands() == 2)
2213 if (const SCEVConstant *Op0 =
2214 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2215 CollectSubexprs(Mul->getOperand(1),
2216 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2217 Ops, SE);
2218 return;
2219 }
2220 }
2221
2222 // Otherwise use the value itself.
2223 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2224}
2225
2226/// GenerateReassociations - Split out subexpressions from adds and the bases of
2227/// addrecs.
2228void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2229 Formula Base,
2230 unsigned Depth) {
2231 // Arbitrarily cap recursion to protect compile time.
2232 if (Depth >= 3) return;
2233
2234 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2235 const SCEV *BaseReg = Base.BaseRegs[i];
2236
2237 SmallVector<const SCEV *, 8> AddOps;
2238 CollectSubexprs(BaseReg, 0, AddOps, SE);
2239 if (AddOps.size() == 1) continue;
2240
2241 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2242 JE = AddOps.end(); J != JE; ++J) {
2243 // Don't pull a constant into a register if the constant could be folded
2244 // into an immediate field.
2245 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2246 Base.getNumRegs() > 1,
2247 LU.Kind, LU.AccessTy, TLI, SE))
2248 continue;
2249
2250 // Collect all operands except *J.
Dan Gohman403a8cd2010-06-21 19:47:52 +00002251 SmallVector<const SCEV *, 8> InnerAddOps
2252 ( ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2253 InnerAddOps.append
2254 (next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
Dan Gohman572645c2010-02-12 10:34:29 +00002255
2256 // Don't leave just a constant behind in a register if the constant could
2257 // be folded into an immediate field.
2258 if (InnerAddOps.size() == 1 &&
2259 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2260 Base.getNumRegs() > 1,
2261 LU.Kind, LU.AccessTy, TLI, SE))
2262 continue;
2263
Dan Gohmanfafb8902010-04-23 01:55:05 +00002264 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2265 if (InnerSum->isZero())
2266 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002267 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002268 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002269 F.BaseRegs.push_back(*J);
2270 if (InsertFormula(LU, LUIdx, F))
2271 // If that formula hadn't been seen before, recurse to find more like
2272 // it.
2273 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2274 }
2275 }
2276}
2277
2278/// GenerateCombinations - Generate a formula consisting of all of the
2279/// loop-dominating registers added into a single register.
2280void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002281 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002282 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002283 if (Base.BaseRegs.size() <= 1) return;
2284
2285 Formula F = Base;
2286 F.BaseRegs.clear();
2287 SmallVector<const SCEV *, 4> Ops;
2288 for (SmallVectorImpl<const SCEV *>::const_iterator
2289 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2290 const SCEV *BaseReg = *I;
2291 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2292 !BaseReg->hasComputableLoopEvolution(L))
2293 Ops.push_back(BaseReg);
2294 else
2295 F.BaseRegs.push_back(BaseReg);
2296 }
2297 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002298 const SCEV *Sum = SE.getAddExpr(Ops);
2299 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2300 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002301 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002302 if (!Sum->isZero()) {
2303 F.BaseRegs.push_back(Sum);
2304 (void)InsertFormula(LU, LUIdx, F);
2305 }
Dan Gohman572645c2010-02-12 10:34:29 +00002306 }
2307}
2308
2309/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2310void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2311 Formula Base) {
2312 // We can't add a symbolic offset if the address already contains one.
2313 if (Base.AM.BaseGV) return;
2314
2315 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2316 const SCEV *G = Base.BaseRegs[i];
2317 GlobalValue *GV = ExtractSymbol(G, SE);
2318 if (G->isZero() || !GV)
2319 continue;
2320 Formula F = Base;
2321 F.AM.BaseGV = GV;
2322 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2323 LU.Kind, LU.AccessTy, TLI))
2324 continue;
2325 F.BaseRegs[i] = G;
2326 (void)InsertFormula(LU, LUIdx, F);
2327 }
2328}
2329
2330/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2331void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2332 Formula Base) {
2333 // TODO: For now, just add the min and max offset, because it usually isn't
2334 // worthwhile looking at everything inbetween.
2335 SmallVector<int64_t, 4> Worklist;
2336 Worklist.push_back(LU.MinOffset);
2337 if (LU.MaxOffset != LU.MinOffset)
2338 Worklist.push_back(LU.MaxOffset);
2339
2340 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2341 const SCEV *G = Base.BaseRegs[i];
2342
2343 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2344 E = Worklist.end(); I != E; ++I) {
2345 Formula F = Base;
2346 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2347 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2348 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002349 F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
Dan Gohman572645c2010-02-12 10:34:29 +00002350
2351 (void)InsertFormula(LU, LUIdx, F);
2352 }
2353 }
2354
2355 int64_t Imm = ExtractImmediate(G, SE);
2356 if (G->isZero() || Imm == 0)
2357 continue;
2358 Formula F = Base;
2359 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2360 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2361 LU.Kind, LU.AccessTy, TLI))
2362 continue;
2363 F.BaseRegs[i] = G;
2364 (void)InsertFormula(LU, LUIdx, F);
2365 }
2366}
2367
2368/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2369/// the comparison. For example, x == y -> x*c == y*c.
2370void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2371 Formula Base) {
2372 if (LU.Kind != LSRUse::ICmpZero) return;
2373
2374 // Determine the integer type for the base formula.
2375 const Type *IntTy = Base.getType();
2376 if (!IntTy) return;
2377 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2378
2379 // Don't do this if there is more than one offset.
2380 if (LU.MinOffset != LU.MaxOffset) return;
2381
2382 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2383
2384 // Check each interesting stride.
2385 for (SmallSetVector<int64_t, 8>::const_iterator
2386 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2387 int64_t Factor = *I;
2388 Formula F = Base;
2389
2390 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002391 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2392 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002393 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002394 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002395 continue;
2396
2397 // Check that multiplying with the use offset doesn't overflow.
2398 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002399 if (Offset == INT64_MIN && Factor == -1)
2400 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002401 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002402 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002403 continue;
2404
2405 // Check that this scale is legal.
2406 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2407 continue;
2408
2409 // Compensate for the use having MinOffset built into it.
2410 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2411
Dan Gohmandeff6212010-05-03 22:09:21 +00002412 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002413
2414 // Check that multiplying with each base register doesn't overflow.
2415 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2416 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002417 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002418 goto next;
2419 }
2420
2421 // Check that multiplying with the scaled register doesn't overflow.
2422 if (F.ScaledReg) {
2423 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002424 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002425 continue;
2426 }
2427
2428 // If we make it here and it's legal, add it.
2429 (void)InsertFormula(LU, LUIdx, F);
2430 next:;
2431 }
2432}
2433
2434/// GenerateScales - Generate stride factor reuse formulae by making use of
2435/// scaled-offset address modes, for example.
Dan Gohmanea507f52010-05-20 19:44:23 +00002436void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002437 // Determine the integer type for the base formula.
2438 const Type *IntTy = Base.getType();
2439 if (!IntTy) return;
2440
2441 // If this Formula already has a scaled register, we can't add another one.
2442 if (Base.AM.Scale != 0) return;
2443
2444 // Check each interesting stride.
2445 for (SmallSetVector<int64_t, 8>::const_iterator
2446 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2447 int64_t Factor = *I;
2448
2449 Base.AM.Scale = Factor;
2450 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2451 // Check whether this scale is going to be legal.
2452 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2453 LU.Kind, LU.AccessTy, TLI)) {
2454 // As a special-case, handle special out-of-loop Basic users specially.
2455 // TODO: Reconsider this special case.
2456 if (LU.Kind == LSRUse::Basic &&
2457 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2458 LSRUse::Special, LU.AccessTy, TLI) &&
2459 LU.AllFixupsOutsideLoop)
2460 LU.Kind = LSRUse::Special;
2461 else
2462 continue;
2463 }
2464 // For an ICmpZero, negating a solitary base register won't lead to
2465 // new solutions.
2466 if (LU.Kind == LSRUse::ICmpZero &&
2467 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2468 continue;
2469 // For each addrec base reg, apply the scale, if possible.
2470 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2471 if (const SCEVAddRecExpr *AR =
2472 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002473 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002474 if (FactorS->isZero())
2475 continue;
2476 // Divide out the factor, ignoring high bits, since we'll be
2477 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002478 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002479 // TODO: This could be optimized to avoid all the copying.
2480 Formula F = Base;
2481 F.ScaledReg = Quotient;
Dan Gohman5ce6d052010-05-20 15:17:54 +00002482 F.DeleteBaseReg(F.BaseRegs[i]);
Dan Gohman572645c2010-02-12 10:34:29 +00002483 (void)InsertFormula(LU, LUIdx, F);
2484 }
2485 }
2486 }
2487}
2488
2489/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohmanea507f52010-05-20 19:44:23 +00002490void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
Dan Gohman572645c2010-02-12 10:34:29 +00002491 // This requires TargetLowering to tell us which truncates are free.
2492 if (!TLI) return;
2493
2494 // Don't bother truncating symbolic values.
2495 if (Base.AM.BaseGV) return;
2496
2497 // Determine the integer type for the base formula.
2498 const Type *DstTy = Base.getType();
2499 if (!DstTy) return;
2500 DstTy = SE.getEffectiveSCEVType(DstTy);
2501
2502 for (SmallSetVector<const Type *, 4>::const_iterator
2503 I = Types.begin(), E = Types.end(); I != E; ++I) {
2504 const Type *SrcTy = *I;
2505 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2506 Formula F = Base;
2507
2508 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2509 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2510 JE = F.BaseRegs.end(); J != JE; ++J)
2511 *J = SE.getAnyExtendExpr(*J, SrcTy);
2512
2513 // TODO: This assumes we've done basic processing on all uses and
2514 // have an idea what the register usage is.
2515 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2516 continue;
2517
2518 (void)InsertFormula(LU, LUIdx, F);
2519 }
2520 }
2521}
2522
2523namespace {
2524
Dan Gohman6020d852010-02-14 18:51:20 +00002525/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002526/// defer modifications so that the search phase doesn't have to worry about
2527/// the data structures moving underneath it.
2528struct WorkItem {
2529 size_t LUIdx;
2530 int64_t Imm;
2531 const SCEV *OrigReg;
2532
2533 WorkItem(size_t LI, int64_t I, const SCEV *R)
2534 : LUIdx(LI), Imm(I), OrigReg(R) {}
2535
2536 void print(raw_ostream &OS) const;
2537 void dump() const;
2538};
2539
2540}
2541
2542void WorkItem::print(raw_ostream &OS) const {
2543 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2544 << " , add offset " << Imm;
2545}
2546
2547void WorkItem::dump() const {
2548 print(errs()); errs() << '\n';
2549}
2550
2551/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2552/// distance apart and try to form reuse opportunities between them.
2553void LSRInstance::GenerateCrossUseConstantOffsets() {
2554 // Group the registers by their value without any added constant offset.
2555 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2556 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2557 RegMapTy Map;
2558 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2559 SmallVector<const SCEV *, 8> Sequence;
2560 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2561 I != E; ++I) {
2562 const SCEV *Reg = *I;
2563 int64_t Imm = ExtractImmediate(Reg, SE);
2564 std::pair<RegMapTy::iterator, bool> Pair =
2565 Map.insert(std::make_pair(Reg, ImmMapTy()));
2566 if (Pair.second)
2567 Sequence.push_back(Reg);
2568 Pair.first->second.insert(std::make_pair(Imm, *I));
2569 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2570 }
2571
2572 // Now examine each set of registers with the same base value. Build up
2573 // a list of work to do and do the work in a separate step so that we're
2574 // not adding formulae and register counts while we're searching.
2575 SmallVector<WorkItem, 32> WorkItems;
2576 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2577 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2578 E = Sequence.end(); I != E; ++I) {
2579 const SCEV *Reg = *I;
2580 const ImmMapTy &Imms = Map.find(Reg)->second;
2581
Dan Gohmancd045c02010-02-12 19:20:37 +00002582 // It's not worthwhile looking for reuse if there's only one offset.
2583 if (Imms.size() == 1)
2584 continue;
2585
Dan Gohman572645c2010-02-12 10:34:29 +00002586 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2587 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2588 J != JE; ++J)
2589 dbgs() << ' ' << J->first;
2590 dbgs() << '\n');
2591
2592 // Examine each offset.
2593 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2594 J != JE; ++J) {
2595 const SCEV *OrigReg = J->second;
2596
2597 int64_t JImm = J->first;
2598 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2599
2600 if (!isa<SCEVConstant>(OrigReg) &&
2601 UsedByIndicesMap[Reg].count() == 1) {
2602 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2603 continue;
2604 }
2605
2606 // Conservatively examine offsets between this orig reg a few selected
2607 // other orig regs.
2608 ImmMapTy::const_iterator OtherImms[] = {
2609 Imms.begin(), prior(Imms.end()),
2610 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2611 };
2612 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2613 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002614 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002615
2616 // Compute the difference between the two.
2617 int64_t Imm = (uint64_t)JImm - M->first;
2618 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2619 LUIdx = UsedByIndices.find_next(LUIdx))
2620 // Make a memo of this use, offset, and register tuple.
2621 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2622 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002623 }
2624 }
2625 }
2626
Dan Gohman572645c2010-02-12 10:34:29 +00002627 Map.clear();
2628 Sequence.clear();
2629 UsedByIndicesMap.clear();
2630 UniqueItems.clear();
2631
2632 // Now iterate through the worklist and add new formulae.
2633 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2634 E = WorkItems.end(); I != E; ++I) {
2635 const WorkItem &WI = *I;
2636 size_t LUIdx = WI.LUIdx;
2637 LSRUse &LU = Uses[LUIdx];
2638 int64_t Imm = WI.Imm;
2639 const SCEV *OrigReg = WI.OrigReg;
2640
2641 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2642 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2643 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2644
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002645 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002646 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman9f383eb2010-05-20 22:25:20 +00002647 const Formula &F = LU.Formulae[L];
Dan Gohman572645c2010-02-12 10:34:29 +00002648 // Use the immediate in the scaled register.
2649 if (F.ScaledReg == OrigReg) {
2650 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2651 Imm * (uint64_t)F.AM.Scale;
2652 // Don't create 50 + reg(-50).
2653 if (F.referencesReg(SE.getSCEV(
2654 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2655 continue;
2656 Formula NewF = F;
2657 NewF.AM.BaseOffs = Offs;
2658 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2659 LU.Kind, LU.AccessTy, TLI))
2660 continue;
2661 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2662
2663 // If the new scale is a constant in a register, and adding the constant
2664 // value to the immediate would produce a value closer to zero than the
2665 // immediate itself, then the formula isn't worthwhile.
2666 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2667 if (C->getValue()->getValue().isNegative() !=
2668 (NewF.AM.BaseOffs < 0) &&
2669 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002670 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002671 continue;
2672
2673 // OK, looks good.
2674 (void)InsertFormula(LU, LUIdx, NewF);
2675 } else {
2676 // Use the immediate in a base register.
2677 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2678 const SCEV *BaseReg = F.BaseRegs[N];
2679 if (BaseReg != OrigReg)
2680 continue;
2681 Formula NewF = F;
2682 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2683 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2684 LU.Kind, LU.AccessTy, TLI))
2685 continue;
2686 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2687
2688 // If the new formula has a constant in a register, and adding the
2689 // constant value to the immediate would produce a value closer to
2690 // zero than the immediate itself, then the formula isn't worthwhile.
2691 for (SmallVectorImpl<const SCEV *>::const_iterator
2692 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2693 J != JE; ++J)
2694 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
Dan Gohman360026f2010-05-18 23:48:08 +00002695 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2696 abs64(NewF.AM.BaseOffs)) &&
2697 (C->getValue()->getValue() +
2698 NewF.AM.BaseOffs).countTrailingZeros() >=
2699 CountTrailingZeros_64(NewF.AM.BaseOffs))
Dan Gohman572645c2010-02-12 10:34:29 +00002700 goto skip_formula;
2701
2702 // Ok, looks good.
2703 (void)InsertFormula(LU, LUIdx, NewF);
2704 break;
2705 skip_formula:;
2706 }
2707 }
2708 }
2709 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002710}
2711
Dan Gohman572645c2010-02-12 10:34:29 +00002712/// GenerateAllReuseFormulae - Generate formulae for each use.
2713void
2714LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002715 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002716 // queries are more precise.
2717 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2718 LSRUse &LU = Uses[LUIdx];
2719 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2720 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2721 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2722 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2723 }
2724 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2725 LSRUse &LU = Uses[LUIdx];
2726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2727 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2729 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2730 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2731 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2732 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2733 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002734 }
2735 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2736 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002737 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2738 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2739 }
2740
2741 GenerateCrossUseConstantOffsets();
2742}
2743
2744/// If their are multiple formulae with the same set of registers used
2745/// by other uses, pick the best one and delete the others.
2746void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2747#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002748 bool ChangedFormulae = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002749#endif
2750
2751 // Collect the best formula for each unique set of shared registers. This
2752 // is reset for each use.
2753 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2754 BestFormulaeTy;
2755 BestFormulaeTy BestFormulae;
2756
2757 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2758 LSRUse &LU = Uses[LUIdx];
2759 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohmanea507f52010-05-20 19:44:23 +00002760 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
Dan Gohman572645c2010-02-12 10:34:29 +00002761
Dan Gohmanb2df4332010-05-18 23:42:37 +00002762 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002763 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2764 FIdx != NumForms; ++FIdx) {
2765 Formula &F = LU.Formulae[FIdx];
2766
2767 SmallVector<const SCEV *, 2> Key;
2768 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2769 JE = F.BaseRegs.end(); J != JE; ++J) {
2770 const SCEV *Reg = *J;
2771 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2772 Key.push_back(Reg);
2773 }
2774 if (F.ScaledReg &&
2775 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2776 Key.push_back(F.ScaledReg);
2777 // Unstable sort by host order ok, because this is only used for
2778 // uniquifying.
2779 std::sort(Key.begin(), Key.end());
2780
2781 std::pair<BestFormulaeTy::const_iterator, bool> P =
2782 BestFormulae.insert(std::make_pair(Key, FIdx));
2783 if (!P.second) {
2784 Formula &Best = LU.Formulae[P.first->second];
2785 if (Sorter.operator()(F, Best))
2786 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002787 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002788 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002789 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002790 dbgs() << '\n');
2791#ifndef NDEBUG
Dan Gohmanc6519f92010-05-20 20:05:31 +00002792 ChangedFormulae = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002793#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002794 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002795 --FIdx;
2796 --NumForms;
Dan Gohmanb2df4332010-05-18 23:42:37 +00002797 Any = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002798 continue;
2799 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002800 }
2801
Dan Gohman57aaa0b2010-05-18 23:55:57 +00002802 // Now that we've filtered out some formulae, recompute the Regs set.
Dan Gohmanb2df4332010-05-18 23:42:37 +00002803 if (Any)
2804 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman59dc6032010-05-07 23:36:59 +00002805
2806 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002807 BestFormulae.clear();
2808 }
2809
Dan Gohmanc6519f92010-05-20 20:05:31 +00002810 DEBUG(if (ChangedFormulae) {
Dan Gohman9214b822010-02-13 02:06:02 +00002811 dbgs() << "\n"
2812 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002813 print_uses(dbgs());
2814 });
2815}
2816
Dan Gohmand079c302010-05-18 22:51:59 +00002817// This is a rough guess that seems to work fairly well.
2818static const size_t ComplexityLimit = UINT16_MAX;
2819
2820/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2821/// solutions the solver might have to consider. It almost never considers
2822/// this many solutions because it prune the search space, but the pruning
2823/// isn't always sufficient.
2824size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2825 uint32_t Power = 1;
2826 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2827 E = Uses.end(); I != E; ++I) {
2828 size_t FSize = I->Formulae.size();
2829 if (FSize >= ComplexityLimit) {
2830 Power = ComplexityLimit;
2831 break;
2832 }
2833 Power *= FSize;
2834 if (Power >= ComplexityLimit)
2835 break;
2836 }
2837 return Power;
2838}
2839
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002840/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002841/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002842/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002843/// of time in some worst-case scenarios.
2844void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
Dan Gohmana2086b32010-05-19 23:43:12 +00002845 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2846 DEBUG(dbgs() << "The search space is too complex.\n");
2847
2848 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2849 "which use a superset of registers used by other "
2850 "formulae.\n");
2851
2852 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2853 LSRUse &LU = Uses[LUIdx];
2854 bool Any = false;
2855 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2856 Formula &F = LU.Formulae[i];
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002857 // Look for a formula with a constant or GV in a register. If the use
2858 // also has a formula with that same value in an immediate field,
2859 // delete the one that uses a register.
Dan Gohmana2086b32010-05-19 23:43:12 +00002860 for (SmallVectorImpl<const SCEV *>::const_iterator
2861 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2862 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2863 Formula NewF = F;
2864 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2865 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2866 (I - F.BaseRegs.begin()));
2867 if (LU.HasFormulaWithSameRegs(NewF)) {
2868 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2869 LU.DeleteFormula(F);
2870 --i;
2871 --e;
2872 Any = true;
2873 break;
2874 }
2875 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2876 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2877 if (!F.AM.BaseGV) {
2878 Formula NewF = F;
2879 NewF.AM.BaseGV = GV;
2880 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2881 (I - F.BaseRegs.begin()));
2882 if (LU.HasFormulaWithSameRegs(NewF)) {
2883 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2884 dbgs() << '\n');
2885 LU.DeleteFormula(F);
2886 --i;
2887 --e;
2888 Any = true;
2889 break;
2890 }
2891 }
2892 }
2893 }
2894 }
2895 if (Any)
2896 LU.RecomputeRegs(LUIdx, RegUses);
2897 }
2898
2899 DEBUG(dbgs() << "After pre-selection:\n";
2900 print_uses(dbgs()));
2901 }
2902
2903 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2904 DEBUG(dbgs() << "The search space is too complex.\n");
2905
2906 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2907 "separated by a constant offset will use the same "
2908 "registers.\n");
2909
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00002910 // This is especially useful for unrolled loops.
2911
Dan Gohmana2086b32010-05-19 23:43:12 +00002912 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2913 LSRUse &LU = Uses[LUIdx];
Dan Gohman402d4352010-05-20 20:33:18 +00002914 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2915 E = LU.Formulae.end(); I != E; ++I) {
2916 const Formula &F = *I;
Dan Gohmana2086b32010-05-19 23:43:12 +00002917 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2918 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2919 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2920 /*HasBaseReg=*/false,
2921 LU.Kind, LU.AccessTy)) {
2922 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2923 dbgs() << '\n');
2924
2925 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2926
2927 // Delete formulae from the new use which are no longer legal.
2928 bool Any = false;
2929 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2930 Formula &F = LUThatHas->Formulae[i];
2931 if (!isLegalUse(F.AM,
2932 LUThatHas->MinOffset, LUThatHas->MaxOffset,
2933 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2934 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2935 dbgs() << '\n');
2936 LUThatHas->DeleteFormula(F);
2937 --i;
2938 --e;
2939 Any = true;
2940 }
2941 }
2942 if (Any)
2943 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2944
2945 // Update the relocs to reference the new use.
Dan Gohman402d4352010-05-20 20:33:18 +00002946 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2947 E = Fixups.end(); I != E; ++I) {
2948 LSRFixup &Fixup = *I;
2949 if (Fixup.LUIdx == LUIdx) {
2950 Fixup.LUIdx = LUThatHas - &Uses.front();
2951 Fixup.Offset += F.AM.BaseOffs;
Dan Gohmana2086b32010-05-19 23:43:12 +00002952 DEBUG(errs() << "New fixup has offset "
Dan Gohman402d4352010-05-20 20:33:18 +00002953 << Fixup.Offset << '\n');
Dan Gohmana2086b32010-05-19 23:43:12 +00002954 }
Dan Gohman402d4352010-05-20 20:33:18 +00002955 if (Fixup.LUIdx == NumUses-1)
2956 Fixup.LUIdx = LUIdx;
Dan Gohmana2086b32010-05-19 23:43:12 +00002957 }
2958
2959 // Delete the old use.
Dan Gohman5ce6d052010-05-20 15:17:54 +00002960 DeleteUse(LU);
Dan Gohmana2086b32010-05-19 23:43:12 +00002961 --LUIdx;
2962 --NumUses;
2963 break;
2964 }
2965 }
2966 }
2967 }
2968 }
2969
2970 DEBUG(dbgs() << "After pre-selection:\n";
2971 print_uses(dbgs()));
2972 }
2973
Dan Gohman76c315a2010-05-20 20:52:00 +00002974 // With all other options exhausted, loop until the system is simple
2975 // enough to handle.
Dan Gohman572645c2010-02-12 10:34:29 +00002976 SmallPtrSet<const SCEV *, 4> Taken;
Dan Gohmand079c302010-05-18 22:51:59 +00002977 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
Dan Gohman572645c2010-02-12 10:34:29 +00002978 // Ok, we have too many of formulae on our hands to conveniently handle.
2979 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00002980 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002981
2982 // Pick the register which is used by the most LSRUses, which is likely
2983 // to be a good reuse register candidate.
2984 const SCEV *Best = 0;
2985 unsigned BestNum = 0;
2986 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2987 I != E; ++I) {
2988 const SCEV *Reg = *I;
2989 if (Taken.count(Reg))
2990 continue;
2991 if (!Best)
2992 Best = Reg;
2993 else {
2994 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2995 if (Count > BestNum) {
2996 Best = Reg;
2997 BestNum = Count;
2998 }
2999 }
3000 }
3001
3002 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003003 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00003004 Taken.insert(Best);
3005
3006 // In any use with formulae which references this register, delete formulae
3007 // which don't reference it.
Dan Gohmanb2df4332010-05-18 23:42:37 +00003008 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3009 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00003010 if (!LU.Regs.count(Best)) continue;
3011
Dan Gohmanb2df4332010-05-18 23:42:37 +00003012 bool Any = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003013 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3014 Formula &F = LU.Formulae[i];
3015 if (!F.referencesReg(Best)) {
3016 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00003017 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00003018 --e;
3019 --i;
Dan Gohmanb2df4332010-05-18 23:42:37 +00003020 Any = true;
Dan Gohman59dc6032010-05-07 23:36:59 +00003021 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00003022 continue;
3023 }
Dan Gohman572645c2010-02-12 10:34:29 +00003024 }
Dan Gohmanb2df4332010-05-18 23:42:37 +00003025
3026 if (Any)
3027 LU.RecomputeRegs(LUIdx, RegUses);
Dan Gohman572645c2010-02-12 10:34:29 +00003028 }
3029
3030 DEBUG(dbgs() << "After pre-selection:\n";
3031 print_uses(dbgs()));
3032 }
3033}
3034
3035/// SolveRecurse - This is the recursive solver.
3036void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3037 Cost &SolutionCost,
3038 SmallVectorImpl<const Formula *> &Workspace,
3039 const Cost &CurCost,
3040 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3041 DenseSet<const SCEV *> &VisitedRegs) const {
3042 // Some ideas:
3043 // - prune more:
3044 // - use more aggressive filtering
3045 // - sort the formula so that the most profitable solutions are found first
3046 // - sort the uses too
3047 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003048 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00003049 // and bail early.
3050 // - track register sets with SmallBitVector
3051
3052 const LSRUse &LU = Uses[Workspace.size()];
3053
3054 // If this use references any register that's already a part of the
3055 // in-progress solution, consider it a requirement that a formula must
3056 // reference that register in order to be considered. This prunes out
3057 // unprofitable searching.
3058 SmallSetVector<const SCEV *, 4> ReqRegs;
3059 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3060 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00003061 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00003062 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00003063
Dan Gohman9214b822010-02-13 02:06:02 +00003064 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00003065 SmallPtrSet<const SCEV *, 16> NewRegs;
3066 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00003067retry:
Dan Gohman572645c2010-02-12 10:34:29 +00003068 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3069 E = LU.Formulae.end(); I != E; ++I) {
3070 const Formula &F = *I;
3071
3072 // Ignore formulae which do not use any of the required registers.
3073 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3074 JE = ReqRegs.end(); J != JE; ++J) {
3075 const SCEV *Reg = *J;
3076 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3077 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3078 F.BaseRegs.end())
3079 goto skip;
3080 }
Dan Gohman9214b822010-02-13 02:06:02 +00003081 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00003082
3083 // Evaluate the cost of the current formula. If it's already worse than
3084 // the current best, prune the search at that point.
3085 NewCost = CurCost;
3086 NewRegs = CurRegs;
3087 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3088 if (NewCost < SolutionCost) {
3089 Workspace.push_back(&F);
3090 if (Workspace.size() != Uses.size()) {
3091 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3092 NewRegs, VisitedRegs);
3093 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3094 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3095 } else {
3096 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3097 dbgs() << ". Regs:";
3098 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3099 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3100 dbgs() << ' ' << **I;
3101 dbgs() << '\n');
3102
3103 SolutionCost = NewCost;
3104 Solution = Workspace;
3105 }
3106 Workspace.pop_back();
3107 }
3108 skip:;
3109 }
Dan Gohman9214b822010-02-13 02:06:02 +00003110
3111 // If none of the formulae had all of the required registers, relax the
3112 // constraint so that we don't exclude all formulae.
3113 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00003114 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00003115 ReqRegs.clear();
3116 goto retry;
3117 }
Dan Gohman572645c2010-02-12 10:34:29 +00003118}
3119
Dan Gohman76c315a2010-05-20 20:52:00 +00003120/// Solve - Choose one formula from each use. Return the results in the given
3121/// Solution vector.
Dan Gohman572645c2010-02-12 10:34:29 +00003122void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3123 SmallVector<const Formula *, 8> Workspace;
3124 Cost SolutionCost;
3125 SolutionCost.Loose();
3126 Cost CurCost;
3127 SmallPtrSet<const SCEV *, 16> CurRegs;
3128 DenseSet<const SCEV *> VisitedRegs;
3129 Workspace.reserve(Uses.size());
3130
Dan Gohmanf7ff37d2010-05-20 20:00:41 +00003131 // SolveRecurse does all the work.
Dan Gohman572645c2010-02-12 10:34:29 +00003132 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3133 CurRegs, VisitedRegs);
3134
3135 // Ok, we've now made all our decisions.
3136 DEBUG(dbgs() << "\n"
3137 "The chosen solution requires "; SolutionCost.print(dbgs());
3138 dbgs() << ":\n";
3139 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3140 dbgs() << " ";
3141 Uses[i].print(dbgs());
3142 dbgs() << "\n"
3143 " ";
3144 Solution[i]->print(dbgs());
3145 dbgs() << '\n';
3146 });
Dan Gohmana5528782010-05-20 20:59:23 +00003147
3148 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman572645c2010-02-12 10:34:29 +00003149}
3150
Dan Gohmane5f76872010-04-09 22:07:05 +00003151/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3152/// the dominator tree far as we can go while still being dominated by the
3153/// input positions. This helps canonicalize the insert position, which
3154/// encourages sharing.
3155BasicBlock::iterator
3156LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3157 const SmallVectorImpl<Instruction *> &Inputs)
3158 const {
3159 for (;;) {
3160 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3161 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3162
3163 BasicBlock *IDom;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003164 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
Dan Gohman0fe46d92010-05-20 22:46:54 +00003165 if (!Rung) return IP;
Dan Gohmand974a0e2010-05-20 20:00:25 +00003166 Rung = Rung->getIDom();
3167 if (!Rung) return IP;
3168 IDom = Rung->getBlock();
Dan Gohmane5f76872010-04-09 22:07:05 +00003169
3170 // Don't climb into a loop though.
3171 const Loop *IDomLoop = LI.getLoopFor(IDom);
3172 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3173 if (IDomDepth <= IPLoopDepth &&
3174 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3175 break;
3176 }
3177
3178 bool AllDominate = true;
3179 Instruction *BetterPos = 0;
3180 Instruction *Tentative = IDom->getTerminator();
3181 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3182 E = Inputs.end(); I != E; ++I) {
3183 Instruction *Inst = *I;
3184 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3185 AllDominate = false;
3186 break;
3187 }
3188 // Attempt to find an insert position in the middle of the block,
3189 // instead of at the end, so that it can be used for other expansions.
3190 if (IDom == Inst->getParent() &&
3191 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00003192 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00003193 }
3194 if (!AllDominate)
3195 break;
3196 if (BetterPos)
3197 IP = BetterPos;
3198 else
3199 IP = Tentative;
3200 }
3201
3202 return IP;
3203}
3204
3205/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00003206/// dominated by the operands and which will dominate the result.
3207BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00003208LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3209 const LSRFixup &LF,
3210 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00003211 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00003212 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00003213 // will be required in the expansion.
3214 SmallVector<Instruction *, 4> Inputs;
3215 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3216 Inputs.push_back(I);
3217 if (LU.Kind == LSRUse::ICmpZero)
3218 if (Instruction *I =
3219 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3220 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00003221 if (LF.PostIncLoops.count(L)) {
3222 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00003223 Inputs.push_back(L->getLoopLatch()->getTerminator());
3224 else
3225 Inputs.push_back(IVIncInsertPos);
3226 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00003227 // The expansion must also be dominated by the increment positions of any
3228 // loops it for which it is using post-inc mode.
3229 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3230 E = LF.PostIncLoops.end(); I != E; ++I) {
3231 const Loop *PIL = *I;
3232 if (PIL == L) continue;
3233
Dan Gohmane5f76872010-04-09 22:07:05 +00003234 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00003235 SmallVector<BasicBlock *, 4> ExitingBlocks;
3236 PIL->getExitingBlocks(ExitingBlocks);
3237 if (!ExitingBlocks.empty()) {
3238 BasicBlock *BB = ExitingBlocks[0];
3239 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3240 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3241 Inputs.push_back(BB->getTerminator());
3242 }
3243 }
Dan Gohman572645c2010-02-12 10:34:29 +00003244
3245 // Then, climb up the immediate dominator tree as far as we can go while
3246 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00003247 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00003248
3249 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00003250 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00003251
3252 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00003253 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00003254
Dan Gohmand96eae82010-04-09 02:00:38 +00003255 return IP;
3256}
3257
Dan Gohman76c315a2010-05-20 20:52:00 +00003258/// Expand - Emit instructions for the leading candidate expression for this
3259/// LSRUse (this is called "expanding").
Dan Gohmand96eae82010-04-09 02:00:38 +00003260Value *LSRInstance::Expand(const LSRFixup &LF,
3261 const Formula &F,
3262 BasicBlock::iterator IP,
3263 SCEVExpander &Rewriter,
3264 SmallVectorImpl<WeakVH> &DeadInsts) const {
3265 const LSRUse &LU = Uses[LF.LUIdx];
3266
3267 // Determine an input position which will be dominated by the operands and
3268 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00003269 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00003270
Dan Gohman572645c2010-02-12 10:34:29 +00003271 // Inform the Rewriter if we have a post-increment use, so that it can
3272 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00003273 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00003274
3275 // This is the type that the user actually needs.
3276 const Type *OpTy = LF.OperandValToReplace->getType();
3277 // This will be the type that we'll initially expand to.
3278 const Type *Ty = F.getType();
3279 if (!Ty)
3280 // No type known; just expand directly to the ultimate type.
3281 Ty = OpTy;
3282 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3283 // Expand directly to the ultimate type if it's the right size.
3284 Ty = OpTy;
3285 // This is the type to do integer arithmetic in.
3286 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3287
3288 // Build up a list of operands to add together to form the full base.
3289 SmallVector<const SCEV *, 8> Ops;
3290
3291 // Expand the BaseRegs portion.
3292 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3293 E = F.BaseRegs.end(); I != E; ++I) {
3294 const SCEV *Reg = *I;
3295 assert(!Reg->isZero() && "Zero allocated in a base register!");
3296
Dan Gohman448db1c2010-04-07 22:27:08 +00003297 // If we're expanding for a post-inc user, make the post-inc adjustment.
3298 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3299 Reg = TransformForPostIncUse(Denormalize, Reg,
3300 LF.UserInst, LF.OperandValToReplace,
3301 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003302
3303 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3304 }
3305
Dan Gohman087bd1e2010-03-03 05:29:13 +00003306 // Flush the operand list to suppress SCEVExpander hoisting.
3307 if (!Ops.empty()) {
3308 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3309 Ops.clear();
3310 Ops.push_back(SE.getUnknown(FullV));
3311 }
3312
Dan Gohman572645c2010-02-12 10:34:29 +00003313 // Expand the ScaledReg portion.
3314 Value *ICmpScaledV = 0;
3315 if (F.AM.Scale != 0) {
3316 const SCEV *ScaledS = F.ScaledReg;
3317
Dan Gohman448db1c2010-04-07 22:27:08 +00003318 // If we're expanding for a post-inc user, make the post-inc adjustment.
3319 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3320 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3321 LF.UserInst, LF.OperandValToReplace,
3322 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003323
3324 if (LU.Kind == LSRUse::ICmpZero) {
3325 // An interesting way of "folding" with an icmp is to use a negated
3326 // scale, which we'll implement by inserting it into the other operand
3327 // of the icmp.
3328 assert(F.AM.Scale == -1 &&
3329 "The only scale supported by ICmpZero uses is -1!");
3330 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3331 } else {
3332 // Otherwise just expand the scaled register and an explicit scale,
3333 // which is expected to be matched as part of the address.
3334 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3335 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003336 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003337 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003338
3339 // Flush the operand list to suppress SCEVExpander hoisting.
3340 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3341 Ops.clear();
3342 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003343 }
3344 }
3345
Dan Gohman087bd1e2010-03-03 05:29:13 +00003346 // Expand the GV portion.
3347 if (F.AM.BaseGV) {
3348 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3349
3350 // Flush the operand list to suppress SCEVExpander hoisting.
3351 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3352 Ops.clear();
3353 Ops.push_back(SE.getUnknown(FullV));
3354 }
3355
3356 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003357 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3358 if (Offset != 0) {
3359 if (LU.Kind == LSRUse::ICmpZero) {
3360 // The other interesting way of "folding" with an ICmpZero is to use a
3361 // negated immediate.
3362 if (!ICmpScaledV)
3363 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3364 else {
3365 Ops.push_back(SE.getUnknown(ICmpScaledV));
3366 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3367 }
3368 } else {
3369 // Just add the immediate values. These again are expected to be matched
3370 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003371 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003372 }
3373 }
3374
3375 // Emit instructions summing all the operands.
3376 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003377 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003378 SE.getAddExpr(Ops);
3379 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3380
3381 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003382 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003383
3384 // An ICmpZero Formula represents an ICmp which we're handling as a
3385 // comparison against zero. Now that we've expanded an expression for that
3386 // form, update the ICmp's other operand.
3387 if (LU.Kind == LSRUse::ICmpZero) {
3388 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3389 DeadInsts.push_back(CI->getOperand(1));
3390 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3391 "a scale at the same time!");
3392 if (F.AM.Scale == -1) {
3393 if (ICmpScaledV->getType() != OpTy) {
3394 Instruction *Cast =
3395 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3396 OpTy, false),
3397 ICmpScaledV, OpTy, "tmp", CI);
3398 ICmpScaledV = Cast;
3399 }
3400 CI->setOperand(1, ICmpScaledV);
3401 } else {
3402 assert(F.AM.Scale == 0 &&
3403 "ICmp does not support folding a global value and "
3404 "a scale at the same time!");
3405 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3406 -(uint64_t)Offset);
3407 if (C->getType() != OpTy)
3408 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3409 OpTy, false),
3410 C, OpTy);
3411
3412 CI->setOperand(1, C);
3413 }
3414 }
3415
3416 return FullV;
3417}
3418
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003419/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3420/// of their operands effectively happens in their predecessor blocks, so the
3421/// expression may need to be expanded in multiple places.
3422void LSRInstance::RewriteForPHI(PHINode *PN,
3423 const LSRFixup &LF,
3424 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003425 SCEVExpander &Rewriter,
3426 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003427 Pass *P) const {
3428 DenseMap<BasicBlock *, Value *> Inserted;
3429 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3430 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3431 BasicBlock *BB = PN->getIncomingBlock(i);
3432
3433 // If this is a critical edge, split the edge so that we do not insert
3434 // the code on all predecessor/successor paths. We do this unless this
3435 // is the canonical backedge for this loop, which complicates post-inc
3436 // users.
3437 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3438 !isa<IndirectBrInst>(BB->getTerminator()) &&
3439 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3440 // Split the critical edge.
3441 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3442
3443 // If PN is outside of the loop and BB is in the loop, we want to
3444 // move the block to be immediately before the PHI block, not
3445 // immediately after BB.
3446 if (L->contains(BB) && !L->contains(PN))
3447 NewBB->moveBefore(PN->getParent());
3448
3449 // Splitting the edge can reduce the number of PHI entries we have.
3450 e = PN->getNumIncomingValues();
3451 BB = NewBB;
3452 i = PN->getBasicBlockIndex(BB);
3453 }
3454
3455 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3456 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3457 if (!Pair.second)
3458 PN->setIncomingValue(i, Pair.first->second);
3459 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003460 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003461
3462 // If this is reuse-by-noop-cast, insert the noop cast.
3463 const Type *OpTy = LF.OperandValToReplace->getType();
3464 if (FullV->getType() != OpTy)
3465 FullV =
3466 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3467 OpTy, false),
3468 FullV, LF.OperandValToReplace->getType(),
3469 "tmp", BB->getTerminator());
3470
3471 PN->setIncomingValue(i, FullV);
3472 Pair.first->second = FullV;
3473 }
3474 }
3475}
3476
Dan Gohman572645c2010-02-12 10:34:29 +00003477/// Rewrite - Emit instructions for the leading candidate expression for this
3478/// LSRUse (this is called "expanding"), and update the UserInst to reference
3479/// the newly expanded value.
3480void LSRInstance::Rewrite(const LSRFixup &LF,
3481 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003482 SCEVExpander &Rewriter,
3483 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003484 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003485 // First, find an insertion point that dominates UserInst. For PHI nodes,
3486 // find the nearest block which dominates all the relevant uses.
3487 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003488 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003489 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003490 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003491
3492 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003493 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003494 if (FullV->getType() != OpTy) {
3495 Instruction *Cast =
3496 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3497 FullV, OpTy, "tmp", LF.UserInst);
3498 FullV = Cast;
3499 }
3500
3501 // Update the user. ICmpZero is handled specially here (for now) because
3502 // Expand may have updated one of the operands of the icmp already, and
3503 // its new value may happen to be equal to LF.OperandValToReplace, in
3504 // which case doing replaceUsesOfWith leads to replacing both operands
3505 // with the same value. TODO: Reorganize this.
3506 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3507 LF.UserInst->setOperand(0, FullV);
3508 else
3509 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3510 }
3511
3512 DeadInsts.push_back(LF.OperandValToReplace);
3513}
3514
Dan Gohman76c315a2010-05-20 20:52:00 +00003515/// ImplementSolution - Rewrite all the fixup locations with new values,
3516/// following the chosen solution.
Dan Gohman572645c2010-02-12 10:34:29 +00003517void
3518LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3519 Pass *P) {
3520 // Keep track of instructions we may have made dead, so that
3521 // we can remove them after we are done working.
3522 SmallVector<WeakVH, 16> DeadInsts;
3523
3524 SCEVExpander Rewriter(SE);
3525 Rewriter.disableCanonicalMode();
3526 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3527
3528 // Expand the new value definitions and update the users.
Dan Gohman402d4352010-05-20 20:33:18 +00003529 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3530 E = Fixups.end(); I != E; ++I) {
3531 const LSRFixup &Fixup = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00003532
Dan Gohman402d4352010-05-20 20:33:18 +00003533 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003534
3535 Changed = true;
3536 }
3537
3538 // Clean up after ourselves. This must be done before deleting any
3539 // instructions.
3540 Rewriter.clear();
3541
3542 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3543}
3544
3545LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3546 : IU(P->getAnalysis<IVUsers>()),
3547 SE(P->getAnalysis<ScalarEvolution>()),
3548 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003549 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003550 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003551
Dan Gohman03e896b2009-11-05 21:11:53 +00003552 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003553 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003554
Dan Gohman572645c2010-02-12 10:34:29 +00003555 // If there's no interesting work to be done, bail early.
3556 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003557
Dan Gohman572645c2010-02-12 10:34:29 +00003558 DEBUG(dbgs() << "\nLSR on loop ";
3559 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3560 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003561
Dan Gohman402d4352010-05-20 20:33:18 +00003562 // First, perform some low-level loop optimizations.
Dan Gohman572645c2010-02-12 10:34:29 +00003563 OptimizeShadowIV();
Dan Gohmanc6519f92010-05-20 20:05:31 +00003564 OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003565
Dan Gohman402d4352010-05-20 20:33:18 +00003566 // Start collecting data and preparing for the solver.
Dan Gohman572645c2010-02-12 10:34:29 +00003567 CollectInterestingTypesAndFactors();
3568 CollectFixupsAndInitialFormulae();
3569 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003570
Dan Gohman572645c2010-02-12 10:34:29 +00003571 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3572 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003573
Dan Gohman572645c2010-02-12 10:34:29 +00003574 // Now use the reuse data to generate a bunch of interesting ways
3575 // to formulate the values needed for the uses.
3576 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003577
Dan Gohman572645c2010-02-12 10:34:29 +00003578 DEBUG(dbgs() << "\n"
3579 "After generating reuse formulae:\n";
3580 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003581
Dan Gohman572645c2010-02-12 10:34:29 +00003582 FilterOutUndesirableDedicatedRegisters();
3583 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003584
Dan Gohman572645c2010-02-12 10:34:29 +00003585 SmallVector<const Formula *, 8> Solution;
3586 Solve(Solution);
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003587
Dan Gohman572645c2010-02-12 10:34:29 +00003588 // Release memory that is no longer needed.
3589 Factors.clear();
3590 Types.clear();
3591 RegUses.clear();
3592
3593#ifndef NDEBUG
3594 // Formulae should be legal.
3595 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3596 E = Uses.end(); I != E; ++I) {
3597 const LSRUse &LU = *I;
3598 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3599 JE = LU.Formulae.end(); J != JE; ++J)
3600 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3601 LU.Kind, LU.AccessTy, TLI) &&
3602 "Illegal formula generated!");
3603 };
3604#endif
3605
3606 // Now that we've decided what we want, make it so.
3607 ImplementSolution(Solution, P);
3608}
3609
3610void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3611 if (Factors.empty() && Types.empty()) return;
3612
3613 OS << "LSR has identified the following interesting factors and types: ";
3614 bool First = true;
3615
3616 for (SmallSetVector<int64_t, 8>::const_iterator
3617 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3618 if (!First) OS << ", ";
3619 First = false;
3620 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003621 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003622
Dan Gohman572645c2010-02-12 10:34:29 +00003623 for (SmallSetVector<const Type *, 4>::const_iterator
3624 I = Types.begin(), E = Types.end(); I != E; ++I) {
3625 if (!First) OS << ", ";
3626 First = false;
3627 OS << '(' << **I << ')';
3628 }
3629 OS << '\n';
3630}
3631
3632void LSRInstance::print_fixups(raw_ostream &OS) const {
3633 OS << "LSR is examining the following fixup sites:\n";
3634 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3635 E = Fixups.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +00003636 dbgs() << " ";
Dan Gohman9f383eb2010-05-20 22:25:20 +00003637 I->print(OS);
Dan Gohman572645c2010-02-12 10:34:29 +00003638 OS << '\n';
3639 }
3640}
3641
3642void LSRInstance::print_uses(raw_ostream &OS) const {
3643 OS << "LSR is examining the following uses:\n";
3644 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3645 E = Uses.end(); I != E; ++I) {
3646 const LSRUse &LU = *I;
3647 dbgs() << " ";
3648 LU.print(OS);
3649 OS << '\n';
3650 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3651 JE = LU.Formulae.end(); J != JE; ++J) {
3652 OS << " ";
3653 J->print(OS);
3654 OS << '\n';
3655 }
3656 }
3657}
3658
3659void LSRInstance::print(raw_ostream &OS) const {
3660 print_factors_and_types(OS);
3661 print_fixups(OS);
3662 print_uses(OS);
3663}
3664
3665void LSRInstance::dump() const {
3666 print(errs()); errs() << '\n';
3667}
3668
3669namespace {
3670
3671class LoopStrengthReduce : public LoopPass {
3672 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3673 /// transformation profitability.
3674 const TargetLowering *const TLI;
3675
3676public:
3677 static char ID; // Pass ID, replacement for typeid
3678 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3679
3680private:
3681 bool runOnLoop(Loop *L, LPPassManager &LPM);
3682 void getAnalysisUsage(AnalysisUsage &AU) const;
3683};
3684
3685}
3686
3687char LoopStrengthReduce::ID = 0;
3688static RegisterPass<LoopStrengthReduce>
3689X("loop-reduce", "Loop Strength Reduction");
3690
3691Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3692 return new LoopStrengthReduce(TLI);
3693}
3694
3695LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3696 : LoopPass(&ID), TLI(tli) {}
3697
3698void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3699 // We split critical edges, so we change the CFG. However, we do update
3700 // many analyses if they are around.
3701 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003702 AU.addPreserved("domfrontier");
3703
Dan Gohmane5f76872010-04-09 22:07:05 +00003704 AU.addRequired<LoopInfo>();
3705 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003706 AU.addRequiredID(LoopSimplifyID);
3707 AU.addRequired<DominatorTree>();
3708 AU.addPreserved<DominatorTree>();
3709 AU.addRequired<ScalarEvolution>();
3710 AU.addPreserved<ScalarEvolution>();
3711 AU.addRequired<IVUsers>();
3712 AU.addPreserved<IVUsers>();
3713}
3714
3715bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3716 bool Changed = false;
3717
3718 // Run the main LSR transformation.
3719 Changed |= LSRInstance(TLI, L, this).getChanged();
3720
Dan Gohmanafc36a92009-05-02 18:29:22 +00003721 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003722 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003723 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003724
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003725 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003726}