blob: fa4324b50d7394bb245709abcb5c58e44ab9a858 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswella1156432005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000067#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Assembly/Writer.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
Chris Lattner95255282006-06-28 23:17:24 +000081#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000086#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000087#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000088#include "llvm/Support/raw_ostream.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000089#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000090#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000091using namespace llvm;
92
Chris Lattner3b27d682006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohman844731a2008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramerff183102012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson2ab36d32010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000130
Manman Ren286c4dc2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000135}
Manman Rencc77eec2012-09-06 19:55:56 +0000136#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000137
Dan Gohman4ce32db2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
139 switch (getSCEVType()) {
140 case scConstant:
141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000186 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
197 if (llvm::next(I) != E)
198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick635f7182011-03-09 17:23:39 +0000227
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
232 WriteAsOperand(OS, FieldNo, false);
233 OS << ")";
234 return;
235 }
Andrew Trick635f7182011-03-09 17:23:39 +0000236
Dan Gohman4ce32db2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
238 WriteAsOperand(OS, U->getValue(), false);
239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
244 default: break;
245 }
246 llvm_unreachable("Unknown SCEV kind!");
247}
248
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000249Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000250 switch (getSCEVType()) {
251 case scConstant:
252 return cast<SCEVConstant>(this)->getType();
253 case scTruncate:
254 case scZeroExtend:
255 case scSignExtend:
256 return cast<SCEVCastExpr>(this)->getType();
257 case scAddRecExpr:
258 case scMulExpr:
259 case scUMaxExpr:
260 case scSMaxExpr:
261 return cast<SCEVNAryExpr>(this)->getType();
262 case scAddExpr:
263 return cast<SCEVAddExpr>(this)->getType();
264 case scUDivExpr:
265 return cast<SCEVUDivExpr>(this)->getType();
266 case scUnknown:
267 return cast<SCEVUnknown>(this)->getType();
268 case scCouldNotCompute:
269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000270 default:
271 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000272 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000273}
274
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000275bool SCEV::isZero() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isZero();
278 return false;
279}
280
Dan Gohman70a1fe72009-05-18 15:22:39 +0000281bool SCEV::isOne() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isOne();
284 return false;
285}
Chris Lattner53e677a2004-04-02 20:23:17 +0000286
Dan Gohman4d289bf2009-06-24 00:30:26 +0000287bool SCEV::isAllOnesValue() const {
288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289 return SC->getValue()->isAllOnesValue();
290 return false;
291}
292
Andrew Trickf8fd8412012-01-07 00:27:31 +0000293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297 if (!Mul) return false;
298
299 // If there is a constant factor, it will be first.
300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301 if (!SC) return false;
302
303 // Return true if the value is negative, this matches things like (-42 * V).
304 return SC->getValue()->getValue().isNegative();
305}
306
Owen Anderson753ad612009-06-22 21:57:23 +0000307SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000309
Chris Lattner53e677a2004-04-02 20:23:17 +0000310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311 return S->getSCEVType() == scCouldNotCompute;
312}
313
Dan Gohman0bba49c2009-07-07 17:06:11 +0000314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000315 FoldingSetNodeID ID;
316 ID.AddInteger(scConstant);
317 ID.AddPointer(V);
318 void *IP = 0;
319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000321 UniqueSCEVs.InsertNode(S, IP);
322 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman0bba49c2009-07-07 17:06:11 +0000325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000326 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000327}
328
Dan Gohman0bba49c2009-07-07 17:06:11 +0000329const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000332 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
Chris Lattner53e677a2004-04-02 20:23:17 +0000346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000352 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000353}
354
Dan Gohman3bf63762010-06-18 19:54:20 +0000355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000360 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000361}
362
Dan Gohmanab37f502010-08-02 23:49:30 +0000363void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000364 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000365 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000366
367 // Remove this SCEVUnknown from the uniquing map.
368 SE->UniqueSCEVs.RemoveNode(this);
369
370 // Release the value.
371 setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000375 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000376 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000377
378 // Remove this SCEVUnknown from the uniquing map.
379 SE->UniqueSCEVs.RemoveNode(this);
380
381 // Update this SCEVUnknown to point to the new value. This is needed
382 // because there may still be outstanding SCEVs which still point to
383 // this SCEVUnknown.
384 setValPtr(New);
385}
386
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000389 if (VCE->getOpcode() == Instruction::PtrToInt)
390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (CE->getOpcode() == Instruction::GetElementPtr &&
392 CE->getOperand(0)->isNullValue() &&
393 CE->getNumOperands() == 2)
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395 if (CI->isOne()) {
396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397 ->getElementType();
398 return true;
399 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400
401 return false;
402}
403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000406 if (VCE->getOpcode() == Instruction::PtrToInt)
407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000408 if (CE->getOpcode() == Instruction::GetElementPtr &&
409 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000410 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000412 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000413 if (!STy->isPacked() &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(1)->isNullValue()) {
416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417 if (CI->isOne() &&
418 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000419 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000420 AllocTy = STy->getElementType(1);
421 return true;
422 }
423 }
424 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425
426 return false;
427}
428
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getNumOperands() == 3 &&
435 CE->getOperand(0)->isNullValue() &&
436 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000437 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439 // Ignore vector types here so that ScalarEvolutionExpander doesn't
440 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000441 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 CTy = Ty;
443 FieldNo = CE->getOperand(2);
444 return true;
445 }
446 }
447
448 return false;
449}
450
Chris Lattner8d741b82004-06-20 06:23:15 +0000451//===----------------------------------------------------------------------===//
452// SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457 /// than the complexity of the RHS. This comparator is used to canonicalize
458 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000459 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000460 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000461 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000463
Dan Gohman67ef74e2010-08-27 15:26:01 +0000464 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000465 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return compare(LHS, RHS) < 0;
467 }
468
469 // Return negative, zero, or positive, if LHS is less than, equal to, or
470 // greater than RHS, respectively. A three-way result allows recursive
471 // comparisons to be more efficient.
472 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000473 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000476
Dan Gohman72861302009-05-07 14:39:04 +0000477 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000481
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 // Aside from the getSCEVType() ordering, the particular ordering
483 // isn't very important except that it's beneficial to be consistent,
484 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 switch (LType) {
486 case scUnknown: {
487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489
490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000492 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000493
494 // Order pointer values after integer values. This helps SCEVExpander
495 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 bool LIsPointer = LV->getType()->isPointerTy(),
497 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 unsigned LID = LV->getValueID(),
503 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000504 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Argument *LA = dyn_cast<Argument>(LV)) {
509 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 // For instructions, compare their loop depth, and their operand
515 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518
519 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 const BasicBlock *LParent = LInst->getParent(),
521 *RParent = RInst->getParent();
522 if (LParent != RParent) {
523 unsigned LDepth = LI->getLoopDepth(LParent),
524 RDepth = LI->getLoopDepth(RParent);
525 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000527 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000528
529 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000530 unsigned LNumOps = LInst->getNumOperands(),
531 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 }
534
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 }
537
Dan Gohman67ef74e2010-08-27 15:26:01 +0000538 case scConstant: {
539 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000543 const APInt &LA = LC->getValue()->getValue();
544 const APInt &RA = RC->getValue()->getValue();
545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 return (int)LBitWidth - (int)RBitWidth;
548 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000549 }
550
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 case scAddRecExpr: {
552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000554
555 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557 if (LLoop != RLoop) {
558 unsigned LDepth = LLoop->getLoopDepth(),
559 RDepth = RLoop->getLoopDepth();
560 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Addrec complexity grows with operand count.
565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566 if (LNumOps != RNumOps)
567 return (int)LNumOps - (int)RNumOps;
568
569 // Lexicographically compare.
570 for (unsigned i = 0; i != LNumOps; ++i) {
571 long X = compare(LA->getOperand(i), RA->getOperand(i));
572 if (X != 0)
573 return X;
574 }
575
576 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scAddExpr:
580 case scMulExpr:
581 case scSMaxExpr:
582 case scUMaxExpr: {
583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000585
586 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickd832d322013-07-31 02:43:40 +0000588 if (LNumOps != RNumOps)
589 return (int)LNumOps - (int)RNumOps;
590
Dan Gohman304a7a62010-07-23 21:20:52 +0000591 for (unsigned i = 0; i != LNumOps; ++i) {
592 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593 return 1;
594 long X = compare(LC->getOperand(i), RC->getOperand(i));
595 if (X != 0)
596 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000597 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scUDivExpr: {
602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000604
605 // Lexicographically compare udiv expressions.
606 long X = compare(LC->getLHS(), RC->getLHS());
607 if (X != 0)
608 return X;
609 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000610 }
611
Dan Gohman67ef74e2010-08-27 15:26:01 +0000612 case scTruncate:
613 case scZeroExtend:
614 case scSignExtend: {
615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000617
618 // Compare cast expressions by operand.
619 return compare(LC->getOperand(), RC->getOperand());
620 }
621
622 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000623 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000624 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000625 }
626 };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000634/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000635/// results from this routine. In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000640 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000641 if (Ops.size() < 2) return; // Noop
642 if (Ops.size() == 2) {
643 // This is the common case, which also happens to be trivially simple.
644 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646 if (SCEVComplexityCompare(LI)(RHS, LHS))
647 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000648 return;
649 }
650
Dan Gohman3bf63762010-06-18 19:54:20 +0000651 // Do the rough sort by complexity.
652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654 // Now that we are sorted by complexity, group elements of the same
655 // complexity. Note that this is, at worst, N^2, but the vector is likely to
656 // be extremely short in practice. Note that we take this approach because we
657 // do not want to depend on the addresses of the objects we are grouping.
658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659 const SCEV *S = Ops[i];
660 unsigned Complexity = S->getSCEVType();
661
662 // If there are any objects of the same complexity and same value as this
663 // one, group them.
664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665 if (Ops[j] == S) { // Found a duplicate.
666 // Move it to immediately after i'th element.
667 std::swap(Ops[i+1], Ops[j]);
668 ++i; // no need to rescan it.
669 if (i == e-2) return; // Done!
670 }
671 }
672 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000673}
674
Chris Lattner53e677a2004-04-02 20:23:17 +0000675
Chris Lattner53e677a2004-04-02 20:23:17 +0000676
677//===----------------------------------------------------------------------===//
678// Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000682/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000684 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000685 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // Handle the simplest case efficiently.
687 if (K == 1)
688 return SE.getTruncateOrZeroExtend(It, ResultTy);
689
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 // We are using the following formula for BC(It, K):
691 //
692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000694 // Suppose, W is the bitwidth of the return value. We must be prepared for
695 // overflow. Hence, we must assure that the result of our computation is
696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
697 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000698 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000699 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000700 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000703 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // This formula is trivially equivalent to the previous formula. However,
707 // this formula can be implemented much more efficiently. The trick is that
708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709 // arithmetic. To do exact division in modular arithmetic, all we have
710 // to do is multiply by the inverse. Therefore, this step can be done at
711 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000712 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // The next issue is how to safely do the division by 2^T. The way this
714 // is done is by doing the multiplication step at a width of at least W + T
715 // bits. This way, the bottom W+T bits of the product are accurate. Then,
716 // when we perform the division by 2^T (which is equivalent to a right shift
717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
718 // truncated out after the division by 2^T.
719 //
720 // In comparison to just directly using the first formula, this technique
721 // is much more efficient; using the first formula requires W * K bits,
722 // but this formula less than W + K bits. Also, the first formula requires
723 // a division step, whereas this formula only requires multiplies and shifts.
724 //
725 // It doesn't matter whether the subtraction step is done in the calculation
726 // width or the input iteration count's width; if the subtraction overflows,
727 // the result must be zero anyway. We prefer here to do it in the width of
728 // the induction variable because it helps a lot for certain cases; CodeGen
729 // isn't smart enough to ignore the overflow, which leads to much less
730 // efficient code if the width of the subtraction is wider than the native
731 // register width.
732 //
733 // (It's possible to not widen at all by pulling out factors of 2 before
734 // the multiplication; for example, K=2 can be calculated as
735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736 // extra arithmetic, so it's not an obvious win, and it gets
737 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000738
Eli Friedmanb42a6262008-08-04 23:49:06 +0000739 // Protection from insane SCEVs; this bound is conservative,
740 // but it probably doesn't matter.
741 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000742 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000743
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000744 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000745
Eli Friedmanb42a6262008-08-04 23:49:06 +0000746 // Calculate K! / 2^T and T; we divide out the factors of two before
747 // multiplying for calculating K! / 2^T to avoid overflow.
748 // Other overflow doesn't matter because we only care about the bottom
749 // W bits of the result.
750 APInt OddFactorial(W, 1);
751 unsigned T = 1;
752 for (unsigned i = 3; i <= K; ++i) {
753 APInt Mult(W, i);
754 unsigned TwoFactors = Mult.countTrailingZeros();
755 T += TwoFactors;
756 Mult = Mult.lshr(TwoFactors);
757 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000758 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000759
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000761 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000763 // Calculate 2^T, at width T+W.
Benjamin Kramer0a230e02013-07-11 16:05:50 +0000764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765
766 // Calculate the multiplicative inverse of K! / 2^T;
767 // this multiplication factor will perform the exact division by
768 // K! / 2^T.
769 APInt Mod = APInt::getSignedMinValue(W+1);
770 APInt MultiplyFactor = OddFactorial.zext(W+1);
771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772 MultiplyFactor = MultiplyFactor.trunc(W);
773
774 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000776 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000778 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000780 Dividend = SE.getMulExpr(Dividend,
781 SE.getTruncateOrZeroExtend(S, CalculationTy));
782 }
783
784 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000786
787 // Truncate the result, and divide by K! / 2^T.
788
789 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000791}
792
Chris Lattner53e677a2004-04-02 20:23:17 +0000793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number. We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000798/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000799///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000801///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000803 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000804 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000806 // The computation is correct in the face of overflow provided that the
807 // multiplication is performed _after_ the evaluation of the binomial
808 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000810 if (isa<SCEVCouldNotCompute>(Coeff))
811 return Coeff;
812
813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000814 }
815 return Result;
816}
817
Chris Lattner53e677a2004-04-02 20:23:17 +0000818//===----------------------------------------------------------------------===//
819// SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
Dan Gohman0bba49c2009-07-07 17:06:11 +0000822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000823 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000825 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000826 assert(isSCEVable(Ty) &&
827 "This is not a conversion to a SCEVable type!");
828 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000829
Dan Gohmanc050fd92009-07-13 20:50:19 +0000830 FoldingSetNodeID ID;
831 ID.AddInteger(scTruncate);
832 ID.AddPointer(Op);
833 ID.AddPointer(Ty);
834 void *IP = 0;
835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000837 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000839 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000841
Dan Gohman20900ca2009-04-22 16:20:48 +0000842 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000844 return getTruncateExpr(ST->getOperand(), Ty);
845
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000848 return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855 // eliminate all the truncates.
856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857 SmallVector<const SCEV *, 4> Operands;
858 bool hasTrunc = false;
859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861 hasTrunc = isa<SCEVTruncateExpr>(S);
862 Operands.push_back(S);
863 }
864 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000865 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000867 }
868
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870 // eliminate all the truncates.
871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872 SmallVector<const SCEV *, 4> Operands;
873 bool hasTrunc = false;
874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876 hasTrunc = isa<SCEVTruncateExpr>(S);
877 Operands.push_back(S);
878 }
879 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000880 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000882 }
883
Dan Gohman6864db62009-06-18 16:24:47 +0000884 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000886 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000890 }
891
Dan Gohman420ab912010-06-25 18:47:08 +0000892 // The cast wasn't folded; create an explicit cast node. We can reuse
893 // the existing insert position since if we get here, we won't have
894 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000897 UniqueSCEVs.InsertNode(S, IP);
898 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000899}
900
Dan Gohman0bba49c2009-07-07 17:06:11 +0000901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000902 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000904 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000905 assert(isSCEVable(Ty) &&
906 "This is not a conversion to a SCEVable type!");
907 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000908
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000909 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000913
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000916 return getZeroExtendExpr(SZ->getOperand(), Ty);
917
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000918 // Before doing any expensive analysis, check to see if we've already
919 // computed a SCEV for this Op and Ty.
920 FoldingSetNodeID ID;
921 ID.AddInteger(scZeroExtend);
922 ID.AddPointer(Op);
923 ID.AddPointer(Ty);
924 void *IP = 0;
925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
Nick Lewycky630d85a2011-01-23 06:20:19 +0000927 // zext(trunc(x)) --> zext(x) or x or trunc(x)
928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929 // It's possible the bits taken off by the truncate were all zero bits. If
930 // so, we should be able to simplify this further.
931 const SCEV *X = ST->getOperand();
932 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000933 unsigned TruncBits = getTypeSizeInBits(ST->getType());
934 unsigned NewBits = getTypeSizeInBits(Ty);
935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000936 CR.zextOrTrunc(NewBits)))
937 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000938 }
939
Dan Gohman01ecca22009-04-27 20:16:15 +0000940 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000941 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000942 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000946 const SCEV *Start = AR->getStart();
947 const SCEV *Step = AR->getStepRecurrence(*this);
948 unsigned BitWidth = getTypeSizeInBits(AR->getType());
949 const Loop *L = AR->getLoop();
950
Dan Gohmaneb490a72009-07-25 01:22:26 +0000951 // If we have special knowledge that this addrec won't overflow,
952 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000953 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000956 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957
Dan Gohman01ecca22009-04-27 20:16:15 +0000958 // Check whether the backedge-taken count is SCEVCouldNotCompute.
959 // Note that this serves two purposes: It filters out loops that are
960 // simply not analyzable, and it covers the case where this code is
961 // being called from within backedge-taken count analysis, such that
962 // attempting to ask for the backedge-taken count would likely result
963 // in infinite recursion. In the later case, the analysis code will
964 // cope with a conservative value, and it will take care to purge
965 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000968 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000969 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000970
971 // Check whether the backedge-taken count can be losslessly casted to
972 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000973 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000974 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000975 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000979 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983 const SCEV *WideMaxBECount =
984 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000985 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000986 getAddExpr(WideStart,
987 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000988 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000989 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 L, AR->getNoWrapFlags());
996 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000999 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001000 getAddExpr(WideStart,
1001 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001002 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001003 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001004 // Cache knowledge of AR NW, which is propagated to this AddRec.
1005 // Negative step causes unsigned wrap, but it still can't self-wrap.
1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001007 // Return the expression with the addrec on the outside.
1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001010 L, AR->getNoWrapFlags());
1011 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 }
1013
1014 // If the backedge is guarded by a comparison with the pre-inc value
1015 // the addrec is safe. Also, if the entry is guarded by a comparison
1016 // with the start value and the backedge is guarded by a comparison
1017 // with the post-inc value, the addrec is safe.
1018 if (isKnownPositive(Step)) {
1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020 getUnsignedRange(Step).getUnsignedMax());
1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001027 // Return the expression with the addrec on the outside.
1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001030 L, AR->getNoWrapFlags());
1031 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 } else if (isKnownNegative(Step)) {
1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001038 AR->getPostIncExpr(*this), N))) {
1039 // Cache knowledge of AR NW, which is propagated to this AddRec.
1040 // Negative step causes unsigned wrap, but it still can't self-wrap.
1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001045 L, AR->getNoWrapFlags());
1046 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001047 }
1048 }
1049 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001050
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001051 // The cast wasn't folded; create an explicit cast node.
1052 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001056 UniqueSCEVs.InsertNode(S, IP);
1057 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001058}
1059
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064 ICmpInst::Predicate *Pred,
1065 ScalarEvolution *SE) {
1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067 if (SE->isKnownPositive(Step)) {
1068 *Pred = ICmpInst::ICMP_SLT;
1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070 SE->getSignedRange(Step).getSignedMax());
1071 }
1072 if (SE->isKnownNegative(Step)) {
1073 *Pred = ICmpInst::ICMP_SGT;
1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075 SE->getSignedRange(Step).getSignedMin());
1076 }
1077 return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001087 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001088 ScalarEvolution *SE) {
1089 const Loop *L = AR->getLoop();
1090 const SCEV *Start = AR->getStart();
1091 const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093 // Check for a simple looking step prior to loop entry.
1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001095 if (!SA)
1096 return 0;
1097
1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099 // subtraction is expensive. For this purpose, perform a quick and dirty
1100 // difference, by checking for Step in the operand list.
1101 SmallVector<const SCEV *, 4> DiffOps;
1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103 I != E; ++I) {
1104 if (*I != Step)
1105 DiffOps.push_back(*I);
1106 }
1107 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return 0;
1109
1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111 // same three conditions that getSignExtendedExpr checks.
1112
1113 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
Andrew Trickcf31f912011-06-01 19:14:56 +00001118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001119 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120
1121 // 2. Direct overflow check on the step operation's expression.
1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001124 const SCEV *OperandExtendedStart =
1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126 SE->getSignExtendExpr(Step, WideTy));
1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128 // Cache knowledge of PreAR NSW.
1129 if (PreAR)
1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131 // FIXME: this optimization needs a unit test
1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133 return PreStart;
1134 }
1135
1136 // 3. Loop precondition.
1137 ICmpInst::Predicate Pred;
1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
Andrew Trickcf31f912011-06-01 19:14:56 +00001140 if (OverflowLimit &&
1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001142 return PreStart;
1143 }
1144 return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001149 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001150 ScalarEvolution *SE) {
1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152 if (!PreStart)
1153 return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156 SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
Dan Gohman0bba49c2009-07-07 17:06:11 +00001159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001160 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001163 assert(isSCEVable(Ty) &&
1164 "This is not a conversion to a SCEVable type!");
1165 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001166
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001167 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001171
Dan Gohman20900ca2009-04-22 16:20:48 +00001172 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001174 return getSignExtendExpr(SS->getOperand(), Ty);
1175
Nick Lewycky73f565e2011-01-19 15:56:12 +00001176 // sext(zext(x)) --> zext(x)
1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178 return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001180 // Before doing any expensive analysis, check to see if we've already
1181 // computed a SCEV for this Op and Ty.
1182 FoldingSetNodeID ID;
1183 ID.AddInteger(scSignExtend);
1184 ID.AddPointer(Op);
1185 ID.AddPointer(Ty);
1186 void *IP = 0;
1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001189 // If the input value is provably positive, build a zext instead.
1190 if (isKnownNonNegative(Op))
1191 return getZeroExtendExpr(Op, Ty);
1192
Nick Lewycky630d85a2011-01-23 06:20:19 +00001193 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195 // It's possible the bits taken off by the truncate were all sign bits. If
1196 // so, we should be able to simplify this further.
1197 const SCEV *X = ST->getOperand();
1198 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001199 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200 unsigned NewBits = getTypeSizeInBits(Ty);
1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001202 CR.sextOrTrunc(NewBits)))
1203 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001204 }
1205
Dan Gohman01ecca22009-04-27 20:16:15 +00001206 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001207 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001208 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001211 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001212 const SCEV *Start = AR->getStart();
1213 const SCEV *Step = AR->getStepRecurrence(*this);
1214 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215 const Loop *L = AR->getLoop();
1216
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 // If we have special knowledge that this addrec won't overflow,
1218 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001219 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001221 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001222 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001223
Dan Gohman01ecca22009-04-27 20:16:15 +00001224 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225 // Note that this serves two purposes: It filters out loops that are
1226 // simply not analyzable, and it covers the case where this code is
1227 // being called from within backedge-taken count analysis, such that
1228 // attempting to ask for the backedge-taken count would likely result
1229 // in infinite recursion. In the later case, the analysis code will
1230 // cope with a conservative value, and it will take care to purge
1231 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001234 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001235 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001236
1237 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001238 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001240 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001245 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249 const SCEV *WideMaxBECount =
1250 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001251 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001252 getAddExpr(WideStart,
1253 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001254 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001255 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001258 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001260 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 L, AR->getNoWrapFlags());
1262 }
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001265 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001266 getAddExpr(WideStart,
1267 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001268 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001269 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001270 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001272 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001274 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001275 L, AR->getNoWrapFlags());
1276 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001277 }
1278
1279 // If the backedge is guarded by a comparison with the pre-inc value
1280 // the addrec is safe. Also, if the entry is guarded by a comparison
1281 // with the start value and the backedge is guarded by a comparison
1282 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001283 ICmpInst::Predicate Pred;
1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285 if (OverflowLimit &&
1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289 OverflowLimit)))) {
1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293 getSignExtendExpr(Step, Ty),
1294 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001295 }
1296 }
1297 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001298
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001299 // The cast wasn't folded; create an explicit cast node.
1300 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001304 UniqueSCEVs.InsertNode(S, IP);
1305 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001306}
1307
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001312 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314 "This is not an extending conversion!");
1315 assert(isSCEVable(Ty) &&
1316 "This is not a conversion to a SCEVable type!");
1317 Ty = getEffectiveSCEVType(Ty);
1318
1319 // Sign-extend negative constants.
1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321 if (SC->getValue()->getValue().isNegative())
1322 return getSignExtendExpr(Op, Ty);
1323
1324 // Peel off a truncate cast.
1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328 return getAnyExtendExpr(NewOp, Ty);
1329 return getTruncateOrNoop(NewOp, Ty);
1330 }
1331
1332 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001334 if (!isa<SCEVZeroExtendExpr>(ZExt))
1335 return ZExt;
1336
1337 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001338 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001339 if (!isa<SCEVSignExtendExpr>(SExt))
1340 return SExt;
1341
Dan Gohmana10756e2010-01-21 02:09:26 +00001342 // Force the cast to be folded into the operands of an addrec.
1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344 SmallVector<const SCEV *, 4> Ops;
1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346 I != E; ++I)
1347 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001349 }
1350
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001351 // If the expression is obviously signed, use the sext cast value.
1352 if (isa<SCEVSMaxExpr>(Op))
1353 return SExt;
1354
1355 // Absent any other information, use the zext cast value.
1356 return ZExt;
1357}
1358
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001379/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper9e639e82013-07-11 16:22:38 +00001386 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001387 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 const APInt &Scale,
1390 ScalarEvolution &SE) {
1391 bool Interesting = false;
1392
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001393 // Iterate over the add operands. They are sorted, with constants first.
1394 unsigned i = 0;
1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396 ++i;
1397 // Pull a buried constant out to the outside.
1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399 Interesting = true;
1400 AccumulatedConstant += Scale * C->getValue()->getValue();
1401 }
1402
1403 // Next comes everything else. We're especially interested in multiplies
1404 // here, but they're in the middle, so just visit the rest with one loop.
1405 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408 APInt NewScale =
1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 Interesting |=
1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001415 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 NewScale, SE);
1417 } else {
1418 // A multiplication of a constant with some other value. Update
1419 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421 const SCEV *Key = SE.getMulExpr(MulOps);
1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001423 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001424 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 NewOps.push_back(Pair.first->first);
1426 } else {
1427 Pair.first->second += NewScale;
1428 // The map already had an entry for this value, which may indicate
1429 // a folding opportunity.
1430 Interesting = true;
1431 }
1432 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 } else {
1434 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001436 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001438 NewOps.push_back(Pair.first->first);
1439 } else {
1440 Pair.first->second += Scale;
1441 // The map already had an entry for this value, which may indicate
1442 // a folding opportunity.
1443 Interesting = true;
1444 }
1445 }
1446 }
1447
1448 return Interesting;
1449}
1450
1451namespace {
1452 struct APIntCompare {
1453 bool operator()(const APInt &LHS, const APInt &RHS) const {
1454 return LHS.ult(RHS);
1455 }
1456 };
1457}
1458
Dan Gohman6c0866c2009-05-24 23:45:28 +00001459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001462 SCEV::NoWrapFlags Flags) {
1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001466 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001467#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001469 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001471 "SCEVAddExpr operand types don't match!");
1472#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001473
Andrew Trick3228cc22011-03-14 16:50:06 +00001474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001475 // And vice-versa.
1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001479 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481 E = Ops.end(); I != E; ++I)
1482 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001483 All = false;
1484 break;
1485 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001487 }
1488
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001490 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491
1492 // If there are any constants, fold them together.
1493 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001496 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001499 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001501 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001502 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001503 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 }
1505
1506 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001507 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 Ops.erase(Ops.begin());
1509 --Idx;
1510 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohmanbca091d2010-04-12 23:08:18 +00001512 if (Ops.size() == 1) return Ops[0];
1513 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001514
Dan Gohman68ff7762010-08-27 21:39:59 +00001515 // Okay, check to see if the same value occurs in the operand list more than
1516 // once. If so, merge them together into an multiply expression. Since we
1517 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001519 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001522 // Scan ahead to count how many equal operands there are.
1523 unsigned Count = 2;
1524 while (i+Count != e && Ops[i+Count] == Ops[i])
1525 ++Count;
1526 // Merge the values into a multiply.
1527 const SCEV *Scale = getConstant(Ty, Count);
1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001533 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001534 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001536 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001537 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001538
Dan Gohman728c7f32009-05-08 21:03:19 +00001539 // Check for truncates. If all the operands are truncated from the same
1540 // type, see if factoring out the truncate would permit the result to be
1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542 // if the contents of the resulting outer trunc fold to something simple.
1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001545 Type *DstType = Trunc->getType();
1546 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001547 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001548 bool Ok = true;
1549 // Check all the operands to see if they can be represented in the
1550 // source type of the truncate.
1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553 if (T->getOperand()->getType() != SrcType) {
1554 Ok = false;
1555 break;
1556 }
1557 LargeOps.push_back(T->getOperand());
1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001559 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001561 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563 if (const SCEVTruncateExpr *T =
1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565 if (T->getOperand()->getType() != SrcType) {
1566 Ok = false;
1567 break;
1568 }
1569 LargeMulOps.push_back(T->getOperand());
1570 } else if (const SCEVConstant *C =
1571 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok)
1579 LargeOps.push_back(getMulExpr(LargeMulOps));
1580 } else {
1581 Ok = false;
1582 break;
1583 }
1584 }
1585 if (Ok) {
1586 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001587 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001588 // If it folds to something simple, use it. Otherwise, don't.
1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590 return getTruncateExpr(Fold, DstType);
1591 }
1592 }
1593
1594 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596 ++Idx;
1597
1598 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 if (Idx < Ops.size()) {
1600 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 // If we have an add, expand the add operands onto the end of the operands
1603 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001605 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 DeletedAdd = true;
1607 }
1608
1609 // If we deleted at least one add, we added operands to the end of the list,
1610 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001611 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001613 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
1615
1616 // Skip over the add expression until we get to a multiply.
1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618 ++Idx;
1619
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001620 // Check to see if there are any folding opportunities present with
1621 // operands multiplied by constant values.
1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 DenseMap<const SCEV *, APInt> M;
1625 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 APInt AccumulatedConstant(BitWidth, 0);
1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001628 Ops.data(), Ops.size(),
1629 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001630 // Some interesting folding opportunity is present, so its worthwhile to
1631 // re-generate the operands list. Group the operands by constant scale,
1632 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper365ef0b2013-07-03 15:07:05 +00001634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001635 E = NewOps.end(); I != E; ++I)
1636 MulOpLists[M.find(*I)->second].push_back(*I);
1637 // Re-generate the operands list.
1638 Ops.clear();
1639 if (AccumulatedConstant != 0)
1640 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001644 Ops.push_back(getMulExpr(getConstant(I->first),
1645 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001646 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001647 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001648 if (Ops.size() == 1)
1649 return Ops[0];
1650 return getAddExpr(Ops);
1651 }
1652 }
1653
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 // If we are adding something to a multiply expression, make sure the
1655 // something is not already an operand of the multiply. If so, merge it into
1656 // the multiply.
1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001661 if (isa<SCEVConstant>(MulOpSCEV))
1662 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001664 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 if (Mul->getNumOperands() != 2) {
1668 // If the multiply has more than two operands, we must get the
1669 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671 Mul->op_begin()+MulOp);
1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001673 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001675 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001676 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 if (Ops.size() == 2) return OuterMul;
1679 if (AddOp < Idx) {
1680 Ops.erase(Ops.begin()+AddOp);
1681 Ops.erase(Ops.begin()+Idx-1);
1682 } else {
1683 Ops.erase(Ops.begin()+Idx);
1684 Ops.erase(Ops.begin()+AddOp-1);
1685 }
1686 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001687 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001688 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001689
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 // Check this multiply against other multiplies being added together.
1691 for (unsigned OtherMulIdx = Idx+1;
1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 // If MulOp occurs in OtherMul, we can fold the two multiplies
1696 // together.
1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698 OMulOp != e; ++OMulOp)
1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001704 Mul->op_begin()+MulOp);
1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001706 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001711 OtherMul->op_begin()+OMulOp);
1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001713 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001714 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001718 Ops.erase(Ops.begin()+Idx);
1719 Ops.erase(Ops.begin()+OtherMulIdx-1);
1720 Ops.push_back(OuterMul);
1721 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 }
1723 }
1724 }
1725 }
1726
1727 // If there are any add recurrences in the operands list, see if any other
1728 // added values are loop invariant. If so, we can fold them into the
1729 // recurrence.
1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731 ++Idx;
1732
1733 // Scan over all recurrences, trying to fold loop invariants into them.
1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735 // Scan all of the other operands to this add and add them to the vector if
1736 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001737 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001739 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001741 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001742 LIOps.push_back(Ops[i]);
1743 Ops.erase(Ops.begin()+i);
1744 --i; --e;
1745 }
1746
1747 // If we found some loop invariants, fold them into the recurrence.
1748 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 LIOps.push_back(AddRec->getStart());
1751
Dan Gohman0bba49c2009-07-07 17:06:11 +00001752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001753 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001754 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001755
Dan Gohmanb9f96512010-06-30 07:16:37 +00001756 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001757 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001758 // Always propagate NW.
1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001761
Chris Lattner53e677a2004-04-02 20:23:17 +00001762 // If all of the other operands were loop invariant, we are done.
1763 if (Ops.size() == 1) return NewRec;
1764
Nick Lewycky980e9f32011-09-06 05:08:09 +00001765 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001766 for (unsigned i = 0;; ++i)
1767 if (Ops[i] == AddRec) {
1768 Ops[i] = NewRec;
1769 break;
1770 }
Dan Gohman246b2562007-10-22 18:31:58 +00001771 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 }
1773
1774 // Okay, if there weren't any loop invariants to be folded, check to see if
1775 // there are multiple AddRec's with the same loop induction variable being
1776 // added together. If so, we can fold them.
1777 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 ++OtherIdx)
1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783 AddRec->op_end());
1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001786 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001788 if (OtherAddRec->getLoop() == AddRecLoop) {
1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001791 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001792 AddRecOps.append(OtherAddRec->op_begin()+i,
1793 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001794 break;
1795 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001796 AddRecOps[i] = getAddExpr(AddRecOps[i],
1797 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001798 }
1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001801 // Step size has changed, so we cannot guarantee no self-wraparound.
1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001803 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 }
1805
1806 // Otherwise couldn't fold anything into this recurrence. Move onto the
1807 // next one.
1808 }
1809
1810 // Okay, it looks like we really DO need an add expr. Check to see if we
1811 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001812 FoldingSetNodeID ID;
1813 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001817 SCEVAddExpr *S =
1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001824 UniqueSCEVs.InsertNode(S, IP);
1825 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001826 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001827 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001828}
1829
Nick Lewyckye97728e2011-10-04 06:51:26 +00001830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831 uint64_t k = i*j;
1832 if (j > 1 && k / j != i) Overflow = true;
1833 return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient. If an
1837/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001838/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840 // We use the multiplicative formula:
1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842 // At each iteration, we take the n-th term of the numeral and divide by the
1843 // (k-n)th term of the denominator. This division will always produce an
1844 // integral result, and helps reduce the chance of overflow in the
1845 // intermediate computations. However, we can still overflow even when the
1846 // final result would fit.
1847
1848 if (n == 0 || n == k) return 1;
1849 if (k > n) return 0;
1850
1851 if (k > n/2)
1852 k = n-k;
1853
1854 uint64_t r = 1;
1855 for (uint64_t i = 1; i <= k; ++i) {
1856 r = umul_ov(r, n-(i-1), Overflow);
1857 r /= i;
1858 }
1859 return r;
1860}
1861
Dan Gohman6c0866c2009-05-24 23:45:28 +00001862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001865 SCEV::NoWrapFlags Flags) {
1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001868 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001869 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001870#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001872 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001874 "SCEVMulExpr operand types don't match!");
1875#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001876
Andrew Trick3228cc22011-03-14 16:50:06 +00001877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001878 // And vice-versa.
1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001882 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884 E = Ops.end(); I != E; ++I)
1885 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 All = false;
1887 break;
1888 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001890 }
1891
Chris Lattner53e677a2004-04-02 20:23:17 +00001892 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001893 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001894
1895 // If there are any constants, fold them together.
1896 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001898
1899 // C1*(C2+V) -> C1*C2 + C1*V
1900 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 if (Add->getNumOperands() == 2 &&
1903 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001906
Chris Lattner53e677a2004-04-02 20:23:17 +00001907 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001910 ConstantInt *Fold = ConstantInt::get(getContext(),
1911 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001912 RHSC->getValue()->getValue());
1913 Ops[0] = getConstant(Fold);
1914 Ops.erase(Ops.begin()+1); // Erase the folded element
1915 if (Ops.size() == 1) return Ops[0];
1916 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918
1919 // If we are left with a constant one being multiplied, strip it off.
1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921 Ops.erase(Ops.begin());
1922 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001924 // If we have a multiply of zero, it will always be zero.
1925 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 } else if (Ops[0]->isAllOnesValue()) {
1927 // If we have a mul by -1 of an add, try distributing the -1 among the
1928 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001929 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931 SmallVector<const SCEV *, 4> NewOps;
1932 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001935 const SCEV *Mul = getMulExpr(Ops[0], *I);
1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937 NewOps.push_back(Mul);
1938 }
1939 if (AnyFolded)
1940 return getAddExpr(NewOps);
1941 }
Andrew Tricka053b212011-03-14 17:38:54 +00001942 else if (const SCEVAddRecExpr *
1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944 // Negation preserves a recurrence's no self-wrap property.
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947 E = AddRec->op_end(); I != E; ++I) {
1948 Operands.push_back(getMulExpr(Ops[0], *I));
1949 }
1950 return getAddRecExpr(Operands, AddRec->getLoop(),
1951 AddRec->getNoWrapFlags(SCEV::FlagNW));
1952 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001953 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001955
1956 if (Ops.size() == 1)
1957 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
1959
1960 // Skip over the add expression until we get to a multiply.
1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962 ++Idx;
1963
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 // If there are mul operands inline them all into this expression.
1965 if (Idx < Ops.size()) {
1966 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 // If we have an mul, expand the mul operands onto the end of the operands
1969 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001971 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 DeletedMul = true;
1973 }
1974
1975 // If we deleted at least one mul, we added operands to the end of the list,
1976 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001977 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001978 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001979 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001980 }
1981
1982 // If there are any add recurrences in the operands list, see if any other
1983 // added values are loop invariant. If so, we can fold them into the
1984 // recurrence.
1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986 ++Idx;
1987
1988 // Scan over all recurrences, trying to fold loop invariants into them.
1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990 // Scan all of the other operands to this mul and add them to the vector if
1991 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001992 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001994 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001995 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001996 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 LIOps.push_back(Ops[i]);
1998 Ops.erase(Ops.begin()+i);
1999 --i; --e;
2000 }
2001
2002 // If we found some loop invariants, fold them into the recurrence.
2003 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002005 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002006 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002007 const SCEV *Scale = getMulExpr(LIOps);
2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002010
Dan Gohmanb9f96512010-06-30 07:16:37 +00002011 // Build the new addrec. Propagate the NUW and NSW flags if both the
2012 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002013 //
2014 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002015 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018
2019 // If all of the other operands were loop invariant, we are done.
2020 if (Ops.size() == 1) return NewRec;
2021
Nick Lewycky980e9f32011-09-06 05:08:09 +00002022 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002023 for (unsigned i = 0;; ++i)
2024 if (Ops[i] == AddRec) {
2025 Ops[i] = NewRec;
2026 break;
2027 }
Dan Gohman246b2562007-10-22 18:31:58 +00002028 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002029 }
2030
2031 // Okay, if there weren't any loop invariants to be folded, check to see if
2032 // there are multiple AddRec's with the same loop induction variable being
2033 // multiplied together. If so, we can fold them.
2034 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002036 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038 continue;
2039
2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043 // ]]],+,...up to x=2n}.
2044 // Note that the arguments to choose() are always integers with values
2045 // known at compile time, never SCEV objects.
2046 //
2047 // The implementation avoids pointless extra computations when the two
2048 // addrec's are of different length (mathematically, it's equivalent to
2049 // an infinite stream of zeros on the right).
2050 bool OpsModified = false;
2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 ++OtherIdx) {
2053 const SCEVAddRecExpr *OtherAddRec =
2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056 continue;
2057
2058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002080 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086 SCEV::FlagAnyWrap);
2087 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002088 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092 if (!AddRec)
2093 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002094 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002095 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002096 if (OpsModified)
2097 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002098 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002118 UniqueSCEVs.InsertNode(S, IP);
2119 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002120 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002121 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002122}
2123
Andreas Bolka8a11c982009-08-07 22:55:26 +00002124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
Dan Gohman622ed672009-05-04 22:02:23 +00002132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002133 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002134 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002142 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002149 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002161 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002165 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002166 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002167 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
Dan Gohman185cf032009-05-08 20:18:49 +00002201 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
Dan Gohman185cf032009-05-08 20:18:49 +00002220
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002228 }
2229 }
2230
Dan Gohman1c343752009-06-27 21:21:31 +00002231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241}
2242
2243
Dan Gohman6c0866c2009-05-24 23:45:28 +00002244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002249 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002250 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 }
2256
2257 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002258 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002259}
2260
Dan Gohman6c0866c2009-05-24 23:45:28 +00002261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002263const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002265 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002266 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002267#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002273 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002274 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002276
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002280 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohmanbc028532010-02-19 18:49:22 +00002282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
Andrew Trick3228cc22011-03-14 16:50:06 +00002288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002293 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002297 All = false;
2298 break;
2299 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002301 }
2302
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002305 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002306 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002308 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002311 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002312 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002318 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002323 // Create a recurrence for the outer loop with the same step size.
2324 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 AllInvariant = false;
2335 break;
2336 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002338 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002339 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002349 }
2350 }
2351
Dan Gohman67847532010-01-19 22:27:22 +00002352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002367 UniqueSCEVs.InsertNode(S, IP);
2368 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002369 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002370 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002371}
2372
Dan Gohman9311ef62009-06-24 14:49:00 +00002373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002375 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002385#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002389 "SCEVSMaxExpr operand types don't match!");
2390#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002393 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 ++Idx;
2399 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002402 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 }
2410
Dan Gohmane5aceed2009-06-24 14:46:22 +00002411 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
Dan Gohman3ab13122010-04-13 16:49:23 +00002421 if (Ops.size() == 1) return Ops[0];
2422 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002433 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002434 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
Nick Lewycky3e630762008-02-20 06:48:22 +00002461 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002462 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002475}
2476
Dan Gohman9311ef62009-06-24 14:49:00 +00002477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002479 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
Dan Gohman0bba49c2009-07-07 17:06:11 +00002485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002489#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002493 "SCEVUMaxExpr operand types don't match!");
2494#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002497 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 ++Idx;
2503 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002506 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
Dan Gohmane5aceed2009-06-24 14:46:22 +00002515 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
Dan Gohman3ab13122010-04-13 16:49:23 +00002525 if (Ops.size() == 1) return Ops[0];
2526 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002537 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002538 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002579}
2580
Dan Gohman9311ef62009-06-24 14:49:00 +00002581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
Dan Gohman9311ef62009-06-24 14:49:00 +00002587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
Matt Arsenault14807bd2013-09-10 19:55:24 +00002593const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002594 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
Matt Arsenault14807bd2013-09-10 19:55:24 +00002598 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002599
Dan Gohman4f8eea82010-02-01 18:27:38 +00002600 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002603 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenault14807bd2013-09-10 19:55:24 +00002605 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Matt Arsenault14807bd2013-09-10 19:55:24 +00002609const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2610 StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002611 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002612 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002613 // constant expression and then folding it back into a ConstantInt.
2614 // This is just a compile-time optimization.
Matt Arsenault14807bd2013-09-10 19:55:24 +00002615 if (TD) {
2616 return getConstant(IntTy,
Dan Gohman6ab10f62010-04-12 23:03:26 +00002617 TD->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenault14807bd2013-09-10 19:55:24 +00002618 }
Dan Gohman6ab10f62010-04-12 23:03:26 +00002619
Dan Gohman0f5efe52010-01-28 02:15:55 +00002620 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2621 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002622 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002623 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002624
Matt Arsenault325ee6e2013-10-21 18:08:09 +00002625 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002626 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002627}
2628
Dan Gohman0bba49c2009-07-07 17:06:11 +00002629const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002630 // Don't attempt to do anything other than create a SCEVUnknown object
2631 // here. createSCEV only calls getUnknown after checking for all other
2632 // interesting possibilities, and any other code that calls getUnknown
2633 // is doing so in order to hide a value from SCEV canonicalization.
2634
Dan Gohman1c343752009-06-27 21:21:31 +00002635 FoldingSetNodeID ID;
2636 ID.AddInteger(scUnknown);
2637 ID.AddPointer(V);
2638 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002639 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2640 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2641 "Stale SCEVUnknown in uniquing map!");
2642 return S;
2643 }
2644 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2645 FirstUnknown);
2646 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002647 UniqueSCEVs.InsertNode(S, IP);
2648 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002649}
2650
Chris Lattner53e677a2004-04-02 20:23:17 +00002651//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002652// Basic SCEV Analysis and PHI Idiom Recognition Code
2653//
2654
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002655/// isSCEVable - Test if values of the given type are analyzable within
2656/// the SCEV framework. This primarily includes integer types, and it
2657/// can optionally include pointer types if the ScalarEvolution class
2658/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002659bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002660 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002661 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002662}
2663
2664/// getTypeSizeInBits - Return the size in bits of the specified type,
2665/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002666uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002667 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2668
Micah Villmow3574eca2012-10-08 16:38:25 +00002669 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002670 if (TD)
2671 return TD->getTypeSizeInBits(Ty);
2672
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002673 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002674 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002675 return Ty->getPrimitiveSizeInBits();
2676
Micah Villmow3574eca2012-10-08 16:38:25 +00002677 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002678 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002679 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002680 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002681}
2682
2683/// getEffectiveSCEVType - Return a type with the same bitwidth as
2684/// the given type and which represents how SCEV will treat the given
2685/// type, for which isSCEVable must return true. For pointer types,
2686/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002687Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002688 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
Matt Arsenault14807bd2013-09-10 19:55:24 +00002690 if (Ty->isIntegerTy()) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002691 return Ty;
Matt Arsenault14807bd2013-09-10 19:55:24 +00002692 }
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002693
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002695 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenault14807bd2013-09-10 19:55:24 +00002696
2697 if (TD)
2698 return TD->getIntPtrType(Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002699
Micah Villmow3574eca2012-10-08 16:38:25 +00002700 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002701 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002702}
Chris Lattner53e677a2004-04-02 20:23:17 +00002703
Dan Gohman0bba49c2009-07-07 17:06:11 +00002704const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002705 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002706}
2707
Shuxin Yang5e915e62013-07-08 17:33:13 +00002708namespace {
2709 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2710 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2711 // is set iff if find such SCEVUnknown.
2712 //
2713 struct FindInvalidSCEVUnknown {
2714 bool FindOne;
2715 FindInvalidSCEVUnknown() { FindOne = false; }
2716 bool follow(const SCEV *S) {
2717 switch (S->getSCEVType()) {
2718 case scConstant:
2719 return false;
2720 case scUnknown:
Shuxin Yanga1036992013-07-12 07:25:38 +00002721 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yang5e915e62013-07-08 17:33:13 +00002722 FindOne = true;
2723 return false;
2724 default:
2725 return true;
2726 }
2727 }
2728 bool isDone() const { return FindOne; }
2729 };
2730}
2731
2732bool ScalarEvolution::checkValidity(const SCEV *S) const {
2733 FindInvalidSCEVUnknown F;
2734 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2735 ST.visitAll(S);
2736
2737 return !F.FindOne;
2738}
2739
Chris Lattner53e677a2004-04-02 20:23:17 +00002740/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2741/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002742const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002743 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002744
Shuxin Yang5e915e62013-07-08 17:33:13 +00002745 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2746 if (I != ValueExprMap.end()) {
2747 const SCEV *S = I->second;
Shuxin Yanga1036992013-07-12 07:25:38 +00002748 if (checkValidity(S))
Shuxin Yang5e915e62013-07-08 17:33:13 +00002749 return S;
2750 else
2751 ValueExprMap.erase(I);
2752 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00002753 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002754
2755 // The process of creating a SCEV for V may have caused other SCEVs
2756 // to have been created, so it's necessary to insert the new entry
2757 // from scratch, rather than trying to remember the insert position
2758 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002759 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002760 return S;
2761}
2762
Dan Gohman2d1be872009-04-16 03:18:22 +00002763/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2764///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002765const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002766 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002767 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002768 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002769
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002770 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002771 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002772 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002773 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002774}
2775
2776/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002777const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002778 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002779 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002780 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002781
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002782 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002783 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002784 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002785 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002786 return getMinusSCEV(AllOnes, V);
2787}
2788
Andrew Trick3228cc22011-03-14 16:50:06 +00002789/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002790const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002791 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002792 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2793
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002794 // Fast path: X - X --> 0.
2795 if (LHS == RHS)
2796 return getConstant(LHS->getType(), 0);
2797
Dan Gohman2d1be872009-04-16 03:18:22 +00002798 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002799 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002800}
2801
2802/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2803/// input value to the specified type. If the type must be extended, it is zero
2804/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002805const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002806ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2807 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002808 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2809 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002810 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002811 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002812 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002813 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002814 return getTruncateExpr(V, Ty);
2815 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002816}
2817
2818/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2819/// input value to the specified type. If the type must be extended, it is sign
2820/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002821const SCEV *
2822ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002823 Type *Ty) {
2824 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002825 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2826 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002827 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002828 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002829 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002830 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002831 return getTruncateExpr(V, Ty);
2832 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002833}
2834
Dan Gohman467c4302009-05-13 03:46:30 +00002835/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2836/// input value to the specified type. If the type must be extended, it is zero
2837/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002838const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002839ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2840 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002841 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2842 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002843 "Cannot noop or zero extend with non-integer arguments!");
2844 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2845 "getNoopOrZeroExtend cannot truncate!");
2846 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2847 return V; // No conversion
2848 return getZeroExtendExpr(V, Ty);
2849}
2850
2851/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2852/// input value to the specified type. If the type must be extended, it is sign
2853/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002854const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002855ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2856 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002857 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2858 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002859 "Cannot noop or sign extend with non-integer arguments!");
2860 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2861 "getNoopOrSignExtend cannot truncate!");
2862 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2863 return V; // No conversion
2864 return getSignExtendExpr(V, Ty);
2865}
2866
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002867/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2868/// the input value to the specified type. If the type must be extended,
2869/// it is extended with unspecified bits. The conversion must not be
2870/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002871const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002872ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2873 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002874 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2875 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002876 "Cannot noop or any extend with non-integer arguments!");
2877 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2878 "getNoopOrAnyExtend cannot truncate!");
2879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2880 return V; // No conversion
2881 return getAnyExtendExpr(V, Ty);
2882}
2883
Dan Gohman467c4302009-05-13 03:46:30 +00002884/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2885/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002886const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002887ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2888 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002889 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2890 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002891 "Cannot truncate or noop with non-integer arguments!");
2892 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2893 "getTruncateOrNoop cannot extend!");
2894 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2895 return V; // No conversion
2896 return getTruncateExpr(V, Ty);
2897}
2898
Dan Gohmana334aa72009-06-22 00:31:57 +00002899/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2900/// the types using zero-extension, and then perform a umax operation
2901/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002902const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2903 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002904 const SCEV *PromotedLHS = LHS;
2905 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002906
2907 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2908 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2909 else
2910 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2911
2912 return getUMaxExpr(PromotedLHS, PromotedRHS);
2913}
2914
Dan Gohmanc9759e82009-06-22 15:03:27 +00002915/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2916/// the types using zero-extension, and then perform a umin operation
2917/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002918const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2919 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002920 const SCEV *PromotedLHS = LHS;
2921 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002922
2923 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2924 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2925 else
2926 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2927
2928 return getUMinExpr(PromotedLHS, PromotedRHS);
2929}
2930
Andrew Trickb12a7542011-03-17 23:51:11 +00002931/// getPointerBase - Transitively follow the chain of pointer-type operands
2932/// until reaching a SCEV that does not have a single pointer operand. This
2933/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2934/// but corner cases do exist.
2935const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2936 // A pointer operand may evaluate to a nonpointer expression, such as null.
2937 if (!V->getType()->isPointerTy())
2938 return V;
2939
2940 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2941 return getPointerBase(Cast->getOperand());
2942 }
2943 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2944 const SCEV *PtrOp = 0;
2945 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2946 I != E; ++I) {
2947 if ((*I)->getType()->isPointerTy()) {
2948 // Cannot find the base of an expression with multiple pointer operands.
2949 if (PtrOp)
2950 return V;
2951 PtrOp = *I;
2952 }
2953 }
2954 if (!PtrOp)
2955 return V;
2956 return getPointerBase(PtrOp);
2957 }
2958 return V;
2959}
2960
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961/// PushDefUseChildren - Push users of the given Instruction
2962/// onto the given Worklist.
2963static void
2964PushDefUseChildren(Instruction *I,
2965 SmallVectorImpl<Instruction *> &Worklist) {
2966 // Push the def-use children onto the Worklist stack.
2967 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2968 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002969 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002970}
2971
2972/// ForgetSymbolicValue - This looks up computed SCEV values for all
2973/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002974/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002975/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002976void
Dan Gohman85669632010-02-25 06:57:05 +00002977ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002978 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002979 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002980
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002981 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002982 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002983 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002984 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002985 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002986
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002987 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002988 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002989 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002990 const SCEV *Old = It->second;
2991
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002992 // Short-circuit the def-use traversal if the symbolic name
2993 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002994 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002995 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002996
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002997 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002998 // structure, it's a PHI that's in the progress of being computed
2999 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3000 // additional loop trip count information isn't going to change anything.
3001 // In the second case, createNodeForPHI will perform the necessary
3002 // updates on its own when it gets to that point. In the third, we do
3003 // want to forget the SCEVUnknown.
3004 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00003005 !isa<SCEVUnknown>(Old) ||
3006 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00003007 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003008 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003009 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003010 }
3011
3012 PushDefUseChildren(I, Worklist);
3013 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00003014}
Chris Lattner53e677a2004-04-02 20:23:17 +00003015
3016/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3017/// a loop header, making it a potential recurrence, or it doesn't.
3018///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003019const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00003020 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3021 if (L->getHeader() == PN->getParent()) {
3022 // The loop may have multiple entrances or multiple exits; we can analyze
3023 // this phi as an addrec if it has a unique entry value and a unique
3024 // backedge value.
3025 Value *BEValueV = 0, *StartValueV = 0;
3026 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3027 Value *V = PN->getIncomingValue(i);
3028 if (L->contains(PN->getIncomingBlock(i))) {
3029 if (!BEValueV) {
3030 BEValueV = V;
3031 } else if (BEValueV != V) {
3032 BEValueV = 0;
3033 break;
3034 }
3035 } else if (!StartValueV) {
3036 StartValueV = V;
3037 } else if (StartValueV != V) {
3038 StartValueV = 0;
3039 break;
3040 }
3041 }
3042 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003043 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003044 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003045 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003046 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003047 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003048
3049 // Using this symbolic name for the PHI, analyze the value coming around
3050 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003051 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003052
3053 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3054 // has a special value for the first iteration of the loop.
3055
3056 // If the value coming around the backedge is an add with the symbolic
3057 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003058 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003059 // If there is a single occurrence of the symbolic value, replace it
3060 // with a recurrence.
3061 unsigned FoundIndex = Add->getNumOperands();
3062 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3063 if (Add->getOperand(i) == SymbolicName)
3064 if (FoundIndex == e) {
3065 FoundIndex = i;
3066 break;
3067 }
3068
3069 if (FoundIndex != Add->getNumOperands()) {
3070 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003071 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003072 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3073 if (i != FoundIndex)
3074 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003075 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003076
3077 // This is not a valid addrec if the step amount is varying each
3078 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003079 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003080 (isa<SCEVAddRecExpr>(Accum) &&
3081 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003083
3084 // If the increment doesn't overflow, then neither the addrec nor
3085 // the post-increment will overflow.
3086 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3087 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003088 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003089 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003090 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003091 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003092 dyn_cast<GEPOperator>(BEValueV)) {
3093 // If the increment is an inbounds GEP, then we know the address
3094 // space cannot be wrapped around. We cannot make any guarantee
3095 // about signed or unsigned overflow because pointers are
3096 // unsigned but we may have a negative index from the base
3097 // pointer.
3098 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003099 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003100 }
3101
Dan Gohman27dead42010-04-12 07:49:36 +00003102 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003103 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003104
Dan Gohmana10756e2010-01-21 02:09:26 +00003105 // Since the no-wrap flags are on the increment, they apply to the
3106 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003107 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003108 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003109 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003110
3111 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003112 // to be symbolic. We now need to go back and purge all of the
3113 // entries for the scalars that use the symbolic expression.
3114 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003115 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003116 return PHISCEV;
3117 }
3118 }
Dan Gohman622ed672009-05-04 22:02:23 +00003119 } else if (const SCEVAddRecExpr *AddRec =
3120 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003121 // Otherwise, this could be a loop like this:
3122 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3123 // In this case, j = {1,+,1} and BEValue is j.
3124 // Because the other in-value of i (0) fits the evolution of BEValue
3125 // i really is an addrec evolution.
3126 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003127 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003128
3129 // If StartVal = j.start - j.stride, we can use StartVal as the
3130 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003131 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003132 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003133 // FIXME: For constant StartVal, we should be able to infer
3134 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003135 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003136 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3137 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003138
3139 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003140 // to be symbolic. We now need to go back and purge all of the
3141 // entries for the scalars that use the symbolic expression.
3142 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003143 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003144 return PHISCEV;
3145 }
3146 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003147 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003148 }
Dan Gohman27dead42010-04-12 07:49:36 +00003149 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003150
Dan Gohman85669632010-02-25 06:57:05 +00003151 // If the PHI has a single incoming value, follow that value, unless the
3152 // PHI's incoming blocks are in a different loop, in which case doing so
3153 // risks breaking LCSSA form. Instcombine would normally zap these, but
3154 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003155 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003156 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003157 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003158
Chris Lattner53e677a2004-04-02 20:23:17 +00003159 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003160 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003161}
3162
Dan Gohman26466c02009-05-08 20:26:55 +00003163/// createNodeForGEP - Expand GEP instructions into add and multiply
3164/// operations. This allows them to be analyzed by regular SCEV code.
3165///
Dan Gohmand281ed22009-12-18 02:09:29 +00003166const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003167 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003168 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003169 // Don't attempt to analyze GEPs over unsized objects.
3170 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3171 return getUnknown(GEP);
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003172
3173 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3174 // Add expression, because the Instruction may be guarded by control flow
3175 // and the no-overflow bits may not be valid for the expression in any
3176 // context.
3177 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3178
Dan Gohmandeff6212010-05-03 22:09:21 +00003179 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003180 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003181 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003182 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003183 I != E; ++I) {
3184 Value *Index = *I;
3185 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003186 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003187 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003188 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault14807bd2013-09-10 19:55:24 +00003189 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003190
Dan Gohmanb9f96512010-06-30 07:16:37 +00003191 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003192 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003193 } else {
3194 // For an array, add the element offset, explicitly scaled.
Matt Arsenault14807bd2013-09-10 19:55:24 +00003195 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003196 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003197 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003198 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3199
Dan Gohmanb9f96512010-06-30 07:16:37 +00003200 // Multiply the index by the element size to compute the element offset.
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003201 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003202
3203 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003204 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003205 }
3206 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003207
3208 // Get the SCEV for the GEP base.
3209 const SCEV *BaseS = getSCEV(Base);
3210
Dan Gohmanb9f96512010-06-30 07:16:37 +00003211 // Add the total offset from all the GEP indices to the base.
Matt Arsenault9ed1a3c2013-09-27 22:38:23 +00003212 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003213}
3214
Nick Lewycky83bb0052007-11-22 07:59:40 +00003215/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3216/// guaranteed to end in (at every loop iteration). It is, at the same time,
3217/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3218/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003220ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003221 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003222 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003223
Dan Gohman622ed672009-05-04 22:02:23 +00003224 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003225 return std::min(GetMinTrailingZeros(T->getOperand()),
3226 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227
Dan Gohman622ed672009-05-04 22:02:23 +00003228 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003229 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3230 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3231 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003232 }
3233
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003235 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3236 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3237 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003238 }
3239
Dan Gohman622ed672009-05-04 22:02:23 +00003240 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003242 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003243 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003245 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003246 }
3247
Dan Gohman622ed672009-05-04 22:02:23 +00003248 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003249 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003250 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3251 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003252 for (unsigned i = 1, e = M->getNumOperands();
3253 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003255 BitWidth);
3256 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003257 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003258
Dan Gohman622ed672009-05-04 22:02:23 +00003259 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003260 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003262 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003264 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003265 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003266
Dan Gohman622ed672009-05-04 22:02:23 +00003267 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003268 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003269 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003270 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003271 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003272 return MinOpRes;
3273 }
3274
Dan Gohman622ed672009-05-04 22:02:23 +00003275 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003276 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003277 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003278 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003279 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003280 return MinOpRes;
3281 }
3282
Dan Gohman2c364ad2009-06-19 23:29:04 +00003283 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3284 // For a SCEVUnknown, ask ValueTracking.
3285 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003286 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003287 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003288 return Zeros.countTrailingOnes();
3289 }
3290
3291 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003292 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003293}
Chris Lattner53e677a2004-04-02 20:23:17 +00003294
Dan Gohman85b05a22009-07-13 21:35:55 +00003295/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3296///
3297ConstantRange
3298ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003299 // See if we've computed this range already.
3300 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3301 if (I != UnsignedRanges.end())
3302 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003303
3304 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003305 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003306
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003307 unsigned BitWidth = getTypeSizeInBits(S->getType());
3308 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3309
3310 // If the value has known zeros, the maximum unsigned value will have those
3311 // known zeros as well.
3312 uint32_t TZ = GetMinTrailingZeros(S);
3313 if (TZ != 0)
3314 ConservativeResult =
3315 ConstantRange(APInt::getMinValue(BitWidth),
3316 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3317
Dan Gohman85b05a22009-07-13 21:35:55 +00003318 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3319 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3320 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3321 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003322 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003323 }
3324
3325 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3326 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3327 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3328 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003329 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003330 }
3331
3332 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3333 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3334 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3335 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003336 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338
3339 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3340 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3341 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3342 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003343 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003344 }
3345
3346 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3347 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3348 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003349 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003350 }
3351
3352 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3353 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003354 return setUnsignedRange(ZExt,
3355 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003356 }
3357
3358 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3359 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003360 return setUnsignedRange(SExt,
3361 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003362 }
3363
3364 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3365 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003366 return setUnsignedRange(Trunc,
3367 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003368 }
3369
Dan Gohman85b05a22009-07-13 21:35:55 +00003370 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003371 // If there's no unsigned wrap, the value will never be less than its
3372 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003373 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003374 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003375 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003376 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003377 ConservativeResult.intersectWith(
3378 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003379
3380 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003381 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003382 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003383 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003384 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3385 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003386 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3387
3388 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003389 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003390
3391 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003392 ConstantRange StepRange = getSignedRange(Step);
3393 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3394 ConstantRange EndRange =
3395 StartRange.add(MaxBECountRange.multiply(StepRange));
3396
3397 // Check for overflow. This must be done with ConstantRange arithmetic
3398 // because we could be called from within the ScalarEvolution overflow
3399 // checking code.
3400 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3401 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3402 ConstantRange ExtMaxBECountRange =
3403 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3404 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3405 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3406 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003407 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003408
Dan Gohman85b05a22009-07-13 21:35:55 +00003409 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3410 EndRange.getUnsignedMin());
3411 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3412 EndRange.getUnsignedMax());
3413 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003414 return setUnsignedRange(AddRec, ConservativeResult);
3415 return setUnsignedRange(AddRec,
3416 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003417 }
3418 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003419
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003420 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003421 }
3422
3423 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3424 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003425 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003426 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003427 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003428 return setUnsignedRange(U, ConservativeResult);
3429 return setUnsignedRange(U,
3430 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003431 }
3432
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003433 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003434}
3435
Dan Gohman85b05a22009-07-13 21:35:55 +00003436/// getSignedRange - Determine the signed range for a particular SCEV.
3437///
3438ConstantRange
3439ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003440 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003441 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3442 if (I != SignedRanges.end())
3443 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003444
Dan Gohman85b05a22009-07-13 21:35:55 +00003445 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003446 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003447
Dan Gohman52fddd32010-01-26 04:40:18 +00003448 unsigned BitWidth = getTypeSizeInBits(S->getType());
3449 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3450
3451 // If the value has known zeros, the maximum signed value will have those
3452 // known zeros as well.
3453 uint32_t TZ = GetMinTrailingZeros(S);
3454 if (TZ != 0)
3455 ConservativeResult =
3456 ConstantRange(APInt::getSignedMinValue(BitWidth),
3457 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3458
Dan Gohman85b05a22009-07-13 21:35:55 +00003459 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3460 ConstantRange X = getSignedRange(Add->getOperand(0));
3461 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3462 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003463 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003464 }
3465
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3467 ConstantRange X = getSignedRange(Mul->getOperand(0));
3468 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3469 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003471 }
3472
Dan Gohman85b05a22009-07-13 21:35:55 +00003473 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3474 ConstantRange X = getSignedRange(SMax->getOperand(0));
3475 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3476 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003477 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
Dan Gohman62849c02009-06-24 01:05:09 +00003479
Dan Gohman85b05a22009-07-13 21:35:55 +00003480 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3481 ConstantRange X = getSignedRange(UMax->getOperand(0));
3482 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3483 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003484 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003485 }
Dan Gohman62849c02009-06-24 01:05:09 +00003486
Dan Gohman85b05a22009-07-13 21:35:55 +00003487 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3488 ConstantRange X = getSignedRange(UDiv->getLHS());
3489 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003490 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003491 }
Dan Gohman62849c02009-06-24 01:05:09 +00003492
Dan Gohman85b05a22009-07-13 21:35:55 +00003493 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3494 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003495 return setSignedRange(ZExt,
3496 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003497 }
3498
3499 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3500 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003501 return setSignedRange(SExt,
3502 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003503 }
3504
3505 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3506 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003507 return setSignedRange(Trunc,
3508 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003509 }
3510
Dan Gohman85b05a22009-07-13 21:35:55 +00003511 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003512 // If there's no signed wrap, and all the operands have the same sign or
3513 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003514 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003515 bool AllNonNeg = true;
3516 bool AllNonPos = true;
3517 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3518 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3519 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3520 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003521 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003522 ConservativeResult = ConservativeResult.intersectWith(
3523 ConstantRange(APInt(BitWidth, 0),
3524 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003525 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003526 ConservativeResult = ConservativeResult.intersectWith(
3527 ConstantRange(APInt::getSignedMinValue(BitWidth),
3528 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003529 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003530
3531 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003532 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003533 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003534 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003535 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3536 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003537 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3538
3539 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003540 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003541
3542 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003543 ConstantRange StepRange = getSignedRange(Step);
3544 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3545 ConstantRange EndRange =
3546 StartRange.add(MaxBECountRange.multiply(StepRange));
3547
3548 // Check for overflow. This must be done with ConstantRange arithmetic
3549 // because we could be called from within the ScalarEvolution overflow
3550 // checking code.
3551 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3552 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3553 ConstantRange ExtMaxBECountRange =
3554 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3555 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3556 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3557 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003558 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003559
Dan Gohman85b05a22009-07-13 21:35:55 +00003560 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3561 EndRange.getSignedMin());
3562 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3563 EndRange.getSignedMax());
3564 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003565 return setSignedRange(AddRec, ConservativeResult);
3566 return setSignedRange(AddRec,
3567 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003568 }
Dan Gohman62849c02009-06-24 01:05:09 +00003569 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003570
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003571 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003572 }
3573
Dan Gohman2c364ad2009-06-19 23:29:04 +00003574 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3575 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003576 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003577 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003578 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
Hal Finkel033e0a92013-07-09 18:16:16 +00003579 if (NS <= 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003580 return setSignedRange(U, ConservativeResult);
3581 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003582 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003583 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003584 }
3585
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003586 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003587}
3588
Chris Lattner53e677a2004-04-02 20:23:17 +00003589/// createSCEV - We know that there is no SCEV for the specified value.
3590/// Analyze the expression.
3591///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003592const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003593 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003594 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003595
Dan Gohman6c459a22008-06-22 19:56:46 +00003596 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003597 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003598 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003599
3600 // Don't attempt to analyze instructions in blocks that aren't
3601 // reachable. Such instructions don't matter, and they aren't required
3602 // to obey basic rules for definitions dominating uses which this
3603 // analysis depends on.
3604 if (!DT->isReachableFromEntry(I->getParent()))
3605 return getUnknown(V);
3606 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003607 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003608 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3609 return getConstant(CI);
3610 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003611 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003612 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3613 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003614 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003615 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003616
Dan Gohmanca178902009-07-17 20:47:02 +00003617 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003618 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 case Instruction::Add: {
3620 // The simple thing to do would be to just call getSCEV on both operands
3621 // and call getAddExpr with the result. However if we're looking at a
3622 // bunch of things all added together, this can be quite inefficient,
3623 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3624 // Instead, gather up all the operands and make a single getAddExpr call.
3625 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003626 //
3627 // Don't apply this instruction's NSW or NUW flags to the new
3628 // expression. The instruction may be guarded by control flow that the
3629 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3630 // mapped to the same SCEV expression, and it would be incorrect to transfer
3631 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003632 SmallVector<const SCEV *, 4> AddOps;
3633 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003634 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3635 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3636 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3637 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003638 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003639 const SCEV *Op1 = getSCEV(U->getOperand(1));
3640 if (Opcode == Instruction::Sub)
3641 AddOps.push_back(getNegativeSCEV(Op1));
3642 else
3643 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003644 }
3645 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003646 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003647 }
3648 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003649 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003650 SmallVector<const SCEV *, 4> MulOps;
3651 MulOps.push_back(getSCEV(U->getOperand(1)));
3652 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003653 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003654 Op = U->getOperand(0)) {
3655 U = cast<Operator>(Op);
3656 MulOps.push_back(getSCEV(U->getOperand(1)));
3657 }
3658 MulOps.push_back(getSCEV(U->getOperand(0)));
3659 return getMulExpr(MulOps);
3660 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003661 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003662 return getUDivExpr(getSCEV(U->getOperand(0)),
3663 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003664 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003665 return getMinusSCEV(getSCEV(U->getOperand(0)),
3666 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003667 case Instruction::And:
3668 // For an expression like x&255 that merely masks off the high bits,
3669 // use zext(trunc(x)) as the SCEV expression.
3670 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003671 if (CI->isNullValue())
3672 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003673 if (CI->isAllOnesValue())
3674 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003675 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003676
3677 // Instcombine's ShrinkDemandedConstant may strip bits out of
3678 // constants, obscuring what would otherwise be a low-bits mask.
3679 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3680 // knew about to reconstruct a low-bits mask value.
3681 unsigned LZ = A.countLeadingZeros();
3682 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003683 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003684 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003685
3686 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3687
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003688 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003689 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003690 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003691 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003692 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003693 }
3694 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003695
Dan Gohman6c459a22008-06-22 19:56:46 +00003696 case Instruction::Or:
3697 // If the RHS of the Or is a constant, we may have something like:
3698 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3699 // optimizations will transparently handle this case.
3700 //
3701 // In order for this transformation to be safe, the LHS must be of the
3702 // form X*(2^n) and the Or constant must be less than 2^n.
3703 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003704 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003705 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003706 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003707 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3708 // Build a plain add SCEV.
3709 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3710 // If the LHS of the add was an addrec and it has no-wrap flags,
3711 // transfer the no-wrap flags, since an or won't introduce a wrap.
3712 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3713 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003714 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3715 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003716 }
3717 return S;
3718 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003719 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003720 break;
3721 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003722 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003723 // If the RHS of the xor is a signbit, then this is just an add.
3724 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003725 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003726 return getAddExpr(getSCEV(U->getOperand(0)),
3727 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003728
3729 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003730 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003731 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003732
3733 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3734 // This is a variant of the check for xor with -1, and it handles
3735 // the case where instcombine has trimmed non-demanded bits out
3736 // of an xor with -1.
3737 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3738 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3739 if (BO->getOpcode() == Instruction::And &&
3740 LCI->getValue() == CI->getValue())
3741 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003742 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003743 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003744 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003745 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003746 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3747
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003748 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003749 // mask off the high bits. Complement the operand and
3750 // re-apply the zext.
3751 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3752 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3753
3754 // If C is a single bit, it may be in the sign-bit position
3755 // before the zero-extend. In this case, represent the xor
3756 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003757 APInt Trunc = CI->getValue().trunc(Z0TySize);
3758 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003759 Trunc.isSignBit())
3760 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3761 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003762 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003763 }
3764 break;
3765
3766 case Instruction::Shl:
3767 // Turn shift left of a constant amount into a multiply.
3768 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003769 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003770
3771 // If the shift count is not less than the bitwidth, the result of
3772 // the shift is undefined. Don't try to analyze it, because the
3773 // resolution chosen here may differ from the resolution chosen in
3774 // other parts of the compiler.
3775 if (SA->getValue().uge(BitWidth))
3776 break;
3777
Owen Andersoneed707b2009-07-24 23:12:02 +00003778 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003779 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003780 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003781 }
3782 break;
3783
Nick Lewycky01eaf802008-07-07 06:15:49 +00003784 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003785 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003786 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003787 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003788
3789 // If the shift count is not less than the bitwidth, the result of
3790 // the shift is undefined. Don't try to analyze it, because the
3791 // resolution chosen here may differ from the resolution chosen in
3792 // other parts of the compiler.
3793 if (SA->getValue().uge(BitWidth))
3794 break;
3795
Owen Andersoneed707b2009-07-24 23:12:02 +00003796 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramer0a230e02013-07-11 16:05:50 +00003797 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003798 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003799 }
3800 break;
3801
Dan Gohman4ee29af2009-04-21 02:26:00 +00003802 case Instruction::AShr:
3803 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3804 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003805 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003806 if (L->getOpcode() == Instruction::Shl &&
3807 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003808 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3809
3810 // If the shift count is not less than the bitwidth, the result of
3811 // the shift is undefined. Don't try to analyze it, because the
3812 // resolution chosen here may differ from the resolution chosen in
3813 // other parts of the compiler.
3814 if (CI->getValue().uge(BitWidth))
3815 break;
3816
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003817 uint64_t Amt = BitWidth - CI->getZExtValue();
3818 if (Amt == BitWidth)
3819 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003820 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003821 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003822 IntegerType::get(getContext(),
3823 Amt)),
3824 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003825 }
3826 break;
3827
Dan Gohman6c459a22008-06-22 19:56:46 +00003828 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003829 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003830
3831 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003832 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003833
3834 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003835 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003836
3837 case Instruction::BitCast:
3838 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003839 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003840 return getSCEV(U->getOperand(0));
3841 break;
3842
Dan Gohman4f8eea82010-02-01 18:27:38 +00003843 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3844 // lead to pointer expressions which cannot safely be expanded to GEPs,
3845 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3846 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003847
Dan Gohman26466c02009-05-08 20:26:55 +00003848 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003849 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003850
Dan Gohman6c459a22008-06-22 19:56:46 +00003851 case Instruction::PHI:
3852 return createNodeForPHI(cast<PHINode>(U));
3853
3854 case Instruction::Select:
3855 // This could be a smax or umax that was lowered earlier.
3856 // Try to recover it.
3857 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3858 Value *LHS = ICI->getOperand(0);
3859 Value *RHS = ICI->getOperand(1);
3860 switch (ICI->getPredicate()) {
3861 case ICmpInst::ICMP_SLT:
3862 case ICmpInst::ICMP_SLE:
3863 std::swap(LHS, RHS);
3864 // fall through
3865 case ICmpInst::ICMP_SGT:
3866 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003867 // a >s b ? a+x : b+x -> smax(a, b)+x
3868 // a >s b ? b+x : a+x -> smin(a, b)+x
3869 if (LHS->getType() == U->getType()) {
3870 const SCEV *LS = getSCEV(LHS);
3871 const SCEV *RS = getSCEV(RHS);
3872 const SCEV *LA = getSCEV(U->getOperand(1));
3873 const SCEV *RA = getSCEV(U->getOperand(2));
3874 const SCEV *LDiff = getMinusSCEV(LA, LS);
3875 const SCEV *RDiff = getMinusSCEV(RA, RS);
3876 if (LDiff == RDiff)
3877 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3878 LDiff = getMinusSCEV(LA, RS);
3879 RDiff = getMinusSCEV(RA, LS);
3880 if (LDiff == RDiff)
3881 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3882 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003883 break;
3884 case ICmpInst::ICMP_ULT:
3885 case ICmpInst::ICMP_ULE:
3886 std::swap(LHS, RHS);
3887 // fall through
3888 case ICmpInst::ICMP_UGT:
3889 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003890 // a >u b ? a+x : b+x -> umax(a, b)+x
3891 // a >u b ? b+x : a+x -> umin(a, b)+x
3892 if (LHS->getType() == U->getType()) {
3893 const SCEV *LS = getSCEV(LHS);
3894 const SCEV *RS = getSCEV(RHS);
3895 const SCEV *LA = getSCEV(U->getOperand(1));
3896 const SCEV *RA = getSCEV(U->getOperand(2));
3897 const SCEV *LDiff = getMinusSCEV(LA, LS);
3898 const SCEV *RDiff = getMinusSCEV(RA, RS);
3899 if (LDiff == RDiff)
3900 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3901 LDiff = getMinusSCEV(LA, RS);
3902 RDiff = getMinusSCEV(RA, LS);
3903 if (LDiff == RDiff)
3904 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3905 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003906 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003907 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003908 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3909 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003910 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003911 cast<ConstantInt>(RHS)->isZero()) {
3912 const SCEV *One = getConstant(LHS->getType(), 1);
3913 const SCEV *LS = getSCEV(LHS);
3914 const SCEV *LA = getSCEV(U->getOperand(1));
3915 const SCEV *RA = getSCEV(U->getOperand(2));
3916 const SCEV *LDiff = getMinusSCEV(LA, LS);
3917 const SCEV *RDiff = getMinusSCEV(RA, One);
3918 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003919 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003920 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003921 break;
3922 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003923 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3924 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003925 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003926 cast<ConstantInt>(RHS)->isZero()) {
3927 const SCEV *One = getConstant(LHS->getType(), 1);
3928 const SCEV *LS = getSCEV(LHS);
3929 const SCEV *LA = getSCEV(U->getOperand(1));
3930 const SCEV *RA = getSCEV(U->getOperand(2));
3931 const SCEV *LDiff = getMinusSCEV(LA, One);
3932 const SCEV *RDiff = getMinusSCEV(RA, LS);
3933 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003934 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003935 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003936 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003937 default:
3938 break;
3939 }
3940 }
3941
3942 default: // We cannot analyze this expression.
3943 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003944 }
3945
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003946 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003947}
3948
3949
3950
3951//===----------------------------------------------------------------------===//
3952// Iteration Count Computation Code
3953//
3954
Andrew Trickb1831c62011-08-11 23:36:16 +00003955/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003956/// normal unsigned value. Returns 0 if the trip count is unknown or not
3957/// constant. Will also return 0 if the maximum trip count is very large (>=
3958/// 2^32).
3959///
3960/// This "trip count" assumes that control exits via ExitingBlock. More
3961/// precisely, it is the number of times that control may reach ExitingBlock
3962/// before taking the branch. For loops with multiple exits, it may not be the
3963/// number times that the loop header executes because the loop may exit
3964/// prematurely via another branch.
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003965///
3966/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3967/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3968/// loop exits. getExitCount() may return an exact count for this branch
3969/// assuming no-signed-wrap. The number of well-defined iterations may actually
3970/// be higher than this trip count if this exit test is skipped and the loop
3971/// exits via a different branch. Ideally, getExitCount() would know whether it
3972/// depends on a NSW assumption, and we would only fall back to a conservative
3973/// trip count in that case.
Andrew Trick3eada312012-01-11 06:52:55 +00003974unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00003975getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003976 const SCEVConstant *ExitCount =
Andrew Trickcd8e3c42013-05-31 23:34:46 +00003977 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trickb1831c62011-08-11 23:36:16 +00003978 if (!ExitCount)
3979 return 0;
3980
3981 ConstantInt *ExitConst = ExitCount->getValue();
3982
3983 // Guard against huge trip counts.
3984 if (ExitConst->getValue().getActiveBits() > 32)
3985 return 0;
3986
3987 // In case of integer overflow, this returns 0, which is correct.
3988 return ((unsigned)ExitConst->getZExtValue()) + 1;
3989}
3990
3991/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3992/// trip count of this loop as a normal unsigned value, if possible. This
3993/// means that the actual trip count is always a multiple of the returned
3994/// value (don't forget the trip count could very well be zero as well!).
3995///
3996/// Returns 1 if the trip count is unknown or not guaranteed to be the
3997/// multiple of a constant (which is also the case if the trip count is simply
3998/// constant, use getSmallConstantTripCount for that case), Will also return 1
3999/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00004000///
4001/// As explained in the comments for getSmallConstantTripCount, this assumes
4002/// that control exits the loop via ExitingBlock.
4003unsigned ScalarEvolution::
Aaron Ballmanf56a6de2013-06-04 01:01:56 +00004004getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004005 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trickb1831c62011-08-11 23:36:16 +00004006 if (ExitCount == getCouldNotCompute())
4007 return 1;
4008
4009 // Get the trip count from the BE count by adding 1.
4010 const SCEV *TCMul = getAddExpr(ExitCount,
4011 getConstant(ExitCount->getType(), 1));
4012 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4013 // to factor simple cases.
4014 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4015 TCMul = Mul->getOperand(0);
4016
4017 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4018 if (!MulC)
4019 return 1;
4020
4021 ConstantInt *Result = MulC->getValue();
4022
Hal Finkel8c655492012-10-24 19:46:44 +00004023 // Guard against huge trip counts (this requires checking
4024 // for zero to handle the case where the trip count == -1 and the
4025 // addition wraps).
4026 if (!Result || Result->getValue().getActiveBits() > 32 ||
4027 Result->getValue().getActiveBits() == 0)
Andrew Trickb1831c62011-08-11 23:36:16 +00004028 return 1;
4029
4030 return (unsigned)Result->getZExtValue();
4031}
4032
Andrew Trick5116ff62011-07-26 17:19:55 +00004033// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickcd8e3c42013-05-31 23:34:46 +00004034// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004035// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004036const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4037 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004038}
4039
Dan Gohman46bdfb02009-02-24 18:55:53 +00004040/// getBackedgeTakenCount - If the specified loop has a predictable
4041/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4042/// object. The backedge-taken count is the number of times the loop header
4043/// will be branched to from within the loop. This is one less than the
4044/// trip count of the loop, since it doesn't count the first iteration,
4045/// when the header is branched to from outside the loop.
4046///
4047/// Note that it is not valid to call this method on a loop without a
4048/// loop-invariant backedge-taken count (see
4049/// hasLoopInvariantBackedgeTakenCount).
4050///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004051const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004052 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004053}
4054
4055/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4056/// return the least SCEV value that is known never to be less than the
4057/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004058const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004059 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004060}
4061
Dan Gohman59ae6b92009-07-08 19:23:34 +00004062/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4063/// onto the given Worklist.
4064static void
4065PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4066 BasicBlock *Header = L->getHeader();
4067
4068 // Push all Loop-header PHIs onto the Worklist stack.
4069 for (BasicBlock::iterator I = Header->begin();
4070 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4071 Worklist.push_back(PN);
4072}
4073
Dan Gohmana1af7572009-04-30 20:47:05 +00004074const ScalarEvolution::BackedgeTakenInfo &
4075ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004076 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004077 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004078 // update the value. The temporary CouldNotCompute value tells SCEV
4079 // code elsewhere that it shouldn't attempt to request a new
4080 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004081 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004082 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004083 if (!Pair.second)
4084 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004085
Andrew Trick5116ff62011-07-26 17:19:55 +00004086 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4087 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4088 // must be cleared in this scope.
4089 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4090
4091 if (Result.getExact(this) != getCouldNotCompute()) {
4092 assert(isLoopInvariant(Result.getExact(this), L) &&
4093 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004094 "Computed backedge-taken count isn't loop invariant for loop!");
4095 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004096 }
4097 else if (Result.getMax(this) == getCouldNotCompute() &&
4098 isa<PHINode>(L->getHeader()->begin())) {
4099 // Only count loops that have phi nodes as not being computable.
4100 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004101 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004102
Chris Lattnerf1859892011-01-09 02:16:18 +00004103 // Now that we know more about the trip count for this loop, forget any
4104 // existing SCEV values for PHI nodes in this loop since they are only
4105 // conservative estimates made without the benefit of trip count
4106 // information. This is similar to the code in forgetLoop, except that
4107 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004108 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004109 SmallVector<Instruction *, 16> Worklist;
4110 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004111
Chris Lattnerf1859892011-01-09 02:16:18 +00004112 SmallPtrSet<Instruction *, 8> Visited;
4113 while (!Worklist.empty()) {
4114 Instruction *I = Worklist.pop_back_val();
4115 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004116
Chris Lattnerf1859892011-01-09 02:16:18 +00004117 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004118 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004119 if (It != ValueExprMap.end()) {
4120 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004121
Chris Lattnerf1859892011-01-09 02:16:18 +00004122 // SCEVUnknown for a PHI either means that it has an unrecognized
4123 // structure, or it's a PHI that's in the progress of being computed
4124 // by createNodeForPHI. In the former case, additional loop trip
4125 // count information isn't going to change anything. In the later
4126 // case, createNodeForPHI will perform the necessary updates on its
4127 // own when it gets to that point.
4128 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4129 forgetMemoizedResults(Old);
4130 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004131 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004132 if (PHINode *PN = dyn_cast<PHINode>(I))
4133 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004134 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004135
4136 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004137 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004138 }
Dan Gohman308bec32011-04-25 22:48:29 +00004139
4140 // Re-lookup the insert position, since the call to
4141 // ComputeBackedgeTakenCount above could result in a
4142 // recusive call to getBackedgeTakenInfo (on a different
4143 // loop), which would invalidate the iterator computed
4144 // earlier.
4145 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004146}
4147
Dan Gohman4c7279a2009-10-31 15:04:55 +00004148/// forgetLoop - This method should be called by the client when it has
4149/// changed a loop in a way that may effect ScalarEvolution's ability to
4150/// compute a trip count, or if the loop is deleted.
4151void ScalarEvolution::forgetLoop(const Loop *L) {
4152 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004153 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4154 BackedgeTakenCounts.find(L);
4155 if (BTCPos != BackedgeTakenCounts.end()) {
4156 BTCPos->second.clear();
4157 BackedgeTakenCounts.erase(BTCPos);
4158 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004159
Dan Gohman4c7279a2009-10-31 15:04:55 +00004160 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004161 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004162 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004163
Dan Gohman59ae6b92009-07-08 19:23:34 +00004164 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004165 while (!Worklist.empty()) {
4166 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004167 if (!Visited.insert(I)) continue;
4168
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004169 ValueExprMapType::iterator It =
4170 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004171 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004172 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004173 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004174 if (PHINode *PN = dyn_cast<PHINode>(I))
4175 ConstantEvolutionLoopExitValue.erase(PN);
4176 }
4177
4178 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004179 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004180
4181 // Forget all contained loops too, to avoid dangling entries in the
4182 // ValuesAtScopes map.
4183 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4184 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004185}
4186
Eric Christophere6cbfa62010-07-29 01:25:38 +00004187/// forgetValue - This method should be called by the client when it has
4188/// changed a value in a way that may effect its value, or which may
4189/// disconnect it from a def-use chain linking it to a loop.
4190void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004191 Instruction *I = dyn_cast<Instruction>(V);
4192 if (!I) return;
4193
4194 // Drop information about expressions based on loop-header PHIs.
4195 SmallVector<Instruction *, 16> Worklist;
4196 Worklist.push_back(I);
4197
4198 SmallPtrSet<Instruction *, 8> Visited;
4199 while (!Worklist.empty()) {
4200 I = Worklist.pop_back_val();
4201 if (!Visited.insert(I)) continue;
4202
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004203 ValueExprMapType::iterator It =
4204 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004205 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004206 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004207 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004208 if (PHINode *PN = dyn_cast<PHINode>(I))
4209 ConstantEvolutionLoopExitValue.erase(PN);
4210 }
4211
4212 PushDefUseChildren(I, Worklist);
4213 }
4214}
4215
Andrew Trick5116ff62011-07-26 17:19:55 +00004216/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004217/// exits. A computable result can only be return for loops with a single exit.
4218/// Returning the minimum taken count among all exits is incorrect because one
4219/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4220/// the limit of each loop test is never skipped. This is a valid assumption as
4221/// long as the loop exits via that test. For precise results, it is the
4222/// caller's responsibility to specify the relevant loop exit using
4223/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004224const SCEV *
4225ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4226 // If any exits were not computable, the loop is not computable.
4227 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4228
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004229 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004230 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004231 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4232
4233 const SCEV *BECount = 0;
4234 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4235 ENT != 0; ENT = ENT->getNextExit()) {
4236
4237 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4238
4239 if (!BECount)
4240 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004241 else if (BECount != ENT->ExactNotTaken)
4242 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004243 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004244 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004245 return BECount;
4246}
4247
4248/// getExact - Get the exact not taken count for this loop exit.
4249const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004250ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004251 ScalarEvolution *SE) const {
4252 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4253 ENT != 0; ENT = ENT->getNextExit()) {
4254
Andrew Trickfcb43562011-08-02 04:23:35 +00004255 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004256 return ENT->ExactNotTaken;
4257 }
4258 return SE->getCouldNotCompute();
4259}
4260
4261/// getMax - Get the max backedge taken count for the loop.
4262const SCEV *
4263ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4264 return Max ? Max : SE->getCouldNotCompute();
4265}
4266
Andrew Tricke74c2e82013-03-26 03:14:53 +00004267bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4268 ScalarEvolution *SE) const {
4269 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4270 return true;
4271
4272 if (!ExitNotTaken.ExitingBlock)
4273 return false;
4274
4275 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4276 ENT != 0; ENT = ENT->getNextExit()) {
4277
4278 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4279 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4280 return true;
4281 }
4282 }
4283 return false;
4284}
4285
Andrew Trick5116ff62011-07-26 17:19:55 +00004286/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4287/// computable exit into a persistent ExitNotTakenInfo array.
4288ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4289 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4290 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4291
4292 if (!Complete)
4293 ExitNotTaken.setIncomplete();
4294
4295 unsigned NumExits = ExitCounts.size();
4296 if (NumExits == 0) return;
4297
Andrew Trickfcb43562011-08-02 04:23:35 +00004298 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004299 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4300 if (NumExits == 1) return;
4301
4302 // Handle the rare case of multiple computable exits.
4303 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4304
4305 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4306 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4307 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004308 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004309 ENT->ExactNotTaken = ExitCounts[i].second;
4310 }
4311}
4312
4313/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4314void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004315 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004316 ExitNotTaken.ExactNotTaken = 0;
4317 delete[] ExitNotTaken.getNextExit();
4318}
4319
Dan Gohman46bdfb02009-02-24 18:55:53 +00004320/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4321/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004322ScalarEvolution::BackedgeTakenInfo
4323ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004324 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004326
Dan Gohmana334aa72009-06-22 00:31:57 +00004327 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004328 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004329 bool CouldComputeBECount = true;
4330 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004331 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004332 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4333 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004334 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004335 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004336 CouldComputeBECount = false;
4337 else
4338 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4339
Dan Gohman1c343752009-06-27 21:21:31 +00004340 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004341 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004342 else if (EL.Max != getCouldNotCompute()) {
4343 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4344 // skip some loop tests. Taking the max over the exits is sufficiently
4345 // conservative. TODO: We could do better taking into consideration
4346 // that (1) the loop has unit stride (2) the last loop test is
4347 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4348 // falls-through some constant times less then the other tests.
4349 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4350 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004351 }
4352
Andrew Trick5116ff62011-07-26 17:19:55 +00004353 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004354}
4355
Andrew Trick5116ff62011-07-26 17:19:55 +00004356/// ComputeExitLimit - Compute the number of times the backedge of the specified
4357/// loop will execute if it exits via the specified block.
4358ScalarEvolution::ExitLimit
4359ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004360
4361 // Okay, we've chosen an exiting block. See what condition causes us to
4362 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004363 //
4364 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004365 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004366 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004367 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004368
Chris Lattner8b0e3602007-01-07 02:24:26 +00004369 // At this point, we know we have a conditional branch that determines whether
4370 // the loop is exited. However, we don't know if the branch is executed each
4371 // time through the loop. If not, then the execution count of the branch will
4372 // not be equal to the trip count of the loop.
4373 //
4374 // Currently we check for this by checking to see if the Exit branch goes to
4375 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004376 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004377 // loop header. This is common for un-rotated loops.
4378 //
4379 // If both of those tests fail, walk up the unique predecessor chain to the
4380 // header, stopping if there is an edge that doesn't exit the loop. If the
4381 // header is reached, the execution count of the branch will be equal to the
4382 // trip count of the loop.
4383 //
4384 // More extensive analysis could be done to handle more cases here.
4385 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004386 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004387 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004388 ExitBr->getParent() != L->getHeader()) {
4389 // The simple checks failed, try climbing the unique predecessor chain
4390 // up to the header.
4391 bool Ok = false;
4392 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4393 BasicBlock *Pred = BB->getUniquePredecessor();
4394 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004395 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004396 TerminatorInst *PredTerm = Pred->getTerminator();
4397 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4398 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4399 if (PredSucc == BB)
4400 continue;
4401 // If the predecessor has a successor that isn't BB and isn't
4402 // outside the loop, assume the worst.
4403 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004404 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004405 }
4406 if (Pred == L->getHeader()) {
4407 Ok = true;
4408 break;
4409 }
4410 BB = Pred;
4411 }
4412 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004413 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004414 }
4415
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004416 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004417 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4418 ExitBr->getSuccessor(0),
Andrew Trick61601142013-05-31 06:43:25 +00004419 ExitBr->getSuccessor(1),
4420 /*IsSubExpr=*/false);
Dan Gohmana334aa72009-06-22 00:31:57 +00004421}
4422
Andrew Trick5116ff62011-07-26 17:19:55 +00004423/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004424/// backedge of the specified loop will execute if its exit condition
4425/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick61601142013-05-31 06:43:25 +00004426///
4427/// @param IsSubExpr is true if ExitCond does not directly control the exit
4428/// branch. In this case, we cannot assume that the loop only exits when the
4429/// condition is true and cannot infer that failing to meet the condition prior
4430/// to integer wraparound results in undefined behavior.
Andrew Trick5116ff62011-07-26 17:19:55 +00004431ScalarEvolution::ExitLimit
4432ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4433 Value *ExitCond,
4434 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004435 BasicBlock *FBB,
4436 bool IsSubExpr) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004437 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004438 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4439 if (BO->getOpcode() == Instruction::And) {
4440 // Recurse on the operands of the and.
Andrew Trick61601142013-05-31 06:43:25 +00004441 bool EitherMayExit = L->contains(TBB);
4442 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4443 IsSubExpr || EitherMayExit);
4444 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4445 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004446 const SCEV *BECount = getCouldNotCompute();
4447 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004448 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004449 // Both conditions must be true for the loop to continue executing.
4450 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004451 if (EL0.Exact == getCouldNotCompute() ||
4452 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004453 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004454 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004455 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4456 if (EL0.Max == getCouldNotCompute())
4457 MaxBECount = EL1.Max;
4458 else if (EL1.Max == getCouldNotCompute())
4459 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004460 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004461 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004462 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004463 // Both conditions must be true at the same time for the loop to exit.
4464 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004465 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004466 if (EL0.Max == EL1.Max)
4467 MaxBECount = EL0.Max;
4468 if (EL0.Exact == EL1.Exact)
4469 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004470 }
4471
Andrew Trick5116ff62011-07-26 17:19:55 +00004472 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004473 }
4474 if (BO->getOpcode() == Instruction::Or) {
4475 // Recurse on the operands of the or.
Andrew Trick61601142013-05-31 06:43:25 +00004476 bool EitherMayExit = L->contains(FBB);
4477 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4478 IsSubExpr || EitherMayExit);
4479 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4480 IsSubExpr || EitherMayExit);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004481 const SCEV *BECount = getCouldNotCompute();
4482 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick61601142013-05-31 06:43:25 +00004483 if (EitherMayExit) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004484 // Both conditions must be false for the loop to continue executing.
4485 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004486 if (EL0.Exact == getCouldNotCompute() ||
4487 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004488 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004489 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004490 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4491 if (EL0.Max == getCouldNotCompute())
4492 MaxBECount = EL1.Max;
4493 else if (EL1.Max == getCouldNotCompute())
4494 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004495 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004496 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004497 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004498 // Both conditions must be false at the same time for the loop to exit.
4499 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004500 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004501 if (EL0.Max == EL1.Max)
4502 MaxBECount = EL0.Max;
4503 if (EL0.Exact == EL1.Exact)
4504 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004505 }
4506
Andrew Trick5116ff62011-07-26 17:19:55 +00004507 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004508 }
4509 }
4510
4511 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004512 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004513 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick61601142013-05-31 06:43:25 +00004514 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004515
Dan Gohman00cb5b72010-02-19 18:12:07 +00004516 // Check for a constant condition. These are normally stripped out by
4517 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4518 // preserve the CFG and is temporarily leaving constant conditions
4519 // in place.
4520 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4521 if (L->contains(FBB) == !CI->getZExtValue())
4522 // The backedge is always taken.
4523 return getCouldNotCompute();
4524 else
4525 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004526 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004527 }
4528
Eli Friedman361e54d2009-05-09 12:32:42 +00004529 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004530 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004531}
4532
Andrew Trick5116ff62011-07-26 17:19:55 +00004533/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004534/// backedge of the specified loop will execute if its exit condition
4535/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004536ScalarEvolution::ExitLimit
4537ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4538 ICmpInst *ExitCond,
4539 BasicBlock *TBB,
Andrew Trick61601142013-05-31 06:43:25 +00004540 BasicBlock *FBB,
4541 bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004542
Reid Spencere4d87aa2006-12-23 06:05:41 +00004543 // If the condition was exit on true, convert the condition to exit on false
4544 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004545 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004546 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004547 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004548 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004549
4550 // Handle common loops like: for (X = "string"; *X; ++X)
4551 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4552 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004553 ExitLimit ItCnt =
4554 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004555 if (ItCnt.hasAnyInfo())
4556 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004557 }
4558
Dan Gohman0bba49c2009-07-07 17:06:11 +00004559 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4560 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004561
4562 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004563 LHS = getSCEVAtScope(LHS, L);
4564 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004565
Dan Gohman64a845e2009-06-24 04:48:43 +00004566 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004567 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004568 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004569 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004570 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004571 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004572 }
4573
Dan Gohman03557dc2010-05-03 16:35:17 +00004574 // Simplify the operands before analyzing them.
4575 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4576
Chris Lattner53e677a2004-04-02 20:23:17 +00004577 // If we have a comparison of a chrec against a constant, try to use value
4578 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004579 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4580 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004581 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004582 // Form the constant range.
4583 ConstantRange CompRange(
4584 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004585
Dan Gohman0bba49c2009-07-07 17:06:11 +00004586 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004587 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004588 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004589
Chris Lattner53e677a2004-04-02 20:23:17 +00004590 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004591 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004592 // Convert to: while (X-Y != 0)
Andrew Trick61601142013-05-31 06:43:25 +00004593 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004594 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004596 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004597 case ICmpInst::ICMP_EQ: { // while (X == Y)
4598 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004599 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4600 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004602 }
4603 case ICmpInst::ICMP_SLT: {
Andrew Trick61601142013-05-31 06:43:25 +00004604 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004605 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004606 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004607 }
4608 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004609 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004610 getNotSCEV(RHS), L, true, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004611 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004612 break;
4613 }
4614 case ICmpInst::ICMP_ULT: {
Andrew Trick61601142013-05-31 06:43:25 +00004615 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004616 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004617 break;
4618 }
4619 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004620 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Andrew Trick61601142013-05-31 06:43:25 +00004621 getNotSCEV(RHS), L, false, IsSubExpr);
Andrew Trick5116ff62011-07-26 17:19:55 +00004622 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004623 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004624 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004625 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004626#if 0
David Greene25e0e872009-12-23 22:18:14 +00004627 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004628 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004629 dbgs() << "[unsigned] ";
4630 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004631 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004632 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004633#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004634 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004635 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004636 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004637}
4638
Chris Lattner673e02b2004-10-12 01:49:27 +00004639static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004640EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4641 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004642 const SCEV *InVal = SE.getConstant(C);
4643 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004644 assert(isa<SCEVConstant>(Val) &&
4645 "Evaluation of SCEV at constant didn't fold correctly?");
4646 return cast<SCEVConstant>(Val)->getValue();
4647}
4648
Andrew Trick5116ff62011-07-26 17:19:55 +00004649/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004650/// 'icmp op load X, cst', try to see if we can compute the backedge
4651/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004652ScalarEvolution::ExitLimit
4653ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4654 LoadInst *LI,
4655 Constant *RHS,
4656 const Loop *L,
4657 ICmpInst::Predicate predicate) {
4658
Dan Gohman1c343752009-06-27 21:21:31 +00004659 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004660
4661 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004662 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004663 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004664 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004665
4666 // Make sure that it is really a constant global we are gepping, with an
4667 // initializer, and make sure the first IDX is really 0.
4668 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004669 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004670 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4671 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004672 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004673
4674 // Okay, we allow one non-constant index into the GEP instruction.
4675 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004676 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004677 unsigned VarIdxNum = 0;
4678 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4679 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4680 Indexes.push_back(CI);
4681 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004682 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004683 VarIdx = GEP->getOperand(i);
4684 VarIdxNum = i-2;
4685 Indexes.push_back(0);
4686 }
4687
Andrew Trickeb6dd232012-03-26 22:33:59 +00004688 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4689 if (!VarIdx)
4690 return getCouldNotCompute();
4691
Chris Lattner673e02b2004-10-12 01:49:27 +00004692 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4693 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004694 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004695 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004696
4697 // We can only recognize very limited forms of loop index expressions, in
4698 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004699 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004700 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004701 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4702 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004703 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004704
4705 unsigned MaxSteps = MaxBruteForceIterations;
4706 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004707 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004708 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004709 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004710
4711 // Form the GEP offset.
4712 Indexes[VarIdxNum] = Val;
4713
Chris Lattnerdada5862012-01-24 05:49:24 +00004714 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4715 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004716 if (Result == 0) break; // Cannot compute!
4717
4718 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004719 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004720 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004721 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004722#if 0
David Greene25e0e872009-12-23 22:18:14 +00004723 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004724 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4725 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004726#endif
4727 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004728 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004729 }
4730 }
Dan Gohman1c343752009-06-27 21:21:31 +00004731 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004732}
4733
4734
Chris Lattner3221ad02004-04-17 22:58:41 +00004735/// CanConstantFold - Return true if we can constant fold an instruction of the
4736/// specified type, assuming that all operands were constants.
4737static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004738 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004739 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4740 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004741 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004742
Chris Lattner3221ad02004-04-17 22:58:41 +00004743 if (const CallInst *CI = dyn_cast<CallInst>(I))
4744 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004745 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004746 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004747}
4748
Andrew Trick13d31e02011-10-05 03:25:31 +00004749/// Determine whether this instruction can constant evolve within this loop
4750/// assuming its operands can all constant evolve.
4751static bool canConstantEvolve(Instruction *I, const Loop *L) {
4752 // An instruction outside of the loop can't be derived from a loop PHI.
4753 if (!L->contains(I)) return false;
4754
4755 if (isa<PHINode>(I)) {
4756 if (L->getHeader() == I->getParent())
4757 return true;
4758 else
4759 // We don't currently keep track of the control flow needed to evaluate
4760 // PHIs, so we cannot handle PHIs inside of loops.
4761 return false;
4762 }
4763
4764 // If we won't be able to constant fold this expression even if the operands
4765 // are constants, bail early.
4766 return CanConstantFold(I);
4767}
4768
4769/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4770/// recursing through each instruction operand until reaching a loop header phi.
4771static PHINode *
4772getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004773 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004774
4775 // Otherwise, we can evaluate this instruction if all of its operands are
4776 // constant or derived from a PHI node themselves.
4777 PHINode *PHI = 0;
4778 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4779 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4780
4781 if (isa<Constant>(*OpI)) continue;
4782
4783 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4784 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4785
4786 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004787 if (!P)
4788 // If this operand is already visited, reuse the prior result.
4789 // We may have P != PHI if this is the deepest point at which the
4790 // inconsistent paths meet.
4791 P = PHIMap.lookup(OpInst);
4792 if (!P) {
4793 // Recurse and memoize the results, whether a phi is found or not.
4794 // This recursive call invalidates pointers into PHIMap.
4795 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4796 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004797 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004798 if (P == 0) return 0; // Not evolving from PHI
4799 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4800 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004801 }
4802 // This is a expression evolving from a constant PHI!
4803 return PHI;
4804}
4805
Chris Lattner3221ad02004-04-17 22:58:41 +00004806/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4807/// in the loop that V is derived from. We allow arbitrary operations along the
4808/// way, but the operands of an operation must either be constants or a value
4809/// derived from a constant PHI. If this expression does not fit with these
4810/// constraints, return null.
4811static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004812 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004813 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004814
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004815 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004816 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004817 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004818
Andrew Trick13d31e02011-10-05 03:25:31 +00004819 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004820 DenseMap<Instruction *, PHINode *> PHIMap;
4821 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004822}
4823
4824/// EvaluateExpression - Given an expression that passes the
4825/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4826/// in the loop has the value PHIVal. If we can't fold this expression for some
4827/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004828static Constant *EvaluateExpression(Value *V, const Loop *L,
4829 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004830 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004831 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004832 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004833 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004834 Instruction *I = dyn_cast<Instruction>(V);
4835 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004836
Andrew Trick13d31e02011-10-05 03:25:31 +00004837 if (Constant *C = Vals.lookup(I)) return C;
4838
Nick Lewycky614fef62011-10-22 19:58:20 +00004839 // An instruction inside the loop depends on a value outside the loop that we
4840 // weren't given a mapping for, or a value such as a call inside the loop.
4841 if (!canConstantEvolve(I, L)) return 0;
4842
4843 // An unmapped PHI can be due to a branch or another loop inside this loop,
4844 // or due to this not being the initial iteration through a loop where we
4845 // couldn't compute the evolution of this particular PHI last time.
4846 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004847
Dan Gohman9d4588f2010-06-22 13:15:46 +00004848 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004849
4850 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004851 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4852 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004853 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4854 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004855 continue;
4856 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004857 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004858 Vals[Operand] = C;
4859 if (!C) return 0;
4860 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004861 }
4862
Nick Lewycky614fef62011-10-22 19:58:20 +00004863 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004864 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004865 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004866 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4867 if (!LI->isVolatile())
4868 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4869 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004870 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4871 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004872}
4873
4874/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4875/// in the header of its containing loop, we know the loop executes a
4876/// constant number of times, and the PHI node is just a recurrence
4877/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004878Constant *
4879ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004880 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004881 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004882 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004883 ConstantEvolutionLoopExitValue.find(PN);
4884 if (I != ConstantEvolutionLoopExitValue.end())
4885 return I->second;
4886
Dan Gohmane0567812010-04-08 23:03:40 +00004887 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004888 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4889
4890 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4891
Andrew Trick13d31e02011-10-05 03:25:31 +00004892 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004893 BasicBlock *Header = L->getHeader();
4894 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004895
Chris Lattner3221ad02004-04-17 22:58:41 +00004896 // Since the loop is canonicalized, the PHI node must have two entries. One
4897 // entry must be a constant (coming in from outside of the loop), and the
4898 // second must be derived from the same PHI.
4899 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004900 PHINode *PHI = 0;
4901 for (BasicBlock::iterator I = Header->begin();
4902 (PHI = dyn_cast<PHINode>(I)); ++I) {
4903 Constant *StartCST =
4904 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4905 if (StartCST == 0) continue;
4906 CurrentIterVals[PHI] = StartCST;
4907 }
4908 if (!CurrentIterVals.count(PN))
4909 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004910
4911 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004912
4913 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004914 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004915 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004916
Dan Gohman46bdfb02009-02-24 18:55:53 +00004917 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004918 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004919 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004920 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004921 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004922
Nick Lewycky614fef62011-10-22 19:58:20 +00004923 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004924 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004925 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004926 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4927 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004928 if (NextPHI == 0)
4929 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004930 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004931
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004932 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4933
Nick Lewycky614fef62011-10-22 19:58:20 +00004934 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4935 // cease to be able to evaluate one of them or if they stop evolving,
4936 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004937 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004938 for (DenseMap<Instruction *, Constant *>::const_iterator
4939 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4940 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004941 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004942 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4943 }
4944 // We use two distinct loops because EvaluateExpression may invalidate any
4945 // iterators into CurrentIterVals.
4946 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4947 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4948 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004949 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004950 if (!NextPHI) { // Not already computed.
4951 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004952 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004953 }
4954 if (NextPHI != I->second)
4955 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004956 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004957
4958 // If all entries in CurrentIterVals == NextIterVals then we can stop
4959 // iterating, the loop can't continue to change.
4960 if (StoppedEvolving)
4961 return RetVal = CurrentIterVals[PN];
4962
Andrew Trick13d31e02011-10-05 03:25:31 +00004963 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004964 }
4965}
4966
Andrew Trick5116ff62011-07-26 17:19:55 +00004967/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004968/// constant number of times (the condition evolves only from constants),
4969/// try to evaluate a few iterations of the loop until we get the exit
4970/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004971/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004972const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4973 Value *Cond,
4974 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004975 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004976 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004977
Dan Gohmanb92654d2010-06-19 14:17:24 +00004978 // If the loop is canonicalized, the PHI will have exactly two entries.
4979 // That's the only form we support here.
4980 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4981
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004982 DenseMap<Instruction *, Constant *> CurrentIterVals;
4983 BasicBlock *Header = L->getHeader();
4984 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4985
Dan Gohmanb92654d2010-06-19 14:17:24 +00004986 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004987 // second must be derived from the same PHI.
4988 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004989 PHINode *PHI = 0;
4990 for (BasicBlock::iterator I = Header->begin();
4991 (PHI = dyn_cast<PHINode>(I)); ++I) {
4992 Constant *StartCST =
4993 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4994 if (StartCST == 0) continue;
4995 CurrentIterVals[PHI] = StartCST;
4996 }
4997 if (!CurrentIterVals.count(PN))
4998 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004999
5000 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5001 // the loop symbolically to determine when the condition gets a value of
5002 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005003
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005004 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005005 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005006 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00005007 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5008 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00005009
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005010 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005011 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005012
Reid Spencere8019bb2007-03-01 07:25:48 +00005013 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00005014 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00005015 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00005016 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005017
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005018 // Update all the PHI nodes for the next iteration.
5019 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005020
5021 // Create a list of which PHIs we need to compute. We want to do this before
5022 // calling EvaluateExpression on them because that may invalidate iterators
5023 // into CurrentIterVals.
5024 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005025 for (DenseMap<Instruction *, Constant *>::const_iterator
5026 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5027 PHINode *PHI = dyn_cast<PHINode>(I->first);
5028 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00005029 PHIsToCompute.push_back(PHI);
5030 }
5031 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5032 E = PHIsToCompute.end(); I != E; ++I) {
5033 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005034 Constant *&NextPHI = NextIterVals[PHI];
5035 if (NextPHI) continue; // Already computed!
5036
5037 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00005038 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005039 }
5040 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005041 }
5042
5043 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005044 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005045}
5046
Dan Gohmane7125f42009-09-03 15:00:26 +00005047/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005048/// at the specified scope in the program. The L value specifies a loop
5049/// nest to evaluate the expression at, where null is the top-level or a
5050/// specified loop is immediately inside of the loop.
5051///
5052/// This method can be used to compute the exit value for a variable defined
5053/// in a loop by querying what the value will hold in the parent loop.
5054///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005055/// In the case that a relevant loop exit value cannot be computed, the
5056/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005057const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005058 // Check to see if we've folded this expression at this loop before.
5059 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5060 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5061 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5062 if (!Pair.second)
5063 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005064
Dan Gohman42214892009-08-31 21:15:23 +00005065 // Otherwise compute it.
5066 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005067 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005068 return C;
5069}
5070
Nick Lewycky614fef62011-10-22 19:58:20 +00005071/// This builds up a Constant using the ConstantExpr interface. That way, we
5072/// will return Constants for objects which aren't represented by a
5073/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5074/// Returns NULL if the SCEV isn't representable as a Constant.
5075static Constant *BuildConstantFromSCEV(const SCEV *V) {
5076 switch (V->getSCEVType()) {
5077 default: // TODO: smax, umax.
5078 case scCouldNotCompute:
5079 case scAddRecExpr:
5080 break;
5081 case scConstant:
5082 return cast<SCEVConstant>(V)->getValue();
5083 case scUnknown:
5084 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5085 case scSignExtend: {
5086 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5087 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5088 return ConstantExpr::getSExt(CastOp, SS->getType());
5089 break;
5090 }
5091 case scZeroExtend: {
5092 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5093 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5094 return ConstantExpr::getZExt(CastOp, SZ->getType());
5095 break;
5096 }
5097 case scTruncate: {
5098 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5099 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5100 return ConstantExpr::getTrunc(CastOp, ST->getType());
5101 break;
5102 }
5103 case scAddExpr: {
5104 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5105 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenault4784bb62013-10-21 18:41:10 +00005106 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5107 unsigned AS = PTy->getAddressSpace();
5108 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5109 C = ConstantExpr::getBitCast(C, DestPtrTy);
5110 }
Nick Lewycky614fef62011-10-22 19:58:20 +00005111 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5112 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5113 if (!C2) return 0;
5114
5115 // First pointer!
5116 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenault4784bb62013-10-21 18:41:10 +00005117 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewycky614fef62011-10-22 19:58:20 +00005118 std::swap(C, C2);
Matt Arsenault4784bb62013-10-21 18:41:10 +00005119 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewycky614fef62011-10-22 19:58:20 +00005120 // The offsets have been converted to bytes. We can add bytes to an
5121 // i8* by GEP with the byte count in the first index.
Matt Arsenault4784bb62013-10-21 18:41:10 +00005122 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewycky614fef62011-10-22 19:58:20 +00005123 }
5124
5125 // Don't bother trying to sum two pointers. We probably can't
5126 // statically compute a load that results from it anyway.
5127 if (C2->getType()->isPointerTy())
5128 return 0;
5129
Matt Arsenault4784bb62013-10-21 18:41:10 +00005130 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5131 if (PTy->getElementType()->isStructTy())
Nick Lewycky614fef62011-10-22 19:58:20 +00005132 C2 = ConstantExpr::getIntegerCast(
5133 C2, Type::getInt32Ty(C->getContext()), true);
5134 C = ConstantExpr::getGetElementPtr(C, C2);
5135 } else
5136 C = ConstantExpr::getAdd(C, C2);
5137 }
5138 return C;
5139 }
5140 break;
5141 }
5142 case scMulExpr: {
5143 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5144 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5145 // Don't bother with pointers at all.
5146 if (C->getType()->isPointerTy()) return 0;
5147 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5148 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5149 if (!C2 || C2->getType()->isPointerTy()) return 0;
5150 C = ConstantExpr::getMul(C, C2);
5151 }
5152 return C;
5153 }
5154 break;
5155 }
5156 case scUDivExpr: {
5157 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5158 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5159 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5160 if (LHS->getType() == RHS->getType())
5161 return ConstantExpr::getUDiv(LHS, RHS);
5162 break;
5163 }
5164 }
5165 return 0;
5166}
5167
Dan Gohman42214892009-08-31 21:15:23 +00005168const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005169 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005170
Nick Lewycky3e630762008-02-20 06:48:22 +00005171 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005172 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005173 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005174 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005175 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005176 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5177 if (PHINode *PN = dyn_cast<PHINode>(I))
5178 if (PN->getParent() == LI->getHeader()) {
5179 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005180 // to see if the loop that contains it has a known backedge-taken
5181 // count. If so, we may be able to force computation of the exit
5182 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005183 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005184 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005185 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005186 // Okay, we know how many times the containing loop executes. If
5187 // this is a constant evolving PHI node, get the final value at
5188 // the specified iteration number.
5189 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005190 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005191 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005192 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005193 }
5194 }
5195
Reid Spencer09906f32006-12-04 21:33:23 +00005196 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005197 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005198 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005199 // result. This is particularly useful for computing loop exit values.
5200 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005201 SmallVector<Constant *, 4> Operands;
5202 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005203 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5204 Value *Op = I->getOperand(i);
5205 if (Constant *C = dyn_cast<Constant>(Op)) {
5206 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005207 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005208 }
Dan Gohman11046452010-06-29 23:43:06 +00005209
5210 // If any of the operands is non-constant and if they are
5211 // non-integer and non-pointer, don't even try to analyze them
5212 // with scev techniques.
5213 if (!isSCEVable(Op->getType()))
5214 return V;
5215
5216 const SCEV *OrigV = getSCEV(Op);
5217 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5218 MadeImprovement |= OrigV != OpV;
5219
Nick Lewycky614fef62011-10-22 19:58:20 +00005220 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005221 if (!C) return V;
5222 if (C->getType() != Op->getType())
5223 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5224 Op->getType(),
5225 false),
5226 C, Op->getType());
5227 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005228 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005229
Dan Gohman11046452010-06-29 23:43:06 +00005230 // Check to see if getSCEVAtScope actually made an improvement.
5231 if (MadeImprovement) {
5232 Constant *C = 0;
5233 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5234 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005235 Operands[0], Operands[1], TD,
5236 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005237 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5238 if (!LI->isVolatile())
5239 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5240 } else
Dan Gohman11046452010-06-29 23:43:06 +00005241 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005242 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005243 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005244 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005245 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005246 }
5247 }
5248
5249 // This is some other type of SCEVUnknown, just return it.
5250 return V;
5251 }
5252
Dan Gohman622ed672009-05-04 22:02:23 +00005253 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005254 // Avoid performing the look-up in the common case where the specified
5255 // expression has no loop-variant portions.
5256 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005257 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005258 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005259 // Okay, at least one of these operands is loop variant but might be
5260 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005261 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5262 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005263 NewOps.push_back(OpAtScope);
5264
5265 for (++i; i != e; ++i) {
5266 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005267 NewOps.push_back(OpAtScope);
5268 }
5269 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005270 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005271 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005272 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005273 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005274 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005275 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005276 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005277 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005278 }
5279 }
5280 // If we got here, all operands are loop invariant.
5281 return Comm;
5282 }
5283
Dan Gohman622ed672009-05-04 22:02:23 +00005284 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005285 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5286 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005287 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5288 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005289 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005290 }
5291
5292 // If this is a loop recurrence for a loop that does not contain L, then we
5293 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005294 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005295 // First, attempt to evaluate each operand.
5296 // Avoid performing the look-up in the common case where the specified
5297 // expression has no loop-variant portions.
5298 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5299 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5300 if (OpAtScope == AddRec->getOperand(i))
5301 continue;
5302
5303 // Okay, at least one of these operands is loop variant but might be
5304 // foldable. Build a new instance of the folded commutative expression.
5305 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5306 AddRec->op_begin()+i);
5307 NewOps.push_back(OpAtScope);
5308 for (++i; i != e; ++i)
5309 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5310
Andrew Trick3f95c882011-04-27 01:21:25 +00005311 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005312 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005313 AddRec->getNoWrapFlags(SCEV::FlagNW));
5314 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005315 // The addrec may be folded to a nonrecurrence, for example, if the
5316 // induction variable is multiplied by zero after constant folding. Go
5317 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005318 if (!AddRec)
5319 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005320 break;
5321 }
5322
5323 // If the scope is outside the addrec's loop, evaluate it by using the
5324 // loop exit value of the addrec.
5325 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005326 // To evaluate this recurrence, we need to know how many times the AddRec
5327 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005328 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005329 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005330
Eli Friedmanb42a6262008-08-04 23:49:06 +00005331 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005332 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005333 }
Dan Gohman11046452010-06-29 23:43:06 +00005334
Dan Gohmand594e6f2009-05-24 23:25:42 +00005335 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005336 }
5337
Dan Gohman622ed672009-05-04 22:02:23 +00005338 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005339 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005340 if (Op == Cast->getOperand())
5341 return Cast; // must be loop invariant
5342 return getZeroExtendExpr(Op, Cast->getType());
5343 }
5344
Dan Gohman622ed672009-05-04 22:02:23 +00005345 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005346 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005347 if (Op == Cast->getOperand())
5348 return Cast; // must be loop invariant
5349 return getSignExtendExpr(Op, Cast->getType());
5350 }
5351
Dan Gohman622ed672009-05-04 22:02:23 +00005352 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005353 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005354 if (Op == Cast->getOperand())
5355 return Cast; // must be loop invariant
5356 return getTruncateExpr(Op, Cast->getType());
5357 }
5358
Torok Edwinc23197a2009-07-14 16:55:14 +00005359 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005360}
5361
Dan Gohman66a7e852009-05-08 20:38:54 +00005362/// getSCEVAtScope - This is a convenience function which does
5363/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005364const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005365 return getSCEVAtScope(getSCEV(V), L);
5366}
5367
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005368/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5369/// following equation:
5370///
5371/// A * X = B (mod N)
5372///
5373/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5374/// A and B isn't important.
5375///
5376/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005377static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005378 ScalarEvolution &SE) {
5379 uint32_t BW = A.getBitWidth();
5380 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5381 assert(A != 0 && "A must be non-zero.");
5382
5383 // 1. D = gcd(A, N)
5384 //
5385 // The gcd of A and N may have only one prime factor: 2. The number of
5386 // trailing zeros in A is its multiplicity
5387 uint32_t Mult2 = A.countTrailingZeros();
5388 // D = 2^Mult2
5389
5390 // 2. Check if B is divisible by D.
5391 //
5392 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5393 // is not less than multiplicity of this prime factor for D.
5394 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005395 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005396
5397 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5398 // modulo (N / D).
5399 //
5400 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5401 // bit width during computations.
5402 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5403 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005404 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005405 APInt I = AD.multiplicativeInverse(Mod);
5406
5407 // 4. Compute the minimum unsigned root of the equation:
5408 // I * (B / D) mod (N / D)
5409 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5410
5411 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5412 // bits.
5413 return SE.getConstant(Result.trunc(BW));
5414}
Chris Lattner53e677a2004-04-02 20:23:17 +00005415
5416/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5417/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5418/// might be the same) or two SCEVCouldNotCompute objects.
5419///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005420static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005421SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005422 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005423 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5424 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5425 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005426
Chris Lattner53e677a2004-04-02 20:23:17 +00005427 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005428 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005429 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005430 return std::make_pair(CNC, CNC);
5431 }
5432
Reid Spencere8019bb2007-03-01 07:25:48 +00005433 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005434 const APInt &L = LC->getValue()->getValue();
5435 const APInt &M = MC->getValue()->getValue();
5436 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005437 APInt Two(BitWidth, 2);
5438 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005439
Dan Gohman64a845e2009-06-24 04:48:43 +00005440 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005441 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005442 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005443 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5444 // The B coefficient is M-N/2
5445 APInt B(M);
5446 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005447
Reid Spencere8019bb2007-03-01 07:25:48 +00005448 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005449 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005450
Reid Spencere8019bb2007-03-01 07:25:48 +00005451 // Compute the B^2-4ac term.
5452 APInt SqrtTerm(B);
5453 SqrtTerm *= B;
5454 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005455
Nick Lewycky6ce24712012-08-01 09:14:36 +00005456 if (SqrtTerm.isNegative()) {
5457 // The loop is provably infinite.
5458 const SCEV *CNC = SE.getCouldNotCompute();
5459 return std::make_pair(CNC, CNC);
5460 }
5461
Reid Spencere8019bb2007-03-01 07:25:48 +00005462 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5463 // integer value or else APInt::sqrt() will assert.
5464 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005465
Dan Gohman64a845e2009-06-24 04:48:43 +00005466 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005467 // The divisions must be performed as signed divisions.
5468 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005469 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005470 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005471 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005472 return std::make_pair(CNC, CNC);
5473 }
5474
Owen Andersone922c022009-07-22 00:24:57 +00005475 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005476
5477 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005478 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005479 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005480 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005481
Dan Gohman64a845e2009-06-24 04:48:43 +00005482 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005483 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005484 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005485}
5486
5487/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005488/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005489///
5490/// This is only used for loops with a "x != y" exit test. The exit condition is
5491/// now expressed as a single expression, V = x-y. So the exit test is
5492/// effectively V != 0. We know and take advantage of the fact that this
5493/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005494ScalarEvolution::ExitLimit
Andrew Trick61601142013-05-31 06:43:25 +00005495ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005496 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005497 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005498 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005499 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005500 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005501 }
5502
Dan Gohman35738ac2009-05-04 22:30:44 +00005503 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005504 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005505 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005506
Chris Lattner7975e3e2011-01-09 22:39:48 +00005507 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5508 // the quadratic equation to solve it.
5509 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5510 std::pair<const SCEV *,const SCEV *> Roots =
5511 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005512 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5513 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005514 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005515#if 0
David Greene25e0e872009-12-23 22:18:14 +00005516 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005517 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005518#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005519 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005520 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005521 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5522 R1->getValue(),
5523 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005524 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005525 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005526
Chris Lattner53e677a2004-04-02 20:23:17 +00005527 // We can only use this value if the chrec ends up with an exact zero
5528 // value at this index. When solving for "X*X != 5", for example, we
5529 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005530 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005531 if (Val->isZero())
5532 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005533 }
5534 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005535 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005536 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005537
Chris Lattner7975e3e2011-01-09 22:39:48 +00005538 // Otherwise we can only handle this if it is affine.
5539 if (!AddRec->isAffine())
5540 return getCouldNotCompute();
5541
5542 // If this is an affine expression, the execution count of this branch is
5543 // the minimum unsigned root of the following equation:
5544 //
5545 // Start + Step*N = 0 (mod 2^BW)
5546 //
5547 // equivalent to:
5548 //
5549 // Step*N = -Start (mod 2^BW)
5550 //
5551 // where BW is the common bit width of Start and Step.
5552
5553 // Get the initial value for the loop.
5554 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5555 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5556
5557 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005558 //
5559 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5560 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5561 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5562 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005563 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005564 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005565 return getCouldNotCompute();
5566
Andrew Trick3228cc22011-03-14 16:50:06 +00005567 // For positive steps (counting up until unsigned overflow):
5568 // N = -Start/Step (as unsigned)
5569 // For negative steps (counting down to zero):
5570 // N = Start/-Step
5571 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005572 bool CountDown = StepC->getValue()->getValue().isNegative();
5573 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005574
5575 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005576 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5577 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005578 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5579 ConstantRange CR = getUnsignedRange(Start);
5580 const SCEV *MaxBECount;
5581 if (!CountDown && CR.getUnsignedMin().isMinValue())
5582 // When counting up, the worst starting value is 1, not 0.
5583 MaxBECount = CR.getUnsignedMax().isMinValue()
5584 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5585 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5586 else
5587 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5588 : -CR.getUnsignedMin());
5589 return ExitLimit(Distance, MaxBECount);
5590 }
Andrew Trick635f7182011-03-09 17:23:39 +00005591
Andrew Trickdcfd4042011-03-14 17:28:02 +00005592 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick61601142013-05-31 06:43:25 +00005593 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5594 // that the value will either become zero (and thus the loop terminates), that
5595 // the loop will terminate through some other exit condition first, or that
5596 // the loop has undefined behavior. This means we can't "miss" the exit
5597 // value, even with nonunit stride.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005598 //
Andrew Trick61601142013-05-31 06:43:25 +00005599 // This is only valid for expressions that directly compute the loop exit. It
5600 // is invalid for subexpressions in which the loop may exit through this
5601 // branch even if this subexpression is false. In that case, the trip count
5602 // computed by this udiv could be smaller than the number of well-defined
5603 // iterations.
5604 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
Andrew Trickdcfd4042011-03-14 17:28:02 +00005605 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick61601142013-05-31 06:43:25 +00005606
Chris Lattner7975e3e2011-01-09 22:39:48 +00005607 // Then, try to solve the above equation provided that Start is constant.
5608 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5609 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5610 -StartC->getValue()->getValue(),
5611 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005612 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005613}
5614
5615/// HowFarToNonZero - Return the number of times a backedge checking the
5616/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005617/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005618ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005619ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005620 // Loops that look like: while (X == 0) are very strange indeed. We don't
5621 // handle them yet except for the trivial case. This could be expanded in the
5622 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005623
Chris Lattner53e677a2004-04-02 20:23:17 +00005624 // If the value is a constant, check to see if it is known to be non-zero
5625 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005626 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005627 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005628 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005629 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005630 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005631
Chris Lattner53e677a2004-04-02 20:23:17 +00005632 // We could implement others, but I really doubt anyone writes loops like
5633 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005634 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005635}
5636
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005637/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5638/// (which may not be an immediate predecessor) which has exactly one
5639/// successor from which BB is reachable, or null if no such block is
5640/// found.
5641///
Dan Gohman005752b2010-04-15 16:19:08 +00005642std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005643ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005644 // If the block has a unique predecessor, then there is no path from the
5645 // predecessor to the block that does not go through the direct edge
5646 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005647 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005648 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005649
5650 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005651 // If the header has a unique predecessor outside the loop, it must be
5652 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005653 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005654 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005655
Dan Gohman005752b2010-04-15 16:19:08 +00005656 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005657}
5658
Dan Gohman763bad12009-06-20 00:35:32 +00005659/// HasSameValue - SCEV structural equivalence is usually sufficient for
5660/// testing whether two expressions are equal, however for the purposes of
5661/// looking for a condition guarding a loop, it can be useful to be a little
5662/// more general, since a front-end may have replicated the controlling
5663/// expression.
5664///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005665static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005666 // Quick check to see if they are the same SCEV.
5667 if (A == B) return true;
5668
5669 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5670 // two different instructions with the same value. Check for this case.
5671 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5672 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5673 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5674 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005675 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005676 return true;
5677
5678 // Otherwise assume they may have a different value.
5679 return false;
5680}
5681
Dan Gohmane9796502010-04-24 01:28:42 +00005682/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005683/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005684///
5685bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005686 const SCEV *&LHS, const SCEV *&RHS,
5687 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005688 bool Changed = false;
5689
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005690 // If we hit the max recursion limit bail out.
5691 if (Depth >= 3)
5692 return false;
5693
Dan Gohmane9796502010-04-24 01:28:42 +00005694 // Canonicalize a constant to the right side.
5695 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5696 // Check for both operands constant.
5697 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5698 if (ConstantExpr::getICmp(Pred,
5699 LHSC->getValue(),
5700 RHSC->getValue())->isNullValue())
5701 goto trivially_false;
5702 else
5703 goto trivially_true;
5704 }
5705 // Otherwise swap the operands to put the constant on the right.
5706 std::swap(LHS, RHS);
5707 Pred = ICmpInst::getSwappedPredicate(Pred);
5708 Changed = true;
5709 }
5710
5711 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005712 // addrec's loop, put the addrec on the left. Also make a dominance check,
5713 // as both operands could be addrecs loop-invariant in each other's loop.
5714 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5715 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005716 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005717 std::swap(LHS, RHS);
5718 Pred = ICmpInst::getSwappedPredicate(Pred);
5719 Changed = true;
5720 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005721 }
Dan Gohmane9796502010-04-24 01:28:42 +00005722
5723 // If there's a constant operand, canonicalize comparisons with boundary
5724 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5725 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5726 const APInt &RA = RC->getValue()->getValue();
5727 switch (Pred) {
5728 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5729 case ICmpInst::ICMP_EQ:
5730 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005731 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5732 if (!RA)
5733 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5734 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005735 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5736 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005737 RHS = AE->getOperand(1);
5738 LHS = ME->getOperand(1);
5739 Changed = true;
5740 }
Dan Gohmane9796502010-04-24 01:28:42 +00005741 break;
5742 case ICmpInst::ICMP_UGE:
5743 if ((RA - 1).isMinValue()) {
5744 Pred = ICmpInst::ICMP_NE;
5745 RHS = getConstant(RA - 1);
5746 Changed = true;
5747 break;
5748 }
5749 if (RA.isMaxValue()) {
5750 Pred = ICmpInst::ICMP_EQ;
5751 Changed = true;
5752 break;
5753 }
5754 if (RA.isMinValue()) goto trivially_true;
5755
5756 Pred = ICmpInst::ICMP_UGT;
5757 RHS = getConstant(RA - 1);
5758 Changed = true;
5759 break;
5760 case ICmpInst::ICMP_ULE:
5761 if ((RA + 1).isMaxValue()) {
5762 Pred = ICmpInst::ICMP_NE;
5763 RHS = getConstant(RA + 1);
5764 Changed = true;
5765 break;
5766 }
5767 if (RA.isMinValue()) {
5768 Pred = ICmpInst::ICMP_EQ;
5769 Changed = true;
5770 break;
5771 }
5772 if (RA.isMaxValue()) goto trivially_true;
5773
5774 Pred = ICmpInst::ICMP_ULT;
5775 RHS = getConstant(RA + 1);
5776 Changed = true;
5777 break;
5778 case ICmpInst::ICMP_SGE:
5779 if ((RA - 1).isMinSignedValue()) {
5780 Pred = ICmpInst::ICMP_NE;
5781 RHS = getConstant(RA - 1);
5782 Changed = true;
5783 break;
5784 }
5785 if (RA.isMaxSignedValue()) {
5786 Pred = ICmpInst::ICMP_EQ;
5787 Changed = true;
5788 break;
5789 }
5790 if (RA.isMinSignedValue()) goto trivially_true;
5791
5792 Pred = ICmpInst::ICMP_SGT;
5793 RHS = getConstant(RA - 1);
5794 Changed = true;
5795 break;
5796 case ICmpInst::ICMP_SLE:
5797 if ((RA + 1).isMaxSignedValue()) {
5798 Pred = ICmpInst::ICMP_NE;
5799 RHS = getConstant(RA + 1);
5800 Changed = true;
5801 break;
5802 }
5803 if (RA.isMinSignedValue()) {
5804 Pred = ICmpInst::ICMP_EQ;
5805 Changed = true;
5806 break;
5807 }
5808 if (RA.isMaxSignedValue()) goto trivially_true;
5809
5810 Pred = ICmpInst::ICMP_SLT;
5811 RHS = getConstant(RA + 1);
5812 Changed = true;
5813 break;
5814 case ICmpInst::ICMP_UGT:
5815 if (RA.isMinValue()) {
5816 Pred = ICmpInst::ICMP_NE;
5817 Changed = true;
5818 break;
5819 }
5820 if ((RA + 1).isMaxValue()) {
5821 Pred = ICmpInst::ICMP_EQ;
5822 RHS = getConstant(RA + 1);
5823 Changed = true;
5824 break;
5825 }
5826 if (RA.isMaxValue()) goto trivially_false;
5827 break;
5828 case ICmpInst::ICMP_ULT:
5829 if (RA.isMaxValue()) {
5830 Pred = ICmpInst::ICMP_NE;
5831 Changed = true;
5832 break;
5833 }
5834 if ((RA - 1).isMinValue()) {
5835 Pred = ICmpInst::ICMP_EQ;
5836 RHS = getConstant(RA - 1);
5837 Changed = true;
5838 break;
5839 }
5840 if (RA.isMinValue()) goto trivially_false;
5841 break;
5842 case ICmpInst::ICMP_SGT:
5843 if (RA.isMinSignedValue()) {
5844 Pred = ICmpInst::ICMP_NE;
5845 Changed = true;
5846 break;
5847 }
5848 if ((RA + 1).isMaxSignedValue()) {
5849 Pred = ICmpInst::ICMP_EQ;
5850 RHS = getConstant(RA + 1);
5851 Changed = true;
5852 break;
5853 }
5854 if (RA.isMaxSignedValue()) goto trivially_false;
5855 break;
5856 case ICmpInst::ICMP_SLT:
5857 if (RA.isMaxSignedValue()) {
5858 Pred = ICmpInst::ICMP_NE;
5859 Changed = true;
5860 break;
5861 }
5862 if ((RA - 1).isMinSignedValue()) {
5863 Pred = ICmpInst::ICMP_EQ;
5864 RHS = getConstant(RA - 1);
5865 Changed = true;
5866 break;
5867 }
5868 if (RA.isMinSignedValue()) goto trivially_false;
5869 break;
5870 }
5871 }
5872
5873 // Check for obvious equality.
5874 if (HasSameValue(LHS, RHS)) {
5875 if (ICmpInst::isTrueWhenEqual(Pred))
5876 goto trivially_true;
5877 if (ICmpInst::isFalseWhenEqual(Pred))
5878 goto trivially_false;
5879 }
5880
Dan Gohman03557dc2010-05-03 16:35:17 +00005881 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5882 // adding or subtracting 1 from one of the operands.
5883 switch (Pred) {
5884 case ICmpInst::ICMP_SLE:
5885 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5886 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005887 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005888 Pred = ICmpInst::ICMP_SLT;
5889 Changed = true;
5890 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005891 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005892 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005893 Pred = ICmpInst::ICMP_SLT;
5894 Changed = true;
5895 }
5896 break;
5897 case ICmpInst::ICMP_SGE:
5898 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005899 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005900 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005901 Pred = ICmpInst::ICMP_SGT;
5902 Changed = true;
5903 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5904 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005905 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005906 Pred = ICmpInst::ICMP_SGT;
5907 Changed = true;
5908 }
5909 break;
5910 case ICmpInst::ICMP_ULE:
5911 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005912 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005913 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005914 Pred = ICmpInst::ICMP_ULT;
5915 Changed = true;
5916 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005917 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005918 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005919 Pred = ICmpInst::ICMP_ULT;
5920 Changed = true;
5921 }
5922 break;
5923 case ICmpInst::ICMP_UGE:
5924 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005925 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005926 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005927 Pred = ICmpInst::ICMP_UGT;
5928 Changed = true;
5929 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005930 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005931 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005932 Pred = ICmpInst::ICMP_UGT;
5933 Changed = true;
5934 }
5935 break;
5936 default:
5937 break;
5938 }
5939
Dan Gohmane9796502010-04-24 01:28:42 +00005940 // TODO: More simplifications are possible here.
5941
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005942 // Recursively simplify until we either hit a recursion limit or nothing
5943 // changes.
5944 if (Changed)
5945 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5946
Dan Gohmane9796502010-04-24 01:28:42 +00005947 return Changed;
5948
5949trivially_true:
5950 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005951 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005952 Pred = ICmpInst::ICMP_EQ;
5953 return true;
5954
5955trivially_false:
5956 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005957 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005958 Pred = ICmpInst::ICMP_NE;
5959 return true;
5960}
5961
Dan Gohman85b05a22009-07-13 21:35:55 +00005962bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5963 return getSignedRange(S).getSignedMax().isNegative();
5964}
5965
5966bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5967 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5968}
5969
5970bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5971 return !getSignedRange(S).getSignedMin().isNegative();
5972}
5973
5974bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5975 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5976}
5977
5978bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5979 return isKnownNegative(S) || isKnownPositive(S);
5980}
5981
5982bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5983 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005984 // Canonicalize the inputs first.
5985 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5986
Dan Gohman53c66ea2010-04-11 22:16:48 +00005987 // If LHS or RHS is an addrec, check to see if the condition is true in
5988 // every iteration of the loop.
5989 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5990 if (isLoopEntryGuardedByCond(
5991 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5992 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005993 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005994 return true;
5995 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5996 if (isLoopEntryGuardedByCond(
5997 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5998 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005999 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00006000 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00006001
Dan Gohman53c66ea2010-04-11 22:16:48 +00006002 // Otherwise see what can be done with known constant ranges.
6003 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6004}
6005
6006bool
6007ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6008 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006009 if (HasSameValue(LHS, RHS))
6010 return ICmpInst::isTrueWhenEqual(Pred);
6011
Dan Gohman53c66ea2010-04-11 22:16:48 +00006012 // This code is split out from isKnownPredicate because it is called from
6013 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00006014 switch (Pred) {
6015 default:
Dan Gohman850f7912009-07-16 17:34:36 +00006016 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00006017 case ICmpInst::ICMP_SGT:
6018 Pred = ICmpInst::ICMP_SLT;
6019 std::swap(LHS, RHS);
6020 case ICmpInst::ICMP_SLT: {
6021 ConstantRange LHSRange = getSignedRange(LHS);
6022 ConstantRange RHSRange = getSignedRange(RHS);
6023 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6024 return true;
6025 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6026 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006027 break;
6028 }
6029 case ICmpInst::ICMP_SGE:
6030 Pred = ICmpInst::ICMP_SLE;
6031 std::swap(LHS, RHS);
6032 case ICmpInst::ICMP_SLE: {
6033 ConstantRange LHSRange = getSignedRange(LHS);
6034 ConstantRange RHSRange = getSignedRange(RHS);
6035 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6036 return true;
6037 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6038 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006039 break;
6040 }
6041 case ICmpInst::ICMP_UGT:
6042 Pred = ICmpInst::ICMP_ULT;
6043 std::swap(LHS, RHS);
6044 case ICmpInst::ICMP_ULT: {
6045 ConstantRange LHSRange = getUnsignedRange(LHS);
6046 ConstantRange RHSRange = getUnsignedRange(RHS);
6047 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6048 return true;
6049 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6050 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006051 break;
6052 }
6053 case ICmpInst::ICMP_UGE:
6054 Pred = ICmpInst::ICMP_ULE;
6055 std::swap(LHS, RHS);
6056 case ICmpInst::ICMP_ULE: {
6057 ConstantRange LHSRange = getUnsignedRange(LHS);
6058 ConstantRange RHSRange = getUnsignedRange(RHS);
6059 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6060 return true;
6061 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6062 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006063 break;
6064 }
6065 case ICmpInst::ICMP_NE: {
6066 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6067 return true;
6068 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6069 return true;
6070
6071 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6072 if (isKnownNonZero(Diff))
6073 return true;
6074 break;
6075 }
6076 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006077 // The check at the top of the function catches the case where
6078 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006079 break;
6080 }
6081 return false;
6082}
6083
6084/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6085/// protected by a conditional between LHS and RHS. This is used to
6086/// to eliminate casts.
6087bool
6088ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6089 ICmpInst::Predicate Pred,
6090 const SCEV *LHS, const SCEV *RHS) {
6091 // Interpret a null as meaning no loop, where there is obviously no guard
6092 // (interprocedural conditions notwithstanding).
6093 if (!L) return true;
6094
6095 BasicBlock *Latch = L->getLoopLatch();
6096 if (!Latch)
6097 return false;
6098
6099 BranchInst *LoopContinuePredicate =
6100 dyn_cast<BranchInst>(Latch->getTerminator());
6101 if (!LoopContinuePredicate ||
6102 LoopContinuePredicate->isUnconditional())
6103 return false;
6104
Dan Gohmanaf08a362010-08-10 23:46:30 +00006105 return isImpliedCond(Pred, LHS, RHS,
6106 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006107 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006108}
6109
Dan Gohman3948d0b2010-04-11 19:27:13 +00006110/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006111/// by a conditional between LHS and RHS. This is used to help avoid max
6112/// expressions in loop trip counts, and to eliminate casts.
6113bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006114ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6115 ICmpInst::Predicate Pred,
6116 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006117 // Interpret a null as meaning no loop, where there is obviously no guard
6118 // (interprocedural conditions notwithstanding).
6119 if (!L) return false;
6120
Dan Gohman859b4822009-05-18 15:36:09 +00006121 // Starting at the loop predecessor, climb up the predecessor chain, as long
6122 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006123 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006124 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006125 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006126 Pair.first;
6127 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006128
6129 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006130 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006131 if (!LoopEntryPredicate ||
6132 LoopEntryPredicate->isUnconditional())
6133 continue;
6134
Dan Gohmanaf08a362010-08-10 23:46:30 +00006135 if (isImpliedCond(Pred, LHS, RHS,
6136 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006137 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006138 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006139 }
6140
Dan Gohman38372182008-08-12 20:17:31 +00006141 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006142}
6143
Andrew Trick8aa22012012-05-19 00:48:25 +00006144/// RAII wrapper to prevent recursive application of isImpliedCond.
6145/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6146/// currently evaluating isImpliedCond.
6147struct MarkPendingLoopPredicate {
6148 Value *Cond;
6149 DenseSet<Value*> &LoopPreds;
6150 bool Pending;
6151
6152 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6153 : Cond(C), LoopPreds(LP) {
6154 Pending = !LoopPreds.insert(Cond).second;
6155 }
6156 ~MarkPendingLoopPredicate() {
6157 if (!Pending)
6158 LoopPreds.erase(Cond);
6159 }
6160};
6161
Dan Gohman0f4b2852009-07-21 23:03:19 +00006162/// isImpliedCond - Test whether the condition described by Pred, LHS,
6163/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006164bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006165 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006166 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006167 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006168 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6169 if (Mark.Pending)
6170 return false;
6171
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006172 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006173 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006174 if (BO->getOpcode() == Instruction::And) {
6175 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006176 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6177 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006178 } else if (BO->getOpcode() == Instruction::Or) {
6179 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006180 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6181 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006182 }
6183 }
6184
Dan Gohmanaf08a362010-08-10 23:46:30 +00006185 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006186 if (!ICI) return false;
6187
Dan Gohman85b05a22009-07-13 21:35:55 +00006188 // Bail if the ICmp's operands' types are wider than the needed type
6189 // before attempting to call getSCEV on them. This avoids infinite
6190 // recursion, since the analysis of widening casts can require loop
6191 // exit condition information for overflow checking, which would
6192 // lead back here.
6193 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006194 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006195 return false;
6196
Andrew Trickffc9ee42012-11-29 18:35:13 +00006197 // Now that we found a conditional branch that dominates the loop or controls
6198 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman0f4b2852009-07-21 23:03:19 +00006199 ICmpInst::Predicate FoundPred;
6200 if (Inverse)
6201 FoundPred = ICI->getInversePredicate();
6202 else
6203 FoundPred = ICI->getPredicate();
6204
6205 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6206 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006207
6208 // Balance the types. The case where FoundLHS' type is wider than
6209 // LHS' type is checked for above.
6210 if (getTypeSizeInBits(LHS->getType()) >
6211 getTypeSizeInBits(FoundLHS->getType())) {
6212 if (CmpInst::isSigned(Pred)) {
6213 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6214 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6215 } else {
6216 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6217 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6218 }
6219 }
6220
Dan Gohman0f4b2852009-07-21 23:03:19 +00006221 // Canonicalize the query to match the way instcombine will have
6222 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006223 if (SimplifyICmpOperands(Pred, LHS, RHS))
6224 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006225 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramer7d4253a2012-11-29 19:07:57 +00006226 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6227 if (FoundLHS == FoundRHS)
6228 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006229
6230 // Check to see if we can make the LHS or RHS match.
6231 if (LHS == FoundRHS || RHS == FoundLHS) {
6232 if (isa<SCEVConstant>(RHS)) {
6233 std::swap(FoundLHS, FoundRHS);
6234 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6235 } else {
6236 std::swap(LHS, RHS);
6237 Pred = ICmpInst::getSwappedPredicate(Pred);
6238 }
6239 }
6240
6241 // Check whether the found predicate is the same as the desired predicate.
6242 if (FoundPred == Pred)
6243 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6244
6245 // Check whether swapping the found predicate makes it the same as the
6246 // desired predicate.
6247 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6248 if (isa<SCEVConstant>(RHS))
6249 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6250 else
6251 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6252 RHS, LHS, FoundLHS, FoundRHS);
6253 }
6254
6255 // Check whether the actual condition is beyond sufficient.
6256 if (FoundPred == ICmpInst::ICMP_EQ)
6257 if (ICmpInst::isTrueWhenEqual(Pred))
6258 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6259 return true;
6260 if (Pred == ICmpInst::ICMP_NE)
6261 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6262 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6263 return true;
6264
6265 // Otherwise assume the worst.
6266 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006267}
6268
Dan Gohman0f4b2852009-07-21 23:03:19 +00006269/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006270/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006271/// and FoundRHS is true.
6272bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6273 const SCEV *LHS, const SCEV *RHS,
6274 const SCEV *FoundLHS,
6275 const SCEV *FoundRHS) {
6276 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6277 FoundLHS, FoundRHS) ||
6278 // ~x < ~y --> x > y
6279 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6280 getNotSCEV(FoundRHS),
6281 getNotSCEV(FoundLHS));
6282}
6283
6284/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006285/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006286/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006287bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006288ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6289 const SCEV *LHS, const SCEV *RHS,
6290 const SCEV *FoundLHS,
6291 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006292 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006293 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6294 case ICmpInst::ICMP_EQ:
6295 case ICmpInst::ICMP_NE:
6296 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6297 return true;
6298 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006299 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006300 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006301 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6302 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006303 return true;
6304 break;
6305 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006306 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006307 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6308 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006309 return true;
6310 break;
6311 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006312 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006313 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6314 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006315 return true;
6316 break;
6317 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006318 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006319 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6320 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006321 return true;
6322 break;
6323 }
6324
6325 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006326}
6327
Dan Gohman51f53b72009-06-21 23:46:38 +00006328/// getBECount - Subtract the end and start values and divide by the step,
6329/// rounding up, to get the number of times the backedge is executed. Return
6330/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006331const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006332 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006333 const SCEV *Step,
6334 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006335 assert(!isKnownNegative(Step) &&
6336 "This code doesn't handle negative strides yet!");
6337
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006338 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006339
6340 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6341 // here because SCEV may not be able to determine that the unsigned division
6342 // after rounding is zero.
6343 if (Start == End)
6344 return getConstant(Ty, 0);
6345
Dan Gohmandeff6212010-05-03 22:09:21 +00006346 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006347 const SCEV *Diff = getMinusSCEV(End, Start);
6348 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006349
6350 // Add an adjustment to the difference between End and Start so that
6351 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006352 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006353
Dan Gohman1f96e672009-09-17 18:05:20 +00006354 if (!NoWrap) {
6355 // Check Add for unsigned overflow.
6356 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006357 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006358 getTypeSizeInBits(Ty) + 1);
6359 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6360 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6361 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6362 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6363 return getCouldNotCompute();
6364 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006365
6366 return getUDivExpr(Add, Step);
6367}
6368
Chris Lattnerdb25de42005-08-15 23:33:51 +00006369/// HowManyLessThans - Return the number of times a backedge containing the
6370/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006371/// CouldNotCompute.
Andrew Trick61601142013-05-31 06:43:25 +00006372///
6373/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6374/// control the branch. In this case, we can only compute an iteration count for
6375/// a subexpression that cannot overflow before evaluating true.
Andrew Trick5116ff62011-07-26 17:19:55 +00006376ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006377ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick61601142013-05-31 06:43:25 +00006378 const Loop *L, bool isSigned,
6379 bool IsSubExpr) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006380 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006381 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006382
Dan Gohman35738ac2009-05-04 22:30:44 +00006383 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006384 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006385 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006386
6387 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006388 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006389 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006390
Dan Gohman52fddd32010-01-26 04:40:18 +00006391 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006392 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006393 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006394 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006395 } else if (isKnownPositive(Step)) {
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006396 // Test whether a positive iteration can step past the limit value and
6397 // past the maximum value for its type in a single step. The NSW/NUW flags
6398 // can imply that stepping past RHS would immediately result in undefined
6399 // behavior. No self-wrap is not useful here because the loop counter may
6400 // signed or unsigned wrap but continue iterating and terminate with
6401 // defined behavior without ever self-wrapping.
Dan Gohmandeff6212010-05-03 22:09:21 +00006402 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006403 if (isSigned) {
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006404 if (!AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
6405 APInt Max = APInt::getSignedMaxValue(BitWidth);
6406 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
Dan Gohman52fddd32010-01-26 04:40:18 +00006407 .slt(getSignedRange(RHS).getSignedMax()))
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006408 return getCouldNotCompute();
6409 }
6410 } else if (!AddRec->getNoWrapFlags(SCEV::FlagNUW)){
Dan Gohman52fddd32010-01-26 04:40:18 +00006411 APInt Max = APInt::getMaxValue(BitWidth);
6412 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6413 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6414 return getCouldNotCompute();
6415 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006416 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006417 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006418 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006419
Dan Gohmana1af7572009-04-30 20:47:05 +00006420 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6421 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6422 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006423 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006424
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006425 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006426 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006427
Dan Gohmana1af7572009-04-30 20:47:05 +00006428 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006429 const SCEV *MinStart = getConstant(isSigned ?
6430 getSignedRange(Start).getSignedMin() :
6431 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006432
Dan Gohmana1af7572009-04-30 20:47:05 +00006433 // If we know that the condition is true in order to enter the loop,
6434 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006435 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6436 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006437 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006438 if (!isLoopEntryGuardedByCond(L,
6439 isSigned ? ICmpInst::ICMP_SLT :
6440 ICmpInst::ICMP_ULT,
6441 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006442 End = isSigned ? getSMaxExpr(RHS, Start)
6443 : getUMaxExpr(RHS, Start);
6444
6445 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006446 const SCEV *MaxEnd = getConstant(isSigned ?
6447 getSignedRange(End).getSignedMax() :
6448 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006449
Dan Gohman52fddd32010-01-26 04:40:18 +00006450 // If MaxEnd is within a step of the maximum integer value in its type,
6451 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006452 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006453 // compute the correct value.
6454 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006455 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006456 MaxEnd = isSigned ?
6457 getSMinExpr(MaxEnd,
6458 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6459 StepMinusOne)) :
6460 getUMinExpr(MaxEnd,
6461 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6462 StepMinusOne));
6463
Andrew Tricka5c5bc92013-10-18 23:43:53 +00006464 // If the loop counter does not self-wrap, then the trip count may be
6465 // computed by dividing the distance by the step. This is independent of
6466 // signed or unsigned wrap.
6467 bool NoWrap = false;
6468 if (!IsSubExpr) {
6469 NoWrap = AddRec->getNoWrapFlags(
6470 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
6471 | SCEV::FlagNW));
6472 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006473 // Finally, we subtract these two values and divide, rounding up, to get
6474 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006475 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006476
6477 // The maximum backedge count is similar, except using the minimum start
6478 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006479 // If we already have an exact constant BECount, use it instead.
6480 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6481 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6482
6483 // If the stride is nonconstant, and NoWrap == true, then
6484 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6485 // exact BECount and invalid MaxBECount, which should be avoided to catch
6486 // more optimization opportunities.
6487 if (isa<SCEVCouldNotCompute>(MaxBECount))
6488 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006489
Andrew Trick5116ff62011-07-26 17:19:55 +00006490 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006491 }
6492
Dan Gohman1c343752009-06-27 21:21:31 +00006493 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006494}
6495
Chris Lattner53e677a2004-04-02 20:23:17 +00006496/// getNumIterationsInRange - Return the number of iterations of this loop that
6497/// produce values in the specified constant range. Another way of looking at
6498/// this is that it returns the first iteration number where the value is not in
6499/// the condition, thus computing the exit count. If the iteration count can't
6500/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006501const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006502 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006503 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006504 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006505
6506 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006507 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006508 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006509 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006510 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006511 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006512 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006513 if (const SCEVAddRecExpr *ShiftedAddRec =
6514 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006515 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006516 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006517 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006518 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006519 }
6520
6521 // The only time we can solve this is when we have all constant indices.
6522 // Otherwise, we cannot determine the overflow conditions.
6523 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6524 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006525 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006526
6527
6528 // Okay at this point we know that all elements of the chrec are constants and
6529 // that the start element is zero.
6530
6531 // First check to see if the range contains zero. If not, the first
6532 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006533 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006534 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006535 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006536
Chris Lattner53e677a2004-04-02 20:23:17 +00006537 if (isAffine()) {
6538 // If this is an affine expression then we have this situation:
6539 // Solve {0,+,A} in Range === Ax in Range
6540
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006541 // We know that zero is in the range. If A is positive then we know that
6542 // the upper value of the range must be the first possible exit value.
6543 // If A is negative then the lower of the range is the last possible loop
6544 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006545 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006546 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6547 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006548
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006549 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006550 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006551 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006552
6553 // Evaluate at the exit value. If we really did fall out of the valid
6554 // range, then we computed our trip count, otherwise wrap around or other
6555 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006556 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006557 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006558 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006559
6560 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006561 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006562 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006563 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006564 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006565 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006566 } else if (isQuadratic()) {
6567 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6568 // quadratic equation to solve it. To do this, we must frame our problem in
6569 // terms of figuring out when zero is crossed, instead of when
6570 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006571 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006572 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006573 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6574 // getNoWrapFlags(FlagNW)
6575 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006576
6577 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006578 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006579 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006580 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6581 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006582 if (R1) {
6583 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006584 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006585 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006586 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006587 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006588 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006589
Chris Lattner53e677a2004-04-02 20:23:17 +00006590 // Make sure the root is not off by one. The returned iteration should
6591 // not be in the range, but the previous one should be. When solving
6592 // for "X*X < 5", for example, we should not return a root of 2.
6593 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006594 R1->getValue(),
6595 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006596 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006597 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006598 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006599 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006600
Dan Gohman246b2562007-10-22 18:31:58 +00006601 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006602 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006603 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006604 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006605 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006606
Chris Lattner53e677a2004-04-02 20:23:17 +00006607 // If R1 was not in the range, then it is a good return value. Make
6608 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006609 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006610 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006611 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006612 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006613 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006614 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006615 }
6616 }
6617 }
6618
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006619 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006620}
6621
6622
6623
6624//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006625// SCEVCallbackVH Class Implementation
6626//===----------------------------------------------------------------------===//
6627
Dan Gohman1959b752009-05-19 19:22:47 +00006628void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006629 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006630 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6631 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006632 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006633 // this now dangles!
6634}
6635
Dan Gohman81f91212010-07-28 01:09:07 +00006636void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006637 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006638
Dan Gohman35738ac2009-05-04 22:30:44 +00006639 // Forget all the expressions associated with users of the old value,
6640 // so that future queries will recompute the expressions using the new
6641 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006642 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006643 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006644 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006645 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6646 UI != UE; ++UI)
6647 Worklist.push_back(*UI);
6648 while (!Worklist.empty()) {
6649 User *U = Worklist.pop_back_val();
6650 // Deleting the Old value will cause this to dangle. Postpone
6651 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006652 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006653 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006654 if (!Visited.insert(U))
6655 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006656 if (PHINode *PN = dyn_cast<PHINode>(U))
6657 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006658 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006659 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6660 UI != UE; ++UI)
6661 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006662 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006663 // Delete the Old value.
6664 if (PHINode *PN = dyn_cast<PHINode>(Old))
6665 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006666 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006667 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006668}
6669
Dan Gohman1959b752009-05-19 19:22:47 +00006670ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006671 : CallbackVH(V), SE(se) {}
6672
6673//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006674// ScalarEvolution Class Implementation
6675//===----------------------------------------------------------------------===//
6676
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006677ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006678 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006679 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006680}
6681
Chris Lattner53e677a2004-04-02 20:23:17 +00006682bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006683 this->F = &F;
6684 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006685 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006686 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006687 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006688 return false;
6689}
6690
6691void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006692 // Iterate through all the SCEVUnknown instances and call their
6693 // destructors, so that they release their references to their values.
6694 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6695 U->~SCEVUnknown();
6696 FirstUnknown = 0;
6697
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006698 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006699
6700 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6701 // that a loop had multiple computable exits.
6702 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6703 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6704 I != E; ++I) {
6705 I->second.clear();
6706 }
6707
Andrew Trick8aa22012012-05-19 00:48:25 +00006708 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6709
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006710 BackedgeTakenCounts.clear();
6711 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006712 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006713 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006714 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006715 UnsignedRanges.clear();
6716 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006717 UniqueSCEVs.clear();
6718 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006719}
6720
6721void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6722 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006723 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006724 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006725 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006726}
6727
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006728bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006729 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006730}
6731
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006732static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006733 const Loop *L) {
6734 // Print all inner loops first
6735 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6736 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006737
Dan Gohman30733292010-01-09 18:17:45 +00006738 OS << "Loop ";
6739 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6740 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006741
Dan Gohman5d984912009-12-18 01:14:11 +00006742 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006743 L->getExitBlocks(ExitBlocks);
6744 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006745 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006746
Dan Gohman46bdfb02009-02-24 18:55:53 +00006747 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6748 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006749 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006750 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006751 }
6752
Dan Gohman30733292010-01-09 18:17:45 +00006753 OS << "\n"
6754 "Loop ";
6755 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6756 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006757
6758 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6759 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6760 } else {
6761 OS << "Unpredictable max backedge-taken count. ";
6762 }
6763
6764 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006765}
6766
Dan Gohman5d984912009-12-18 01:14:11 +00006767void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006768 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006769 // out SCEV values of all instructions that are interesting. Doing
6770 // this potentially causes it to create new SCEV objects though,
6771 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006772 // observable from outside the class though, so casting away the
6773 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006774 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006775
Dan Gohman30733292010-01-09 18:17:45 +00006776 OS << "Classifying expressions for: ";
6777 WriteAsOperand(OS, F, /*PrintType=*/false);
6778 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006779 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006780 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006781 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006782 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006783 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006784 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006785
Dan Gohman0c689c52009-06-19 17:49:54 +00006786 const Loop *L = LI->getLoopFor((*I).getParent());
6787
Dan Gohman0bba49c2009-07-07 17:06:11 +00006788 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006789 if (AtUse != SV) {
6790 OS << " --> ";
6791 AtUse->print(OS);
6792 }
6793
6794 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006795 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006796 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006797 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006798 OS << "<<Unknown>>";
6799 } else {
6800 OS << *ExitValue;
6801 }
6802 }
6803
Chris Lattner53e677a2004-04-02 20:23:17 +00006804 OS << "\n";
6805 }
6806
Dan Gohman30733292010-01-09 18:17:45 +00006807 OS << "Determining loop execution counts for: ";
6808 WriteAsOperand(OS, F, /*PrintType=*/false);
6809 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006810 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6811 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006812}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006813
Dan Gohman714b5292010-11-17 23:21:44 +00006814ScalarEvolution::LoopDisposition
6815ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6816 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6817 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6818 Values.insert(std::make_pair(L, LoopVariant));
6819 if (!Pair.second)
6820 return Pair.first->second;
6821
6822 LoopDisposition D = computeLoopDisposition(S, L);
6823 return LoopDispositions[S][L] = D;
6824}
6825
6826ScalarEvolution::LoopDisposition
6827ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006828 switch (S->getSCEVType()) {
6829 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006830 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006831 case scTruncate:
6832 case scZeroExtend:
6833 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006834 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006835 case scAddRecExpr: {
6836 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6837
Dan Gohman714b5292010-11-17 23:21:44 +00006838 // If L is the addrec's loop, it's computable.
6839 if (AR->getLoop() == L)
6840 return LoopComputable;
6841
Dan Gohman17ead4f2010-11-17 21:23:15 +00006842 // Add recurrences are never invariant in the function-body (null loop).
6843 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006844 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006845
6846 // This recurrence is variant w.r.t. L if L contains AR's loop.
6847 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006848 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006849
6850 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6851 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006852 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006853
6854 // This recurrence is variant w.r.t. L if any of its operands
6855 // are variant.
6856 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6857 I != E; ++I)
6858 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006859 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006860
6861 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006862 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006863 }
6864 case scAddExpr:
6865 case scMulExpr:
6866 case scUMaxExpr:
6867 case scSMaxExpr: {
6868 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006869 bool HasVarying = false;
6870 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6871 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006872 LoopDisposition D = getLoopDisposition(*I, L);
6873 if (D == LoopVariant)
6874 return LoopVariant;
6875 if (D == LoopComputable)
6876 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006877 }
Dan Gohman714b5292010-11-17 23:21:44 +00006878 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006879 }
6880 case scUDivExpr: {
6881 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006882 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6883 if (LD == LoopVariant)
6884 return LoopVariant;
6885 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6886 if (RD == LoopVariant)
6887 return LoopVariant;
6888 return (LD == LoopInvariant && RD == LoopInvariant) ?
6889 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006890 }
6891 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006892 // All non-instruction values are loop invariant. All instructions are loop
6893 // invariant if they are not contained in the specified loop.
6894 // Instructions are never considered invariant in the function body
6895 // (null loop) because they are defined within the "loop".
6896 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6897 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6898 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006899 case scCouldNotCompute:
6900 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006901 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006902 }
Dan Gohman714b5292010-11-17 23:21:44 +00006903}
6904
6905bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6906 return getLoopDisposition(S, L) == LoopInvariant;
6907}
6908
6909bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6910 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006911}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006912
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006913ScalarEvolution::BlockDisposition
6914ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6915 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6916 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6917 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6918 if (!Pair.second)
6919 return Pair.first->second;
6920
6921 BlockDisposition D = computeBlockDisposition(S, BB);
6922 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006923}
6924
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006925ScalarEvolution::BlockDisposition
6926ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006927 switch (S->getSCEVType()) {
6928 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006929 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006930 case scTruncate:
6931 case scZeroExtend:
6932 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006933 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006934 case scAddRecExpr: {
6935 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006936 // to test for proper dominance too, because the instruction which
6937 // produces the addrec's value is a PHI, and a PHI effectively properly
6938 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006939 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6940 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006941 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006942 }
6943 // FALL THROUGH into SCEVNAryExpr handling.
6944 case scAddExpr:
6945 case scMulExpr:
6946 case scUMaxExpr:
6947 case scSMaxExpr: {
6948 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006949 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006950 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006951 I != E; ++I) {
6952 BlockDisposition D = getBlockDisposition(*I, BB);
6953 if (D == DoesNotDominateBlock)
6954 return DoesNotDominateBlock;
6955 if (D == DominatesBlock)
6956 Proper = false;
6957 }
6958 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006959 }
6960 case scUDivExpr: {
6961 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006962 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6963 BlockDisposition LD = getBlockDisposition(LHS, BB);
6964 if (LD == DoesNotDominateBlock)
6965 return DoesNotDominateBlock;
6966 BlockDisposition RD = getBlockDisposition(RHS, BB);
6967 if (RD == DoesNotDominateBlock)
6968 return DoesNotDominateBlock;
6969 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6970 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006971 }
6972 case scUnknown:
6973 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006974 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6975 if (I->getParent() == BB)
6976 return DominatesBlock;
6977 if (DT->properlyDominates(I->getParent(), BB))
6978 return ProperlyDominatesBlock;
6979 return DoesNotDominateBlock;
6980 }
6981 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006982 case scCouldNotCompute:
6983 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006984 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006985 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006986 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006987}
6988
6989bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6990 return getBlockDisposition(S, BB) >= DominatesBlock;
6991}
6992
6993bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6994 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006995}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006996
Andrew Trick8b7036b2012-07-13 23:33:03 +00006997namespace {
6998// Search for a SCEV expression node within an expression tree.
6999// Implements SCEVTraversal::Visitor.
7000struct SCEVSearch {
7001 const SCEV *Node;
7002 bool IsFound;
7003
7004 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7005
7006 bool follow(const SCEV *S) {
7007 IsFound |= (S == Node);
7008 return !IsFound;
7009 }
7010 bool isDone() const { return IsFound; }
7011};
7012}
7013
Dan Gohman4ce32db2010-11-17 22:27:42 +00007014bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00007015 SCEVSearch Search(Op);
7016 visitAll(S, Search);
7017 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00007018}
Dan Gohman56a75682010-11-17 23:28:48 +00007019
7020void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7021 ValuesAtScopes.erase(S);
7022 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00007023 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00007024 UnsignedRanges.erase(S);
7025 SignedRanges.erase(S);
Andrew Tricke74c2e82013-03-26 03:14:53 +00007026
7027 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7028 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7029 BackedgeTakenInfo &BEInfo = I->second;
7030 if (BEInfo.hasOperand(S, this)) {
7031 BEInfo.clear();
7032 BackedgeTakenCounts.erase(I++);
7033 }
7034 else
7035 ++I;
7036 }
Dan Gohman56a75682010-11-17 23:28:48 +00007037}
Benjamin Kramerff183102012-10-26 17:31:32 +00007038
7039typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007040
7041/// replaceSubString - Replaces all occurences of From in Str with To.
7042static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7043 size_t Pos = 0;
7044 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7045 Str.replace(Pos, From.size(), To.data(), To.size());
7046 Pos += To.size();
7047 }
7048}
7049
Benjamin Kramerff183102012-10-26 17:31:32 +00007050/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7051static void
7052getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7053 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7054 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7055
7056 std::string &S = Map[L];
7057 if (S.empty()) {
7058 raw_string_ostream OS(S);
7059 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramercb8b8ea2012-10-27 10:45:01 +00007060
7061 // false and 0 are semantically equivalent. This can happen in dead loops.
7062 replaceSubString(OS.str(), "false", "0");
7063 // Remove wrap flags, their use in SCEV is highly fragile.
7064 // FIXME: Remove this when SCEV gets smarter about them.
7065 replaceSubString(OS.str(), "<nw>", "");
7066 replaceSubString(OS.str(), "<nsw>", "");
7067 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramerff183102012-10-26 17:31:32 +00007068 }
7069 }
7070}
7071
7072void ScalarEvolution::verifyAnalysis() const {
7073 if (!VerifySCEV)
7074 return;
7075
7076 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7077
7078 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7079 // FIXME: It would be much better to store actual values instead of strings,
7080 // but SCEV pointers will change if we drop the caches.
7081 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7082 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7083 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7084
7085 // Gather stringified backedge taken counts for all loops without using
7086 // SCEV's caches.
7087 SE.releaseMemory();
7088 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7089 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7090
7091 // Now compare whether they're the same with and without caches. This allows
7092 // verifying that no pass changed the cache.
7093 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7094 "New loops suddenly appeared!");
7095
7096 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7097 OldE = BackedgeDumpsOld.end(),
7098 NewI = BackedgeDumpsNew.begin();
7099 OldI != OldE; ++OldI, ++NewI) {
7100 assert(OldI->first == NewI->first && "Loop order changed!");
7101
7102 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7103 // changes.
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007104 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramerff183102012-10-26 17:31:32 +00007105 // means that a pass is buggy or SCEV has to learn a new pattern but is
7106 // usually not harmful.
7107 if (OldI->second != NewI->second &&
7108 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007109 NewI->second.find("undef") == std::string::npos &&
7110 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramerff183102012-10-26 17:31:32 +00007111 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007112 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramerff183102012-10-26 17:31:32 +00007113 << OldI->first->getHeader()->getName()
Benjamin Kramer974d98d2012-10-27 11:36:07 +00007114 << "' changed from '" << OldI->second
7115 << "' to '" << NewI->second << "'!\n";
Benjamin Kramerff183102012-10-26 17:31:32 +00007116 std::abort();
7117 }
7118 }
7119
7120 // TODO: Verify more things.
7121}