blob: e4ddecf756314faa0614d020575aec9469dbe5f8 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Bill Wendling9912f712008-12-01 08:32:40 +0000186 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +0000187 Value *A, Value *B, Value *C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188 Instruction *visitOr (BinaryOperator &I);
189 Instruction *visitXor(BinaryOperator &I);
190 Instruction *visitShl(BinaryOperator &I);
191 Instruction *visitAShr(BinaryOperator &I);
192 Instruction *visitLShr(BinaryOperator &I);
193 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000194 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
195 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 Instruction *visitFCmpInst(FCmpInst &I);
197 Instruction *visitICmpInst(ICmpInst &I);
198 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
199 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
200 Instruction *LHS,
201 ConstantInt *RHS);
202 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
203 ConstantInt *DivRHS);
204
205 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
206 ICmpInst::Predicate Cond, Instruction &I);
207 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
208 BinaryOperator &I);
209 Instruction *commonCastTransforms(CastInst &CI);
210 Instruction *commonIntCastTransforms(CastInst &CI);
211 Instruction *commonPointerCastTransforms(CastInst &CI);
212 Instruction *visitTrunc(TruncInst &CI);
213 Instruction *visitZExt(ZExtInst &CI);
214 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000215 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000217 Instruction *visitFPToUI(FPToUIInst &FI);
218 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 Instruction *visitUIToFP(CastInst &CI);
220 Instruction *visitSIToFP(CastInst &CI);
221 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000222 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 Instruction *visitBitCast(BitCastInst &CI);
224 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
225 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000226 Instruction *visitSelectInst(SelectInst &SI);
227 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 Instruction *visitCallInst(CallInst &CI);
229 Instruction *visitInvokeInst(InvokeInst &II);
230 Instruction *visitPHINode(PHINode &PN);
231 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
232 Instruction *visitAllocationInst(AllocationInst &AI);
233 Instruction *visitFreeInst(FreeInst &FI);
234 Instruction *visitLoadInst(LoadInst &LI);
235 Instruction *visitStoreInst(StoreInst &SI);
236 Instruction *visitBranchInst(BranchInst &BI);
237 Instruction *visitSwitchInst(SwitchInst &SI);
238 Instruction *visitInsertElementInst(InsertElementInst &IE);
239 Instruction *visitExtractElementInst(ExtractElementInst &EI);
240 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000241 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
243 // visitInstruction - Specify what to return for unhandled instructions...
244 Instruction *visitInstruction(Instruction &I) { return 0; }
245
246 private:
247 Instruction *visitCallSite(CallSite CS);
248 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000249 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000250 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
251 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000252 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
254 public:
255 // InsertNewInstBefore - insert an instruction New before instruction Old
256 // in the program. Add the new instruction to the worklist.
257 //
258 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
259 assert(New && New->getParent() == 0 &&
260 "New instruction already inserted into a basic block!");
261 BasicBlock *BB = Old.getParent();
262 BB->getInstList().insert(&Old, New); // Insert inst
263 AddToWorkList(New);
264 return New;
265 }
266
267 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
268 /// This also adds the cast to the worklist. Finally, this returns the
269 /// cast.
270 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
271 Instruction &Pos) {
272 if (V->getType() == Ty) return V;
273
274 if (Constant *CV = dyn_cast<Constant>(V))
275 return ConstantExpr::getCast(opc, CV, Ty);
276
Gabor Greifa645dd32008-05-16 19:29:10 +0000277 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 AddToWorkList(C);
279 return C;
280 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000281
282 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
283 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
284 }
285
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286
287 // ReplaceInstUsesWith - This method is to be used when an instruction is
288 // found to be dead, replacable with another preexisting expression. Here
289 // we add all uses of I to the worklist, replace all uses of I with the new
290 // value, then return I, so that the inst combiner will know that I was
291 // modified.
292 //
293 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
294 AddUsersToWorkList(I); // Add all modified instrs to worklist
295 if (&I != V) {
296 I.replaceAllUsesWith(V);
297 return &I;
298 } else {
299 // If we are replacing the instruction with itself, this must be in a
300 // segment of unreachable code, so just clobber the instruction.
301 I.replaceAllUsesWith(UndefValue::get(I.getType()));
302 return &I;
303 }
304 }
305
306 // UpdateValueUsesWith - This method is to be used when an value is
307 // found to be replacable with another preexisting expression or was
308 // updated. Here we add all uses of I to the worklist, replace all uses of
309 // I with the new value (unless the instruction was just updated), then
310 // return true, so that the inst combiner will know that I was modified.
311 //
312 bool UpdateValueUsesWith(Value *Old, Value *New) {
313 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
314 if (Old != New)
315 Old->replaceAllUsesWith(New);
316 if (Instruction *I = dyn_cast<Instruction>(Old))
317 AddToWorkList(I);
318 if (Instruction *I = dyn_cast<Instruction>(New))
319 AddToWorkList(I);
320 return true;
321 }
322
323 // EraseInstFromFunction - When dealing with an instruction that has side
324 // effects or produces a void value, we can't rely on DCE to delete the
325 // instruction. Instead, visit methods should return the value returned by
326 // this function.
327 Instruction *EraseInstFromFunction(Instruction &I) {
328 assert(I.use_empty() && "Cannot erase instruction that is used!");
329 AddUsesToWorkList(I);
330 RemoveFromWorkList(&I);
331 I.eraseFromParent();
332 return 0; // Don't do anything with FI
333 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000334
335 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
336 APInt &KnownOne, unsigned Depth = 0) const {
337 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
338 }
339
340 bool MaskedValueIsZero(Value *V, const APInt &Mask,
341 unsigned Depth = 0) const {
342 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
343 }
344 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
345 return llvm::ComputeNumSignBits(Op, TD, Depth);
346 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 /// SimplifyCommutative - This performs a few simplifications for
351 /// commutative operators.
352 bool SimplifyCommutative(BinaryOperator &I);
353
354 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
355 /// most-complex to least-complex order.
356 bool SimplifyCompare(CmpInst &I);
357
358 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
359 /// on the demanded bits.
360 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
361 APInt& KnownZero, APInt& KnownOne,
362 unsigned Depth = 0);
363
364 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
365 uint64_t &UndefElts, unsigned Depth = 0);
366
367 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
368 // PHI node as operand #0, see if we can fold the instruction into the PHI
369 // (which is only possible if all operands to the PHI are constants).
370 Instruction *FoldOpIntoPhi(Instruction &I);
371
372 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
373 // operator and they all are only used by the PHI, PHI together their
374 // inputs, and do the operation once, to the result of the PHI.
375 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
376 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000377 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
378
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379
380 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
381 ConstantInt *AndRHS, BinaryOperator &TheAnd);
382
383 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
384 bool isSub, Instruction &I);
385 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
386 bool isSigned, bool Inside, Instruction &IB);
387 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
388 Instruction *MatchBSwap(BinaryOperator &I);
389 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000391 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000392
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000395
Dan Gohman2d648bb2008-04-10 18:43:06 +0000396 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
397 unsigned CastOpc,
398 int &NumCastsRemoved);
399 unsigned GetOrEnforceKnownAlignment(Value *V,
400 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000401
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403}
404
Dan Gohman089efff2008-05-13 00:00:25 +0000405char InstCombiner::ID = 0;
406static RegisterPass<InstCombiner>
407X("instcombine", "Combine redundant instructions");
408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409// getComplexity: Assign a complexity or rank value to LLVM Values...
410// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
411static unsigned getComplexity(Value *V) {
412 if (isa<Instruction>(V)) {
413 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
414 return 3;
415 return 4;
416 }
417 if (isa<Argument>(V)) return 3;
418 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
419}
420
421// isOnlyUse - Return true if this instruction will be deleted if we stop using
422// it.
423static bool isOnlyUse(Value *V) {
424 return V->hasOneUse() || isa<Constant>(V);
425}
426
427// getPromotedType - Return the specified type promoted as it would be to pass
428// though a va_arg area...
429static const Type *getPromotedType(const Type *Ty) {
430 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
431 if (ITy->getBitWidth() < 32)
432 return Type::Int32Ty;
433 }
434 return Ty;
435}
436
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000437/// getBitCastOperand - If the specified operand is a CastInst, a constant
438/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
439/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440static Value *getBitCastOperand(Value *V) {
441 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000444 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445 // GetElementPtrInst?
446 if (GEP->hasAllZeroIndices())
447 return GEP->getOperand(0);
448 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000452 else if (CE->getOpcode() == Instruction::GetElementPtr) {
453 // GetElementPtr ConstantExp?
454 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
455 I != E; ++I) {
456 ConstantInt *CI = dyn_cast<ConstantInt>(I);
457 if (!CI || !CI->isZero())
458 // Any non-zero indices? Not cast-like.
459 return 0;
460 }
461 // All-zero indices? This is just like casting.
462 return CE->getOperand(0);
463 }
464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 return 0;
466}
467
468/// This function is a wrapper around CastInst::isEliminableCastPair. It
469/// simply extracts arguments and returns what that function returns.
470static Instruction::CastOps
471isEliminableCastPair(
472 const CastInst *CI, ///< The first cast instruction
473 unsigned opcode, ///< The opcode of the second cast instruction
474 const Type *DstTy, ///< The target type for the second cast instruction
475 TargetData *TD ///< The target data for pointer size
476) {
477
478 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
479 const Type *MidTy = CI->getType(); // B from above
480
481 // Get the opcodes of the two Cast instructions
482 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
483 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
484
485 return Instruction::CastOps(
486 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
487 DstTy, TD->getIntPtrType()));
488}
489
490/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491/// in any code being generated. It does not require codegen if V is simple
492/// enough or if the cast can be folded into other casts.
493static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
494 const Type *Ty, TargetData *TD) {
495 if (V->getType() == Ty || isa<Constant>(V)) return false;
496
497 // If this is another cast that can be eliminated, it isn't codegen either.
498 if (const CastInst *CI = dyn_cast<CastInst>(V))
499 if (isEliminableCastPair(CI, opcode, Ty, TD))
500 return false;
501 return true;
502}
503
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504// SimplifyCommutative - This performs a few simplifications for commutative
505// operators:
506//
507// 1. Order operands such that they are listed from right (least complex) to
508// left (most complex). This puts constants before unary operators before
509// binary operators.
510//
511// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
513//
514bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
515 bool Changed = false;
516 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
517 Changed = !I.swapOperands();
518
519 if (!I.isAssociative()) return Changed;
520 Instruction::BinaryOps Opcode = I.getOpcode();
521 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
522 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
523 if (isa<Constant>(I.getOperand(1))) {
524 Constant *Folded = ConstantExpr::get(I.getOpcode(),
525 cast<Constant>(I.getOperand(1)),
526 cast<Constant>(Op->getOperand(1)));
527 I.setOperand(0, Op->getOperand(0));
528 I.setOperand(1, Folded);
529 return true;
530 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
531 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
532 isOnlyUse(Op) && isOnlyUse(Op1)) {
533 Constant *C1 = cast<Constant>(Op->getOperand(1));
534 Constant *C2 = cast<Constant>(Op1->getOperand(1));
535
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
537 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000538 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 Op1->getOperand(0),
540 Op1->getName(), &I);
541 AddToWorkList(New);
542 I.setOperand(0, New);
543 I.setOperand(1, Folded);
544 return true;
545 }
546 }
547 return Changed;
548}
549
550/// SimplifyCompare - For a CmpInst this function just orders the operands
551/// so that theyare listed from right (least complex) to left (most complex).
552/// This puts constants before unary operators before binary operators.
553bool InstCombiner::SimplifyCompare(CmpInst &I) {
554 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
555 return false;
556 I.swapOperands();
557 // Compare instructions are not associative so there's nothing else we can do.
558 return true;
559}
560
561// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562// if the LHS is a constant zero (which is the 'negate' form).
563//
564static inline Value *dyn_castNegVal(Value *V) {
565 if (BinaryOperator::isNeg(V))
566 return BinaryOperator::getNegArgument(V);
567
568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
570 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000571
572 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
573 if (C->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C);
575
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000576 return 0;
577}
578
579static inline Value *dyn_castNotVal(Value *V) {
580 if (BinaryOperator::isNot(V))
581 return BinaryOperator::getNotArgument(V);
582
583 // Constants can be considered to be not'ed values...
584 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
585 return ConstantInt::get(~C->getValue());
586 return 0;
587}
588
589// dyn_castFoldableMul - If this value is a multiply that can be folded into
590// other computations (because it has a constant operand), return the
591// non-constant operand of the multiply, and set CST to point to the multiplier.
592// Otherwise, return null.
593//
594static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
595 if (V->hasOneUse() && V->getType()->isInteger())
596 if (Instruction *I = dyn_cast<Instruction>(V)) {
597 if (I->getOpcode() == Instruction::Mul)
598 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
599 return I->getOperand(0);
600 if (I->getOpcode() == Instruction::Shl)
601 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
602 // The multiplier is really 1 << CST.
603 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
604 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
605 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
606 return I->getOperand(0);
607 }
608 }
609 return 0;
610}
611
612/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613/// expression, return it.
614static User *dyn_castGetElementPtr(Value *V) {
615 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
617 if (CE->getOpcode() == Instruction::GetElementPtr)
618 return cast<User>(V);
619 return false;
620}
621
Dan Gohman2d648bb2008-04-10 18:43:06 +0000622/// getOpcode - If this is an Instruction or a ConstantExpr, return the
623/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000624static unsigned getOpcode(const Value *V) {
625 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000627 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000628 return CE->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1;
631}
632
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633/// AddOne - Add one to a ConstantInt
634static ConstantInt *AddOne(ConstantInt *C) {
635 APInt Val(C->getValue());
636 return ConstantInt::get(++Val);
637}
638/// SubOne - Subtract one from a ConstantInt
639static ConstantInt *SubOne(ConstantInt *C) {
640 APInt Val(C->getValue());
641 return ConstantInt::get(--Val);
642}
643/// Add - Add two ConstantInts together
644static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
645 return ConstantInt::get(C1->getValue() + C2->getValue());
646}
647/// And - Bitwise AND two ConstantInts together
648static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
649 return ConstantInt::get(C1->getValue() & C2->getValue());
650}
651/// Subtract - Subtract one ConstantInt from another
652static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
653 return ConstantInt::get(C1->getValue() - C2->getValue());
654}
655/// Multiply - Multiply two ConstantInts together
656static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
657 return ConstantInt::get(C1->getValue() * C2->getValue());
658}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000659/// MultiplyOverflows - True if the multiply can not be expressed in an int
660/// this size.
661static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
662 uint32_t W = C1->getBitWidth();
663 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
664 if (sign) {
665 LHSExt.sext(W * 2);
666 RHSExt.sext(W * 2);
667 } else {
668 LHSExt.zext(W * 2);
669 RHSExt.zext(W * 2);
670 }
671
672 APInt MulExt = LHSExt * RHSExt;
673
674 if (sign) {
675 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
676 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
677 return MulExt.slt(Min) || MulExt.sgt(Max);
678 } else
679 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
680}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682
683/// ShrinkDemandedConstant - Check to see if the specified operand of the
684/// specified instruction is a constant integer. If so, check to see if there
685/// are any bits set in the constant that are not demanded. If so, shrink the
686/// constant and return true.
687static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
688 APInt Demanded) {
689 assert(I && "No instruction?");
690 assert(OpNo < I->getNumOperands() && "Operand index too large");
691
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
694 if (!OpC) return false;
695
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
698 if ((~Demanded & OpC->getValue()) == 0)
699 return false;
700
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded &= OpC->getValue();
703 I->setOperand(OpNo, ConstantInt::get(Demanded));
704 return true;
705}
706
707// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708// set of known zero and one bits, compute the maximum and minimum values that
709// could have the specified known zero and known one bits, returning them in
710// min/max.
711static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
712 const APInt& KnownZero,
713 const APInt& KnownOne,
714 APInt& Min, APInt& Max) {
715 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
716 assert(KnownZero.getBitWidth() == BitWidth &&
717 KnownOne.getBitWidth() == BitWidth &&
718 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
719 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
720 APInt UnknownBits = ~(KnownZero|KnownOne);
721
722 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
723 // bit if it is unknown.
724 Min = KnownOne;
725 Max = KnownOne|UnknownBits;
726
727 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
728 Min.set(BitWidth-1);
729 Max.clear(BitWidth-1);
730 }
731}
732
733// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
734// a set of known zero and one bits, compute the maximum and minimum values that
735// could have the specified known zero and known one bits, returning them in
736// min/max.
737static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000738 const APInt &KnownZero,
739 const APInt &KnownOne,
740 APInt &Min, APInt &Max) {
741 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 assert(KnownZero.getBitWidth() == BitWidth &&
743 KnownOne.getBitWidth() == BitWidth &&
744 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
745 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
746 APInt UnknownBits = ~(KnownZero|KnownOne);
747
748 // The minimum value is when the unknown bits are all zeros.
749 Min = KnownOne;
750 // The maximum value is when the unknown bits are all ones.
751 Max = KnownOne|UnknownBits;
752}
753
754/// SimplifyDemandedBits - This function attempts to replace V with a simpler
755/// value based on the demanded bits. When this function is called, it is known
756/// that only the bits set in DemandedMask of the result of V are ever used
757/// downstream. Consequently, depending on the mask and V, it may be possible
758/// to replace V with a constant or one of its operands. In such cases, this
759/// function does the replacement and returns true. In all other cases, it
760/// returns false after analyzing the expression and setting KnownOne and known
761/// to be one in the expression. KnownZero contains all the bits that are known
762/// to be zero in the expression. These are provided to potentially allow the
763/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
764/// the expression. KnownOne and KnownZero always follow the invariant that
765/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
766/// the bits in KnownOne and KnownZero may only be accurate for those bits set
767/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
768/// and KnownOne must all be the same.
769bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
770 APInt& KnownZero, APInt& KnownOne,
771 unsigned Depth) {
772 assert(V != 0 && "Null pointer of Value???");
773 assert(Depth <= 6 && "Limit Search Depth");
774 uint32_t BitWidth = DemandedMask.getBitWidth();
775 const IntegerType *VTy = cast<IntegerType>(V->getType());
776 assert(VTy->getBitWidth() == BitWidth &&
777 KnownZero.getBitWidth() == BitWidth &&
778 KnownOne.getBitWidth() == BitWidth &&
779 "Value *V, DemandedMask, KnownZero and KnownOne \
780 must have same BitWidth");
781 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
782 // We know all of the bits for a constant!
783 KnownOne = CI->getValue() & DemandedMask;
784 KnownZero = ~KnownOne & DemandedMask;
785 return false;
786 }
787
788 KnownZero.clear();
789 KnownOne.clear();
790 if (!V->hasOneUse()) { // Other users may use these bits.
791 if (Depth != 0) { // Not at the root.
792 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
793 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
794 return false;
795 }
796 // If this is the root being simplified, allow it to have multiple uses,
797 // just set the DemandedMask to all bits.
798 DemandedMask = APInt::getAllOnesValue(BitWidth);
799 } else if (DemandedMask == 0) { // Not demanding any bits from V.
800 if (V != UndefValue::get(VTy))
801 return UpdateValueUsesWith(V, UndefValue::get(VTy));
802 return false;
803 } else if (Depth == 6) { // Limit search depth.
804 return false;
805 }
806
807 Instruction *I = dyn_cast<Instruction>(V);
808 if (!I) return false; // Only analyze instructions.
809
810 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
811 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
812 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000813 default:
814 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
815 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 case Instruction::And:
817 // If either the LHS or the RHS are Zero, the result is zero.
818 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
819 RHSKnownZero, RHSKnownOne, Depth+1))
820 return true;
821 assert((RHSKnownZero & RHSKnownOne) == 0 &&
822 "Bits known to be one AND zero?");
823
824 // If something is known zero on the RHS, the bits aren't demanded on the
825 // LHS.
826 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
827 LHSKnownZero, LHSKnownOne, Depth+1))
828 return true;
829 assert((LHSKnownZero & LHSKnownOne) == 0 &&
830 "Bits known to be one AND zero?");
831
832 // If all of the demanded bits are known 1 on one side, return the other.
833 // These bits cannot contribute to the result of the 'and'.
834 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
835 (DemandedMask & ~LHSKnownZero))
836 return UpdateValueUsesWith(I, I->getOperand(0));
837 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
838 (DemandedMask & ~RHSKnownZero))
839 return UpdateValueUsesWith(I, I->getOperand(1));
840
841 // If all of the demanded bits in the inputs are known zeros, return zero.
842 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
843 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
844
845 // If the RHS is a constant, see if we can simplify it.
846 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
847 return UpdateValueUsesWith(I, I);
848
849 // Output known-1 bits are only known if set in both the LHS & RHS.
850 RHSKnownOne &= LHSKnownOne;
851 // Output known-0 are known to be clear if zero in either the LHS | RHS.
852 RHSKnownZero |= LHSKnownZero;
853 break;
854 case Instruction::Or:
855 // If either the LHS or the RHS are One, the result is One.
856 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
857 RHSKnownZero, RHSKnownOne, Depth+1))
858 return true;
859 assert((RHSKnownZero & RHSKnownOne) == 0 &&
860 "Bits known to be one AND zero?");
861 // If something is known one on the RHS, the bits aren't demanded on the
862 // LHS.
863 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
864 LHSKnownZero, LHSKnownOne, Depth+1))
865 return true;
866 assert((LHSKnownZero & LHSKnownOne) == 0 &&
867 "Bits known to be one AND zero?");
868
869 // If all of the demanded bits are known zero on one side, return the other.
870 // These bits cannot contribute to the result of the 'or'.
871 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
872 (DemandedMask & ~LHSKnownOne))
873 return UpdateValueUsesWith(I, I->getOperand(0));
874 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
875 (DemandedMask & ~RHSKnownOne))
876 return UpdateValueUsesWith(I, I->getOperand(1));
877
878 // If all of the potentially set bits on one side are known to be set on
879 // the other side, just use the 'other' side.
880 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
881 (DemandedMask & (~RHSKnownZero)))
882 return UpdateValueUsesWith(I, I->getOperand(0));
883 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
884 (DemandedMask & (~LHSKnownZero)))
885 return UpdateValueUsesWith(I, I->getOperand(1));
886
887 // If the RHS is a constant, see if we can simplify it.
888 if (ShrinkDemandedConstant(I, 1, DemandedMask))
889 return UpdateValueUsesWith(I, I);
890
891 // Output known-0 bits are only known if clear in both the LHS & RHS.
892 RHSKnownZero &= LHSKnownZero;
893 // Output known-1 are known to be set if set in either the LHS | RHS.
894 RHSKnownOne |= LHSKnownOne;
895 break;
896 case Instruction::Xor: {
897 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
898 RHSKnownZero, RHSKnownOne, Depth+1))
899 return true;
900 assert((RHSKnownZero & RHSKnownOne) == 0 &&
901 "Bits known to be one AND zero?");
902 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
903 LHSKnownZero, LHSKnownOne, Depth+1))
904 return true;
905 assert((LHSKnownZero & LHSKnownOne) == 0 &&
906 "Bits known to be one AND zero?");
907
908 // If all of the demanded bits are known zero on one side, return the other.
909 // These bits cannot contribute to the result of the 'xor'.
910 if ((DemandedMask & RHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(0));
912 if ((DemandedMask & LHSKnownZero) == DemandedMask)
913 return UpdateValueUsesWith(I, I->getOperand(1));
914
915 // Output known-0 bits are known if clear or set in both the LHS & RHS.
916 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
917 (RHSKnownOne & LHSKnownOne);
918 // Output known-1 are known to be set if set in only one of the LHS, RHS.
919 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
920 (RHSKnownOne & LHSKnownZero);
921
922 // If all of the demanded bits are known to be zero on one side or the
923 // other, turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
926 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000927 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 I->getName());
929 InsertNewInstBefore(Or, *I);
930 return UpdateValueUsesWith(I, Or);
931 }
932
933 // If all of the demanded bits on one side are known, and all of the set
934 // bits on that side are also known to be set on the other side, turn this
935 // into an AND, as we know the bits will be cleared.
936 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
937 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
938 // all known
939 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
940 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
941 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000942 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 InsertNewInstBefore(And, *I);
944 return UpdateValueUsesWith(I, And);
945 }
946 }
947
948 // If the RHS is a constant, see if we can simplify it.
949 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
950 if (ShrinkDemandedConstant(I, 1, DemandedMask))
951 return UpdateValueUsesWith(I, I);
952
953 RHSKnownZero = KnownZeroOut;
954 RHSKnownOne = KnownOneOut;
955 break;
956 }
957 case Instruction::Select:
958 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
959 RHSKnownZero, RHSKnownOne, Depth+1))
960 return true;
961 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((RHSKnownZero & RHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966 assert((LHSKnownZero & LHSKnownOne) == 0 &&
967 "Bits known to be one AND zero?");
968
969 // If the operands are constants, see if we can simplify them.
970 if (ShrinkDemandedConstant(I, 1, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972 if (ShrinkDemandedConstant(I, 2, DemandedMask))
973 return UpdateValueUsesWith(I, I);
974
975 // Only known if known in both the LHS and RHS.
976 RHSKnownOne &= LHSKnownOne;
977 RHSKnownZero &= LHSKnownZero;
978 break;
979 case Instruction::Trunc: {
980 uint32_t truncBf =
981 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
982 DemandedMask.zext(truncBf);
983 RHSKnownZero.zext(truncBf);
984 RHSKnownOne.zext(truncBf);
985 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
986 RHSKnownZero, RHSKnownOne, Depth+1))
987 return true;
988 DemandedMask.trunc(BitWidth);
989 RHSKnownZero.trunc(BitWidth);
990 RHSKnownOne.trunc(BitWidth);
991 assert((RHSKnownZero & RHSKnownOne) == 0 &&
992 "Bits known to be one AND zero?");
993 break;
994 }
995 case Instruction::BitCast:
996 if (!I->getOperand(0)->getType()->isInteger())
997 return false;
998
999 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1000 RHSKnownZero, RHSKnownOne, Depth+1))
1001 return true;
1002 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1003 "Bits known to be one AND zero?");
1004 break;
1005 case Instruction::ZExt: {
1006 // Compute the bits in the result that are not present in the input.
1007 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1008 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1009
1010 DemandedMask.trunc(SrcBitWidth);
1011 RHSKnownZero.trunc(SrcBitWidth);
1012 RHSKnownOne.trunc(SrcBitWidth);
1013 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1014 RHSKnownZero, RHSKnownOne, Depth+1))
1015 return true;
1016 DemandedMask.zext(BitWidth);
1017 RHSKnownZero.zext(BitWidth);
1018 RHSKnownOne.zext(BitWidth);
1019 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1020 "Bits known to be one AND zero?");
1021 // The top bits are known to be zero.
1022 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1023 break;
1024 }
1025 case Instruction::SExt: {
1026 // Compute the bits in the result that are not present in the input.
1027 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1028 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1029
1030 APInt InputDemandedBits = DemandedMask &
1031 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1032
1033 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1034 // If any of the sign extended bits are demanded, we know that the sign
1035 // bit is demanded.
1036 if ((NewBits & DemandedMask) != 0)
1037 InputDemandedBits.set(SrcBitWidth-1);
1038
1039 InputDemandedBits.trunc(SrcBitWidth);
1040 RHSKnownZero.trunc(SrcBitWidth);
1041 RHSKnownOne.trunc(SrcBitWidth);
1042 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1043 RHSKnownZero, RHSKnownOne, Depth+1))
1044 return true;
1045 InputDemandedBits.zext(BitWidth);
1046 RHSKnownZero.zext(BitWidth);
1047 RHSKnownOne.zext(BitWidth);
1048 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1049 "Bits known to be one AND zero?");
1050
1051 // If the sign bit of the input is known set or clear, then we know the
1052 // top bits of the result.
1053
1054 // If the input sign bit is known zero, or if the NewBits are not demanded
1055 // convert this into a zero extension.
1056 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1057 {
1058 // Convert to ZExt cast
1059 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1060 return UpdateValueUsesWith(I, NewCast);
1061 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1062 RHSKnownOne |= NewBits;
1063 }
1064 break;
1065 }
1066 case Instruction::Add: {
1067 // Figure out what the input bits are. If the top bits of the and result
1068 // are not demanded, then the add doesn't demand them from its input
1069 // either.
1070 uint32_t NLZ = DemandedMask.countLeadingZeros();
1071
1072 // If there is a constant on the RHS, there are a variety of xformations
1073 // we can do.
1074 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1075 // If null, this should be simplified elsewhere. Some of the xforms here
1076 // won't work if the RHS is zero.
1077 if (RHS->isZero())
1078 break;
1079
1080 // If the top bit of the output is demanded, demand everything from the
1081 // input. Otherwise, we demand all the input bits except NLZ top bits.
1082 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1083
1084 // Find information about known zero/one bits in the input.
1085 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1086 LHSKnownZero, LHSKnownOne, Depth+1))
1087 return true;
1088
1089 // If the RHS of the add has bits set that can't affect the input, reduce
1090 // the constant.
1091 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1092 return UpdateValueUsesWith(I, I);
1093
1094 // Avoid excess work.
1095 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1096 break;
1097
1098 // Turn it into OR if input bits are zero.
1099 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1100 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001101 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 I->getName());
1103 InsertNewInstBefore(Or, *I);
1104 return UpdateValueUsesWith(I, Or);
1105 }
1106
1107 // We can say something about the output known-zero and known-one bits,
1108 // depending on potential carries from the input constant and the
1109 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1110 // bits set and the RHS constant is 0x01001, then we know we have a known
1111 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1112
1113 // To compute this, we first compute the potential carry bits. These are
1114 // the bits which may be modified. I'm not aware of a better way to do
1115 // this scan.
1116 const APInt& RHSVal = RHS->getValue();
1117 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1118
1119 // Now that we know which bits have carries, compute the known-1/0 sets.
1120
1121 // Bits are known one if they are known zero in one operand and one in the
1122 // other, and there is no input carry.
1123 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1124 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1125
1126 // Bits are known zero if they are known zero in both operands and there
1127 // is no input carry.
1128 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1129 } else {
1130 // If the high-bits of this ADD are not demanded, then it does not demand
1131 // the high bits of its LHS or RHS.
1132 if (DemandedMask[BitWidth-1] == 0) {
1133 // Right fill the mask of bits for this ADD to demand the most
1134 // significant bit and all those below it.
1135 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1136 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1137 LHSKnownZero, LHSKnownOne, Depth+1))
1138 return true;
1139 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1140 LHSKnownZero, LHSKnownOne, Depth+1))
1141 return true;
1142 }
1143 }
1144 break;
1145 }
1146 case Instruction::Sub:
1147 // If the high-bits of this SUB are not demanded, then it does not demand
1148 // the high bits of its LHS or RHS.
1149 if (DemandedMask[BitWidth-1] == 0) {
1150 // Right fill the mask of bits for this SUB to demand the most
1151 // significant bit and all those below it.
1152 uint32_t NLZ = DemandedMask.countLeadingZeros();
1153 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1154 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1155 LHSKnownZero, LHSKnownOne, Depth+1))
1156 return true;
1157 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1158 LHSKnownZero, LHSKnownOne, Depth+1))
1159 return true;
1160 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001161 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1162 // the known zeros and ones.
1163 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 break;
1165 case Instruction::Shl:
1166 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1167 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1168 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1169 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1170 RHSKnownZero, RHSKnownOne, Depth+1))
1171 return true;
1172 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1173 "Bits known to be one AND zero?");
1174 RHSKnownZero <<= ShiftAmt;
1175 RHSKnownOne <<= ShiftAmt;
1176 // low bits known zero.
1177 if (ShiftAmt)
1178 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1179 }
1180 break;
1181 case Instruction::LShr:
1182 // For a logical shift right
1183 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1184 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1185
1186 // Unsigned shift right.
1187 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1188 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1189 RHSKnownZero, RHSKnownOne, Depth+1))
1190 return true;
1191 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1192 "Bits known to be one AND zero?");
1193 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1194 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1195 if (ShiftAmt) {
1196 // Compute the new bits that are at the top now.
1197 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1198 RHSKnownZero |= HighBits; // high bits known zero.
1199 }
1200 }
1201 break;
1202 case Instruction::AShr:
1203 // If this is an arithmetic shift right and only the low-bit is set, we can
1204 // always convert this into a logical shr, even if the shift amount is
1205 // variable. The low bit of the shift cannot be an input sign bit unless
1206 // the shift amount is >= the size of the datatype, which is undefined.
1207 if (DemandedMask == 1) {
1208 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001209 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001210 I->getOperand(0), I->getOperand(1), I->getName());
1211 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1212 return UpdateValueUsesWith(I, NewVal);
1213 }
1214
1215 // If the sign bit is the only bit demanded by this ashr, then there is no
1216 // need to do it, the shift doesn't change the high bit.
1217 if (DemandedMask.isSignBit())
1218 return UpdateValueUsesWith(I, I->getOperand(0));
1219
1220 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1221 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1222
1223 // Signed shift right.
1224 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1225 // If any of the "high bits" are demanded, we should set the sign bit as
1226 // demanded.
1227 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1228 DemandedMaskIn.set(BitWidth-1);
1229 if (SimplifyDemandedBits(I->getOperand(0),
1230 DemandedMaskIn,
1231 RHSKnownZero, RHSKnownOne, Depth+1))
1232 return true;
1233 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1234 "Bits known to be one AND zero?");
1235 // Compute the new bits that are at the top now.
1236 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1237 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1238 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1239
1240 // Handle the sign bits.
1241 APInt SignBit(APInt::getSignBit(BitWidth));
1242 // Adjust to where it is now in the mask.
1243 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1244
1245 // If the input sign bit is known to be zero, or if none of the top bits
1246 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001247 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 (HighBits & ~DemandedMask) == HighBits) {
1249 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001250 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 I->getOperand(0), SA, I->getName());
1252 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1253 return UpdateValueUsesWith(I, NewVal);
1254 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1255 RHSKnownOne |= HighBits;
1256 }
1257 }
1258 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001259 case Instruction::SRem:
1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001261 APInt RA = Rem->getValue().abs();
1262 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001263 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1264 return UpdateValueUsesWith(I, I->getOperand(0));
1265
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001266 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001267 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1268 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1269 LHSKnownZero, LHSKnownOne, Depth+1))
1270 return true;
1271
1272 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1273 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001276
1277 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1278 }
1279 }
1280 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001281 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001282 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1283 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001284 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1285 KnownZero2, KnownOne2, Depth+1))
1286 return true;
1287
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001289 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001290 KnownZero2, KnownOne2, Depth+1))
1291 return true;
1292
1293 Leaders = std::max(Leaders,
1294 KnownZero2.countLeadingOnes());
1295 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001296 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Chris Lattner989ba312008-06-18 04:33:20 +00001298 case Instruction::Call:
1299 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1300 switch (II->getIntrinsicID()) {
1301 default: break;
1302 case Intrinsic::bswap: {
1303 // If the only bits demanded come from one byte of the bswap result,
1304 // just shift the input byte into position to eliminate the bswap.
1305 unsigned NLZ = DemandedMask.countLeadingZeros();
1306 unsigned NTZ = DemandedMask.countTrailingZeros();
1307
1308 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1309 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1310 // have 14 leading zeros, round to 8.
1311 NLZ &= ~7;
1312 NTZ &= ~7;
1313 // If we need exactly one byte, we can do this transformation.
1314 if (BitWidth-NLZ-NTZ == 8) {
1315 unsigned ResultBit = NTZ;
1316 unsigned InputBit = BitWidth-NTZ-8;
1317
1318 // Replace this with either a left or right shift to get the byte into
1319 // the right place.
1320 Instruction *NewVal;
1321 if (InputBit > ResultBit)
1322 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1323 ConstantInt::get(I->getType(), InputBit-ResultBit));
1324 else
1325 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1326 ConstantInt::get(I->getType(), ResultBit-InputBit));
1327 NewVal->takeName(I);
1328 InsertNewInstBefore(NewVal, *I);
1329 return UpdateValueUsesWith(I, NewVal);
1330 }
1331
1332 // TODO: Could compute known zero/one bits based on the input.
1333 break;
1334 }
1335 }
1336 }
Chris Lattner4946e222008-06-18 18:11:55 +00001337 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001338 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001339 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340
1341 // If the client is only demanding bits that we know, return the known
1342 // constant.
1343 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1344 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1345 return false;
1346}
1347
1348
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001349/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350/// 64 or fewer elements. DemandedElts contains the set of elements that are
1351/// actually used by the caller. This method analyzes which elements of the
1352/// operand are undef and returns that information in UndefElts.
1353///
1354/// If the information about demanded elements can be used to simplify the
1355/// operation, the operation is simplified, then the resultant value is
1356/// returned. This returns null if no change was made.
1357Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1358 uint64_t &UndefElts,
1359 unsigned Depth) {
1360 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1361 assert(VWidth <= 64 && "Vector too wide to analyze!");
1362 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001363 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364
1365 if (isa<UndefValue>(V)) {
1366 // If the entire vector is undefined, just return this info.
1367 UndefElts = EltMask;
1368 return 0;
1369 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1370 UndefElts = EltMask;
1371 return UndefValue::get(V->getType());
1372 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001373
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 UndefElts = 0;
1375 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1376 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1377 Constant *Undef = UndefValue::get(EltTy);
1378
1379 std::vector<Constant*> Elts;
1380 for (unsigned i = 0; i != VWidth; ++i)
1381 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1382 Elts.push_back(Undef);
1383 UndefElts |= (1ULL << i);
1384 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1385 Elts.push_back(Undef);
1386 UndefElts |= (1ULL << i);
1387 } else { // Otherwise, defined.
1388 Elts.push_back(CP->getOperand(i));
1389 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001390
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001391 // If we changed the constant, return it.
1392 Constant *NewCP = ConstantVector::get(Elts);
1393 return NewCP != CP ? NewCP : 0;
1394 } else if (isa<ConstantAggregateZero>(V)) {
1395 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1396 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001397
1398 // Check if this is identity. If so, return 0 since we are not simplifying
1399 // anything.
1400 if (DemandedElts == ((1ULL << VWidth) -1))
1401 return 0;
1402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1404 Constant *Zero = Constant::getNullValue(EltTy);
1405 Constant *Undef = UndefValue::get(EltTy);
1406 std::vector<Constant*> Elts;
1407 for (unsigned i = 0; i != VWidth; ++i)
1408 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1409 UndefElts = DemandedElts ^ EltMask;
1410 return ConstantVector::get(Elts);
1411 }
1412
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001413 // Limit search depth.
1414 if (Depth == 10)
1415 return false;
1416
1417 // If multiple users are using the root value, procede with
1418 // simplification conservatively assuming that all elements
1419 // are needed.
1420 if (!V->hasOneUse()) {
1421 // Quit if we find multiple users of a non-root value though.
1422 // They'll be handled when it's their turn to be visited by
1423 // the main instcombine process.
1424 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001425 // TODO: Just compute the UndefElts information recursively.
1426 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001427
1428 // Conservatively assume that all elements are needed.
1429 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 }
1431
1432 Instruction *I = dyn_cast<Instruction>(V);
1433 if (!I) return false; // Only analyze instructions.
1434
1435 bool MadeChange = false;
1436 uint64_t UndefElts2;
1437 Value *TmpV;
1438 switch (I->getOpcode()) {
1439 default: break;
1440
1441 case Instruction::InsertElement: {
1442 // If this is a variable index, we don't know which element it overwrites.
1443 // demand exactly the same input as we produce.
1444 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1445 if (Idx == 0) {
1446 // Note that we can't propagate undef elt info, because we don't know
1447 // which elt is getting updated.
1448 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1449 UndefElts2, Depth+1);
1450 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1451 break;
1452 }
1453
1454 // If this is inserting an element that isn't demanded, remove this
1455 // insertelement.
1456 unsigned IdxNo = Idx->getZExtValue();
1457 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1458 return AddSoonDeadInstToWorklist(*I, 0);
1459
1460 // Otherwise, the element inserted overwrites whatever was there, so the
1461 // input demanded set is simpler than the output set.
1462 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1463 DemandedElts & ~(1ULL << IdxNo),
1464 UndefElts, Depth+1);
1465 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1466
1467 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001468 UndefElts &= ~(1ULL << IdxNo);
1469 break;
1470 }
1471 case Instruction::ShuffleVector: {
1472 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001473 uint64_t LHSVWidth =
1474 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001475 uint64_t LeftDemanded = 0, RightDemanded = 0;
1476 for (unsigned i = 0; i < VWidth; i++) {
1477 if (DemandedElts & (1ULL << i)) {
1478 unsigned MaskVal = Shuffle->getMaskValue(i);
1479 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001482 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001483 LeftDemanded |= 1ULL << MaskVal;
1484 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001485 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001486 }
1487 }
1488 }
1489
1490 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1491 UndefElts2, Depth+1);
1492 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1493
1494 uint64_t UndefElts3;
1495 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1496 UndefElts3, Depth+1);
1497 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1498
1499 bool NewUndefElts = false;
1500 for (unsigned i = 0; i < VWidth; i++) {
1501 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001502 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001503 uint64_t NewBit = 1ULL << i;
1504 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001505 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001506 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1507 NewUndefElts |= NewBit;
1508 UndefElts |= NewBit;
1509 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001510 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001511 NewUndefElts |= NewBit;
1512 UndefElts |= NewBit;
1513 }
1514 }
1515
1516 if (NewUndefElts) {
1517 // Add additional discovered undefs.
1518 std::vector<Constant*> Elts;
1519 for (unsigned i = 0; i < VWidth; ++i) {
1520 if (UndefElts & (1ULL << i))
1521 Elts.push_back(UndefValue::get(Type::Int32Ty));
1522 else
1523 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1524 Shuffle->getMaskValue(i)));
1525 }
1526 I->setOperand(2, ConstantVector::get(Elts));
1527 MadeChange = true;
1528 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001529 break;
1530 }
1531 case Instruction::BitCast: {
1532 // Vector->vector casts only.
1533 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1534 if (!VTy) break;
1535 unsigned InVWidth = VTy->getNumElements();
1536 uint64_t InputDemandedElts = 0;
1537 unsigned Ratio;
1538
1539 if (VWidth == InVWidth) {
1540 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1541 // elements as are demanded of us.
1542 Ratio = 1;
1543 InputDemandedElts = DemandedElts;
1544 } else if (VWidth > InVWidth) {
1545 // Untested so far.
1546 break;
1547
1548 // If there are more elements in the result than there are in the source,
1549 // then an input element is live if any of the corresponding output
1550 // elements are live.
1551 Ratio = VWidth/InVWidth;
1552 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1553 if (DemandedElts & (1ULL << OutIdx))
1554 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1555 }
1556 } else {
1557 // Untested so far.
1558 break;
1559
1560 // If there are more elements in the source than there are in the result,
1561 // then an input element is live if the corresponding output element is
1562 // live.
1563 Ratio = InVWidth/VWidth;
1564 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1565 if (DemandedElts & (1ULL << InIdx/Ratio))
1566 InputDemandedElts |= 1ULL << InIdx;
1567 }
1568
1569 // div/rem demand all inputs, because they don't want divide by zero.
1570 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1571 UndefElts2, Depth+1);
1572 if (TmpV) {
1573 I->setOperand(0, TmpV);
1574 MadeChange = true;
1575 }
1576
1577 UndefElts = UndefElts2;
1578 if (VWidth > InVWidth) {
1579 assert(0 && "Unimp");
1580 // If there are more elements in the result than there are in the source,
1581 // then an output element is undef if the corresponding input element is
1582 // undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1585 UndefElts |= 1ULL << OutIdx;
1586 } else if (VWidth < InVWidth) {
1587 assert(0 && "Unimp");
1588 // If there are more elements in the source than there are in the result,
1589 // then a result element is undef if all of the corresponding input
1590 // elements are undef.
1591 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1592 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1593 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1594 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1595 }
1596 break;
1597 }
1598 case Instruction::And:
1599 case Instruction::Or:
1600 case Instruction::Xor:
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 case Instruction::Mul:
1604 // div/rem demand all inputs, because they don't want divide by zero.
1605 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1606 UndefElts, Depth+1);
1607 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1608 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1609 UndefElts2, Depth+1);
1610 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1611
1612 // Output elements are undefined if both are undefined. Consider things
1613 // like undef&0. The result is known zero, not undef.
1614 UndefElts &= UndefElts2;
1615 break;
1616
1617 case Instruction::Call: {
1618 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1619 if (!II) break;
1620 switch (II->getIntrinsicID()) {
1621 default: break;
1622
1623 // Binary vector operations that work column-wise. A dest element is a
1624 // function of the corresponding input elements from the two inputs.
1625 case Intrinsic::x86_sse_sub_ss:
1626 case Intrinsic::x86_sse_mul_ss:
1627 case Intrinsic::x86_sse_min_ss:
1628 case Intrinsic::x86_sse_max_ss:
1629 case Intrinsic::x86_sse2_sub_sd:
1630 case Intrinsic::x86_sse2_mul_sd:
1631 case Intrinsic::x86_sse2_min_sd:
1632 case Intrinsic::x86_sse2_max_sd:
1633 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1634 UndefElts, Depth+1);
1635 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1636 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1637 UndefElts2, Depth+1);
1638 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1639
1640 // If only the low elt is demanded and this is a scalarizable intrinsic,
1641 // scalarize it now.
1642 if (DemandedElts == 1) {
1643 switch (II->getIntrinsicID()) {
1644 default: break;
1645 case Intrinsic::x86_sse_sub_ss:
1646 case Intrinsic::x86_sse_mul_ss:
1647 case Intrinsic::x86_sse2_sub_sd:
1648 case Intrinsic::x86_sse2_mul_sd:
1649 // TODO: Lower MIN/MAX/ABS/etc
1650 Value *LHS = II->getOperand(1);
1651 Value *RHS = II->getOperand(2);
1652 // Extract the element as scalars.
1653 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1654 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1655
1656 switch (II->getIntrinsicID()) {
1657 default: assert(0 && "Case stmts out of sync!");
1658 case Intrinsic::x86_sse_sub_ss:
1659 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001660 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661 II->getName()), *II);
1662 break;
1663 case Intrinsic::x86_sse_mul_ss:
1664 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001665 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 II->getName()), *II);
1667 break;
1668 }
1669
1670 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001671 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1672 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 InsertNewInstBefore(New, *II);
1674 AddSoonDeadInstToWorklist(*II, 0);
1675 return New;
1676 }
1677 }
1678
1679 // Output elements are undefined if both are undefined. Consider things
1680 // like undef&0. The result is known zero, not undef.
1681 UndefElts &= UndefElts2;
1682 break;
1683 }
1684 break;
1685 }
1686 }
1687 return MadeChange ? I : 0;
1688}
1689
Dan Gohman5d56fd42008-05-19 22:14:15 +00001690
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001691/// AssociativeOpt - Perform an optimization on an associative operator. This
1692/// function is designed to check a chain of associative operators for a
1693/// potential to apply a certain optimization. Since the optimization may be
1694/// applicable if the expression was reassociated, this checks the chain, then
1695/// reassociates the expression as necessary to expose the optimization
1696/// opportunity. This makes use of a special Functor, which must define
1697/// 'shouldApply' and 'apply' methods.
1698///
1699template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001700static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 unsigned Opcode = Root.getOpcode();
1702 Value *LHS = Root.getOperand(0);
1703
1704 // Quick check, see if the immediate LHS matches...
1705 if (F.shouldApply(LHS))
1706 return F.apply(Root);
1707
1708 // Otherwise, if the LHS is not of the same opcode as the root, return.
1709 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1710 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1711 // Should we apply this transform to the RHS?
1712 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1713
1714 // If not to the RHS, check to see if we should apply to the LHS...
1715 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1716 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1717 ShouldApply = true;
1718 }
1719
1720 // If the functor wants to apply the optimization to the RHS of LHSI,
1721 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1722 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001723 // Now all of the instructions are in the current basic block, go ahead
1724 // and perform the reassociation.
1725 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1726
1727 // First move the selected RHS to the LHS of the root...
1728 Root.setOperand(0, LHSI->getOperand(1));
1729
1730 // Make what used to be the LHS of the root be the user of the root...
1731 Value *ExtraOperand = TmpLHSI->getOperand(1);
1732 if (&Root == TmpLHSI) {
1733 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1734 return 0;
1735 }
1736 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1737 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001739 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740 ARI = Root;
1741
1742 // Now propagate the ExtraOperand down the chain of instructions until we
1743 // get to LHSI.
1744 while (TmpLHSI != LHSI) {
1745 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1746 // Move the instruction to immediately before the chain we are
1747 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001748 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 ARI = NextLHSI;
1750
1751 Value *NextOp = NextLHSI->getOperand(1);
1752 NextLHSI->setOperand(1, ExtraOperand);
1753 TmpLHSI = NextLHSI;
1754 ExtraOperand = NextOp;
1755 }
1756
1757 // Now that the instructions are reassociated, have the functor perform
1758 // the transformation...
1759 return F.apply(Root);
1760 }
1761
1762 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1763 }
1764 return 0;
1765}
1766
Dan Gohman089efff2008-05-13 00:00:25 +00001767namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
Nick Lewycky27f6c132008-05-23 04:34:58 +00001769// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770struct AddRHS {
1771 Value *RHS;
1772 AddRHS(Value *rhs) : RHS(rhs) {}
1773 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1774 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001775 return BinaryOperator::CreateShl(Add.getOperand(0),
1776 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777 }
1778};
1779
1780// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1781// iff C1&C2 == 0
1782struct AddMaskingAnd {
1783 Constant *C2;
1784 AddMaskingAnd(Constant *c) : C2(c) {}
1785 bool shouldApply(Value *LHS) const {
1786 ConstantInt *C1;
1787 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1788 ConstantExpr::getAnd(C1, C2)->isNullValue();
1789 }
1790 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001791 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 }
1793};
1794
Dan Gohman089efff2008-05-13 00:00:25 +00001795}
1796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1798 InstCombiner *IC) {
1799 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001800 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 }
1802
1803 // Figure out if the constant is the left or the right argument.
1804 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1805 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1806
1807 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1808 if (ConstIsRHS)
1809 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1810 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1811 }
1812
1813 Value *Op0 = SO, *Op1 = ConstOperand;
1814 if (!ConstIsRHS)
1815 std::swap(Op0, Op1);
1816 Instruction *New;
1817 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001820 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001821 SO->getName()+".cmp");
1822 else {
1823 assert(0 && "Unknown binary instruction type!");
1824 abort();
1825 }
1826 return IC->InsertNewInstBefore(New, I);
1827}
1828
1829// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1830// constant as the other operand, try to fold the binary operator into the
1831// select arguments. This also works for Cast instructions, which obviously do
1832// not have a second operand.
1833static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1834 InstCombiner *IC) {
1835 // Don't modify shared select instructions
1836 if (!SI->hasOneUse()) return 0;
1837 Value *TV = SI->getOperand(1);
1838 Value *FV = SI->getOperand(2);
1839
1840 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1841 // Bool selects with constant operands can be folded to logical ops.
1842 if (SI->getType() == Type::Int1Ty) return 0;
1843
1844 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1845 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1846
Gabor Greifd6da1d02008-04-06 20:25:17 +00001847 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1848 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 }
1850 return 0;
1851}
1852
1853
1854/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1855/// node as operand #0, see if we can fold the instruction into the PHI (which
1856/// is only possible if all operands to the PHI are constants).
1857Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1858 PHINode *PN = cast<PHINode>(I.getOperand(0));
1859 unsigned NumPHIValues = PN->getNumIncomingValues();
1860 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1861
1862 // Check to see if all of the operands of the PHI are constants. If there is
1863 // one non-constant value, remember the BB it is. If there is more than one
1864 // or if *it* is a PHI, bail out.
1865 BasicBlock *NonConstBB = 0;
1866 for (unsigned i = 0; i != NumPHIValues; ++i)
1867 if (!isa<Constant>(PN->getIncomingValue(i))) {
1868 if (NonConstBB) return 0; // More than one non-const value.
1869 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1870 NonConstBB = PN->getIncomingBlock(i);
1871
1872 // If the incoming non-constant value is in I's block, we have an infinite
1873 // loop.
1874 if (NonConstBB == I.getParent())
1875 return 0;
1876 }
1877
1878 // If there is exactly one non-constant value, we can insert a copy of the
1879 // operation in that block. However, if this is a critical edge, we would be
1880 // inserting the computation one some other paths (e.g. inside a loop). Only
1881 // do this if the pred block is unconditionally branching into the phi block.
1882 if (NonConstBB) {
1883 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1884 if (!BI || !BI->isUnconditional()) return 0;
1885 }
1886
1887 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001888 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1890 InsertNewInstBefore(NewPN, *PN);
1891 NewPN->takeName(PN);
1892
1893 // Next, add all of the operands to the PHI.
1894 if (I.getNumOperands() == 2) {
1895 Constant *C = cast<Constant>(I.getOperand(1));
1896 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001897 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1899 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1901 else
1902 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1903 } else {
1904 assert(PN->getIncomingBlock(i) == NonConstBB);
1905 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001906 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001907 PN->getIncomingValue(i), C, "phitmp",
1908 NonConstBB->getTerminator());
1909 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001910 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 CI->getPredicate(),
1912 PN->getIncomingValue(i), C, "phitmp",
1913 NonConstBB->getTerminator());
1914 else
1915 assert(0 && "Unknown binop!");
1916
1917 AddToWorkList(cast<Instruction>(InV));
1918 }
1919 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1920 }
1921 } else {
1922 CastInst *CI = cast<CastInst>(&I);
1923 const Type *RetTy = CI->getType();
1924 for (unsigned i = 0; i != NumPHIValues; ++i) {
1925 Value *InV;
1926 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1927 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1928 } else {
1929 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001930 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001931 I.getType(), "phitmp",
1932 NonConstBB->getTerminator());
1933 AddToWorkList(cast<Instruction>(InV));
1934 }
1935 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1936 }
1937 }
1938 return ReplaceInstUsesWith(I, NewPN);
1939}
1940
Chris Lattner55476162008-01-29 06:52:45 +00001941
Chris Lattner3554f972008-05-20 05:46:13 +00001942/// WillNotOverflowSignedAdd - Return true if we can prove that:
1943/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1944/// This basically requires proving that the add in the original type would not
1945/// overflow to change the sign bit or have a carry out.
1946bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1947 // There are different heuristics we can use for this. Here are some simple
1948 // ones.
1949
1950 // Add has the property that adding any two 2's complement numbers can only
1951 // have one carry bit which can change a sign. As such, if LHS and RHS each
1952 // have at least two sign bits, we know that the addition of the two values will
1953 // sign extend fine.
1954 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1955 return true;
1956
1957
1958 // If one of the operands only has one non-zero bit, and if the other operand
1959 // has a known-zero bit in a more significant place than it (not including the
1960 // sign bit) the ripple may go up to and fill the zero, but won't change the
1961 // sign. For example, (X & ~4) + 1.
1962
1963 // TODO: Implement.
1964
1965 return false;
1966}
1967
Chris Lattner55476162008-01-29 06:52:45 +00001968
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1970 bool Changed = SimplifyCommutative(I);
1971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1972
1973 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1974 // X + undef -> undef
1975 if (isa<UndefValue>(RHS))
1976 return ReplaceInstUsesWith(I, RHS);
1977
1978 // X + 0 --> X
1979 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1980 if (RHSC->isNullValue())
1981 return ReplaceInstUsesWith(I, LHS);
1982 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001983 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1984 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 return ReplaceInstUsesWith(I, LHS);
1986 }
1987
1988 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1989 // X + (signbit) --> X ^ signbit
1990 const APInt& Val = CI->getValue();
1991 uint32_t BitWidth = Val.getBitWidth();
1992 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001993 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994
1995 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1996 // (X & 254)+1 -> (X&254)|1
1997 if (!isa<VectorType>(I.getType())) {
1998 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1999 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
2000 KnownZero, KnownOne))
2001 return &I;
2002 }
Dan Gohman35b76162008-10-30 20:40:10 +00002003
2004 // zext(i1) - 1 -> select i1, 0, -1
2005 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2006 if (CI->isAllOnesValue() &&
2007 ZI->getOperand(0)->getType() == Type::Int1Ty)
2008 return SelectInst::Create(ZI->getOperand(0),
2009 Constant::getNullValue(I.getType()),
2010 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 }
2012
2013 if (isa<PHINode>(LHS))
2014 if (Instruction *NV = FoldOpIntoPhi(I))
2015 return NV;
2016
2017 ConstantInt *XorRHS = 0;
2018 Value *XorLHS = 0;
2019 if (isa<ConstantInt>(RHSC) &&
2020 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2021 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2022 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2023
2024 uint32_t Size = TySizeBits / 2;
2025 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2026 APInt CFF80Val(-C0080Val);
2027 do {
2028 if (TySizeBits > Size) {
2029 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2030 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2031 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2032 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2033 // This is a sign extend if the top bits are known zero.
2034 if (!MaskedValueIsZero(XorLHS,
2035 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2036 Size = 0; // Not a sign ext, but can't be any others either.
2037 break;
2038 }
2039 }
2040 Size >>= 1;
2041 C0080Val = APIntOps::lshr(C0080Val, Size);
2042 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2043 } while (Size >= 1);
2044
2045 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002046 // with funny bit widths then this switch statement should be removed. It
2047 // is just here to get the size of the "middle" type back up to something
2048 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002049 const Type *MiddleType = 0;
2050 switch (Size) {
2051 default: break;
2052 case 32: MiddleType = Type::Int32Ty; break;
2053 case 16: MiddleType = Type::Int16Ty; break;
2054 case 8: MiddleType = Type::Int8Ty; break;
2055 }
2056 if (MiddleType) {
2057 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2058 InsertNewInstBefore(NewTrunc, I);
2059 return new SExtInst(NewTrunc, I.getType(), I.getName());
2060 }
2061 }
2062 }
2063
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002064 if (I.getType() == Type::Int1Ty)
2065 return BinaryOperator::CreateXor(LHS, RHS);
2066
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002067 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002068 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2070
2071 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2072 if (RHSI->getOpcode() == Instruction::Sub)
2073 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2074 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2075 }
2076 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2077 if (LHSI->getOpcode() == Instruction::Sub)
2078 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2079 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2080 }
2081 }
2082
2083 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002084 // -A + -B --> -(A + B)
2085 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002086 if (LHS->getType()->isIntOrIntVector()) {
2087 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002089 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002090 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002091 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002092 }
2093
Gabor Greifa645dd32008-05-16 19:29:10 +00002094 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002095 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 // A + -B --> A - B
2098 if (!isa<Constant>(RHS))
2099 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002100 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101
2102
2103 ConstantInt *C2;
2104 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2105 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002106 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107
2108 // X*C1 + X*C2 --> X * (C1+C2)
2109 ConstantInt *C1;
2110 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002111 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
2114 // X + X*C --> X * (C+1)
2115 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002116 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117
2118 // X + ~X --> -1 since ~X = -X-1
2119 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2120 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2121
2122
2123 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2124 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2125 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2126 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002127
2128 // A+B --> A|B iff A and B have no bits set in common.
2129 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2130 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2131 APInt LHSKnownOne(IT->getBitWidth(), 0);
2132 APInt LHSKnownZero(IT->getBitWidth(), 0);
2133 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2134 if (LHSKnownZero != 0) {
2135 APInt RHSKnownOne(IT->getBitWidth(), 0);
2136 APInt RHSKnownZero(IT->getBitWidth(), 0);
2137 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2138
2139 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002140 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002141 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002142 }
2143 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002144
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002146 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002147 Value *W, *X, *Y, *Z;
2148 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2149 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2150 if (W != Y) {
2151 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002153 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002154 std::swap(W, X);
2155 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002156 std::swap(Y, Z);
2157 std::swap(W, X);
2158 }
2159 }
2160
2161 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002164 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002165 }
2166 }
2167 }
2168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002169 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2170 Value *X = 0;
2171 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002172 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002173
2174 // (X & FF00) + xx00 -> (X+xx00) & FF00
2175 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2176 Constant *Anded = And(CRHS, C2);
2177 if (Anded == CRHS) {
2178 // See if all bits from the first bit set in the Add RHS up are included
2179 // in the mask. First, get the rightmost bit.
2180 const APInt& AddRHSV = CRHS->getValue();
2181
2182 // Form a mask of all bits from the lowest bit added through the top.
2183 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2184
2185 // See if the and mask includes all of these bits.
2186 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2187
2188 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2189 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002192 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002193 }
2194 }
2195 }
2196
2197 // Try to fold constant add into select arguments.
2198 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2199 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2200 return R;
2201 }
2202
2203 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002204 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205 {
2206 CastInst *CI = dyn_cast<CastInst>(LHS);
2207 Value *Other = RHS;
2208 if (!CI) {
2209 CI = dyn_cast<CastInst>(RHS);
2210 Other = LHS;
2211 }
2212 if (CI && CI->getType()->isSized() &&
2213 (CI->getType()->getPrimitiveSizeInBits() ==
2214 TD->getIntPtrType()->getPrimitiveSizeInBits())
2215 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002216 unsigned AS =
2217 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002218 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2219 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002220 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 return new PtrToIntInst(I2, CI->getType());
2222 }
2223 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002224
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002225 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002226 {
2227 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002228 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002229 if (!SI) {
2230 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002231 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002233 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002234 Value *TV = SI->getTrueValue();
2235 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002236 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002237
2238 // Can we fold the add into the argument of the select?
2239 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002240 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2241 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002242 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002243 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2244 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002245 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002246 }
2247 }
Chris Lattner55476162008-01-29 06:52:45 +00002248
2249 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2250 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2251 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2252 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253
Chris Lattner3554f972008-05-20 05:46:13 +00002254 // Check for (add (sext x), y), see if we can merge this into an
2255 // integer add followed by a sext.
2256 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2257 // (add (sext x), cst) --> (sext (add x, cst'))
2258 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2259 Constant *CI =
2260 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2261 if (LHSConv->hasOneUse() &&
2262 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2263 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2264 // Insert the new, smaller add.
2265 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2266 CI, "addconv");
2267 InsertNewInstBefore(NewAdd, I);
2268 return new SExtInst(NewAdd, I.getType());
2269 }
2270 }
2271
2272 // (add (sext x), (sext y)) --> (sext (add int x, y))
2273 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2274 // Only do this if x/y have the same type, if at last one of them has a
2275 // single use (so we don't increase the number of sexts), and if the
2276 // integer add will not overflow.
2277 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2278 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2279 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2280 RHSConv->getOperand(0))) {
2281 // Insert the new integer add.
2282 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2283 RHSConv->getOperand(0),
2284 "addconv");
2285 InsertNewInstBefore(NewAdd, I);
2286 return new SExtInst(NewAdd, I.getType());
2287 }
2288 }
2289 }
2290
2291 // Check for (add double (sitofp x), y), see if we can merge this into an
2292 // integer add followed by a promotion.
2293 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2294 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2295 // ... if the constant fits in the integer value. This is useful for things
2296 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2297 // requires a constant pool load, and generally allows the add to be better
2298 // instcombined.
2299 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2300 Constant *CI =
2301 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2302 if (LHSConv->hasOneUse() &&
2303 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2304 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2305 // Insert the new integer add.
2306 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2307 CI, "addconv");
2308 InsertNewInstBefore(NewAdd, I);
2309 return new SIToFPInst(NewAdd, I.getType());
2310 }
2311 }
2312
2313 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2314 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2315 // Only do this if x/y have the same type, if at last one of them has a
2316 // single use (so we don't increase the number of int->fp conversions),
2317 // and if the integer add will not overflow.
2318 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2319 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2320 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2321 RHSConv->getOperand(0))) {
2322 // Insert the new integer add.
2323 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2324 RHSConv->getOperand(0),
2325 "addconv");
2326 InsertNewInstBefore(NewAdd, I);
2327 return new SIToFPInst(NewAdd, I.getType());
2328 }
2329 }
2330 }
2331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 return Changed ? &I : 0;
2333}
2334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002335Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2336 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2337
Chris Lattner27fbef42008-07-17 06:07:20 +00002338 if (Op0 == Op1 && // sub X, X -> 0
2339 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002340 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2341
2342 // If this is a 'B = x-(-A)', change to B = x+A...
2343 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002344 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345
2346 if (isa<UndefValue>(Op0))
2347 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2348 if (isa<UndefValue>(Op1))
2349 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2350
2351 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2352 // Replace (-1 - A) with (~A)...
2353 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002354 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002355
2356 // C - ~X == X + (1+C)
2357 Value *X = 0;
2358 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002359 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360
2361 // -(X >>u 31) -> (X >>s 31)
2362 // -(X >>s 31) -> (X >>u 31)
2363 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002364 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365 if (SI->getOpcode() == Instruction::LShr) {
2366 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2367 // Check to see if we are shifting out everything but the sign bit.
2368 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2369 SI->getType()->getPrimitiveSizeInBits()-1) {
2370 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002371 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002372 SI->getOperand(0), CU, SI->getName());
2373 }
2374 }
2375 }
2376 else if (SI->getOpcode() == Instruction::AShr) {
2377 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2378 // Check to see if we are shifting out everything but the sign bit.
2379 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2380 SI->getType()->getPrimitiveSizeInBits()-1) {
2381 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002382 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 SI->getOperand(0), CU, SI->getName());
2384 }
2385 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002386 }
2387 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002388 }
2389
2390 // Try to fold constant sub into select arguments.
2391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2392 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2393 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002394 }
2395
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002396 if (I.getType() == Type::Int1Ty)
2397 return BinaryOperator::CreateXor(Op0, Op1);
2398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2400 if (Op1I->getOpcode() == Instruction::Add &&
2401 !Op0->getType()->isFPOrFPVector()) {
2402 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002405 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2407 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2408 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002409 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 Op1I->getOperand(0));
2411 }
2412 }
2413
2414 if (Op1I->hasOneUse()) {
2415 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2416 // is not used by anyone else...
2417 //
2418 if (Op1I->getOpcode() == Instruction::Sub &&
2419 !Op1I->getType()->isFPOrFPVector()) {
2420 // Swap the two operands of the subexpr...
2421 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2422 Op1I->setOperand(0, IIOp1);
2423 Op1I->setOperand(1, IIOp0);
2424
2425 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002426 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002427 }
2428
2429 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2430 //
2431 if (Op1I->getOpcode() == Instruction::And &&
2432 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2433 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2434
2435 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002436 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2437 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002438 }
2439
2440 // 0 - (X sdiv C) -> (X sdiv -C)
2441 if (Op1I->getOpcode() == Instruction::SDiv)
2442 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2443 if (CSI->isZero())
2444 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002445 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 ConstantExpr::getNeg(DivRHS));
2447
2448 // X - X*C --> X * (1-C)
2449 ConstantInt *C2 = 0;
2450 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2451 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002452 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453 }
2454 }
2455 }
2456
2457 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002458 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002459 if (Op0I->getOpcode() == Instruction::Add) {
2460 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2462 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2463 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2464 } else if (Op0I->getOpcode() == Instruction::Sub) {
2465 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002466 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002468 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469
2470 ConstantInt *C1;
2471 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2472 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002473 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474
2475 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2476 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002477 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 }
2479 return 0;
2480}
2481
2482/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2483/// comparison only checks the sign bit. If it only checks the sign bit, set
2484/// TrueIfSigned if the result of the comparison is true when the input value is
2485/// signed.
2486static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2487 bool &TrueIfSigned) {
2488 switch (pred) {
2489 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2490 TrueIfSigned = true;
2491 return RHS->isZero();
2492 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2493 TrueIfSigned = true;
2494 return RHS->isAllOnesValue();
2495 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2496 TrueIfSigned = false;
2497 return RHS->isAllOnesValue();
2498 case ICmpInst::ICMP_UGT:
2499 // True if LHS u> RHS and RHS == high-bit-mask - 1
2500 TrueIfSigned = true;
2501 return RHS->getValue() ==
2502 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2503 case ICmpInst::ICMP_UGE:
2504 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2505 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002506 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 default:
2508 return false;
2509 }
2510}
2511
2512Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2513 bool Changed = SimplifyCommutative(I);
2514 Value *Op0 = I.getOperand(0);
2515
2516 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2517 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2518
2519 // Simplify mul instructions with a constant RHS...
2520 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2522
2523 // ((X << C1)*C2) == (X * (C2 << C1))
2524 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2525 if (SI->getOpcode() == Instruction::Shl)
2526 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002527 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 ConstantExpr::getShl(CI, ShOp));
2529
2530 if (CI->isZero())
2531 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2532 if (CI->equalsInt(1)) // X * 1 == X
2533 return ReplaceInstUsesWith(I, Op0);
2534 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002535 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2538 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002539 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540 ConstantInt::get(Op0->getType(), Val.logBase2()));
2541 }
2542 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2543 if (Op1F->isNullValue())
2544 return ReplaceInstUsesWith(I, Op1);
2545
2546 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2547 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002548 if (Op1F->isExactlyValue(1.0))
2549 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2550 } else if (isa<VectorType>(Op1->getType())) {
2551 if (isa<ConstantAggregateZero>(Op1))
2552 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002553
2554 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2555 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2556 return BinaryOperator::CreateNeg(Op0, I.getName());
2557
2558 // As above, vector X*splat(1.0) -> X in all defined cases.
2559 if (Constant *Splat = Op1V->getSplatValue()) {
2560 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2561 if (F->isExactlyValue(1.0))
2562 return ReplaceInstUsesWith(I, Op0);
2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2564 if (CI->equalsInt(1))
2565 return ReplaceInstUsesWith(I, Op0);
2566 }
2567 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568 }
2569
2570 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2571 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002572 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002574 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 Op1, "tmp");
2576 InsertNewInstBefore(Add, I);
2577 Value *C1C2 = ConstantExpr::getMul(Op1,
2578 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002579 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580
2581 }
2582
2583 // Try to fold constant mul into select arguments.
2584 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2585 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2586 return R;
2587
2588 if (isa<PHINode>(Op0))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
2591 }
2592
2593 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2594 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002595 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596
Nick Lewycky1c246402008-11-21 07:33:58 +00002597 // (X / Y) * Y = X - (X % Y)
2598 // (X / Y) * -Y = (X % Y) - X
2599 {
2600 Value *Op1 = I.getOperand(1);
2601 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2602 if (!BO ||
2603 (BO->getOpcode() != Instruction::UDiv &&
2604 BO->getOpcode() != Instruction::SDiv)) {
2605 Op1 = Op0;
2606 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2607 }
2608 Value *Neg = dyn_castNegVal(Op1);
2609 if (BO && BO->hasOneUse() &&
2610 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2611 (BO->getOpcode() == Instruction::UDiv ||
2612 BO->getOpcode() == Instruction::SDiv)) {
2613 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2614
2615 Instruction *Rem;
2616 if (BO->getOpcode() == Instruction::UDiv)
2617 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2618 else
2619 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2620
2621 InsertNewInstBefore(Rem, I);
2622 Rem->takeName(BO);
2623
2624 if (Op1BO == Op1)
2625 return BinaryOperator::CreateSub(Op0BO, Rem);
2626 else
2627 return BinaryOperator::CreateSub(Rem, Op0BO);
2628 }
2629 }
2630
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002631 if (I.getType() == Type::Int1Ty)
2632 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2633
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002634 // If one of the operands of the multiply is a cast from a boolean value, then
2635 // we know the bool is either zero or one, so this is a 'masking' multiply.
2636 // See if we can simplify things based on how the boolean was originally
2637 // formed.
2638 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002639 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002640 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2641 BoolCast = CI;
2642 if (!BoolCast)
2643 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2644 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2645 BoolCast = CI;
2646 if (BoolCast) {
2647 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2648 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2649 const Type *SCOpTy = SCIOp0->getType();
2650 bool TIS = false;
2651
2652 // If the icmp is true iff the sign bit of X is set, then convert this
2653 // multiply into a shift/and combination.
2654 if (isa<ConstantInt>(SCIOp1) &&
2655 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2656 TIS) {
2657 // Shift the X value right to turn it into "all signbits".
2658 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2659 SCOpTy->getPrimitiveSizeInBits()-1);
2660 Value *V =
2661 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002662 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663 BoolCast->getOperand(0)->getName()+
2664 ".mask"), I);
2665
2666 // If the multiply type is not the same as the source type, sign extend
2667 // or truncate to the multiply type.
2668 if (I.getType() != V->getType()) {
2669 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2670 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2671 Instruction::CastOps opcode =
2672 (SrcBits == DstBits ? Instruction::BitCast :
2673 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2674 V = InsertCastBefore(opcode, V, I.getType(), I);
2675 }
2676
2677 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002678 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 }
2680 }
2681 }
2682
2683 return Changed ? &I : 0;
2684}
2685
Chris Lattner76972db2008-07-14 00:15:52 +00002686/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2687/// instruction.
2688bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2689 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2690
2691 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2692 int NonNullOperand = -1;
2693 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2694 if (ST->isNullValue())
2695 NonNullOperand = 2;
2696 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2697 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2698 if (ST->isNullValue())
2699 NonNullOperand = 1;
2700
2701 if (NonNullOperand == -1)
2702 return false;
2703
2704 Value *SelectCond = SI->getOperand(0);
2705
2706 // Change the div/rem to use 'Y' instead of the select.
2707 I.setOperand(1, SI->getOperand(NonNullOperand));
2708
2709 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2710 // problem. However, the select, or the condition of the select may have
2711 // multiple uses. Based on our knowledge that the operand must be non-zero,
2712 // propagate the known value for the select into other uses of it, and
2713 // propagate a known value of the condition into its other users.
2714
2715 // If the select and condition only have a single use, don't bother with this,
2716 // early exit.
2717 if (SI->use_empty() && SelectCond->hasOneUse())
2718 return true;
2719
2720 // Scan the current block backward, looking for other uses of SI.
2721 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2722
2723 while (BBI != BBFront) {
2724 --BBI;
2725 // If we found a call to a function, we can't assume it will return, so
2726 // information from below it cannot be propagated above it.
2727 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2728 break;
2729
2730 // Replace uses of the select or its condition with the known values.
2731 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2732 I != E; ++I) {
2733 if (*I == SI) {
2734 *I = SI->getOperand(NonNullOperand);
2735 AddToWorkList(BBI);
2736 } else if (*I == SelectCond) {
2737 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2738 ConstantInt::getFalse();
2739 AddToWorkList(BBI);
2740 }
2741 }
2742
2743 // If we past the instruction, quit looking for it.
2744 if (&*BBI == SI)
2745 SI = 0;
2746 if (&*BBI == SelectCond)
2747 SelectCond = 0;
2748
2749 // If we ran out of things to eliminate, break out of the loop.
2750 if (SelectCond == 0 && SI == 0)
2751 break;
2752
2753 }
2754 return true;
2755}
2756
2757
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002758/// This function implements the transforms on div instructions that work
2759/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2760/// used by the visitors to those instructions.
2761/// @brief Transforms common to all three div instructions
2762Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2764
Chris Lattner653ef3c2008-02-19 06:12:18 +00002765 // undef / X -> 0 for integer.
2766 // undef / X -> undef for FP (the undef could be a snan).
2767 if (isa<UndefValue>(Op0)) {
2768 if (Op0->getType()->isFPOrFPVector())
2769 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002772
2773 // X / undef -> undef
2774 if (isa<UndefValue>(Op1))
2775 return ReplaceInstUsesWith(I, Op1);
2776
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 return 0;
2778}
2779
2780/// This function implements the transforms common to both integer division
2781/// instructions (udiv and sdiv). It is called by the visitors to those integer
2782/// division instructions.
2783/// @brief Common integer divide transforms
2784Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2785 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2786
Chris Lattnercefb36c2008-05-16 02:59:42 +00002787 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002788 if (Op0 == Op1) {
2789 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2790 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2791 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2792 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2793 }
2794
2795 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2796 return ReplaceInstUsesWith(I, CI);
2797 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002798
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 if (Instruction *Common = commonDivTransforms(I))
2800 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002801
2802 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2803 // This does not apply for fdiv.
2804 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2805 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002806
2807 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2808 // div X, 1 == X
2809 if (RHS->equalsInt(1))
2810 return ReplaceInstUsesWith(I, Op0);
2811
2812 // (X / C1) / C2 -> X / (C1*C2)
2813 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2814 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2815 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002816 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2817 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2818 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002819 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002820 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002821 }
2822
2823 if (!RHS->isZero()) { // avoid X udiv 0
2824 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2825 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2826 return R;
2827 if (isa<PHINode>(Op0))
2828 if (Instruction *NV = FoldOpIntoPhi(I))
2829 return NV;
2830 }
2831 }
2832
2833 // 0 / X == 0, we don't need to preserve faults!
2834 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2835 if (LHS->equalsInt(0))
2836 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2837
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002838 // It can't be division by zero, hence it must be division by one.
2839 if (I.getType() == Type::Int1Ty)
2840 return ReplaceInstUsesWith(I, Op0);
2841
Nick Lewycky94418732008-11-27 20:21:08 +00002842 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2843 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2844 // div X, 1 == X
2845 if (X->isOne())
2846 return ReplaceInstUsesWith(I, Op0);
2847 }
2848
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 return 0;
2850}
2851
2852Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2853 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2854
2855 // Handle the integer div common cases
2856 if (Instruction *Common = commonIDivTransforms(I))
2857 return Common;
2858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002860 // X udiv C^2 -> X >> C
2861 // Check to see if this is an unsigned division with an exact power of 2,
2862 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002864 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002866
2867 // X udiv C, where C >= signbit
2868 if (C->getValue().isNegative()) {
2869 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2870 I);
2871 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2872 ConstantInt::get(I.getType(), 1));
2873 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002874 }
2875
2876 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2877 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2878 if (RHSI->getOpcode() == Instruction::Shl &&
2879 isa<ConstantInt>(RHSI->getOperand(0))) {
2880 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2881 if (C1.isPowerOf2()) {
2882 Value *N = RHSI->getOperand(1);
2883 const Type *NTy = N->getType();
2884 if (uint32_t C2 = C1.logBase2()) {
2885 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002888 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 }
2890 }
2891 }
2892
2893 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2894 // where C1&C2 are powers of two.
2895 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2896 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2897 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2898 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2899 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2900 // Compute the shift amounts
2901 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2902 // Construct the "on true" case of the select
2903 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002904 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002905 Op0, TC, SI->getName()+".t");
2906 TSI = InsertNewInstBefore(TSI, I);
2907
2908 // Construct the "on false" case of the select
2909 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002910 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002911 Op0, FC, SI->getName()+".f");
2912 FSI = InsertNewInstBefore(FSI, I);
2913
2914 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002915 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 }
2917 }
2918 return 0;
2919}
2920
2921Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2922 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2923
2924 // Handle the integer div common cases
2925 if (Instruction *Common = commonIDivTransforms(I))
2926 return Common;
2927
2928 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2929 // sdiv X, -1 == -X
2930 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002931 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932
Bill Wendling8fd57592008-11-30 03:42:12 +00002933 // -X/C -> X/-C, if and only if negation doesn't overflow.
Bill Wendlingf2e0efd2008-12-01 07:47:02 +00002934 if (Value *LHSNeg = dyn_castNegVal(Op0)) {
2935 if (ConstantInt *CI = dyn_cast<ConstantInt>(LHSNeg)) {
2936 ConstantInt *RHSNeg = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Bill Wendling9f85fa62008-12-01 19:46:27 +00002937 if (RHS != RHSNeg) {
Bill Wendling8fd57592008-11-30 03:42:12 +00002938 ConstantInt *CINeg = cast<ConstantInt>(ConstantExpr::getNeg(CI));
Bill Wendling9f85fa62008-12-01 19:46:27 +00002939 if (CI != CINeg)
Bill Wendling8fd57592008-11-30 03:42:12 +00002940 return BinaryOperator::CreateSDiv(LHSNeg,
2941 ConstantExpr::getNeg(RHS));
2942 }
2943 }
2944 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002945 }
2946
2947 // If the sign bits of both operands are zero (i.e. we can prove they are
2948 // unsigned inputs), turn this into a udiv.
2949 if (I.getType()->isInteger()) {
2950 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2951 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002952 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002953 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954 }
2955 }
2956
2957 return 0;
2958}
2959
2960Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2961 return commonDivTransforms(I);
2962}
2963
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964/// This function implements the transforms on rem instructions that work
2965/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2966/// is used by the visitors to those instructions.
2967/// @brief Transforms common to all three rem instructions
2968Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2969 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2970
Chris Lattner653ef3c2008-02-19 06:12:18 +00002971 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002972 if (Constant *LHS = dyn_cast<Constant>(Op0))
2973 if (LHS->isNullValue())
2974 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2975
Chris Lattner653ef3c2008-02-19 06:12:18 +00002976 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2977 if (I.getType()->isFPOrFPVector())
2978 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002979 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002980 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 if (isa<UndefValue>(Op1))
2982 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2983
2984 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002985 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2986 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987
2988 return 0;
2989}
2990
2991/// This function implements the transforms common to both integer remainder
2992/// instructions (urem and srem). It is called by the visitors to those integer
2993/// remainder instructions.
2994/// @brief Common integer remainder transforms
2995Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2996 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2997
2998 if (Instruction *common = commonRemTransforms(I))
2999 return common;
3000
3001 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3002 // X % 0 == undef, we don't need to preserve faults!
3003 if (RHS->equalsInt(0))
3004 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3005
3006 if (RHS->equalsInt(1)) // X % 1 == 0
3007 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3008
3009 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3010 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3011 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3012 return R;
3013 } else if (isa<PHINode>(Op0I)) {
3014 if (Instruction *NV = FoldOpIntoPhi(I))
3015 return NV;
3016 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003017
3018 // See if we can fold away this rem instruction.
3019 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3020 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3021 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3022 KnownZero, KnownOne))
3023 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003024 }
3025 }
3026
3027 return 0;
3028}
3029
3030Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3031 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3032
3033 if (Instruction *common = commonIRemTransforms(I))
3034 return common;
3035
3036 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3037 // X urem C^2 -> X and C
3038 // Check to see if this is an unsigned remainder with an exact power of 2,
3039 // if so, convert to a bitwise and.
3040 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3041 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003042 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003043 }
3044
3045 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3046 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3047 if (RHSI->getOpcode() == Instruction::Shl &&
3048 isa<ConstantInt>(RHSI->getOperand(0))) {
3049 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3050 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003051 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003052 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003053 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003054 }
3055 }
3056 }
3057
3058 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3059 // where C1&C2 are powers of two.
3060 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3061 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3062 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3063 // STO == 0 and SFO == 0 handled above.
3064 if ((STO->getValue().isPowerOf2()) &&
3065 (SFO->getValue().isPowerOf2())) {
3066 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003067 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003068 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003069 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003070 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003071 }
3072 }
3073 }
3074
3075 return 0;
3076}
3077
3078Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3079 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3080
Dan Gohmandb3dd962007-11-05 23:16:33 +00003081 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082 if (Instruction *common = commonIRemTransforms(I))
3083 return common;
3084
3085 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003086 if (!isa<Constant>(RHSNeg) ||
3087 (isa<ConstantInt>(RHSNeg) &&
3088 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089 // X % -Y -> X % Y
3090 AddUsesToWorkList(I);
3091 I.setOperand(1, RHSNeg);
3092 return &I;
3093 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003094
Dan Gohmandb3dd962007-11-05 23:16:33 +00003095 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003096 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003097 if (I.getType()->isInteger()) {
3098 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3099 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3100 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003101 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003102 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003103 }
3104
3105 return 0;
3106}
3107
3108Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3109 return commonRemTransforms(I);
3110}
3111
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112// isOneBitSet - Return true if there is exactly one bit set in the specified
3113// constant.
3114static bool isOneBitSet(const ConstantInt *CI) {
3115 return CI->getValue().isPowerOf2();
3116}
3117
3118// isHighOnes - Return true if the constant is of the form 1+0+.
3119// This is the same as lowones(~X).
3120static bool isHighOnes(const ConstantInt *CI) {
3121 return (~CI->getValue() + 1).isPowerOf2();
3122}
3123
3124/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3125/// are carefully arranged to allow folding of expressions such as:
3126///
3127/// (A < B) | (A > B) --> (A != B)
3128///
3129/// Note that this is only valid if the first and second predicates have the
3130/// same sign. Is illegal to do: (A u< B) | (A s> B)
3131///
3132/// Three bits are used to represent the condition, as follows:
3133/// 0 A > B
3134/// 1 A == B
3135/// 2 A < B
3136///
3137/// <=> Value Definition
3138/// 000 0 Always false
3139/// 001 1 A > B
3140/// 010 2 A == B
3141/// 011 3 A >= B
3142/// 100 4 A < B
3143/// 101 5 A != B
3144/// 110 6 A <= B
3145/// 111 7 Always true
3146///
3147static unsigned getICmpCode(const ICmpInst *ICI) {
3148 switch (ICI->getPredicate()) {
3149 // False -> 0
3150 case ICmpInst::ICMP_UGT: return 1; // 001
3151 case ICmpInst::ICMP_SGT: return 1; // 001
3152 case ICmpInst::ICMP_EQ: return 2; // 010
3153 case ICmpInst::ICMP_UGE: return 3; // 011
3154 case ICmpInst::ICMP_SGE: return 3; // 011
3155 case ICmpInst::ICMP_ULT: return 4; // 100
3156 case ICmpInst::ICMP_SLT: return 4; // 100
3157 case ICmpInst::ICMP_NE: return 5; // 101
3158 case ICmpInst::ICMP_ULE: return 6; // 110
3159 case ICmpInst::ICMP_SLE: return 6; // 110
3160 // True -> 7
3161 default:
3162 assert(0 && "Invalid ICmp predicate!");
3163 return 0;
3164 }
3165}
3166
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003167/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3168/// predicate into a three bit mask. It also returns whether it is an ordered
3169/// predicate by reference.
3170static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3171 isOrdered = false;
3172 switch (CC) {
3173 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3174 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003175 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3176 case FCmpInst::FCMP_UGT: return 1; // 001
3177 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3178 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003179 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3180 case FCmpInst::FCMP_UGE: return 3; // 011
3181 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3182 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003183 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3184 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003185 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3186 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003187 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003188 default:
3189 // Not expecting FCMP_FALSE and FCMP_TRUE;
3190 assert(0 && "Unexpected FCmp predicate!");
3191 return 0;
3192 }
3193}
3194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195/// getICmpValue - This is the complement of getICmpCode, which turns an
3196/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003197/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003198/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3200 switch (code) {
3201 default: assert(0 && "Illegal ICmp code!");
3202 case 0: return ConstantInt::getFalse();
3203 case 1:
3204 if (sign)
3205 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3206 else
3207 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3208 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3209 case 3:
3210 if (sign)
3211 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3212 else
3213 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3214 case 4:
3215 if (sign)
3216 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3217 else
3218 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3219 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3220 case 6:
3221 if (sign)
3222 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3223 else
3224 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3225 case 7: return ConstantInt::getTrue();
3226 }
3227}
3228
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003229/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3230/// opcode and two operands into either a FCmp instruction. isordered is passed
3231/// in to determine which kind of predicate to use in the new fcmp instruction.
3232static Value *getFCmpValue(bool isordered, unsigned code,
3233 Value *LHS, Value *RHS) {
3234 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003235 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003236 case 0:
3237 if (isordered)
3238 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3239 else
3240 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3241 case 1:
3242 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003243 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3244 else
3245 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003246 case 2:
3247 if (isordered)
3248 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3249 else
3250 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003251 case 3:
3252 if (isordered)
3253 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3254 else
3255 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3256 case 4:
3257 if (isordered)
3258 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3259 else
3260 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3261 case 5:
3262 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003263 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3264 else
3265 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3266 case 6:
3267 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003268 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3269 else
3270 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003271 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003272 }
3273}
3274
Chris Lattner2972b822008-11-16 04:55:20 +00003275/// PredicatesFoldable - Return true if both predicates match sign or if at
3276/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003277static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3278 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003279 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3280 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003281}
3282
3283namespace {
3284// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3285struct FoldICmpLogical {
3286 InstCombiner &IC;
3287 Value *LHS, *RHS;
3288 ICmpInst::Predicate pred;
3289 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3290 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3291 pred(ICI->getPredicate()) {}
3292 bool shouldApply(Value *V) const {
3293 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3294 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003295 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3296 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003297 return false;
3298 }
3299 Instruction *apply(Instruction &Log) const {
3300 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3301 if (ICI->getOperand(0) != LHS) {
3302 assert(ICI->getOperand(1) == LHS);
3303 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3304 }
3305
3306 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3307 unsigned LHSCode = getICmpCode(ICI);
3308 unsigned RHSCode = getICmpCode(RHSICI);
3309 unsigned Code;
3310 switch (Log.getOpcode()) {
3311 case Instruction::And: Code = LHSCode & RHSCode; break;
3312 case Instruction::Or: Code = LHSCode | RHSCode; break;
3313 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3314 default: assert(0 && "Illegal logical opcode!"); return 0;
3315 }
3316
3317 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3318 ICmpInst::isSignedPredicate(ICI->getPredicate());
3319
3320 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3321 if (Instruction *I = dyn_cast<Instruction>(RV))
3322 return I;
3323 // Otherwise, it's a constant boolean value...
3324 return IC.ReplaceInstUsesWith(Log, RV);
3325 }
3326};
3327} // end anonymous namespace
3328
3329// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3330// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3331// guaranteed to be a binary operator.
3332Instruction *InstCombiner::OptAndOp(Instruction *Op,
3333 ConstantInt *OpRHS,
3334 ConstantInt *AndRHS,
3335 BinaryOperator &TheAnd) {
3336 Value *X = Op->getOperand(0);
3337 Constant *Together = 0;
3338 if (!Op->isShift())
3339 Together = And(AndRHS, OpRHS);
3340
3341 switch (Op->getOpcode()) {
3342 case Instruction::Xor:
3343 if (Op->hasOneUse()) {
3344 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003345 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003346 InsertNewInstBefore(And, TheAnd);
3347 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003348 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003349 }
3350 break;
3351 case Instruction::Or:
3352 if (Together == AndRHS) // (X | C) & C --> C
3353 return ReplaceInstUsesWith(TheAnd, AndRHS);
3354
3355 if (Op->hasOneUse() && Together != OpRHS) {
3356 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 InsertNewInstBefore(Or, TheAnd);
3359 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003360 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003361 }
3362 break;
3363 case Instruction::Add:
3364 if (Op->hasOneUse()) {
3365 // Adding a one to a single bit bit-field should be turned into an XOR
3366 // of the bit. First thing to check is to see if this AND is with a
3367 // single bit constant.
3368 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3369
3370 // If there is only one bit set...
3371 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3372 // Ok, at this point, we know that we are masking the result of the
3373 // ADD down to exactly one bit. If the constant we are adding has
3374 // no bits set below this bit, then we can eliminate the ADD.
3375 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3376
3377 // Check to see if any bits below the one bit set in AndRHSV are set.
3378 if ((AddRHS & (AndRHSV-1)) == 0) {
3379 // If not, the only thing that can effect the output of the AND is
3380 // the bit specified by AndRHSV. If that bit is set, the effect of
3381 // the XOR is to toggle the bit. If it is clear, then the ADD has
3382 // no effect.
3383 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3384 TheAnd.setOperand(0, X);
3385 return &TheAnd;
3386 } else {
3387 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003388 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003389 InsertNewInstBefore(NewAnd, TheAnd);
3390 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003391 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003392 }
3393 }
3394 }
3395 }
3396 break;
3397
3398 case Instruction::Shl: {
3399 // We know that the AND will not produce any of the bits shifted in, so if
3400 // the anded constant includes them, clear them now!
3401 //
3402 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3403 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3404 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3405 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3406
3407 if (CI->getValue() == ShlMask) {
3408 // Masking out bits that the shift already masks
3409 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3410 } else if (CI != AndRHS) { // Reducing bits set in and.
3411 TheAnd.setOperand(1, CI);
3412 return &TheAnd;
3413 }
3414 break;
3415 }
3416 case Instruction::LShr:
3417 {
3418 // We know that the AND will not produce any of the bits shifted in, so if
3419 // the anded constant includes them, clear them now! This only applies to
3420 // unsigned shifts, because a signed shr may bring in set bits!
3421 //
3422 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3423 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3424 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3425 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3426
3427 if (CI->getValue() == ShrMask) {
3428 // Masking out bits that the shift already masks.
3429 return ReplaceInstUsesWith(TheAnd, Op);
3430 } else if (CI != AndRHS) {
3431 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3432 return &TheAnd;
3433 }
3434 break;
3435 }
3436 case Instruction::AShr:
3437 // Signed shr.
3438 // See if this is shifting in some sign extension, then masking it out
3439 // with an and.
3440 if (Op->hasOneUse()) {
3441 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3442 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3443 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3444 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3445 if (C == AndRHS) { // Masking out bits shifted in.
3446 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3447 // Make the argument unsigned.
3448 Value *ShVal = Op->getOperand(0);
3449 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003450 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003451 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003452 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453 }
3454 }
3455 break;
3456 }
3457 return 0;
3458}
3459
3460
3461/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3462/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3463/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3464/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3465/// insert new instructions.
3466Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3467 bool isSigned, bool Inside,
3468 Instruction &IB) {
3469 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3470 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3471 "Lo is not <= Hi in range emission code!");
3472
3473 if (Inside) {
3474 if (Lo == Hi) // Trivially false.
3475 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3476
3477 // V >= Min && V < Hi --> V < Hi
3478 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3479 ICmpInst::Predicate pred = (isSigned ?
3480 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3481 return new ICmpInst(pred, V, Hi);
3482 }
3483
3484 // Emit V-Lo <u Hi-Lo
3485 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003486 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003487 InsertNewInstBefore(Add, IB);
3488 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3489 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3490 }
3491
3492 if (Lo == Hi) // Trivially true.
3493 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3494
3495 // V < Min || V >= Hi -> V > Hi-1
3496 Hi = SubOne(cast<ConstantInt>(Hi));
3497 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3498 ICmpInst::Predicate pred = (isSigned ?
3499 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3500 return new ICmpInst(pred, V, Hi);
3501 }
3502
3503 // Emit V-Lo >u Hi-1-Lo
3504 // Note that Hi has already had one subtracted from it, above.
3505 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003506 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003507 InsertNewInstBefore(Add, IB);
3508 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3509 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3510}
3511
3512// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3513// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3514// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3515// not, since all 1s are not contiguous.
3516static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3517 const APInt& V = Val->getValue();
3518 uint32_t BitWidth = Val->getType()->getBitWidth();
3519 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3520
3521 // look for the first zero bit after the run of ones
3522 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3523 // look for the first non-zero bit
3524 ME = V.getActiveBits();
3525 return true;
3526}
3527
3528/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3529/// where isSub determines whether the operator is a sub. If we can fold one of
3530/// the following xforms:
3531///
3532/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3533/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3534/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3535///
3536/// return (A +/- B).
3537///
3538Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3539 ConstantInt *Mask, bool isSub,
3540 Instruction &I) {
3541 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3542 if (!LHSI || LHSI->getNumOperands() != 2 ||
3543 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3544
3545 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3546
3547 switch (LHSI->getOpcode()) {
3548 default: return 0;
3549 case Instruction::And:
3550 if (And(N, Mask) == Mask) {
3551 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3552 if ((Mask->getValue().countLeadingZeros() +
3553 Mask->getValue().countPopulation()) ==
3554 Mask->getValue().getBitWidth())
3555 break;
3556
3557 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3558 // part, we don't need any explicit masks to take them out of A. If that
3559 // is all N is, ignore it.
3560 uint32_t MB = 0, ME = 0;
3561 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3562 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3563 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3564 if (MaskedValueIsZero(RHS, Mask))
3565 break;
3566 }
3567 }
3568 return 0;
3569 case Instruction::Or:
3570 case Instruction::Xor:
3571 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3572 if ((Mask->getValue().countLeadingZeros() +
3573 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3574 && And(N, Mask)->isZero())
3575 break;
3576 return 0;
3577 }
3578
3579 Instruction *New;
3580 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003581 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003582 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003583 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003584 return InsertNewInstBefore(New, I);
3585}
3586
Chris Lattner0631ea72008-11-16 05:06:21 +00003587/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3588Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3589 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003590 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003591 ConstantInt *LHSCst, *RHSCst;
3592 ICmpInst::Predicate LHSCC, RHSCC;
3593
Chris Lattnerf3803482008-11-16 05:10:52 +00003594 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003595 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003596 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003597 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003598
3599 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3600 // where C is a power of 2
3601 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3602 LHSCst->getValue().isPowerOf2()) {
3603 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3604 InsertNewInstBefore(NewOr, I);
3605 return new ICmpInst(LHSCC, NewOr, LHSCst);
3606 }
3607
3608 // From here on, we only handle:
3609 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3610 if (Val != Val2) return 0;
3611
Chris Lattner0631ea72008-11-16 05:06:21 +00003612 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3613 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3614 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3615 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3616 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3617 return 0;
3618
3619 // We can't fold (ugt x, C) & (sgt x, C2).
3620 if (!PredicatesFoldable(LHSCC, RHSCC))
3621 return 0;
3622
3623 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003624 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003625 if (ICmpInst::isSignedPredicate(LHSCC) ||
3626 (ICmpInst::isEquality(LHSCC) &&
3627 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003628 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003629 else
Chris Lattner665298f2008-11-16 05:14:43 +00003630 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3631
3632 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003633 std::swap(LHS, RHS);
3634 std::swap(LHSCst, RHSCst);
3635 std::swap(LHSCC, RHSCC);
3636 }
3637
3638 // At this point, we know we have have two icmp instructions
3639 // comparing a value against two constants and and'ing the result
3640 // together. Because of the above check, we know that we only have
3641 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3642 // (from the FoldICmpLogical check above), that the two constants
3643 // are not equal and that the larger constant is on the RHS
3644 assert(LHSCst != RHSCst && "Compares not folded above?");
3645
3646 switch (LHSCC) {
3647 default: assert(0 && "Unknown integer condition code!");
3648 case ICmpInst::ICMP_EQ:
3649 switch (RHSCC) {
3650 default: assert(0 && "Unknown integer condition code!");
3651 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3652 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3653 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3654 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3655 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3656 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3657 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3658 return ReplaceInstUsesWith(I, LHS);
3659 }
3660 case ICmpInst::ICMP_NE:
3661 switch (RHSCC) {
3662 default: assert(0 && "Unknown integer condition code!");
3663 case ICmpInst::ICMP_ULT:
3664 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3665 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3666 break; // (X != 13 & X u< 15) -> no change
3667 case ICmpInst::ICMP_SLT:
3668 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3669 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3670 break; // (X != 13 & X s< 15) -> no change
3671 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3672 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3673 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3674 return ReplaceInstUsesWith(I, RHS);
3675 case ICmpInst::ICMP_NE:
3676 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3677 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3678 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3679 Val->getName()+".off");
3680 InsertNewInstBefore(Add, I);
3681 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3682 ConstantInt::get(Add->getType(), 1));
3683 }
3684 break; // (X != 13 & X != 15) -> no change
3685 }
3686 break;
3687 case ICmpInst::ICMP_ULT:
3688 switch (RHSCC) {
3689 default: assert(0 && "Unknown integer condition code!");
3690 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3691 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3692 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3693 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3694 break;
3695 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3696 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3697 return ReplaceInstUsesWith(I, LHS);
3698 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3699 break;
3700 }
3701 break;
3702 case ICmpInst::ICMP_SLT:
3703 switch (RHSCC) {
3704 default: assert(0 && "Unknown integer condition code!");
3705 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3706 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3707 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3708 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3709 break;
3710 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3711 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3712 return ReplaceInstUsesWith(I, LHS);
3713 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3714 break;
3715 }
3716 break;
3717 case ICmpInst::ICMP_UGT:
3718 switch (RHSCC) {
3719 default: assert(0 && "Unknown integer condition code!");
3720 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3721 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3722 return ReplaceInstUsesWith(I, RHS);
3723 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3724 break;
3725 case ICmpInst::ICMP_NE:
3726 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3727 return new ICmpInst(LHSCC, Val, RHSCst);
3728 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003729 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003730 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3731 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3732 break;
3733 }
3734 break;
3735 case ICmpInst::ICMP_SGT:
3736 switch (RHSCC) {
3737 default: assert(0 && "Unknown integer condition code!");
3738 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3739 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3740 return ReplaceInstUsesWith(I, RHS);
3741 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3742 break;
3743 case ICmpInst::ICMP_NE:
3744 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3745 return new ICmpInst(LHSCC, Val, RHSCst);
3746 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003747 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003748 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3749 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3750 break;
3751 }
3752 break;
3753 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003754
3755 return 0;
3756}
3757
3758
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3760 bool Changed = SimplifyCommutative(I);
3761 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3762
3763 if (isa<UndefValue>(Op1)) // X & undef -> 0
3764 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3765
3766 // and X, X = X
3767 if (Op0 == Op1)
3768 return ReplaceInstUsesWith(I, Op1);
3769
3770 // See if we can simplify any instructions used by the instruction whose sole
3771 // purpose is to compute bits we don't care about.
3772 if (!isa<VectorType>(I.getType())) {
3773 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3774 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3775 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3776 KnownZero, KnownOne))
3777 return &I;
3778 } else {
3779 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3780 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3781 return ReplaceInstUsesWith(I, I.getOperand(0));
3782 } else if (isa<ConstantAggregateZero>(Op1)) {
3783 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3784 }
3785 }
3786
3787 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3788 const APInt& AndRHSMask = AndRHS->getValue();
3789 APInt NotAndRHS(~AndRHSMask);
3790
3791 // Optimize a variety of ((val OP C1) & C2) combinations...
3792 if (isa<BinaryOperator>(Op0)) {
3793 Instruction *Op0I = cast<Instruction>(Op0);
3794 Value *Op0LHS = Op0I->getOperand(0);
3795 Value *Op0RHS = Op0I->getOperand(1);
3796 switch (Op0I->getOpcode()) {
3797 case Instruction::Xor:
3798 case Instruction::Or:
3799 // If the mask is only needed on one incoming arm, push it up.
3800 if (Op0I->hasOneUse()) {
3801 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3802 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003803 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003804 Op0RHS->getName()+".masked");
3805 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003806 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003807 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3808 }
3809 if (!isa<Constant>(Op0RHS) &&
3810 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3811 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003812 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813 Op0LHS->getName()+".masked");
3814 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003815 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3817 }
3818 }
3819
3820 break;
3821 case Instruction::Add:
3822 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3823 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3824 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3825 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003826 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003827 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003828 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003829 break;
3830
3831 case Instruction::Sub:
3832 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3833 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3834 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3835 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003836 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003837
Nick Lewyckya349ba42008-07-10 05:51:40 +00003838 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3839 // has 1's for all bits that the subtraction with A might affect.
3840 if (Op0I->hasOneUse()) {
3841 uint32_t BitWidth = AndRHSMask.getBitWidth();
3842 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3843 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3844
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003845 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003846 if (!(A && A->isZero()) && // avoid infinite recursion.
3847 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003848 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3849 InsertNewInstBefore(NewNeg, I);
3850 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3851 }
3852 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003853 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003854
3855 case Instruction::Shl:
3856 case Instruction::LShr:
3857 // (1 << x) & 1 --> zext(x == 0)
3858 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003859 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003860 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3861 Constant::getNullValue(I.getType()));
3862 InsertNewInstBefore(NewICmp, I);
3863 return new ZExtInst(NewICmp, I.getType());
3864 }
3865 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 }
3867
3868 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3869 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3870 return Res;
3871 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3872 // If this is an integer truncation or change from signed-to-unsigned, and
3873 // if the source is an and/or with immediate, transform it. This
3874 // frequently occurs for bitfield accesses.
3875 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3876 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3877 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003878 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003879 if (CastOp->getOpcode() == Instruction::And) {
3880 // Change: and (cast (and X, C1) to T), C2
3881 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3882 // This will fold the two constants together, which may allow
3883 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003884 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003885 CastOp->getOperand(0), I.getType(),
3886 CastOp->getName()+".shrunk");
3887 NewCast = InsertNewInstBefore(NewCast, I);
3888 // trunc_or_bitcast(C1)&C2
3889 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3890 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003891 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 } else if (CastOp->getOpcode() == Instruction::Or) {
3893 // Change: and (cast (or X, C1) to T), C2
3894 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3895 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3896 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3897 return ReplaceInstUsesWith(I, AndRHS);
3898 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003899 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003900 }
3901 }
3902
3903 // Try to fold constant and into select arguments.
3904 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3905 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3906 return R;
3907 if (isa<PHINode>(Op0))
3908 if (Instruction *NV = FoldOpIntoPhi(I))
3909 return NV;
3910 }
3911
3912 Value *Op0NotVal = dyn_castNotVal(Op0);
3913 Value *Op1NotVal = dyn_castNotVal(Op1);
3914
3915 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3916 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3917
3918 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3919 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003920 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003921 I.getName()+".demorgan");
3922 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003923 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003924 }
3925
3926 {
3927 Value *A = 0, *B = 0, *C = 0, *D = 0;
3928 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3929 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3930 return ReplaceInstUsesWith(I, Op1);
3931
3932 // (A|B) & ~(A&B) -> A^B
3933 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3934 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003935 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003936 }
3937 }
3938
3939 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3940 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3941 return ReplaceInstUsesWith(I, Op0);
3942
3943 // ~(A&B) & (A|B) -> A^B
3944 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3945 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003946 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003947 }
3948 }
3949
3950 if (Op0->hasOneUse() &&
3951 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3952 if (A == Op1) { // (A^B)&A -> A&(A^B)
3953 I.swapOperands(); // Simplify below
3954 std::swap(Op0, Op1);
3955 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3956 cast<BinaryOperator>(Op0)->swapOperands();
3957 I.swapOperands(); // Simplify below
3958 std::swap(Op0, Op1);
3959 }
3960 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003961
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003962 if (Op1->hasOneUse() &&
3963 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3964 if (B == Op0) { // B&(A^B) -> B&(B^A)
3965 cast<BinaryOperator>(Op1)->swapOperands();
3966 std::swap(A, B);
3967 }
3968 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003969 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003970 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003971 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003972 }
3973 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003974
3975 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003976 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3977 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3978 return BinaryOperator::CreateAnd(A, Op1);
3979 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3980 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3981 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003982 }
3983
3984 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3985 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3986 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3987 return R;
3988
Chris Lattner0631ea72008-11-16 05:06:21 +00003989 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3990 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
3991 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003992 }
3993
3994 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3995 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3996 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3997 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3998 const Type *SrcTy = Op0C->getOperand(0)->getType();
3999 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4000 // Only do this if the casts both really cause code to be generated.
4001 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4002 I.getType(), TD) &&
4003 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4004 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004005 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004006 Op1C->getOperand(0),
4007 I.getName());
4008 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004009 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004010 }
4011 }
4012
4013 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4014 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4015 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4016 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4017 SI0->getOperand(1) == SI1->getOperand(1) &&
4018 (SI0->hasOneUse() || SI1->hasOneUse())) {
4019 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004020 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004021 SI1->getOperand(0),
4022 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004023 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004024 SI1->getOperand(1));
4025 }
4026 }
4027
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004028 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004029 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4030 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4031 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004032 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4033 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004034 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4035 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4036 // If either of the constants are nans, then the whole thing returns
4037 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004038 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004039 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4040 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4041 RHS->getOperand(0));
4042 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004043 } else {
4044 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4045 FCmpInst::Predicate Op0CC, Op1CC;
4046 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4047 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004048 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4049 // Swap RHS operands to match LHS.
4050 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4051 std::swap(Op1LHS, Op1RHS);
4052 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004053 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4054 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4055 if (Op0CC == Op1CC)
4056 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4057 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4058 Op1CC == FCmpInst::FCMP_FALSE)
4059 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4060 else if (Op0CC == FCmpInst::FCMP_TRUE)
4061 return ReplaceInstUsesWith(I, Op1);
4062 else if (Op1CC == FCmpInst::FCMP_TRUE)
4063 return ReplaceInstUsesWith(I, Op0);
4064 bool Op0Ordered;
4065 bool Op1Ordered;
4066 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4067 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4068 if (Op1Pred == 0) {
4069 std::swap(Op0, Op1);
4070 std::swap(Op0Pred, Op1Pred);
4071 std::swap(Op0Ordered, Op1Ordered);
4072 }
4073 if (Op0Pred == 0) {
4074 // uno && ueq -> uno && (uno || eq) -> ueq
4075 // ord && olt -> ord && (ord && lt) -> olt
4076 if (Op0Ordered == Op1Ordered)
4077 return ReplaceInstUsesWith(I, Op1);
4078 // uno && oeq -> uno && (ord && eq) -> false
4079 // uno && ord -> false
4080 if (!Op0Ordered)
4081 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4082 // ord && ueq -> ord && (uno || eq) -> oeq
4083 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4084 Op0LHS, Op0RHS));
4085 }
4086 }
4087 }
4088 }
Chris Lattner91882432007-10-24 05:38:08 +00004089 }
4090 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004091
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004092 return Changed ? &I : 0;
4093}
4094
Chris Lattner567f5112008-10-05 02:13:19 +00004095/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4096/// capable of providing pieces of a bswap. The subexpression provides pieces
4097/// of a bswap if it is proven that each of the non-zero bytes in the output of
4098/// the expression came from the corresponding "byte swapped" byte in some other
4099/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4100/// we know that the expression deposits the low byte of %X into the high byte
4101/// of the bswap result and that all other bytes are zero. This expression is
4102/// accepted, the high byte of ByteValues is set to X to indicate a correct
4103/// match.
4104///
4105/// This function returns true if the match was unsuccessful and false if so.
4106/// On entry to the function the "OverallLeftShift" is a signed integer value
4107/// indicating the number of bytes that the subexpression is later shifted. For
4108/// example, if the expression is later right shifted by 16 bits, the
4109/// OverallLeftShift value would be -2 on entry. This is used to specify which
4110/// byte of ByteValues is actually being set.
4111///
4112/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4113/// byte is masked to zero by a user. For example, in (X & 255), X will be
4114/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4115/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4116/// always in the local (OverallLeftShift) coordinate space.
4117///
4118static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4119 SmallVector<Value*, 8> &ByteValues) {
4120 if (Instruction *I = dyn_cast<Instruction>(V)) {
4121 // If this is an or instruction, it may be an inner node of the bswap.
4122 if (I->getOpcode() == Instruction::Or) {
4123 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4124 ByteValues) ||
4125 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4126 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004127 }
Chris Lattner567f5112008-10-05 02:13:19 +00004128
4129 // If this is a logical shift by a constant multiple of 8, recurse with
4130 // OverallLeftShift and ByteMask adjusted.
4131 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4132 unsigned ShAmt =
4133 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4134 // Ensure the shift amount is defined and of a byte value.
4135 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4136 return true;
4137
4138 unsigned ByteShift = ShAmt >> 3;
4139 if (I->getOpcode() == Instruction::Shl) {
4140 // X << 2 -> collect(X, +2)
4141 OverallLeftShift += ByteShift;
4142 ByteMask >>= ByteShift;
4143 } else {
4144 // X >>u 2 -> collect(X, -2)
4145 OverallLeftShift -= ByteShift;
4146 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004147 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004148 }
4149
4150 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4151 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4152
4153 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4154 ByteValues);
4155 }
4156
4157 // If this is a logical 'and' with a mask that clears bytes, clear the
4158 // corresponding bytes in ByteMask.
4159 if (I->getOpcode() == Instruction::And &&
4160 isa<ConstantInt>(I->getOperand(1))) {
4161 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4162 unsigned NumBytes = ByteValues.size();
4163 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4164 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4165
4166 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4167 // If this byte is masked out by a later operation, we don't care what
4168 // the and mask is.
4169 if ((ByteMask & (1 << i)) == 0)
4170 continue;
4171
4172 // If the AndMask is all zeros for this byte, clear the bit.
4173 APInt MaskB = AndMask & Byte;
4174 if (MaskB == 0) {
4175 ByteMask &= ~(1U << i);
4176 continue;
4177 }
4178
4179 // If the AndMask is not all ones for this byte, it's not a bytezap.
4180 if (MaskB != Byte)
4181 return true;
4182
4183 // Otherwise, this byte is kept.
4184 }
4185
4186 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4187 ByteValues);
4188 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004189 }
4190
Chris Lattner567f5112008-10-05 02:13:19 +00004191 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4192 // the input value to the bswap. Some observations: 1) if more than one byte
4193 // is demanded from this input, then it could not be successfully assembled
4194 // into a byteswap. At least one of the two bytes would not be aligned with
4195 // their ultimate destination.
4196 if (!isPowerOf2_32(ByteMask)) return true;
4197 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004198
Chris Lattner567f5112008-10-05 02:13:19 +00004199 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4200 // is demanded, it needs to go into byte 0 of the result. This means that the
4201 // byte needs to be shifted until it lands in the right byte bucket. The
4202 // shift amount depends on the position: if the byte is coming from the high
4203 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4204 // low part, it must be shifted left.
4205 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4206 if (InputByteNo < ByteValues.size()/2) {
4207 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4208 return true;
4209 } else {
4210 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4211 return true;
4212 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004213
4214 // If the destination byte value is already defined, the values are or'd
4215 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004216 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004217 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004218 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004219 return false;
4220}
4221
4222/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4223/// If so, insert the new bswap intrinsic and return it.
4224Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4225 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004226 if (!ITy || ITy->getBitWidth() % 16 ||
4227 // ByteMask only allows up to 32-byte values.
4228 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4230
4231 /// ByteValues - For each byte of the result, we keep track of which value
4232 /// defines each byte.
4233 SmallVector<Value*, 8> ByteValues;
4234 ByteValues.resize(ITy->getBitWidth()/8);
4235
4236 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004237 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4238 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004239 return 0;
4240
4241 // Check to see if all of the bytes come from the same value.
4242 Value *V = ByteValues[0];
4243 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4244
4245 // Check to make sure that all of the bytes come from the same value.
4246 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4247 if (ByteValues[i] != V)
4248 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004249 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004250 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004251 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004252 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004253}
4254
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004255/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4256/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4257/// we can simplify this expression to "cond ? C : D or B".
4258static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4259 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004260 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004261 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004262 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004263 return 0;
4264
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004265 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004266 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004267 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004268 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004269 return SelectInst::Create(Cond, C, B);
4270 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004271 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004272 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004273 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004274 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004275 return 0;
4276}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004277
Chris Lattner0c678e52008-11-16 05:20:07 +00004278/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4279Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4280 ICmpInst *LHS, ICmpInst *RHS) {
4281 Value *Val, *Val2;
4282 ConstantInt *LHSCst, *RHSCst;
4283 ICmpInst::Predicate LHSCC, RHSCC;
4284
4285 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4286 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4287 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4288 return 0;
4289
4290 // From here on, we only handle:
4291 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4292 if (Val != Val2) return 0;
4293
4294 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4295 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4296 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4297 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4298 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4299 return 0;
4300
4301 // We can't fold (ugt x, C) | (sgt x, C2).
4302 if (!PredicatesFoldable(LHSCC, RHSCC))
4303 return 0;
4304
4305 // Ensure that the larger constant is on the RHS.
4306 bool ShouldSwap;
4307 if (ICmpInst::isSignedPredicate(LHSCC) ||
4308 (ICmpInst::isEquality(LHSCC) &&
4309 ICmpInst::isSignedPredicate(RHSCC)))
4310 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4311 else
4312 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4313
4314 if (ShouldSwap) {
4315 std::swap(LHS, RHS);
4316 std::swap(LHSCst, RHSCst);
4317 std::swap(LHSCC, RHSCC);
4318 }
4319
4320 // At this point, we know we have have two icmp instructions
4321 // comparing a value against two constants and or'ing the result
4322 // together. Because of the above check, we know that we only have
4323 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4324 // FoldICmpLogical check above), that the two constants are not
4325 // equal.
4326 assert(LHSCst != RHSCst && "Compares not folded above?");
4327
4328 switch (LHSCC) {
4329 default: assert(0 && "Unknown integer condition code!");
4330 case ICmpInst::ICMP_EQ:
4331 switch (RHSCC) {
4332 default: assert(0 && "Unknown integer condition code!");
4333 case ICmpInst::ICMP_EQ:
4334 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4335 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4336 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4337 Val->getName()+".off");
4338 InsertNewInstBefore(Add, I);
4339 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4340 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4341 }
4342 break; // (X == 13 | X == 15) -> no change
4343 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4344 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4345 break;
4346 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4347 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4348 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4349 return ReplaceInstUsesWith(I, RHS);
4350 }
4351 break;
4352 case ICmpInst::ICMP_NE:
4353 switch (RHSCC) {
4354 default: assert(0 && "Unknown integer condition code!");
4355 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4356 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4357 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4358 return ReplaceInstUsesWith(I, LHS);
4359 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4360 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4361 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4362 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4363 }
4364 break;
4365 case ICmpInst::ICMP_ULT:
4366 switch (RHSCC) {
4367 default: assert(0 && "Unknown integer condition code!");
4368 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4369 break;
4370 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4371 // If RHSCst is [us]MAXINT, it is always false. Not handling
4372 // this can cause overflow.
4373 if (RHSCst->isMaxValue(false))
4374 return ReplaceInstUsesWith(I, LHS);
4375 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4376 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4377 break;
4378 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4379 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4380 return ReplaceInstUsesWith(I, RHS);
4381 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4382 break;
4383 }
4384 break;
4385 case ICmpInst::ICMP_SLT:
4386 switch (RHSCC) {
4387 default: assert(0 && "Unknown integer condition code!");
4388 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4389 break;
4390 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4391 // If RHSCst is [us]MAXINT, it is always false. Not handling
4392 // this can cause overflow.
4393 if (RHSCst->isMaxValue(true))
4394 return ReplaceInstUsesWith(I, LHS);
4395 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4396 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4397 break;
4398 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4399 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4400 return ReplaceInstUsesWith(I, RHS);
4401 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4402 break;
4403 }
4404 break;
4405 case ICmpInst::ICMP_UGT:
4406 switch (RHSCC) {
4407 default: assert(0 && "Unknown integer condition code!");
4408 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4409 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4410 return ReplaceInstUsesWith(I, LHS);
4411 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4412 break;
4413 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4414 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4415 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4416 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4417 break;
4418 }
4419 break;
4420 case ICmpInst::ICMP_SGT:
4421 switch (RHSCC) {
4422 default: assert(0 && "Unknown integer condition code!");
4423 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4424 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4425 return ReplaceInstUsesWith(I, LHS);
4426 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4427 break;
4428 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4429 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4430 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4431 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4432 break;
4433 }
4434 break;
4435 }
4436 return 0;
4437}
4438
Bill Wendlingdae376a2008-12-01 08:23:25 +00004439/// FoldOrWithConstants - This helper function folds:
4440///
Bill Wendling9912f712008-12-01 08:32:40 +00004441/// ((A | B) & 1) | (B & -2)
Bill Wendlingdae376a2008-12-01 08:23:25 +00004442///
4443/// into:
4444///
Bill Wendling9912f712008-12-01 08:32:40 +00004445/// (A & 1) | B
4446///
4447/// The constants aren't important. Only that they don't overlap. (I.e., the XOR
4448/// of the two constants is "all ones".)
4449Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
Bill Wendlingdae376a2008-12-01 08:23:25 +00004450 Value *A, Value *B, Value *C) {
Bill Wendling9912f712008-12-01 08:32:40 +00004451 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C)) {
4452 Value *V1 = 0, *C2 = 0;
4453 if (match(Op, m_And(m_Value(V1), m_Value(C2)))) {
4454 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004455
Bill Wendling9912f712008-12-01 08:32:40 +00004456 if (!CI2) {
4457 std::swap(V1, C2);
4458 CI2 = dyn_cast<ConstantInt>(C2);
4459 }
Bill Wendlingdae376a2008-12-01 08:23:25 +00004460
Bill Wendling9912f712008-12-01 08:32:40 +00004461 if (CI2) {
4462 APInt Xor = CI1->getValue() ^ CI2->getValue();
4463 if (Xor.isAllOnesValue()) {
Bill Wendlingdae376a2008-12-01 08:23:25 +00004464 if (V1 == B) {
4465 Instruction *NewOp =
Bill Wendling9912f712008-12-01 08:32:40 +00004466 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI1), I);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004467 return BinaryOperator::CreateOr(NewOp, B);
4468 }
4469 if (V1 == A) {
4470 Instruction *NewOp =
Bill Wendling9912f712008-12-01 08:32:40 +00004471 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI1), I);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004472 return BinaryOperator::CreateOr(NewOp, A);
4473 }
Bill Wendlingdae376a2008-12-01 08:23:25 +00004474 }
4475 }
4476 }
4477 }
4478
4479 return 0;
4480}
4481
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4483 bool Changed = SimplifyCommutative(I);
4484 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4485
4486 if (isa<UndefValue>(Op1)) // X | undef -> -1
4487 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4488
4489 // or X, X = X
4490 if (Op0 == Op1)
4491 return ReplaceInstUsesWith(I, Op0);
4492
4493 // See if we can simplify any instructions used by the instruction whose sole
4494 // purpose is to compute bits we don't care about.
4495 if (!isa<VectorType>(I.getType())) {
4496 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4497 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4498 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4499 KnownZero, KnownOne))
4500 return &I;
4501 } else if (isa<ConstantAggregateZero>(Op1)) {
4502 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4503 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4504 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4505 return ReplaceInstUsesWith(I, I.getOperand(1));
4506 }
4507
4508
4509
4510 // or X, -1 == -1
4511 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4512 ConstantInt *C1 = 0; Value *X = 0;
4513 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4514 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004515 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516 InsertNewInstBefore(Or, I);
4517 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004518 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004519 ConstantInt::get(RHS->getValue() | C1->getValue()));
4520 }
4521
4522 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4523 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004524 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004525 InsertNewInstBefore(Or, I);
4526 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004527 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004528 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4529 }
4530
4531 // Try to fold constant and into select arguments.
4532 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4533 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4534 return R;
4535 if (isa<PHINode>(Op0))
4536 if (Instruction *NV = FoldOpIntoPhi(I))
4537 return NV;
4538 }
4539
4540 Value *A = 0, *B = 0;
4541 ConstantInt *C1 = 0, *C2 = 0;
4542
4543 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4544 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4545 return ReplaceInstUsesWith(I, Op1);
4546 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4547 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4548 return ReplaceInstUsesWith(I, Op0);
4549
4550 // (A | B) | C and A | (B | C) -> bswap if possible.
4551 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4552 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4553 match(Op1, m_Or(m_Value(), m_Value())) ||
4554 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4555 match(Op1, m_Shift(m_Value(), m_Value())))) {
4556 if (Instruction *BSwap = MatchBSwap(I))
4557 return BSwap;
4558 }
4559
4560 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4561 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4562 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004563 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004564 InsertNewInstBefore(NOr, I);
4565 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004566 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004567 }
4568
4569 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4570 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4571 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004572 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004573 InsertNewInstBefore(NOr, I);
4574 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004575 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004576 }
4577
4578 // (A & C)|(B & D)
4579 Value *C = 0, *D = 0;
4580 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4581 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4582 Value *V1 = 0, *V2 = 0, *V3 = 0;
4583 C1 = dyn_cast<ConstantInt>(C);
4584 C2 = dyn_cast<ConstantInt>(D);
4585 if (C1 && C2) { // (A & C1)|(B & C2)
4586 // If we have: ((V + N) & C1) | (V & C2)
4587 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4588 // replace with V+N.
4589 if (C1->getValue() == ~C2->getValue()) {
4590 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4591 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4592 // Add commutes, try both ways.
4593 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4594 return ReplaceInstUsesWith(I, A);
4595 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4596 return ReplaceInstUsesWith(I, A);
4597 }
4598 // Or commutes, try both ways.
4599 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4600 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4601 // Add commutes, try both ways.
4602 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4603 return ReplaceInstUsesWith(I, B);
4604 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4605 return ReplaceInstUsesWith(I, B);
4606 }
4607 }
4608 V1 = 0; V2 = 0; V3 = 0;
4609 }
4610
4611 // Check to see if we have any common things being and'ed. If so, find the
4612 // terms for V1 & (V2|V3).
4613 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4614 if (A == B) // (A & C)|(A & D) == A & (C|D)
4615 V1 = A, V2 = C, V3 = D;
4616 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4617 V1 = A, V2 = B, V3 = C;
4618 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4619 V1 = C, V2 = A, V3 = D;
4620 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4621 V1 = C, V2 = A, V3 = B;
4622
4623 if (V1) {
4624 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004625 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4626 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004627 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004628 }
Dan Gohman279952c2008-10-28 22:38:57 +00004629
Dan Gohman35b76162008-10-30 20:40:10 +00004630 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004631 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4632 return Match;
4633 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4634 return Match;
4635 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4636 return Match;
4637 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4638 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004639
Bill Wendling22ca8352008-11-30 13:52:49 +00004640 // ((A&~B)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004641 if ((match(C, m_Not(m_Specific(D))) &&
4642 match(B, m_Not(m_Specific(A)))))
4643 return BinaryOperator::CreateXor(A, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004644 // ((~B&A)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004645 if ((match(A, m_Not(m_Specific(D))) &&
4646 match(B, m_Not(m_Specific(C)))))
4647 return BinaryOperator::CreateXor(C, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004648 // ((A&~B)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004649 if ((match(C, m_Not(m_Specific(B))) &&
4650 match(D, m_Not(m_Specific(A)))))
4651 return BinaryOperator::CreateXor(A, B);
Bill Wendling22ca8352008-11-30 13:52:49 +00004652 // ((~B&A)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004653 if ((match(A, m_Not(m_Specific(B))) &&
4654 match(D, m_Not(m_Specific(C)))))
4655 return BinaryOperator::CreateXor(C, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004656 }
4657
4658 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4659 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4660 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4661 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4662 SI0->getOperand(1) == SI1->getOperand(1) &&
4663 (SI0->hasOneUse() || SI1->hasOneUse())) {
4664 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004665 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004666 SI1->getOperand(0),
4667 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004668 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004669 SI1->getOperand(1));
4670 }
4671 }
4672
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004673 // ((A|B)&1)|(B&-2) -> (A&1) | B
4674 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4675 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004676 Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004677 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004678 }
4679 // (B&-2)|((A|B)&1) -> (A&1) | B
4680 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4681 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
Bill Wendling9912f712008-12-01 08:32:40 +00004682 Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
Bill Wendlingdae376a2008-12-01 08:23:25 +00004683 if (Ret) return Ret;
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004684 }
4685
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004686 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4687 if (A == Op1) // ~A | A == -1
4688 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4689 } else {
4690 A = 0;
4691 }
4692 // Note, A is still live here!
4693 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4694 if (Op0 == B)
4695 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4696
4697 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4698 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004699 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004700 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004701 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004702 }
4703 }
4704
4705 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4706 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4707 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4708 return R;
4709
Chris Lattner0c678e52008-11-16 05:20:07 +00004710 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4711 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4712 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004713 }
4714
4715 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004716 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004717 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4718 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004719 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4720 !isa<ICmpInst>(Op1C->getOperand(0))) {
4721 const Type *SrcTy = Op0C->getOperand(0)->getType();
4722 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4723 // Only do this if the casts both really cause code to be
4724 // generated.
4725 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4726 I.getType(), TD) &&
4727 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4728 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004729 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004730 Op1C->getOperand(0),
4731 I.getName());
4732 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004733 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004734 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004735 }
4736 }
Chris Lattner91882432007-10-24 05:38:08 +00004737 }
4738
4739
4740 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4741 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4742 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4743 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004744 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004745 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004746 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4747 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4748 // If either of the constants are nans, then the whole thing returns
4749 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004750 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004751 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4752
4753 // Otherwise, no need to compare the two constants, compare the
4754 // rest.
4755 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4756 RHS->getOperand(0));
4757 }
Evan Cheng72988052008-10-14 18:44:08 +00004758 } else {
4759 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4760 FCmpInst::Predicate Op0CC, Op1CC;
4761 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4762 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4763 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4764 // Swap RHS operands to match LHS.
4765 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4766 std::swap(Op1LHS, Op1RHS);
4767 }
4768 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4769 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4770 if (Op0CC == Op1CC)
4771 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4772 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4773 Op1CC == FCmpInst::FCMP_TRUE)
4774 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4775 else if (Op0CC == FCmpInst::FCMP_FALSE)
4776 return ReplaceInstUsesWith(I, Op1);
4777 else if (Op1CC == FCmpInst::FCMP_FALSE)
4778 return ReplaceInstUsesWith(I, Op0);
4779 bool Op0Ordered;
4780 bool Op1Ordered;
4781 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4782 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4783 if (Op0Ordered == Op1Ordered) {
4784 // If both are ordered or unordered, return a new fcmp with
4785 // or'ed predicates.
4786 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4787 Op0LHS, Op0RHS);
4788 if (Instruction *I = dyn_cast<Instruction>(RV))
4789 return I;
4790 // Otherwise, it's a constant boolean value...
4791 return ReplaceInstUsesWith(I, RV);
4792 }
4793 }
4794 }
4795 }
Chris Lattner91882432007-10-24 05:38:08 +00004796 }
4797 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004798
4799 return Changed ? &I : 0;
4800}
4801
Dan Gohman089efff2008-05-13 00:00:25 +00004802namespace {
4803
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004804// XorSelf - Implements: X ^ X --> 0
4805struct XorSelf {
4806 Value *RHS;
4807 XorSelf(Value *rhs) : RHS(rhs) {}
4808 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4809 Instruction *apply(BinaryOperator &Xor) const {
4810 return &Xor;
4811 }
4812};
4813
Dan Gohman089efff2008-05-13 00:00:25 +00004814}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004815
4816Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4817 bool Changed = SimplifyCommutative(I);
4818 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4819
Evan Chenge5cd8032008-03-25 20:07:13 +00004820 if (isa<UndefValue>(Op1)) {
4821 if (isa<UndefValue>(Op0))
4822 // Handle undef ^ undef -> 0 special case. This is a common
4823 // idiom (misuse).
4824 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004825 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004826 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004827
4828 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4829 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004830 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004831 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4832 }
4833
4834 // See if we can simplify any instructions used by the instruction whose sole
4835 // purpose is to compute bits we don't care about.
4836 if (!isa<VectorType>(I.getType())) {
4837 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4838 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4839 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4840 KnownZero, KnownOne))
4841 return &I;
4842 } else if (isa<ConstantAggregateZero>(Op1)) {
4843 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4844 }
4845
4846 // Is this a ~ operation?
4847 if (Value *NotOp = dyn_castNotVal(&I)) {
4848 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4849 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4850 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4851 if (Op0I->getOpcode() == Instruction::And ||
4852 Op0I->getOpcode() == Instruction::Or) {
4853 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4854 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4855 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004856 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004857 Op0I->getOperand(1)->getName()+".not");
4858 InsertNewInstBefore(NotY, I);
4859 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004860 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004861 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004862 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004863 }
4864 }
4865 }
4866 }
4867
4868
4869 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004870 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4871 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4872 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004873 return new ICmpInst(ICI->getInversePredicate(),
4874 ICI->getOperand(0), ICI->getOperand(1));
4875
Nick Lewycky1405e922007-08-06 20:04:16 +00004876 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4877 return new FCmpInst(FCI->getInversePredicate(),
4878 FCI->getOperand(0), FCI->getOperand(1));
4879 }
4880
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004881 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4882 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4883 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4884 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4885 Instruction::CastOps Opcode = Op0C->getOpcode();
4886 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4887 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4888 Op0C->getDestTy())) {
4889 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4890 CI->getOpcode(), CI->getInversePredicate(),
4891 CI->getOperand(0), CI->getOperand(1)), I);
4892 NewCI->takeName(CI);
4893 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4894 }
4895 }
4896 }
4897 }
4898 }
4899
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004900 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4901 // ~(c-X) == X-c-1 == X+(-c-1)
4902 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4903 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4904 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4905 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4906 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004907 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004908 }
4909
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004910 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004911 if (Op0I->getOpcode() == Instruction::Add) {
4912 // ~(X-c) --> (-c-1)-X
4913 if (RHS->isAllOnesValue()) {
4914 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004915 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004916 ConstantExpr::getSub(NegOp0CI,
4917 ConstantInt::get(I.getType(), 1)),
4918 Op0I->getOperand(0));
4919 } else if (RHS->getValue().isSignBit()) {
4920 // (X + C) ^ signbit -> (X + C + signbit)
4921 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004922 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004923
4924 }
4925 } else if (Op0I->getOpcode() == Instruction::Or) {
4926 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4927 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4928 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4929 // Anything in both C1 and C2 is known to be zero, remove it from
4930 // NewRHS.
4931 Constant *CommonBits = And(Op0CI, RHS);
4932 NewRHS = ConstantExpr::getAnd(NewRHS,
4933 ConstantExpr::getNot(CommonBits));
4934 AddToWorkList(Op0I);
4935 I.setOperand(0, Op0I->getOperand(0));
4936 I.setOperand(1, NewRHS);
4937 return &I;
4938 }
4939 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004940 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004941 }
4942
4943 // Try to fold constant and into select arguments.
4944 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4945 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4946 return R;
4947 if (isa<PHINode>(Op0))
4948 if (Instruction *NV = FoldOpIntoPhi(I))
4949 return NV;
4950 }
4951
4952 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4953 if (X == Op1)
4954 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4955
4956 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4957 if (X == Op0)
4958 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4959
4960
4961 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4962 if (Op1I) {
4963 Value *A, *B;
4964 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4965 if (A == Op0) { // B^(B|A) == (A|B)^B
4966 Op1I->swapOperands();
4967 I.swapOperands();
4968 std::swap(Op0, Op1);
4969 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4970 I.swapOperands(); // Simplified below.
4971 std::swap(Op0, Op1);
4972 }
Chris Lattner3b874082008-11-16 05:38:51 +00004973 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4974 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4975 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4976 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004977 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4978 if (A == Op0) { // A^(A&B) -> A^(B&A)
4979 Op1I->swapOperands();
4980 std::swap(A, B);
4981 }
4982 if (B == Op0) { // A^(B&A) -> (B&A)^A
4983 I.swapOperands(); // Simplified below.
4984 std::swap(Op0, Op1);
4985 }
4986 }
4987 }
4988
4989 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4990 if (Op0I) {
4991 Value *A, *B;
4992 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4993 if (A == Op1) // (B|A)^B == (A|B)^B
4994 std::swap(A, B);
4995 if (B == Op1) { // (A|B)^B == A & ~B
4996 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00004997 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
4998 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004999 }
Chris Lattner3b874082008-11-16 05:38:51 +00005000 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
5001 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5002 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5003 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005004 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
5005 if (A == Op1) // (A&B)^A -> (B&A)^A
5006 std::swap(A, B);
5007 if (B == Op1 && // (B&A)^A == ~B & A
5008 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5009 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00005010 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5011 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005012 }
5013 }
5014 }
5015
5016 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5017 if (Op0I && Op1I && Op0I->isShift() &&
5018 Op0I->getOpcode() == Op1I->getOpcode() &&
5019 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5020 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5021 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005022 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005023 Op1I->getOperand(0),
5024 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005025 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005026 Op1I->getOperand(1));
5027 }
5028
5029 if (Op0I && Op1I) {
5030 Value *A, *B, *C, *D;
5031 // (A & B)^(A | B) -> A ^ B
5032 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5033 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5034 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005035 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005036 }
5037 // (A | B)^(A & B) -> A ^ B
5038 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5039 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5040 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005041 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005042 }
5043
5044 // (A & B)^(C & D)
5045 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5046 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5047 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5048 // (X & Y)^(X & Y) -> (Y^Z) & X
5049 Value *X = 0, *Y = 0, *Z = 0;
5050 if (A == C)
5051 X = A, Y = B, Z = D;
5052 else if (A == D)
5053 X = A, Y = B, Z = C;
5054 else if (B == C)
5055 X = B, Y = A, Z = D;
5056 else if (B == D)
5057 X = B, Y = A, Z = C;
5058
5059 if (X) {
5060 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005061 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5062 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005063 }
5064 }
5065 }
5066
5067 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5068 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5069 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5070 return R;
5071
5072 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005073 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005074 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5075 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5076 const Type *SrcTy = Op0C->getOperand(0)->getType();
5077 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5078 // Only do this if the casts both really cause code to be generated.
5079 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5080 I.getType(), TD) &&
5081 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5082 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005083 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084 Op1C->getOperand(0),
5085 I.getName());
5086 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005087 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005088 }
5089 }
Chris Lattner91882432007-10-24 05:38:08 +00005090 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005091
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005092 return Changed ? &I : 0;
5093}
5094
5095/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5096/// overflowed for this type.
5097static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5098 ConstantInt *In2, bool IsSigned = false) {
5099 Result = cast<ConstantInt>(Add(In1, In2));
5100
5101 if (IsSigned)
5102 if (In2->getValue().isNegative())
5103 return Result->getValue().sgt(In1->getValue());
5104 else
5105 return Result->getValue().slt(In1->getValue());
5106 else
5107 return Result->getValue().ult(In1->getValue());
5108}
5109
Dan Gohmanb80d5612008-09-10 23:30:57 +00005110/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5111/// overflowed for this type.
5112static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5113 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005114 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005115
5116 if (IsSigned)
5117 if (In2->getValue().isNegative())
5118 return Result->getValue().slt(In1->getValue());
5119 else
5120 return Result->getValue().sgt(In1->getValue());
5121 else
5122 return Result->getValue().ugt(In1->getValue());
5123}
5124
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005125/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5126/// code necessary to compute the offset from the base pointer (without adding
5127/// in the base pointer). Return the result as a signed integer of intptr size.
5128static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5129 TargetData &TD = IC.getTargetData();
5130 gep_type_iterator GTI = gep_type_begin(GEP);
5131 const Type *IntPtrTy = TD.getIntPtrType();
5132 Value *Result = Constant::getNullValue(IntPtrTy);
5133
5134 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005135 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005136 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5137
Gabor Greif17396002008-06-12 21:37:33 +00005138 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5139 ++i, ++GTI) {
5140 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005141 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005142 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5143 if (OpC->isZero()) continue;
5144
5145 // Handle a struct index, which adds its field offset to the pointer.
5146 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5147 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5148
5149 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5150 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5151 else
5152 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005153 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005154 ConstantInt::get(IntPtrTy, Size),
5155 GEP->getName()+".offs"), I);
5156 continue;
5157 }
5158
5159 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5160 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5161 Scale = ConstantExpr::getMul(OC, Scale);
5162 if (Constant *RC = dyn_cast<Constant>(Result))
5163 Result = ConstantExpr::getAdd(RC, Scale);
5164 else {
5165 // Emit an add instruction.
5166 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005167 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005168 GEP->getName()+".offs"), I);
5169 }
5170 continue;
5171 }
5172 // Convert to correct type.
5173 if (Op->getType() != IntPtrTy) {
5174 if (Constant *OpC = dyn_cast<Constant>(Op))
5175 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5176 else
5177 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5178 Op->getName()+".c"), I);
5179 }
5180 if (Size != 1) {
5181 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5182 if (Constant *OpC = dyn_cast<Constant>(Op))
5183 Op = ConstantExpr::getMul(OpC, Scale);
5184 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005185 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005186 GEP->getName()+".idx"), I);
5187 }
5188
5189 // Emit an add instruction.
5190 if (isa<Constant>(Op) && isa<Constant>(Result))
5191 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5192 cast<Constant>(Result));
5193 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005194 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005195 GEP->getName()+".offs"), I);
5196 }
5197 return Result;
5198}
5199
Chris Lattnereba75862008-04-22 02:53:33 +00005200
5201/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5202/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5203/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5204/// complex, and scales are involved. The above expression would also be legal
5205/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5206/// later form is less amenable to optimization though, and we are allowed to
5207/// generate the first by knowing that pointer arithmetic doesn't overflow.
5208///
5209/// If we can't emit an optimized form for this expression, this returns null.
5210///
5211static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5212 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005213 TargetData &TD = IC.getTargetData();
5214 gep_type_iterator GTI = gep_type_begin(GEP);
5215
5216 // Check to see if this gep only has a single variable index. If so, and if
5217 // any constant indices are a multiple of its scale, then we can compute this
5218 // in terms of the scale of the variable index. For example, if the GEP
5219 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5220 // because the expression will cross zero at the same point.
5221 unsigned i, e = GEP->getNumOperands();
5222 int64_t Offset = 0;
5223 for (i = 1; i != e; ++i, ++GTI) {
5224 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5225 // Compute the aggregate offset of constant indices.
5226 if (CI->isZero()) continue;
5227
5228 // Handle a struct index, which adds its field offset to the pointer.
5229 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5230 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5231 } else {
5232 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5233 Offset += Size*CI->getSExtValue();
5234 }
5235 } else {
5236 // Found our variable index.
5237 break;
5238 }
5239 }
5240
5241 // If there are no variable indices, we must have a constant offset, just
5242 // evaluate it the general way.
5243 if (i == e) return 0;
5244
5245 Value *VariableIdx = GEP->getOperand(i);
5246 // Determine the scale factor of the variable element. For example, this is
5247 // 4 if the variable index is into an array of i32.
5248 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5249
5250 // Verify that there are no other variable indices. If so, emit the hard way.
5251 for (++i, ++GTI; i != e; ++i, ++GTI) {
5252 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5253 if (!CI) return 0;
5254
5255 // Compute the aggregate offset of constant indices.
5256 if (CI->isZero()) continue;
5257
5258 // Handle a struct index, which adds its field offset to the pointer.
5259 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5260 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5261 } else {
5262 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5263 Offset += Size*CI->getSExtValue();
5264 }
5265 }
5266
5267 // Okay, we know we have a single variable index, which must be a
5268 // pointer/array/vector index. If there is no offset, life is simple, return
5269 // the index.
5270 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5271 if (Offset == 0) {
5272 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5273 // we don't need to bother extending: the extension won't affect where the
5274 // computation crosses zero.
5275 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5276 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5277 VariableIdx->getNameStart(), &I);
5278 return VariableIdx;
5279 }
5280
5281 // Otherwise, there is an index. The computation we will do will be modulo
5282 // the pointer size, so get it.
5283 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5284
5285 Offset &= PtrSizeMask;
5286 VariableScale &= PtrSizeMask;
5287
5288 // To do this transformation, any constant index must be a multiple of the
5289 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5290 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5291 // multiple of the variable scale.
5292 int64_t NewOffs = Offset / (int64_t)VariableScale;
5293 if (Offset != NewOffs*(int64_t)VariableScale)
5294 return 0;
5295
5296 // Okay, we can do this evaluation. Start by converting the index to intptr.
5297 const Type *IntPtrTy = TD.getIntPtrType();
5298 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005299 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005300 true /*SExt*/,
5301 VariableIdx->getNameStart(), &I);
5302 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005303 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005304}
5305
5306
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005307/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5308/// else. At this point we know that the GEP is on the LHS of the comparison.
5309Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5310 ICmpInst::Predicate Cond,
5311 Instruction &I) {
5312 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5313
Chris Lattnereba75862008-04-22 02:53:33 +00005314 // Look through bitcasts.
5315 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5316 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005317
5318 Value *PtrBase = GEPLHS->getOperand(0);
5319 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005320 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005321 // This transformation (ignoring the base and scales) is valid because we
5322 // know pointers can't overflow. See if we can output an optimized form.
5323 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5324
5325 // If not, synthesize the offset the hard way.
5326 if (Offset == 0)
5327 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005328 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5329 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005330 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5331 // If the base pointers are different, but the indices are the same, just
5332 // compare the base pointer.
5333 if (PtrBase != GEPRHS->getOperand(0)) {
5334 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5335 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5336 GEPRHS->getOperand(0)->getType();
5337 if (IndicesTheSame)
5338 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5339 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5340 IndicesTheSame = false;
5341 break;
5342 }
5343
5344 // If all indices are the same, just compare the base pointers.
5345 if (IndicesTheSame)
5346 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5347 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5348
5349 // Otherwise, the base pointers are different and the indices are
5350 // different, bail out.
5351 return 0;
5352 }
5353
5354 // If one of the GEPs has all zero indices, recurse.
5355 bool AllZeros = true;
5356 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5357 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5358 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5359 AllZeros = false;
5360 break;
5361 }
5362 if (AllZeros)
5363 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5364 ICmpInst::getSwappedPredicate(Cond), I);
5365
5366 // If the other GEP has all zero indices, recurse.
5367 AllZeros = true;
5368 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5369 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5370 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5371 AllZeros = false;
5372 break;
5373 }
5374 if (AllZeros)
5375 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5376
5377 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5378 // If the GEPs only differ by one index, compare it.
5379 unsigned NumDifferences = 0; // Keep track of # differences.
5380 unsigned DiffOperand = 0; // The operand that differs.
5381 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5382 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5383 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5384 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5385 // Irreconcilable differences.
5386 NumDifferences = 2;
5387 break;
5388 } else {
5389 if (NumDifferences++) break;
5390 DiffOperand = i;
5391 }
5392 }
5393
5394 if (NumDifferences == 0) // SAME GEP?
5395 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005396 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005397 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005398
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005399 else if (NumDifferences == 1) {
5400 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5401 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5402 // Make sure we do a signed comparison here.
5403 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5404 }
5405 }
5406
5407 // Only lower this if the icmp is the only user of the GEP or if we expect
5408 // the result to fold to a constant!
5409 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5410 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5411 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5412 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5413 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5414 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5415 }
5416 }
5417 return 0;
5418}
5419
Chris Lattnere6b62d92008-05-19 20:18:56 +00005420/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5421///
5422Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5423 Instruction *LHSI,
5424 Constant *RHSC) {
5425 if (!isa<ConstantFP>(RHSC)) return 0;
5426 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5427
5428 // Get the width of the mantissa. We don't want to hack on conversions that
5429 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005430 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005431 if (MantissaWidth == -1) return 0; // Unknown.
5432
5433 // Check to see that the input is converted from an integer type that is small
5434 // enough that preserves all bits. TODO: check here for "known" sign bits.
5435 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5436 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5437
5438 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005439 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5440 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005441 ++InputSize;
5442
5443 // If the conversion would lose info, don't hack on this.
5444 if ((int)InputSize > MantissaWidth)
5445 return 0;
5446
5447 // Otherwise, we can potentially simplify the comparison. We know that it
5448 // will always come through as an integer value and we know the constant is
5449 // not a NAN (it would have been previously simplified).
5450 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5451
5452 ICmpInst::Predicate Pred;
5453 switch (I.getPredicate()) {
5454 default: assert(0 && "Unexpected predicate!");
5455 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005456 case FCmpInst::FCMP_OEQ:
5457 Pred = ICmpInst::ICMP_EQ;
5458 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005459 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005460 case FCmpInst::FCMP_OGT:
5461 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5462 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005463 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005464 case FCmpInst::FCMP_OGE:
5465 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5466 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005468 case FCmpInst::FCMP_OLT:
5469 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5470 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005471 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005472 case FCmpInst::FCMP_OLE:
5473 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5474 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005475 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005476 case FCmpInst::FCMP_ONE:
5477 Pred = ICmpInst::ICMP_NE;
5478 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005479 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005480 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005481 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005482 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005483 }
5484
5485 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5486
5487 // Now we know that the APFloat is a normal number, zero or inf.
5488
Chris Lattnerf13ff492008-05-20 03:50:52 +00005489 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005490 // comparing an i8 to 300.0.
5491 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5492
Bill Wendling20636df2008-11-09 04:26:50 +00005493 if (!LHSUnsigned) {
5494 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5495 // and large values.
5496 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5497 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5498 APFloat::rmNearestTiesToEven);
5499 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5500 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5501 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005502 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5503 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005504 }
5505 } else {
5506 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5507 // +INF and large values.
5508 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5509 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5510 APFloat::rmNearestTiesToEven);
5511 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5512 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5513 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005514 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5515 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005516 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005517 }
5518
Bill Wendling20636df2008-11-09 04:26:50 +00005519 if (!LHSUnsigned) {
5520 // See if the RHS value is < SignedMin.
5521 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5522 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5523 APFloat::rmNearestTiesToEven);
5524 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5525 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5526 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005527 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5528 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005529 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005530 }
5531
Bill Wendling20636df2008-11-09 04:26:50 +00005532 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5533 // [0, UMAX], but it may still be fractional. See if it is fractional by
5534 // casting the FP value to the integer value and back, checking for equality.
5535 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005536 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5537 if (!RHS.isZero() &&
5538 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005539 // If we had a comparison against a fractional value, we have to adjust the
5540 // compare predicate and sometimes the value. RHSC is rounded towards zero
5541 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005542 switch (Pred) {
5543 default: assert(0 && "Unexpected integer comparison!");
5544 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005545 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005546 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005547 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005548 case ICmpInst::ICMP_ULE:
5549 // (float)int <= 4.4 --> int <= 4
5550 // (float)int <= -4.4 --> false
5551 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005552 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005553 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005554 case ICmpInst::ICMP_SLE:
5555 // (float)int <= 4.4 --> int <= 4
5556 // (float)int <= -4.4 --> int < -4
5557 if (RHS.isNegative())
5558 Pred = ICmpInst::ICMP_SLT;
5559 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005560 case ICmpInst::ICMP_ULT:
5561 // (float)int < -4.4 --> false
5562 // (float)int < 4.4 --> int <= 4
5563 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005564 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005565 Pred = ICmpInst::ICMP_ULE;
5566 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005567 case ICmpInst::ICMP_SLT:
5568 // (float)int < -4.4 --> int < -4
5569 // (float)int < 4.4 --> int <= 4
5570 if (!RHS.isNegative())
5571 Pred = ICmpInst::ICMP_SLE;
5572 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005573 case ICmpInst::ICMP_UGT:
5574 // (float)int > 4.4 --> int > 4
5575 // (float)int > -4.4 --> true
5576 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005577 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005578 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005579 case ICmpInst::ICMP_SGT:
5580 // (float)int > 4.4 --> int > 4
5581 // (float)int > -4.4 --> int >= -4
5582 if (RHS.isNegative())
5583 Pred = ICmpInst::ICMP_SGE;
5584 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005585 case ICmpInst::ICMP_UGE:
5586 // (float)int >= -4.4 --> true
5587 // (float)int >= 4.4 --> int > 4
5588 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005589 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005590 Pred = ICmpInst::ICMP_UGT;
5591 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005592 case ICmpInst::ICMP_SGE:
5593 // (float)int >= -4.4 --> int >= -4
5594 // (float)int >= 4.4 --> int > 4
5595 if (!RHS.isNegative())
5596 Pred = ICmpInst::ICMP_SGT;
5597 break;
5598 }
5599 }
5600
5601 // Lower this FP comparison into an appropriate integer version of the
5602 // comparison.
5603 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5604}
5605
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005606Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5607 bool Changed = SimplifyCompare(I);
5608 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5609
5610 // Fold trivial predicates.
5611 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005612 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005613 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005614 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005615
5616 // Simplify 'fcmp pred X, X'
5617 if (Op0 == Op1) {
5618 switch (I.getPredicate()) {
5619 default: assert(0 && "Unknown predicate!");
5620 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5621 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5622 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005623 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005624 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5625 case FCmpInst::FCMP_OLT: // True if ordered and less than
5626 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005627 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005628
5629 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5630 case FCmpInst::FCMP_ULT: // True if unordered or less than
5631 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5632 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5633 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5634 I.setPredicate(FCmpInst::FCMP_UNO);
5635 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5636 return &I;
5637
5638 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5639 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5640 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5641 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5642 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5643 I.setPredicate(FCmpInst::FCMP_ORD);
5644 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5645 return &I;
5646 }
5647 }
5648
5649 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5650 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5651
5652 // Handle fcmp with constant RHS
5653 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005654 // If the constant is a nan, see if we can fold the comparison based on it.
5655 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5656 if (CFP->getValueAPF().isNaN()) {
5657 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005658 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005659 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5660 "Comparison must be either ordered or unordered!");
5661 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005662 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005663 }
5664 }
5665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005666 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5667 switch (LHSI->getOpcode()) {
5668 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005669 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5670 // block. If in the same block, we're encouraging jump threading. If
5671 // not, we are just pessimizing the code by making an i1 phi.
5672 if (LHSI->getParent() == I.getParent())
5673 if (Instruction *NV = FoldOpIntoPhi(I))
5674 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005675 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005676 case Instruction::SIToFP:
5677 case Instruction::UIToFP:
5678 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5679 return NV;
5680 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005681 case Instruction::Select:
5682 // If either operand of the select is a constant, we can fold the
5683 // comparison into the select arms, which will cause one to be
5684 // constant folded and the select turned into a bitwise or.
5685 Value *Op1 = 0, *Op2 = 0;
5686 if (LHSI->hasOneUse()) {
5687 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5688 // Fold the known value into the constant operand.
5689 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5690 // Insert a new FCmp of the other select operand.
5691 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5692 LHSI->getOperand(2), RHSC,
5693 I.getName()), I);
5694 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5695 // Fold the known value into the constant operand.
5696 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5697 // Insert a new FCmp of the other select operand.
5698 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5699 LHSI->getOperand(1), RHSC,
5700 I.getName()), I);
5701 }
5702 }
5703
5704 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005705 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005706 break;
5707 }
5708 }
5709
5710 return Changed ? &I : 0;
5711}
5712
5713Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5714 bool Changed = SimplifyCompare(I);
5715 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5716 const Type *Ty = Op0->getType();
5717
5718 // icmp X, X
5719 if (Op0 == Op1)
5720 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005721 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005722
5723 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5724 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005725
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5727 // addresses never equal each other! We already know that Op0 != Op1.
5728 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5729 isa<ConstantPointerNull>(Op0)) &&
5730 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5731 isa<ConstantPointerNull>(Op1)))
5732 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005733 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005734
5735 // icmp's with boolean values can always be turned into bitwise operations
5736 if (Ty == Type::Int1Ty) {
5737 switch (I.getPredicate()) {
5738 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005739 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005740 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005741 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005742 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005743 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005744 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005745 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005746
5747 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005748 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005749 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005750 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005751 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005752 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005753 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005754 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005755 case ICmpInst::ICMP_SGT:
5756 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005757 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005758 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5759 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5760 InsertNewInstBefore(Not, I);
5761 return BinaryOperator::CreateAnd(Not, Op0);
5762 }
5763 case ICmpInst::ICMP_UGE:
5764 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5765 // FALL THROUGH
5766 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005767 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005768 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005769 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005770 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005771 case ICmpInst::ICMP_SGE:
5772 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5773 // FALL THROUGH
5774 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5775 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5776 InsertNewInstBefore(Not, I);
5777 return BinaryOperator::CreateOr(Not, Op0);
5778 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005779 }
5780 }
5781
Dan Gohman58c09632008-09-16 18:46:06 +00005782 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005783 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005784 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005785
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005786 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5787 if (I.isEquality() && CI->isNullValue() &&
5788 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5789 // (icmp cond A B) if cond is equality
5790 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005791 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005792
Dan Gohman58c09632008-09-16 18:46:06 +00005793 // If we have an icmp le or icmp ge instruction, turn it into the
5794 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5795 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005796 switch (I.getPredicate()) {
5797 default: break;
5798 case ICmpInst::ICMP_ULE:
5799 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5800 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5801 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5802 case ICmpInst::ICMP_SLE:
5803 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5804 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5805 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5806 case ICmpInst::ICMP_UGE:
5807 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5808 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5809 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5810 case ICmpInst::ICMP_SGE:
5811 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5812 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5813 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5814 }
5815
Chris Lattnera1308652008-07-11 05:40:05 +00005816 // See if we can fold the comparison based on range information we can get
5817 // by checking whether bits are known to be zero or one in the input.
5818 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5819 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5820
5821 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005822 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005823 bool UnusedBit;
5824 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5825
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005826 if (SimplifyDemandedBits(Op0,
5827 isSignBit ? APInt::getSignBit(BitWidth)
5828 : APInt::getAllOnesValue(BitWidth),
5829 KnownZero, KnownOne, 0))
5830 return &I;
5831
5832 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005833 // in. Compute the Min, Max and RHS values based on the known bits. For the
5834 // EQ and NE we use unsigned values.
5835 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005836 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5837 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5838 else
5839 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5840
Chris Lattnera1308652008-07-11 05:40:05 +00005841 // If Min and Max are known to be the same, then SimplifyDemandedBits
5842 // figured out that the LHS is a constant. Just constant fold this now so
5843 // that code below can assume that Min != Max.
5844 if (Min == Max)
5845 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5846 ConstantInt::get(Min),
5847 CI));
5848
5849 // Based on the range information we know about the LHS, see if we can
5850 // simplify this comparison. For example, (x&4) < 8 is always true.
5851 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005852 switch (I.getPredicate()) { // LE/GE have been folded already.
5853 default: assert(0 && "Unknown icmp opcode!");
5854 case ICmpInst::ICMP_EQ:
5855 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5856 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5857 break;
5858 case ICmpInst::ICMP_NE:
5859 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5860 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5861 break;
5862 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005863 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005864 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005865 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005866 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005867 if (RHSVal == Max) // A <u MAX -> A != MAX
5868 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5869 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5870 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5871
5872 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5873 if (CI->isMinValue(true))
5874 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5875 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005876 break;
5877 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005878 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005879 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005880 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005881 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005882
5883 if (RHSVal == Min) // A >u MIN -> A != MIN
5884 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5885 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5886 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5887
5888 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5889 if (CI->isMaxValue(true))
5890 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5891 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005892 break;
5893 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005894 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005895 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005896 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005897 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005898 if (RHSVal == Max) // A <s MAX -> A != MAX
5899 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005900 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005901 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005902 break;
5903 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005904 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005905 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005906 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005907 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005908
5909 if (RHSVal == Min) // A >s MIN -> A != MIN
5910 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5911 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5912 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005913 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005914 }
Dan Gohman58c09632008-09-16 18:46:06 +00005915 }
5916
5917 // Test if the ICmpInst instruction is used exclusively by a select as
5918 // part of a minimum or maximum operation. If so, refrain from doing
5919 // any other folding. This helps out other analyses which understand
5920 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5921 // and CodeGen. And in this case, at least one of the comparison
5922 // operands has at least one user besides the compare (the select),
5923 // which would often largely negate the benefit of folding anyway.
5924 if (I.hasOneUse())
5925 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5926 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5927 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5928 return 0;
5929
5930 // See if we are doing a comparison between a constant and an instruction that
5931 // can be folded into the comparison.
5932 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005933 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5934 // instruction, see if that instruction also has constants so that the
5935 // instruction can be folded into the icmp
5936 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5937 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5938 return Res;
5939 }
5940
5941 // Handle icmp with constant (but not simple integer constant) RHS
5942 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5943 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5944 switch (LHSI->getOpcode()) {
5945 case Instruction::GetElementPtr:
5946 if (RHSC->isNullValue()) {
5947 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5948 bool isAllZeros = true;
5949 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5950 if (!isa<Constant>(LHSI->getOperand(i)) ||
5951 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5952 isAllZeros = false;
5953 break;
5954 }
5955 if (isAllZeros)
5956 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5957 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5958 }
5959 break;
5960
5961 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005962 // Only fold icmp into the PHI if the phi and fcmp are in the same
5963 // block. If in the same block, we're encouraging jump threading. If
5964 // not, we are just pessimizing the code by making an i1 phi.
5965 if (LHSI->getParent() == I.getParent())
5966 if (Instruction *NV = FoldOpIntoPhi(I))
5967 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005968 break;
5969 case Instruction::Select: {
5970 // If either operand of the select is a constant, we can fold the
5971 // comparison into the select arms, which will cause one to be
5972 // constant folded and the select turned into a bitwise or.
5973 Value *Op1 = 0, *Op2 = 0;
5974 if (LHSI->hasOneUse()) {
5975 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5976 // Fold the known value into the constant operand.
5977 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5978 // Insert a new ICmp of the other select operand.
5979 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5980 LHSI->getOperand(2), RHSC,
5981 I.getName()), I);
5982 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5983 // Fold the known value into the constant operand.
5984 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5985 // Insert a new ICmp of the other select operand.
5986 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5987 LHSI->getOperand(1), RHSC,
5988 I.getName()), I);
5989 }
5990 }
5991
5992 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005993 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005994 break;
5995 }
5996 case Instruction::Malloc:
5997 // If we have (malloc != null), and if the malloc has a single use, we
5998 // can assume it is successful and remove the malloc.
5999 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
6000 AddToWorkList(LHSI);
6001 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00006002 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006003 }
6004 break;
6005 }
6006 }
6007
6008 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6009 if (User *GEP = dyn_castGetElementPtr(Op0))
6010 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6011 return NI;
6012 if (User *GEP = dyn_castGetElementPtr(Op1))
6013 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6014 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6015 return NI;
6016
6017 // Test to see if the operands of the icmp are casted versions of other
6018 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6019 // now.
6020 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6021 if (isa<PointerType>(Op0->getType()) &&
6022 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6023 // We keep moving the cast from the left operand over to the right
6024 // operand, where it can often be eliminated completely.
6025 Op0 = CI->getOperand(0);
6026
6027 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6028 // so eliminate it as well.
6029 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6030 Op1 = CI2->getOperand(0);
6031
6032 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006033 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006034 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6035 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6036 } else {
6037 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006038 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006039 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006040 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006041 return new ICmpInst(I.getPredicate(), Op0, Op1);
6042 }
6043 }
6044
6045 if (isa<CastInst>(Op0)) {
6046 // Handle the special case of: icmp (cast bool to X), <cst>
6047 // This comes up when you have code like
6048 // int X = A < B;
6049 // if (X) ...
6050 // For generality, we handle any zero-extension of any operand comparison
6051 // with a constant or another cast from the same type.
6052 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6053 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6054 return R;
6055 }
6056
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006057 // See if it's the same type of instruction on the left and right.
6058 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6059 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006060 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6061 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6062 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006063 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006064 default: break;
6065 case Instruction::Add:
6066 case Instruction::Sub:
6067 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006068 // a+x icmp eq/ne b+x --> a icmp b
6069 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6070 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006071 break;
6072 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006073 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6074 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6075 // Mask = -1 >> count-trailing-zeros(Cst).
6076 if (!CI->isZero() && !CI->isOne()) {
6077 const APInt &AP = CI->getValue();
6078 ConstantInt *Mask = ConstantInt::get(
6079 APInt::getLowBitsSet(AP.getBitWidth(),
6080 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006081 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006082 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6083 Mask);
6084 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6085 Mask);
6086 InsertNewInstBefore(And1, I);
6087 InsertNewInstBefore(And2, I);
6088 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006089 }
6090 }
6091 break;
6092 }
6093 }
6094 }
6095 }
6096
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006097 // ~x < ~y --> y < x
6098 { Value *A, *B;
6099 if (match(Op0, m_Not(m_Value(A))) &&
6100 match(Op1, m_Not(m_Value(B))))
6101 return new ICmpInst(I.getPredicate(), B, A);
6102 }
6103
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006104 if (I.isEquality()) {
6105 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006106
6107 // -x == -y --> x == y
6108 if (match(Op0, m_Neg(m_Value(A))) &&
6109 match(Op1, m_Neg(m_Value(B))))
6110 return new ICmpInst(I.getPredicate(), A, B);
6111
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006112 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6113 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6114 Value *OtherVal = A == Op1 ? B : A;
6115 return new ICmpInst(I.getPredicate(), OtherVal,
6116 Constant::getNullValue(A->getType()));
6117 }
6118
6119 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6120 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006121 ConstantInt *C1, *C2;
6122 if (match(B, m_ConstantInt(C1)) &&
6123 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6124 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6125 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6126 return new ICmpInst(I.getPredicate(), A,
6127 InsertNewInstBefore(Xor, I));
6128 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006129
6130 // A^B == A^D -> B == D
6131 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6132 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6133 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6134 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6135 }
6136 }
6137
6138 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6139 (A == Op0 || B == Op0)) {
6140 // A == (A^B) -> B == 0
6141 Value *OtherVal = A == Op0 ? B : A;
6142 return new ICmpInst(I.getPredicate(), OtherVal,
6143 Constant::getNullValue(A->getType()));
6144 }
Chris Lattner3b874082008-11-16 05:38:51 +00006145
6146 // (A-B) == A -> B == 0
6147 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6148 return new ICmpInst(I.getPredicate(), B,
6149 Constant::getNullValue(B->getType()));
6150
6151 // A == (A-B) -> B == 0
6152 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006153 return new ICmpInst(I.getPredicate(), B,
6154 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006155
6156 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6157 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6158 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6159 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6160 Value *X = 0, *Y = 0, *Z = 0;
6161
6162 if (A == C) {
6163 X = B; Y = D; Z = A;
6164 } else if (A == D) {
6165 X = B; Y = C; Z = A;
6166 } else if (B == C) {
6167 X = A; Y = D; Z = B;
6168 } else if (B == D) {
6169 X = A; Y = C; Z = B;
6170 }
6171
6172 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006173 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6174 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006175 I.setOperand(0, Op1);
6176 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6177 return &I;
6178 }
6179 }
6180 }
6181 return Changed ? &I : 0;
6182}
6183
6184
6185/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6186/// and CmpRHS are both known to be integer constants.
6187Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6188 ConstantInt *DivRHS) {
6189 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6190 const APInt &CmpRHSV = CmpRHS->getValue();
6191
6192 // FIXME: If the operand types don't match the type of the divide
6193 // then don't attempt this transform. The code below doesn't have the
6194 // logic to deal with a signed divide and an unsigned compare (and
6195 // vice versa). This is because (x /s C1) <s C2 produces different
6196 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6197 // (x /u C1) <u C2. Simply casting the operands and result won't
6198 // work. :( The if statement below tests that condition and bails
6199 // if it finds it.
6200 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6201 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6202 return 0;
6203 if (DivRHS->isZero())
6204 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006205 if (DivIsSigned && DivRHS->isAllOnesValue())
6206 return 0; // The overflow computation also screws up here
6207 if (DivRHS->isOne())
6208 return 0; // Not worth bothering, and eliminates some funny cases
6209 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006210
6211 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6212 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6213 // C2 (CI). By solving for X we can turn this into a range check
6214 // instead of computing a divide.
6215 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6216
6217 // Determine if the product overflows by seeing if the product is
6218 // not equal to the divide. Make sure we do the same kind of divide
6219 // as in the LHS instruction that we're folding.
6220 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6221 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6222
6223 // Get the ICmp opcode
6224 ICmpInst::Predicate Pred = ICI.getPredicate();
6225
6226 // Figure out the interval that is being checked. For example, a comparison
6227 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6228 // Compute this interval based on the constants involved and the signedness of
6229 // the compare/divide. This computes a half-open interval, keeping track of
6230 // whether either value in the interval overflows. After analysis each
6231 // overflow variable is set to 0 if it's corresponding bound variable is valid
6232 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6233 int LoOverflow = 0, HiOverflow = 0;
6234 ConstantInt *LoBound = 0, *HiBound = 0;
6235
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006236 if (!DivIsSigned) { // udiv
6237 // e.g. X/5 op 3 --> [15, 20)
6238 LoBound = Prod;
6239 HiOverflow = LoOverflow = ProdOV;
6240 if (!HiOverflow)
6241 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006242 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006243 if (CmpRHSV == 0) { // (X / pos) op 0
6244 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6245 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6246 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006247 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006248 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6249 HiOverflow = LoOverflow = ProdOV;
6250 if (!HiOverflow)
6251 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6252 } else { // (X / pos) op neg
6253 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006254 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006255 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6256 if (!LoOverflow) {
6257 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6258 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6259 true) ? -1 : 0;
6260 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006261 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006262 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006263 if (CmpRHSV == 0) { // (X / neg) op 0
6264 // e.g. X/-5 op 0 --> [-4, 5)
6265 LoBound = AddOne(DivRHS);
6266 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6267 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6268 HiOverflow = 1; // [INTMIN+1, overflow)
6269 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6270 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006271 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006272 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006273 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6275 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006276 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006277 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006278 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6279 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006280 if (!HiOverflow)
6281 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006282 }
6283
6284 // Dividing by a negative swaps the condition. LT <-> GT
6285 Pred = ICmpInst::getSwappedPredicate(Pred);
6286 }
6287
6288 Value *X = DivI->getOperand(0);
6289 switch (Pred) {
6290 default: assert(0 && "Unhandled icmp opcode!");
6291 case ICmpInst::ICMP_EQ:
6292 if (LoOverflow && HiOverflow)
6293 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6294 else if (HiOverflow)
6295 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6296 ICmpInst::ICMP_UGE, X, LoBound);
6297 else if (LoOverflow)
6298 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6299 ICmpInst::ICMP_ULT, X, HiBound);
6300 else
6301 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6302 case ICmpInst::ICMP_NE:
6303 if (LoOverflow && HiOverflow)
6304 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6305 else if (HiOverflow)
6306 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6307 ICmpInst::ICMP_ULT, X, LoBound);
6308 else if (LoOverflow)
6309 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6310 ICmpInst::ICMP_UGE, X, HiBound);
6311 else
6312 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6313 case ICmpInst::ICMP_ULT:
6314 case ICmpInst::ICMP_SLT:
6315 if (LoOverflow == +1) // Low bound is greater than input range.
6316 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6317 if (LoOverflow == -1) // Low bound is less than input range.
6318 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6319 return new ICmpInst(Pred, X, LoBound);
6320 case ICmpInst::ICMP_UGT:
6321 case ICmpInst::ICMP_SGT:
6322 if (HiOverflow == +1) // High bound greater than input range.
6323 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6324 else if (HiOverflow == -1) // High bound less than input range.
6325 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6326 if (Pred == ICmpInst::ICMP_UGT)
6327 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6328 else
6329 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6330 }
6331}
6332
6333
6334/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6335///
6336Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6337 Instruction *LHSI,
6338 ConstantInt *RHS) {
6339 const APInt &RHSV = RHS->getValue();
6340
6341 switch (LHSI->getOpcode()) {
6342 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6343 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6344 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6345 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006346 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6347 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006348 Value *CompareVal = LHSI->getOperand(0);
6349
6350 // If the sign bit of the XorCST is not set, there is no change to
6351 // the operation, just stop using the Xor.
6352 if (!XorCST->getValue().isNegative()) {
6353 ICI.setOperand(0, CompareVal);
6354 AddToWorkList(LHSI);
6355 return &ICI;
6356 }
6357
6358 // Was the old condition true if the operand is positive?
6359 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6360
6361 // If so, the new one isn't.
6362 isTrueIfPositive ^= true;
6363
6364 if (isTrueIfPositive)
6365 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6366 else
6367 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6368 }
6369 }
6370 break;
6371 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6372 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6373 LHSI->getOperand(0)->hasOneUse()) {
6374 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6375
6376 // If the LHS is an AND of a truncating cast, we can widen the
6377 // and/compare to be the input width without changing the value
6378 // produced, eliminating a cast.
6379 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6380 // We can do this transformation if either the AND constant does not
6381 // have its sign bit set or if it is an equality comparison.
6382 // Extending a relational comparison when we're checking the sign
6383 // bit would not work.
6384 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006385 (ICI.isEquality() ||
6386 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006387 uint32_t BitWidth =
6388 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6389 APInt NewCST = AndCST->getValue();
6390 NewCST.zext(BitWidth);
6391 APInt NewCI = RHSV;
6392 NewCI.zext(BitWidth);
6393 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006394 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006395 ConstantInt::get(NewCST),LHSI->getName());
6396 InsertNewInstBefore(NewAnd, ICI);
6397 return new ICmpInst(ICI.getPredicate(), NewAnd,
6398 ConstantInt::get(NewCI));
6399 }
6400 }
6401
6402 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6403 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6404 // happens a LOT in code produced by the C front-end, for bitfield
6405 // access.
6406 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6407 if (Shift && !Shift->isShift())
6408 Shift = 0;
6409
6410 ConstantInt *ShAmt;
6411 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6412 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6413 const Type *AndTy = AndCST->getType(); // Type of the and.
6414
6415 // We can fold this as long as we can't shift unknown bits
6416 // into the mask. This can only happen with signed shift
6417 // rights, as they sign-extend.
6418 if (ShAmt) {
6419 bool CanFold = Shift->isLogicalShift();
6420 if (!CanFold) {
6421 // To test for the bad case of the signed shr, see if any
6422 // of the bits shifted in could be tested after the mask.
6423 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6424 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6425
6426 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6427 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6428 AndCST->getValue()) == 0)
6429 CanFold = true;
6430 }
6431
6432 if (CanFold) {
6433 Constant *NewCst;
6434 if (Shift->getOpcode() == Instruction::Shl)
6435 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6436 else
6437 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6438
6439 // Check to see if we are shifting out any of the bits being
6440 // compared.
6441 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6442 // If we shifted bits out, the fold is not going to work out.
6443 // As a special case, check to see if this means that the
6444 // result is always true or false now.
6445 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6446 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6447 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6448 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6449 } else {
6450 ICI.setOperand(1, NewCst);
6451 Constant *NewAndCST;
6452 if (Shift->getOpcode() == Instruction::Shl)
6453 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6454 else
6455 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6456 LHSI->setOperand(1, NewAndCST);
6457 LHSI->setOperand(0, Shift->getOperand(0));
6458 AddToWorkList(Shift); // Shift is dead.
6459 AddUsesToWorkList(ICI);
6460 return &ICI;
6461 }
6462 }
6463 }
6464
6465 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6466 // preferable because it allows the C<<Y expression to be hoisted out
6467 // of a loop if Y is invariant and X is not.
6468 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6469 ICI.isEquality() && !Shift->isArithmeticShift() &&
6470 isa<Instruction>(Shift->getOperand(0))) {
6471 // Compute C << Y.
6472 Value *NS;
6473 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006474 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006475 Shift->getOperand(1), "tmp");
6476 } else {
6477 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006478 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006479 Shift->getOperand(1), "tmp");
6480 }
6481 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6482
6483 // Compute X & (C << Y).
6484 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006485 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006486 InsertNewInstBefore(NewAnd, ICI);
6487
6488 ICI.setOperand(0, NewAnd);
6489 return &ICI;
6490 }
6491 }
6492 break;
6493
6494 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6495 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6496 if (!ShAmt) break;
6497
6498 uint32_t TypeBits = RHSV.getBitWidth();
6499
6500 // Check that the shift amount is in range. If not, don't perform
6501 // undefined shifts. When the shift is visited it will be
6502 // simplified.
6503 if (ShAmt->uge(TypeBits))
6504 break;
6505
6506 if (ICI.isEquality()) {
6507 // If we are comparing against bits always shifted out, the
6508 // comparison cannot succeed.
6509 Constant *Comp =
6510 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6511 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6512 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6513 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6514 return ReplaceInstUsesWith(ICI, Cst);
6515 }
6516
6517 if (LHSI->hasOneUse()) {
6518 // Otherwise strength reduce the shift into an and.
6519 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6520 Constant *Mask =
6521 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6522
6523 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006524 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006525 Mask, LHSI->getName()+".mask");
6526 Value *And = InsertNewInstBefore(AndI, ICI);
6527 return new ICmpInst(ICI.getPredicate(), And,
6528 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6529 }
6530 }
6531
6532 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6533 bool TrueIfSigned = false;
6534 if (LHSI->hasOneUse() &&
6535 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6536 // (X << 31) <s 0 --> (X&1) != 0
6537 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6538 (TypeBits-ShAmt->getZExtValue()-1));
6539 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006540 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006541 Mask, LHSI->getName()+".mask");
6542 Value *And = InsertNewInstBefore(AndI, ICI);
6543
6544 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6545 And, Constant::getNullValue(And->getType()));
6546 }
6547 break;
6548 }
6549
6550 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6551 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006552 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006553 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006554 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006555
Chris Lattner5ee84f82008-03-21 05:19:58 +00006556 // Check that the shift amount is in range. If not, don't perform
6557 // undefined shifts. When the shift is visited it will be
6558 // simplified.
6559 uint32_t TypeBits = RHSV.getBitWidth();
6560 if (ShAmt->uge(TypeBits))
6561 break;
6562
6563 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006564
Chris Lattner5ee84f82008-03-21 05:19:58 +00006565 // If we are comparing against bits always shifted out, the
6566 // comparison cannot succeed.
6567 APInt Comp = RHSV << ShAmtVal;
6568 if (LHSI->getOpcode() == Instruction::LShr)
6569 Comp = Comp.lshr(ShAmtVal);
6570 else
6571 Comp = Comp.ashr(ShAmtVal);
6572
6573 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6574 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6575 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6576 return ReplaceInstUsesWith(ICI, Cst);
6577 }
6578
6579 // Otherwise, check to see if the bits shifted out are known to be zero.
6580 // If so, we can compare against the unshifted value:
6581 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006582 if (LHSI->hasOneUse() &&
6583 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006584 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6585 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6586 ConstantExpr::getShl(RHS, ShAmt));
6587 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006588
Evan Chengfb9292a2008-04-23 00:38:06 +00006589 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006590 // Otherwise strength reduce the shift into an and.
6591 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6592 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006593
Chris Lattner5ee84f82008-03-21 05:19:58 +00006594 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006595 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006596 Mask, LHSI->getName()+".mask");
6597 Value *And = InsertNewInstBefore(AndI, ICI);
6598 return new ICmpInst(ICI.getPredicate(), And,
6599 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006600 }
6601 break;
6602 }
6603
6604 case Instruction::SDiv:
6605 case Instruction::UDiv:
6606 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6607 // Fold this div into the comparison, producing a range check.
6608 // Determine, based on the divide type, what the range is being
6609 // checked. If there is an overflow on the low or high side, remember
6610 // it, otherwise compute the range [low, hi) bounding the new value.
6611 // See: InsertRangeTest above for the kinds of replacements possible.
6612 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6613 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6614 DivRHS))
6615 return R;
6616 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006617
6618 case Instruction::Add:
6619 // Fold: icmp pred (add, X, C1), C2
6620
6621 if (!ICI.isEquality()) {
6622 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6623 if (!LHSC) break;
6624 const APInt &LHSV = LHSC->getValue();
6625
6626 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6627 .subtract(LHSV);
6628
6629 if (ICI.isSignedPredicate()) {
6630 if (CR.getLower().isSignBit()) {
6631 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6632 ConstantInt::get(CR.getUpper()));
6633 } else if (CR.getUpper().isSignBit()) {
6634 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6635 ConstantInt::get(CR.getLower()));
6636 }
6637 } else {
6638 if (CR.getLower().isMinValue()) {
6639 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6640 ConstantInt::get(CR.getUpper()));
6641 } else if (CR.getUpper().isMinValue()) {
6642 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6643 ConstantInt::get(CR.getLower()));
6644 }
6645 }
6646 }
6647 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006648 }
6649
6650 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6651 if (ICI.isEquality()) {
6652 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6653
6654 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6655 // the second operand is a constant, simplify a bit.
6656 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6657 switch (BO->getOpcode()) {
6658 case Instruction::SRem:
6659 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6660 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6661 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6662 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6663 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006664 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006665 BO->getName());
6666 InsertNewInstBefore(NewRem, ICI);
6667 return new ICmpInst(ICI.getPredicate(), NewRem,
6668 Constant::getNullValue(BO->getType()));
6669 }
6670 }
6671 break;
6672 case Instruction::Add:
6673 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6674 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6675 if (BO->hasOneUse())
6676 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6677 Subtract(RHS, BOp1C));
6678 } else if (RHSV == 0) {
6679 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6680 // efficiently invertible, or if the add has just this one use.
6681 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6682
6683 if (Value *NegVal = dyn_castNegVal(BOp1))
6684 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6685 else if (Value *NegVal = dyn_castNegVal(BOp0))
6686 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6687 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006688 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006689 InsertNewInstBefore(Neg, ICI);
6690 Neg->takeName(BO);
6691 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6692 }
6693 }
6694 break;
6695 case Instruction::Xor:
6696 // For the xor case, we can xor two constants together, eliminating
6697 // the explicit xor.
6698 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6699 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6700 ConstantExpr::getXor(RHS, BOC));
6701
6702 // FALLTHROUGH
6703 case Instruction::Sub:
6704 // Replace (([sub|xor] A, B) != 0) with (A != B)
6705 if (RHSV == 0)
6706 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6707 BO->getOperand(1));
6708 break;
6709
6710 case Instruction::Or:
6711 // If bits are being or'd in that are not present in the constant we
6712 // are comparing against, then the comparison could never succeed!
6713 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6714 Constant *NotCI = ConstantExpr::getNot(RHS);
6715 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6716 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6717 isICMP_NE));
6718 }
6719 break;
6720
6721 case Instruction::And:
6722 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6723 // If bits are being compared against that are and'd out, then the
6724 // comparison can never succeed!
6725 if ((RHSV & ~BOC->getValue()) != 0)
6726 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6727 isICMP_NE));
6728
6729 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6730 if (RHS == BOC && RHSV.isPowerOf2())
6731 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6732 ICmpInst::ICMP_NE, LHSI,
6733 Constant::getNullValue(RHS->getType()));
6734
6735 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006736 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006737 Value *X = BO->getOperand(0);
6738 Constant *Zero = Constant::getNullValue(X->getType());
6739 ICmpInst::Predicate pred = isICMP_NE ?
6740 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6741 return new ICmpInst(pred, X, Zero);
6742 }
6743
6744 // ((X & ~7) == 0) --> X < 8
6745 if (RHSV == 0 && isHighOnes(BOC)) {
6746 Value *X = BO->getOperand(0);
6747 Constant *NegX = ConstantExpr::getNeg(BOC);
6748 ICmpInst::Predicate pred = isICMP_NE ?
6749 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6750 return new ICmpInst(pred, X, NegX);
6751 }
6752 }
6753 default: break;
6754 }
6755 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6756 // Handle icmp {eq|ne} <intrinsic>, intcst.
6757 if (II->getIntrinsicID() == Intrinsic::bswap) {
6758 AddToWorkList(II);
6759 ICI.setOperand(0, II->getOperand(1));
6760 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6761 return &ICI;
6762 }
6763 }
6764 } else { // Not a ICMP_EQ/ICMP_NE
6765 // If the LHS is a cast from an integral value of the same size,
6766 // then since we know the RHS is a constant, try to simlify.
6767 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6768 Value *CastOp = Cast->getOperand(0);
6769 const Type *SrcTy = CastOp->getType();
6770 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6771 if (SrcTy->isInteger() &&
6772 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6773 // If this is an unsigned comparison, try to make the comparison use
6774 // smaller constant values.
6775 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6776 // X u< 128 => X s> -1
6777 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6778 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6779 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6780 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6781 // X u> 127 => X s< 0
6782 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6783 Constant::getNullValue(SrcTy));
6784 }
6785 }
6786 }
6787 }
6788 return 0;
6789}
6790
6791/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6792/// We only handle extending casts so far.
6793///
6794Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6795 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6796 Value *LHSCIOp = LHSCI->getOperand(0);
6797 const Type *SrcTy = LHSCIOp->getType();
6798 const Type *DestTy = LHSCI->getType();
6799 Value *RHSCIOp;
6800
6801 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6802 // integer type is the same size as the pointer type.
6803 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6804 getTargetData().getPointerSizeInBits() ==
6805 cast<IntegerType>(DestTy)->getBitWidth()) {
6806 Value *RHSOp = 0;
6807 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6808 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6809 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6810 RHSOp = RHSC->getOperand(0);
6811 // If the pointer types don't match, insert a bitcast.
6812 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006813 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006814 }
6815
6816 if (RHSOp)
6817 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6818 }
6819
6820 // The code below only handles extension cast instructions, so far.
6821 // Enforce this.
6822 if (LHSCI->getOpcode() != Instruction::ZExt &&
6823 LHSCI->getOpcode() != Instruction::SExt)
6824 return 0;
6825
6826 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6827 bool isSignedCmp = ICI.isSignedPredicate();
6828
6829 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6830 // Not an extension from the same type?
6831 RHSCIOp = CI->getOperand(0);
6832 if (RHSCIOp->getType() != LHSCIOp->getType())
6833 return 0;
6834
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006835 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006836 // and the other is a zext), then we can't handle this.
6837 if (CI->getOpcode() != LHSCI->getOpcode())
6838 return 0;
6839
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006840 // Deal with equality cases early.
6841 if (ICI.isEquality())
6842 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6843
6844 // A signed comparison of sign extended values simplifies into a
6845 // signed comparison.
6846 if (isSignedCmp && isSignedExt)
6847 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6848
6849 // The other three cases all fold into an unsigned comparison.
6850 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006851 }
6852
6853 // If we aren't dealing with a constant on the RHS, exit early
6854 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6855 if (!CI)
6856 return 0;
6857
6858 // Compute the constant that would happen if we truncated to SrcTy then
6859 // reextended to DestTy.
6860 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6861 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6862
6863 // If the re-extended constant didn't change...
6864 if (Res2 == CI) {
6865 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6866 // For example, we might have:
6867 // %A = sext short %X to uint
6868 // %B = icmp ugt uint %A, 1330
6869 // It is incorrect to transform this into
6870 // %B = icmp ugt short %X, 1330
6871 // because %A may have negative value.
6872 //
Chris Lattner3d816532008-07-11 04:09:09 +00006873 // However, we allow this when the compare is EQ/NE, because they are
6874 // signless.
6875 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006876 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006877 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006878 }
6879
6880 // The re-extended constant changed so the constant cannot be represented
6881 // in the shorter type. Consequently, we cannot emit a simple comparison.
6882
6883 // First, handle some easy cases. We know the result cannot be equal at this
6884 // point so handle the ICI.isEquality() cases
6885 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6886 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6887 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6888 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6889
6890 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6891 // should have been folded away previously and not enter in here.
6892 Value *Result;
6893 if (isSignedCmp) {
6894 // We're performing a signed comparison.
6895 if (cast<ConstantInt>(CI)->getValue().isNegative())
6896 Result = ConstantInt::getFalse(); // X < (small) --> false
6897 else
6898 Result = ConstantInt::getTrue(); // X < (large) --> true
6899 } else {
6900 // We're performing an unsigned comparison.
6901 if (isSignedExt) {
6902 // We're performing an unsigned comp with a sign extended value.
6903 // This is true if the input is >= 0. [aka >s -1]
6904 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6905 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6906 NegOne, ICI.getName()), ICI);
6907 } else {
6908 // Unsigned extend & unsigned compare -> always true.
6909 Result = ConstantInt::getTrue();
6910 }
6911 }
6912
6913 // Finally, return the value computed.
6914 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006915 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006916 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006917
6918 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6919 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6920 "ICmp should be folded!");
6921 if (Constant *CI = dyn_cast<Constant>(Result))
6922 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6923 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006924}
6925
6926Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6927 return commonShiftTransforms(I);
6928}
6929
6930Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6931 return commonShiftTransforms(I);
6932}
6933
6934Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006935 if (Instruction *R = commonShiftTransforms(I))
6936 return R;
6937
6938 Value *Op0 = I.getOperand(0);
6939
6940 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6941 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6942 if (CSI->isAllOnesValue())
6943 return ReplaceInstUsesWith(I, CSI);
6944
6945 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006946 if (!isa<VectorType>(I.getType()) &&
6947 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006948 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006949 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006950
6951 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006952}
6953
6954Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6955 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6956 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6957
6958 // shl X, 0 == X and shr X, 0 == X
6959 // shl 0, X == 0 and shr 0, X == 0
6960 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6961 Op0 == Constant::getNullValue(Op0->getType()))
6962 return ReplaceInstUsesWith(I, Op0);
6963
6964 if (isa<UndefValue>(Op0)) {
6965 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6966 return ReplaceInstUsesWith(I, Op0);
6967 else // undef << X -> 0, undef >>u X -> 0
6968 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6969 }
6970 if (isa<UndefValue>(Op1)) {
6971 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6972 return ReplaceInstUsesWith(I, Op0);
6973 else // X << undef, X >>u undef -> 0
6974 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6975 }
6976
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006977 // Try to fold constant and into select arguments.
6978 if (isa<Constant>(Op0))
6979 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
6980 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6981 return R;
6982
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006983 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
6984 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6985 return Res;
6986 return 0;
6987}
6988
6989Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
6990 BinaryOperator &I) {
6991 bool isLeftShift = I.getOpcode() == Instruction::Shl;
6992
6993 // See if we can simplify any instructions used by the instruction whose sole
6994 // purpose is to compute bits we don't care about.
6995 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
6996 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
6997 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
6998 KnownZero, KnownOne))
6999 return &I;
7000
7001 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7002 // of a signed value.
7003 //
7004 if (Op1->uge(TypeBits)) {
7005 if (I.getOpcode() != Instruction::AShr)
7006 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7007 else {
7008 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7009 return &I;
7010 }
7011 }
7012
7013 // ((X*C1) << C2) == (X * (C1 << C2))
7014 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7015 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7016 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00007017 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007018 ConstantExpr::getShl(BOOp, Op1));
7019
7020 // Try to fold constant and into select arguments.
7021 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7022 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7023 return R;
7024 if (isa<PHINode>(Op0))
7025 if (Instruction *NV = FoldOpIntoPhi(I))
7026 return NV;
7027
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007028 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7029 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7030 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7031 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7032 // place. Don't try to do this transformation in this case. Also, we
7033 // require that the input operand is a shift-by-constant so that we have
7034 // confidence that the shifts will get folded together. We could do this
7035 // xform in more cases, but it is unlikely to be profitable.
7036 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7037 isa<ConstantInt>(TrOp->getOperand(1))) {
7038 // Okay, we'll do this xform. Make the shift of shift.
7039 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007040 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007041 I.getName());
7042 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7043
7044 // For logical shifts, the truncation has the effect of making the high
7045 // part of the register be zeros. Emulate this by inserting an AND to
7046 // clear the top bits as needed. This 'and' will usually be zapped by
7047 // other xforms later if dead.
7048 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7049 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7050 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7051
7052 // The mask we constructed says what the trunc would do if occurring
7053 // between the shifts. We want to know the effect *after* the second
7054 // shift. We know that it is a logical shift by a constant, so adjust the
7055 // mask as appropriate.
7056 if (I.getOpcode() == Instruction::Shl)
7057 MaskV <<= Op1->getZExtValue();
7058 else {
7059 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7060 MaskV = MaskV.lshr(Op1->getZExtValue());
7061 }
7062
Gabor Greifa645dd32008-05-16 19:29:10 +00007063 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007064 TI->getName());
7065 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7066
7067 // Return the value truncated to the interesting size.
7068 return new TruncInst(And, I.getType());
7069 }
7070 }
7071
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007072 if (Op0->hasOneUse()) {
7073 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7074 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7075 Value *V1, *V2;
7076 ConstantInt *CC;
7077 switch (Op0BO->getOpcode()) {
7078 default: break;
7079 case Instruction::Add:
7080 case Instruction::And:
7081 case Instruction::Or:
7082 case Instruction::Xor: {
7083 // These operators commute.
7084 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7085 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007086 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007087 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007088 Op0BO->getOperand(0), Op1,
7089 Op0BO->getName());
7090 InsertNewInstBefore(YS, I); // (Y << C)
7091 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007092 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007093 Op0BO->getOperand(1)->getName());
7094 InsertNewInstBefore(X, I); // (X + (Y << C))
7095 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007096 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007097 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7098 }
7099
7100 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7101 Value *Op0BOOp1 = Op0BO->getOperand(1);
7102 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7103 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007104 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7105 m_ConstantInt(CC))) &&
7106 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007107 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007108 Op0BO->getOperand(0), Op1,
7109 Op0BO->getName());
7110 InsertNewInstBefore(YS, I); // (Y << C)
7111 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007112 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007113 V1->getName()+".mask");
7114 InsertNewInstBefore(XM, I); // X & (CC << C)
7115
Gabor Greifa645dd32008-05-16 19:29:10 +00007116 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007117 }
7118 }
7119
7120 // FALL THROUGH.
7121 case Instruction::Sub: {
7122 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7123 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007124 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007125 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007126 Op0BO->getOperand(1), Op1,
7127 Op0BO->getName());
7128 InsertNewInstBefore(YS, I); // (Y << C)
7129 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007130 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007131 Op0BO->getOperand(0)->getName());
7132 InsertNewInstBefore(X, I); // (X + (Y << C))
7133 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007134 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007135 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7136 }
7137
7138 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7139 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7140 match(Op0BO->getOperand(0),
7141 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7142 m_ConstantInt(CC))) && V2 == Op1 &&
7143 cast<BinaryOperator>(Op0BO->getOperand(0))
7144 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007145 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007146 Op0BO->getOperand(1), Op1,
7147 Op0BO->getName());
7148 InsertNewInstBefore(YS, I); // (Y << C)
7149 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007150 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007151 V1->getName()+".mask");
7152 InsertNewInstBefore(XM, I); // X & (CC << C)
7153
Gabor Greifa645dd32008-05-16 19:29:10 +00007154 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007155 }
7156
7157 break;
7158 }
7159 }
7160
7161
7162 // If the operand is an bitwise operator with a constant RHS, and the
7163 // shift is the only use, we can pull it out of the shift.
7164 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7165 bool isValid = true; // Valid only for And, Or, Xor
7166 bool highBitSet = false; // Transform if high bit of constant set?
7167
7168 switch (Op0BO->getOpcode()) {
7169 default: isValid = false; break; // Do not perform transform!
7170 case Instruction::Add:
7171 isValid = isLeftShift;
7172 break;
7173 case Instruction::Or:
7174 case Instruction::Xor:
7175 highBitSet = false;
7176 break;
7177 case Instruction::And:
7178 highBitSet = true;
7179 break;
7180 }
7181
7182 // If this is a signed shift right, and the high bit is modified
7183 // by the logical operation, do not perform the transformation.
7184 // The highBitSet boolean indicates the value of the high bit of
7185 // the constant which would cause it to be modified for this
7186 // operation.
7187 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007188 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007189 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007190
7191 if (isValid) {
7192 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7193
7194 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007195 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007196 InsertNewInstBefore(NewShift, I);
7197 NewShift->takeName(Op0BO);
7198
Gabor Greifa645dd32008-05-16 19:29:10 +00007199 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007200 NewRHS);
7201 }
7202 }
7203 }
7204 }
7205
7206 // Find out if this is a shift of a shift by a constant.
7207 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7208 if (ShiftOp && !ShiftOp->isShift())
7209 ShiftOp = 0;
7210
7211 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7212 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7213 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7214 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7215 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7216 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7217 Value *X = ShiftOp->getOperand(0);
7218
7219 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7220 if (AmtSum > TypeBits)
7221 AmtSum = TypeBits;
7222
7223 const IntegerType *Ty = cast<IntegerType>(I.getType());
7224
7225 // Check for (X << c1) << c2 and (X >> c1) >> c2
7226 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007227 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007228 ConstantInt::get(Ty, AmtSum));
7229 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7230 I.getOpcode() == Instruction::AShr) {
7231 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007232 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007233 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7234 I.getOpcode() == Instruction::LShr) {
7235 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7236 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007237 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007238 InsertNewInstBefore(Shift, I);
7239
7240 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007241 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007242 }
7243
7244 // Okay, if we get here, one shift must be left, and the other shift must be
7245 // right. See if the amounts are equal.
7246 if (ShiftAmt1 == ShiftAmt2) {
7247 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7248 if (I.getOpcode() == Instruction::Shl) {
7249 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007250 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007251 }
7252 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7253 if (I.getOpcode() == Instruction::LShr) {
7254 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007255 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007256 }
7257 // We can simplify ((X << C) >>s C) into a trunc + sext.
7258 // NOTE: we could do this for any C, but that would make 'unusual' integer
7259 // types. For now, just stick to ones well-supported by the code
7260 // generators.
7261 const Type *SExtType = 0;
7262 switch (Ty->getBitWidth() - ShiftAmt1) {
7263 case 1 :
7264 case 8 :
7265 case 16 :
7266 case 32 :
7267 case 64 :
7268 case 128:
7269 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7270 break;
7271 default: break;
7272 }
7273 if (SExtType) {
7274 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7275 InsertNewInstBefore(NewTrunc, I);
7276 return new SExtInst(NewTrunc, Ty);
7277 }
7278 // Otherwise, we can't handle it yet.
7279 } else if (ShiftAmt1 < ShiftAmt2) {
7280 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7281
7282 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7283 if (I.getOpcode() == Instruction::Shl) {
7284 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7285 ShiftOp->getOpcode() == Instruction::AShr);
7286 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007287 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007288 InsertNewInstBefore(Shift, I);
7289
7290 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007291 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007292 }
7293
7294 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7295 if (I.getOpcode() == Instruction::LShr) {
7296 assert(ShiftOp->getOpcode() == Instruction::Shl);
7297 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007298 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007299 InsertNewInstBefore(Shift, I);
7300
7301 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007302 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007303 }
7304
7305 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7306 } else {
7307 assert(ShiftAmt2 < ShiftAmt1);
7308 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7309
7310 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7311 if (I.getOpcode() == Instruction::Shl) {
7312 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7313 ShiftOp->getOpcode() == Instruction::AShr);
7314 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007315 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007316 ConstantInt::get(Ty, ShiftDiff));
7317 InsertNewInstBefore(Shift, I);
7318
7319 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007320 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007321 }
7322
7323 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7324 if (I.getOpcode() == Instruction::LShr) {
7325 assert(ShiftOp->getOpcode() == Instruction::Shl);
7326 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007327 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007328 InsertNewInstBefore(Shift, I);
7329
7330 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007331 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007332 }
7333
7334 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7335 }
7336 }
7337 return 0;
7338}
7339
7340
7341/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7342/// expression. If so, decompose it, returning some value X, such that Val is
7343/// X*Scale+Offset.
7344///
7345static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7346 int &Offset) {
7347 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7348 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7349 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007350 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007351 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007352 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7353 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7354 if (I->getOpcode() == Instruction::Shl) {
7355 // This is a value scaled by '1 << the shift amt'.
7356 Scale = 1U << RHS->getZExtValue();
7357 Offset = 0;
7358 return I->getOperand(0);
7359 } else if (I->getOpcode() == Instruction::Mul) {
7360 // This value is scaled by 'RHS'.
7361 Scale = RHS->getZExtValue();
7362 Offset = 0;
7363 return I->getOperand(0);
7364 } else if (I->getOpcode() == Instruction::Add) {
7365 // We have X+C. Check to see if we really have (X*C2)+C1,
7366 // where C1 is divisible by C2.
7367 unsigned SubScale;
7368 Value *SubVal =
7369 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7370 Offset += RHS->getZExtValue();
7371 Scale = SubScale;
7372 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007373 }
7374 }
7375 }
7376
7377 // Otherwise, we can't look past this.
7378 Scale = 1;
7379 Offset = 0;
7380 return Val;
7381}
7382
7383
7384/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7385/// try to eliminate the cast by moving the type information into the alloc.
7386Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7387 AllocationInst &AI) {
7388 const PointerType *PTy = cast<PointerType>(CI.getType());
7389
7390 // Remove any uses of AI that are dead.
7391 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7392
7393 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7394 Instruction *User = cast<Instruction>(*UI++);
7395 if (isInstructionTriviallyDead(User)) {
7396 while (UI != E && *UI == User)
7397 ++UI; // If this instruction uses AI more than once, don't break UI.
7398
7399 ++NumDeadInst;
7400 DOUT << "IC: DCE: " << *User;
7401 EraseInstFromFunction(*User);
7402 }
7403 }
7404
7405 // Get the type really allocated and the type casted to.
7406 const Type *AllocElTy = AI.getAllocatedType();
7407 const Type *CastElTy = PTy->getElementType();
7408 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7409
7410 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7411 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7412 if (CastElTyAlign < AllocElTyAlign) return 0;
7413
7414 // If the allocation has multiple uses, only promote it if we are strictly
7415 // increasing the alignment of the resultant allocation. If we keep it the
7416 // same, we open the door to infinite loops of various kinds.
7417 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7418
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007419 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7420 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007421 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7422
7423 // See if we can satisfy the modulus by pulling a scale out of the array
7424 // size argument.
7425 unsigned ArraySizeScale;
7426 int ArrayOffset;
7427 Value *NumElements = // See if the array size is a decomposable linear expr.
7428 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7429
7430 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7431 // do the xform.
7432 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7433 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7434
7435 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7436 Value *Amt = 0;
7437 if (Scale == 1) {
7438 Amt = NumElements;
7439 } else {
7440 // If the allocation size is constant, form a constant mul expression
7441 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7442 if (isa<ConstantInt>(NumElements))
7443 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7444 // otherwise multiply the amount and the number of elements
7445 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007446 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007447 Amt = InsertNewInstBefore(Tmp, AI);
7448 }
7449 }
7450
7451 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7452 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007453 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007454 Amt = InsertNewInstBefore(Tmp, AI);
7455 }
7456
7457 AllocationInst *New;
7458 if (isa<MallocInst>(AI))
7459 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7460 else
7461 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7462 InsertNewInstBefore(New, AI);
7463 New->takeName(&AI);
7464
7465 // If the allocation has multiple uses, insert a cast and change all things
7466 // that used it to use the new cast. This will also hack on CI, but it will
7467 // die soon.
7468 if (!AI.hasOneUse()) {
7469 AddUsesToWorkList(AI);
7470 // New is the allocation instruction, pointer typed. AI is the original
7471 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7472 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7473 InsertNewInstBefore(NewCast, AI);
7474 AI.replaceAllUsesWith(NewCast);
7475 }
7476 return ReplaceInstUsesWith(CI, New);
7477}
7478
7479/// CanEvaluateInDifferentType - Return true if we can take the specified value
7480/// and return it as type Ty without inserting any new casts and without
7481/// changing the computed value. This is used by code that tries to decide
7482/// whether promoting or shrinking integer operations to wider or smaller types
7483/// will allow us to eliminate a truncate or extend.
7484///
7485/// This is a truncation operation if Ty is smaller than V->getType(), or an
7486/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007487///
7488/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7489/// should return true if trunc(V) can be computed by computing V in the smaller
7490/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7491/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7492/// efficiently truncated.
7493///
7494/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7495/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7496/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007497bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7498 unsigned CastOpc,
7499 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007500 // We can always evaluate constants in another type.
7501 if (isa<ConstantInt>(V))
7502 return true;
7503
7504 Instruction *I = dyn_cast<Instruction>(V);
7505 if (!I) return false;
7506
7507 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7508
Chris Lattneref70bb82007-08-02 06:11:14 +00007509 // If this is an extension or truncate, we can often eliminate it.
7510 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7511 // If this is a cast from the destination type, we can trivially eliminate
7512 // it, and this will remove a cast overall.
7513 if (I->getOperand(0)->getType() == Ty) {
7514 // If the first operand is itself a cast, and is eliminable, do not count
7515 // this as an eliminable cast. We would prefer to eliminate those two
7516 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007517 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007518 ++NumCastsRemoved;
7519 return true;
7520 }
7521 }
7522
7523 // We can't extend or shrink something that has multiple uses: doing so would
7524 // require duplicating the instruction in general, which isn't profitable.
7525 if (!I->hasOneUse()) return false;
7526
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007527 switch (I->getOpcode()) {
7528 case Instruction::Add:
7529 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007530 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007531 case Instruction::And:
7532 case Instruction::Or:
7533 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007534 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007535 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7536 NumCastsRemoved) &&
7537 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7538 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007539
7540 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007541 // If we are truncating the result of this SHL, and if it's a shift of a
7542 // constant amount, we can always perform a SHL in a smaller type.
7543 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7544 uint32_t BitWidth = Ty->getBitWidth();
7545 if (BitWidth < OrigTy->getBitWidth() &&
7546 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007547 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7548 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007549 }
7550 break;
7551 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007552 // If this is a truncate of a logical shr, we can truncate it to a smaller
7553 // lshr iff we know that the bits we would otherwise be shifting in are
7554 // already zeros.
7555 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7556 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7557 uint32_t BitWidth = Ty->getBitWidth();
7558 if (BitWidth < OrigBitWidth &&
7559 MaskedValueIsZero(I->getOperand(0),
7560 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7561 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007562 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7563 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007564 }
7565 }
7566 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007567 case Instruction::ZExt:
7568 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007569 case Instruction::Trunc:
7570 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007571 // can safely replace it. Note that replacing it does not reduce the number
7572 // of casts in the input.
7573 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007574 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007575 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007576 case Instruction::Select: {
7577 SelectInst *SI = cast<SelectInst>(I);
7578 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7579 NumCastsRemoved) &&
7580 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7581 NumCastsRemoved);
7582 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007583 case Instruction::PHI: {
7584 // We can change a phi if we can change all operands.
7585 PHINode *PN = cast<PHINode>(I);
7586 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7587 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7588 NumCastsRemoved))
7589 return false;
7590 return true;
7591 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007592 default:
7593 // TODO: Can handle more cases here.
7594 break;
7595 }
7596
7597 return false;
7598}
7599
7600/// EvaluateInDifferentType - Given an expression that
7601/// CanEvaluateInDifferentType returns true for, actually insert the code to
7602/// evaluate the expression.
7603Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7604 bool isSigned) {
7605 if (Constant *C = dyn_cast<Constant>(V))
7606 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7607
7608 // Otherwise, it must be an instruction.
7609 Instruction *I = cast<Instruction>(V);
7610 Instruction *Res = 0;
7611 switch (I->getOpcode()) {
7612 case Instruction::Add:
7613 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007614 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007615 case Instruction::And:
7616 case Instruction::Or:
7617 case Instruction::Xor:
7618 case Instruction::AShr:
7619 case Instruction::LShr:
7620 case Instruction::Shl: {
7621 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7622 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007623 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007624 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007625 break;
7626 }
7627 case Instruction::Trunc:
7628 case Instruction::ZExt:
7629 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007630 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007631 // just return the source. There's no need to insert it because it is not
7632 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007633 if (I->getOperand(0)->getType() == Ty)
7634 return I->getOperand(0);
7635
Chris Lattner4200c2062008-06-18 04:00:49 +00007636 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007637 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007638 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007639 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007640 case Instruction::Select: {
7641 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7642 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7643 Res = SelectInst::Create(I->getOperand(0), True, False);
7644 break;
7645 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007646 case Instruction::PHI: {
7647 PHINode *OPN = cast<PHINode>(I);
7648 PHINode *NPN = PHINode::Create(Ty);
7649 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7650 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7651 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7652 }
7653 Res = NPN;
7654 break;
7655 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007656 default:
7657 // TODO: Can handle more cases here.
7658 assert(0 && "Unreachable!");
7659 break;
7660 }
7661
Chris Lattner4200c2062008-06-18 04:00:49 +00007662 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007663 return InsertNewInstBefore(Res, *I);
7664}
7665
7666/// @brief Implement the transforms common to all CastInst visitors.
7667Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7668 Value *Src = CI.getOperand(0);
7669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007670 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7671 // eliminate it now.
7672 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7673 if (Instruction::CastOps opc =
7674 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7675 // The first cast (CSrc) is eliminable so we need to fix up or replace
7676 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007677 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007678 }
7679 }
7680
7681 // If we are casting a select then fold the cast into the select
7682 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7683 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7684 return NV;
7685
7686 // If we are casting a PHI then fold the cast into the PHI
7687 if (isa<PHINode>(Src))
7688 if (Instruction *NV = FoldOpIntoPhi(CI))
7689 return NV;
7690
7691 return 0;
7692}
7693
7694/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7695Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7696 Value *Src = CI.getOperand(0);
7697
7698 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7699 // If casting the result of a getelementptr instruction with no offset, turn
7700 // this into a cast of the original pointer!
7701 if (GEP->hasAllZeroIndices()) {
7702 // Changing the cast operand is usually not a good idea but it is safe
7703 // here because the pointer operand is being replaced with another
7704 // pointer operand so the opcode doesn't need to change.
7705 AddToWorkList(GEP);
7706 CI.setOperand(0, GEP->getOperand(0));
7707 return &CI;
7708 }
7709
7710 // If the GEP has a single use, and the base pointer is a bitcast, and the
7711 // GEP computes a constant offset, see if we can convert these three
7712 // instructions into fewer. This typically happens with unions and other
7713 // non-type-safe code.
7714 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7715 if (GEP->hasAllConstantIndices()) {
7716 // We are guaranteed to get a constant from EmitGEPOffset.
7717 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7718 int64_t Offset = OffsetV->getSExtValue();
7719
7720 // Get the base pointer input of the bitcast, and the type it points to.
7721 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7722 const Type *GEPIdxTy =
7723 cast<PointerType>(OrigBase->getType())->getElementType();
7724 if (GEPIdxTy->isSized()) {
7725 SmallVector<Value*, 8> NewIndices;
7726
7727 // Start with the index over the outer type. Note that the type size
7728 // might be zero (even if the offset isn't zero) if the indexed type
7729 // is something like [0 x {int, int}]
7730 const Type *IntPtrTy = TD->getIntPtrType();
7731 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007732 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007733 FirstIdx = Offset/TySize;
7734 Offset %= TySize;
7735
7736 // Handle silly modulus not returning values values [0..TySize).
7737 if (Offset < 0) {
7738 --FirstIdx;
7739 Offset += TySize;
7740 assert(Offset >= 0);
7741 }
7742 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7743 }
7744
7745 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7746
7747 // Index into the types. If we fail, set OrigBase to null.
7748 while (Offset) {
7749 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7750 const StructLayout *SL = TD->getStructLayout(STy);
7751 if (Offset < (int64_t)SL->getSizeInBytes()) {
7752 unsigned Elt = SL->getElementContainingOffset(Offset);
7753 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7754
7755 Offset -= SL->getElementOffset(Elt);
7756 GEPIdxTy = STy->getElementType(Elt);
7757 } else {
7758 // Otherwise, we can't index into this, bail out.
7759 Offset = 0;
7760 OrigBase = 0;
7761 }
7762 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7763 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007764 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007765 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7766 Offset %= EltSize;
7767 } else {
7768 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7769 }
7770 GEPIdxTy = STy->getElementType();
7771 } else {
7772 // Otherwise, we can't index into this, bail out.
7773 Offset = 0;
7774 OrigBase = 0;
7775 }
7776 }
7777 if (OrigBase) {
7778 // If we were able to index down into an element, create the GEP
7779 // and bitcast the result. This eliminates one bitcast, potentially
7780 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007781 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7782 NewIndices.begin(),
7783 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007784 InsertNewInstBefore(NGEP, CI);
7785 NGEP->takeName(GEP);
7786
7787 if (isa<BitCastInst>(CI))
7788 return new BitCastInst(NGEP, CI.getType());
7789 assert(isa<PtrToIntInst>(CI));
7790 return new PtrToIntInst(NGEP, CI.getType());
7791 }
7792 }
7793 }
7794 }
7795 }
7796
7797 return commonCastTransforms(CI);
7798}
7799
7800
7801
7802/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7803/// integer types. This function implements the common transforms for all those
7804/// cases.
7805/// @brief Implement the transforms common to CastInst with integer operands
7806Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7807 if (Instruction *Result = commonCastTransforms(CI))
7808 return Result;
7809
7810 Value *Src = CI.getOperand(0);
7811 const Type *SrcTy = Src->getType();
7812 const Type *DestTy = CI.getType();
7813 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7814 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7815
7816 // See if we can simplify any instructions used by the LHS whose sole
7817 // purpose is to compute bits we don't care about.
7818 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7819 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7820 KnownZero, KnownOne))
7821 return &CI;
7822
7823 // If the source isn't an instruction or has more than one use then we
7824 // can't do anything more.
7825 Instruction *SrcI = dyn_cast<Instruction>(Src);
7826 if (!SrcI || !Src->hasOneUse())
7827 return 0;
7828
7829 // Attempt to propagate the cast into the instruction for int->int casts.
7830 int NumCastsRemoved = 0;
7831 if (!isa<BitCastInst>(CI) &&
7832 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007833 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007834 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007835 // eliminates the cast, so it is always a win. If this is a zero-extension,
7836 // we need to do an AND to maintain the clear top-part of the computation,
7837 // so we require that the input have eliminated at least one cast. If this
7838 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007839 // require that two casts have been eliminated.
7840 bool DoXForm;
7841 switch (CI.getOpcode()) {
7842 default:
7843 // All the others use floating point so we shouldn't actually
7844 // get here because of the check above.
7845 assert(0 && "Unknown cast type");
7846 case Instruction::Trunc:
7847 DoXForm = true;
7848 break;
7849 case Instruction::ZExt:
7850 DoXForm = NumCastsRemoved >= 1;
7851 break;
7852 case Instruction::SExt:
7853 DoXForm = NumCastsRemoved >= 2;
7854 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007855 }
7856
7857 if (DoXForm) {
7858 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7859 CI.getOpcode() == Instruction::SExt);
7860 assert(Res->getType() == DestTy);
7861 switch (CI.getOpcode()) {
7862 default: assert(0 && "Unknown cast type!");
7863 case Instruction::Trunc:
7864 case Instruction::BitCast:
7865 // Just replace this cast with the result.
7866 return ReplaceInstUsesWith(CI, Res);
7867 case Instruction::ZExt: {
7868 // We need to emit an AND to clear the high bits.
7869 assert(SrcBitSize < DestBitSize && "Not a zext?");
7870 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7871 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007872 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007873 }
7874 case Instruction::SExt:
7875 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007876 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007877 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7878 CI), DestTy);
7879 }
7880 }
7881 }
7882
7883 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7884 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7885
7886 switch (SrcI->getOpcode()) {
7887 case Instruction::Add:
7888 case Instruction::Mul:
7889 case Instruction::And:
7890 case Instruction::Or:
7891 case Instruction::Xor:
7892 // If we are discarding information, rewrite.
7893 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7894 // Don't insert two casts if they cannot be eliminated. We allow
7895 // two casts to be inserted if the sizes are the same. This could
7896 // only be converting signedness, which is a noop.
7897 if (DestBitSize == SrcBitSize ||
7898 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7899 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7900 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007901 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7902 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007903 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007904 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7905 }
7906 }
7907
7908 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7909 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7910 SrcI->getOpcode() == Instruction::Xor &&
7911 Op1 == ConstantInt::getTrue() &&
7912 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007913 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007914 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007915 }
7916 break;
7917 case Instruction::SDiv:
7918 case Instruction::UDiv:
7919 case Instruction::SRem:
7920 case Instruction::URem:
7921 // If we are just changing the sign, rewrite.
7922 if (DestBitSize == SrcBitSize) {
7923 // Don't insert two casts if they cannot be eliminated. We allow
7924 // two casts to be inserted if the sizes are the same. This could
7925 // only be converting signedness, which is a noop.
7926 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7927 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007928 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7929 Op0, DestTy, *SrcI);
7930 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7931 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007932 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007933 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7934 }
7935 }
7936 break;
7937
7938 case Instruction::Shl:
7939 // Allow changing the sign of the source operand. Do not allow
7940 // changing the size of the shift, UNLESS the shift amount is a
7941 // constant. We must not change variable sized shifts to a smaller
7942 // size, because it is undefined to shift more bits out than exist
7943 // in the value.
7944 if (DestBitSize == SrcBitSize ||
7945 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7946 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7947 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007948 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7949 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007950 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007951 }
7952 break;
7953 case Instruction::AShr:
7954 // If this is a signed shr, and if all bits shifted in are about to be
7955 // truncated off, turn it into an unsigned shr to allow greater
7956 // simplifications.
7957 if (DestBitSize < SrcBitSize &&
7958 isa<ConstantInt>(Op1)) {
7959 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7960 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7961 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007962 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007963 }
7964 }
7965 break;
7966 }
7967 return 0;
7968}
7969
7970Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7971 if (Instruction *Result = commonIntCastTransforms(CI))
7972 return Result;
7973
7974 Value *Src = CI.getOperand(0);
7975 const Type *Ty = CI.getType();
7976 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7977 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7978
7979 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7980 switch (SrcI->getOpcode()) {
7981 default: break;
7982 case Instruction::LShr:
7983 // We can shrink lshr to something smaller if we know the bits shifted in
7984 // are already zeros.
7985 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7986 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
7987
7988 // Get a mask for the bits shifting in.
7989 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
7990 Value* SrcIOp0 = SrcI->getOperand(0);
7991 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
7992 if (ShAmt >= DestBitWidth) // All zeros.
7993 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7994
7995 // Okay, we can shrink this. Truncate the input, then return a new
7996 // shift.
7997 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7998 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7999 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008000 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008001 }
8002 } else { // This is a variable shr.
8003
8004 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
8005 // more LLVM instructions, but allows '1 << Y' to be hoisted if
8006 // loop-invariant and CSE'd.
8007 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
8008 Value *One = ConstantInt::get(SrcI->getType(), 1);
8009
8010 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008011 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008012 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008013 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008014 SrcI->getOperand(0),
8015 "tmp"), CI);
8016 Value *Zero = Constant::getNullValue(V->getType());
8017 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
8018 }
8019 }
8020 break;
8021 }
8022 }
8023
8024 return 0;
8025}
8026
Evan Chenge3779cf2008-03-24 00:21:34 +00008027/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8028/// in order to eliminate the icmp.
8029Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8030 bool DoXform) {
8031 // If we are just checking for a icmp eq of a single bit and zext'ing it
8032 // to an integer, then shift the bit to the appropriate place and then
8033 // cast to integer to avoid the comparison.
8034 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8035 const APInt &Op1CV = Op1C->getValue();
8036
8037 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8038 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8039 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8040 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8041 if (!DoXform) return ICI;
8042
8043 Value *In = ICI->getOperand(0);
8044 Value *Sh = ConstantInt::get(In->getType(),
8045 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008046 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008047 In->getName()+".lobit"),
8048 CI);
8049 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008050 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008051 false/*ZExt*/, "tmp", &CI);
8052
8053 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8054 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008055 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008056 In->getName()+".not"),
8057 CI);
8058 }
8059
8060 return ReplaceInstUsesWith(CI, In);
8061 }
8062
8063
8064
8065 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8066 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8067 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8068 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8069 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8070 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8071 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8072 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8073 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8074 // This only works for EQ and NE
8075 ICI->isEquality()) {
8076 // If Op1C some other power of two, convert:
8077 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8078 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8079 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8080 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8081
8082 APInt KnownZeroMask(~KnownZero);
8083 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8084 if (!DoXform) return ICI;
8085
8086 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8087 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8088 // (X&4) == 2 --> false
8089 // (X&4) != 2 --> true
8090 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8091 Res = ConstantExpr::getZExt(Res, CI.getType());
8092 return ReplaceInstUsesWith(CI, Res);
8093 }
8094
8095 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8096 Value *In = ICI->getOperand(0);
8097 if (ShiftAmt) {
8098 // Perform a logical shr by shiftamt.
8099 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008100 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008101 ConstantInt::get(In->getType(), ShiftAmt),
8102 In->getName()+".lobit"), CI);
8103 }
8104
8105 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8106 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008107 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008108 InsertNewInstBefore(cast<Instruction>(In), CI);
8109 }
8110
8111 if (CI.getType() == In->getType())
8112 return ReplaceInstUsesWith(CI, In);
8113 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008114 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008115 }
8116 }
8117 }
8118
8119 return 0;
8120}
8121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008122Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8123 // If one of the common conversion will work ..
8124 if (Instruction *Result = commonIntCastTransforms(CI))
8125 return Result;
8126
8127 Value *Src = CI.getOperand(0);
8128
8129 // If this is a cast of a cast
8130 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8131 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8132 // types and if the sizes are just right we can convert this into a logical
8133 // 'and' which will be much cheaper than the pair of casts.
8134 if (isa<TruncInst>(CSrc)) {
8135 // Get the sizes of the types involved
8136 Value *A = CSrc->getOperand(0);
8137 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8138 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8139 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8140 // If we're actually extending zero bits and the trunc is a no-op
8141 if (MidSize < DstSize && SrcSize == DstSize) {
8142 // Replace both of the casts with an And of the type mask.
8143 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8144 Constant *AndConst = ConstantInt::get(AndValue);
8145 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008146 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008147 // Unfortunately, if the type changed, we need to cast it back.
8148 if (And->getType() != CI.getType()) {
8149 And->setName(CSrc->getName()+".mask");
8150 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008151 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008152 }
8153 return And;
8154 }
8155 }
8156 }
8157
Evan Chenge3779cf2008-03-24 00:21:34 +00008158 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8159 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008160
Evan Chenge3779cf2008-03-24 00:21:34 +00008161 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8162 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8163 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8164 // of the (zext icmp) will be transformed.
8165 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8166 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8167 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8168 (transformZExtICmp(LHS, CI, false) ||
8169 transformZExtICmp(RHS, CI, false))) {
8170 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8171 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008172 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008173 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008174 }
8175
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008176 return 0;
8177}
8178
8179Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8180 if (Instruction *I = commonIntCastTransforms(CI))
8181 return I;
8182
8183 Value *Src = CI.getOperand(0);
8184
Dan Gohman35b76162008-10-30 20:40:10 +00008185 // Canonicalize sign-extend from i1 to a select.
8186 if (Src->getType() == Type::Int1Ty)
8187 return SelectInst::Create(Src,
8188 ConstantInt::getAllOnesValue(CI.getType()),
8189 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008190
8191 // See if the value being truncated is already sign extended. If so, just
8192 // eliminate the trunc/sext pair.
8193 if (getOpcode(Src) == Instruction::Trunc) {
8194 Value *Op = cast<User>(Src)->getOperand(0);
8195 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8196 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8197 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8198 unsigned NumSignBits = ComputeNumSignBits(Op);
8199
8200 if (OpBits == DestBits) {
8201 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8202 // bits, it is already ready.
8203 if (NumSignBits > DestBits-MidBits)
8204 return ReplaceInstUsesWith(CI, Op);
8205 } else if (OpBits < DestBits) {
8206 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8207 // bits, just sext from i32.
8208 if (NumSignBits > OpBits-MidBits)
8209 return new SExtInst(Op, CI.getType(), "tmp");
8210 } else {
8211 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8212 // bits, just truncate to i32.
8213 if (NumSignBits > OpBits-MidBits)
8214 return new TruncInst(Op, CI.getType(), "tmp");
8215 }
8216 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008217
8218 // If the input is a shl/ashr pair of a same constant, then this is a sign
8219 // extension from a smaller value. If we could trust arbitrary bitwidth
8220 // integers, we could turn this into a truncate to the smaller bit and then
8221 // use a sext for the whole extension. Since we don't, look deeper and check
8222 // for a truncate. If the source and dest are the same type, eliminate the
8223 // trunc and extend and just do shifts. For example, turn:
8224 // %a = trunc i32 %i to i8
8225 // %b = shl i8 %a, 6
8226 // %c = ashr i8 %b, 6
8227 // %d = sext i8 %c to i32
8228 // into:
8229 // %a = shl i32 %i, 30
8230 // %d = ashr i32 %a, 30
8231 Value *A = 0;
8232 ConstantInt *BA = 0, *CA = 0;
8233 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8234 m_ConstantInt(CA))) &&
8235 BA == CA && isa<TruncInst>(A)) {
8236 Value *I = cast<TruncInst>(A)->getOperand(0);
8237 if (I->getType() == CI.getType()) {
8238 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8239 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8240 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8241 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8242 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8243 CI.getName()), CI);
8244 return BinaryOperator::CreateAShr(I, ShAmtV);
8245 }
8246 }
8247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008248 return 0;
8249}
8250
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008251/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8252/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008253static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008254 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008255 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008256 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8257 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008258 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008259 return 0;
8260}
8261
8262/// LookThroughFPExtensions - If this is an fp extension instruction, look
8263/// through it until we get the source value.
8264static Value *LookThroughFPExtensions(Value *V) {
8265 if (Instruction *I = dyn_cast<Instruction>(V))
8266 if (I->getOpcode() == Instruction::FPExt)
8267 return LookThroughFPExtensions(I->getOperand(0));
8268
8269 // If this value is a constant, return the constant in the smallest FP type
8270 // that can accurately represent it. This allows us to turn
8271 // (float)((double)X+2.0) into x+2.0f.
8272 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8273 if (CFP->getType() == Type::PPC_FP128Ty)
8274 return V; // No constant folding of this.
8275 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008276 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008277 return V;
8278 if (CFP->getType() == Type::DoubleTy)
8279 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008280 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008281 return V;
8282 // Don't try to shrink to various long double types.
8283 }
8284
8285 return V;
8286}
8287
8288Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8289 if (Instruction *I = commonCastTransforms(CI))
8290 return I;
8291
8292 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8293 // smaller than the destination type, we can eliminate the truncate by doing
8294 // the add as the smaller type. This applies to add/sub/mul/div as well as
8295 // many builtins (sqrt, etc).
8296 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8297 if (OpI && OpI->hasOneUse()) {
8298 switch (OpI->getOpcode()) {
8299 default: break;
8300 case Instruction::Add:
8301 case Instruction::Sub:
8302 case Instruction::Mul:
8303 case Instruction::FDiv:
8304 case Instruction::FRem:
8305 const Type *SrcTy = OpI->getType();
8306 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8307 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8308 if (LHSTrunc->getType() != SrcTy &&
8309 RHSTrunc->getType() != SrcTy) {
8310 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8311 // If the source types were both smaller than the destination type of
8312 // the cast, do this xform.
8313 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8314 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8315 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8316 CI.getType(), CI);
8317 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8318 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008319 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008320 }
8321 }
8322 break;
8323 }
8324 }
8325 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008326}
8327
8328Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8329 return commonCastTransforms(CI);
8330}
8331
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008332Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008333 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8334 if (OpI == 0)
8335 return commonCastTransforms(FI);
8336
8337 // fptoui(uitofp(X)) --> X
8338 // fptoui(sitofp(X)) --> X
8339 // This is safe if the intermediate type has enough bits in its mantissa to
8340 // accurately represent all values of X. For example, do not do this with
8341 // i64->float->i64. This is also safe for sitofp case, because any negative
8342 // 'X' value would cause an undefined result for the fptoui.
8343 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8344 OpI->getOperand(0)->getType() == FI.getType() &&
8345 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8346 OpI->getType()->getFPMantissaWidth())
8347 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008348
8349 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008350}
8351
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008352Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008353 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8354 if (OpI == 0)
8355 return commonCastTransforms(FI);
8356
8357 // fptosi(sitofp(X)) --> X
8358 // fptosi(uitofp(X)) --> X
8359 // This is safe if the intermediate type has enough bits in its mantissa to
8360 // accurately represent all values of X. For example, do not do this with
8361 // i64->float->i64. This is also safe for sitofp case, because any negative
8362 // 'X' value would cause an undefined result for the fptoui.
8363 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8364 OpI->getOperand(0)->getType() == FI.getType() &&
8365 (int)FI.getType()->getPrimitiveSizeInBits() <=
8366 OpI->getType()->getFPMantissaWidth())
8367 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008368
8369 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008370}
8371
8372Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8373 return commonCastTransforms(CI);
8374}
8375
8376Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8377 return commonCastTransforms(CI);
8378}
8379
8380Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8381 return commonPointerCastTransforms(CI);
8382}
8383
Chris Lattner7c1626482008-01-08 07:23:51 +00008384Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8385 if (Instruction *I = commonCastTransforms(CI))
8386 return I;
8387
8388 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8389 if (!DestPointee->isSized()) return 0;
8390
8391 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8392 ConstantInt *Cst;
8393 Value *X;
8394 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8395 m_ConstantInt(Cst)))) {
8396 // If the source and destination operands have the same type, see if this
8397 // is a single-index GEP.
8398 if (X->getType() == CI.getType()) {
8399 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008400 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008401
8402 // Convert the constant to intptr type.
8403 APInt Offset = Cst->getValue();
8404 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8405
8406 // If Offset is evenly divisible by Size, we can do this xform.
8407 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8408 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008409 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008410 }
8411 }
8412 // TODO: Could handle other cases, e.g. where add is indexing into field of
8413 // struct etc.
8414 } else if (CI.getOperand(0)->hasOneUse() &&
8415 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8416 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8417 // "inttoptr+GEP" instead of "add+intptr".
8418
8419 // Get the size of the pointee type.
8420 uint64_t Size = TD->getABITypeSize(DestPointee);
8421
8422 // Convert the constant to intptr type.
8423 APInt Offset = Cst->getValue();
8424 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8425
8426 // If Offset is evenly divisible by Size, we can do this xform.
8427 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8428 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8429
8430 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8431 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008432 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008433 }
8434 }
8435 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008436}
8437
8438Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8439 // If the operands are integer typed then apply the integer transforms,
8440 // otherwise just apply the common ones.
8441 Value *Src = CI.getOperand(0);
8442 const Type *SrcTy = Src->getType();
8443 const Type *DestTy = CI.getType();
8444
8445 if (SrcTy->isInteger() && DestTy->isInteger()) {
8446 if (Instruction *Result = commonIntCastTransforms(CI))
8447 return Result;
8448 } else if (isa<PointerType>(SrcTy)) {
8449 if (Instruction *I = commonPointerCastTransforms(CI))
8450 return I;
8451 } else {
8452 if (Instruction *Result = commonCastTransforms(CI))
8453 return Result;
8454 }
8455
8456
8457 // Get rid of casts from one type to the same type. These are useless and can
8458 // be replaced by the operand.
8459 if (DestTy == Src->getType())
8460 return ReplaceInstUsesWith(CI, Src);
8461
8462 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8463 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8464 const Type *DstElTy = DstPTy->getElementType();
8465 const Type *SrcElTy = SrcPTy->getElementType();
8466
Nate Begemandf5b3612008-03-31 00:22:16 +00008467 // If the address spaces don't match, don't eliminate the bitcast, which is
8468 // required for changing types.
8469 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8470 return 0;
8471
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008472 // If we are casting a malloc or alloca to a pointer to a type of the same
8473 // size, rewrite the allocation instruction to allocate the "right" type.
8474 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8475 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8476 return V;
8477
8478 // If the source and destination are pointers, and this cast is equivalent
8479 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8480 // This can enhance SROA and other transforms that want type-safe pointers.
8481 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8482 unsigned NumZeros = 0;
8483 while (SrcElTy != DstElTy &&
8484 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8485 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8486 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8487 ++NumZeros;
8488 }
8489
8490 // If we found a path from the src to dest, create the getelementptr now.
8491 if (SrcElTy == DstElTy) {
8492 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008493 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8494 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008495 }
8496 }
8497
8498 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8499 if (SVI->hasOneUse()) {
8500 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8501 // a bitconvert to a vector with the same # elts.
8502 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008503 cast<VectorType>(DestTy)->getNumElements() ==
8504 SVI->getType()->getNumElements() &&
8505 SVI->getType()->getNumElements() ==
8506 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008507 CastInst *Tmp;
8508 // If either of the operands is a cast from CI.getType(), then
8509 // evaluating the shuffle in the casted destination's type will allow
8510 // us to eliminate at least one cast.
8511 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8512 Tmp->getOperand(0)->getType() == DestTy) ||
8513 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8514 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008515 Value *LHS = InsertCastBefore(Instruction::BitCast,
8516 SVI->getOperand(0), DestTy, CI);
8517 Value *RHS = InsertCastBefore(Instruction::BitCast,
8518 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008519 // Return a new shuffle vector. Use the same element ID's, as we
8520 // know the vector types match #elts.
8521 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8522 }
8523 }
8524 }
8525 }
8526 return 0;
8527}
8528
8529/// GetSelectFoldableOperands - We want to turn code that looks like this:
8530/// %C = or %A, %B
8531/// %D = select %cond, %C, %A
8532/// into:
8533/// %C = select %cond, %B, 0
8534/// %D = or %A, %C
8535///
8536/// Assuming that the specified instruction is an operand to the select, return
8537/// a bitmask indicating which operands of this instruction are foldable if they
8538/// equal the other incoming value of the select.
8539///
8540static unsigned GetSelectFoldableOperands(Instruction *I) {
8541 switch (I->getOpcode()) {
8542 case Instruction::Add:
8543 case Instruction::Mul:
8544 case Instruction::And:
8545 case Instruction::Or:
8546 case Instruction::Xor:
8547 return 3; // Can fold through either operand.
8548 case Instruction::Sub: // Can only fold on the amount subtracted.
8549 case Instruction::Shl: // Can only fold on the shift amount.
8550 case Instruction::LShr:
8551 case Instruction::AShr:
8552 return 1;
8553 default:
8554 return 0; // Cannot fold
8555 }
8556}
8557
8558/// GetSelectFoldableConstant - For the same transformation as the previous
8559/// function, return the identity constant that goes into the select.
8560static Constant *GetSelectFoldableConstant(Instruction *I) {
8561 switch (I->getOpcode()) {
8562 default: assert(0 && "This cannot happen!"); abort();
8563 case Instruction::Add:
8564 case Instruction::Sub:
8565 case Instruction::Or:
8566 case Instruction::Xor:
8567 case Instruction::Shl:
8568 case Instruction::LShr:
8569 case Instruction::AShr:
8570 return Constant::getNullValue(I->getType());
8571 case Instruction::And:
8572 return Constant::getAllOnesValue(I->getType());
8573 case Instruction::Mul:
8574 return ConstantInt::get(I->getType(), 1);
8575 }
8576}
8577
8578/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8579/// have the same opcode and only one use each. Try to simplify this.
8580Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8581 Instruction *FI) {
8582 if (TI->getNumOperands() == 1) {
8583 // If this is a non-volatile load or a cast from the same type,
8584 // merge.
8585 if (TI->isCast()) {
8586 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8587 return 0;
8588 } else {
8589 return 0; // unknown unary op.
8590 }
8591
8592 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008593 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8594 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008595 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008596 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008597 TI->getType());
8598 }
8599
8600 // Only handle binary operators here.
8601 if (!isa<BinaryOperator>(TI))
8602 return 0;
8603
8604 // Figure out if the operations have any operands in common.
8605 Value *MatchOp, *OtherOpT, *OtherOpF;
8606 bool MatchIsOpZero;
8607 if (TI->getOperand(0) == FI->getOperand(0)) {
8608 MatchOp = TI->getOperand(0);
8609 OtherOpT = TI->getOperand(1);
8610 OtherOpF = FI->getOperand(1);
8611 MatchIsOpZero = true;
8612 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8613 MatchOp = TI->getOperand(1);
8614 OtherOpT = TI->getOperand(0);
8615 OtherOpF = FI->getOperand(0);
8616 MatchIsOpZero = false;
8617 } else if (!TI->isCommutative()) {
8618 return 0;
8619 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8620 MatchOp = TI->getOperand(0);
8621 OtherOpT = TI->getOperand(1);
8622 OtherOpF = FI->getOperand(0);
8623 MatchIsOpZero = true;
8624 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8625 MatchOp = TI->getOperand(1);
8626 OtherOpT = TI->getOperand(0);
8627 OtherOpF = FI->getOperand(1);
8628 MatchIsOpZero = true;
8629 } else {
8630 return 0;
8631 }
8632
8633 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008634 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8635 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008636 InsertNewInstBefore(NewSI, SI);
8637
8638 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8639 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008640 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008641 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008642 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008643 }
8644 assert(0 && "Shouldn't get here");
8645 return 0;
8646}
8647
Dan Gohman58c09632008-09-16 18:46:06 +00008648/// visitSelectInstWithICmp - Visit a SelectInst that has an
8649/// ICmpInst as its first operand.
8650///
8651Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8652 ICmpInst *ICI) {
8653 bool Changed = false;
8654 ICmpInst::Predicate Pred = ICI->getPredicate();
8655 Value *CmpLHS = ICI->getOperand(0);
8656 Value *CmpRHS = ICI->getOperand(1);
8657 Value *TrueVal = SI.getTrueValue();
8658 Value *FalseVal = SI.getFalseValue();
8659
8660 // Check cases where the comparison is with a constant that
8661 // can be adjusted to fit the min/max idiom. We may edit ICI in
8662 // place here, so make sure the select is the only user.
8663 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008664 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008665 switch (Pred) {
8666 default: break;
8667 case ICmpInst::ICMP_ULT:
8668 case ICmpInst::ICMP_SLT: {
8669 // X < MIN ? T : F --> F
8670 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8671 return ReplaceInstUsesWith(SI, FalseVal);
8672 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8673 Constant *AdjustedRHS = SubOne(CI);
8674 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8675 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8676 Pred = ICmpInst::getSwappedPredicate(Pred);
8677 CmpRHS = AdjustedRHS;
8678 std::swap(FalseVal, TrueVal);
8679 ICI->setPredicate(Pred);
8680 ICI->setOperand(1, CmpRHS);
8681 SI.setOperand(1, TrueVal);
8682 SI.setOperand(2, FalseVal);
8683 Changed = true;
8684 }
8685 break;
8686 }
8687 case ICmpInst::ICMP_UGT:
8688 case ICmpInst::ICMP_SGT: {
8689 // X > MAX ? T : F --> F
8690 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8691 return ReplaceInstUsesWith(SI, FalseVal);
8692 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8693 Constant *AdjustedRHS = AddOne(CI);
8694 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8695 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8696 Pred = ICmpInst::getSwappedPredicate(Pred);
8697 CmpRHS = AdjustedRHS;
8698 std::swap(FalseVal, TrueVal);
8699 ICI->setPredicate(Pred);
8700 ICI->setOperand(1, CmpRHS);
8701 SI.setOperand(1, TrueVal);
8702 SI.setOperand(2, FalseVal);
8703 Changed = true;
8704 }
8705 break;
8706 }
8707 }
8708
Dan Gohman35b76162008-10-30 20:40:10 +00008709 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8710 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008711 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8712 if (match(TrueVal, m_ConstantInt(-1)) &&
8713 match(FalseVal, m_ConstantInt(0)))
8714 Pred = ICI->getPredicate();
8715 else if (match(TrueVal, m_ConstantInt(0)) &&
8716 match(FalseVal, m_ConstantInt(-1)))
8717 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8718
Dan Gohman35b76162008-10-30 20:40:10 +00008719 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8720 // If we are just checking for a icmp eq of a single bit and zext'ing it
8721 // to an integer, then shift the bit to the appropriate place and then
8722 // cast to integer to avoid the comparison.
8723 const APInt &Op1CV = CI->getValue();
8724
8725 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8726 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8727 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008728 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008729 Value *In = ICI->getOperand(0);
8730 Value *Sh = ConstantInt::get(In->getType(),
8731 In->getType()->getPrimitiveSizeInBits()-1);
8732 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8733 In->getName()+".lobit"),
8734 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008735 if (In->getType() != SI.getType())
8736 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008737 true/*SExt*/, "tmp", ICI);
8738
8739 if (Pred == ICmpInst::ICMP_SGT)
8740 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8741 In->getName()+".not"), *ICI);
8742
8743 return ReplaceInstUsesWith(SI, In);
8744 }
8745 }
8746 }
8747
Dan Gohman58c09632008-09-16 18:46:06 +00008748 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8749 // Transform (X == Y) ? X : Y -> Y
8750 if (Pred == ICmpInst::ICMP_EQ)
8751 return ReplaceInstUsesWith(SI, FalseVal);
8752 // Transform (X != Y) ? X : Y -> X
8753 if (Pred == ICmpInst::ICMP_NE)
8754 return ReplaceInstUsesWith(SI, TrueVal);
8755 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8756
8757 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8758 // Transform (X == Y) ? Y : X -> X
8759 if (Pred == ICmpInst::ICMP_EQ)
8760 return ReplaceInstUsesWith(SI, FalseVal);
8761 // Transform (X != Y) ? Y : X -> Y
8762 if (Pred == ICmpInst::ICMP_NE)
8763 return ReplaceInstUsesWith(SI, TrueVal);
8764 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8765 }
8766
8767 /// NOTE: if we wanted to, this is where to detect integer ABS
8768
8769 return Changed ? &SI : 0;
8770}
8771
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008772Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8773 Value *CondVal = SI.getCondition();
8774 Value *TrueVal = SI.getTrueValue();
8775 Value *FalseVal = SI.getFalseValue();
8776
8777 // select true, X, Y -> X
8778 // select false, X, Y -> Y
8779 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8780 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8781
8782 // select C, X, X -> X
8783 if (TrueVal == FalseVal)
8784 return ReplaceInstUsesWith(SI, TrueVal);
8785
8786 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8787 return ReplaceInstUsesWith(SI, FalseVal);
8788 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8789 return ReplaceInstUsesWith(SI, TrueVal);
8790 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8791 if (isa<Constant>(TrueVal))
8792 return ReplaceInstUsesWith(SI, TrueVal);
8793 else
8794 return ReplaceInstUsesWith(SI, FalseVal);
8795 }
8796
8797 if (SI.getType() == Type::Int1Ty) {
8798 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8799 if (C->getZExtValue()) {
8800 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008801 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008802 } else {
8803 // Change: A = select B, false, C --> A = and !B, C
8804 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008805 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008806 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008807 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008808 }
8809 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8810 if (C->getZExtValue() == false) {
8811 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008812 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008813 } else {
8814 // Change: A = select B, C, true --> A = or !B, C
8815 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008816 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008817 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008818 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008819 }
8820 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008821
8822 // select a, b, a -> a&b
8823 // select a, a, b -> a|b
8824 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008825 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008826 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008827 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008828 }
8829
8830 // Selecting between two integer constants?
8831 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8832 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8833 // select C, 1, 0 -> zext C to int
8834 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008835 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008836 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8837 // select C, 0, 1 -> zext !C to int
8838 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008839 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008840 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008841 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008842 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008843
8844 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8845
8846 // (x <s 0) ? -1 : 0 -> ashr x, 31
8847 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8848 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8849 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8850 // The comparison constant and the result are not neccessarily the
8851 // same width. Make an all-ones value by inserting a AShr.
8852 Value *X = IC->getOperand(0);
8853 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8854 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008855 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008856 ShAmt, "ones");
8857 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008858
8859 // Then cast to the appropriate width.
8860 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008861 }
8862 }
8863
8864
8865 // If one of the constants is zero (we know they can't both be) and we
8866 // have an icmp instruction with zero, and we have an 'and' with the
8867 // non-constant value, eliminate this whole mess. This corresponds to
8868 // cases like this: ((X & 27) ? 27 : 0)
8869 if (TrueValC->isZero() || FalseValC->isZero())
8870 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8871 cast<Constant>(IC->getOperand(1))->isNullValue())
8872 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8873 if (ICA->getOpcode() == Instruction::And &&
8874 isa<ConstantInt>(ICA->getOperand(1)) &&
8875 (ICA->getOperand(1) == TrueValC ||
8876 ICA->getOperand(1) == FalseValC) &&
8877 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8878 // Okay, now we know that everything is set up, we just don't
8879 // know whether we have a icmp_ne or icmp_eq and whether the
8880 // true or false val is the zero.
8881 bool ShouldNotVal = !TrueValC->isZero();
8882 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8883 Value *V = ICA;
8884 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008885 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008886 Instruction::Xor, V, ICA->getOperand(1)), SI);
8887 return ReplaceInstUsesWith(SI, V);
8888 }
8889 }
8890 }
8891
8892 // See if we are selecting two values based on a comparison of the two values.
8893 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8894 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8895 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008896 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8897 // This is not safe in general for floating point:
8898 // consider X== -0, Y== +0.
8899 // It becomes safe if either operand is a nonzero constant.
8900 ConstantFP *CFPt, *CFPf;
8901 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8902 !CFPt->getValueAPF().isZero()) ||
8903 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8904 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008905 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008906 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008907 // Transform (X != Y) ? X : Y -> X
8908 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8909 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008910 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008911
8912 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8913 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008914 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8915 // This is not safe in general for floating point:
8916 // consider X== -0, Y== +0.
8917 // It becomes safe if either operand is a nonzero constant.
8918 ConstantFP *CFPt, *CFPf;
8919 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8920 !CFPt->getValueAPF().isZero()) ||
8921 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8922 !CFPf->getValueAPF().isZero()))
8923 return ReplaceInstUsesWith(SI, FalseVal);
8924 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008925 // Transform (X != Y) ? Y : X -> Y
8926 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8927 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008928 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008929 }
Dan Gohman58c09632008-09-16 18:46:06 +00008930 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008931 }
8932
8933 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008934 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8935 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8936 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008937
8938 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8939 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8940 if (TI->hasOneUse() && FI->hasOneUse()) {
8941 Instruction *AddOp = 0, *SubOp = 0;
8942
8943 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8944 if (TI->getOpcode() == FI->getOpcode())
8945 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8946 return IV;
8947
8948 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8949 // even legal for FP.
8950 if (TI->getOpcode() == Instruction::Sub &&
8951 FI->getOpcode() == Instruction::Add) {
8952 AddOp = FI; SubOp = TI;
8953 } else if (FI->getOpcode() == Instruction::Sub &&
8954 TI->getOpcode() == Instruction::Add) {
8955 AddOp = TI; SubOp = FI;
8956 }
8957
8958 if (AddOp) {
8959 Value *OtherAddOp = 0;
8960 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8961 OtherAddOp = AddOp->getOperand(1);
8962 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8963 OtherAddOp = AddOp->getOperand(0);
8964 }
8965
8966 if (OtherAddOp) {
8967 // So at this point we know we have (Y -> OtherAddOp):
8968 // select C, (add X, Y), (sub X, Z)
8969 Value *NegVal; // Compute -Z
8970 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8971 NegVal = ConstantExpr::getNeg(C);
8972 } else {
8973 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008974 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008975 }
8976
8977 Value *NewTrueOp = OtherAddOp;
8978 Value *NewFalseOp = NegVal;
8979 if (AddOp != TI)
8980 std::swap(NewTrueOp, NewFalseOp);
8981 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00008982 SelectInst::Create(CondVal, NewTrueOp,
8983 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008984
8985 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008986 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008987 }
8988 }
8989 }
8990
8991 // See if we can fold the select into one of our operands.
8992 if (SI.getType()->isInteger()) {
8993 // See the comment above GetSelectFoldableOperands for a description of the
8994 // transformation we are doing here.
8995 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
8996 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
8997 !isa<Constant>(FalseVal))
8998 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
8999 unsigned OpToFold = 0;
9000 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
9001 OpToFold = 1;
9002 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9003 OpToFold = 2;
9004 }
9005
9006 if (OpToFold) {
9007 Constant *C = GetSelectFoldableConstant(TVI);
9008 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009009 SelectInst::Create(SI.getCondition(),
9010 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009011 InsertNewInstBefore(NewSel, SI);
9012 NewSel->takeName(TVI);
9013 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009014 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009015 else {
9016 assert(0 && "Unknown instruction!!");
9017 }
9018 }
9019 }
9020
9021 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9022 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9023 !isa<Constant>(TrueVal))
9024 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9025 unsigned OpToFold = 0;
9026 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9027 OpToFold = 1;
9028 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9029 OpToFold = 2;
9030 }
9031
9032 if (OpToFold) {
9033 Constant *C = GetSelectFoldableConstant(FVI);
9034 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009035 SelectInst::Create(SI.getCondition(), C,
9036 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009037 InsertNewInstBefore(NewSel, SI);
9038 NewSel->takeName(FVI);
9039 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009040 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009041 else
9042 assert(0 && "Unknown instruction!!");
9043 }
9044 }
9045 }
9046
9047 if (BinaryOperator::isNot(CondVal)) {
9048 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9049 SI.setOperand(1, FalseVal);
9050 SI.setOperand(2, TrueVal);
9051 return &SI;
9052 }
9053
9054 return 0;
9055}
9056
Dan Gohman2d648bb2008-04-10 18:43:06 +00009057/// EnforceKnownAlignment - If the specified pointer points to an object that
9058/// we control, modify the object's alignment to PrefAlign. This isn't
9059/// often possible though. If alignment is important, a more reliable approach
9060/// is to simply align all global variables and allocation instructions to
9061/// their preferred alignment from the beginning.
9062///
9063static unsigned EnforceKnownAlignment(Value *V,
9064 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009065
Dan Gohman2d648bb2008-04-10 18:43:06 +00009066 User *U = dyn_cast<User>(V);
9067 if (!U) return Align;
9068
9069 switch (getOpcode(U)) {
9070 default: break;
9071 case Instruction::BitCast:
9072 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9073 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009074 // If all indexes are zero, it is just the alignment of the base pointer.
9075 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009076 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009077 if (!isa<Constant>(*i) ||
9078 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009079 AllZeroOperands = false;
9080 break;
9081 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009082
9083 if (AllZeroOperands) {
9084 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009085 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009086 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009087 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009088 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009089 }
9090
9091 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9092 // If there is a large requested alignment and we can, bump up the alignment
9093 // of the global.
9094 if (!GV->isDeclaration()) {
9095 GV->setAlignment(PrefAlign);
9096 Align = PrefAlign;
9097 }
9098 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9099 // If there is a requested alignment and if this is an alloca, round up. We
9100 // don't do this for malloc, because some systems can't respect the request.
9101 if (isa<AllocaInst>(AI)) {
9102 AI->setAlignment(PrefAlign);
9103 Align = PrefAlign;
9104 }
9105 }
9106
9107 return Align;
9108}
9109
9110/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9111/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9112/// and it is more than the alignment of the ultimate object, see if we can
9113/// increase the alignment of the ultimate object, making this check succeed.
9114unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9115 unsigned PrefAlign) {
9116 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9117 sizeof(PrefAlign) * CHAR_BIT;
9118 APInt Mask = APInt::getAllOnesValue(BitWidth);
9119 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9120 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9121 unsigned TrailZ = KnownZero.countTrailingOnes();
9122 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9123
9124 if (PrefAlign > Align)
9125 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9126
9127 // We don't need to make any adjustment.
9128 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009129}
9130
Chris Lattner00ae5132008-01-13 23:50:23 +00009131Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009132 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9133 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009134 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9135 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9136
9137 if (CopyAlign < MinAlign) {
9138 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9139 return MI;
9140 }
9141
9142 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9143 // load/store.
9144 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9145 if (MemOpLength == 0) return 0;
9146
Chris Lattnerc669fb62008-01-14 00:28:35 +00009147 // Source and destination pointer types are always "i8*" for intrinsic. See
9148 // if the size is something we can handle with a single primitive load/store.
9149 // A single load+store correctly handles overlapping memory in the memmove
9150 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009151 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009152 if (Size == 0) return MI; // Delete this mem transfer.
9153
9154 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009155 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009156
Chris Lattnerc669fb62008-01-14 00:28:35 +00009157 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009158 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009159
9160 // Memcpy forces the use of i8* for the source and destination. That means
9161 // that if you're using memcpy to move one double around, you'll get a cast
9162 // from double* to i8*. We'd much rather use a double load+store rather than
9163 // an i64 load+store, here because this improves the odds that the source or
9164 // dest address will be promotable. See if we can find a better type than the
9165 // integer datatype.
9166 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9167 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9168 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9169 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9170 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009171 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009172 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9173 if (STy->getNumElements() == 1)
9174 SrcETy = STy->getElementType(0);
9175 else
9176 break;
9177 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9178 if (ATy->getNumElements() == 1)
9179 SrcETy = ATy->getElementType();
9180 else
9181 break;
9182 } else
9183 break;
9184 }
9185
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009186 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009187 NewPtrTy = PointerType::getUnqual(SrcETy);
9188 }
9189 }
9190
9191
Chris Lattner00ae5132008-01-13 23:50:23 +00009192 // If the memcpy/memmove provides better alignment info than we can
9193 // infer, use it.
9194 SrcAlign = std::max(SrcAlign, CopyAlign);
9195 DstAlign = std::max(DstAlign, CopyAlign);
9196
9197 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9198 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009199 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9200 InsertNewInstBefore(L, *MI);
9201 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9202
9203 // Set the size of the copy to 0, it will be deleted on the next iteration.
9204 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9205 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009206}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009207
Chris Lattner5af8a912008-04-30 06:39:11 +00009208Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9209 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9210 if (MI->getAlignment()->getZExtValue() < Alignment) {
9211 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9212 return MI;
9213 }
9214
9215 // Extract the length and alignment and fill if they are constant.
9216 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9217 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9218 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9219 return 0;
9220 uint64_t Len = LenC->getZExtValue();
9221 Alignment = MI->getAlignment()->getZExtValue();
9222
9223 // If the length is zero, this is a no-op
9224 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9225
9226 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9227 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9228 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9229
9230 Value *Dest = MI->getDest();
9231 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9232
9233 // Alignment 0 is identity for alignment 1 for memset, but not store.
9234 if (Alignment == 0) Alignment = 1;
9235
9236 // Extract the fill value and store.
9237 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9238 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9239 Alignment), *MI);
9240
9241 // Set the size of the copy to 0, it will be deleted on the next iteration.
9242 MI->setLength(Constant::getNullValue(LenC->getType()));
9243 return MI;
9244 }
9245
9246 return 0;
9247}
9248
9249
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009250/// visitCallInst - CallInst simplification. This mostly only handles folding
9251/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9252/// the heavy lifting.
9253///
9254Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9255 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9256 if (!II) return visitCallSite(&CI);
9257
9258 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9259 // visitCallSite.
9260 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9261 bool Changed = false;
9262
9263 // memmove/cpy/set of zero bytes is a noop.
9264 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9265 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9266
9267 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9268 if (CI->getZExtValue() == 1) {
9269 // Replace the instruction with just byte operations. We would
9270 // transform other cases to loads/stores, but we don't know if
9271 // alignment is sufficient.
9272 }
9273 }
9274
9275 // If we have a memmove and the source operation is a constant global,
9276 // then the source and dest pointers can't alias, so we can change this
9277 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009278 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009279 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9280 if (GVSrc->isConstant()) {
9281 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009282 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9283 const Type *Tys[1];
9284 Tys[0] = CI.getOperand(3)->getType();
9285 CI.setOperand(0,
9286 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009287 Changed = true;
9288 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009289
9290 // memmove(x,x,size) -> noop.
9291 if (MMI->getSource() == MMI->getDest())
9292 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009293 }
9294
9295 // If we can determine a pointer alignment that is bigger than currently
9296 // set, update the alignment.
9297 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009298 if (Instruction *I = SimplifyMemTransfer(MI))
9299 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009300 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9301 if (Instruction *I = SimplifyMemSet(MSI))
9302 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009303 }
9304
9305 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009306 }
9307
9308 switch (II->getIntrinsicID()) {
9309 default: break;
9310 case Intrinsic::bswap:
9311 // bswap(bswap(x)) -> x
9312 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9313 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9314 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9315 break;
9316 case Intrinsic::ppc_altivec_lvx:
9317 case Intrinsic::ppc_altivec_lvxl:
9318 case Intrinsic::x86_sse_loadu_ps:
9319 case Intrinsic::x86_sse2_loadu_pd:
9320 case Intrinsic::x86_sse2_loadu_dq:
9321 // Turn PPC lvx -> load if the pointer is known aligned.
9322 // Turn X86 loadups -> load if the pointer is known aligned.
9323 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9324 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9325 PointerType::getUnqual(II->getType()),
9326 CI);
9327 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009328 }
Chris Lattner989ba312008-06-18 04:33:20 +00009329 break;
9330 case Intrinsic::ppc_altivec_stvx:
9331 case Intrinsic::ppc_altivec_stvxl:
9332 // Turn stvx -> store if the pointer is known aligned.
9333 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9334 const Type *OpPtrTy =
9335 PointerType::getUnqual(II->getOperand(1)->getType());
9336 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9337 return new StoreInst(II->getOperand(1), Ptr);
9338 }
9339 break;
9340 case Intrinsic::x86_sse_storeu_ps:
9341 case Intrinsic::x86_sse2_storeu_pd:
9342 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009343 // Turn X86 storeu -> store if the pointer is known aligned.
9344 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9345 const Type *OpPtrTy =
9346 PointerType::getUnqual(II->getOperand(2)->getType());
9347 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9348 return new StoreInst(II->getOperand(2), Ptr);
9349 }
9350 break;
9351
9352 case Intrinsic::x86_sse_cvttss2si: {
9353 // These intrinsics only demands the 0th element of its input vector. If
9354 // we can simplify the input based on that, do so now.
9355 uint64_t UndefElts;
9356 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9357 UndefElts)) {
9358 II->setOperand(1, V);
9359 return II;
9360 }
9361 break;
9362 }
9363
9364 case Intrinsic::ppc_altivec_vperm:
9365 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9366 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9367 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009368
Chris Lattner989ba312008-06-18 04:33:20 +00009369 // Check that all of the elements are integer constants or undefs.
9370 bool AllEltsOk = true;
9371 for (unsigned i = 0; i != 16; ++i) {
9372 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9373 !isa<UndefValue>(Mask->getOperand(i))) {
9374 AllEltsOk = false;
9375 break;
9376 }
9377 }
9378
9379 if (AllEltsOk) {
9380 // Cast the input vectors to byte vectors.
9381 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9382 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9383 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009384
Chris Lattner989ba312008-06-18 04:33:20 +00009385 // Only extract each element once.
9386 Value *ExtractedElts[32];
9387 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009389 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009390 if (isa<UndefValue>(Mask->getOperand(i)))
9391 continue;
9392 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9393 Idx &= 31; // Match the hardware behavior.
9394
9395 if (ExtractedElts[Idx] == 0) {
9396 Instruction *Elt =
9397 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9398 InsertNewInstBefore(Elt, CI);
9399 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009400 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009401
Chris Lattner989ba312008-06-18 04:33:20 +00009402 // Insert this value into the result vector.
9403 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9404 i, "tmp");
9405 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009406 }
Chris Lattner989ba312008-06-18 04:33:20 +00009407 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009408 }
Chris Lattner989ba312008-06-18 04:33:20 +00009409 }
9410 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009411
Chris Lattner989ba312008-06-18 04:33:20 +00009412 case Intrinsic::stackrestore: {
9413 // If the save is right next to the restore, remove the restore. This can
9414 // happen when variable allocas are DCE'd.
9415 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9416 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9417 BasicBlock::iterator BI = SS;
9418 if (&*++BI == II)
9419 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009420 }
Chris Lattner989ba312008-06-18 04:33:20 +00009421 }
9422
9423 // Scan down this block to see if there is another stack restore in the
9424 // same block without an intervening call/alloca.
9425 BasicBlock::iterator BI = II;
9426 TerminatorInst *TI = II->getParent()->getTerminator();
9427 bool CannotRemove = false;
9428 for (++BI; &*BI != TI; ++BI) {
9429 if (isa<AllocaInst>(BI)) {
9430 CannotRemove = true;
9431 break;
9432 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009433 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9434 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9435 // If there is a stackrestore below this one, remove this one.
9436 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9437 return EraseInstFromFunction(CI);
9438 // Otherwise, ignore the intrinsic.
9439 } else {
9440 // If we found a non-intrinsic call, we can't remove the stack
9441 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009442 CannotRemove = true;
9443 break;
9444 }
Chris Lattner989ba312008-06-18 04:33:20 +00009445 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009446 }
Chris Lattner989ba312008-06-18 04:33:20 +00009447
9448 // If the stack restore is in a return/unwind block and if there are no
9449 // allocas or calls between the restore and the return, nuke the restore.
9450 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9451 return EraseInstFromFunction(CI);
9452 break;
9453 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009454 }
9455
9456 return visitCallSite(II);
9457}
9458
9459// InvokeInst simplification
9460//
9461Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9462 return visitCallSite(&II);
9463}
9464
Dale Johannesen96021832008-04-25 21:16:07 +00009465/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9466/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009467static bool isSafeToEliminateVarargsCast(const CallSite CS,
9468 const CastInst * const CI,
9469 const TargetData * const TD,
9470 const int ix) {
9471 if (!CI->isLosslessCast())
9472 return false;
9473
9474 // The size of ByVal arguments is derived from the type, so we
9475 // can't change to a type with a different size. If the size were
9476 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009477 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009478 return true;
9479
9480 const Type* SrcTy =
9481 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9482 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9483 if (!SrcTy->isSized() || !DstTy->isSized())
9484 return false;
9485 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9486 return false;
9487 return true;
9488}
9489
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009490// visitCallSite - Improvements for call and invoke instructions.
9491//
9492Instruction *InstCombiner::visitCallSite(CallSite CS) {
9493 bool Changed = false;
9494
9495 // If the callee is a constexpr cast of a function, attempt to move the cast
9496 // to the arguments of the call/invoke.
9497 if (transformConstExprCastCall(CS)) return 0;
9498
9499 Value *Callee = CS.getCalledValue();
9500
9501 if (Function *CalleeF = dyn_cast<Function>(Callee))
9502 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9503 Instruction *OldCall = CS.getInstruction();
9504 // If the call and callee calling conventions don't match, this call must
9505 // be unreachable, as the call is undefined.
9506 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009507 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9508 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009509 if (!OldCall->use_empty())
9510 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9511 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9512 return EraseInstFromFunction(*OldCall);
9513 return 0;
9514 }
9515
9516 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9517 // This instruction is not reachable, just remove it. We insert a store to
9518 // undef so that we know that this code is not reachable, despite the fact
9519 // that we can't modify the CFG here.
9520 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009521 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009522 CS.getInstruction());
9523
9524 if (!CS.getInstruction()->use_empty())
9525 CS.getInstruction()->
9526 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9527
9528 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9529 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009530 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9531 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009532 }
9533 return EraseInstFromFunction(*CS.getInstruction());
9534 }
9535
Duncan Sands74833f22007-09-17 10:26:40 +00009536 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9537 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9538 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9539 return transformCallThroughTrampoline(CS);
9540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009541 const PointerType *PTy = cast<PointerType>(Callee->getType());
9542 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9543 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009544 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009545 // See if we can optimize any arguments passed through the varargs area of
9546 // the call.
9547 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009548 E = CS.arg_end(); I != E; ++I, ++ix) {
9549 CastInst *CI = dyn_cast<CastInst>(*I);
9550 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9551 *I = CI->getOperand(0);
9552 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009553 }
Dale Johannesen35615462008-04-23 18:34:37 +00009554 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009555 }
9556
Duncan Sands2937e352007-12-19 21:13:37 +00009557 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009558 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009559 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009560 Changed = true;
9561 }
9562
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009563 return Changed ? CS.getInstruction() : 0;
9564}
9565
9566// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9567// attempt to move the cast to the arguments of the call/invoke.
9568//
9569bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9570 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9571 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9572 if (CE->getOpcode() != Instruction::BitCast ||
9573 !isa<Function>(CE->getOperand(0)))
9574 return false;
9575 Function *Callee = cast<Function>(CE->getOperand(0));
9576 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009577 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009578
9579 // Okay, this is a cast from a function to a different type. Unless doing so
9580 // would cause a type conversion of one of our arguments, change this call to
9581 // be a direct call with arguments casted to the appropriate types.
9582 //
9583 const FunctionType *FT = Callee->getFunctionType();
9584 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009585 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009586
Duncan Sands7901ce12008-06-01 07:38:42 +00009587 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009588 return false; // TODO: Handle multiple return values.
9589
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009590 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009591 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009592 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009593 // Conversion is ok if changing from one pointer type to another or from
9594 // a pointer to an integer of the same size.
9595 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009596 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009597 return false; // Cannot transform this return value.
9598
Duncan Sands5c489582008-01-06 10:12:28 +00009599 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009600 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009601 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009602 return false; // Cannot transform this return value.
9603
Chris Lattner1c8733e2008-03-12 17:45:29 +00009604 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009605 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009606 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009607 return false; // Attribute not compatible with transformed value.
9608 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009610 // If the callsite is an invoke instruction, and the return value is used by
9611 // a PHI node in a successor, we cannot change the return type of the call
9612 // because there is no place to put the cast instruction (without breaking
9613 // the critical edge). Bail out in this case.
9614 if (!Caller->use_empty())
9615 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9616 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9617 UI != E; ++UI)
9618 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9619 if (PN->getParent() == II->getNormalDest() ||
9620 PN->getParent() == II->getUnwindDest())
9621 return false;
9622 }
9623
9624 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9625 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9626
9627 CallSite::arg_iterator AI = CS.arg_begin();
9628 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9629 const Type *ParamTy = FT->getParamType(i);
9630 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009631
9632 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009633 return false; // Cannot transform this parameter value.
9634
Devang Patelf2a4a922008-09-26 22:53:05 +00009635 if (CallerPAL.getParamAttributes(i + 1)
9636 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009637 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009638
Duncan Sands7901ce12008-06-01 07:38:42 +00009639 // Converting from one pointer type to another or between a pointer and an
9640 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009641 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009642 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9643 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009644 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009645 }
9646
9647 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9648 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009649 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009650
Chris Lattner1c8733e2008-03-12 17:45:29 +00009651 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9652 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009653 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009654 // won't be dropping them. Check that these extra arguments have attributes
9655 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009656 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9657 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009658 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009659 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009660 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009661 return false;
9662 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009663
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009664 // Okay, we decided that this is a safe thing to do: go ahead and start
9665 // inserting cast instructions as necessary...
9666 std::vector<Value*> Args;
9667 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009668 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009669 attrVec.reserve(NumCommonArgs);
9670
9671 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009672 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009673
9674 // If the return value is not being used, the type may not be compatible
9675 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009676 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009677
9678 // Add the new return attributes.
9679 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009680 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009681
9682 AI = CS.arg_begin();
9683 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9684 const Type *ParamTy = FT->getParamType(i);
9685 if ((*AI)->getType() == ParamTy) {
9686 Args.push_back(*AI);
9687 } else {
9688 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9689 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009690 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009691 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9692 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009693
9694 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009695 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009696 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009697 }
9698
9699 // If the function takes more arguments than the call was taking, add them
9700 // now...
9701 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9702 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9703
9704 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009705 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009706 if (!FT->isVarArg()) {
9707 cerr << "WARNING: While resolving call to function '"
9708 << Callee->getName() << "' arguments were dropped!\n";
9709 } else {
9710 // Add all of the arguments in their promoted form to the arg list...
9711 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9712 const Type *PTy = getPromotedType((*AI)->getType());
9713 if (PTy != (*AI)->getType()) {
9714 // Must promote to pass through va_arg area!
9715 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9716 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009717 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009718 InsertNewInstBefore(Cast, *Caller);
9719 Args.push_back(Cast);
9720 } else {
9721 Args.push_back(*AI);
9722 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009723
Duncan Sands4ced1f82008-01-13 08:02:44 +00009724 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009725 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009726 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009727 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009728 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009729 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009730
Devang Patelf2a4a922008-09-26 22:53:05 +00009731 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9732 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9733
Duncan Sands7901ce12008-06-01 07:38:42 +00009734 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009735 Caller->setName(""); // Void type should not have a name.
9736
Devang Pateld222f862008-09-25 21:00:45 +00009737 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009738
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009739 Instruction *NC;
9740 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009741 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009742 Args.begin(), Args.end(),
9743 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009744 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009745 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009746 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009747 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9748 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009749 CallInst *CI = cast<CallInst>(Caller);
9750 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009751 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009752 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009753 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009754 }
9755
9756 // Insert a cast of the return type as necessary.
9757 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009758 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009759 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009760 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009761 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009762 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009763
9764 // If this is an invoke instruction, we should insert it after the first
9765 // non-phi, instruction in the normal successor block.
9766 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009767 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009768 InsertNewInstBefore(NC, *I);
9769 } else {
9770 // Otherwise, it's a call, just insert cast right after the call instr
9771 InsertNewInstBefore(NC, *Caller);
9772 }
9773 AddUsersToWorkList(*Caller);
9774 } else {
9775 NV = UndefValue::get(Caller->getType());
9776 }
9777 }
9778
9779 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9780 Caller->replaceAllUsesWith(NV);
9781 Caller->eraseFromParent();
9782 RemoveFromWorkList(Caller);
9783 return true;
9784}
9785
Duncan Sands74833f22007-09-17 10:26:40 +00009786// transformCallThroughTrampoline - Turn a call to a function created by the
9787// init_trampoline intrinsic into a direct call to the underlying function.
9788//
9789Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9790 Value *Callee = CS.getCalledValue();
9791 const PointerType *PTy = cast<PointerType>(Callee->getType());
9792 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009793 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009794
9795 // If the call already has the 'nest' attribute somewhere then give up -
9796 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009797 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009798 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009799
9800 IntrinsicInst *Tramp =
9801 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9802
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009803 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009804 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9805 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9806
Devang Pateld222f862008-09-25 21:00:45 +00009807 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009808 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009809 unsigned NestIdx = 1;
9810 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009811 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009812
9813 // Look for a parameter marked with the 'nest' attribute.
9814 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9815 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009816 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009817 // Record the parameter type and any other attributes.
9818 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009819 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009820 break;
9821 }
9822
9823 if (NestTy) {
9824 Instruction *Caller = CS.getInstruction();
9825 std::vector<Value*> NewArgs;
9826 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9827
Devang Pateld222f862008-09-25 21:00:45 +00009828 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009829 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009830
Duncan Sands74833f22007-09-17 10:26:40 +00009831 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009832 // mean appending it. Likewise for attributes.
9833
Devang Patelf2a4a922008-09-26 22:53:05 +00009834 // Add any result attributes.
9835 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009836 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009837
Duncan Sands74833f22007-09-17 10:26:40 +00009838 {
9839 unsigned Idx = 1;
9840 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9841 do {
9842 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009843 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009844 Value *NestVal = Tramp->getOperand(3);
9845 if (NestVal->getType() != NestTy)
9846 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9847 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009848 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009849 }
9850
9851 if (I == E)
9852 break;
9853
Duncan Sands48b81112008-01-14 19:52:09 +00009854 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009855 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009856 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009857 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009858 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009859
9860 ++Idx, ++I;
9861 } while (1);
9862 }
9863
Devang Patelf2a4a922008-09-26 22:53:05 +00009864 // Add any function attributes.
9865 if (Attributes Attr = Attrs.getFnAttributes())
9866 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9867
Duncan Sands74833f22007-09-17 10:26:40 +00009868 // The trampoline may have been bitcast to a bogus type (FTy).
9869 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009870 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009871
Duncan Sands74833f22007-09-17 10:26:40 +00009872 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009873 NewTypes.reserve(FTy->getNumParams()+1);
9874
Duncan Sands74833f22007-09-17 10:26:40 +00009875 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009876 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009877 {
9878 unsigned Idx = 1;
9879 FunctionType::param_iterator I = FTy->param_begin(),
9880 E = FTy->param_end();
9881
9882 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009883 if (Idx == NestIdx)
9884 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009885 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009886
9887 if (I == E)
9888 break;
9889
Duncan Sands48b81112008-01-14 19:52:09 +00009890 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009891 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009892
9893 ++Idx, ++I;
9894 } while (1);
9895 }
9896
9897 // Replace the trampoline call with a direct call. Let the generic
9898 // code sort out any function type mismatches.
9899 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009900 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009901 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9902 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009903 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009904
9905 Instruction *NewCaller;
9906 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009907 NewCaller = InvokeInst::Create(NewCallee,
9908 II->getNormalDest(), II->getUnwindDest(),
9909 NewArgs.begin(), NewArgs.end(),
9910 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009911 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009912 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009913 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009914 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9915 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009916 if (cast<CallInst>(Caller)->isTailCall())
9917 cast<CallInst>(NewCaller)->setTailCall();
9918 cast<CallInst>(NewCaller)->
9919 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009920 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009921 }
9922 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9923 Caller->replaceAllUsesWith(NewCaller);
9924 Caller->eraseFromParent();
9925 RemoveFromWorkList(Caller);
9926 return 0;
9927 }
9928 }
9929
9930 // Replace the trampoline call with a direct call. Since there is no 'nest'
9931 // parameter, there is no need to adjust the argument list. Let the generic
9932 // code sort out any function type mismatches.
9933 Constant *NewCallee =
9934 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9935 CS.setCalledFunction(NewCallee);
9936 return CS.getInstruction();
9937}
9938
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009939/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9940/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9941/// and a single binop.
9942Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9943 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009944 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009945 unsigned Opc = FirstInst->getOpcode();
9946 Value *LHSVal = FirstInst->getOperand(0);
9947 Value *RHSVal = FirstInst->getOperand(1);
9948
9949 const Type *LHSType = LHSVal->getType();
9950 const Type *RHSType = RHSVal->getType();
9951
9952 // Scan to see if all operands are the same opcode, all have one use, and all
9953 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009954 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009955 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9956 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9957 // Verify type of the LHS matches so we don't fold cmp's of different
9958 // types or GEP's with different index types.
9959 I->getOperand(0)->getType() != LHSType ||
9960 I->getOperand(1)->getType() != RHSType)
9961 return 0;
9962
9963 // If they are CmpInst instructions, check their predicates
9964 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9965 if (cast<CmpInst>(I)->getPredicate() !=
9966 cast<CmpInst>(FirstInst)->getPredicate())
9967 return 0;
9968
9969 // Keep track of which operand needs a phi node.
9970 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9971 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9972 }
9973
Chris Lattner30078012008-12-01 03:42:51 +00009974 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009975
9976 Value *InLHS = FirstInst->getOperand(0);
9977 Value *InRHS = FirstInst->getOperand(1);
9978 PHINode *NewLHS = 0, *NewRHS = 0;
9979 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009980 NewLHS = PHINode::Create(LHSType,
9981 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009982 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
9983 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
9984 InsertNewInstBefore(NewLHS, PN);
9985 LHSVal = NewLHS;
9986 }
9987
9988 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009989 NewRHS = PHINode::Create(RHSType,
9990 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009991 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
9992 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
9993 InsertNewInstBefore(NewRHS, PN);
9994 RHSVal = NewRHS;
9995 }
9996
9997 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +00009998 if (NewLHS || NewRHS) {
9999 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10000 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
10001 if (NewLHS) {
10002 Value *NewInLHS = InInst->getOperand(0);
10003 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10004 }
10005 if (NewRHS) {
10006 Value *NewInRHS = InInst->getOperand(1);
10007 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10008 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010009 }
10010 }
10011
10012 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010013 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +000010014 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10015 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10016 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010017}
10018
Chris Lattner9e1916e2008-12-01 02:34:36 +000010019Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10020 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10021
10022 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10023 FirstInst->op_end());
10024
10025 // Scan to see if all operands are the same opcode, all have one use, and all
10026 // kill their operands (i.e. the operands have one use).
10027 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10028 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10029 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10030 GEP->getNumOperands() != FirstInst->getNumOperands())
10031 return 0;
10032
10033 // Compare the operand lists.
10034 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10035 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10036 continue;
10037
10038 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10039 // if one of the PHIs has a constant for the index. The index may be
10040 // substantially cheaper to compute for the constants, so making it a
10041 // variable index could pessimize the path. This also handles the case
10042 // for struct indices, which must always be constant.
10043 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10044 isa<ConstantInt>(GEP->getOperand(op)))
10045 return 0;
10046
10047 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10048 return 0;
10049 FixedOperands[op] = 0; // Needs a PHI.
10050 }
10051 }
10052
10053 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10054 // that is variable.
10055 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10056
10057 bool HasAnyPHIs = false;
10058 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10059 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10060 Value *FirstOp = FirstInst->getOperand(i);
10061 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10062 FirstOp->getName()+".pn");
10063 InsertNewInstBefore(NewPN, PN);
10064
10065 NewPN->reserveOperandSpace(e);
10066 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10067 OperandPhis[i] = NewPN;
10068 FixedOperands[i] = NewPN;
10069 HasAnyPHIs = true;
10070 }
10071
10072
10073 // Add all operands to the new PHIs.
10074 if (HasAnyPHIs) {
10075 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10076 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10077 BasicBlock *InBB = PN.getIncomingBlock(i);
10078
10079 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10080 if (PHINode *OpPhi = OperandPhis[op])
10081 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10082 }
10083 }
10084
10085 Value *Base = FixedOperands[0];
10086 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10087 FixedOperands.end());
10088}
10089
10090
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010091/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10092/// of the block that defines it. This means that it must be obvious the value
10093/// of the load is not changed from the point of the load to the end of the
10094/// block it is in.
10095///
10096/// Finally, it is safe, but not profitable, to sink a load targetting a
10097/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10098/// to a register.
10099static bool isSafeToSinkLoad(LoadInst *L) {
10100 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10101
10102 for (++BBI; BBI != E; ++BBI)
10103 if (BBI->mayWriteToMemory())
10104 return false;
10105
10106 // Check for non-address taken alloca. If not address-taken already, it isn't
10107 // profitable to do this xform.
10108 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10109 bool isAddressTaken = false;
10110 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10111 UI != E; ++UI) {
10112 if (isa<LoadInst>(UI)) continue;
10113 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10114 // If storing TO the alloca, then the address isn't taken.
10115 if (SI->getOperand(1) == AI) continue;
10116 }
10117 isAddressTaken = true;
10118 break;
10119 }
10120
10121 if (!isAddressTaken)
10122 return false;
10123 }
10124
10125 return true;
10126}
10127
10128
10129// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10130// operator and they all are only used by the PHI, PHI together their
10131// inputs, and do the operation once, to the result of the PHI.
10132Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10133 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10134
10135 // Scan the instruction, looking for input operations that can be folded away.
10136 // If all input operands to the phi are the same instruction (e.g. a cast from
10137 // the same type or "+42") we can pull the operation through the PHI, reducing
10138 // code size and simplifying code.
10139 Constant *ConstantOp = 0;
10140 const Type *CastSrcTy = 0;
10141 bool isVolatile = false;
10142 if (isa<CastInst>(FirstInst)) {
10143 CastSrcTy = FirstInst->getOperand(0)->getType();
10144 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10145 // Can fold binop, compare or shift here if the RHS is a constant,
10146 // otherwise call FoldPHIArgBinOpIntoPHI.
10147 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10148 if (ConstantOp == 0)
10149 return FoldPHIArgBinOpIntoPHI(PN);
10150 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10151 isVolatile = LI->isVolatile();
10152 // We can't sink the load if the loaded value could be modified between the
10153 // load and the PHI.
10154 if (LI->getParent() != PN.getIncomingBlock(0) ||
10155 !isSafeToSinkLoad(LI))
10156 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010157
10158 // If the PHI is of volatile loads and the load block has multiple
10159 // successors, sinking it would remove a load of the volatile value from
10160 // the path through the other successor.
10161 if (isVolatile &&
10162 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10163 return 0;
10164
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010165 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010166 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010167 } else {
10168 return 0; // Cannot fold this operation.
10169 }
10170
10171 // Check to see if all arguments are the same operation.
10172 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10173 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10174 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10175 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10176 return 0;
10177 if (CastSrcTy) {
10178 if (I->getOperand(0)->getType() != CastSrcTy)
10179 return 0; // Cast operation must match.
10180 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10181 // We can't sink the load if the loaded value could be modified between
10182 // the load and the PHI.
10183 if (LI->isVolatile() != isVolatile ||
10184 LI->getParent() != PN.getIncomingBlock(i) ||
10185 !isSafeToSinkLoad(LI))
10186 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010187
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010188 // If the PHI is of volatile loads and the load block has multiple
10189 // successors, sinking it would remove a load of the volatile value from
10190 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010191 if (isVolatile &&
10192 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10193 return 0;
10194
10195
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010196 } else if (I->getOperand(1) != ConstantOp) {
10197 return 0;
10198 }
10199 }
10200
10201 // Okay, they are all the same operation. Create a new PHI node of the
10202 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010203 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10204 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010205 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10206
10207 Value *InVal = FirstInst->getOperand(0);
10208 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10209
10210 // Add all operands to the new PHI.
10211 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10212 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10213 if (NewInVal != InVal)
10214 InVal = 0;
10215 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10216 }
10217
10218 Value *PhiVal;
10219 if (InVal) {
10220 // The new PHI unions all of the same values together. This is really
10221 // common, so we handle it intelligently here for compile-time speed.
10222 PhiVal = InVal;
10223 delete NewPN;
10224 } else {
10225 InsertNewInstBefore(NewPN, PN);
10226 PhiVal = NewPN;
10227 }
10228
10229 // Insert and return the new operation.
10230 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010231 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010232 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010233 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010234 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010235 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010236 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010237 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10238
10239 // If this was a volatile load that we are merging, make sure to loop through
10240 // and mark all the input loads as non-volatile. If we don't do this, we will
10241 // insert a new volatile load and the old ones will not be deletable.
10242 if (isVolatile)
10243 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10244 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10245
10246 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010247}
10248
10249/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10250/// that is dead.
10251static bool DeadPHICycle(PHINode *PN,
10252 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10253 if (PN->use_empty()) return true;
10254 if (!PN->hasOneUse()) return false;
10255
10256 // Remember this node, and if we find the cycle, return.
10257 if (!PotentiallyDeadPHIs.insert(PN))
10258 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010259
10260 // Don't scan crazily complex things.
10261 if (PotentiallyDeadPHIs.size() == 16)
10262 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010263
10264 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10265 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10266
10267 return false;
10268}
10269
Chris Lattner27b695d2007-11-06 21:52:06 +000010270/// PHIsEqualValue - Return true if this phi node is always equal to
10271/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10272/// z = some value; x = phi (y, z); y = phi (x, z)
10273static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10274 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10275 // See if we already saw this PHI node.
10276 if (!ValueEqualPHIs.insert(PN))
10277 return true;
10278
10279 // Don't scan crazily complex things.
10280 if (ValueEqualPHIs.size() == 16)
10281 return false;
10282
10283 // Scan the operands to see if they are either phi nodes or are equal to
10284 // the value.
10285 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10286 Value *Op = PN->getIncomingValue(i);
10287 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10288 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10289 return false;
10290 } else if (Op != NonPhiInVal)
10291 return false;
10292 }
10293
10294 return true;
10295}
10296
10297
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010298// PHINode simplification
10299//
10300Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10301 // If LCSSA is around, don't mess with Phi nodes
10302 if (MustPreserveLCSSA) return 0;
10303
10304 if (Value *V = PN.hasConstantValue())
10305 return ReplaceInstUsesWith(PN, V);
10306
10307 // If all PHI operands are the same operation, pull them through the PHI,
10308 // reducing code size.
10309 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010310 isa<Instruction>(PN.getIncomingValue(1)) &&
10311 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10312 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10313 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10314 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010315 PN.getIncomingValue(0)->hasOneUse())
10316 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10317 return Result;
10318
10319 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10320 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10321 // PHI)... break the cycle.
10322 if (PN.hasOneUse()) {
10323 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10324 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10325 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10326 PotentiallyDeadPHIs.insert(&PN);
10327 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10328 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10329 }
10330
10331 // If this phi has a single use, and if that use just computes a value for
10332 // the next iteration of a loop, delete the phi. This occurs with unused
10333 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10334 // common case here is good because the only other things that catch this
10335 // are induction variable analysis (sometimes) and ADCE, which is only run
10336 // late.
10337 if (PHIUser->hasOneUse() &&
10338 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10339 PHIUser->use_back() == &PN) {
10340 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10341 }
10342 }
10343
Chris Lattner27b695d2007-11-06 21:52:06 +000010344 // We sometimes end up with phi cycles that non-obviously end up being the
10345 // same value, for example:
10346 // z = some value; x = phi (y, z); y = phi (x, z)
10347 // where the phi nodes don't necessarily need to be in the same block. Do a
10348 // quick check to see if the PHI node only contains a single non-phi value, if
10349 // so, scan to see if the phi cycle is actually equal to that value.
10350 {
10351 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10352 // Scan for the first non-phi operand.
10353 while (InValNo != NumOperandVals &&
10354 isa<PHINode>(PN.getIncomingValue(InValNo)))
10355 ++InValNo;
10356
10357 if (InValNo != NumOperandVals) {
10358 Value *NonPhiInVal = PN.getOperand(InValNo);
10359
10360 // Scan the rest of the operands to see if there are any conflicts, if so
10361 // there is no need to recursively scan other phis.
10362 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10363 Value *OpVal = PN.getIncomingValue(InValNo);
10364 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10365 break;
10366 }
10367
10368 // If we scanned over all operands, then we have one unique value plus
10369 // phi values. Scan PHI nodes to see if they all merge in each other or
10370 // the value.
10371 if (InValNo == NumOperandVals) {
10372 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10373 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10374 return ReplaceInstUsesWith(PN, NonPhiInVal);
10375 }
10376 }
10377 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010378 return 0;
10379}
10380
10381static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10382 Instruction *InsertPoint,
10383 InstCombiner *IC) {
10384 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10385 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10386 // We must cast correctly to the pointer type. Ensure that we
10387 // sign extend the integer value if it is smaller as this is
10388 // used for address computation.
10389 Instruction::CastOps opcode =
10390 (VTySize < PtrSize ? Instruction::SExt :
10391 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10392 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10393}
10394
10395
10396Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10397 Value *PtrOp = GEP.getOperand(0);
10398 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10399 // If so, eliminate the noop.
10400 if (GEP.getNumOperands() == 1)
10401 return ReplaceInstUsesWith(GEP, PtrOp);
10402
10403 if (isa<UndefValue>(GEP.getOperand(0)))
10404 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10405
10406 bool HasZeroPointerIndex = false;
10407 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10408 HasZeroPointerIndex = C->isNullValue();
10409
10410 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10411 return ReplaceInstUsesWith(GEP, PtrOp);
10412
10413 // Eliminate unneeded casts for indices.
10414 bool MadeChange = false;
10415
10416 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010417 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10418 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010419 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010420 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010421 if (CI->getOpcode() == Instruction::ZExt ||
10422 CI->getOpcode() == Instruction::SExt) {
10423 const Type *SrcTy = CI->getOperand(0)->getType();
10424 // We can eliminate a cast from i32 to i64 iff the target
10425 // is a 32-bit pointer target.
10426 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10427 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010428 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010429 }
10430 }
10431 }
10432 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010433 // to what we need. If narrower, sign-extend it to what we need.
10434 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010435 // insert it. This explicit cast can make subsequent optimizations more
10436 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010437 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010438 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010439 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010440 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010441 MadeChange = true;
10442 } else {
10443 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10444 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010445 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010446 MadeChange = true;
10447 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010448 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10449 if (Constant *C = dyn_cast<Constant>(Op)) {
10450 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10451 MadeChange = true;
10452 } else {
10453 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10454 GEP);
10455 *i = Op;
10456 MadeChange = true;
10457 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010458 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010459 }
10460 }
10461 if (MadeChange) return &GEP;
10462
10463 // If this GEP instruction doesn't move the pointer, and if the input operand
10464 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10465 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010466 if (GEP.hasAllZeroIndices()) {
10467 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10468 // If the bitcast is of an allocation, and the allocation will be
10469 // converted to match the type of the cast, don't touch this.
10470 if (isa<AllocationInst>(BCI->getOperand(0))) {
10471 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010472 if (Instruction *I = visitBitCast(*BCI)) {
10473 if (I != BCI) {
10474 I->takeName(BCI);
10475 BCI->getParent()->getInstList().insert(BCI, I);
10476 ReplaceInstUsesWith(*BCI, I);
10477 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010478 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010479 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010480 }
10481 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10482 }
10483 }
10484
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010485 // Combine Indices - If the source pointer to this getelementptr instruction
10486 // is a getelementptr instruction, combine the indices of the two
10487 // getelementptr instructions into a single instruction.
10488 //
10489 SmallVector<Value*, 8> SrcGEPOperands;
10490 if (User *Src = dyn_castGetElementPtr(PtrOp))
10491 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10492
10493 if (!SrcGEPOperands.empty()) {
10494 // Note that if our source is a gep chain itself that we wait for that
10495 // chain to be resolved before we perform this transformation. This
10496 // avoids us creating a TON of code in some cases.
10497 //
10498 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10499 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10500 return 0; // Wait until our source is folded to completion.
10501
10502 SmallVector<Value*, 8> Indices;
10503
10504 // Find out whether the last index in the source GEP is a sequential idx.
10505 bool EndsWithSequential = false;
10506 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10507 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10508 EndsWithSequential = !isa<StructType>(*I);
10509
10510 // Can we combine the two pointer arithmetics offsets?
10511 if (EndsWithSequential) {
10512 // Replace: gep (gep %P, long B), long A, ...
10513 // With: T = long A+B; gep %P, T, ...
10514 //
10515 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10516 if (SO1 == Constant::getNullValue(SO1->getType())) {
10517 Sum = GO1;
10518 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10519 Sum = SO1;
10520 } else {
10521 // If they aren't the same type, convert both to an integer of the
10522 // target's pointer size.
10523 if (SO1->getType() != GO1->getType()) {
10524 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10525 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10526 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10527 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10528 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010529 unsigned PS = TD->getPointerSizeInBits();
10530 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010531 // Convert GO1 to SO1's type.
10532 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10533
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010534 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010535 // Convert SO1 to GO1's type.
10536 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10537 } else {
10538 const Type *PT = TD->getIntPtrType();
10539 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10540 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10541 }
10542 }
10543 }
10544 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10545 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10546 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010547 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010548 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10549 }
10550 }
10551
10552 // Recycle the GEP we already have if possible.
10553 if (SrcGEPOperands.size() == 2) {
10554 GEP.setOperand(0, SrcGEPOperands[0]);
10555 GEP.setOperand(1, Sum);
10556 return &GEP;
10557 } else {
10558 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10559 SrcGEPOperands.end()-1);
10560 Indices.push_back(Sum);
10561 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10562 }
10563 } else if (isa<Constant>(*GEP.idx_begin()) &&
10564 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10565 SrcGEPOperands.size() != 1) {
10566 // Otherwise we can do the fold if the first index of the GEP is a zero
10567 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10568 SrcGEPOperands.end());
10569 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10570 }
10571
10572 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010573 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10574 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010575
10576 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10577 // GEP of global variable. If all of the indices for this GEP are
10578 // constants, we can promote this to a constexpr instead of an instruction.
10579
10580 // Scan for nonconstants...
10581 SmallVector<Constant*, 8> Indices;
10582 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10583 for (; I != E && isa<Constant>(*I); ++I)
10584 Indices.push_back(cast<Constant>(*I));
10585
10586 if (I == E) { // If they are all constants...
10587 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10588 &Indices[0],Indices.size());
10589
10590 // Replace all uses of the GEP with the new constexpr...
10591 return ReplaceInstUsesWith(GEP, CE);
10592 }
10593 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10594 if (!isa<PointerType>(X->getType())) {
10595 // Not interesting. Source pointer must be a cast from pointer.
10596 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010597 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10598 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010599 //
10600 // This occurs when the program declares an array extern like "int X[];"
10601 //
10602 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10603 const PointerType *XTy = cast<PointerType>(X->getType());
10604 if (const ArrayType *XATy =
10605 dyn_cast<ArrayType>(XTy->getElementType()))
10606 if (const ArrayType *CATy =
10607 dyn_cast<ArrayType>(CPTy->getElementType()))
10608 if (CATy->getElementType() == XATy->getElementType()) {
10609 // At this point, we know that the cast source type is a pointer
10610 // to an array of the same type as the destination pointer
10611 // array. Because the array type is never stepped over (there
10612 // is a leading zero) we can fold the cast into this GEP.
10613 GEP.setOperand(0, X);
10614 return &GEP;
10615 }
10616 } else if (GEP.getNumOperands() == 2) {
10617 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010618 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10619 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010620 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10621 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10622 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010623 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10624 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010625 Value *Idx[2];
10626 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10627 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010628 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010629 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010630 // V and GEP are both pointer types --> BitCast
10631 return new BitCastInst(V, GEP.getType());
10632 }
10633
10634 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010635 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010636 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010637 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010638
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010639 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010640 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010641 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010642
10643 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10644 // allow either a mul, shift, or constant here.
10645 Value *NewIdx = 0;
10646 ConstantInt *Scale = 0;
10647 if (ArrayEltSize == 1) {
10648 NewIdx = GEP.getOperand(1);
10649 Scale = ConstantInt::get(NewIdx->getType(), 1);
10650 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10651 NewIdx = ConstantInt::get(CI->getType(), 1);
10652 Scale = CI;
10653 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10654 if (Inst->getOpcode() == Instruction::Shl &&
10655 isa<ConstantInt>(Inst->getOperand(1))) {
10656 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10657 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10658 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10659 NewIdx = Inst->getOperand(0);
10660 } else if (Inst->getOpcode() == Instruction::Mul &&
10661 isa<ConstantInt>(Inst->getOperand(1))) {
10662 Scale = cast<ConstantInt>(Inst->getOperand(1));
10663 NewIdx = Inst->getOperand(0);
10664 }
10665 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010666
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010667 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010668 // out, perform the transformation. Note, we don't know whether Scale is
10669 // signed or not. We'll use unsigned version of division/modulo
10670 // operation after making sure Scale doesn't have the sign bit set.
10671 if (Scale && Scale->getSExtValue() >= 0LL &&
10672 Scale->getZExtValue() % ArrayEltSize == 0) {
10673 Scale = ConstantInt::get(Scale->getType(),
10674 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010675 if (Scale->getZExtValue() != 1) {
10676 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010677 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010678 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010679 NewIdx = InsertNewInstBefore(Sc, GEP);
10680 }
10681
10682 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010683 Value *Idx[2];
10684 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10685 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010686 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010687 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010688 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10689 // The NewGEP must be pointer typed, so must the old one -> BitCast
10690 return new BitCastInst(NewGEP, GEP.getType());
10691 }
10692 }
10693 }
10694 }
10695
10696 return 0;
10697}
10698
10699Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10700 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010701 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010702 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10703 const Type *NewTy =
10704 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10705 AllocationInst *New = 0;
10706
10707 // Create and insert the replacement instruction...
10708 if (isa<MallocInst>(AI))
10709 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10710 else {
10711 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10712 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10713 }
10714
10715 InsertNewInstBefore(New, AI);
10716
10717 // Scan to the end of the allocation instructions, to skip over a block of
10718 // allocas if possible...
10719 //
10720 BasicBlock::iterator It = New;
10721 while (isa<AllocationInst>(*It)) ++It;
10722
10723 // Now that I is pointing to the first non-allocation-inst in the block,
10724 // insert our getelementptr instruction...
10725 //
10726 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010727 Value *Idx[2];
10728 Idx[0] = NullIdx;
10729 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010730 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10731 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010732
10733 // Now make everything use the getelementptr instead of the original
10734 // allocation.
10735 return ReplaceInstUsesWith(AI, V);
10736 } else if (isa<UndefValue>(AI.getArraySize())) {
10737 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10738 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010739 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010740
10741 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10742 // Note that we only do this for alloca's, because malloc should allocate and
10743 // return a unique pointer, even for a zero byte allocation.
10744 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010745 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010746 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10747
10748 return 0;
10749}
10750
10751Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10752 Value *Op = FI.getOperand(0);
10753
10754 // free undef -> unreachable.
10755 if (isa<UndefValue>(Op)) {
10756 // Insert a new store to null because we cannot modify the CFG here.
10757 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010758 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010759 return EraseInstFromFunction(FI);
10760 }
10761
10762 // If we have 'free null' delete the instruction. This can happen in stl code
10763 // when lots of inlining happens.
10764 if (isa<ConstantPointerNull>(Op))
10765 return EraseInstFromFunction(FI);
10766
10767 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10768 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10769 FI.setOperand(0, CI->getOperand(0));
10770 return &FI;
10771 }
10772
10773 // Change free (gep X, 0,0,0,0) into free(X)
10774 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10775 if (GEPI->hasAllZeroIndices()) {
10776 AddToWorkList(GEPI);
10777 FI.setOperand(0, GEPI->getOperand(0));
10778 return &FI;
10779 }
10780 }
10781
10782 // Change free(malloc) into nothing, if the malloc has a single use.
10783 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10784 if (MI->hasOneUse()) {
10785 EraseInstFromFunction(FI);
10786 return EraseInstFromFunction(*MI);
10787 }
10788
10789 return 0;
10790}
10791
10792
10793/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010794static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010795 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010796 User *CI = cast<User>(LI.getOperand(0));
10797 Value *CastOp = CI->getOperand(0);
10798
Devang Patela0f8ea82007-10-18 19:52:32 +000010799 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10800 // Instead of loading constant c string, use corresponding integer value
10801 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010802 std::string Str;
10803 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010804 unsigned len = Str.length();
10805 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10806 unsigned numBits = Ty->getPrimitiveSizeInBits();
10807 // Replace LI with immediate integer store.
10808 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010809 APInt StrVal(numBits, 0);
10810 APInt SingleChar(numBits, 0);
10811 if (TD->isLittleEndian()) {
10812 for (signed i = len-1; i >= 0; i--) {
10813 SingleChar = (uint64_t) Str[i];
10814 StrVal = (StrVal << 8) | SingleChar;
10815 }
10816 } else {
10817 for (unsigned i = 0; i < len; i++) {
10818 SingleChar = (uint64_t) Str[i];
10819 StrVal = (StrVal << 8) | SingleChar;
10820 }
10821 // Append NULL at the end.
10822 SingleChar = 0;
10823 StrVal = (StrVal << 8) | SingleChar;
10824 }
10825 Value *NL = ConstantInt::get(StrVal);
10826 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010827 }
10828 }
10829 }
10830
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010831 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10832 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10833 const Type *SrcPTy = SrcTy->getElementType();
10834
10835 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10836 isa<VectorType>(DestPTy)) {
10837 // If the source is an array, the code below will not succeed. Check to
10838 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10839 // constants.
10840 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10841 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10842 if (ASrcTy->getNumElements() != 0) {
10843 Value *Idxs[2];
10844 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10845 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10846 SrcTy = cast<PointerType>(CastOp->getType());
10847 SrcPTy = SrcTy->getElementType();
10848 }
10849
10850 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10851 isa<VectorType>(SrcPTy)) &&
10852 // Do not allow turning this into a load of an integer, which is then
10853 // casted to a pointer, this pessimizes pointer analysis a lot.
10854 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10855 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10856 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10857
10858 // Okay, we are casting from one integer or pointer type to another of
10859 // the same size. Instead of casting the pointer before the load, cast
10860 // the result of the loaded value.
10861 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10862 CI->getName(),
10863 LI.isVolatile()),LI);
10864 // Now cast the result of the load.
10865 return new BitCastInst(NewLoad, LI.getType());
10866 }
10867 }
10868 }
10869 return 0;
10870}
10871
10872/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10873/// from this value cannot trap. If it is not obviously safe to load from the
10874/// specified pointer, we do a quick local scan of the basic block containing
10875/// ScanFrom, to determine if the address is already accessed.
10876static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010877 // If it is an alloca it is always safe to load from.
10878 if (isa<AllocaInst>(V)) return true;
10879
Duncan Sandse40a94a2007-09-19 10:25:38 +000010880 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010881 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010882 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010883 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010884
10885 // Otherwise, be a little bit agressive by scanning the local block where we
10886 // want to check to see if the pointer is already being loaded or stored
10887 // from/to. If so, the previous load or store would have already trapped,
10888 // so there is no harm doing an extra load (also, CSE will later eliminate
10889 // the load entirely).
10890 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10891
10892 while (BBI != E) {
10893 --BBI;
10894
Chris Lattner476983a2008-06-20 05:12:56 +000010895 // If we see a free or a call (which might do a free) the pointer could be
10896 // marked invalid.
10897 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10898 return false;
10899
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010900 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10901 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010902 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010903 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010904 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010905
10906 }
10907 return false;
10908}
10909
10910Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10911 Value *Op = LI.getOperand(0);
10912
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010913 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010914 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10915 if (KnownAlign >
10916 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10917 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010918 LI.setAlignment(KnownAlign);
10919
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010920 // load (cast X) --> cast (load X) iff safe
10921 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010922 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010923 return Res;
10924
10925 // None of the following transforms are legal for volatile loads.
10926 if (LI.isVolatile()) return 0;
10927
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010928 // Do really simple store-to-load forwarding and load CSE, to catch cases
10929 // where there are several consequtive memory accesses to the same location,
10930 // separated by a few arithmetic operations.
10931 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000010932 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10933 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010934
Christopher Lamb2c175392007-12-29 07:56:53 +000010935 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10936 const Value *GEPI0 = GEPI->getOperand(0);
10937 // TODO: Consider a target hook for valid address spaces for this xform.
10938 if (isa<ConstantPointerNull>(GEPI0) &&
10939 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010940 // Insert a new store to null instruction before the load to indicate
10941 // that this code is not reachable. We do this instead of inserting
10942 // an unreachable instruction directly because we cannot modify the
10943 // CFG.
10944 new StoreInst(UndefValue::get(LI.getType()),
10945 Constant::getNullValue(Op->getType()), &LI);
10946 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10947 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010948 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010949
10950 if (Constant *C = dyn_cast<Constant>(Op)) {
10951 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010952 // TODO: Consider a target hook for valid address spaces for this xform.
10953 if (isa<UndefValue>(C) || (C->isNullValue() &&
10954 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010955 // Insert a new store to null instruction before the load to indicate that
10956 // this code is not reachable. We do this instead of inserting an
10957 // unreachable instruction directly because we cannot modify the CFG.
10958 new StoreInst(UndefValue::get(LI.getType()),
10959 Constant::getNullValue(Op->getType()), &LI);
10960 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10961 }
10962
10963 // Instcombine load (constant global) into the value loaded.
10964 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10965 if (GV->isConstant() && !GV->isDeclaration())
10966 return ReplaceInstUsesWith(LI, GV->getInitializer());
10967
10968 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010969 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010970 if (CE->getOpcode() == Instruction::GetElementPtr) {
10971 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10972 if (GV->isConstant() && !GV->isDeclaration())
10973 if (Constant *V =
10974 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10975 return ReplaceInstUsesWith(LI, V);
10976 if (CE->getOperand(0)->isNullValue()) {
10977 // Insert a new store to null instruction before the load to indicate
10978 // that this code is not reachable. We do this instead of inserting
10979 // an unreachable instruction directly because we cannot modify the
10980 // CFG.
10981 new StoreInst(UndefValue::get(LI.getType()),
10982 Constant::getNullValue(Op->getType()), &LI);
10983 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10984 }
10985
10986 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010987 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010988 return Res;
10989 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010990 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010991 }
Chris Lattner0270a112007-08-11 18:48:48 +000010992
10993 // If this load comes from anywhere in a constant global, and if the global
10994 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000010995 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000010996 if (GV->isConstant() && GV->hasInitializer()) {
10997 if (GV->getInitializer()->isNullValue())
10998 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
10999 else if (isa<UndefValue>(GV->getInitializer()))
11000 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11001 }
11002 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011003
11004 if (Op->hasOneUse()) {
11005 // Change select and PHI nodes to select values instead of addresses: this
11006 // helps alias analysis out a lot, allows many others simplifications, and
11007 // exposes redundancy in the code.
11008 //
11009 // Note that we cannot do the transformation unless we know that the
11010 // introduced loads cannot trap! Something like this is valid as long as
11011 // the condition is always false: load (select bool %C, int* null, int* %G),
11012 // but it would not be valid if we transformed it to load from null
11013 // unconditionally.
11014 //
11015 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11016 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11017 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11018 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11019 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
11020 SI->getOperand(1)->getName()+".val"), LI);
11021 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
11022 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011023 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011024 }
11025
11026 // load (select (cond, null, P)) -> load P
11027 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11028 if (C->isNullValue()) {
11029 LI.setOperand(0, SI->getOperand(2));
11030 return &LI;
11031 }
11032
11033 // load (select (cond, P, null)) -> load P
11034 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11035 if (C->isNullValue()) {
11036 LI.setOperand(0, SI->getOperand(1));
11037 return &LI;
11038 }
11039 }
11040 }
11041 return 0;
11042}
11043
11044/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11045/// when possible.
11046static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11047 User *CI = cast<User>(SI.getOperand(1));
11048 Value *CastOp = CI->getOperand(0);
11049
11050 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11051 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11052 const Type *SrcPTy = SrcTy->getElementType();
11053
11054 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11055 // If the source is an array, the code below will not succeed. Check to
11056 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11057 // constants.
11058 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11059 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11060 if (ASrcTy->getNumElements() != 0) {
11061 Value* Idxs[2];
11062 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11063 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11064 SrcTy = cast<PointerType>(CastOp->getType());
11065 SrcPTy = SrcTy->getElementType();
11066 }
11067
11068 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11069 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11070 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11071
11072 // Okay, we are casting from one integer or pointer type to another of
11073 // the same size. Instead of casting the pointer before
11074 // the store, cast the value to be stored.
11075 Value *NewCast;
11076 Value *SIOp0 = SI.getOperand(0);
11077 Instruction::CastOps opcode = Instruction::BitCast;
11078 const Type* CastSrcTy = SIOp0->getType();
11079 const Type* CastDstTy = SrcPTy;
11080 if (isa<PointerType>(CastDstTy)) {
11081 if (CastSrcTy->isInteger())
11082 opcode = Instruction::IntToPtr;
11083 } else if (isa<IntegerType>(CastDstTy)) {
11084 if (isa<PointerType>(SIOp0->getType()))
11085 opcode = Instruction::PtrToInt;
11086 }
11087 if (Constant *C = dyn_cast<Constant>(SIOp0))
11088 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11089 else
11090 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011091 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011092 SI);
11093 return new StoreInst(NewCast, CastOp);
11094 }
11095 }
11096 }
11097 return 0;
11098}
11099
Chris Lattner6fd8c802008-11-27 08:56:30 +000011100/// equivalentAddressValues - Test if A and B will obviously have the same
11101/// value. This includes recognizing that %t0 and %t1 will have the same
11102/// value in code like this:
11103/// %t0 = getelementptr @a, 0, 3
11104/// store i32 0, i32* %t0
11105/// %t1 = getelementptr @a, 0, 3
11106/// %t2 = load i32* %t1
11107///
11108static bool equivalentAddressValues(Value *A, Value *B) {
11109 // Test if the values are trivially equivalent.
11110 if (A == B) return true;
11111
11112 // Test if the values come form identical arithmetic instructions.
11113 if (isa<BinaryOperator>(A) ||
11114 isa<CastInst>(A) ||
11115 isa<PHINode>(A) ||
11116 isa<GetElementPtrInst>(A))
11117 if (Instruction *BI = dyn_cast<Instruction>(B))
11118 if (cast<Instruction>(A)->isIdenticalTo(BI))
11119 return true;
11120
11121 // Otherwise they may not be equivalent.
11122 return false;
11123}
11124
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011125Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11126 Value *Val = SI.getOperand(0);
11127 Value *Ptr = SI.getOperand(1);
11128
11129 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11130 EraseInstFromFunction(SI);
11131 ++NumCombined;
11132 return 0;
11133 }
11134
11135 // If the RHS is an alloca with a single use, zapify the store, making the
11136 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011137 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011138 if (isa<AllocaInst>(Ptr)) {
11139 EraseInstFromFunction(SI);
11140 ++NumCombined;
11141 return 0;
11142 }
11143
11144 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11145 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11146 GEP->getOperand(0)->hasOneUse()) {
11147 EraseInstFromFunction(SI);
11148 ++NumCombined;
11149 return 0;
11150 }
11151 }
11152
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011153 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011154 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11155 if (KnownAlign >
11156 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11157 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011158 SI.setAlignment(KnownAlign);
11159
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011160 // Do really simple DSE, to catch cases where there are several consequtive
11161 // stores to the same location, separated by a few arithmetic operations. This
11162 // situation often occurs with bitfield accesses.
11163 BasicBlock::iterator BBI = &SI;
11164 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11165 --ScanInsts) {
11166 --BBI;
11167
11168 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11169 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011170 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11171 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011172 ++NumDeadStore;
11173 ++BBI;
11174 EraseInstFromFunction(*PrevSI);
11175 continue;
11176 }
11177 break;
11178 }
11179
11180 // If this is a load, we have to stop. However, if the loaded value is from
11181 // the pointer we're loading and is producing the pointer we're storing,
11182 // then *this* store is dead (X = load P; store X -> P).
11183 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011184 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11185 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011186 EraseInstFromFunction(SI);
11187 ++NumCombined;
11188 return 0;
11189 }
11190 // Otherwise, this is a load from some other location. Stores before it
11191 // may not be dead.
11192 break;
11193 }
11194
11195 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011196 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011197 break;
11198 }
11199
11200
11201 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11202
11203 // store X, null -> turns into 'unreachable' in SimplifyCFG
11204 if (isa<ConstantPointerNull>(Ptr)) {
11205 if (!isa<UndefValue>(Val)) {
11206 SI.setOperand(0, UndefValue::get(Val->getType()));
11207 if (Instruction *U = dyn_cast<Instruction>(Val))
11208 AddToWorkList(U); // Dropped a use.
11209 ++NumCombined;
11210 }
11211 return 0; // Do not modify these!
11212 }
11213
11214 // store undef, Ptr -> noop
11215 if (isa<UndefValue>(Val)) {
11216 EraseInstFromFunction(SI);
11217 ++NumCombined;
11218 return 0;
11219 }
11220
11221 // If the pointer destination is a cast, see if we can fold the cast into the
11222 // source instead.
11223 if (isa<CastInst>(Ptr))
11224 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11225 return Res;
11226 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11227 if (CE->isCast())
11228 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11229 return Res;
11230
11231
11232 // If this store is the last instruction in the basic block, and if the block
11233 // ends with an unconditional branch, try to move it to the successor block.
11234 BBI = &SI; ++BBI;
11235 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11236 if (BI->isUnconditional())
11237 if (SimplifyStoreAtEndOfBlock(SI))
11238 return 0; // xform done!
11239
11240 return 0;
11241}
11242
11243/// SimplifyStoreAtEndOfBlock - Turn things like:
11244/// if () { *P = v1; } else { *P = v2 }
11245/// into a phi node with a store in the successor.
11246///
11247/// Simplify things like:
11248/// *P = v1; if () { *P = v2; }
11249/// into a phi node with a store in the successor.
11250///
11251bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11252 BasicBlock *StoreBB = SI.getParent();
11253
11254 // Check to see if the successor block has exactly two incoming edges. If
11255 // so, see if the other predecessor contains a store to the same location.
11256 // if so, insert a PHI node (if needed) and move the stores down.
11257 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11258
11259 // Determine whether Dest has exactly two predecessors and, if so, compute
11260 // the other predecessor.
11261 pred_iterator PI = pred_begin(DestBB);
11262 BasicBlock *OtherBB = 0;
11263 if (*PI != StoreBB)
11264 OtherBB = *PI;
11265 ++PI;
11266 if (PI == pred_end(DestBB))
11267 return false;
11268
11269 if (*PI != StoreBB) {
11270 if (OtherBB)
11271 return false;
11272 OtherBB = *PI;
11273 }
11274 if (++PI != pred_end(DestBB))
11275 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011276
11277 // Bail out if all the relevant blocks aren't distinct (this can happen,
11278 // for example, if SI is in an infinite loop)
11279 if (StoreBB == DestBB || OtherBB == DestBB)
11280 return false;
11281
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011282 // Verify that the other block ends in a branch and is not otherwise empty.
11283 BasicBlock::iterator BBI = OtherBB->getTerminator();
11284 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11285 if (!OtherBr || BBI == OtherBB->begin())
11286 return false;
11287
11288 // If the other block ends in an unconditional branch, check for the 'if then
11289 // else' case. there is an instruction before the branch.
11290 StoreInst *OtherStore = 0;
11291 if (OtherBr->isUnconditional()) {
11292 // If this isn't a store, or isn't a store to the same location, bail out.
11293 --BBI;
11294 OtherStore = dyn_cast<StoreInst>(BBI);
11295 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11296 return false;
11297 } else {
11298 // Otherwise, the other block ended with a conditional branch. If one of the
11299 // destinations is StoreBB, then we have the if/then case.
11300 if (OtherBr->getSuccessor(0) != StoreBB &&
11301 OtherBr->getSuccessor(1) != StoreBB)
11302 return false;
11303
11304 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11305 // if/then triangle. See if there is a store to the same ptr as SI that
11306 // lives in OtherBB.
11307 for (;; --BBI) {
11308 // Check to see if we find the matching store.
11309 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11310 if (OtherStore->getOperand(1) != SI.getOperand(1))
11311 return false;
11312 break;
11313 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011314 // If we find something that may be using or overwriting the stored
11315 // value, or if we run out of instructions, we can't do the xform.
11316 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011317 BBI == OtherBB->begin())
11318 return false;
11319 }
11320
11321 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011322 // make sure nothing reads or overwrites the stored value in
11323 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011324 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11325 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011326 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011327 return false;
11328 }
11329 }
11330
11331 // Insert a PHI node now if we need it.
11332 Value *MergedVal = OtherStore->getOperand(0);
11333 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011334 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011335 PN->reserveOperandSpace(2);
11336 PN->addIncoming(SI.getOperand(0), SI.getParent());
11337 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11338 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11339 }
11340
11341 // Advance to a place where it is safe to insert the new store and
11342 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011343 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011344 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11345 OtherStore->isVolatile()), *BBI);
11346
11347 // Nuke the old stores.
11348 EraseInstFromFunction(SI);
11349 EraseInstFromFunction(*OtherStore);
11350 ++NumCombined;
11351 return true;
11352}
11353
11354
11355Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11356 // Change br (not X), label True, label False to: br X, label False, True
11357 Value *X = 0;
11358 BasicBlock *TrueDest;
11359 BasicBlock *FalseDest;
11360 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11361 !isa<Constant>(X)) {
11362 // Swap Destinations and condition...
11363 BI.setCondition(X);
11364 BI.setSuccessor(0, FalseDest);
11365 BI.setSuccessor(1, TrueDest);
11366 return &BI;
11367 }
11368
11369 // Cannonicalize fcmp_one -> fcmp_oeq
11370 FCmpInst::Predicate FPred; Value *Y;
11371 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11372 TrueDest, FalseDest)))
11373 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11374 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11375 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11376 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11377 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11378 NewSCC->takeName(I);
11379 // Swap Destinations and condition...
11380 BI.setCondition(NewSCC);
11381 BI.setSuccessor(0, FalseDest);
11382 BI.setSuccessor(1, TrueDest);
11383 RemoveFromWorkList(I);
11384 I->eraseFromParent();
11385 AddToWorkList(NewSCC);
11386 return &BI;
11387 }
11388
11389 // Cannonicalize icmp_ne -> icmp_eq
11390 ICmpInst::Predicate IPred;
11391 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11392 TrueDest, FalseDest)))
11393 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11394 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11395 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11396 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11397 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11398 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11399 NewSCC->takeName(I);
11400 // Swap Destinations and condition...
11401 BI.setCondition(NewSCC);
11402 BI.setSuccessor(0, FalseDest);
11403 BI.setSuccessor(1, TrueDest);
11404 RemoveFromWorkList(I);
11405 I->eraseFromParent();;
11406 AddToWorkList(NewSCC);
11407 return &BI;
11408 }
11409
11410 return 0;
11411}
11412
11413Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11414 Value *Cond = SI.getCondition();
11415 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11416 if (I->getOpcode() == Instruction::Add)
11417 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11418 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11419 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11420 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11421 AddRHS));
11422 SI.setOperand(0, I->getOperand(0));
11423 AddToWorkList(I);
11424 return &SI;
11425 }
11426 }
11427 return 0;
11428}
11429
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011430Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011431 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011432
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011433 if (!EV.hasIndices())
11434 return ReplaceInstUsesWith(EV, Agg);
11435
11436 if (Constant *C = dyn_cast<Constant>(Agg)) {
11437 if (isa<UndefValue>(C))
11438 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11439
11440 if (isa<ConstantAggregateZero>(C))
11441 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11442
11443 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11444 // Extract the element indexed by the first index out of the constant
11445 Value *V = C->getOperand(*EV.idx_begin());
11446 if (EV.getNumIndices() > 1)
11447 // Extract the remaining indices out of the constant indexed by the
11448 // first index
11449 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11450 else
11451 return ReplaceInstUsesWith(EV, V);
11452 }
11453 return 0; // Can't handle other constants
11454 }
11455 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11456 // We're extracting from an insertvalue instruction, compare the indices
11457 const unsigned *exti, *exte, *insi, *inse;
11458 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11459 exte = EV.idx_end(), inse = IV->idx_end();
11460 exti != exte && insi != inse;
11461 ++exti, ++insi) {
11462 if (*insi != *exti)
11463 // The insert and extract both reference distinctly different elements.
11464 // This means the extract is not influenced by the insert, and we can
11465 // replace the aggregate operand of the extract with the aggregate
11466 // operand of the insert. i.e., replace
11467 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11468 // %E = extractvalue { i32, { i32 } } %I, 0
11469 // with
11470 // %E = extractvalue { i32, { i32 } } %A, 0
11471 return ExtractValueInst::Create(IV->getAggregateOperand(),
11472 EV.idx_begin(), EV.idx_end());
11473 }
11474 if (exti == exte && insi == inse)
11475 // Both iterators are at the end: Index lists are identical. Replace
11476 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11477 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11478 // with "i32 42"
11479 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11480 if (exti == exte) {
11481 // The extract list is a prefix of the insert list. i.e. replace
11482 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11483 // %E = extractvalue { i32, { i32 } } %I, 1
11484 // with
11485 // %X = extractvalue { i32, { i32 } } %A, 1
11486 // %E = insertvalue { i32 } %X, i32 42, 0
11487 // by switching the order of the insert and extract (though the
11488 // insertvalue should be left in, since it may have other uses).
11489 Value *NewEV = InsertNewInstBefore(
11490 ExtractValueInst::Create(IV->getAggregateOperand(),
11491 EV.idx_begin(), EV.idx_end()),
11492 EV);
11493 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11494 insi, inse);
11495 }
11496 if (insi == inse)
11497 // The insert list is a prefix of the extract list
11498 // We can simply remove the common indices from the extract and make it
11499 // operate on the inserted value instead of the insertvalue result.
11500 // i.e., replace
11501 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11502 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11503 // with
11504 // %E extractvalue { i32 } { i32 42 }, 0
11505 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11506 exti, exte);
11507 }
11508 // Can't simplify extracts from other values. Note that nested extracts are
11509 // already simplified implicitely by the above (extract ( extract (insert) )
11510 // will be translated into extract ( insert ( extract ) ) first and then just
11511 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011512 return 0;
11513}
11514
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011515/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11516/// is to leave as a vector operation.
11517static bool CheapToScalarize(Value *V, bool isConstant) {
11518 if (isa<ConstantAggregateZero>(V))
11519 return true;
11520 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11521 if (isConstant) return true;
11522 // If all elts are the same, we can extract.
11523 Constant *Op0 = C->getOperand(0);
11524 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11525 if (C->getOperand(i) != Op0)
11526 return false;
11527 return true;
11528 }
11529 Instruction *I = dyn_cast<Instruction>(V);
11530 if (!I) return false;
11531
11532 // Insert element gets simplified to the inserted element or is deleted if
11533 // this is constant idx extract element and its a constant idx insertelt.
11534 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11535 isa<ConstantInt>(I->getOperand(2)))
11536 return true;
11537 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11538 return true;
11539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11540 if (BO->hasOneUse() &&
11541 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11542 CheapToScalarize(BO->getOperand(1), isConstant)))
11543 return true;
11544 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11545 if (CI->hasOneUse() &&
11546 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11547 CheapToScalarize(CI->getOperand(1), isConstant)))
11548 return true;
11549
11550 return false;
11551}
11552
11553/// Read and decode a shufflevector mask.
11554///
11555/// It turns undef elements into values that are larger than the number of
11556/// elements in the input.
11557static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11558 unsigned NElts = SVI->getType()->getNumElements();
11559 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11560 return std::vector<unsigned>(NElts, 0);
11561 if (isa<UndefValue>(SVI->getOperand(2)))
11562 return std::vector<unsigned>(NElts, 2*NElts);
11563
11564 std::vector<unsigned> Result;
11565 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011566 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11567 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011568 Result.push_back(NElts*2); // undef -> 8
11569 else
Gabor Greif17396002008-06-12 21:37:33 +000011570 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011571 return Result;
11572}
11573
11574/// FindScalarElement - Given a vector and an element number, see if the scalar
11575/// value is already around as a register, for example if it were inserted then
11576/// extracted from the vector.
11577static Value *FindScalarElement(Value *V, unsigned EltNo) {
11578 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11579 const VectorType *PTy = cast<VectorType>(V->getType());
11580 unsigned Width = PTy->getNumElements();
11581 if (EltNo >= Width) // Out of range access.
11582 return UndefValue::get(PTy->getElementType());
11583
11584 if (isa<UndefValue>(V))
11585 return UndefValue::get(PTy->getElementType());
11586 else if (isa<ConstantAggregateZero>(V))
11587 return Constant::getNullValue(PTy->getElementType());
11588 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11589 return CP->getOperand(EltNo);
11590 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11591 // If this is an insert to a variable element, we don't know what it is.
11592 if (!isa<ConstantInt>(III->getOperand(2)))
11593 return 0;
11594 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11595
11596 // If this is an insert to the element we are looking for, return the
11597 // inserted value.
11598 if (EltNo == IIElt)
11599 return III->getOperand(1);
11600
11601 // Otherwise, the insertelement doesn't modify the value, recurse on its
11602 // vector input.
11603 return FindScalarElement(III->getOperand(0), EltNo);
11604 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011605 unsigned LHSWidth =
11606 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011607 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011608 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011609 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011610 else if (InEl < LHSWidth*2)
11611 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011612 else
11613 return UndefValue::get(PTy->getElementType());
11614 }
11615
11616 // Otherwise, we don't know.
11617 return 0;
11618}
11619
11620Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011621 // If vector val is undef, replace extract with scalar undef.
11622 if (isa<UndefValue>(EI.getOperand(0)))
11623 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11624
11625 // If vector val is constant 0, replace extract with scalar 0.
11626 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11627 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11628
11629 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011630 // If vector val is constant with all elements the same, replace EI with
11631 // that element. When the elements are not identical, we cannot replace yet
11632 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011633 Constant *op0 = C->getOperand(0);
11634 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11635 if (C->getOperand(i) != op0) {
11636 op0 = 0;
11637 break;
11638 }
11639 if (op0)
11640 return ReplaceInstUsesWith(EI, op0);
11641 }
11642
11643 // If extracting a specified index from the vector, see if we can recursively
11644 // find a previously computed scalar that was inserted into the vector.
11645 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11646 unsigned IndexVal = IdxC->getZExtValue();
11647 unsigned VectorWidth =
11648 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11649
11650 // If this is extracting an invalid index, turn this into undef, to avoid
11651 // crashing the code below.
11652 if (IndexVal >= VectorWidth)
11653 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11654
11655 // This instruction only demands the single element from the input vector.
11656 // If the input vector has a single use, simplify it based on this use
11657 // property.
11658 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11659 uint64_t UndefElts;
11660 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11661 1 << IndexVal,
11662 UndefElts)) {
11663 EI.setOperand(0, V);
11664 return &EI;
11665 }
11666 }
11667
11668 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11669 return ReplaceInstUsesWith(EI, Elt);
11670
11671 // If the this extractelement is directly using a bitcast from a vector of
11672 // the same number of elements, see if we can find the source element from
11673 // it. In this case, we will end up needing to bitcast the scalars.
11674 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11675 if (const VectorType *VT =
11676 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11677 if (VT->getNumElements() == VectorWidth)
11678 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11679 return new BitCastInst(Elt, EI.getType());
11680 }
11681 }
11682
11683 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11684 if (I->hasOneUse()) {
11685 // Push extractelement into predecessor operation if legal and
11686 // profitable to do so
11687 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11688 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11689 if (CheapToScalarize(BO, isConstantElt)) {
11690 ExtractElementInst *newEI0 =
11691 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11692 EI.getName()+".lhs");
11693 ExtractElementInst *newEI1 =
11694 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11695 EI.getName()+".rhs");
11696 InsertNewInstBefore(newEI0, EI);
11697 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011698 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011699 }
11700 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011701 unsigned AS =
11702 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011703 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11704 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011705 GetElementPtrInst *GEP =
11706 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011707 InsertNewInstBefore(GEP, EI);
11708 return new LoadInst(GEP);
11709 }
11710 }
11711 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11712 // Extracting the inserted element?
11713 if (IE->getOperand(2) == EI.getOperand(1))
11714 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11715 // If the inserted and extracted elements are constants, they must not
11716 // be the same value, extract from the pre-inserted value instead.
11717 if (isa<Constant>(IE->getOperand(2)) &&
11718 isa<Constant>(EI.getOperand(1))) {
11719 AddUsesToWorkList(EI);
11720 EI.setOperand(0, IE->getOperand(0));
11721 return &EI;
11722 }
11723 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11724 // If this is extracting an element from a shufflevector, figure out where
11725 // it came from and extract from the appropriate input element instead.
11726 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11727 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11728 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011729 unsigned LHSWidth =
11730 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11731
11732 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011733 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011734 else if (SrcIdx < LHSWidth*2) {
11735 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011736 Src = SVI->getOperand(1);
11737 } else {
11738 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11739 }
11740 return new ExtractElementInst(Src, SrcIdx);
11741 }
11742 }
11743 }
11744 return 0;
11745}
11746
11747/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11748/// elements from either LHS or RHS, return the shuffle mask and true.
11749/// Otherwise, return false.
11750static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11751 std::vector<Constant*> &Mask) {
11752 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11753 "Invalid CollectSingleShuffleElements");
11754 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11755
11756 if (isa<UndefValue>(V)) {
11757 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11758 return true;
11759 } else if (V == LHS) {
11760 for (unsigned i = 0; i != NumElts; ++i)
11761 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11762 return true;
11763 } else if (V == RHS) {
11764 for (unsigned i = 0; i != NumElts; ++i)
11765 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11766 return true;
11767 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11768 // If this is an insert of an extract from some other vector, include it.
11769 Value *VecOp = IEI->getOperand(0);
11770 Value *ScalarOp = IEI->getOperand(1);
11771 Value *IdxOp = IEI->getOperand(2);
11772
11773 if (!isa<ConstantInt>(IdxOp))
11774 return false;
11775 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11776
11777 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11778 // Okay, we can handle this if the vector we are insertinting into is
11779 // transitively ok.
11780 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11781 // If so, update the mask to reflect the inserted undef.
11782 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11783 return true;
11784 }
11785 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11786 if (isa<ConstantInt>(EI->getOperand(1)) &&
11787 EI->getOperand(0)->getType() == V->getType()) {
11788 unsigned ExtractedIdx =
11789 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11790
11791 // This must be extracting from either LHS or RHS.
11792 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11793 // Okay, we can handle this if the vector we are insertinting into is
11794 // transitively ok.
11795 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11796 // If so, update the mask to reflect the inserted value.
11797 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011798 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011799 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11800 } else {
11801 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011802 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011803 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11804
11805 }
11806 return true;
11807 }
11808 }
11809 }
11810 }
11811 }
11812 // TODO: Handle shufflevector here!
11813
11814 return false;
11815}
11816
11817/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11818/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11819/// that computes V and the LHS value of the shuffle.
11820static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11821 Value *&RHS) {
11822 assert(isa<VectorType>(V->getType()) &&
11823 (RHS == 0 || V->getType() == RHS->getType()) &&
11824 "Invalid shuffle!");
11825 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11826
11827 if (isa<UndefValue>(V)) {
11828 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11829 return V;
11830 } else if (isa<ConstantAggregateZero>(V)) {
11831 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11832 return V;
11833 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11834 // If this is an insert of an extract from some other vector, include it.
11835 Value *VecOp = IEI->getOperand(0);
11836 Value *ScalarOp = IEI->getOperand(1);
11837 Value *IdxOp = IEI->getOperand(2);
11838
11839 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11840 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11841 EI->getOperand(0)->getType() == V->getType()) {
11842 unsigned ExtractedIdx =
11843 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11844 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11845
11846 // Either the extracted from or inserted into vector must be RHSVec,
11847 // otherwise we'd end up with a shuffle of three inputs.
11848 if (EI->getOperand(0) == RHS || RHS == 0) {
11849 RHS = EI->getOperand(0);
11850 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011851 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011852 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11853 return V;
11854 }
11855
11856 if (VecOp == RHS) {
11857 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11858 // Everything but the extracted element is replaced with the RHS.
11859 for (unsigned i = 0; i != NumElts; ++i) {
11860 if (i != InsertedIdx)
11861 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11862 }
11863 return V;
11864 }
11865
11866 // If this insertelement is a chain that comes from exactly these two
11867 // vectors, return the vector and the effective shuffle.
11868 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11869 return EI->getOperand(0);
11870
11871 }
11872 }
11873 }
11874 // TODO: Handle shufflevector here!
11875
11876 // Otherwise, can't do anything fancy. Return an identity vector.
11877 for (unsigned i = 0; i != NumElts; ++i)
11878 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11879 return V;
11880}
11881
11882Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11883 Value *VecOp = IE.getOperand(0);
11884 Value *ScalarOp = IE.getOperand(1);
11885 Value *IdxOp = IE.getOperand(2);
11886
11887 // Inserting an undef or into an undefined place, remove this.
11888 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11889 ReplaceInstUsesWith(IE, VecOp);
11890
11891 // If the inserted element was extracted from some other vector, and if the
11892 // indexes are constant, try to turn this into a shufflevector operation.
11893 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11894 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11895 EI->getOperand(0)->getType() == IE.getType()) {
11896 unsigned NumVectorElts = IE.getType()->getNumElements();
11897 unsigned ExtractedIdx =
11898 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11899 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11900
11901 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11902 return ReplaceInstUsesWith(IE, VecOp);
11903
11904 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11905 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11906
11907 // If we are extracting a value from a vector, then inserting it right
11908 // back into the same place, just use the input vector.
11909 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11910 return ReplaceInstUsesWith(IE, VecOp);
11911
11912 // We could theoretically do this for ANY input. However, doing so could
11913 // turn chains of insertelement instructions into a chain of shufflevector
11914 // instructions, and right now we do not merge shufflevectors. As such,
11915 // only do this in a situation where it is clear that there is benefit.
11916 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11917 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11918 // the values of VecOp, except then one read from EIOp0.
11919 // Build a new shuffle mask.
11920 std::vector<Constant*> Mask;
11921 if (isa<UndefValue>(VecOp))
11922 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11923 else {
11924 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11925 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11926 NumVectorElts));
11927 }
11928 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11929 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11930 ConstantVector::get(Mask));
11931 }
11932
11933 // If this insertelement isn't used by some other insertelement, turn it
11934 // (and any insertelements it points to), into one big shuffle.
11935 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11936 std::vector<Constant*> Mask;
11937 Value *RHS = 0;
11938 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11939 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11940 // We now have a shuffle of LHS, RHS, Mask.
11941 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11942 }
11943 }
11944 }
11945
11946 return 0;
11947}
11948
11949
11950Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11951 Value *LHS = SVI.getOperand(0);
11952 Value *RHS = SVI.getOperand(1);
11953 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11954
11955 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011956
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011957 // Undefined shuffle mask -> undefined value.
11958 if (isa<UndefValue>(SVI.getOperand(2)))
11959 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011960
11961 uint64_t UndefElts;
11962 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011963
11964 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11965 return 0;
11966
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011967 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11968 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011969 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11970 LHS = SVI.getOperand(0);
11971 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011972 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011973 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011974
11975 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11976 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11977 if (LHS == RHS || isa<UndefValue>(LHS)) {
11978 if (isa<UndefValue>(LHS) && LHS == RHS) {
11979 // shuffle(undef,undef,mask) -> undef.
11980 return ReplaceInstUsesWith(SVI, LHS);
11981 }
11982
11983 // Remap any references to RHS to use LHS.
11984 std::vector<Constant*> Elts;
11985 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
11986 if (Mask[i] >= 2*e)
11987 Elts.push_back(UndefValue::get(Type::Int32Ty));
11988 else {
11989 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000011990 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011991 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011992 Elts.push_back(UndefValue::get(Type::Int32Ty));
11993 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011994 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000011995 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
11996 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011997 }
11998 }
11999 SVI.setOperand(0, SVI.getOperand(1));
12000 SVI.setOperand(1, UndefValue::get(RHS->getType()));
12001 SVI.setOperand(2, ConstantVector::get(Elts));
12002 LHS = SVI.getOperand(0);
12003 RHS = SVI.getOperand(1);
12004 MadeChange = true;
12005 }
12006
12007 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12008 bool isLHSID = true, isRHSID = true;
12009
12010 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12011 if (Mask[i] >= e*2) continue; // Ignore undef values.
12012 // Is this an identity shuffle of the LHS value?
12013 isLHSID &= (Mask[i] == i);
12014
12015 // Is this an identity shuffle of the RHS value?
12016 isRHSID &= (Mask[i]-e == i);
12017 }
12018
12019 // Eliminate identity shuffles.
12020 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12021 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12022
12023 // If the LHS is a shufflevector itself, see if we can combine it with this
12024 // one without producing an unusual shuffle. Here we are really conservative:
12025 // we are absolutely afraid of producing a shuffle mask not in the input
12026 // program, because the code gen may not be smart enough to turn a merged
12027 // shuffle into two specific shuffles: it may produce worse code. As such,
12028 // we only merge two shuffles if the result is one of the two input shuffle
12029 // masks. In this case, merging the shuffles just removes one instruction,
12030 // which we know is safe. This is good for things like turning:
12031 // (splat(splat)) -> splat.
12032 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12033 if (isa<UndefValue>(RHS)) {
12034 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12035
12036 std::vector<unsigned> NewMask;
12037 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12038 if (Mask[i] >= 2*e)
12039 NewMask.push_back(2*e);
12040 else
12041 NewMask.push_back(LHSMask[Mask[i]]);
12042
12043 // If the result mask is equal to the src shuffle or this shuffle mask, do
12044 // the replacement.
12045 if (NewMask == LHSMask || NewMask == Mask) {
12046 std::vector<Constant*> Elts;
12047 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12048 if (NewMask[i] >= e*2) {
12049 Elts.push_back(UndefValue::get(Type::Int32Ty));
12050 } else {
12051 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12052 }
12053 }
12054 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12055 LHSSVI->getOperand(1),
12056 ConstantVector::get(Elts));
12057 }
12058 }
12059 }
12060
12061 return MadeChange ? &SVI : 0;
12062}
12063
12064
12065
12066
12067/// TryToSinkInstruction - Try to move the specified instruction from its
12068/// current block into the beginning of DestBlock, which can only happen if it's
12069/// safe to move the instruction past all of the instructions between it and the
12070/// end of its block.
12071static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12072 assert(I->hasOneUse() && "Invariants didn't hold!");
12073
12074 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012075 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12076 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012077
12078 // Do not sink alloca instructions out of the entry block.
12079 if (isa<AllocaInst>(I) && I->getParent() ==
12080 &DestBlock->getParent()->getEntryBlock())
12081 return false;
12082
12083 // We can only sink load instructions if there is nothing between the load and
12084 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012085 if (I->mayReadFromMemory()) {
12086 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012087 Scan != E; ++Scan)
12088 if (Scan->mayWriteToMemory())
12089 return false;
12090 }
12091
Dan Gohman514277c2008-05-23 21:05:58 +000012092 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012093
12094 I->moveBefore(InsertPos);
12095 ++NumSunkInst;
12096 return true;
12097}
12098
12099
12100/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12101/// all reachable code to the worklist.
12102///
12103/// This has a couple of tricks to make the code faster and more powerful. In
12104/// particular, we constant fold and DCE instructions as we go, to avoid adding
12105/// them to the worklist (this significantly speeds up instcombine on code where
12106/// many instructions are dead or constant). Additionally, if we find a branch
12107/// whose condition is a known constant, we only visit the reachable successors.
12108///
12109static void AddReachableCodeToWorklist(BasicBlock *BB,
12110 SmallPtrSet<BasicBlock*, 64> &Visited,
12111 InstCombiner &IC,
12112 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012113 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012114 Worklist.push_back(BB);
12115
12116 while (!Worklist.empty()) {
12117 BB = Worklist.back();
12118 Worklist.pop_back();
12119
12120 // We have now visited this block! If we've already been here, ignore it.
12121 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012122
12123 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012124 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12125 Instruction *Inst = BBI++;
12126
12127 // DCE instruction if trivially dead.
12128 if (isInstructionTriviallyDead(Inst)) {
12129 ++NumDeadInst;
12130 DOUT << "IC: DCE: " << *Inst;
12131 Inst->eraseFromParent();
12132 continue;
12133 }
12134
12135 // ConstantProp instruction if trivially constant.
12136 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12137 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12138 Inst->replaceAllUsesWith(C);
12139 ++NumConstProp;
12140 Inst->eraseFromParent();
12141 continue;
12142 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012143
Devang Patel794140c2008-11-19 18:56:50 +000012144 // If there are two consecutive llvm.dbg.stoppoint calls then
12145 // it is likely that the optimizer deleted code in between these
12146 // two intrinsics.
12147 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12148 if (DBI_Next) {
12149 if (DBI_Prev
12150 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12151 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12152 IC.RemoveFromWorkList(DBI_Prev);
12153 DBI_Prev->eraseFromParent();
12154 }
12155 DBI_Prev = DBI_Next;
12156 }
12157
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012158 IC.AddToWorkList(Inst);
12159 }
12160
12161 // Recursively visit successors. If this is a branch or switch on a
12162 // constant, only visit the reachable successor.
12163 TerminatorInst *TI = BB->getTerminator();
12164 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12165 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12166 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012167 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012168 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012169 continue;
12170 }
12171 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12172 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12173 // See if this is an explicit destination.
12174 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12175 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012176 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012177 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012178 continue;
12179 }
12180
12181 // Otherwise it is the default destination.
12182 Worklist.push_back(SI->getSuccessor(0));
12183 continue;
12184 }
12185 }
12186
12187 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12188 Worklist.push_back(TI->getSuccessor(i));
12189 }
12190}
12191
12192bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12193 bool Changed = false;
12194 TD = &getAnalysis<TargetData>();
12195
12196 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12197 << F.getNameStr() << "\n");
12198
12199 {
12200 // Do a depth-first traversal of the function, populate the worklist with
12201 // the reachable instructions. Ignore blocks that are not reachable. Keep
12202 // track of which blocks we visit.
12203 SmallPtrSet<BasicBlock*, 64> Visited;
12204 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12205
12206 // Do a quick scan over the function. If we find any blocks that are
12207 // unreachable, remove any instructions inside of them. This prevents
12208 // the instcombine code from having to deal with some bad special cases.
12209 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12210 if (!Visited.count(BB)) {
12211 Instruction *Term = BB->getTerminator();
12212 while (Term != BB->begin()) { // Remove instrs bottom-up
12213 BasicBlock::iterator I = Term; --I;
12214
12215 DOUT << "IC: DCE: " << *I;
12216 ++NumDeadInst;
12217
12218 if (!I->use_empty())
12219 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12220 I->eraseFromParent();
12221 }
12222 }
12223 }
12224
12225 while (!Worklist.empty()) {
12226 Instruction *I = RemoveOneFromWorkList();
12227 if (I == 0) continue; // skip null values.
12228
12229 // Check to see if we can DCE the instruction.
12230 if (isInstructionTriviallyDead(I)) {
12231 // Add operands to the worklist.
12232 if (I->getNumOperands() < 4)
12233 AddUsesToWorkList(*I);
12234 ++NumDeadInst;
12235
12236 DOUT << "IC: DCE: " << *I;
12237
12238 I->eraseFromParent();
12239 RemoveFromWorkList(I);
12240 continue;
12241 }
12242
12243 // Instruction isn't dead, see if we can constant propagate it.
12244 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12245 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12246
12247 // Add operands to the worklist.
12248 AddUsesToWorkList(*I);
12249 ReplaceInstUsesWith(*I, C);
12250
12251 ++NumConstProp;
12252 I->eraseFromParent();
12253 RemoveFromWorkList(I);
12254 continue;
12255 }
12256
Nick Lewyckyadb67922008-05-25 20:56:15 +000012257 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12258 // See if we can constant fold its operands.
12259 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12260 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12261 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12262 i->set(NewC);
12263 }
12264 }
12265 }
12266
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012267 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012268 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012269 BasicBlock *BB = I->getParent();
12270 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12271 if (UserParent != BB) {
12272 bool UserIsSuccessor = false;
12273 // See if the user is one of our successors.
12274 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12275 if (*SI == UserParent) {
12276 UserIsSuccessor = true;
12277 break;
12278 }
12279
12280 // If the user is one of our immediate successors, and if that successor
12281 // only has us as a predecessors (we'd have to split the critical edge
12282 // otherwise), we can keep going.
12283 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12284 next(pred_begin(UserParent)) == pred_end(UserParent))
12285 // Okay, the CFG is simple enough, try to sink this instruction.
12286 Changed |= TryToSinkInstruction(I, UserParent);
12287 }
12288 }
12289
12290 // Now that we have an instruction, try combining it to simplify it...
12291#ifndef NDEBUG
12292 std::string OrigI;
12293#endif
12294 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12295 if (Instruction *Result = visit(*I)) {
12296 ++NumCombined;
12297 // Should we replace the old instruction with a new one?
12298 if (Result != I) {
12299 DOUT << "IC: Old = " << *I
12300 << " New = " << *Result;
12301
12302 // Everything uses the new instruction now.
12303 I->replaceAllUsesWith(Result);
12304
12305 // Push the new instruction and any users onto the worklist.
12306 AddToWorkList(Result);
12307 AddUsersToWorkList(*Result);
12308
12309 // Move the name to the new instruction first.
12310 Result->takeName(I);
12311
12312 // Insert the new instruction into the basic block...
12313 BasicBlock *InstParent = I->getParent();
12314 BasicBlock::iterator InsertPos = I;
12315
12316 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12317 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12318 ++InsertPos;
12319
12320 InstParent->getInstList().insert(InsertPos, Result);
12321
12322 // Make sure that we reprocess all operands now that we reduced their
12323 // use counts.
12324 AddUsesToWorkList(*I);
12325
12326 // Instructions can end up on the worklist more than once. Make sure
12327 // we do not process an instruction that has been deleted.
12328 RemoveFromWorkList(I);
12329
12330 // Erase the old instruction.
12331 InstParent->getInstList().erase(I);
12332 } else {
12333#ifndef NDEBUG
12334 DOUT << "IC: Mod = " << OrigI
12335 << " New = " << *I;
12336#endif
12337
12338 // If the instruction was modified, it's possible that it is now dead.
12339 // if so, remove it.
12340 if (isInstructionTriviallyDead(I)) {
12341 // Make sure we process all operands now that we are reducing their
12342 // use counts.
12343 AddUsesToWorkList(*I);
12344
12345 // Instructions may end up in the worklist more than once. Erase all
12346 // occurrences of this instruction.
12347 RemoveFromWorkList(I);
12348 I->eraseFromParent();
12349 } else {
12350 AddToWorkList(I);
12351 AddUsersToWorkList(*I);
12352 }
12353 }
12354 Changed = true;
12355 }
12356 }
12357
12358 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012359
12360 // Do an explicit clear, this shrinks the map if needed.
12361 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012362 return Changed;
12363}
12364
12365
12366bool InstCombiner::runOnFunction(Function &F) {
12367 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12368
12369 bool EverMadeChange = false;
12370
12371 // Iterate while there is work to do.
12372 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012373 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012374 EverMadeChange = true;
12375 return EverMadeChange;
12376}
12377
12378FunctionPass *llvm::createInstructionCombiningPass() {
12379 return new InstCombiner();
12380}
12381
Chris Lattner6297fc72008-08-11 22:06:05 +000012382