blob: aae1e14f9dbbf38f00fad9fb5c5e0f389bbcf245 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186 Instruction *visitOr (BinaryOperator &I);
187 Instruction *visitXor(BinaryOperator &I);
188 Instruction *visitShl(BinaryOperator &I);
189 Instruction *visitAShr(BinaryOperator &I);
190 Instruction *visitLShr(BinaryOperator &I);
191 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000192 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
193 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 Instruction *visitFCmpInst(FCmpInst &I);
195 Instruction *visitICmpInst(ICmpInst &I);
196 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
197 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
198 Instruction *LHS,
199 ConstantInt *RHS);
200 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
201 ConstantInt *DivRHS);
202
203 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
204 ICmpInst::Predicate Cond, Instruction &I);
205 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
206 BinaryOperator &I);
207 Instruction *commonCastTransforms(CastInst &CI);
208 Instruction *commonIntCastTransforms(CastInst &CI);
209 Instruction *commonPointerCastTransforms(CastInst &CI);
210 Instruction *visitTrunc(TruncInst &CI);
211 Instruction *visitZExt(ZExtInst &CI);
212 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000213 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000215 Instruction *visitFPToUI(FPToUIInst &FI);
216 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 Instruction *visitUIToFP(CastInst &CI);
218 Instruction *visitSIToFP(CastInst &CI);
219 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000220 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 Instruction *visitBitCast(BitCastInst &CI);
222 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
223 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000224 Instruction *visitSelectInst(SelectInst &SI);
225 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226 Instruction *visitCallInst(CallInst &CI);
227 Instruction *visitInvokeInst(InvokeInst &II);
228 Instruction *visitPHINode(PHINode &PN);
229 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
230 Instruction *visitAllocationInst(AllocationInst &AI);
231 Instruction *visitFreeInst(FreeInst &FI);
232 Instruction *visitLoadInst(LoadInst &LI);
233 Instruction *visitStoreInst(StoreInst &SI);
234 Instruction *visitBranchInst(BranchInst &BI);
235 Instruction *visitSwitchInst(SwitchInst &SI);
236 Instruction *visitInsertElementInst(InsertElementInst &IE);
237 Instruction *visitExtractElementInst(ExtractElementInst &EI);
238 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000239 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240
241 // visitInstruction - Specify what to return for unhandled instructions...
242 Instruction *visitInstruction(Instruction &I) { return 0; }
243
244 private:
245 Instruction *visitCallSite(CallSite CS);
246 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000247 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000248 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
249 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000250 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251
252 public:
253 // InsertNewInstBefore - insert an instruction New before instruction Old
254 // in the program. Add the new instruction to the worklist.
255 //
256 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
257 assert(New && New->getParent() == 0 &&
258 "New instruction already inserted into a basic block!");
259 BasicBlock *BB = Old.getParent();
260 BB->getInstList().insert(&Old, New); // Insert inst
261 AddToWorkList(New);
262 return New;
263 }
264
265 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
266 /// This also adds the cast to the worklist. Finally, this returns the
267 /// cast.
268 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
269 Instruction &Pos) {
270 if (V->getType() == Ty) return V;
271
272 if (Constant *CV = dyn_cast<Constant>(V))
273 return ConstantExpr::getCast(opc, CV, Ty);
274
Gabor Greifa645dd32008-05-16 19:29:10 +0000275 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 AddToWorkList(C);
277 return C;
278 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000279
280 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
281 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
282 }
283
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284
285 // ReplaceInstUsesWith - This method is to be used when an instruction is
286 // found to be dead, replacable with another preexisting expression. Here
287 // we add all uses of I to the worklist, replace all uses of I with the new
288 // value, then return I, so that the inst combiner will know that I was
289 // modified.
290 //
291 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
292 AddUsersToWorkList(I); // Add all modified instrs to worklist
293 if (&I != V) {
294 I.replaceAllUsesWith(V);
295 return &I;
296 } else {
297 // If we are replacing the instruction with itself, this must be in a
298 // segment of unreachable code, so just clobber the instruction.
299 I.replaceAllUsesWith(UndefValue::get(I.getType()));
300 return &I;
301 }
302 }
303
304 // UpdateValueUsesWith - This method is to be used when an value is
305 // found to be replacable with another preexisting expression or was
306 // updated. Here we add all uses of I to the worklist, replace all uses of
307 // I with the new value (unless the instruction was just updated), then
308 // return true, so that the inst combiner will know that I was modified.
309 //
310 bool UpdateValueUsesWith(Value *Old, Value *New) {
311 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
312 if (Old != New)
313 Old->replaceAllUsesWith(New);
314 if (Instruction *I = dyn_cast<Instruction>(Old))
315 AddToWorkList(I);
316 if (Instruction *I = dyn_cast<Instruction>(New))
317 AddToWorkList(I);
318 return true;
319 }
320
321 // EraseInstFromFunction - When dealing with an instruction that has side
322 // effects or produces a void value, we can't rely on DCE to delete the
323 // instruction. Instead, visit methods should return the value returned by
324 // this function.
325 Instruction *EraseInstFromFunction(Instruction &I) {
326 assert(I.use_empty() && "Cannot erase instruction that is used!");
327 AddUsesToWorkList(I);
328 RemoveFromWorkList(&I);
329 I.eraseFromParent();
330 return 0; // Don't do anything with FI
331 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000332
333 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
334 APInt &KnownOne, unsigned Depth = 0) const {
335 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
336 }
337
338 bool MaskedValueIsZero(Value *V, const APInt &Mask,
339 unsigned Depth = 0) const {
340 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
341 }
342 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
343 return llvm::ComputeNumSignBits(Op, TD, Depth);
344 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345
346 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 /// SimplifyCommutative - This performs a few simplifications for
349 /// commutative operators.
350 bool SimplifyCommutative(BinaryOperator &I);
351
352 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
353 /// most-complex to least-complex order.
354 bool SimplifyCompare(CmpInst &I);
355
356 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
357 /// on the demanded bits.
358 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
359 APInt& KnownZero, APInt& KnownOne,
360 unsigned Depth = 0);
361
362 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
363 uint64_t &UndefElts, unsigned Depth = 0);
364
365 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
366 // PHI node as operand #0, see if we can fold the instruction into the PHI
367 // (which is only possible if all operands to the PHI are constants).
368 Instruction *FoldOpIntoPhi(Instruction &I);
369
370 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
371 // operator and they all are only used by the PHI, PHI together their
372 // inputs, and do the operation once, to the result of the PHI.
373 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
374 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000375 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
376
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
378 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
379 ConstantInt *AndRHS, BinaryOperator &TheAnd);
380
381 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
382 bool isSub, Instruction &I);
383 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
384 bool isSigned, bool Inside, Instruction &IB);
385 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
386 Instruction *MatchBSwap(BinaryOperator &I);
387 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000388 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000389 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391
392 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000393
Dan Gohman2d648bb2008-04-10 18:43:06 +0000394 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
395 unsigned CastOpc,
396 int &NumCastsRemoved);
397 unsigned GetOrEnforceKnownAlignment(Value *V,
398 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000399
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401}
402
Dan Gohman089efff2008-05-13 00:00:25 +0000403char InstCombiner::ID = 0;
404static RegisterPass<InstCombiner>
405X("instcombine", "Combine redundant instructions");
406
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407// getComplexity: Assign a complexity or rank value to LLVM Values...
408// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
409static unsigned getComplexity(Value *V) {
410 if (isa<Instruction>(V)) {
411 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
412 return 3;
413 return 4;
414 }
415 if (isa<Argument>(V)) return 3;
416 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
417}
418
419// isOnlyUse - Return true if this instruction will be deleted if we stop using
420// it.
421static bool isOnlyUse(Value *V) {
422 return V->hasOneUse() || isa<Constant>(V);
423}
424
425// getPromotedType - Return the specified type promoted as it would be to pass
426// though a va_arg area...
427static const Type *getPromotedType(const Type *Ty) {
428 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
429 if (ITy->getBitWidth() < 32)
430 return Type::Int32Ty;
431 }
432 return Ty;
433}
434
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000435/// getBitCastOperand - If the specified operand is a CastInst, a constant
436/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
437/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438static Value *getBitCastOperand(Value *V) {
439 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000440 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
443 // GetElementPtrInst?
444 if (GEP->hasAllZeroIndices())
445 return GEP->getOperand(0);
446 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000448 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 else if (CE->getOpcode() == Instruction::GetElementPtr) {
451 // GetElementPtr ConstantExp?
452 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
453 I != E; ++I) {
454 ConstantInt *CI = dyn_cast<ConstantInt>(I);
455 if (!CI || !CI->isZero())
456 // Any non-zero indices? Not cast-like.
457 return 0;
458 }
459 // All-zero indices? This is just like casting.
460 return CE->getOperand(0);
461 }
462 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000463 return 0;
464}
465
466/// This function is a wrapper around CastInst::isEliminableCastPair. It
467/// simply extracts arguments and returns what that function returns.
468static Instruction::CastOps
469isEliminableCastPair(
470 const CastInst *CI, ///< The first cast instruction
471 unsigned opcode, ///< The opcode of the second cast instruction
472 const Type *DstTy, ///< The target type for the second cast instruction
473 TargetData *TD ///< The target data for pointer size
474) {
475
476 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
477 const Type *MidTy = CI->getType(); // B from above
478
479 // Get the opcodes of the two Cast instructions
480 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
481 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
482
483 return Instruction::CastOps(
484 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
485 DstTy, TD->getIntPtrType()));
486}
487
488/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
489/// in any code being generated. It does not require codegen if V is simple
490/// enough or if the cast can be folded into other casts.
491static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
492 const Type *Ty, TargetData *TD) {
493 if (V->getType() == Ty || isa<Constant>(V)) return false;
494
495 // If this is another cast that can be eliminated, it isn't codegen either.
496 if (const CastInst *CI = dyn_cast<CastInst>(V))
497 if (isEliminableCastPair(CI, opcode, Ty, TD))
498 return false;
499 return true;
500}
501
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502// SimplifyCommutative - This performs a few simplifications for commutative
503// operators:
504//
505// 1. Order operands such that they are listed from right (least complex) to
506// left (most complex). This puts constants before unary operators before
507// binary operators.
508//
509// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
510// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
511//
512bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
513 bool Changed = false;
514 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
515 Changed = !I.swapOperands();
516
517 if (!I.isAssociative()) return Changed;
518 Instruction::BinaryOps Opcode = I.getOpcode();
519 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
520 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
521 if (isa<Constant>(I.getOperand(1))) {
522 Constant *Folded = ConstantExpr::get(I.getOpcode(),
523 cast<Constant>(I.getOperand(1)),
524 cast<Constant>(Op->getOperand(1)));
525 I.setOperand(0, Op->getOperand(0));
526 I.setOperand(1, Folded);
527 return true;
528 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
529 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
530 isOnlyUse(Op) && isOnlyUse(Op1)) {
531 Constant *C1 = cast<Constant>(Op->getOperand(1));
532 Constant *C2 = cast<Constant>(Op1->getOperand(1));
533
534 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
535 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000536 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000537 Op1->getOperand(0),
538 Op1->getName(), &I);
539 AddToWorkList(New);
540 I.setOperand(0, New);
541 I.setOperand(1, Folded);
542 return true;
543 }
544 }
545 return Changed;
546}
547
548/// SimplifyCompare - For a CmpInst this function just orders the operands
549/// so that theyare listed from right (least complex) to left (most complex).
550/// This puts constants before unary operators before binary operators.
551bool InstCombiner::SimplifyCompare(CmpInst &I) {
552 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
553 return false;
554 I.swapOperands();
555 // Compare instructions are not associative so there's nothing else we can do.
556 return true;
557}
558
559// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
560// if the LHS is a constant zero (which is the 'negate' form).
561//
562static inline Value *dyn_castNegVal(Value *V) {
563 if (BinaryOperator::isNeg(V))
564 return BinaryOperator::getNegArgument(V);
565
566 // Constants can be considered to be negated values if they can be folded.
567 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
568 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000569
570 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
571 if (C->getType()->getElementType()->isInteger())
572 return ConstantExpr::getNeg(C);
573
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000574 return 0;
575}
576
577static inline Value *dyn_castNotVal(Value *V) {
578 if (BinaryOperator::isNot(V))
579 return BinaryOperator::getNotArgument(V);
580
581 // Constants can be considered to be not'ed values...
582 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
583 return ConstantInt::get(~C->getValue());
584 return 0;
585}
586
587// dyn_castFoldableMul - If this value is a multiply that can be folded into
588// other computations (because it has a constant operand), return the
589// non-constant operand of the multiply, and set CST to point to the multiplier.
590// Otherwise, return null.
591//
592static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
593 if (V->hasOneUse() && V->getType()->isInteger())
594 if (Instruction *I = dyn_cast<Instruction>(V)) {
595 if (I->getOpcode() == Instruction::Mul)
596 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
597 return I->getOperand(0);
598 if (I->getOpcode() == Instruction::Shl)
599 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
600 // The multiplier is really 1 << CST.
601 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
602 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
603 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
604 return I->getOperand(0);
605 }
606 }
607 return 0;
608}
609
610/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
611/// expression, return it.
612static User *dyn_castGetElementPtr(Value *V) {
613 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
614 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
615 if (CE->getOpcode() == Instruction::GetElementPtr)
616 return cast<User>(V);
617 return false;
618}
619
Dan Gohman2d648bb2008-04-10 18:43:06 +0000620/// getOpcode - If this is an Instruction or a ConstantExpr, return the
621/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000622static unsigned getOpcode(const Value *V) {
623 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000624 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000625 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return CE->getOpcode();
627 // Use UserOp1 to mean there's no opcode.
628 return Instruction::UserOp1;
629}
630
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631/// AddOne - Add one to a ConstantInt
632static ConstantInt *AddOne(ConstantInt *C) {
633 APInt Val(C->getValue());
634 return ConstantInt::get(++Val);
635}
636/// SubOne - Subtract one from a ConstantInt
637static ConstantInt *SubOne(ConstantInt *C) {
638 APInt Val(C->getValue());
639 return ConstantInt::get(--Val);
640}
641/// Add - Add two ConstantInts together
642static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
643 return ConstantInt::get(C1->getValue() + C2->getValue());
644}
645/// And - Bitwise AND two ConstantInts together
646static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
647 return ConstantInt::get(C1->getValue() & C2->getValue());
648}
649/// Subtract - Subtract one ConstantInt from another
650static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
651 return ConstantInt::get(C1->getValue() - C2->getValue());
652}
653/// Multiply - Multiply two ConstantInts together
654static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
655 return ConstantInt::get(C1->getValue() * C2->getValue());
656}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000657/// MultiplyOverflows - True if the multiply can not be expressed in an int
658/// this size.
659static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
660 uint32_t W = C1->getBitWidth();
661 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
662 if (sign) {
663 LHSExt.sext(W * 2);
664 RHSExt.sext(W * 2);
665 } else {
666 LHSExt.zext(W * 2);
667 RHSExt.zext(W * 2);
668 }
669
670 APInt MulExt = LHSExt * RHSExt;
671
672 if (sign) {
673 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
674 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
675 return MulExt.slt(Min) || MulExt.sgt(Max);
676 } else
677 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
678}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000680
681/// ShrinkDemandedConstant - Check to see if the specified operand of the
682/// specified instruction is a constant integer. If so, check to see if there
683/// are any bits set in the constant that are not demanded. If so, shrink the
684/// constant and return true.
685static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
686 APInt Demanded) {
687 assert(I && "No instruction?");
688 assert(OpNo < I->getNumOperands() && "Operand index too large");
689
690 // If the operand is not a constant integer, nothing to do.
691 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
692 if (!OpC) return false;
693
694 // If there are no bits set that aren't demanded, nothing to do.
695 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
696 if ((~Demanded & OpC->getValue()) == 0)
697 return false;
698
699 // This instruction is producing bits that are not demanded. Shrink the RHS.
700 Demanded &= OpC->getValue();
701 I->setOperand(OpNo, ConstantInt::get(Demanded));
702 return true;
703}
704
705// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
706// set of known zero and one bits, compute the maximum and minimum values that
707// could have the specified known zero and known one bits, returning them in
708// min/max.
709static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
710 const APInt& KnownZero,
711 const APInt& KnownOne,
712 APInt& Min, APInt& Max) {
713 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
714 assert(KnownZero.getBitWidth() == BitWidth &&
715 KnownOne.getBitWidth() == BitWidth &&
716 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
717 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
718 APInt UnknownBits = ~(KnownZero|KnownOne);
719
720 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
721 // bit if it is unknown.
722 Min = KnownOne;
723 Max = KnownOne|UnknownBits;
724
725 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
726 Min.set(BitWidth-1);
727 Max.clear(BitWidth-1);
728 }
729}
730
731// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
732// a set of known zero and one bits, compute the maximum and minimum values that
733// could have the specified known zero and known one bits, returning them in
734// min/max.
735static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000736 const APInt &KnownZero,
737 const APInt &KnownOne,
738 APInt &Min, APInt &Max) {
739 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 assert(KnownZero.getBitWidth() == BitWidth &&
741 KnownOne.getBitWidth() == BitWidth &&
742 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
743 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
744 APInt UnknownBits = ~(KnownZero|KnownOne);
745
746 // The minimum value is when the unknown bits are all zeros.
747 Min = KnownOne;
748 // The maximum value is when the unknown bits are all ones.
749 Max = KnownOne|UnknownBits;
750}
751
752/// SimplifyDemandedBits - This function attempts to replace V with a simpler
753/// value based on the demanded bits. When this function is called, it is known
754/// that only the bits set in DemandedMask of the result of V are ever used
755/// downstream. Consequently, depending on the mask and V, it may be possible
756/// to replace V with a constant or one of its operands. In such cases, this
757/// function does the replacement and returns true. In all other cases, it
758/// returns false after analyzing the expression and setting KnownOne and known
759/// to be one in the expression. KnownZero contains all the bits that are known
760/// to be zero in the expression. These are provided to potentially allow the
761/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
762/// the expression. KnownOne and KnownZero always follow the invariant that
763/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
764/// the bits in KnownOne and KnownZero may only be accurate for those bits set
765/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
766/// and KnownOne must all be the same.
767bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
768 APInt& KnownZero, APInt& KnownOne,
769 unsigned Depth) {
770 assert(V != 0 && "Null pointer of Value???");
771 assert(Depth <= 6 && "Limit Search Depth");
772 uint32_t BitWidth = DemandedMask.getBitWidth();
773 const IntegerType *VTy = cast<IntegerType>(V->getType());
774 assert(VTy->getBitWidth() == BitWidth &&
775 KnownZero.getBitWidth() == BitWidth &&
776 KnownOne.getBitWidth() == BitWidth &&
777 "Value *V, DemandedMask, KnownZero and KnownOne \
778 must have same BitWidth");
779 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
780 // We know all of the bits for a constant!
781 KnownOne = CI->getValue() & DemandedMask;
782 KnownZero = ~KnownOne & DemandedMask;
783 return false;
784 }
785
786 KnownZero.clear();
787 KnownOne.clear();
788 if (!V->hasOneUse()) { // Other users may use these bits.
789 if (Depth != 0) { // Not at the root.
790 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
791 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
792 return false;
793 }
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedMask to all bits.
796 DemandedMask = APInt::getAllOnesValue(BitWidth);
797 } else if (DemandedMask == 0) { // Not demanding any bits from V.
798 if (V != UndefValue::get(VTy))
799 return UpdateValueUsesWith(V, UndefValue::get(VTy));
800 return false;
801 } else if (Depth == 6) { // Limit search depth.
802 return false;
803 }
804
805 Instruction *I = dyn_cast<Instruction>(V);
806 if (!I) return false; // Only analyze instructions.
807
808 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
809 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
810 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000811 default:
812 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
813 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 case Instruction::And:
815 // If either the LHS or the RHS are Zero, the result is zero.
816 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
817 RHSKnownZero, RHSKnownOne, Depth+1))
818 return true;
819 assert((RHSKnownZero & RHSKnownOne) == 0 &&
820 "Bits known to be one AND zero?");
821
822 // If something is known zero on the RHS, the bits aren't demanded on the
823 // LHS.
824 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
825 LHSKnownZero, LHSKnownOne, Depth+1))
826 return true;
827 assert((LHSKnownZero & LHSKnownOne) == 0 &&
828 "Bits known to be one AND zero?");
829
830 // If all of the demanded bits are known 1 on one side, return the other.
831 // These bits cannot contribute to the result of the 'and'.
832 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
833 (DemandedMask & ~LHSKnownZero))
834 return UpdateValueUsesWith(I, I->getOperand(0));
835 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
836 (DemandedMask & ~RHSKnownZero))
837 return UpdateValueUsesWith(I, I->getOperand(1));
838
839 // If all of the demanded bits in the inputs are known zeros, return zero.
840 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
841 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
842
843 // If the RHS is a constant, see if we can simplify it.
844 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
845 return UpdateValueUsesWith(I, I);
846
847 // Output known-1 bits are only known if set in both the LHS & RHS.
848 RHSKnownOne &= LHSKnownOne;
849 // Output known-0 are known to be clear if zero in either the LHS | RHS.
850 RHSKnownZero |= LHSKnownZero;
851 break;
852 case Instruction::Or:
853 // If either the LHS or the RHS are One, the result is One.
854 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
855 RHSKnownZero, RHSKnownOne, Depth+1))
856 return true;
857 assert((RHSKnownZero & RHSKnownOne) == 0 &&
858 "Bits known to be one AND zero?");
859 // If something is known one on the RHS, the bits aren't demanded on the
860 // LHS.
861 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
862 LHSKnownZero, LHSKnownOne, Depth+1))
863 return true;
864 assert((LHSKnownZero & LHSKnownOne) == 0 &&
865 "Bits known to be one AND zero?");
866
867 // If all of the demanded bits are known zero on one side, return the other.
868 // These bits cannot contribute to the result of the 'or'.
869 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
870 (DemandedMask & ~LHSKnownOne))
871 return UpdateValueUsesWith(I, I->getOperand(0));
872 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
873 (DemandedMask & ~RHSKnownOne))
874 return UpdateValueUsesWith(I, I->getOperand(1));
875
876 // If all of the potentially set bits on one side are known to be set on
877 // the other side, just use the 'other' side.
878 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
879 (DemandedMask & (~RHSKnownZero)))
880 return UpdateValueUsesWith(I, I->getOperand(0));
881 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
882 (DemandedMask & (~LHSKnownZero)))
883 return UpdateValueUsesWith(I, I->getOperand(1));
884
885 // If the RHS is a constant, see if we can simplify it.
886 if (ShrinkDemandedConstant(I, 1, DemandedMask))
887 return UpdateValueUsesWith(I, I);
888
889 // Output known-0 bits are only known if clear in both the LHS & RHS.
890 RHSKnownZero &= LHSKnownZero;
891 // Output known-1 are known to be set if set in either the LHS | RHS.
892 RHSKnownOne |= LHSKnownOne;
893 break;
894 case Instruction::Xor: {
895 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
896 RHSKnownZero, RHSKnownOne, Depth+1))
897 return true;
898 assert((RHSKnownZero & RHSKnownOne) == 0 &&
899 "Bits known to be one AND zero?");
900 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
901 LHSKnownZero, LHSKnownOne, Depth+1))
902 return true;
903 assert((LHSKnownZero & LHSKnownOne) == 0 &&
904 "Bits known to be one AND zero?");
905
906 // If all of the demanded bits are known zero on one side, return the other.
907 // These bits cannot contribute to the result of the 'xor'.
908 if ((DemandedMask & RHSKnownZero) == DemandedMask)
909 return UpdateValueUsesWith(I, I->getOperand(0));
910 if ((DemandedMask & LHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(1));
912
913 // Output known-0 bits are known if clear or set in both the LHS & RHS.
914 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
915 (RHSKnownOne & LHSKnownOne);
916 // Output known-1 are known to be set if set in only one of the LHS, RHS.
917 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
918 (RHSKnownOne & LHSKnownZero);
919
920 // If all of the demanded bits are known to be zero on one side or the
921 // other, turn this into an *inclusive* or.
922 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
923 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
924 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000925 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000926 I->getName());
927 InsertNewInstBefore(Or, *I);
928 return UpdateValueUsesWith(I, Or);
929 }
930
931 // If all of the demanded bits on one side are known, and all of the set
932 // bits on that side are also known to be set on the other side, turn this
933 // into an AND, as we know the bits will be cleared.
934 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
935 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
936 // all known
937 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
938 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
939 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000940 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 InsertNewInstBefore(And, *I);
942 return UpdateValueUsesWith(I, And);
943 }
944 }
945
946 // If the RHS is a constant, see if we can simplify it.
947 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
948 if (ShrinkDemandedConstant(I, 1, DemandedMask))
949 return UpdateValueUsesWith(I, I);
950
951 RHSKnownZero = KnownZeroOut;
952 RHSKnownOne = KnownOneOut;
953 break;
954 }
955 case Instruction::Select:
956 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
957 RHSKnownZero, RHSKnownOne, Depth+1))
958 return true;
959 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
960 LHSKnownZero, LHSKnownOne, Depth+1))
961 return true;
962 assert((RHSKnownZero & RHSKnownOne) == 0 &&
963 "Bits known to be one AND zero?");
964 assert((LHSKnownZero & LHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966
967 // If the operands are constants, see if we can simplify them.
968 if (ShrinkDemandedConstant(I, 1, DemandedMask))
969 return UpdateValueUsesWith(I, I);
970 if (ShrinkDemandedConstant(I, 2, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972
973 // Only known if known in both the LHS and RHS.
974 RHSKnownOne &= LHSKnownOne;
975 RHSKnownZero &= LHSKnownZero;
976 break;
977 case Instruction::Trunc: {
978 uint32_t truncBf =
979 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
980 DemandedMask.zext(truncBf);
981 RHSKnownZero.zext(truncBf);
982 RHSKnownOne.zext(truncBf);
983 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
984 RHSKnownZero, RHSKnownOne, Depth+1))
985 return true;
986 DemandedMask.trunc(BitWidth);
987 RHSKnownZero.trunc(BitWidth);
988 RHSKnownOne.trunc(BitWidth);
989 assert((RHSKnownZero & RHSKnownOne) == 0 &&
990 "Bits known to be one AND zero?");
991 break;
992 }
993 case Instruction::BitCast:
994 if (!I->getOperand(0)->getType()->isInteger())
995 return false;
996
997 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
998 RHSKnownZero, RHSKnownOne, Depth+1))
999 return true;
1000 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1001 "Bits known to be one AND zero?");
1002 break;
1003 case Instruction::ZExt: {
1004 // Compute the bits in the result that are not present in the input.
1005 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1006 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1007
1008 DemandedMask.trunc(SrcBitWidth);
1009 RHSKnownZero.trunc(SrcBitWidth);
1010 RHSKnownOne.trunc(SrcBitWidth);
1011 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1012 RHSKnownZero, RHSKnownOne, Depth+1))
1013 return true;
1014 DemandedMask.zext(BitWidth);
1015 RHSKnownZero.zext(BitWidth);
1016 RHSKnownOne.zext(BitWidth);
1017 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1018 "Bits known to be one AND zero?");
1019 // The top bits are known to be zero.
1020 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1021 break;
1022 }
1023 case Instruction::SExt: {
1024 // Compute the bits in the result that are not present in the input.
1025 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1026 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1027
1028 APInt InputDemandedBits = DemandedMask &
1029 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1030
1031 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1032 // If any of the sign extended bits are demanded, we know that the sign
1033 // bit is demanded.
1034 if ((NewBits & DemandedMask) != 0)
1035 InputDemandedBits.set(SrcBitWidth-1);
1036
1037 InputDemandedBits.trunc(SrcBitWidth);
1038 RHSKnownZero.trunc(SrcBitWidth);
1039 RHSKnownOne.trunc(SrcBitWidth);
1040 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1041 RHSKnownZero, RHSKnownOne, Depth+1))
1042 return true;
1043 InputDemandedBits.zext(BitWidth);
1044 RHSKnownZero.zext(BitWidth);
1045 RHSKnownOne.zext(BitWidth);
1046 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1047 "Bits known to be one AND zero?");
1048
1049 // If the sign bit of the input is known set or clear, then we know the
1050 // top bits of the result.
1051
1052 // If the input sign bit is known zero, or if the NewBits are not demanded
1053 // convert this into a zero extension.
1054 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1055 {
1056 // Convert to ZExt cast
1057 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1058 return UpdateValueUsesWith(I, NewCast);
1059 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1060 RHSKnownOne |= NewBits;
1061 }
1062 break;
1063 }
1064 case Instruction::Add: {
1065 // Figure out what the input bits are. If the top bits of the and result
1066 // are not demanded, then the add doesn't demand them from its input
1067 // either.
1068 uint32_t NLZ = DemandedMask.countLeadingZeros();
1069
1070 // If there is a constant on the RHS, there are a variety of xformations
1071 // we can do.
1072 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1073 // If null, this should be simplified elsewhere. Some of the xforms here
1074 // won't work if the RHS is zero.
1075 if (RHS->isZero())
1076 break;
1077
1078 // If the top bit of the output is demanded, demand everything from the
1079 // input. Otherwise, we demand all the input bits except NLZ top bits.
1080 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1081
1082 // Find information about known zero/one bits in the input.
1083 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1084 LHSKnownZero, LHSKnownOne, Depth+1))
1085 return true;
1086
1087 // If the RHS of the add has bits set that can't affect the input, reduce
1088 // the constant.
1089 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1090 return UpdateValueUsesWith(I, I);
1091
1092 // Avoid excess work.
1093 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1094 break;
1095
1096 // Turn it into OR if input bits are zero.
1097 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1098 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001099 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100 I->getName());
1101 InsertNewInstBefore(Or, *I);
1102 return UpdateValueUsesWith(I, Or);
1103 }
1104
1105 // We can say something about the output known-zero and known-one bits,
1106 // depending on potential carries from the input constant and the
1107 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1108 // bits set and the RHS constant is 0x01001, then we know we have a known
1109 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1110
1111 // To compute this, we first compute the potential carry bits. These are
1112 // the bits which may be modified. I'm not aware of a better way to do
1113 // this scan.
1114 const APInt& RHSVal = RHS->getValue();
1115 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1116
1117 // Now that we know which bits have carries, compute the known-1/0 sets.
1118
1119 // Bits are known one if they are known zero in one operand and one in the
1120 // other, and there is no input carry.
1121 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1122 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1123
1124 // Bits are known zero if they are known zero in both operands and there
1125 // is no input carry.
1126 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1127 } else {
1128 // If the high-bits of this ADD are not demanded, then it does not demand
1129 // the high bits of its LHS or RHS.
1130 if (DemandedMask[BitWidth-1] == 0) {
1131 // Right fill the mask of bits for this ADD to demand the most
1132 // significant bit and all those below it.
1133 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1134 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1135 LHSKnownZero, LHSKnownOne, Depth+1))
1136 return true;
1137 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1138 LHSKnownZero, LHSKnownOne, Depth+1))
1139 return true;
1140 }
1141 }
1142 break;
1143 }
1144 case Instruction::Sub:
1145 // If the high-bits of this SUB are not demanded, then it does not demand
1146 // the high bits of its LHS or RHS.
1147 if (DemandedMask[BitWidth-1] == 0) {
1148 // Right fill the mask of bits for this SUB to demand the most
1149 // significant bit and all those below it.
1150 uint32_t NLZ = DemandedMask.countLeadingZeros();
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001159 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1160 // the known zeros and ones.
1161 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162 break;
1163 case Instruction::Shl:
1164 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1165 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1166 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1167 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1168 RHSKnownZero, RHSKnownOne, Depth+1))
1169 return true;
1170 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1171 "Bits known to be one AND zero?");
1172 RHSKnownZero <<= ShiftAmt;
1173 RHSKnownOne <<= ShiftAmt;
1174 // low bits known zero.
1175 if (ShiftAmt)
1176 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1177 }
1178 break;
1179 case Instruction::LShr:
1180 // For a logical shift right
1181 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1182 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1183
1184 // Unsigned shift right.
1185 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1186 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1187 RHSKnownZero, RHSKnownOne, Depth+1))
1188 return true;
1189 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1190 "Bits known to be one AND zero?");
1191 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1192 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1193 if (ShiftAmt) {
1194 // Compute the new bits that are at the top now.
1195 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1196 RHSKnownZero |= HighBits; // high bits known zero.
1197 }
1198 }
1199 break;
1200 case Instruction::AShr:
1201 // If this is an arithmetic shift right and only the low-bit is set, we can
1202 // always convert this into a logical shr, even if the shift amount is
1203 // variable. The low bit of the shift cannot be an input sign bit unless
1204 // the shift amount is >= the size of the datatype, which is undefined.
1205 if (DemandedMask == 1) {
1206 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001207 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 I->getOperand(0), I->getOperand(1), I->getName());
1209 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1210 return UpdateValueUsesWith(I, NewVal);
1211 }
1212
1213 // If the sign bit is the only bit demanded by this ashr, then there is no
1214 // need to do it, the shift doesn't change the high bit.
1215 if (DemandedMask.isSignBit())
1216 return UpdateValueUsesWith(I, I->getOperand(0));
1217
1218 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1219 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1220
1221 // Signed shift right.
1222 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1223 // If any of the "high bits" are demanded, we should set the sign bit as
1224 // demanded.
1225 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1226 DemandedMaskIn.set(BitWidth-1);
1227 if (SimplifyDemandedBits(I->getOperand(0),
1228 DemandedMaskIn,
1229 RHSKnownZero, RHSKnownOne, Depth+1))
1230 return true;
1231 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1232 "Bits known to be one AND zero?");
1233 // Compute the new bits that are at the top now.
1234 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1235 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1236 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1237
1238 // Handle the sign bits.
1239 APInt SignBit(APInt::getSignBit(BitWidth));
1240 // Adjust to where it is now in the mask.
1241 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1242
1243 // If the input sign bit is known to be zero, or if none of the top bits
1244 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001245 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 (HighBits & ~DemandedMask) == HighBits) {
1247 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001248 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 I->getOperand(0), SA, I->getName());
1250 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1251 return UpdateValueUsesWith(I, NewVal);
1252 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1253 RHSKnownOne |= HighBits;
1254 }
1255 }
1256 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001257 case Instruction::SRem:
1258 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001259 APInt RA = Rem->getValue().abs();
1260 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001261 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1262 return UpdateValueUsesWith(I, I->getOperand(0));
1263
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001264 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001265 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1266 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1267 LHSKnownZero, LHSKnownOne, Depth+1))
1268 return true;
1269
1270 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1271 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001272
1273 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1276 }
1277 }
1278 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001279 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001280 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1281 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001282 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1283 KnownZero2, KnownOne2, Depth+1))
1284 return true;
1285
Dan Gohmanbec16052008-04-28 17:02:21 +00001286 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001287 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 KnownZero2, KnownOne2, Depth+1))
1289 return true;
1290
1291 Leaders = std::max(Leaders,
1292 KnownZero2.countLeadingOnes());
1293 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001294 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 }
Chris Lattner989ba312008-06-18 04:33:20 +00001296 case Instruction::Call:
1297 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1298 switch (II->getIntrinsicID()) {
1299 default: break;
1300 case Intrinsic::bswap: {
1301 // If the only bits demanded come from one byte of the bswap result,
1302 // just shift the input byte into position to eliminate the bswap.
1303 unsigned NLZ = DemandedMask.countLeadingZeros();
1304 unsigned NTZ = DemandedMask.countTrailingZeros();
1305
1306 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1307 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1308 // have 14 leading zeros, round to 8.
1309 NLZ &= ~7;
1310 NTZ &= ~7;
1311 // If we need exactly one byte, we can do this transformation.
1312 if (BitWidth-NLZ-NTZ == 8) {
1313 unsigned ResultBit = NTZ;
1314 unsigned InputBit = BitWidth-NTZ-8;
1315
1316 // Replace this with either a left or right shift to get the byte into
1317 // the right place.
1318 Instruction *NewVal;
1319 if (InputBit > ResultBit)
1320 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1321 ConstantInt::get(I->getType(), InputBit-ResultBit));
1322 else
1323 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1324 ConstantInt::get(I->getType(), ResultBit-InputBit));
1325 NewVal->takeName(I);
1326 InsertNewInstBefore(NewVal, *I);
1327 return UpdateValueUsesWith(I, NewVal);
1328 }
1329
1330 // TODO: Could compute known zero/one bits based on the input.
1331 break;
1332 }
1333 }
1334 }
Chris Lattner4946e222008-06-18 18:11:55 +00001335 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001336 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001337 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001338
1339 // If the client is only demanding bits that we know, return the known
1340 // constant.
1341 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1342 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1343 return false;
1344}
1345
1346
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001347/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001348/// 64 or fewer elements. DemandedElts contains the set of elements that are
1349/// actually used by the caller. This method analyzes which elements of the
1350/// operand are undef and returns that information in UndefElts.
1351///
1352/// If the information about demanded elements can be used to simplify the
1353/// operation, the operation is simplified, then the resultant value is
1354/// returned. This returns null if no change was made.
1355Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1356 uint64_t &UndefElts,
1357 unsigned Depth) {
1358 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1359 assert(VWidth <= 64 && "Vector too wide to analyze!");
1360 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001361 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362
1363 if (isa<UndefValue>(V)) {
1364 // If the entire vector is undefined, just return this info.
1365 UndefElts = EltMask;
1366 return 0;
1367 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1368 UndefElts = EltMask;
1369 return UndefValue::get(V->getType());
1370 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001371
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 UndefElts = 0;
1373 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1374 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1375 Constant *Undef = UndefValue::get(EltTy);
1376
1377 std::vector<Constant*> Elts;
1378 for (unsigned i = 0; i != VWidth; ++i)
1379 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1380 Elts.push_back(Undef);
1381 UndefElts |= (1ULL << i);
1382 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1383 Elts.push_back(Undef);
1384 UndefElts |= (1ULL << i);
1385 } else { // Otherwise, defined.
1386 Elts.push_back(CP->getOperand(i));
1387 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001389 // If we changed the constant, return it.
1390 Constant *NewCP = ConstantVector::get(Elts);
1391 return NewCP != CP ? NewCP : 0;
1392 } else if (isa<ConstantAggregateZero>(V)) {
1393 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1394 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001395
1396 // Check if this is identity. If so, return 0 since we are not simplifying
1397 // anything.
1398 if (DemandedElts == ((1ULL << VWidth) -1))
1399 return 0;
1400
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001401 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1402 Constant *Zero = Constant::getNullValue(EltTy);
1403 Constant *Undef = UndefValue::get(EltTy);
1404 std::vector<Constant*> Elts;
1405 for (unsigned i = 0; i != VWidth; ++i)
1406 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1407 UndefElts = DemandedElts ^ EltMask;
1408 return ConstantVector::get(Elts);
1409 }
1410
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001411 // Limit search depth.
1412 if (Depth == 10)
1413 return false;
1414
1415 // If multiple users are using the root value, procede with
1416 // simplification conservatively assuming that all elements
1417 // are needed.
1418 if (!V->hasOneUse()) {
1419 // Quit if we find multiple users of a non-root value though.
1420 // They'll be handled when it's their turn to be visited by
1421 // the main instcombine process.
1422 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001423 // TODO: Just compute the UndefElts information recursively.
1424 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001425
1426 // Conservatively assume that all elements are needed.
1427 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 }
1429
1430 Instruction *I = dyn_cast<Instruction>(V);
1431 if (!I) return false; // Only analyze instructions.
1432
1433 bool MadeChange = false;
1434 uint64_t UndefElts2;
1435 Value *TmpV;
1436 switch (I->getOpcode()) {
1437 default: break;
1438
1439 case Instruction::InsertElement: {
1440 // If this is a variable index, we don't know which element it overwrites.
1441 // demand exactly the same input as we produce.
1442 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1443 if (Idx == 0) {
1444 // Note that we can't propagate undef elt info, because we don't know
1445 // which elt is getting updated.
1446 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1447 UndefElts2, Depth+1);
1448 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1449 break;
1450 }
1451
1452 // If this is inserting an element that isn't demanded, remove this
1453 // insertelement.
1454 unsigned IdxNo = Idx->getZExtValue();
1455 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1456 return AddSoonDeadInstToWorklist(*I, 0);
1457
1458 // Otherwise, the element inserted overwrites whatever was there, so the
1459 // input demanded set is simpler than the output set.
1460 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1461 DemandedElts & ~(1ULL << IdxNo),
1462 UndefElts, Depth+1);
1463 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1464
1465 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001466 UndefElts &= ~(1ULL << IdxNo);
1467 break;
1468 }
1469 case Instruction::ShuffleVector: {
1470 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001471 uint64_t LHSVWidth =
1472 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001473 uint64_t LeftDemanded = 0, RightDemanded = 0;
1474 for (unsigned i = 0; i < VWidth; i++) {
1475 if (DemandedElts & (1ULL << i)) {
1476 unsigned MaskVal = Shuffle->getMaskValue(i);
1477 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001478 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001479 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 LeftDemanded |= 1ULL << MaskVal;
1482 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001483 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001484 }
1485 }
1486 }
1487
1488 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1489 UndefElts2, Depth+1);
1490 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1491
1492 uint64_t UndefElts3;
1493 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1494 UndefElts3, Depth+1);
1495 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1496
1497 bool NewUndefElts = false;
1498 for (unsigned i = 0; i < VWidth; i++) {
1499 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001500 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001501 uint64_t NewBit = 1ULL << i;
1502 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001503 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001504 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1505 NewUndefElts |= NewBit;
1506 UndefElts |= NewBit;
1507 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001508 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001509 NewUndefElts |= NewBit;
1510 UndefElts |= NewBit;
1511 }
1512 }
1513
1514 if (NewUndefElts) {
1515 // Add additional discovered undefs.
1516 std::vector<Constant*> Elts;
1517 for (unsigned i = 0; i < VWidth; ++i) {
1518 if (UndefElts & (1ULL << i))
1519 Elts.push_back(UndefValue::get(Type::Int32Ty));
1520 else
1521 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1522 Shuffle->getMaskValue(i)));
1523 }
1524 I->setOperand(2, ConstantVector::get(Elts));
1525 MadeChange = true;
1526 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527 break;
1528 }
1529 case Instruction::BitCast: {
1530 // Vector->vector casts only.
1531 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1532 if (!VTy) break;
1533 unsigned InVWidth = VTy->getNumElements();
1534 uint64_t InputDemandedElts = 0;
1535 unsigned Ratio;
1536
1537 if (VWidth == InVWidth) {
1538 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1539 // elements as are demanded of us.
1540 Ratio = 1;
1541 InputDemandedElts = DemandedElts;
1542 } else if (VWidth > InVWidth) {
1543 // Untested so far.
1544 break;
1545
1546 // If there are more elements in the result than there are in the source,
1547 // then an input element is live if any of the corresponding output
1548 // elements are live.
1549 Ratio = VWidth/InVWidth;
1550 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1551 if (DemandedElts & (1ULL << OutIdx))
1552 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1553 }
1554 } else {
1555 // Untested so far.
1556 break;
1557
1558 // If there are more elements in the source than there are in the result,
1559 // then an input element is live if the corresponding output element is
1560 // live.
1561 Ratio = InVWidth/VWidth;
1562 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1563 if (DemandedElts & (1ULL << InIdx/Ratio))
1564 InputDemandedElts |= 1ULL << InIdx;
1565 }
1566
1567 // div/rem demand all inputs, because they don't want divide by zero.
1568 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1569 UndefElts2, Depth+1);
1570 if (TmpV) {
1571 I->setOperand(0, TmpV);
1572 MadeChange = true;
1573 }
1574
1575 UndefElts = UndefElts2;
1576 if (VWidth > InVWidth) {
1577 assert(0 && "Unimp");
1578 // If there are more elements in the result than there are in the source,
1579 // then an output element is undef if the corresponding input element is
1580 // undef.
1581 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1582 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1583 UndefElts |= 1ULL << OutIdx;
1584 } else if (VWidth < InVWidth) {
1585 assert(0 && "Unimp");
1586 // If there are more elements in the source than there are in the result,
1587 // then a result element is undef if all of the corresponding input
1588 // elements are undef.
1589 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1590 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1591 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1592 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1593 }
1594 break;
1595 }
1596 case Instruction::And:
1597 case Instruction::Or:
1598 case Instruction::Xor:
1599 case Instruction::Add:
1600 case Instruction::Sub:
1601 case Instruction::Mul:
1602 // div/rem demand all inputs, because they don't want divide by zero.
1603 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1604 UndefElts, Depth+1);
1605 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1606 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1607 UndefElts2, Depth+1);
1608 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1609
1610 // Output elements are undefined if both are undefined. Consider things
1611 // like undef&0. The result is known zero, not undef.
1612 UndefElts &= UndefElts2;
1613 break;
1614
1615 case Instruction::Call: {
1616 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1617 if (!II) break;
1618 switch (II->getIntrinsicID()) {
1619 default: break;
1620
1621 // Binary vector operations that work column-wise. A dest element is a
1622 // function of the corresponding input elements from the two inputs.
1623 case Intrinsic::x86_sse_sub_ss:
1624 case Intrinsic::x86_sse_mul_ss:
1625 case Intrinsic::x86_sse_min_ss:
1626 case Intrinsic::x86_sse_max_ss:
1627 case Intrinsic::x86_sse2_sub_sd:
1628 case Intrinsic::x86_sse2_mul_sd:
1629 case Intrinsic::x86_sse2_min_sd:
1630 case Intrinsic::x86_sse2_max_sd:
1631 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1632 UndefElts, Depth+1);
1633 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1634 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1635 UndefElts2, Depth+1);
1636 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1637
1638 // If only the low elt is demanded and this is a scalarizable intrinsic,
1639 // scalarize it now.
1640 if (DemandedElts == 1) {
1641 switch (II->getIntrinsicID()) {
1642 default: break;
1643 case Intrinsic::x86_sse_sub_ss:
1644 case Intrinsic::x86_sse_mul_ss:
1645 case Intrinsic::x86_sse2_sub_sd:
1646 case Intrinsic::x86_sse2_mul_sd:
1647 // TODO: Lower MIN/MAX/ABS/etc
1648 Value *LHS = II->getOperand(1);
1649 Value *RHS = II->getOperand(2);
1650 // Extract the element as scalars.
1651 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1652 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1653
1654 switch (II->getIntrinsicID()) {
1655 default: assert(0 && "Case stmts out of sync!");
1656 case Intrinsic::x86_sse_sub_ss:
1657 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001658 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659 II->getName()), *II);
1660 break;
1661 case Intrinsic::x86_sse_mul_ss:
1662 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001663 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664 II->getName()), *II);
1665 break;
1666 }
1667
1668 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001669 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1670 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671 InsertNewInstBefore(New, *II);
1672 AddSoonDeadInstToWorklist(*II, 0);
1673 return New;
1674 }
1675 }
1676
1677 // Output elements are undefined if both are undefined. Consider things
1678 // like undef&0. The result is known zero, not undef.
1679 UndefElts &= UndefElts2;
1680 break;
1681 }
1682 break;
1683 }
1684 }
1685 return MadeChange ? I : 0;
1686}
1687
Dan Gohman5d56fd42008-05-19 22:14:15 +00001688
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689/// AssociativeOpt - Perform an optimization on an associative operator. This
1690/// function is designed to check a chain of associative operators for a
1691/// potential to apply a certain optimization. Since the optimization may be
1692/// applicable if the expression was reassociated, this checks the chain, then
1693/// reassociates the expression as necessary to expose the optimization
1694/// opportunity. This makes use of a special Functor, which must define
1695/// 'shouldApply' and 'apply' methods.
1696///
1697template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001698static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 unsigned Opcode = Root.getOpcode();
1700 Value *LHS = Root.getOperand(0);
1701
1702 // Quick check, see if the immediate LHS matches...
1703 if (F.shouldApply(LHS))
1704 return F.apply(Root);
1705
1706 // Otherwise, if the LHS is not of the same opcode as the root, return.
1707 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1708 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1709 // Should we apply this transform to the RHS?
1710 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1711
1712 // If not to the RHS, check to see if we should apply to the LHS...
1713 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1714 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1715 ShouldApply = true;
1716 }
1717
1718 // If the functor wants to apply the optimization to the RHS of LHSI,
1719 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1720 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721 // Now all of the instructions are in the current basic block, go ahead
1722 // and perform the reassociation.
1723 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1724
1725 // First move the selected RHS to the LHS of the root...
1726 Root.setOperand(0, LHSI->getOperand(1));
1727
1728 // Make what used to be the LHS of the root be the user of the root...
1729 Value *ExtraOperand = TmpLHSI->getOperand(1);
1730 if (&Root == TmpLHSI) {
1731 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1732 return 0;
1733 }
1734 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1735 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001737 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 ARI = Root;
1739
1740 // Now propagate the ExtraOperand down the chain of instructions until we
1741 // get to LHSI.
1742 while (TmpLHSI != LHSI) {
1743 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1744 // Move the instruction to immediately before the chain we are
1745 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001746 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 ARI = NextLHSI;
1748
1749 Value *NextOp = NextLHSI->getOperand(1);
1750 NextLHSI->setOperand(1, ExtraOperand);
1751 TmpLHSI = NextLHSI;
1752 ExtraOperand = NextOp;
1753 }
1754
1755 // Now that the instructions are reassociated, have the functor perform
1756 // the transformation...
1757 return F.apply(Root);
1758 }
1759
1760 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1761 }
1762 return 0;
1763}
1764
Dan Gohman089efff2008-05-13 00:00:25 +00001765namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766
Nick Lewycky27f6c132008-05-23 04:34:58 +00001767// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768struct AddRHS {
1769 Value *RHS;
1770 AddRHS(Value *rhs) : RHS(rhs) {}
1771 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1772 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001773 return BinaryOperator::CreateShl(Add.getOperand(0),
1774 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775 }
1776};
1777
1778// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1779// iff C1&C2 == 0
1780struct AddMaskingAnd {
1781 Constant *C2;
1782 AddMaskingAnd(Constant *c) : C2(c) {}
1783 bool shouldApply(Value *LHS) const {
1784 ConstantInt *C1;
1785 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1786 ConstantExpr::getAnd(C1, C2)->isNullValue();
1787 }
1788 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001789 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001790 }
1791};
1792
Dan Gohman089efff2008-05-13 00:00:25 +00001793}
1794
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1796 InstCombiner *IC) {
1797 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001798 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001799 }
1800
1801 // Figure out if the constant is the left or the right argument.
1802 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1803 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1804
1805 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1806 if (ConstIsRHS)
1807 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1808 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1809 }
1810
1811 Value *Op0 = SO, *Op1 = ConstOperand;
1812 if (!ConstIsRHS)
1813 std::swap(Op0, Op1);
1814 Instruction *New;
1815 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001816 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001817 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 SO->getName()+".cmp");
1820 else {
1821 assert(0 && "Unknown binary instruction type!");
1822 abort();
1823 }
1824 return IC->InsertNewInstBefore(New, I);
1825}
1826
1827// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1828// constant as the other operand, try to fold the binary operator into the
1829// select arguments. This also works for Cast instructions, which obviously do
1830// not have a second operand.
1831static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1832 InstCombiner *IC) {
1833 // Don't modify shared select instructions
1834 if (!SI->hasOneUse()) return 0;
1835 Value *TV = SI->getOperand(1);
1836 Value *FV = SI->getOperand(2);
1837
1838 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1839 // Bool selects with constant operands can be folded to logical ops.
1840 if (SI->getType() == Type::Int1Ty) return 0;
1841
1842 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1843 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1844
Gabor Greifd6da1d02008-04-06 20:25:17 +00001845 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1846 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001847 }
1848 return 0;
1849}
1850
1851
1852/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1853/// node as operand #0, see if we can fold the instruction into the PHI (which
1854/// is only possible if all operands to the PHI are constants).
1855Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1856 PHINode *PN = cast<PHINode>(I.getOperand(0));
1857 unsigned NumPHIValues = PN->getNumIncomingValues();
1858 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1859
1860 // Check to see if all of the operands of the PHI are constants. If there is
1861 // one non-constant value, remember the BB it is. If there is more than one
1862 // or if *it* is a PHI, bail out.
1863 BasicBlock *NonConstBB = 0;
1864 for (unsigned i = 0; i != NumPHIValues; ++i)
1865 if (!isa<Constant>(PN->getIncomingValue(i))) {
1866 if (NonConstBB) return 0; // More than one non-const value.
1867 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1868 NonConstBB = PN->getIncomingBlock(i);
1869
1870 // If the incoming non-constant value is in I's block, we have an infinite
1871 // loop.
1872 if (NonConstBB == I.getParent())
1873 return 0;
1874 }
1875
1876 // If there is exactly one non-constant value, we can insert a copy of the
1877 // operation in that block. However, if this is a critical edge, we would be
1878 // inserting the computation one some other paths (e.g. inside a loop). Only
1879 // do this if the pred block is unconditionally branching into the phi block.
1880 if (NonConstBB) {
1881 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1882 if (!BI || !BI->isUnconditional()) return 0;
1883 }
1884
1885 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001886 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1888 InsertNewInstBefore(NewPN, *PN);
1889 NewPN->takeName(PN);
1890
1891 // Next, add all of the operands to the PHI.
1892 if (I.getNumOperands() == 2) {
1893 Constant *C = cast<Constant>(I.getOperand(1));
1894 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001895 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1897 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1898 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1899 else
1900 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1901 } else {
1902 assert(PN->getIncomingBlock(i) == NonConstBB);
1903 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001904 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905 PN->getIncomingValue(i), C, "phitmp",
1906 NonConstBB->getTerminator());
1907 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001908 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909 CI->getPredicate(),
1910 PN->getIncomingValue(i), C, "phitmp",
1911 NonConstBB->getTerminator());
1912 else
1913 assert(0 && "Unknown binop!");
1914
1915 AddToWorkList(cast<Instruction>(InV));
1916 }
1917 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1918 }
1919 } else {
1920 CastInst *CI = cast<CastInst>(&I);
1921 const Type *RetTy = CI->getType();
1922 for (unsigned i = 0; i != NumPHIValues; ++i) {
1923 Value *InV;
1924 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1925 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1926 } else {
1927 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001928 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 I.getType(), "phitmp",
1930 NonConstBB->getTerminator());
1931 AddToWorkList(cast<Instruction>(InV));
1932 }
1933 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1934 }
1935 }
1936 return ReplaceInstUsesWith(I, NewPN);
1937}
1938
Chris Lattner55476162008-01-29 06:52:45 +00001939
Chris Lattner3554f972008-05-20 05:46:13 +00001940/// WillNotOverflowSignedAdd - Return true if we can prove that:
1941/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1942/// This basically requires proving that the add in the original type would not
1943/// overflow to change the sign bit or have a carry out.
1944bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1945 // There are different heuristics we can use for this. Here are some simple
1946 // ones.
1947
1948 // Add has the property that adding any two 2's complement numbers can only
1949 // have one carry bit which can change a sign. As such, if LHS and RHS each
1950 // have at least two sign bits, we know that the addition of the two values will
1951 // sign extend fine.
1952 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1953 return true;
1954
1955
1956 // If one of the operands only has one non-zero bit, and if the other operand
1957 // has a known-zero bit in a more significant place than it (not including the
1958 // sign bit) the ripple may go up to and fill the zero, but won't change the
1959 // sign. For example, (X & ~4) + 1.
1960
1961 // TODO: Implement.
1962
1963 return false;
1964}
1965
Chris Lattner55476162008-01-29 06:52:45 +00001966
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001967Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1968 bool Changed = SimplifyCommutative(I);
1969 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1970
1971 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1972 // X + undef -> undef
1973 if (isa<UndefValue>(RHS))
1974 return ReplaceInstUsesWith(I, RHS);
1975
1976 // X + 0 --> X
1977 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1978 if (RHSC->isNullValue())
1979 return ReplaceInstUsesWith(I, LHS);
1980 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001981 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1982 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001983 return ReplaceInstUsesWith(I, LHS);
1984 }
1985
1986 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1987 // X + (signbit) --> X ^ signbit
1988 const APInt& Val = CI->getValue();
1989 uint32_t BitWidth = Val.getBitWidth();
1990 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001991 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001992
1993 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1994 // (X & 254)+1 -> (X&254)|1
1995 if (!isa<VectorType>(I.getType())) {
1996 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1997 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1998 KnownZero, KnownOne))
1999 return &I;
2000 }
Dan Gohman35b76162008-10-30 20:40:10 +00002001
2002 // zext(i1) - 1 -> select i1, 0, -1
2003 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2004 if (CI->isAllOnesValue() &&
2005 ZI->getOperand(0)->getType() == Type::Int1Ty)
2006 return SelectInst::Create(ZI->getOperand(0),
2007 Constant::getNullValue(I.getType()),
2008 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002009 }
2010
2011 if (isa<PHINode>(LHS))
2012 if (Instruction *NV = FoldOpIntoPhi(I))
2013 return NV;
2014
2015 ConstantInt *XorRHS = 0;
2016 Value *XorLHS = 0;
2017 if (isa<ConstantInt>(RHSC) &&
2018 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2019 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2020 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2021
2022 uint32_t Size = TySizeBits / 2;
2023 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2024 APInt CFF80Val(-C0080Val);
2025 do {
2026 if (TySizeBits > Size) {
2027 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2028 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2029 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2030 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2031 // This is a sign extend if the top bits are known zero.
2032 if (!MaskedValueIsZero(XorLHS,
2033 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2034 Size = 0; // Not a sign ext, but can't be any others either.
2035 break;
2036 }
2037 }
2038 Size >>= 1;
2039 C0080Val = APIntOps::lshr(C0080Val, Size);
2040 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2041 } while (Size >= 1);
2042
2043 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002044 // with funny bit widths then this switch statement should be removed. It
2045 // is just here to get the size of the "middle" type back up to something
2046 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002047 const Type *MiddleType = 0;
2048 switch (Size) {
2049 default: break;
2050 case 32: MiddleType = Type::Int32Ty; break;
2051 case 16: MiddleType = Type::Int16Ty; break;
2052 case 8: MiddleType = Type::Int8Ty; break;
2053 }
2054 if (MiddleType) {
2055 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2056 InsertNewInstBefore(NewTrunc, I);
2057 return new SExtInst(NewTrunc, I.getType(), I.getName());
2058 }
2059 }
2060 }
2061
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002062 if (I.getType() == Type::Int1Ty)
2063 return BinaryOperator::CreateXor(LHS, RHS);
2064
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002065 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002066 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2068
2069 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2070 if (RHSI->getOpcode() == Instruction::Sub)
2071 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2072 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2073 }
2074 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2075 if (LHSI->getOpcode() == Instruction::Sub)
2076 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2077 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2078 }
2079 }
2080
2081 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002082 // -A + -B --> -(A + B)
2083 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002084 if (LHS->getType()->isIntOrIntVector()) {
2085 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002086 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002087 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002089 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002090 }
2091
Gabor Greifa645dd32008-05-16 19:29:10 +00002092 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002093 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094
2095 // A + -B --> A - B
2096 if (!isa<Constant>(RHS))
2097 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002098 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099
2100
2101 ConstantInt *C2;
2102 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2103 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002104 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002105
2106 // X*C1 + X*C2 --> X * (C1+C2)
2107 ConstantInt *C1;
2108 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002109 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002110 }
2111
2112 // X + X*C --> X * (C+1)
2113 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002114 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115
2116 // X + ~X --> -1 since ~X = -X-1
2117 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2118 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2119
2120
2121 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2122 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2123 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2124 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002125
2126 // A+B --> A|B iff A and B have no bits set in common.
2127 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2128 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2129 APInt LHSKnownOne(IT->getBitWidth(), 0);
2130 APInt LHSKnownZero(IT->getBitWidth(), 0);
2131 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2132 if (LHSKnownZero != 0) {
2133 APInt RHSKnownOne(IT->getBitWidth(), 0);
2134 APInt RHSKnownZero(IT->getBitWidth(), 0);
2135 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2136
2137 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002138 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002139 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002140 }
2141 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002142
Nick Lewycky83598a72008-02-03 07:42:09 +00002143 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002144 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 Value *W, *X, *Y, *Z;
2146 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2147 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2148 if (W != Y) {
2149 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002150 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002151 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(W, X);
2153 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002154 std::swap(Y, Z);
2155 std::swap(W, X);
2156 }
2157 }
2158
2159 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002160 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002161 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 }
2164 }
2165 }
2166
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2168 Value *X = 0;
2169 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002170 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171
2172 // (X & FF00) + xx00 -> (X+xx00) & FF00
2173 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2174 Constant *Anded = And(CRHS, C2);
2175 if (Anded == CRHS) {
2176 // See if all bits from the first bit set in the Add RHS up are included
2177 // in the mask. First, get the rightmost bit.
2178 const APInt& AddRHSV = CRHS->getValue();
2179
2180 // Form a mask of all bits from the lowest bit added through the top.
2181 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2182
2183 // See if the and mask includes all of these bits.
2184 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2185
2186 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2187 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002188 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 }
2192 }
2193 }
2194
2195 // Try to fold constant add into select arguments.
2196 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2197 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2198 return R;
2199 }
2200
2201 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002202 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002203 {
2204 CastInst *CI = dyn_cast<CastInst>(LHS);
2205 Value *Other = RHS;
2206 if (!CI) {
2207 CI = dyn_cast<CastInst>(RHS);
2208 Other = LHS;
2209 }
2210 if (CI && CI->getType()->isSized() &&
2211 (CI->getType()->getPrimitiveSizeInBits() ==
2212 TD->getIntPtrType()->getPrimitiveSizeInBits())
2213 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002214 unsigned AS =
2215 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002216 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2217 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002218 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002219 return new PtrToIntInst(I2, CI->getType());
2220 }
2221 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002222
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002223 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002224 {
2225 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002226 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002227 if (!SI) {
2228 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002229 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002230 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002231 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 Value *TV = SI->getTrueValue();
2233 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002234 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002235
2236 // Can we fold the add into the argument of the select?
2237 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002238 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2239 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002240 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002241 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2242 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002243 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002244 }
2245 }
Chris Lattner55476162008-01-29 06:52:45 +00002246
2247 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2248 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2249 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2250 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251
Chris Lattner3554f972008-05-20 05:46:13 +00002252 // Check for (add (sext x), y), see if we can merge this into an
2253 // integer add followed by a sext.
2254 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2255 // (add (sext x), cst) --> (sext (add x, cst'))
2256 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2257 Constant *CI =
2258 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2259 if (LHSConv->hasOneUse() &&
2260 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2261 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2262 // Insert the new, smaller add.
2263 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2264 CI, "addconv");
2265 InsertNewInstBefore(NewAdd, I);
2266 return new SExtInst(NewAdd, I.getType());
2267 }
2268 }
2269
2270 // (add (sext x), (sext y)) --> (sext (add int x, y))
2271 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2272 // Only do this if x/y have the same type, if at last one of them has a
2273 // single use (so we don't increase the number of sexts), and if the
2274 // integer add will not overflow.
2275 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2276 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2277 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2278 RHSConv->getOperand(0))) {
2279 // Insert the new integer add.
2280 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2281 RHSConv->getOperand(0),
2282 "addconv");
2283 InsertNewInstBefore(NewAdd, I);
2284 return new SExtInst(NewAdd, I.getType());
2285 }
2286 }
2287 }
2288
2289 // Check for (add double (sitofp x), y), see if we can merge this into an
2290 // integer add followed by a promotion.
2291 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2292 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2293 // ... if the constant fits in the integer value. This is useful for things
2294 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2295 // requires a constant pool load, and generally allows the add to be better
2296 // instcombined.
2297 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2298 Constant *CI =
2299 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2300 if (LHSConv->hasOneUse() &&
2301 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2302 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2303 // Insert the new integer add.
2304 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2305 CI, "addconv");
2306 InsertNewInstBefore(NewAdd, I);
2307 return new SIToFPInst(NewAdd, I.getType());
2308 }
2309 }
2310
2311 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2312 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2313 // Only do this if x/y have the same type, if at last one of them has a
2314 // single use (so we don't increase the number of int->fp conversions),
2315 // and if the integer add will not overflow.
2316 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2317 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2318 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2319 RHSConv->getOperand(0))) {
2320 // Insert the new integer add.
2321 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2322 RHSConv->getOperand(0),
2323 "addconv");
2324 InsertNewInstBefore(NewAdd, I);
2325 return new SIToFPInst(NewAdd, I.getType());
2326 }
2327 }
2328 }
2329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330 return Changed ? &I : 0;
2331}
2332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2334 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2335
Chris Lattner27fbef42008-07-17 06:07:20 +00002336 if (Op0 == Op1 && // sub X, X -> 0
2337 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2339
2340 // If this is a 'B = x-(-A)', change to B = x+A...
2341 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002342 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002343
2344 if (isa<UndefValue>(Op0))
2345 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2346 if (isa<UndefValue>(Op1))
2347 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2348
2349 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2350 // Replace (-1 - A) with (~A)...
2351 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002352 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353
2354 // C - ~X == X + (1+C)
2355 Value *X = 0;
2356 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002357 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358
2359 // -(X >>u 31) -> (X >>s 31)
2360 // -(X >>s 31) -> (X >>u 31)
2361 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002362 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363 if (SI->getOpcode() == Instruction::LShr) {
2364 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2365 // Check to see if we are shifting out everything but the sign bit.
2366 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2367 SI->getType()->getPrimitiveSizeInBits()-1) {
2368 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002369 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370 SI->getOperand(0), CU, SI->getName());
2371 }
2372 }
2373 }
2374 else if (SI->getOpcode() == Instruction::AShr) {
2375 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2376 // Check to see if we are shifting out everything but the sign bit.
2377 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2378 SI->getType()->getPrimitiveSizeInBits()-1) {
2379 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002380 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002381 SI->getOperand(0), CU, SI->getName());
2382 }
2383 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002384 }
2385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 }
2387
2388 // Try to fold constant sub into select arguments.
2389 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2390 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2391 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 }
2393
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002394 if (I.getType() == Type::Int1Ty)
2395 return BinaryOperator::CreateXor(Op0, Op1);
2396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2398 if (Op1I->getOpcode() == Instruction::Add &&
2399 !Op0->getType()->isFPOrFPVector()) {
2400 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002401 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2405 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2406 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002407 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 Op1I->getOperand(0));
2409 }
2410 }
2411
2412 if (Op1I->hasOneUse()) {
2413 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2414 // is not used by anyone else...
2415 //
2416 if (Op1I->getOpcode() == Instruction::Sub &&
2417 !Op1I->getType()->isFPOrFPVector()) {
2418 // Swap the two operands of the subexpr...
2419 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2420 Op1I->setOperand(0, IIOp1);
2421 Op1I->setOperand(1, IIOp0);
2422
2423 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002424 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425 }
2426
2427 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2428 //
2429 if (Op1I->getOpcode() == Instruction::And &&
2430 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2431 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2432
2433 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002434 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2435 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002436 }
2437
2438 // 0 - (X sdiv C) -> (X sdiv -C)
2439 if (Op1I->getOpcode() == Instruction::SDiv)
2440 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2441 if (CSI->isZero())
2442 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002443 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002444 ConstantExpr::getNeg(DivRHS));
2445
2446 // X - X*C --> X * (1-C)
2447 ConstantInt *C2 = 0;
2448 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2449 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002450 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 }
2452 }
2453 }
2454
2455 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002456 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457 if (Op0I->getOpcode() == Instruction::Add) {
2458 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2459 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2460 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2462 } else if (Op0I->getOpcode() == Instruction::Sub) {
2463 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002464 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002465 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467
2468 ConstantInt *C1;
2469 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2470 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002471 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472
2473 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2474 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002475 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 }
2477 return 0;
2478}
2479
2480/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2481/// comparison only checks the sign bit. If it only checks the sign bit, set
2482/// TrueIfSigned if the result of the comparison is true when the input value is
2483/// signed.
2484static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2485 bool &TrueIfSigned) {
2486 switch (pred) {
2487 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2488 TrueIfSigned = true;
2489 return RHS->isZero();
2490 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2491 TrueIfSigned = true;
2492 return RHS->isAllOnesValue();
2493 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2494 TrueIfSigned = false;
2495 return RHS->isAllOnesValue();
2496 case ICmpInst::ICMP_UGT:
2497 // True if LHS u> RHS and RHS == high-bit-mask - 1
2498 TrueIfSigned = true;
2499 return RHS->getValue() ==
2500 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2501 case ICmpInst::ICMP_UGE:
2502 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2503 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002504 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505 default:
2506 return false;
2507 }
2508}
2509
2510Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2511 bool Changed = SimplifyCommutative(I);
2512 Value *Op0 = I.getOperand(0);
2513
2514 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2515 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2516
2517 // Simplify mul instructions with a constant RHS...
2518 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2519 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2520
2521 // ((X << C1)*C2) == (X * (C2 << C1))
2522 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2523 if (SI->getOpcode() == Instruction::Shl)
2524 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002525 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526 ConstantExpr::getShl(CI, ShOp));
2527
2528 if (CI->isZero())
2529 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2530 if (CI->equalsInt(1)) // X * 1 == X
2531 return ReplaceInstUsesWith(I, Op0);
2532 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002533 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534
2535 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2536 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002537 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002538 ConstantInt::get(Op0->getType(), Val.logBase2()));
2539 }
2540 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2541 if (Op1F->isNullValue())
2542 return ReplaceInstUsesWith(I, Op1);
2543
2544 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2545 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002546 if (Op1F->isExactlyValue(1.0))
2547 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2548 } else if (isa<VectorType>(Op1->getType())) {
2549 if (isa<ConstantAggregateZero>(Op1))
2550 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002551
2552 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2553 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2554 return BinaryOperator::CreateNeg(Op0, I.getName());
2555
2556 // As above, vector X*splat(1.0) -> X in all defined cases.
2557 if (Constant *Splat = Op1V->getSplatValue()) {
2558 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2559 if (F->isExactlyValue(1.0))
2560 return ReplaceInstUsesWith(I, Op0);
2561 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2562 if (CI->equalsInt(1))
2563 return ReplaceInstUsesWith(I, Op0);
2564 }
2565 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002566 }
2567
2568 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2569 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002570 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002572 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 Op1, "tmp");
2574 InsertNewInstBefore(Add, I);
2575 Value *C1C2 = ConstantExpr::getMul(Op1,
2576 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002577 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578
2579 }
2580
2581 // Try to fold constant mul into select arguments.
2582 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2583 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2584 return R;
2585
2586 if (isa<PHINode>(Op0))
2587 if (Instruction *NV = FoldOpIntoPhi(I))
2588 return NV;
2589 }
2590
2591 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2592 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002593 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594
Nick Lewycky1c246402008-11-21 07:33:58 +00002595 // (X / Y) * Y = X - (X % Y)
2596 // (X / Y) * -Y = (X % Y) - X
2597 {
2598 Value *Op1 = I.getOperand(1);
2599 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2600 if (!BO ||
2601 (BO->getOpcode() != Instruction::UDiv &&
2602 BO->getOpcode() != Instruction::SDiv)) {
2603 Op1 = Op0;
2604 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2605 }
2606 Value *Neg = dyn_castNegVal(Op1);
2607 if (BO && BO->hasOneUse() &&
2608 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2609 (BO->getOpcode() == Instruction::UDiv ||
2610 BO->getOpcode() == Instruction::SDiv)) {
2611 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2612
2613 Instruction *Rem;
2614 if (BO->getOpcode() == Instruction::UDiv)
2615 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2616 else
2617 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2618
2619 InsertNewInstBefore(Rem, I);
2620 Rem->takeName(BO);
2621
2622 if (Op1BO == Op1)
2623 return BinaryOperator::CreateSub(Op0BO, Rem);
2624 else
2625 return BinaryOperator::CreateSub(Rem, Op0BO);
2626 }
2627 }
2628
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002629 if (I.getType() == Type::Int1Ty)
2630 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 // If one of the operands of the multiply is a cast from a boolean value, then
2633 // we know the bool is either zero or one, so this is a 'masking' multiply.
2634 // See if we can simplify things based on how the boolean was originally
2635 // formed.
2636 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002637 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002638 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2639 BoolCast = CI;
2640 if (!BoolCast)
2641 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2642 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2643 BoolCast = CI;
2644 if (BoolCast) {
2645 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2646 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2647 const Type *SCOpTy = SCIOp0->getType();
2648 bool TIS = false;
2649
2650 // If the icmp is true iff the sign bit of X is set, then convert this
2651 // multiply into a shift/and combination.
2652 if (isa<ConstantInt>(SCIOp1) &&
2653 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2654 TIS) {
2655 // Shift the X value right to turn it into "all signbits".
2656 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2657 SCOpTy->getPrimitiveSizeInBits()-1);
2658 Value *V =
2659 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002660 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661 BoolCast->getOperand(0)->getName()+
2662 ".mask"), I);
2663
2664 // If the multiply type is not the same as the source type, sign extend
2665 // or truncate to the multiply type.
2666 if (I.getType() != V->getType()) {
2667 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2668 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2669 Instruction::CastOps opcode =
2670 (SrcBits == DstBits ? Instruction::BitCast :
2671 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2672 V = InsertCastBefore(opcode, V, I.getType(), I);
2673 }
2674
2675 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002676 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002677 }
2678 }
2679 }
2680
2681 return Changed ? &I : 0;
2682}
2683
Chris Lattner76972db2008-07-14 00:15:52 +00002684/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2685/// instruction.
2686bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2687 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2688
2689 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2690 int NonNullOperand = -1;
2691 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2692 if (ST->isNullValue())
2693 NonNullOperand = 2;
2694 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2695 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2696 if (ST->isNullValue())
2697 NonNullOperand = 1;
2698
2699 if (NonNullOperand == -1)
2700 return false;
2701
2702 Value *SelectCond = SI->getOperand(0);
2703
2704 // Change the div/rem to use 'Y' instead of the select.
2705 I.setOperand(1, SI->getOperand(NonNullOperand));
2706
2707 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2708 // problem. However, the select, or the condition of the select may have
2709 // multiple uses. Based on our knowledge that the operand must be non-zero,
2710 // propagate the known value for the select into other uses of it, and
2711 // propagate a known value of the condition into its other users.
2712
2713 // If the select and condition only have a single use, don't bother with this,
2714 // early exit.
2715 if (SI->use_empty() && SelectCond->hasOneUse())
2716 return true;
2717
2718 // Scan the current block backward, looking for other uses of SI.
2719 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2720
2721 while (BBI != BBFront) {
2722 --BBI;
2723 // If we found a call to a function, we can't assume it will return, so
2724 // information from below it cannot be propagated above it.
2725 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2726 break;
2727
2728 // Replace uses of the select or its condition with the known values.
2729 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2730 I != E; ++I) {
2731 if (*I == SI) {
2732 *I = SI->getOperand(NonNullOperand);
2733 AddToWorkList(BBI);
2734 } else if (*I == SelectCond) {
2735 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2736 ConstantInt::getFalse();
2737 AddToWorkList(BBI);
2738 }
2739 }
2740
2741 // If we past the instruction, quit looking for it.
2742 if (&*BBI == SI)
2743 SI = 0;
2744 if (&*BBI == SelectCond)
2745 SelectCond = 0;
2746
2747 // If we ran out of things to eliminate, break out of the loop.
2748 if (SelectCond == 0 && SI == 0)
2749 break;
2750
2751 }
2752 return true;
2753}
2754
2755
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002756/// This function implements the transforms on div instructions that work
2757/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2758/// used by the visitors to those instructions.
2759/// @brief Transforms common to all three div instructions
2760Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2761 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2762
Chris Lattner653ef3c2008-02-19 06:12:18 +00002763 // undef / X -> 0 for integer.
2764 // undef / X -> undef for FP (the undef could be a snan).
2765 if (isa<UndefValue>(Op0)) {
2766 if (Op0->getType()->isFPOrFPVector())
2767 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002768 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002769 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770
2771 // X / undef -> undef
2772 if (isa<UndefValue>(Op1))
2773 return ReplaceInstUsesWith(I, Op1);
2774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775 return 0;
2776}
2777
2778/// This function implements the transforms common to both integer division
2779/// instructions (udiv and sdiv). It is called by the visitors to those integer
2780/// division instructions.
2781/// @brief Common integer divide transforms
2782Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2783 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2784
Chris Lattnercefb36c2008-05-16 02:59:42 +00002785 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002786 if (Op0 == Op1) {
2787 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2788 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2789 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2790 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2791 }
2792
2793 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2794 return ReplaceInstUsesWith(I, CI);
2795 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002797 if (Instruction *Common = commonDivTransforms(I))
2798 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002799
2800 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2801 // This does not apply for fdiv.
2802 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2803 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002804
2805 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2806 // div X, 1 == X
2807 if (RHS->equalsInt(1))
2808 return ReplaceInstUsesWith(I, Op0);
2809
2810 // (X / C1) / C2 -> X / (C1*C2)
2811 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2812 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2813 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002814 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2815 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2816 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002817 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002818 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 }
2820
2821 if (!RHS->isZero()) { // avoid X udiv 0
2822 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2823 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2824 return R;
2825 if (isa<PHINode>(Op0))
2826 if (Instruction *NV = FoldOpIntoPhi(I))
2827 return NV;
2828 }
2829 }
2830
2831 // 0 / X == 0, we don't need to preserve faults!
2832 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2833 if (LHS->equalsInt(0))
2834 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2835
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002836 // It can't be division by zero, hence it must be division by one.
2837 if (I.getType() == Type::Int1Ty)
2838 return ReplaceInstUsesWith(I, Op0);
2839
Nick Lewycky94418732008-11-27 20:21:08 +00002840 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2841 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2842 // div X, 1 == X
2843 if (X->isOne())
2844 return ReplaceInstUsesWith(I, Op0);
2845 }
2846
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002847 return 0;
2848}
2849
2850Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2851 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2852
2853 // Handle the integer div common cases
2854 if (Instruction *Common = commonIDivTransforms(I))
2855 return Common;
2856
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002858 // X udiv C^2 -> X >> C
2859 // Check to see if this is an unsigned division with an exact power of 2,
2860 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002861 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002862 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002864
2865 // X udiv C, where C >= signbit
2866 if (C->getValue().isNegative()) {
2867 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2868 I);
2869 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2870 ConstantInt::get(I.getType(), 1));
2871 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 }
2873
2874 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2875 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2876 if (RHSI->getOpcode() == Instruction::Shl &&
2877 isa<ConstantInt>(RHSI->getOperand(0))) {
2878 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2879 if (C1.isPowerOf2()) {
2880 Value *N = RHSI->getOperand(1);
2881 const Type *NTy = N->getType();
2882 if (uint32_t C2 = C1.logBase2()) {
2883 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002884 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002885 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
2888 }
2889 }
2890
2891 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2892 // where C1&C2 are powers of two.
2893 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2894 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2895 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2896 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2897 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2898 // Compute the shift amounts
2899 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2900 // Construct the "on true" case of the select
2901 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002902 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002903 Op0, TC, SI->getName()+".t");
2904 TSI = InsertNewInstBefore(TSI, I);
2905
2906 // Construct the "on false" case of the select
2907 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002908 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909 Op0, FC, SI->getName()+".f");
2910 FSI = InsertNewInstBefore(FSI, I);
2911
2912 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002913 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 }
2915 }
2916 return 0;
2917}
2918
2919Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2920 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2921
2922 // Handle the integer div common cases
2923 if (Instruction *Common = commonIDivTransforms(I))
2924 return Common;
2925
2926 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2927 // sdiv X, -1 == -X
2928 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002929 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930
Bill Wendling8fd57592008-11-30 03:42:12 +00002931 // -X/C -> X/-C, if and only if negation doesn't overflow.
Bill Wendlingf2e0efd2008-12-01 07:47:02 +00002932 if (Value *LHSNeg = dyn_castNegVal(Op0)) {
2933 if (ConstantInt *CI = dyn_cast<ConstantInt>(LHSNeg)) {
2934 ConstantInt *RHSNeg = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2935 APInt RHSNegAPI(RHSNeg->getValue());
2936
2937 APInt NegOne = -APInt(RHSNeg->getBitWidth(), 1, true);
2938 APInt TwoToExp(RHSNeg->getBitWidth(), 1 << (RHSNeg->getBitWidth() - 1));
2939
2940 if ((RHS->getValue().isNegative() &&
2941 RHSNegAPI.slt(TwoToExp - 1)) ||
2942 (RHS->getValue().isNonNegative() &&
2943 RHSNegAPI.sgt(TwoToExp * NegOne))) {
Bill Wendling8fd57592008-11-30 03:42:12 +00002944 ConstantInt *CINeg = cast<ConstantInt>(ConstantExpr::getNeg(CI));
Bill Wendling6a86a2f2008-11-30 12:41:09 +00002945 APInt CINegAPI(CINeg->getValue());
Bill Wendling8fd57592008-11-30 03:42:12 +00002946
Bill Wendlingb9b1a6f2008-11-30 12:38:24 +00002947 if ((CI->getValue().isNegative() && CINegAPI.slt(TwoToExp - 1)) ||
2948 (CI->getValue().isNonNegative() && CINegAPI.sgt(TwoToExp*NegOne)))
Bill Wendling8fd57592008-11-30 03:42:12 +00002949 return BinaryOperator::CreateSDiv(LHSNeg,
2950 ConstantExpr::getNeg(RHS));
2951 }
2952 }
2953 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954 }
2955
2956 // If the sign bits of both operands are zero (i.e. we can prove they are
2957 // unsigned inputs), turn this into a udiv.
2958 if (I.getType()->isInteger()) {
2959 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2960 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002961 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002962 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002963 }
2964 }
2965
2966 return 0;
2967}
2968
2969Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2970 return commonDivTransforms(I);
2971}
2972
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973/// This function implements the transforms on rem instructions that work
2974/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2975/// is used by the visitors to those instructions.
2976/// @brief Transforms common to all three rem instructions
2977Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2978 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2979
Chris Lattner653ef3c2008-02-19 06:12:18 +00002980 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 if (Constant *LHS = dyn_cast<Constant>(Op0))
2982 if (LHS->isNullValue())
2983 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2984
Chris Lattner653ef3c2008-02-19 06:12:18 +00002985 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2986 if (I.getType()->isFPOrFPVector())
2987 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002988 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002989 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002990 if (isa<UndefValue>(Op1))
2991 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2992
2993 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002994 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2995 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002996
2997 return 0;
2998}
2999
3000/// This function implements the transforms common to both integer remainder
3001/// instructions (urem and srem). It is called by the visitors to those integer
3002/// remainder instructions.
3003/// @brief Common integer remainder transforms
3004Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3005 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3006
3007 if (Instruction *common = commonRemTransforms(I))
3008 return common;
3009
3010 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3011 // X % 0 == undef, we don't need to preserve faults!
3012 if (RHS->equalsInt(0))
3013 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3014
3015 if (RHS->equalsInt(1)) // X % 1 == 0
3016 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3017
3018 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3019 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3020 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3021 return R;
3022 } else if (isa<PHINode>(Op0I)) {
3023 if (Instruction *NV = FoldOpIntoPhi(I))
3024 return NV;
3025 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003026
3027 // See if we can fold away this rem instruction.
3028 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3029 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3030 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3031 KnownZero, KnownOne))
3032 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003033 }
3034 }
3035
3036 return 0;
3037}
3038
3039Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3040 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3041
3042 if (Instruction *common = commonIRemTransforms(I))
3043 return common;
3044
3045 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3046 // X urem C^2 -> X and C
3047 // Check to see if this is an unsigned remainder with an exact power of 2,
3048 // if so, convert to a bitwise and.
3049 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3050 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003051 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003052 }
3053
3054 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3055 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3056 if (RHSI->getOpcode() == Instruction::Shl &&
3057 isa<ConstantInt>(RHSI->getOperand(0))) {
3058 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3059 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003060 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003062 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003063 }
3064 }
3065 }
3066
3067 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3068 // where C1&C2 are powers of two.
3069 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3070 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3071 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3072 // STO == 0 and SFO == 0 handled above.
3073 if ((STO->getValue().isPowerOf2()) &&
3074 (SFO->getValue().isPowerOf2())) {
3075 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003076 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003077 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003078 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003079 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 }
3081 }
3082 }
3083
3084 return 0;
3085}
3086
3087Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3088 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3089
Dan Gohmandb3dd962007-11-05 23:16:33 +00003090 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091 if (Instruction *common = commonIRemTransforms(I))
3092 return common;
3093
3094 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003095 if (!isa<Constant>(RHSNeg) ||
3096 (isa<ConstantInt>(RHSNeg) &&
3097 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098 // X % -Y -> X % Y
3099 AddUsesToWorkList(I);
3100 I.setOperand(1, RHSNeg);
3101 return &I;
3102 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003103
Dan Gohmandb3dd962007-11-05 23:16:33 +00003104 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003105 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003106 if (I.getType()->isInteger()) {
3107 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3108 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3109 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003110 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003111 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112 }
3113
3114 return 0;
3115}
3116
3117Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3118 return commonRemTransforms(I);
3119}
3120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121// isOneBitSet - Return true if there is exactly one bit set in the specified
3122// constant.
3123static bool isOneBitSet(const ConstantInt *CI) {
3124 return CI->getValue().isPowerOf2();
3125}
3126
3127// isHighOnes - Return true if the constant is of the form 1+0+.
3128// This is the same as lowones(~X).
3129static bool isHighOnes(const ConstantInt *CI) {
3130 return (~CI->getValue() + 1).isPowerOf2();
3131}
3132
3133/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3134/// are carefully arranged to allow folding of expressions such as:
3135///
3136/// (A < B) | (A > B) --> (A != B)
3137///
3138/// Note that this is only valid if the first and second predicates have the
3139/// same sign. Is illegal to do: (A u< B) | (A s> B)
3140///
3141/// Three bits are used to represent the condition, as follows:
3142/// 0 A > B
3143/// 1 A == B
3144/// 2 A < B
3145///
3146/// <=> Value Definition
3147/// 000 0 Always false
3148/// 001 1 A > B
3149/// 010 2 A == B
3150/// 011 3 A >= B
3151/// 100 4 A < B
3152/// 101 5 A != B
3153/// 110 6 A <= B
3154/// 111 7 Always true
3155///
3156static unsigned getICmpCode(const ICmpInst *ICI) {
3157 switch (ICI->getPredicate()) {
3158 // False -> 0
3159 case ICmpInst::ICMP_UGT: return 1; // 001
3160 case ICmpInst::ICMP_SGT: return 1; // 001
3161 case ICmpInst::ICMP_EQ: return 2; // 010
3162 case ICmpInst::ICMP_UGE: return 3; // 011
3163 case ICmpInst::ICMP_SGE: return 3; // 011
3164 case ICmpInst::ICMP_ULT: return 4; // 100
3165 case ICmpInst::ICMP_SLT: return 4; // 100
3166 case ICmpInst::ICMP_NE: return 5; // 101
3167 case ICmpInst::ICMP_ULE: return 6; // 110
3168 case ICmpInst::ICMP_SLE: return 6; // 110
3169 // True -> 7
3170 default:
3171 assert(0 && "Invalid ICmp predicate!");
3172 return 0;
3173 }
3174}
3175
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003176/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3177/// predicate into a three bit mask. It also returns whether it is an ordered
3178/// predicate by reference.
3179static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3180 isOrdered = false;
3181 switch (CC) {
3182 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3183 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003184 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3185 case FCmpInst::FCMP_UGT: return 1; // 001
3186 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3187 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003188 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3189 case FCmpInst::FCMP_UGE: return 3; // 011
3190 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3191 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003192 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3193 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003194 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3195 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003196 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003197 default:
3198 // Not expecting FCMP_FALSE and FCMP_TRUE;
3199 assert(0 && "Unexpected FCmp predicate!");
3200 return 0;
3201 }
3202}
3203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204/// getICmpValue - This is the complement of getICmpCode, which turns an
3205/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003206/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003207/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003208static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3209 switch (code) {
3210 default: assert(0 && "Illegal ICmp code!");
3211 case 0: return ConstantInt::getFalse();
3212 case 1:
3213 if (sign)
3214 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3215 else
3216 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3217 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3218 case 3:
3219 if (sign)
3220 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3221 else
3222 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3223 case 4:
3224 if (sign)
3225 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3226 else
3227 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3228 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3229 case 6:
3230 if (sign)
3231 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3232 else
3233 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3234 case 7: return ConstantInt::getTrue();
3235 }
3236}
3237
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003238/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3239/// opcode and two operands into either a FCmp instruction. isordered is passed
3240/// in to determine which kind of predicate to use in the new fcmp instruction.
3241static Value *getFCmpValue(bool isordered, unsigned code,
3242 Value *LHS, Value *RHS) {
3243 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003244 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003245 case 0:
3246 if (isordered)
3247 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3248 else
3249 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3250 case 1:
3251 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003252 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3253 else
3254 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003255 case 2:
3256 if (isordered)
3257 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3258 else
3259 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003260 case 3:
3261 if (isordered)
3262 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3263 else
3264 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3265 case 4:
3266 if (isordered)
3267 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3268 else
3269 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3270 case 5:
3271 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003272 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3273 else
3274 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3275 case 6:
3276 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003277 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3278 else
3279 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003280 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003281 }
3282}
3283
Chris Lattner2972b822008-11-16 04:55:20 +00003284/// PredicatesFoldable - Return true if both predicates match sign or if at
3285/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003286static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3287 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003288 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3289 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003290}
3291
3292namespace {
3293// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3294struct FoldICmpLogical {
3295 InstCombiner &IC;
3296 Value *LHS, *RHS;
3297 ICmpInst::Predicate pred;
3298 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3299 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3300 pred(ICI->getPredicate()) {}
3301 bool shouldApply(Value *V) const {
3302 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3303 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003304 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3305 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003306 return false;
3307 }
3308 Instruction *apply(Instruction &Log) const {
3309 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3310 if (ICI->getOperand(0) != LHS) {
3311 assert(ICI->getOperand(1) == LHS);
3312 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3313 }
3314
3315 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3316 unsigned LHSCode = getICmpCode(ICI);
3317 unsigned RHSCode = getICmpCode(RHSICI);
3318 unsigned Code;
3319 switch (Log.getOpcode()) {
3320 case Instruction::And: Code = LHSCode & RHSCode; break;
3321 case Instruction::Or: Code = LHSCode | RHSCode; break;
3322 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3323 default: assert(0 && "Illegal logical opcode!"); return 0;
3324 }
3325
3326 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3327 ICmpInst::isSignedPredicate(ICI->getPredicate());
3328
3329 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3330 if (Instruction *I = dyn_cast<Instruction>(RV))
3331 return I;
3332 // Otherwise, it's a constant boolean value...
3333 return IC.ReplaceInstUsesWith(Log, RV);
3334 }
3335};
3336} // end anonymous namespace
3337
3338// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3339// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3340// guaranteed to be a binary operator.
3341Instruction *InstCombiner::OptAndOp(Instruction *Op,
3342 ConstantInt *OpRHS,
3343 ConstantInt *AndRHS,
3344 BinaryOperator &TheAnd) {
3345 Value *X = Op->getOperand(0);
3346 Constant *Together = 0;
3347 if (!Op->isShift())
3348 Together = And(AndRHS, OpRHS);
3349
3350 switch (Op->getOpcode()) {
3351 case Instruction::Xor:
3352 if (Op->hasOneUse()) {
3353 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003354 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355 InsertNewInstBefore(And, TheAnd);
3356 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 }
3359 break;
3360 case Instruction::Or:
3361 if (Together == AndRHS) // (X | C) & C --> C
3362 return ReplaceInstUsesWith(TheAnd, AndRHS);
3363
3364 if (Op->hasOneUse() && Together != OpRHS) {
3365 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003366 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003367 InsertNewInstBefore(Or, TheAnd);
3368 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003369 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003370 }
3371 break;
3372 case Instruction::Add:
3373 if (Op->hasOneUse()) {
3374 // Adding a one to a single bit bit-field should be turned into an XOR
3375 // of the bit. First thing to check is to see if this AND is with a
3376 // single bit constant.
3377 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3378
3379 // If there is only one bit set...
3380 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3381 // Ok, at this point, we know that we are masking the result of the
3382 // ADD down to exactly one bit. If the constant we are adding has
3383 // no bits set below this bit, then we can eliminate the ADD.
3384 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3385
3386 // Check to see if any bits below the one bit set in AndRHSV are set.
3387 if ((AddRHS & (AndRHSV-1)) == 0) {
3388 // If not, the only thing that can effect the output of the AND is
3389 // the bit specified by AndRHSV. If that bit is set, the effect of
3390 // the XOR is to toggle the bit. If it is clear, then the ADD has
3391 // no effect.
3392 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3393 TheAnd.setOperand(0, X);
3394 return &TheAnd;
3395 } else {
3396 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003397 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003398 InsertNewInstBefore(NewAnd, TheAnd);
3399 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003400 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401 }
3402 }
3403 }
3404 }
3405 break;
3406
3407 case Instruction::Shl: {
3408 // We know that the AND will not produce any of the bits shifted in, so if
3409 // the anded constant includes them, clear them now!
3410 //
3411 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3412 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3413 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3414 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3415
3416 if (CI->getValue() == ShlMask) {
3417 // Masking out bits that the shift already masks
3418 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3419 } else if (CI != AndRHS) { // Reducing bits set in and.
3420 TheAnd.setOperand(1, CI);
3421 return &TheAnd;
3422 }
3423 break;
3424 }
3425 case Instruction::LShr:
3426 {
3427 // We know that the AND will not produce any of the bits shifted in, so if
3428 // the anded constant includes them, clear them now! This only applies to
3429 // unsigned shifts, because a signed shr may bring in set bits!
3430 //
3431 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3432 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3433 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3434 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3435
3436 if (CI->getValue() == ShrMask) {
3437 // Masking out bits that the shift already masks.
3438 return ReplaceInstUsesWith(TheAnd, Op);
3439 } else if (CI != AndRHS) {
3440 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3441 return &TheAnd;
3442 }
3443 break;
3444 }
3445 case Instruction::AShr:
3446 // Signed shr.
3447 // See if this is shifting in some sign extension, then masking it out
3448 // with an and.
3449 if (Op->hasOneUse()) {
3450 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3451 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3452 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3453 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3454 if (C == AndRHS) { // Masking out bits shifted in.
3455 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3456 // Make the argument unsigned.
3457 Value *ShVal = Op->getOperand(0);
3458 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003459 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003461 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462 }
3463 }
3464 break;
3465 }
3466 return 0;
3467}
3468
3469
3470/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3471/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3472/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3473/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3474/// insert new instructions.
3475Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3476 bool isSigned, bool Inside,
3477 Instruction &IB) {
3478 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3479 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3480 "Lo is not <= Hi in range emission code!");
3481
3482 if (Inside) {
3483 if (Lo == Hi) // Trivially false.
3484 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3485
3486 // V >= Min && V < Hi --> V < Hi
3487 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3488 ICmpInst::Predicate pred = (isSigned ?
3489 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3490 return new ICmpInst(pred, V, Hi);
3491 }
3492
3493 // Emit V-Lo <u Hi-Lo
3494 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003495 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496 InsertNewInstBefore(Add, IB);
3497 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3498 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3499 }
3500
3501 if (Lo == Hi) // Trivially true.
3502 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3503
3504 // V < Min || V >= Hi -> V > Hi-1
3505 Hi = SubOne(cast<ConstantInt>(Hi));
3506 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3507 ICmpInst::Predicate pred = (isSigned ?
3508 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3509 return new ICmpInst(pred, V, Hi);
3510 }
3511
3512 // Emit V-Lo >u Hi-1-Lo
3513 // Note that Hi has already had one subtracted from it, above.
3514 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003515 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 InsertNewInstBefore(Add, IB);
3517 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3518 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3519}
3520
3521// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3522// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3523// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3524// not, since all 1s are not contiguous.
3525static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3526 const APInt& V = Val->getValue();
3527 uint32_t BitWidth = Val->getType()->getBitWidth();
3528 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3529
3530 // look for the first zero bit after the run of ones
3531 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3532 // look for the first non-zero bit
3533 ME = V.getActiveBits();
3534 return true;
3535}
3536
3537/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3538/// where isSub determines whether the operator is a sub. If we can fold one of
3539/// the following xforms:
3540///
3541/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3542/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3543/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3544///
3545/// return (A +/- B).
3546///
3547Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3548 ConstantInt *Mask, bool isSub,
3549 Instruction &I) {
3550 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3551 if (!LHSI || LHSI->getNumOperands() != 2 ||
3552 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3553
3554 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3555
3556 switch (LHSI->getOpcode()) {
3557 default: return 0;
3558 case Instruction::And:
3559 if (And(N, Mask) == Mask) {
3560 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3561 if ((Mask->getValue().countLeadingZeros() +
3562 Mask->getValue().countPopulation()) ==
3563 Mask->getValue().getBitWidth())
3564 break;
3565
3566 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3567 // part, we don't need any explicit masks to take them out of A. If that
3568 // is all N is, ignore it.
3569 uint32_t MB = 0, ME = 0;
3570 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3571 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3572 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3573 if (MaskedValueIsZero(RHS, Mask))
3574 break;
3575 }
3576 }
3577 return 0;
3578 case Instruction::Or:
3579 case Instruction::Xor:
3580 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3581 if ((Mask->getValue().countLeadingZeros() +
3582 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3583 && And(N, Mask)->isZero())
3584 break;
3585 return 0;
3586 }
3587
3588 Instruction *New;
3589 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003590 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003592 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003593 return InsertNewInstBefore(New, I);
3594}
3595
Chris Lattner0631ea72008-11-16 05:06:21 +00003596/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3597Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3598 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003599 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003600 ConstantInt *LHSCst, *RHSCst;
3601 ICmpInst::Predicate LHSCC, RHSCC;
3602
Chris Lattnerf3803482008-11-16 05:10:52 +00003603 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003604 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003605 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003606 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003607
3608 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3609 // where C is a power of 2
3610 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3611 LHSCst->getValue().isPowerOf2()) {
3612 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3613 InsertNewInstBefore(NewOr, I);
3614 return new ICmpInst(LHSCC, NewOr, LHSCst);
3615 }
3616
3617 // From here on, we only handle:
3618 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3619 if (Val != Val2) return 0;
3620
Chris Lattner0631ea72008-11-16 05:06:21 +00003621 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3622 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3623 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3624 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3625 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3626 return 0;
3627
3628 // We can't fold (ugt x, C) & (sgt x, C2).
3629 if (!PredicatesFoldable(LHSCC, RHSCC))
3630 return 0;
3631
3632 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003633 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003634 if (ICmpInst::isSignedPredicate(LHSCC) ||
3635 (ICmpInst::isEquality(LHSCC) &&
3636 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003637 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003638 else
Chris Lattner665298f2008-11-16 05:14:43 +00003639 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3640
3641 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003642 std::swap(LHS, RHS);
3643 std::swap(LHSCst, RHSCst);
3644 std::swap(LHSCC, RHSCC);
3645 }
3646
3647 // At this point, we know we have have two icmp instructions
3648 // comparing a value against two constants and and'ing the result
3649 // together. Because of the above check, we know that we only have
3650 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3651 // (from the FoldICmpLogical check above), that the two constants
3652 // are not equal and that the larger constant is on the RHS
3653 assert(LHSCst != RHSCst && "Compares not folded above?");
3654
3655 switch (LHSCC) {
3656 default: assert(0 && "Unknown integer condition code!");
3657 case ICmpInst::ICMP_EQ:
3658 switch (RHSCC) {
3659 default: assert(0 && "Unknown integer condition code!");
3660 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3661 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3662 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3663 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3664 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3665 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3666 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3667 return ReplaceInstUsesWith(I, LHS);
3668 }
3669 case ICmpInst::ICMP_NE:
3670 switch (RHSCC) {
3671 default: assert(0 && "Unknown integer condition code!");
3672 case ICmpInst::ICMP_ULT:
3673 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3674 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3675 break; // (X != 13 & X u< 15) -> no change
3676 case ICmpInst::ICMP_SLT:
3677 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3678 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3679 break; // (X != 13 & X s< 15) -> no change
3680 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3681 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3682 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3683 return ReplaceInstUsesWith(I, RHS);
3684 case ICmpInst::ICMP_NE:
3685 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3686 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3687 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3688 Val->getName()+".off");
3689 InsertNewInstBefore(Add, I);
3690 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3691 ConstantInt::get(Add->getType(), 1));
3692 }
3693 break; // (X != 13 & X != 15) -> no change
3694 }
3695 break;
3696 case ICmpInst::ICMP_ULT:
3697 switch (RHSCC) {
3698 default: assert(0 && "Unknown integer condition code!");
3699 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3700 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3701 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3702 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3703 break;
3704 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3705 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3706 return ReplaceInstUsesWith(I, LHS);
3707 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3708 break;
3709 }
3710 break;
3711 case ICmpInst::ICMP_SLT:
3712 switch (RHSCC) {
3713 default: assert(0 && "Unknown integer condition code!");
3714 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3715 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3716 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3717 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3718 break;
3719 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3720 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3721 return ReplaceInstUsesWith(I, LHS);
3722 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3723 break;
3724 }
3725 break;
3726 case ICmpInst::ICMP_UGT:
3727 switch (RHSCC) {
3728 default: assert(0 && "Unknown integer condition code!");
3729 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3730 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3731 return ReplaceInstUsesWith(I, RHS);
3732 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3733 break;
3734 case ICmpInst::ICMP_NE:
3735 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3736 return new ICmpInst(LHSCC, Val, RHSCst);
3737 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003738 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003739 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3740 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3741 break;
3742 }
3743 break;
3744 case ICmpInst::ICMP_SGT:
3745 switch (RHSCC) {
3746 default: assert(0 && "Unknown integer condition code!");
3747 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3748 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3749 return ReplaceInstUsesWith(I, RHS);
3750 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3751 break;
3752 case ICmpInst::ICMP_NE:
3753 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3754 return new ICmpInst(LHSCC, Val, RHSCst);
3755 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003756 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003757 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3758 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3759 break;
3760 }
3761 break;
3762 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003763
3764 return 0;
3765}
3766
3767
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3769 bool Changed = SimplifyCommutative(I);
3770 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3771
3772 if (isa<UndefValue>(Op1)) // X & undef -> 0
3773 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3774
3775 // and X, X = X
3776 if (Op0 == Op1)
3777 return ReplaceInstUsesWith(I, Op1);
3778
3779 // See if we can simplify any instructions used by the instruction whose sole
3780 // purpose is to compute bits we don't care about.
3781 if (!isa<VectorType>(I.getType())) {
3782 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3783 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3784 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3785 KnownZero, KnownOne))
3786 return &I;
3787 } else {
3788 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3789 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3790 return ReplaceInstUsesWith(I, I.getOperand(0));
3791 } else if (isa<ConstantAggregateZero>(Op1)) {
3792 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3793 }
3794 }
3795
3796 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3797 const APInt& AndRHSMask = AndRHS->getValue();
3798 APInt NotAndRHS(~AndRHSMask);
3799
3800 // Optimize a variety of ((val OP C1) & C2) combinations...
3801 if (isa<BinaryOperator>(Op0)) {
3802 Instruction *Op0I = cast<Instruction>(Op0);
3803 Value *Op0LHS = Op0I->getOperand(0);
3804 Value *Op0RHS = Op0I->getOperand(1);
3805 switch (Op0I->getOpcode()) {
3806 case Instruction::Xor:
3807 case Instruction::Or:
3808 // If the mask is only needed on one incoming arm, push it up.
3809 if (Op0I->hasOneUse()) {
3810 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3811 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003812 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813 Op0RHS->getName()+".masked");
3814 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003815 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3817 }
3818 if (!isa<Constant>(Op0RHS) &&
3819 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3820 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003821 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003822 Op0LHS->getName()+".masked");
3823 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003824 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3826 }
3827 }
3828
3829 break;
3830 case Instruction::Add:
3831 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3832 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3833 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3834 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003835 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003836 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003837 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003838 break;
3839
3840 case Instruction::Sub:
3841 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3842 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3843 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3844 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003845 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003846
Nick Lewyckya349ba42008-07-10 05:51:40 +00003847 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3848 // has 1's for all bits that the subtraction with A might affect.
3849 if (Op0I->hasOneUse()) {
3850 uint32_t BitWidth = AndRHSMask.getBitWidth();
3851 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3852 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3853
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003854 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003855 if (!(A && A->isZero()) && // avoid infinite recursion.
3856 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003857 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3858 InsertNewInstBefore(NewNeg, I);
3859 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3860 }
3861 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003863
3864 case Instruction::Shl:
3865 case Instruction::LShr:
3866 // (1 << x) & 1 --> zext(x == 0)
3867 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003868 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003869 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3870 Constant::getNullValue(I.getType()));
3871 InsertNewInstBefore(NewICmp, I);
3872 return new ZExtInst(NewICmp, I.getType());
3873 }
3874 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003875 }
3876
3877 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3878 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3879 return Res;
3880 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3881 // If this is an integer truncation or change from signed-to-unsigned, and
3882 // if the source is an and/or with immediate, transform it. This
3883 // frequently occurs for bitfield accesses.
3884 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3885 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3886 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003887 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 if (CastOp->getOpcode() == Instruction::And) {
3889 // Change: and (cast (and X, C1) to T), C2
3890 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3891 // This will fold the two constants together, which may allow
3892 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003893 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003894 CastOp->getOperand(0), I.getType(),
3895 CastOp->getName()+".shrunk");
3896 NewCast = InsertNewInstBefore(NewCast, I);
3897 // trunc_or_bitcast(C1)&C2
3898 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3899 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003900 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901 } else if (CastOp->getOpcode() == Instruction::Or) {
3902 // Change: and (cast (or X, C1) to T), C2
3903 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3904 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3905 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3906 return ReplaceInstUsesWith(I, AndRHS);
3907 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003908 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 }
3910 }
3911
3912 // Try to fold constant and into select arguments.
3913 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3914 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3915 return R;
3916 if (isa<PHINode>(Op0))
3917 if (Instruction *NV = FoldOpIntoPhi(I))
3918 return NV;
3919 }
3920
3921 Value *Op0NotVal = dyn_castNotVal(Op0);
3922 Value *Op1NotVal = dyn_castNotVal(Op1);
3923
3924 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3925 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3926
3927 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3928 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003929 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003930 I.getName()+".demorgan");
3931 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003932 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933 }
3934
3935 {
3936 Value *A = 0, *B = 0, *C = 0, *D = 0;
3937 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3938 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3939 return ReplaceInstUsesWith(I, Op1);
3940
3941 // (A|B) & ~(A&B) -> A^B
3942 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3943 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003944 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003945 }
3946 }
3947
3948 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3949 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3950 return ReplaceInstUsesWith(I, Op0);
3951
3952 // ~(A&B) & (A|B) -> A^B
3953 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3954 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003955 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956 }
3957 }
3958
3959 if (Op0->hasOneUse() &&
3960 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3961 if (A == Op1) { // (A^B)&A -> A&(A^B)
3962 I.swapOperands(); // Simplify below
3963 std::swap(Op0, Op1);
3964 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3965 cast<BinaryOperator>(Op0)->swapOperands();
3966 I.swapOperands(); // Simplify below
3967 std::swap(Op0, Op1);
3968 }
3969 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003970
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 if (Op1->hasOneUse() &&
3972 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3973 if (B == Op0) { // B&(A^B) -> B&(B^A)
3974 cast<BinaryOperator>(Op1)->swapOperands();
3975 std::swap(A, B);
3976 }
3977 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003978 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003980 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 }
3982 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003983
3984 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003985 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3986 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3987 return BinaryOperator::CreateAnd(A, Op1);
3988 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3989 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3990 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 }
3992
3993 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3994 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3995 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3996 return R;
3997
Chris Lattner0631ea72008-11-16 05:06:21 +00003998 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3999 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4000 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 }
4002
4003 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4004 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4005 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4006 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4007 const Type *SrcTy = Op0C->getOperand(0)->getType();
4008 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4009 // Only do this if the casts both really cause code to be generated.
4010 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4011 I.getType(), TD) &&
4012 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4013 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004014 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004015 Op1C->getOperand(0),
4016 I.getName());
4017 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004018 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004019 }
4020 }
4021
4022 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4023 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4024 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4025 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4026 SI0->getOperand(1) == SI1->getOperand(1) &&
4027 (SI0->hasOneUse() || SI1->hasOneUse())) {
4028 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004029 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030 SI1->getOperand(0),
4031 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004032 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004033 SI1->getOperand(1));
4034 }
4035 }
4036
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004037 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004038 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4039 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4040 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004041 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4042 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004043 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4044 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4045 // If either of the constants are nans, then the whole thing returns
4046 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004047 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004048 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4049 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4050 RHS->getOperand(0));
4051 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004052 } else {
4053 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4054 FCmpInst::Predicate Op0CC, Op1CC;
4055 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4056 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004057 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4058 // Swap RHS operands to match LHS.
4059 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4060 std::swap(Op1LHS, Op1RHS);
4061 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004062 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4063 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4064 if (Op0CC == Op1CC)
4065 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4066 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4067 Op1CC == FCmpInst::FCMP_FALSE)
4068 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4069 else if (Op0CC == FCmpInst::FCMP_TRUE)
4070 return ReplaceInstUsesWith(I, Op1);
4071 else if (Op1CC == FCmpInst::FCMP_TRUE)
4072 return ReplaceInstUsesWith(I, Op0);
4073 bool Op0Ordered;
4074 bool Op1Ordered;
4075 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4076 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4077 if (Op1Pred == 0) {
4078 std::swap(Op0, Op1);
4079 std::swap(Op0Pred, Op1Pred);
4080 std::swap(Op0Ordered, Op1Ordered);
4081 }
4082 if (Op0Pred == 0) {
4083 // uno && ueq -> uno && (uno || eq) -> ueq
4084 // ord && olt -> ord && (ord && lt) -> olt
4085 if (Op0Ordered == Op1Ordered)
4086 return ReplaceInstUsesWith(I, Op1);
4087 // uno && oeq -> uno && (ord && eq) -> false
4088 // uno && ord -> false
4089 if (!Op0Ordered)
4090 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4091 // ord && ueq -> ord && (uno || eq) -> oeq
4092 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4093 Op0LHS, Op0RHS));
4094 }
4095 }
4096 }
4097 }
Chris Lattner91882432007-10-24 05:38:08 +00004098 }
4099 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004101 return Changed ? &I : 0;
4102}
4103
Chris Lattner567f5112008-10-05 02:13:19 +00004104/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4105/// capable of providing pieces of a bswap. The subexpression provides pieces
4106/// of a bswap if it is proven that each of the non-zero bytes in the output of
4107/// the expression came from the corresponding "byte swapped" byte in some other
4108/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4109/// we know that the expression deposits the low byte of %X into the high byte
4110/// of the bswap result and that all other bytes are zero. This expression is
4111/// accepted, the high byte of ByteValues is set to X to indicate a correct
4112/// match.
4113///
4114/// This function returns true if the match was unsuccessful and false if so.
4115/// On entry to the function the "OverallLeftShift" is a signed integer value
4116/// indicating the number of bytes that the subexpression is later shifted. For
4117/// example, if the expression is later right shifted by 16 bits, the
4118/// OverallLeftShift value would be -2 on entry. This is used to specify which
4119/// byte of ByteValues is actually being set.
4120///
4121/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4122/// byte is masked to zero by a user. For example, in (X & 255), X will be
4123/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4124/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4125/// always in the local (OverallLeftShift) coordinate space.
4126///
4127static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4128 SmallVector<Value*, 8> &ByteValues) {
4129 if (Instruction *I = dyn_cast<Instruction>(V)) {
4130 // If this is an or instruction, it may be an inner node of the bswap.
4131 if (I->getOpcode() == Instruction::Or) {
4132 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4133 ByteValues) ||
4134 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4135 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004136 }
Chris Lattner567f5112008-10-05 02:13:19 +00004137
4138 // If this is a logical shift by a constant multiple of 8, recurse with
4139 // OverallLeftShift and ByteMask adjusted.
4140 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4141 unsigned ShAmt =
4142 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4143 // Ensure the shift amount is defined and of a byte value.
4144 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4145 return true;
4146
4147 unsigned ByteShift = ShAmt >> 3;
4148 if (I->getOpcode() == Instruction::Shl) {
4149 // X << 2 -> collect(X, +2)
4150 OverallLeftShift += ByteShift;
4151 ByteMask >>= ByteShift;
4152 } else {
4153 // X >>u 2 -> collect(X, -2)
4154 OverallLeftShift -= ByteShift;
4155 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004156 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004157 }
4158
4159 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4160 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4161
4162 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4163 ByteValues);
4164 }
4165
4166 // If this is a logical 'and' with a mask that clears bytes, clear the
4167 // corresponding bytes in ByteMask.
4168 if (I->getOpcode() == Instruction::And &&
4169 isa<ConstantInt>(I->getOperand(1))) {
4170 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4171 unsigned NumBytes = ByteValues.size();
4172 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4173 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4174
4175 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4176 // If this byte is masked out by a later operation, we don't care what
4177 // the and mask is.
4178 if ((ByteMask & (1 << i)) == 0)
4179 continue;
4180
4181 // If the AndMask is all zeros for this byte, clear the bit.
4182 APInt MaskB = AndMask & Byte;
4183 if (MaskB == 0) {
4184 ByteMask &= ~(1U << i);
4185 continue;
4186 }
4187
4188 // If the AndMask is not all ones for this byte, it's not a bytezap.
4189 if (MaskB != Byte)
4190 return true;
4191
4192 // Otherwise, this byte is kept.
4193 }
4194
4195 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4196 ByteValues);
4197 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004198 }
4199
Chris Lattner567f5112008-10-05 02:13:19 +00004200 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4201 // the input value to the bswap. Some observations: 1) if more than one byte
4202 // is demanded from this input, then it could not be successfully assembled
4203 // into a byteswap. At least one of the two bytes would not be aligned with
4204 // their ultimate destination.
4205 if (!isPowerOf2_32(ByteMask)) return true;
4206 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004207
Chris Lattner567f5112008-10-05 02:13:19 +00004208 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4209 // is demanded, it needs to go into byte 0 of the result. This means that the
4210 // byte needs to be shifted until it lands in the right byte bucket. The
4211 // shift amount depends on the position: if the byte is coming from the high
4212 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4213 // low part, it must be shifted left.
4214 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4215 if (InputByteNo < ByteValues.size()/2) {
4216 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4217 return true;
4218 } else {
4219 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4220 return true;
4221 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004222
4223 // If the destination byte value is already defined, the values are or'd
4224 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004225 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004226 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004227 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228 return false;
4229}
4230
4231/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4232/// If so, insert the new bswap intrinsic and return it.
4233Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4234 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004235 if (!ITy || ITy->getBitWidth() % 16 ||
4236 // ByteMask only allows up to 32-byte values.
4237 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004238 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4239
4240 /// ByteValues - For each byte of the result, we keep track of which value
4241 /// defines each byte.
4242 SmallVector<Value*, 8> ByteValues;
4243 ByteValues.resize(ITy->getBitWidth()/8);
4244
4245 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004246 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4247 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004248 return 0;
4249
4250 // Check to see if all of the bytes come from the same value.
4251 Value *V = ByteValues[0];
4252 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4253
4254 // Check to make sure that all of the bytes come from the same value.
4255 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4256 if (ByteValues[i] != V)
4257 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004258 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004259 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004260 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004261 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004262}
4263
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004264/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4265/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4266/// we can simplify this expression to "cond ? C : D or B".
4267static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4268 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004269 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004270 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004271 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004272 return 0;
4273
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004274 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004275 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004276 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004277 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004278 return SelectInst::Create(Cond, C, B);
4279 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004280 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004281 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004282 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004283 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004284 return 0;
4285}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004286
Chris Lattner0c678e52008-11-16 05:20:07 +00004287/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4288Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4289 ICmpInst *LHS, ICmpInst *RHS) {
4290 Value *Val, *Val2;
4291 ConstantInt *LHSCst, *RHSCst;
4292 ICmpInst::Predicate LHSCC, RHSCC;
4293
4294 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4295 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4296 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4297 return 0;
4298
4299 // From here on, we only handle:
4300 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4301 if (Val != Val2) return 0;
4302
4303 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4304 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4305 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4306 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4307 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4308 return 0;
4309
4310 // We can't fold (ugt x, C) | (sgt x, C2).
4311 if (!PredicatesFoldable(LHSCC, RHSCC))
4312 return 0;
4313
4314 // Ensure that the larger constant is on the RHS.
4315 bool ShouldSwap;
4316 if (ICmpInst::isSignedPredicate(LHSCC) ||
4317 (ICmpInst::isEquality(LHSCC) &&
4318 ICmpInst::isSignedPredicate(RHSCC)))
4319 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4320 else
4321 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4322
4323 if (ShouldSwap) {
4324 std::swap(LHS, RHS);
4325 std::swap(LHSCst, RHSCst);
4326 std::swap(LHSCC, RHSCC);
4327 }
4328
4329 // At this point, we know we have have two icmp instructions
4330 // comparing a value against two constants and or'ing the result
4331 // together. Because of the above check, we know that we only have
4332 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4333 // FoldICmpLogical check above), that the two constants are not
4334 // equal.
4335 assert(LHSCst != RHSCst && "Compares not folded above?");
4336
4337 switch (LHSCC) {
4338 default: assert(0 && "Unknown integer condition code!");
4339 case ICmpInst::ICMP_EQ:
4340 switch (RHSCC) {
4341 default: assert(0 && "Unknown integer condition code!");
4342 case ICmpInst::ICMP_EQ:
4343 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4344 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4345 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4346 Val->getName()+".off");
4347 InsertNewInstBefore(Add, I);
4348 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4349 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4350 }
4351 break; // (X == 13 | X == 15) -> no change
4352 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4353 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4354 break;
4355 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4356 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4357 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4358 return ReplaceInstUsesWith(I, RHS);
4359 }
4360 break;
4361 case ICmpInst::ICMP_NE:
4362 switch (RHSCC) {
4363 default: assert(0 && "Unknown integer condition code!");
4364 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4365 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4366 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4367 return ReplaceInstUsesWith(I, LHS);
4368 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4369 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4370 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4371 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4372 }
4373 break;
4374 case ICmpInst::ICMP_ULT:
4375 switch (RHSCC) {
4376 default: assert(0 && "Unknown integer condition code!");
4377 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4378 break;
4379 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4380 // If RHSCst is [us]MAXINT, it is always false. Not handling
4381 // this can cause overflow.
4382 if (RHSCst->isMaxValue(false))
4383 return ReplaceInstUsesWith(I, LHS);
4384 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4385 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4386 break;
4387 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4388 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4389 return ReplaceInstUsesWith(I, RHS);
4390 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4391 break;
4392 }
4393 break;
4394 case ICmpInst::ICMP_SLT:
4395 switch (RHSCC) {
4396 default: assert(0 && "Unknown integer condition code!");
4397 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4398 break;
4399 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4400 // If RHSCst is [us]MAXINT, it is always false. Not handling
4401 // this can cause overflow.
4402 if (RHSCst->isMaxValue(true))
4403 return ReplaceInstUsesWith(I, LHS);
4404 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4405 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4406 break;
4407 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4408 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4409 return ReplaceInstUsesWith(I, RHS);
4410 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4411 break;
4412 }
4413 break;
4414 case ICmpInst::ICMP_UGT:
4415 switch (RHSCC) {
4416 default: assert(0 && "Unknown integer condition code!");
4417 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4418 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4419 return ReplaceInstUsesWith(I, LHS);
4420 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4421 break;
4422 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4423 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4424 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4425 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4426 break;
4427 }
4428 break;
4429 case ICmpInst::ICMP_SGT:
4430 switch (RHSCC) {
4431 default: assert(0 && "Unknown integer condition code!");
4432 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4433 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4434 return ReplaceInstUsesWith(I, LHS);
4435 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4436 break;
4437 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4438 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4439 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4440 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4441 break;
4442 }
4443 break;
4444 }
4445 return 0;
4446}
4447
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004448Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4449 bool Changed = SimplifyCommutative(I);
4450 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4451
4452 if (isa<UndefValue>(Op1)) // X | undef -> -1
4453 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4454
4455 // or X, X = X
4456 if (Op0 == Op1)
4457 return ReplaceInstUsesWith(I, Op0);
4458
4459 // See if we can simplify any instructions used by the instruction whose sole
4460 // purpose is to compute bits we don't care about.
4461 if (!isa<VectorType>(I.getType())) {
4462 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4463 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4464 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4465 KnownZero, KnownOne))
4466 return &I;
4467 } else if (isa<ConstantAggregateZero>(Op1)) {
4468 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4469 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4470 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4471 return ReplaceInstUsesWith(I, I.getOperand(1));
4472 }
4473
4474
4475
4476 // or X, -1 == -1
4477 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4478 ConstantInt *C1 = 0; Value *X = 0;
4479 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4480 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004481 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482 InsertNewInstBefore(Or, I);
4483 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004484 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004485 ConstantInt::get(RHS->getValue() | C1->getValue()));
4486 }
4487
4488 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4489 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004490 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004491 InsertNewInstBefore(Or, I);
4492 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004493 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004494 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4495 }
4496
4497 // Try to fold constant and into select arguments.
4498 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4499 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4500 return R;
4501 if (isa<PHINode>(Op0))
4502 if (Instruction *NV = FoldOpIntoPhi(I))
4503 return NV;
4504 }
4505
4506 Value *A = 0, *B = 0;
4507 ConstantInt *C1 = 0, *C2 = 0;
4508
4509 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4510 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4511 return ReplaceInstUsesWith(I, Op1);
4512 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4513 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4514 return ReplaceInstUsesWith(I, Op0);
4515
4516 // (A | B) | C and A | (B | C) -> bswap if possible.
4517 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4518 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4519 match(Op1, m_Or(m_Value(), m_Value())) ||
4520 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4521 match(Op1, m_Shift(m_Value(), m_Value())))) {
4522 if (Instruction *BSwap = MatchBSwap(I))
4523 return BSwap;
4524 }
4525
4526 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4527 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4528 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004529 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004530 InsertNewInstBefore(NOr, I);
4531 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004532 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004533 }
4534
4535 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4536 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4537 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004538 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004539 InsertNewInstBefore(NOr, I);
4540 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004541 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542 }
4543
4544 // (A & C)|(B & D)
4545 Value *C = 0, *D = 0;
4546 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4547 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4548 Value *V1 = 0, *V2 = 0, *V3 = 0;
4549 C1 = dyn_cast<ConstantInt>(C);
4550 C2 = dyn_cast<ConstantInt>(D);
4551 if (C1 && C2) { // (A & C1)|(B & C2)
4552 // If we have: ((V + N) & C1) | (V & C2)
4553 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4554 // replace with V+N.
4555 if (C1->getValue() == ~C2->getValue()) {
4556 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4557 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4558 // Add commutes, try both ways.
4559 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4560 return ReplaceInstUsesWith(I, A);
4561 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4562 return ReplaceInstUsesWith(I, A);
4563 }
4564 // Or commutes, try both ways.
4565 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4566 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4567 // Add commutes, try both ways.
4568 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4569 return ReplaceInstUsesWith(I, B);
4570 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4571 return ReplaceInstUsesWith(I, B);
4572 }
4573 }
4574 V1 = 0; V2 = 0; V3 = 0;
4575 }
4576
4577 // Check to see if we have any common things being and'ed. If so, find the
4578 // terms for V1 & (V2|V3).
4579 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4580 if (A == B) // (A & C)|(A & D) == A & (C|D)
4581 V1 = A, V2 = C, V3 = D;
4582 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4583 V1 = A, V2 = B, V3 = C;
4584 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4585 V1 = C, V2 = A, V3 = D;
4586 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4587 V1 = C, V2 = A, V3 = B;
4588
4589 if (V1) {
4590 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004591 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4592 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004593 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004594 }
Dan Gohman279952c2008-10-28 22:38:57 +00004595
Dan Gohman35b76162008-10-30 20:40:10 +00004596 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004597 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4598 return Match;
4599 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4600 return Match;
4601 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4602 return Match;
4603 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4604 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004605
4606 V1 = V2 = 0;
4607
4608 // ((A&~B)|(~A&B)) -> A^B
4609 if ((match(C, m_Not(m_Value(V1))) &&
4610 match(B, m_Not(m_Value(V2)))))
4611 if (V1 == D && V2 == A)
4612 return BinaryOperator::CreateXor(V1, V2);
4613 // ((~B&A)|(~A&B)) -> A^B
4614 if ((match(A, m_Not(m_Value(V1))) &&
4615 match(B, m_Not(m_Value(V2)))))
4616 if (V1 == D && V2 == C)
4617 return BinaryOperator::CreateXor(V1, V2);
4618 // ((A&~B)|(B&~A)) -> A^B
4619 if ((match(C, m_Not(m_Value(V1))) &&
4620 match(D, m_Not(m_Value(V2)))))
4621 if (V1 == B && V2 == A)
4622 return BinaryOperator::CreateXor(V1, V2);
4623 // ((~B&A)|(B&~A)) -> A^B
4624 if ((match(A, m_Not(m_Value(V1))) &&
4625 match(D, m_Not(m_Value(V2)))))
4626 if (V1 == B && V2 == C)
4627 return BinaryOperator::CreateXor(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004628 }
4629
4630 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4631 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4632 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4633 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4634 SI0->getOperand(1) == SI1->getOperand(1) &&
4635 (SI0->hasOneUse() || SI1->hasOneUse())) {
4636 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004637 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004638 SI1->getOperand(0),
4639 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004640 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004641 SI1->getOperand(1));
4642 }
4643 }
4644
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004645 // ((A|B)&1)|(B&-2) -> (A&1) | B
4646 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4647 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4648 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4649 if (CI->getValue() == 1) {
4650 Value *V1 = 0, *C2 = 0;
4651 if (match(Op1, m_And(m_Value(V1), m_Value(C2)))) {
4652 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
4653
4654 if (!CI2) {
4655 std::swap(V1, C2);
4656 CI2 = dyn_cast<ConstantInt>(C2);
4657 }
4658
4659 if (CI2) {
4660 APInt NegTwo = -APInt(CI2->getValue().getBitWidth(), 2, true);
4661 if (CI2->getValue().eq(NegTwo)) {
4662 if (V1 == B) {
4663 Instruction *NewOp =
4664 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI), I);
4665 return BinaryOperator::CreateOr(NewOp, B);
4666 }
4667 if (V1 == A) {
4668 Instruction *NewOp =
4669 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI), I);
4670 return BinaryOperator::CreateOr(NewOp, A);
4671 }
4672 }
4673 }
4674 }
4675 }
4676 }
4677 }
4678 // (B&-2)|((A|B)&1) -> (A&1) | B
4679 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4680 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4681 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4682 if (CI->getValue() == 1) {
4683 Value *V1 = 0, *C2 = 0;
4684 if (match(Op0, m_And(m_Value(V1), m_Value(C2)))) {
4685 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
4686
4687 if (!CI2) {
4688 std::swap(V1, C2);
4689 CI2 = dyn_cast<ConstantInt>(C2);
4690 }
4691
4692 if (CI2) {
4693 APInt NegTwo = -APInt(CI2->getValue().getBitWidth(), 2, true);
4694 if (CI2->getValue().eq(NegTwo)) {
4695 if (V1 == B) {
4696 Instruction *NewOp =
4697 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI), I);
4698 return BinaryOperator::CreateOr(NewOp, B);
4699 }
4700 if (V1 == A) {
4701 Instruction *NewOp =
4702 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI), I);
4703 return BinaryOperator::CreateOr(NewOp, A);
4704 }
4705 }
4706 }
4707 }
4708 }
4709 }
4710 }
4711
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004712 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4713 if (A == Op1) // ~A | A == -1
4714 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4715 } else {
4716 A = 0;
4717 }
4718 // Note, A is still live here!
4719 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4720 if (Op0 == B)
4721 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4722
4723 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4724 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004725 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004726 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004727 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004728 }
4729 }
4730
4731 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4732 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4733 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4734 return R;
4735
Chris Lattner0c678e52008-11-16 05:20:07 +00004736 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4737 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4738 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004739 }
4740
4741 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004742 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004743 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4744 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004745 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4746 !isa<ICmpInst>(Op1C->getOperand(0))) {
4747 const Type *SrcTy = Op0C->getOperand(0)->getType();
4748 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4749 // Only do this if the casts both really cause code to be
4750 // generated.
4751 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4752 I.getType(), TD) &&
4753 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4754 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004755 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004756 Op1C->getOperand(0),
4757 I.getName());
4758 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004759 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004760 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004761 }
4762 }
Chris Lattner91882432007-10-24 05:38:08 +00004763 }
4764
4765
4766 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4767 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4768 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4769 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004770 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004771 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004772 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4773 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4774 // If either of the constants are nans, then the whole thing returns
4775 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004776 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004777 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4778
4779 // Otherwise, no need to compare the two constants, compare the
4780 // rest.
4781 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4782 RHS->getOperand(0));
4783 }
Evan Cheng72988052008-10-14 18:44:08 +00004784 } else {
4785 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4786 FCmpInst::Predicate Op0CC, Op1CC;
4787 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4788 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4789 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4790 // Swap RHS operands to match LHS.
4791 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4792 std::swap(Op1LHS, Op1RHS);
4793 }
4794 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4795 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4796 if (Op0CC == Op1CC)
4797 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4798 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4799 Op1CC == FCmpInst::FCMP_TRUE)
4800 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4801 else if (Op0CC == FCmpInst::FCMP_FALSE)
4802 return ReplaceInstUsesWith(I, Op1);
4803 else if (Op1CC == FCmpInst::FCMP_FALSE)
4804 return ReplaceInstUsesWith(I, Op0);
4805 bool Op0Ordered;
4806 bool Op1Ordered;
4807 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4808 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4809 if (Op0Ordered == Op1Ordered) {
4810 // If both are ordered or unordered, return a new fcmp with
4811 // or'ed predicates.
4812 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4813 Op0LHS, Op0RHS);
4814 if (Instruction *I = dyn_cast<Instruction>(RV))
4815 return I;
4816 // Otherwise, it's a constant boolean value...
4817 return ReplaceInstUsesWith(I, RV);
4818 }
4819 }
4820 }
4821 }
Chris Lattner91882432007-10-24 05:38:08 +00004822 }
4823 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004824
4825 return Changed ? &I : 0;
4826}
4827
Dan Gohman089efff2008-05-13 00:00:25 +00004828namespace {
4829
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004830// XorSelf - Implements: X ^ X --> 0
4831struct XorSelf {
4832 Value *RHS;
4833 XorSelf(Value *rhs) : RHS(rhs) {}
4834 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4835 Instruction *apply(BinaryOperator &Xor) const {
4836 return &Xor;
4837 }
4838};
4839
Dan Gohman089efff2008-05-13 00:00:25 +00004840}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004841
4842Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4843 bool Changed = SimplifyCommutative(I);
4844 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4845
Evan Chenge5cd8032008-03-25 20:07:13 +00004846 if (isa<UndefValue>(Op1)) {
4847 if (isa<UndefValue>(Op0))
4848 // Handle undef ^ undef -> 0 special case. This is a common
4849 // idiom (misuse).
4850 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004851 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004852 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004853
4854 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4855 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004856 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004857 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4858 }
4859
4860 // See if we can simplify any instructions used by the instruction whose sole
4861 // purpose is to compute bits we don't care about.
4862 if (!isa<VectorType>(I.getType())) {
4863 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4864 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4865 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4866 KnownZero, KnownOne))
4867 return &I;
4868 } else if (isa<ConstantAggregateZero>(Op1)) {
4869 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4870 }
4871
4872 // Is this a ~ operation?
4873 if (Value *NotOp = dyn_castNotVal(&I)) {
4874 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4875 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4876 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4877 if (Op0I->getOpcode() == Instruction::And ||
4878 Op0I->getOpcode() == Instruction::Or) {
4879 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4880 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4881 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004882 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004883 Op0I->getOperand(1)->getName()+".not");
4884 InsertNewInstBefore(NotY, I);
4885 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004886 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004887 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004888 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004889 }
4890 }
4891 }
4892 }
4893
4894
4895 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004896 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4897 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4898 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004899 return new ICmpInst(ICI->getInversePredicate(),
4900 ICI->getOperand(0), ICI->getOperand(1));
4901
Nick Lewycky1405e922007-08-06 20:04:16 +00004902 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4903 return new FCmpInst(FCI->getInversePredicate(),
4904 FCI->getOperand(0), FCI->getOperand(1));
4905 }
4906
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004907 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4908 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4909 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4910 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4911 Instruction::CastOps Opcode = Op0C->getOpcode();
4912 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4913 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4914 Op0C->getDestTy())) {
4915 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4916 CI->getOpcode(), CI->getInversePredicate(),
4917 CI->getOperand(0), CI->getOperand(1)), I);
4918 NewCI->takeName(CI);
4919 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4920 }
4921 }
4922 }
4923 }
4924 }
4925
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004926 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4927 // ~(c-X) == X-c-1 == X+(-c-1)
4928 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4929 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4930 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4931 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4932 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004933 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004934 }
4935
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004936 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004937 if (Op0I->getOpcode() == Instruction::Add) {
4938 // ~(X-c) --> (-c-1)-X
4939 if (RHS->isAllOnesValue()) {
4940 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004941 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004942 ConstantExpr::getSub(NegOp0CI,
4943 ConstantInt::get(I.getType(), 1)),
4944 Op0I->getOperand(0));
4945 } else if (RHS->getValue().isSignBit()) {
4946 // (X + C) ^ signbit -> (X + C + signbit)
4947 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004948 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004949
4950 }
4951 } else if (Op0I->getOpcode() == Instruction::Or) {
4952 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4953 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4954 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4955 // Anything in both C1 and C2 is known to be zero, remove it from
4956 // NewRHS.
4957 Constant *CommonBits = And(Op0CI, RHS);
4958 NewRHS = ConstantExpr::getAnd(NewRHS,
4959 ConstantExpr::getNot(CommonBits));
4960 AddToWorkList(Op0I);
4961 I.setOperand(0, Op0I->getOperand(0));
4962 I.setOperand(1, NewRHS);
4963 return &I;
4964 }
4965 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004966 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004967 }
4968
4969 // Try to fold constant and into select arguments.
4970 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4971 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4972 return R;
4973 if (isa<PHINode>(Op0))
4974 if (Instruction *NV = FoldOpIntoPhi(I))
4975 return NV;
4976 }
4977
4978 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4979 if (X == Op1)
4980 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4981
4982 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4983 if (X == Op0)
4984 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4985
4986
4987 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4988 if (Op1I) {
4989 Value *A, *B;
4990 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4991 if (A == Op0) { // B^(B|A) == (A|B)^B
4992 Op1I->swapOperands();
4993 I.swapOperands();
4994 std::swap(Op0, Op1);
4995 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4996 I.swapOperands(); // Simplified below.
4997 std::swap(Op0, Op1);
4998 }
Chris Lattner3b874082008-11-16 05:38:51 +00004999 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
5000 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
5001 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
5002 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005003 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
5004 if (A == Op0) { // A^(A&B) -> A^(B&A)
5005 Op1I->swapOperands();
5006 std::swap(A, B);
5007 }
5008 if (B == Op0) { // A^(B&A) -> (B&A)^A
5009 I.swapOperands(); // Simplified below.
5010 std::swap(Op0, Op1);
5011 }
5012 }
5013 }
5014
5015 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
5016 if (Op0I) {
5017 Value *A, *B;
5018 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
5019 if (A == Op1) // (B|A)^B == (A|B)^B
5020 std::swap(A, B);
5021 if (B == Op1) { // (A|B)^B == A & ~B
5022 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00005023 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
5024 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005025 }
Chris Lattner3b874082008-11-16 05:38:51 +00005026 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
5027 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5028 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5029 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005030 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
5031 if (A == Op1) // (A&B)^A -> (B&A)^A
5032 std::swap(A, B);
5033 if (B == Op1 && // (B&A)^A == ~B & A
5034 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5035 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00005036 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5037 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005038 }
5039 }
5040 }
5041
5042 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5043 if (Op0I && Op1I && Op0I->isShift() &&
5044 Op0I->getOpcode() == Op1I->getOpcode() &&
5045 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5046 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5047 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005048 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005049 Op1I->getOperand(0),
5050 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005051 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005052 Op1I->getOperand(1));
5053 }
5054
5055 if (Op0I && Op1I) {
5056 Value *A, *B, *C, *D;
5057 // (A & B)^(A | B) -> A ^ B
5058 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5059 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5060 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005061 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005062 }
5063 // (A | B)^(A & B) -> A ^ B
5064 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5065 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5066 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005067 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005068 }
5069
5070 // (A & B)^(C & D)
5071 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5072 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5073 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5074 // (X & Y)^(X & Y) -> (Y^Z) & X
5075 Value *X = 0, *Y = 0, *Z = 0;
5076 if (A == C)
5077 X = A, Y = B, Z = D;
5078 else if (A == D)
5079 X = A, Y = B, Z = C;
5080 else if (B == C)
5081 X = B, Y = A, Z = D;
5082 else if (B == D)
5083 X = B, Y = A, Z = C;
5084
5085 if (X) {
5086 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005087 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5088 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005089 }
5090 }
5091 }
5092
5093 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5094 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5095 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5096 return R;
5097
5098 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005099 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005100 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5101 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5102 const Type *SrcTy = Op0C->getOperand(0)->getType();
5103 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5104 // Only do this if the casts both really cause code to be generated.
5105 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5106 I.getType(), TD) &&
5107 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5108 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005109 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005110 Op1C->getOperand(0),
5111 I.getName());
5112 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005113 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005114 }
5115 }
Chris Lattner91882432007-10-24 05:38:08 +00005116 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005117
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005118 return Changed ? &I : 0;
5119}
5120
5121/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5122/// overflowed for this type.
5123static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5124 ConstantInt *In2, bool IsSigned = false) {
5125 Result = cast<ConstantInt>(Add(In1, In2));
5126
5127 if (IsSigned)
5128 if (In2->getValue().isNegative())
5129 return Result->getValue().sgt(In1->getValue());
5130 else
5131 return Result->getValue().slt(In1->getValue());
5132 else
5133 return Result->getValue().ult(In1->getValue());
5134}
5135
Dan Gohmanb80d5612008-09-10 23:30:57 +00005136/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5137/// overflowed for this type.
5138static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5139 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005140 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005141
5142 if (IsSigned)
5143 if (In2->getValue().isNegative())
5144 return Result->getValue().slt(In1->getValue());
5145 else
5146 return Result->getValue().sgt(In1->getValue());
5147 else
5148 return Result->getValue().ugt(In1->getValue());
5149}
5150
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005151/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5152/// code necessary to compute the offset from the base pointer (without adding
5153/// in the base pointer). Return the result as a signed integer of intptr size.
5154static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5155 TargetData &TD = IC.getTargetData();
5156 gep_type_iterator GTI = gep_type_begin(GEP);
5157 const Type *IntPtrTy = TD.getIntPtrType();
5158 Value *Result = Constant::getNullValue(IntPtrTy);
5159
5160 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005161 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005162 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5163
Gabor Greif17396002008-06-12 21:37:33 +00005164 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5165 ++i, ++GTI) {
5166 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005167 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005168 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5169 if (OpC->isZero()) continue;
5170
5171 // Handle a struct index, which adds its field offset to the pointer.
5172 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5173 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5174
5175 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5176 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5177 else
5178 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005179 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005180 ConstantInt::get(IntPtrTy, Size),
5181 GEP->getName()+".offs"), I);
5182 continue;
5183 }
5184
5185 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5186 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5187 Scale = ConstantExpr::getMul(OC, Scale);
5188 if (Constant *RC = dyn_cast<Constant>(Result))
5189 Result = ConstantExpr::getAdd(RC, Scale);
5190 else {
5191 // Emit an add instruction.
5192 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005193 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005194 GEP->getName()+".offs"), I);
5195 }
5196 continue;
5197 }
5198 // Convert to correct type.
5199 if (Op->getType() != IntPtrTy) {
5200 if (Constant *OpC = dyn_cast<Constant>(Op))
5201 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5202 else
5203 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5204 Op->getName()+".c"), I);
5205 }
5206 if (Size != 1) {
5207 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5208 if (Constant *OpC = dyn_cast<Constant>(Op))
5209 Op = ConstantExpr::getMul(OpC, Scale);
5210 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005211 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005212 GEP->getName()+".idx"), I);
5213 }
5214
5215 // Emit an add instruction.
5216 if (isa<Constant>(Op) && isa<Constant>(Result))
5217 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5218 cast<Constant>(Result));
5219 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005220 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005221 GEP->getName()+".offs"), I);
5222 }
5223 return Result;
5224}
5225
Chris Lattnereba75862008-04-22 02:53:33 +00005226
5227/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5228/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5229/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5230/// complex, and scales are involved. The above expression would also be legal
5231/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5232/// later form is less amenable to optimization though, and we are allowed to
5233/// generate the first by knowing that pointer arithmetic doesn't overflow.
5234///
5235/// If we can't emit an optimized form for this expression, this returns null.
5236///
5237static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5238 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005239 TargetData &TD = IC.getTargetData();
5240 gep_type_iterator GTI = gep_type_begin(GEP);
5241
5242 // Check to see if this gep only has a single variable index. If so, and if
5243 // any constant indices are a multiple of its scale, then we can compute this
5244 // in terms of the scale of the variable index. For example, if the GEP
5245 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5246 // because the expression will cross zero at the same point.
5247 unsigned i, e = GEP->getNumOperands();
5248 int64_t Offset = 0;
5249 for (i = 1; i != e; ++i, ++GTI) {
5250 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5251 // Compute the aggregate offset of constant indices.
5252 if (CI->isZero()) continue;
5253
5254 // Handle a struct index, which adds its field offset to the pointer.
5255 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5256 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5257 } else {
5258 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5259 Offset += Size*CI->getSExtValue();
5260 }
5261 } else {
5262 // Found our variable index.
5263 break;
5264 }
5265 }
5266
5267 // If there are no variable indices, we must have a constant offset, just
5268 // evaluate it the general way.
5269 if (i == e) return 0;
5270
5271 Value *VariableIdx = GEP->getOperand(i);
5272 // Determine the scale factor of the variable element. For example, this is
5273 // 4 if the variable index is into an array of i32.
5274 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5275
5276 // Verify that there are no other variable indices. If so, emit the hard way.
5277 for (++i, ++GTI; i != e; ++i, ++GTI) {
5278 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5279 if (!CI) return 0;
5280
5281 // Compute the aggregate offset of constant indices.
5282 if (CI->isZero()) continue;
5283
5284 // Handle a struct index, which adds its field offset to the pointer.
5285 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5286 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5287 } else {
5288 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5289 Offset += Size*CI->getSExtValue();
5290 }
5291 }
5292
5293 // Okay, we know we have a single variable index, which must be a
5294 // pointer/array/vector index. If there is no offset, life is simple, return
5295 // the index.
5296 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5297 if (Offset == 0) {
5298 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5299 // we don't need to bother extending: the extension won't affect where the
5300 // computation crosses zero.
5301 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5302 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5303 VariableIdx->getNameStart(), &I);
5304 return VariableIdx;
5305 }
5306
5307 // Otherwise, there is an index. The computation we will do will be modulo
5308 // the pointer size, so get it.
5309 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5310
5311 Offset &= PtrSizeMask;
5312 VariableScale &= PtrSizeMask;
5313
5314 // To do this transformation, any constant index must be a multiple of the
5315 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5316 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5317 // multiple of the variable scale.
5318 int64_t NewOffs = Offset / (int64_t)VariableScale;
5319 if (Offset != NewOffs*(int64_t)VariableScale)
5320 return 0;
5321
5322 // Okay, we can do this evaluation. Start by converting the index to intptr.
5323 const Type *IntPtrTy = TD.getIntPtrType();
5324 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005325 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005326 true /*SExt*/,
5327 VariableIdx->getNameStart(), &I);
5328 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005329 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005330}
5331
5332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005333/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5334/// else. At this point we know that the GEP is on the LHS of the comparison.
5335Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5336 ICmpInst::Predicate Cond,
5337 Instruction &I) {
5338 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5339
Chris Lattnereba75862008-04-22 02:53:33 +00005340 // Look through bitcasts.
5341 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5342 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005343
5344 Value *PtrBase = GEPLHS->getOperand(0);
5345 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005346 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005347 // This transformation (ignoring the base and scales) is valid because we
5348 // know pointers can't overflow. See if we can output an optimized form.
5349 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5350
5351 // If not, synthesize the offset the hard way.
5352 if (Offset == 0)
5353 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005354 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5355 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005356 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5357 // If the base pointers are different, but the indices are the same, just
5358 // compare the base pointer.
5359 if (PtrBase != GEPRHS->getOperand(0)) {
5360 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5361 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5362 GEPRHS->getOperand(0)->getType();
5363 if (IndicesTheSame)
5364 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5365 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5366 IndicesTheSame = false;
5367 break;
5368 }
5369
5370 // If all indices are the same, just compare the base pointers.
5371 if (IndicesTheSame)
5372 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5373 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5374
5375 // Otherwise, the base pointers are different and the indices are
5376 // different, bail out.
5377 return 0;
5378 }
5379
5380 // If one of the GEPs has all zero indices, recurse.
5381 bool AllZeros = true;
5382 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5383 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5384 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5385 AllZeros = false;
5386 break;
5387 }
5388 if (AllZeros)
5389 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5390 ICmpInst::getSwappedPredicate(Cond), I);
5391
5392 // If the other GEP has all zero indices, recurse.
5393 AllZeros = true;
5394 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5395 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5396 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5397 AllZeros = false;
5398 break;
5399 }
5400 if (AllZeros)
5401 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5402
5403 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5404 // If the GEPs only differ by one index, compare it.
5405 unsigned NumDifferences = 0; // Keep track of # differences.
5406 unsigned DiffOperand = 0; // The operand that differs.
5407 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5408 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5409 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5410 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5411 // Irreconcilable differences.
5412 NumDifferences = 2;
5413 break;
5414 } else {
5415 if (NumDifferences++) break;
5416 DiffOperand = i;
5417 }
5418 }
5419
5420 if (NumDifferences == 0) // SAME GEP?
5421 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005422 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005423 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005424
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005425 else if (NumDifferences == 1) {
5426 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5427 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5428 // Make sure we do a signed comparison here.
5429 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5430 }
5431 }
5432
5433 // Only lower this if the icmp is the only user of the GEP or if we expect
5434 // the result to fold to a constant!
5435 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5436 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5437 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5438 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5439 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5440 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5441 }
5442 }
5443 return 0;
5444}
5445
Chris Lattnere6b62d92008-05-19 20:18:56 +00005446/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5447///
5448Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5449 Instruction *LHSI,
5450 Constant *RHSC) {
5451 if (!isa<ConstantFP>(RHSC)) return 0;
5452 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5453
5454 // Get the width of the mantissa. We don't want to hack on conversions that
5455 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005456 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005457 if (MantissaWidth == -1) return 0; // Unknown.
5458
5459 // Check to see that the input is converted from an integer type that is small
5460 // enough that preserves all bits. TODO: check here for "known" sign bits.
5461 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5462 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5463
5464 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005465 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5466 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005467 ++InputSize;
5468
5469 // If the conversion would lose info, don't hack on this.
5470 if ((int)InputSize > MantissaWidth)
5471 return 0;
5472
5473 // Otherwise, we can potentially simplify the comparison. We know that it
5474 // will always come through as an integer value and we know the constant is
5475 // not a NAN (it would have been previously simplified).
5476 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5477
5478 ICmpInst::Predicate Pred;
5479 switch (I.getPredicate()) {
5480 default: assert(0 && "Unexpected predicate!");
5481 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005482 case FCmpInst::FCMP_OEQ:
5483 Pred = ICmpInst::ICMP_EQ;
5484 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005485 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005486 case FCmpInst::FCMP_OGT:
5487 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5488 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005489 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005490 case FCmpInst::FCMP_OGE:
5491 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5492 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005493 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005494 case FCmpInst::FCMP_OLT:
5495 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5496 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005497 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005498 case FCmpInst::FCMP_OLE:
5499 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5500 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005501 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005502 case FCmpInst::FCMP_ONE:
5503 Pred = ICmpInst::ICMP_NE;
5504 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005505 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005506 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005507 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005508 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005509 }
5510
5511 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5512
5513 // Now we know that the APFloat is a normal number, zero or inf.
5514
Chris Lattnerf13ff492008-05-20 03:50:52 +00005515 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005516 // comparing an i8 to 300.0.
5517 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5518
Bill Wendling20636df2008-11-09 04:26:50 +00005519 if (!LHSUnsigned) {
5520 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5521 // and large values.
5522 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5523 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5524 APFloat::rmNearestTiesToEven);
5525 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5526 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5527 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005528 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5529 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005530 }
5531 } else {
5532 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5533 // +INF and large values.
5534 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5535 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5536 APFloat::rmNearestTiesToEven);
5537 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5538 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5539 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005540 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5541 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005542 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005543 }
5544
Bill Wendling20636df2008-11-09 04:26:50 +00005545 if (!LHSUnsigned) {
5546 // See if the RHS value is < SignedMin.
5547 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5548 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5549 APFloat::rmNearestTiesToEven);
5550 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5551 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5552 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005553 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5554 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005555 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005556 }
5557
Bill Wendling20636df2008-11-09 04:26:50 +00005558 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5559 // [0, UMAX], but it may still be fractional. See if it is fractional by
5560 // casting the FP value to the integer value and back, checking for equality.
5561 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005562 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5563 if (!RHS.isZero() &&
5564 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005565 // If we had a comparison against a fractional value, we have to adjust the
5566 // compare predicate and sometimes the value. RHSC is rounded towards zero
5567 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005568 switch (Pred) {
5569 default: assert(0 && "Unexpected integer comparison!");
5570 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005571 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005572 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005573 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005574 case ICmpInst::ICMP_ULE:
5575 // (float)int <= 4.4 --> int <= 4
5576 // (float)int <= -4.4 --> false
5577 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005578 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005579 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005580 case ICmpInst::ICMP_SLE:
5581 // (float)int <= 4.4 --> int <= 4
5582 // (float)int <= -4.4 --> int < -4
5583 if (RHS.isNegative())
5584 Pred = ICmpInst::ICMP_SLT;
5585 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005586 case ICmpInst::ICMP_ULT:
5587 // (float)int < -4.4 --> false
5588 // (float)int < 4.4 --> int <= 4
5589 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005590 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005591 Pred = ICmpInst::ICMP_ULE;
5592 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005593 case ICmpInst::ICMP_SLT:
5594 // (float)int < -4.4 --> int < -4
5595 // (float)int < 4.4 --> int <= 4
5596 if (!RHS.isNegative())
5597 Pred = ICmpInst::ICMP_SLE;
5598 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005599 case ICmpInst::ICMP_UGT:
5600 // (float)int > 4.4 --> int > 4
5601 // (float)int > -4.4 --> true
5602 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005603 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005604 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005605 case ICmpInst::ICMP_SGT:
5606 // (float)int > 4.4 --> int > 4
5607 // (float)int > -4.4 --> int >= -4
5608 if (RHS.isNegative())
5609 Pred = ICmpInst::ICMP_SGE;
5610 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005611 case ICmpInst::ICMP_UGE:
5612 // (float)int >= -4.4 --> true
5613 // (float)int >= 4.4 --> int > 4
5614 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005615 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005616 Pred = ICmpInst::ICMP_UGT;
5617 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005618 case ICmpInst::ICMP_SGE:
5619 // (float)int >= -4.4 --> int >= -4
5620 // (float)int >= 4.4 --> int > 4
5621 if (!RHS.isNegative())
5622 Pred = ICmpInst::ICMP_SGT;
5623 break;
5624 }
5625 }
5626
5627 // Lower this FP comparison into an appropriate integer version of the
5628 // comparison.
5629 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5630}
5631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005632Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5633 bool Changed = SimplifyCompare(I);
5634 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5635
5636 // Fold trivial predicates.
5637 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005638 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005639 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005640 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005641
5642 // Simplify 'fcmp pred X, X'
5643 if (Op0 == Op1) {
5644 switch (I.getPredicate()) {
5645 default: assert(0 && "Unknown predicate!");
5646 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5647 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5648 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005649 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005650 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5651 case FCmpInst::FCMP_OLT: // True if ordered and less than
5652 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005653 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005654
5655 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5656 case FCmpInst::FCMP_ULT: // True if unordered or less than
5657 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5658 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5659 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5660 I.setPredicate(FCmpInst::FCMP_UNO);
5661 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5662 return &I;
5663
5664 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5665 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5666 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5667 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5668 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5669 I.setPredicate(FCmpInst::FCMP_ORD);
5670 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5671 return &I;
5672 }
5673 }
5674
5675 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5676 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5677
5678 // Handle fcmp with constant RHS
5679 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005680 // If the constant is a nan, see if we can fold the comparison based on it.
5681 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5682 if (CFP->getValueAPF().isNaN()) {
5683 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005684 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005685 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5686 "Comparison must be either ordered or unordered!");
5687 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005688 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005689 }
5690 }
5691
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005692 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5693 switch (LHSI->getOpcode()) {
5694 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005695 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5696 // block. If in the same block, we're encouraging jump threading. If
5697 // not, we are just pessimizing the code by making an i1 phi.
5698 if (LHSI->getParent() == I.getParent())
5699 if (Instruction *NV = FoldOpIntoPhi(I))
5700 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005701 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005702 case Instruction::SIToFP:
5703 case Instruction::UIToFP:
5704 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5705 return NV;
5706 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005707 case Instruction::Select:
5708 // If either operand of the select is a constant, we can fold the
5709 // comparison into the select arms, which will cause one to be
5710 // constant folded and the select turned into a bitwise or.
5711 Value *Op1 = 0, *Op2 = 0;
5712 if (LHSI->hasOneUse()) {
5713 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5714 // Fold the known value into the constant operand.
5715 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5716 // Insert a new FCmp of the other select operand.
5717 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5718 LHSI->getOperand(2), RHSC,
5719 I.getName()), I);
5720 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5721 // Fold the known value into the constant operand.
5722 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5723 // Insert a new FCmp of the other select operand.
5724 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5725 LHSI->getOperand(1), RHSC,
5726 I.getName()), I);
5727 }
5728 }
5729
5730 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005731 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005732 break;
5733 }
5734 }
5735
5736 return Changed ? &I : 0;
5737}
5738
5739Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5740 bool Changed = SimplifyCompare(I);
5741 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5742 const Type *Ty = Op0->getType();
5743
5744 // icmp X, X
5745 if (Op0 == Op1)
5746 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005747 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005748
5749 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5750 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005751
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005752 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5753 // addresses never equal each other! We already know that Op0 != Op1.
5754 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5755 isa<ConstantPointerNull>(Op0)) &&
5756 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5757 isa<ConstantPointerNull>(Op1)))
5758 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005759 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005760
5761 // icmp's with boolean values can always be turned into bitwise operations
5762 if (Ty == Type::Int1Ty) {
5763 switch (I.getPredicate()) {
5764 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005765 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005766 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005767 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005768 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005769 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005770 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005771 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005772
5773 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005774 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005775 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005776 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005777 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005778 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005779 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005780 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005781 case ICmpInst::ICMP_SGT:
5782 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005783 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005784 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5785 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5786 InsertNewInstBefore(Not, I);
5787 return BinaryOperator::CreateAnd(Not, Op0);
5788 }
5789 case ICmpInst::ICMP_UGE:
5790 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5791 // FALL THROUGH
5792 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005793 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005794 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005795 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005796 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005797 case ICmpInst::ICMP_SGE:
5798 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5799 // FALL THROUGH
5800 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5801 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5802 InsertNewInstBefore(Not, I);
5803 return BinaryOperator::CreateOr(Not, Op0);
5804 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005805 }
5806 }
5807
Dan Gohman58c09632008-09-16 18:46:06 +00005808 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005809 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005810 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005811
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005812 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5813 if (I.isEquality() && CI->isNullValue() &&
5814 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5815 // (icmp cond A B) if cond is equality
5816 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005817 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005818
Dan Gohman58c09632008-09-16 18:46:06 +00005819 // If we have an icmp le or icmp ge instruction, turn it into the
5820 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5821 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005822 switch (I.getPredicate()) {
5823 default: break;
5824 case ICmpInst::ICMP_ULE:
5825 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5826 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5827 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5828 case ICmpInst::ICMP_SLE:
5829 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5830 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5831 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5832 case ICmpInst::ICMP_UGE:
5833 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5834 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5835 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5836 case ICmpInst::ICMP_SGE:
5837 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5838 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5839 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5840 }
5841
Chris Lattnera1308652008-07-11 05:40:05 +00005842 // See if we can fold the comparison based on range information we can get
5843 // by checking whether bits are known to be zero or one in the input.
5844 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5845 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5846
5847 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005848 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005849 bool UnusedBit;
5850 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5851
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005852 if (SimplifyDemandedBits(Op0,
5853 isSignBit ? APInt::getSignBit(BitWidth)
5854 : APInt::getAllOnesValue(BitWidth),
5855 KnownZero, KnownOne, 0))
5856 return &I;
5857
5858 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005859 // in. Compute the Min, Max and RHS values based on the known bits. For the
5860 // EQ and NE we use unsigned values.
5861 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005862 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5863 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5864 else
5865 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5866
Chris Lattnera1308652008-07-11 05:40:05 +00005867 // If Min and Max are known to be the same, then SimplifyDemandedBits
5868 // figured out that the LHS is a constant. Just constant fold this now so
5869 // that code below can assume that Min != Max.
5870 if (Min == Max)
5871 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5872 ConstantInt::get(Min),
5873 CI));
5874
5875 // Based on the range information we know about the LHS, see if we can
5876 // simplify this comparison. For example, (x&4) < 8 is always true.
5877 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005878 switch (I.getPredicate()) { // LE/GE have been folded already.
5879 default: assert(0 && "Unknown icmp opcode!");
5880 case ICmpInst::ICMP_EQ:
5881 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5882 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5883 break;
5884 case ICmpInst::ICMP_NE:
5885 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5886 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5887 break;
5888 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005889 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005890 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005891 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005892 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005893 if (RHSVal == Max) // A <u MAX -> A != MAX
5894 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5895 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5896 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5897
5898 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5899 if (CI->isMinValue(true))
5900 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5901 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005902 break;
5903 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005904 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005905 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005906 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005907 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005908
5909 if (RHSVal == Min) // A >u MIN -> A != MIN
5910 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5911 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5912 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5913
5914 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5915 if (CI->isMaxValue(true))
5916 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5917 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005918 break;
5919 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005920 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005921 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005922 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005923 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005924 if (RHSVal == Max) // A <s MAX -> A != MAX
5925 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005926 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005927 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005928 break;
5929 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005930 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005931 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005932 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005933 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005934
5935 if (RHSVal == Min) // A >s MIN -> A != MIN
5936 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5937 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5938 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005939 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005940 }
Dan Gohman58c09632008-09-16 18:46:06 +00005941 }
5942
5943 // Test if the ICmpInst instruction is used exclusively by a select as
5944 // part of a minimum or maximum operation. If so, refrain from doing
5945 // any other folding. This helps out other analyses which understand
5946 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5947 // and CodeGen. And in this case, at least one of the comparison
5948 // operands has at least one user besides the compare (the select),
5949 // which would often largely negate the benefit of folding anyway.
5950 if (I.hasOneUse())
5951 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5952 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5953 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5954 return 0;
5955
5956 // See if we are doing a comparison between a constant and an instruction that
5957 // can be folded into the comparison.
5958 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005959 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5960 // instruction, see if that instruction also has constants so that the
5961 // instruction can be folded into the icmp
5962 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5963 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5964 return Res;
5965 }
5966
5967 // Handle icmp with constant (but not simple integer constant) RHS
5968 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5969 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5970 switch (LHSI->getOpcode()) {
5971 case Instruction::GetElementPtr:
5972 if (RHSC->isNullValue()) {
5973 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5974 bool isAllZeros = true;
5975 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5976 if (!isa<Constant>(LHSI->getOperand(i)) ||
5977 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5978 isAllZeros = false;
5979 break;
5980 }
5981 if (isAllZeros)
5982 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5983 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5984 }
5985 break;
5986
5987 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005988 // Only fold icmp into the PHI if the phi and fcmp are in the same
5989 // block. If in the same block, we're encouraging jump threading. If
5990 // not, we are just pessimizing the code by making an i1 phi.
5991 if (LHSI->getParent() == I.getParent())
5992 if (Instruction *NV = FoldOpIntoPhi(I))
5993 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005994 break;
5995 case Instruction::Select: {
5996 // If either operand of the select is a constant, we can fold the
5997 // comparison into the select arms, which will cause one to be
5998 // constant folded and the select turned into a bitwise or.
5999 Value *Op1 = 0, *Op2 = 0;
6000 if (LHSI->hasOneUse()) {
6001 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
6002 // Fold the known value into the constant operand.
6003 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6004 // Insert a new ICmp of the other select operand.
6005 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
6006 LHSI->getOperand(2), RHSC,
6007 I.getName()), I);
6008 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
6009 // Fold the known value into the constant operand.
6010 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6011 // Insert a new ICmp of the other select operand.
6012 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
6013 LHSI->getOperand(1), RHSC,
6014 I.getName()), I);
6015 }
6016 }
6017
6018 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00006019 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006020 break;
6021 }
6022 case Instruction::Malloc:
6023 // If we have (malloc != null), and if the malloc has a single use, we
6024 // can assume it is successful and remove the malloc.
6025 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
6026 AddToWorkList(LHSI);
6027 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00006028 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006029 }
6030 break;
6031 }
6032 }
6033
6034 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6035 if (User *GEP = dyn_castGetElementPtr(Op0))
6036 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6037 return NI;
6038 if (User *GEP = dyn_castGetElementPtr(Op1))
6039 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6040 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6041 return NI;
6042
6043 // Test to see if the operands of the icmp are casted versions of other
6044 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6045 // now.
6046 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6047 if (isa<PointerType>(Op0->getType()) &&
6048 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6049 // We keep moving the cast from the left operand over to the right
6050 // operand, where it can often be eliminated completely.
6051 Op0 = CI->getOperand(0);
6052
6053 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6054 // so eliminate it as well.
6055 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6056 Op1 = CI2->getOperand(0);
6057
6058 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006059 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006060 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6061 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6062 } else {
6063 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006064 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006065 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006066 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006067 return new ICmpInst(I.getPredicate(), Op0, Op1);
6068 }
6069 }
6070
6071 if (isa<CastInst>(Op0)) {
6072 // Handle the special case of: icmp (cast bool to X), <cst>
6073 // This comes up when you have code like
6074 // int X = A < B;
6075 // if (X) ...
6076 // For generality, we handle any zero-extension of any operand comparison
6077 // with a constant or another cast from the same type.
6078 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6079 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6080 return R;
6081 }
6082
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006083 // See if it's the same type of instruction on the left and right.
6084 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6085 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006086 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6087 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6088 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006089 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006090 default: break;
6091 case Instruction::Add:
6092 case Instruction::Sub:
6093 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006094 // a+x icmp eq/ne b+x --> a icmp b
6095 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6096 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006097 break;
6098 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006099 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6100 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6101 // Mask = -1 >> count-trailing-zeros(Cst).
6102 if (!CI->isZero() && !CI->isOne()) {
6103 const APInt &AP = CI->getValue();
6104 ConstantInt *Mask = ConstantInt::get(
6105 APInt::getLowBitsSet(AP.getBitWidth(),
6106 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006107 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006108 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6109 Mask);
6110 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6111 Mask);
6112 InsertNewInstBefore(And1, I);
6113 InsertNewInstBefore(And2, I);
6114 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006115 }
6116 }
6117 break;
6118 }
6119 }
6120 }
6121 }
6122
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006123 // ~x < ~y --> y < x
6124 { Value *A, *B;
6125 if (match(Op0, m_Not(m_Value(A))) &&
6126 match(Op1, m_Not(m_Value(B))))
6127 return new ICmpInst(I.getPredicate(), B, A);
6128 }
6129
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006130 if (I.isEquality()) {
6131 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006132
6133 // -x == -y --> x == y
6134 if (match(Op0, m_Neg(m_Value(A))) &&
6135 match(Op1, m_Neg(m_Value(B))))
6136 return new ICmpInst(I.getPredicate(), A, B);
6137
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006138 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6139 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6140 Value *OtherVal = A == Op1 ? B : A;
6141 return new ICmpInst(I.getPredicate(), OtherVal,
6142 Constant::getNullValue(A->getType()));
6143 }
6144
6145 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6146 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006147 ConstantInt *C1, *C2;
6148 if (match(B, m_ConstantInt(C1)) &&
6149 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6150 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6151 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6152 return new ICmpInst(I.getPredicate(), A,
6153 InsertNewInstBefore(Xor, I));
6154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006155
6156 // A^B == A^D -> B == D
6157 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6158 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6159 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6160 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6161 }
6162 }
6163
6164 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6165 (A == Op0 || B == Op0)) {
6166 // A == (A^B) -> B == 0
6167 Value *OtherVal = A == Op0 ? B : A;
6168 return new ICmpInst(I.getPredicate(), OtherVal,
6169 Constant::getNullValue(A->getType()));
6170 }
Chris Lattner3b874082008-11-16 05:38:51 +00006171
6172 // (A-B) == A -> B == 0
6173 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6174 return new ICmpInst(I.getPredicate(), B,
6175 Constant::getNullValue(B->getType()));
6176
6177 // A == (A-B) -> B == 0
6178 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006179 return new ICmpInst(I.getPredicate(), B,
6180 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006181
6182 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6183 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6184 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6185 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6186 Value *X = 0, *Y = 0, *Z = 0;
6187
6188 if (A == C) {
6189 X = B; Y = D; Z = A;
6190 } else if (A == D) {
6191 X = B; Y = C; Z = A;
6192 } else if (B == C) {
6193 X = A; Y = D; Z = B;
6194 } else if (B == D) {
6195 X = A; Y = C; Z = B;
6196 }
6197
6198 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006199 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6200 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006201 I.setOperand(0, Op1);
6202 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6203 return &I;
6204 }
6205 }
6206 }
6207 return Changed ? &I : 0;
6208}
6209
6210
6211/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6212/// and CmpRHS are both known to be integer constants.
6213Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6214 ConstantInt *DivRHS) {
6215 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6216 const APInt &CmpRHSV = CmpRHS->getValue();
6217
6218 // FIXME: If the operand types don't match the type of the divide
6219 // then don't attempt this transform. The code below doesn't have the
6220 // logic to deal with a signed divide and an unsigned compare (and
6221 // vice versa). This is because (x /s C1) <s C2 produces different
6222 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6223 // (x /u C1) <u C2. Simply casting the operands and result won't
6224 // work. :( The if statement below tests that condition and bails
6225 // if it finds it.
6226 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6227 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6228 return 0;
6229 if (DivRHS->isZero())
6230 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006231 if (DivIsSigned && DivRHS->isAllOnesValue())
6232 return 0; // The overflow computation also screws up here
6233 if (DivRHS->isOne())
6234 return 0; // Not worth bothering, and eliminates some funny cases
6235 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006236
6237 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6238 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6239 // C2 (CI). By solving for X we can turn this into a range check
6240 // instead of computing a divide.
6241 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6242
6243 // Determine if the product overflows by seeing if the product is
6244 // not equal to the divide. Make sure we do the same kind of divide
6245 // as in the LHS instruction that we're folding.
6246 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6247 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6248
6249 // Get the ICmp opcode
6250 ICmpInst::Predicate Pred = ICI.getPredicate();
6251
6252 // Figure out the interval that is being checked. For example, a comparison
6253 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6254 // Compute this interval based on the constants involved and the signedness of
6255 // the compare/divide. This computes a half-open interval, keeping track of
6256 // whether either value in the interval overflows. After analysis each
6257 // overflow variable is set to 0 if it's corresponding bound variable is valid
6258 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6259 int LoOverflow = 0, HiOverflow = 0;
6260 ConstantInt *LoBound = 0, *HiBound = 0;
6261
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006262 if (!DivIsSigned) { // udiv
6263 // e.g. X/5 op 3 --> [15, 20)
6264 LoBound = Prod;
6265 HiOverflow = LoOverflow = ProdOV;
6266 if (!HiOverflow)
6267 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006268 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006269 if (CmpRHSV == 0) { // (X / pos) op 0
6270 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6271 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6272 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006273 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6275 HiOverflow = LoOverflow = ProdOV;
6276 if (!HiOverflow)
6277 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6278 } else { // (X / pos) op neg
6279 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006280 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006281 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6282 if (!LoOverflow) {
6283 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6284 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6285 true) ? -1 : 0;
6286 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006287 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006288 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006289 if (CmpRHSV == 0) { // (X / neg) op 0
6290 // e.g. X/-5 op 0 --> [-4, 5)
6291 LoBound = AddOne(DivRHS);
6292 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6293 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6294 HiOverflow = 1; // [INTMIN+1, overflow)
6295 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6296 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006297 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006298 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006299 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006300 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6301 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006302 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006303 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006304 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6305 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006306 if (!HiOverflow)
6307 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006308 }
6309
6310 // Dividing by a negative swaps the condition. LT <-> GT
6311 Pred = ICmpInst::getSwappedPredicate(Pred);
6312 }
6313
6314 Value *X = DivI->getOperand(0);
6315 switch (Pred) {
6316 default: assert(0 && "Unhandled icmp opcode!");
6317 case ICmpInst::ICMP_EQ:
6318 if (LoOverflow && HiOverflow)
6319 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6320 else if (HiOverflow)
6321 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6322 ICmpInst::ICMP_UGE, X, LoBound);
6323 else if (LoOverflow)
6324 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6325 ICmpInst::ICMP_ULT, X, HiBound);
6326 else
6327 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6328 case ICmpInst::ICMP_NE:
6329 if (LoOverflow && HiOverflow)
6330 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6331 else if (HiOverflow)
6332 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6333 ICmpInst::ICMP_ULT, X, LoBound);
6334 else if (LoOverflow)
6335 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6336 ICmpInst::ICMP_UGE, X, HiBound);
6337 else
6338 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6339 case ICmpInst::ICMP_ULT:
6340 case ICmpInst::ICMP_SLT:
6341 if (LoOverflow == +1) // Low bound is greater than input range.
6342 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6343 if (LoOverflow == -1) // Low bound is less than input range.
6344 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6345 return new ICmpInst(Pred, X, LoBound);
6346 case ICmpInst::ICMP_UGT:
6347 case ICmpInst::ICMP_SGT:
6348 if (HiOverflow == +1) // High bound greater than input range.
6349 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6350 else if (HiOverflow == -1) // High bound less than input range.
6351 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6352 if (Pred == ICmpInst::ICMP_UGT)
6353 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6354 else
6355 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6356 }
6357}
6358
6359
6360/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6361///
6362Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6363 Instruction *LHSI,
6364 ConstantInt *RHS) {
6365 const APInt &RHSV = RHS->getValue();
6366
6367 switch (LHSI->getOpcode()) {
6368 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6369 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6370 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6371 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006372 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6373 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006374 Value *CompareVal = LHSI->getOperand(0);
6375
6376 // If the sign bit of the XorCST is not set, there is no change to
6377 // the operation, just stop using the Xor.
6378 if (!XorCST->getValue().isNegative()) {
6379 ICI.setOperand(0, CompareVal);
6380 AddToWorkList(LHSI);
6381 return &ICI;
6382 }
6383
6384 // Was the old condition true if the operand is positive?
6385 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6386
6387 // If so, the new one isn't.
6388 isTrueIfPositive ^= true;
6389
6390 if (isTrueIfPositive)
6391 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6392 else
6393 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6394 }
6395 }
6396 break;
6397 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6398 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6399 LHSI->getOperand(0)->hasOneUse()) {
6400 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6401
6402 // If the LHS is an AND of a truncating cast, we can widen the
6403 // and/compare to be the input width without changing the value
6404 // produced, eliminating a cast.
6405 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6406 // We can do this transformation if either the AND constant does not
6407 // have its sign bit set or if it is an equality comparison.
6408 // Extending a relational comparison when we're checking the sign
6409 // bit would not work.
6410 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006411 (ICI.isEquality() ||
6412 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006413 uint32_t BitWidth =
6414 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6415 APInt NewCST = AndCST->getValue();
6416 NewCST.zext(BitWidth);
6417 APInt NewCI = RHSV;
6418 NewCI.zext(BitWidth);
6419 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006420 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006421 ConstantInt::get(NewCST),LHSI->getName());
6422 InsertNewInstBefore(NewAnd, ICI);
6423 return new ICmpInst(ICI.getPredicate(), NewAnd,
6424 ConstantInt::get(NewCI));
6425 }
6426 }
6427
6428 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6429 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6430 // happens a LOT in code produced by the C front-end, for bitfield
6431 // access.
6432 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6433 if (Shift && !Shift->isShift())
6434 Shift = 0;
6435
6436 ConstantInt *ShAmt;
6437 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6438 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6439 const Type *AndTy = AndCST->getType(); // Type of the and.
6440
6441 // We can fold this as long as we can't shift unknown bits
6442 // into the mask. This can only happen with signed shift
6443 // rights, as they sign-extend.
6444 if (ShAmt) {
6445 bool CanFold = Shift->isLogicalShift();
6446 if (!CanFold) {
6447 // To test for the bad case of the signed shr, see if any
6448 // of the bits shifted in could be tested after the mask.
6449 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6450 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6451
6452 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6453 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6454 AndCST->getValue()) == 0)
6455 CanFold = true;
6456 }
6457
6458 if (CanFold) {
6459 Constant *NewCst;
6460 if (Shift->getOpcode() == Instruction::Shl)
6461 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6462 else
6463 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6464
6465 // Check to see if we are shifting out any of the bits being
6466 // compared.
6467 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6468 // If we shifted bits out, the fold is not going to work out.
6469 // As a special case, check to see if this means that the
6470 // result is always true or false now.
6471 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6472 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6473 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6474 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6475 } else {
6476 ICI.setOperand(1, NewCst);
6477 Constant *NewAndCST;
6478 if (Shift->getOpcode() == Instruction::Shl)
6479 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6480 else
6481 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6482 LHSI->setOperand(1, NewAndCST);
6483 LHSI->setOperand(0, Shift->getOperand(0));
6484 AddToWorkList(Shift); // Shift is dead.
6485 AddUsesToWorkList(ICI);
6486 return &ICI;
6487 }
6488 }
6489 }
6490
6491 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6492 // preferable because it allows the C<<Y expression to be hoisted out
6493 // of a loop if Y is invariant and X is not.
6494 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6495 ICI.isEquality() && !Shift->isArithmeticShift() &&
6496 isa<Instruction>(Shift->getOperand(0))) {
6497 // Compute C << Y.
6498 Value *NS;
6499 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006500 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006501 Shift->getOperand(1), "tmp");
6502 } else {
6503 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006504 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006505 Shift->getOperand(1), "tmp");
6506 }
6507 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6508
6509 // Compute X & (C << Y).
6510 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006511 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006512 InsertNewInstBefore(NewAnd, ICI);
6513
6514 ICI.setOperand(0, NewAnd);
6515 return &ICI;
6516 }
6517 }
6518 break;
6519
6520 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6521 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6522 if (!ShAmt) break;
6523
6524 uint32_t TypeBits = RHSV.getBitWidth();
6525
6526 // Check that the shift amount is in range. If not, don't perform
6527 // undefined shifts. When the shift is visited it will be
6528 // simplified.
6529 if (ShAmt->uge(TypeBits))
6530 break;
6531
6532 if (ICI.isEquality()) {
6533 // If we are comparing against bits always shifted out, the
6534 // comparison cannot succeed.
6535 Constant *Comp =
6536 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6537 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6538 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6539 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6540 return ReplaceInstUsesWith(ICI, Cst);
6541 }
6542
6543 if (LHSI->hasOneUse()) {
6544 // Otherwise strength reduce the shift into an and.
6545 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6546 Constant *Mask =
6547 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6548
6549 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006550 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006551 Mask, LHSI->getName()+".mask");
6552 Value *And = InsertNewInstBefore(AndI, ICI);
6553 return new ICmpInst(ICI.getPredicate(), And,
6554 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6555 }
6556 }
6557
6558 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6559 bool TrueIfSigned = false;
6560 if (LHSI->hasOneUse() &&
6561 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6562 // (X << 31) <s 0 --> (X&1) != 0
6563 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6564 (TypeBits-ShAmt->getZExtValue()-1));
6565 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006566 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006567 Mask, LHSI->getName()+".mask");
6568 Value *And = InsertNewInstBefore(AndI, ICI);
6569
6570 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6571 And, Constant::getNullValue(And->getType()));
6572 }
6573 break;
6574 }
6575
6576 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6577 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006578 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006579 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006580 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006581
Chris Lattner5ee84f82008-03-21 05:19:58 +00006582 // Check that the shift amount is in range. If not, don't perform
6583 // undefined shifts. When the shift is visited it will be
6584 // simplified.
6585 uint32_t TypeBits = RHSV.getBitWidth();
6586 if (ShAmt->uge(TypeBits))
6587 break;
6588
6589 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006590
Chris Lattner5ee84f82008-03-21 05:19:58 +00006591 // If we are comparing against bits always shifted out, the
6592 // comparison cannot succeed.
6593 APInt Comp = RHSV << ShAmtVal;
6594 if (LHSI->getOpcode() == Instruction::LShr)
6595 Comp = Comp.lshr(ShAmtVal);
6596 else
6597 Comp = Comp.ashr(ShAmtVal);
6598
6599 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6600 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6601 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6602 return ReplaceInstUsesWith(ICI, Cst);
6603 }
6604
6605 // Otherwise, check to see if the bits shifted out are known to be zero.
6606 // If so, we can compare against the unshifted value:
6607 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006608 if (LHSI->hasOneUse() &&
6609 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006610 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6611 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6612 ConstantExpr::getShl(RHS, ShAmt));
6613 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006614
Evan Chengfb9292a2008-04-23 00:38:06 +00006615 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006616 // Otherwise strength reduce the shift into an and.
6617 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6618 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006619
Chris Lattner5ee84f82008-03-21 05:19:58 +00006620 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006621 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006622 Mask, LHSI->getName()+".mask");
6623 Value *And = InsertNewInstBefore(AndI, ICI);
6624 return new ICmpInst(ICI.getPredicate(), And,
6625 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006626 }
6627 break;
6628 }
6629
6630 case Instruction::SDiv:
6631 case Instruction::UDiv:
6632 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6633 // Fold this div into the comparison, producing a range check.
6634 // Determine, based on the divide type, what the range is being
6635 // checked. If there is an overflow on the low or high side, remember
6636 // it, otherwise compute the range [low, hi) bounding the new value.
6637 // See: InsertRangeTest above for the kinds of replacements possible.
6638 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6639 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6640 DivRHS))
6641 return R;
6642 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006643
6644 case Instruction::Add:
6645 // Fold: icmp pred (add, X, C1), C2
6646
6647 if (!ICI.isEquality()) {
6648 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6649 if (!LHSC) break;
6650 const APInt &LHSV = LHSC->getValue();
6651
6652 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6653 .subtract(LHSV);
6654
6655 if (ICI.isSignedPredicate()) {
6656 if (CR.getLower().isSignBit()) {
6657 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6658 ConstantInt::get(CR.getUpper()));
6659 } else if (CR.getUpper().isSignBit()) {
6660 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6661 ConstantInt::get(CR.getLower()));
6662 }
6663 } else {
6664 if (CR.getLower().isMinValue()) {
6665 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6666 ConstantInt::get(CR.getUpper()));
6667 } else if (CR.getUpper().isMinValue()) {
6668 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6669 ConstantInt::get(CR.getLower()));
6670 }
6671 }
6672 }
6673 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006674 }
6675
6676 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6677 if (ICI.isEquality()) {
6678 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6679
6680 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6681 // the second operand is a constant, simplify a bit.
6682 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6683 switch (BO->getOpcode()) {
6684 case Instruction::SRem:
6685 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6686 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6687 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6688 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6689 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006690 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006691 BO->getName());
6692 InsertNewInstBefore(NewRem, ICI);
6693 return new ICmpInst(ICI.getPredicate(), NewRem,
6694 Constant::getNullValue(BO->getType()));
6695 }
6696 }
6697 break;
6698 case Instruction::Add:
6699 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6700 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6701 if (BO->hasOneUse())
6702 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6703 Subtract(RHS, BOp1C));
6704 } else if (RHSV == 0) {
6705 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6706 // efficiently invertible, or if the add has just this one use.
6707 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6708
6709 if (Value *NegVal = dyn_castNegVal(BOp1))
6710 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6711 else if (Value *NegVal = dyn_castNegVal(BOp0))
6712 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6713 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006714 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006715 InsertNewInstBefore(Neg, ICI);
6716 Neg->takeName(BO);
6717 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6718 }
6719 }
6720 break;
6721 case Instruction::Xor:
6722 // For the xor case, we can xor two constants together, eliminating
6723 // the explicit xor.
6724 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6725 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6726 ConstantExpr::getXor(RHS, BOC));
6727
6728 // FALLTHROUGH
6729 case Instruction::Sub:
6730 // Replace (([sub|xor] A, B) != 0) with (A != B)
6731 if (RHSV == 0)
6732 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6733 BO->getOperand(1));
6734 break;
6735
6736 case Instruction::Or:
6737 // If bits are being or'd in that are not present in the constant we
6738 // are comparing against, then the comparison could never succeed!
6739 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6740 Constant *NotCI = ConstantExpr::getNot(RHS);
6741 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6742 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6743 isICMP_NE));
6744 }
6745 break;
6746
6747 case Instruction::And:
6748 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6749 // If bits are being compared against that are and'd out, then the
6750 // comparison can never succeed!
6751 if ((RHSV & ~BOC->getValue()) != 0)
6752 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6753 isICMP_NE));
6754
6755 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6756 if (RHS == BOC && RHSV.isPowerOf2())
6757 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6758 ICmpInst::ICMP_NE, LHSI,
6759 Constant::getNullValue(RHS->getType()));
6760
6761 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006762 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006763 Value *X = BO->getOperand(0);
6764 Constant *Zero = Constant::getNullValue(X->getType());
6765 ICmpInst::Predicate pred = isICMP_NE ?
6766 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6767 return new ICmpInst(pred, X, Zero);
6768 }
6769
6770 // ((X & ~7) == 0) --> X < 8
6771 if (RHSV == 0 && isHighOnes(BOC)) {
6772 Value *X = BO->getOperand(0);
6773 Constant *NegX = ConstantExpr::getNeg(BOC);
6774 ICmpInst::Predicate pred = isICMP_NE ?
6775 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6776 return new ICmpInst(pred, X, NegX);
6777 }
6778 }
6779 default: break;
6780 }
6781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6782 // Handle icmp {eq|ne} <intrinsic>, intcst.
6783 if (II->getIntrinsicID() == Intrinsic::bswap) {
6784 AddToWorkList(II);
6785 ICI.setOperand(0, II->getOperand(1));
6786 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6787 return &ICI;
6788 }
6789 }
6790 } else { // Not a ICMP_EQ/ICMP_NE
6791 // If the LHS is a cast from an integral value of the same size,
6792 // then since we know the RHS is a constant, try to simlify.
6793 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6794 Value *CastOp = Cast->getOperand(0);
6795 const Type *SrcTy = CastOp->getType();
6796 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6797 if (SrcTy->isInteger() &&
6798 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6799 // If this is an unsigned comparison, try to make the comparison use
6800 // smaller constant values.
6801 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6802 // X u< 128 => X s> -1
6803 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6804 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6805 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6806 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6807 // X u> 127 => X s< 0
6808 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6809 Constant::getNullValue(SrcTy));
6810 }
6811 }
6812 }
6813 }
6814 return 0;
6815}
6816
6817/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6818/// We only handle extending casts so far.
6819///
6820Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6821 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6822 Value *LHSCIOp = LHSCI->getOperand(0);
6823 const Type *SrcTy = LHSCIOp->getType();
6824 const Type *DestTy = LHSCI->getType();
6825 Value *RHSCIOp;
6826
6827 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6828 // integer type is the same size as the pointer type.
6829 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6830 getTargetData().getPointerSizeInBits() ==
6831 cast<IntegerType>(DestTy)->getBitWidth()) {
6832 Value *RHSOp = 0;
6833 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6834 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6835 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6836 RHSOp = RHSC->getOperand(0);
6837 // If the pointer types don't match, insert a bitcast.
6838 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006839 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006840 }
6841
6842 if (RHSOp)
6843 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6844 }
6845
6846 // The code below only handles extension cast instructions, so far.
6847 // Enforce this.
6848 if (LHSCI->getOpcode() != Instruction::ZExt &&
6849 LHSCI->getOpcode() != Instruction::SExt)
6850 return 0;
6851
6852 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6853 bool isSignedCmp = ICI.isSignedPredicate();
6854
6855 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6856 // Not an extension from the same type?
6857 RHSCIOp = CI->getOperand(0);
6858 if (RHSCIOp->getType() != LHSCIOp->getType())
6859 return 0;
6860
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006861 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006862 // and the other is a zext), then we can't handle this.
6863 if (CI->getOpcode() != LHSCI->getOpcode())
6864 return 0;
6865
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006866 // Deal with equality cases early.
6867 if (ICI.isEquality())
6868 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6869
6870 // A signed comparison of sign extended values simplifies into a
6871 // signed comparison.
6872 if (isSignedCmp && isSignedExt)
6873 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6874
6875 // The other three cases all fold into an unsigned comparison.
6876 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006877 }
6878
6879 // If we aren't dealing with a constant on the RHS, exit early
6880 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6881 if (!CI)
6882 return 0;
6883
6884 // Compute the constant that would happen if we truncated to SrcTy then
6885 // reextended to DestTy.
6886 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6887 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6888
6889 // If the re-extended constant didn't change...
6890 if (Res2 == CI) {
6891 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6892 // For example, we might have:
6893 // %A = sext short %X to uint
6894 // %B = icmp ugt uint %A, 1330
6895 // It is incorrect to transform this into
6896 // %B = icmp ugt short %X, 1330
6897 // because %A may have negative value.
6898 //
Chris Lattner3d816532008-07-11 04:09:09 +00006899 // However, we allow this when the compare is EQ/NE, because they are
6900 // signless.
6901 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006902 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006903 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006904 }
6905
6906 // The re-extended constant changed so the constant cannot be represented
6907 // in the shorter type. Consequently, we cannot emit a simple comparison.
6908
6909 // First, handle some easy cases. We know the result cannot be equal at this
6910 // point so handle the ICI.isEquality() cases
6911 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6912 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6913 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6914 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6915
6916 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6917 // should have been folded away previously and not enter in here.
6918 Value *Result;
6919 if (isSignedCmp) {
6920 // We're performing a signed comparison.
6921 if (cast<ConstantInt>(CI)->getValue().isNegative())
6922 Result = ConstantInt::getFalse(); // X < (small) --> false
6923 else
6924 Result = ConstantInt::getTrue(); // X < (large) --> true
6925 } else {
6926 // We're performing an unsigned comparison.
6927 if (isSignedExt) {
6928 // We're performing an unsigned comp with a sign extended value.
6929 // This is true if the input is >= 0. [aka >s -1]
6930 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6931 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6932 NegOne, ICI.getName()), ICI);
6933 } else {
6934 // Unsigned extend & unsigned compare -> always true.
6935 Result = ConstantInt::getTrue();
6936 }
6937 }
6938
6939 // Finally, return the value computed.
6940 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006941 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006942 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006943
6944 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6945 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6946 "ICmp should be folded!");
6947 if (Constant *CI = dyn_cast<Constant>(Result))
6948 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6949 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006950}
6951
6952Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6953 return commonShiftTransforms(I);
6954}
6955
6956Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6957 return commonShiftTransforms(I);
6958}
6959
6960Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006961 if (Instruction *R = commonShiftTransforms(I))
6962 return R;
6963
6964 Value *Op0 = I.getOperand(0);
6965
6966 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6967 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6968 if (CSI->isAllOnesValue())
6969 return ReplaceInstUsesWith(I, CSI);
6970
6971 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006972 if (!isa<VectorType>(I.getType()) &&
6973 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006974 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006975 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006976
6977 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006978}
6979
6980Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6981 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6982 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6983
6984 // shl X, 0 == X and shr X, 0 == X
6985 // shl 0, X == 0 and shr 0, X == 0
6986 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6987 Op0 == Constant::getNullValue(Op0->getType()))
6988 return ReplaceInstUsesWith(I, Op0);
6989
6990 if (isa<UndefValue>(Op0)) {
6991 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6992 return ReplaceInstUsesWith(I, Op0);
6993 else // undef << X -> 0, undef >>u X -> 0
6994 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6995 }
6996 if (isa<UndefValue>(Op1)) {
6997 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6998 return ReplaceInstUsesWith(I, Op0);
6999 else // X << undef, X >>u undef -> 0
7000 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
7001 }
7002
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007003 // Try to fold constant and into select arguments.
7004 if (isa<Constant>(Op0))
7005 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
7006 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7007 return R;
7008
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007009 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
7010 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
7011 return Res;
7012 return 0;
7013}
7014
7015Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
7016 BinaryOperator &I) {
7017 bool isLeftShift = I.getOpcode() == Instruction::Shl;
7018
7019 // See if we can simplify any instructions used by the instruction whose sole
7020 // purpose is to compute bits we don't care about.
7021 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
7022 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
7023 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
7024 KnownZero, KnownOne))
7025 return &I;
7026
7027 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7028 // of a signed value.
7029 //
7030 if (Op1->uge(TypeBits)) {
7031 if (I.getOpcode() != Instruction::AShr)
7032 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7033 else {
7034 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7035 return &I;
7036 }
7037 }
7038
7039 // ((X*C1) << C2) == (X * (C1 << C2))
7040 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7041 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7042 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00007043 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007044 ConstantExpr::getShl(BOOp, Op1));
7045
7046 // Try to fold constant and into select arguments.
7047 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7048 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7049 return R;
7050 if (isa<PHINode>(Op0))
7051 if (Instruction *NV = FoldOpIntoPhi(I))
7052 return NV;
7053
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007054 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7055 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7056 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7057 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7058 // place. Don't try to do this transformation in this case. Also, we
7059 // require that the input operand is a shift-by-constant so that we have
7060 // confidence that the shifts will get folded together. We could do this
7061 // xform in more cases, but it is unlikely to be profitable.
7062 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7063 isa<ConstantInt>(TrOp->getOperand(1))) {
7064 // Okay, we'll do this xform. Make the shift of shift.
7065 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007066 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007067 I.getName());
7068 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7069
7070 // For logical shifts, the truncation has the effect of making the high
7071 // part of the register be zeros. Emulate this by inserting an AND to
7072 // clear the top bits as needed. This 'and' will usually be zapped by
7073 // other xforms later if dead.
7074 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7075 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7076 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7077
7078 // The mask we constructed says what the trunc would do if occurring
7079 // between the shifts. We want to know the effect *after* the second
7080 // shift. We know that it is a logical shift by a constant, so adjust the
7081 // mask as appropriate.
7082 if (I.getOpcode() == Instruction::Shl)
7083 MaskV <<= Op1->getZExtValue();
7084 else {
7085 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7086 MaskV = MaskV.lshr(Op1->getZExtValue());
7087 }
7088
Gabor Greifa645dd32008-05-16 19:29:10 +00007089 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007090 TI->getName());
7091 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7092
7093 // Return the value truncated to the interesting size.
7094 return new TruncInst(And, I.getType());
7095 }
7096 }
7097
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007098 if (Op0->hasOneUse()) {
7099 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7100 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7101 Value *V1, *V2;
7102 ConstantInt *CC;
7103 switch (Op0BO->getOpcode()) {
7104 default: break;
7105 case Instruction::Add:
7106 case Instruction::And:
7107 case Instruction::Or:
7108 case Instruction::Xor: {
7109 // These operators commute.
7110 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7111 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007112 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007113 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007114 Op0BO->getOperand(0), Op1,
7115 Op0BO->getName());
7116 InsertNewInstBefore(YS, I); // (Y << C)
7117 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007118 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007119 Op0BO->getOperand(1)->getName());
7120 InsertNewInstBefore(X, I); // (X + (Y << C))
7121 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007122 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007123 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7124 }
7125
7126 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7127 Value *Op0BOOp1 = Op0BO->getOperand(1);
7128 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7129 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007130 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7131 m_ConstantInt(CC))) &&
7132 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007133 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007134 Op0BO->getOperand(0), Op1,
7135 Op0BO->getName());
7136 InsertNewInstBefore(YS, I); // (Y << C)
7137 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007138 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007139 V1->getName()+".mask");
7140 InsertNewInstBefore(XM, I); // X & (CC << C)
7141
Gabor Greifa645dd32008-05-16 19:29:10 +00007142 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007143 }
7144 }
7145
7146 // FALL THROUGH.
7147 case Instruction::Sub: {
7148 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7149 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007150 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007151 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007152 Op0BO->getOperand(1), Op1,
7153 Op0BO->getName());
7154 InsertNewInstBefore(YS, I); // (Y << C)
7155 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007156 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007157 Op0BO->getOperand(0)->getName());
7158 InsertNewInstBefore(X, I); // (X + (Y << C))
7159 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007160 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007161 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7162 }
7163
7164 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7165 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7166 match(Op0BO->getOperand(0),
7167 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7168 m_ConstantInt(CC))) && V2 == Op1 &&
7169 cast<BinaryOperator>(Op0BO->getOperand(0))
7170 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007171 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007172 Op0BO->getOperand(1), Op1,
7173 Op0BO->getName());
7174 InsertNewInstBefore(YS, I); // (Y << C)
7175 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007176 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007177 V1->getName()+".mask");
7178 InsertNewInstBefore(XM, I); // X & (CC << C)
7179
Gabor Greifa645dd32008-05-16 19:29:10 +00007180 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007181 }
7182
7183 break;
7184 }
7185 }
7186
7187
7188 // If the operand is an bitwise operator with a constant RHS, and the
7189 // shift is the only use, we can pull it out of the shift.
7190 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7191 bool isValid = true; // Valid only for And, Or, Xor
7192 bool highBitSet = false; // Transform if high bit of constant set?
7193
7194 switch (Op0BO->getOpcode()) {
7195 default: isValid = false; break; // Do not perform transform!
7196 case Instruction::Add:
7197 isValid = isLeftShift;
7198 break;
7199 case Instruction::Or:
7200 case Instruction::Xor:
7201 highBitSet = false;
7202 break;
7203 case Instruction::And:
7204 highBitSet = true;
7205 break;
7206 }
7207
7208 // If this is a signed shift right, and the high bit is modified
7209 // by the logical operation, do not perform the transformation.
7210 // The highBitSet boolean indicates the value of the high bit of
7211 // the constant which would cause it to be modified for this
7212 // operation.
7213 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007214 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007215 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007216
7217 if (isValid) {
7218 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7219
7220 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007221 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007222 InsertNewInstBefore(NewShift, I);
7223 NewShift->takeName(Op0BO);
7224
Gabor Greifa645dd32008-05-16 19:29:10 +00007225 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007226 NewRHS);
7227 }
7228 }
7229 }
7230 }
7231
7232 // Find out if this is a shift of a shift by a constant.
7233 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7234 if (ShiftOp && !ShiftOp->isShift())
7235 ShiftOp = 0;
7236
7237 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7238 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7239 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7240 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7241 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7242 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7243 Value *X = ShiftOp->getOperand(0);
7244
7245 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7246 if (AmtSum > TypeBits)
7247 AmtSum = TypeBits;
7248
7249 const IntegerType *Ty = cast<IntegerType>(I.getType());
7250
7251 // Check for (X << c1) << c2 and (X >> c1) >> c2
7252 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007253 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007254 ConstantInt::get(Ty, AmtSum));
7255 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7256 I.getOpcode() == Instruction::AShr) {
7257 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007258 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007259 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7260 I.getOpcode() == Instruction::LShr) {
7261 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7262 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007263 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007264 InsertNewInstBefore(Shift, I);
7265
7266 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007267 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007268 }
7269
7270 // Okay, if we get here, one shift must be left, and the other shift must be
7271 // right. See if the amounts are equal.
7272 if (ShiftAmt1 == ShiftAmt2) {
7273 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7274 if (I.getOpcode() == Instruction::Shl) {
7275 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007276 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007277 }
7278 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7279 if (I.getOpcode() == Instruction::LShr) {
7280 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007281 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007282 }
7283 // We can simplify ((X << C) >>s C) into a trunc + sext.
7284 // NOTE: we could do this for any C, but that would make 'unusual' integer
7285 // types. For now, just stick to ones well-supported by the code
7286 // generators.
7287 const Type *SExtType = 0;
7288 switch (Ty->getBitWidth() - ShiftAmt1) {
7289 case 1 :
7290 case 8 :
7291 case 16 :
7292 case 32 :
7293 case 64 :
7294 case 128:
7295 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7296 break;
7297 default: break;
7298 }
7299 if (SExtType) {
7300 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7301 InsertNewInstBefore(NewTrunc, I);
7302 return new SExtInst(NewTrunc, Ty);
7303 }
7304 // Otherwise, we can't handle it yet.
7305 } else if (ShiftAmt1 < ShiftAmt2) {
7306 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7307
7308 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7309 if (I.getOpcode() == Instruction::Shl) {
7310 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7311 ShiftOp->getOpcode() == Instruction::AShr);
7312 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007313 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007314 InsertNewInstBefore(Shift, I);
7315
7316 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007317 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007318 }
7319
7320 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7321 if (I.getOpcode() == Instruction::LShr) {
7322 assert(ShiftOp->getOpcode() == Instruction::Shl);
7323 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007324 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007325 InsertNewInstBefore(Shift, I);
7326
7327 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007328 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007329 }
7330
7331 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7332 } else {
7333 assert(ShiftAmt2 < ShiftAmt1);
7334 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7335
7336 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7337 if (I.getOpcode() == Instruction::Shl) {
7338 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7339 ShiftOp->getOpcode() == Instruction::AShr);
7340 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007341 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007342 ConstantInt::get(Ty, ShiftDiff));
7343 InsertNewInstBefore(Shift, I);
7344
7345 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007346 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007347 }
7348
7349 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7350 if (I.getOpcode() == Instruction::LShr) {
7351 assert(ShiftOp->getOpcode() == Instruction::Shl);
7352 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007353 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007354 InsertNewInstBefore(Shift, I);
7355
7356 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007357 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007358 }
7359
7360 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7361 }
7362 }
7363 return 0;
7364}
7365
7366
7367/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7368/// expression. If so, decompose it, returning some value X, such that Val is
7369/// X*Scale+Offset.
7370///
7371static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7372 int &Offset) {
7373 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7374 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7375 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007376 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007377 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007378 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7379 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7380 if (I->getOpcode() == Instruction::Shl) {
7381 // This is a value scaled by '1 << the shift amt'.
7382 Scale = 1U << RHS->getZExtValue();
7383 Offset = 0;
7384 return I->getOperand(0);
7385 } else if (I->getOpcode() == Instruction::Mul) {
7386 // This value is scaled by 'RHS'.
7387 Scale = RHS->getZExtValue();
7388 Offset = 0;
7389 return I->getOperand(0);
7390 } else if (I->getOpcode() == Instruction::Add) {
7391 // We have X+C. Check to see if we really have (X*C2)+C1,
7392 // where C1 is divisible by C2.
7393 unsigned SubScale;
7394 Value *SubVal =
7395 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7396 Offset += RHS->getZExtValue();
7397 Scale = SubScale;
7398 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007399 }
7400 }
7401 }
7402
7403 // Otherwise, we can't look past this.
7404 Scale = 1;
7405 Offset = 0;
7406 return Val;
7407}
7408
7409
7410/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7411/// try to eliminate the cast by moving the type information into the alloc.
7412Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7413 AllocationInst &AI) {
7414 const PointerType *PTy = cast<PointerType>(CI.getType());
7415
7416 // Remove any uses of AI that are dead.
7417 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7418
7419 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7420 Instruction *User = cast<Instruction>(*UI++);
7421 if (isInstructionTriviallyDead(User)) {
7422 while (UI != E && *UI == User)
7423 ++UI; // If this instruction uses AI more than once, don't break UI.
7424
7425 ++NumDeadInst;
7426 DOUT << "IC: DCE: " << *User;
7427 EraseInstFromFunction(*User);
7428 }
7429 }
7430
7431 // Get the type really allocated and the type casted to.
7432 const Type *AllocElTy = AI.getAllocatedType();
7433 const Type *CastElTy = PTy->getElementType();
7434 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7435
7436 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7437 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7438 if (CastElTyAlign < AllocElTyAlign) return 0;
7439
7440 // If the allocation has multiple uses, only promote it if we are strictly
7441 // increasing the alignment of the resultant allocation. If we keep it the
7442 // same, we open the door to infinite loops of various kinds.
7443 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7444
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007445 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7446 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007447 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7448
7449 // See if we can satisfy the modulus by pulling a scale out of the array
7450 // size argument.
7451 unsigned ArraySizeScale;
7452 int ArrayOffset;
7453 Value *NumElements = // See if the array size is a decomposable linear expr.
7454 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7455
7456 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7457 // do the xform.
7458 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7459 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7460
7461 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7462 Value *Amt = 0;
7463 if (Scale == 1) {
7464 Amt = NumElements;
7465 } else {
7466 // If the allocation size is constant, form a constant mul expression
7467 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7468 if (isa<ConstantInt>(NumElements))
7469 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7470 // otherwise multiply the amount and the number of elements
7471 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007472 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007473 Amt = InsertNewInstBefore(Tmp, AI);
7474 }
7475 }
7476
7477 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7478 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007479 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007480 Amt = InsertNewInstBefore(Tmp, AI);
7481 }
7482
7483 AllocationInst *New;
7484 if (isa<MallocInst>(AI))
7485 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7486 else
7487 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7488 InsertNewInstBefore(New, AI);
7489 New->takeName(&AI);
7490
7491 // If the allocation has multiple uses, insert a cast and change all things
7492 // that used it to use the new cast. This will also hack on CI, but it will
7493 // die soon.
7494 if (!AI.hasOneUse()) {
7495 AddUsesToWorkList(AI);
7496 // New is the allocation instruction, pointer typed. AI is the original
7497 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7498 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7499 InsertNewInstBefore(NewCast, AI);
7500 AI.replaceAllUsesWith(NewCast);
7501 }
7502 return ReplaceInstUsesWith(CI, New);
7503}
7504
7505/// CanEvaluateInDifferentType - Return true if we can take the specified value
7506/// and return it as type Ty without inserting any new casts and without
7507/// changing the computed value. This is used by code that tries to decide
7508/// whether promoting or shrinking integer operations to wider or smaller types
7509/// will allow us to eliminate a truncate or extend.
7510///
7511/// This is a truncation operation if Ty is smaller than V->getType(), or an
7512/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007513///
7514/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7515/// should return true if trunc(V) can be computed by computing V in the smaller
7516/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7517/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7518/// efficiently truncated.
7519///
7520/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7521/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7522/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007523bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7524 unsigned CastOpc,
7525 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007526 // We can always evaluate constants in another type.
7527 if (isa<ConstantInt>(V))
7528 return true;
7529
7530 Instruction *I = dyn_cast<Instruction>(V);
7531 if (!I) return false;
7532
7533 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7534
Chris Lattneref70bb82007-08-02 06:11:14 +00007535 // If this is an extension or truncate, we can often eliminate it.
7536 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7537 // If this is a cast from the destination type, we can trivially eliminate
7538 // it, and this will remove a cast overall.
7539 if (I->getOperand(0)->getType() == Ty) {
7540 // If the first operand is itself a cast, and is eliminable, do not count
7541 // this as an eliminable cast. We would prefer to eliminate those two
7542 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007543 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007544 ++NumCastsRemoved;
7545 return true;
7546 }
7547 }
7548
7549 // We can't extend or shrink something that has multiple uses: doing so would
7550 // require duplicating the instruction in general, which isn't profitable.
7551 if (!I->hasOneUse()) return false;
7552
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007553 switch (I->getOpcode()) {
7554 case Instruction::Add:
7555 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007556 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007557 case Instruction::And:
7558 case Instruction::Or:
7559 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007560 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007561 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7562 NumCastsRemoved) &&
7563 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7564 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007565
7566 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007567 // If we are truncating the result of this SHL, and if it's a shift of a
7568 // constant amount, we can always perform a SHL in a smaller type.
7569 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7570 uint32_t BitWidth = Ty->getBitWidth();
7571 if (BitWidth < OrigTy->getBitWidth() &&
7572 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007573 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7574 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007575 }
7576 break;
7577 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007578 // If this is a truncate of a logical shr, we can truncate it to a smaller
7579 // lshr iff we know that the bits we would otherwise be shifting in are
7580 // already zeros.
7581 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7582 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7583 uint32_t BitWidth = Ty->getBitWidth();
7584 if (BitWidth < OrigBitWidth &&
7585 MaskedValueIsZero(I->getOperand(0),
7586 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7587 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007588 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7589 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007590 }
7591 }
7592 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007593 case Instruction::ZExt:
7594 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007595 case Instruction::Trunc:
7596 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007597 // can safely replace it. Note that replacing it does not reduce the number
7598 // of casts in the input.
7599 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007600 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007601 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007602 case Instruction::Select: {
7603 SelectInst *SI = cast<SelectInst>(I);
7604 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7605 NumCastsRemoved) &&
7606 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7607 NumCastsRemoved);
7608 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007609 case Instruction::PHI: {
7610 // We can change a phi if we can change all operands.
7611 PHINode *PN = cast<PHINode>(I);
7612 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7613 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7614 NumCastsRemoved))
7615 return false;
7616 return true;
7617 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007618 default:
7619 // TODO: Can handle more cases here.
7620 break;
7621 }
7622
7623 return false;
7624}
7625
7626/// EvaluateInDifferentType - Given an expression that
7627/// CanEvaluateInDifferentType returns true for, actually insert the code to
7628/// evaluate the expression.
7629Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7630 bool isSigned) {
7631 if (Constant *C = dyn_cast<Constant>(V))
7632 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7633
7634 // Otherwise, it must be an instruction.
7635 Instruction *I = cast<Instruction>(V);
7636 Instruction *Res = 0;
7637 switch (I->getOpcode()) {
7638 case Instruction::Add:
7639 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007640 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007641 case Instruction::And:
7642 case Instruction::Or:
7643 case Instruction::Xor:
7644 case Instruction::AShr:
7645 case Instruction::LShr:
7646 case Instruction::Shl: {
7647 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7648 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007649 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007650 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007651 break;
7652 }
7653 case Instruction::Trunc:
7654 case Instruction::ZExt:
7655 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007656 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007657 // just return the source. There's no need to insert it because it is not
7658 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007659 if (I->getOperand(0)->getType() == Ty)
7660 return I->getOperand(0);
7661
Chris Lattner4200c2062008-06-18 04:00:49 +00007662 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007663 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007664 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007665 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007666 case Instruction::Select: {
7667 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7668 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7669 Res = SelectInst::Create(I->getOperand(0), True, False);
7670 break;
7671 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007672 case Instruction::PHI: {
7673 PHINode *OPN = cast<PHINode>(I);
7674 PHINode *NPN = PHINode::Create(Ty);
7675 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7676 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7677 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7678 }
7679 Res = NPN;
7680 break;
7681 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007682 default:
7683 // TODO: Can handle more cases here.
7684 assert(0 && "Unreachable!");
7685 break;
7686 }
7687
Chris Lattner4200c2062008-06-18 04:00:49 +00007688 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007689 return InsertNewInstBefore(Res, *I);
7690}
7691
7692/// @brief Implement the transforms common to all CastInst visitors.
7693Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7694 Value *Src = CI.getOperand(0);
7695
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007696 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7697 // eliminate it now.
7698 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7699 if (Instruction::CastOps opc =
7700 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7701 // The first cast (CSrc) is eliminable so we need to fix up or replace
7702 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007703 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007704 }
7705 }
7706
7707 // If we are casting a select then fold the cast into the select
7708 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7709 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7710 return NV;
7711
7712 // If we are casting a PHI then fold the cast into the PHI
7713 if (isa<PHINode>(Src))
7714 if (Instruction *NV = FoldOpIntoPhi(CI))
7715 return NV;
7716
7717 return 0;
7718}
7719
7720/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7721Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7722 Value *Src = CI.getOperand(0);
7723
7724 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7725 // If casting the result of a getelementptr instruction with no offset, turn
7726 // this into a cast of the original pointer!
7727 if (GEP->hasAllZeroIndices()) {
7728 // Changing the cast operand is usually not a good idea but it is safe
7729 // here because the pointer operand is being replaced with another
7730 // pointer operand so the opcode doesn't need to change.
7731 AddToWorkList(GEP);
7732 CI.setOperand(0, GEP->getOperand(0));
7733 return &CI;
7734 }
7735
7736 // If the GEP has a single use, and the base pointer is a bitcast, and the
7737 // GEP computes a constant offset, see if we can convert these three
7738 // instructions into fewer. This typically happens with unions and other
7739 // non-type-safe code.
7740 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7741 if (GEP->hasAllConstantIndices()) {
7742 // We are guaranteed to get a constant from EmitGEPOffset.
7743 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7744 int64_t Offset = OffsetV->getSExtValue();
7745
7746 // Get the base pointer input of the bitcast, and the type it points to.
7747 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7748 const Type *GEPIdxTy =
7749 cast<PointerType>(OrigBase->getType())->getElementType();
7750 if (GEPIdxTy->isSized()) {
7751 SmallVector<Value*, 8> NewIndices;
7752
7753 // Start with the index over the outer type. Note that the type size
7754 // might be zero (even if the offset isn't zero) if the indexed type
7755 // is something like [0 x {int, int}]
7756 const Type *IntPtrTy = TD->getIntPtrType();
7757 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007758 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007759 FirstIdx = Offset/TySize;
7760 Offset %= TySize;
7761
7762 // Handle silly modulus not returning values values [0..TySize).
7763 if (Offset < 0) {
7764 --FirstIdx;
7765 Offset += TySize;
7766 assert(Offset >= 0);
7767 }
7768 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7769 }
7770
7771 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7772
7773 // Index into the types. If we fail, set OrigBase to null.
7774 while (Offset) {
7775 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7776 const StructLayout *SL = TD->getStructLayout(STy);
7777 if (Offset < (int64_t)SL->getSizeInBytes()) {
7778 unsigned Elt = SL->getElementContainingOffset(Offset);
7779 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7780
7781 Offset -= SL->getElementOffset(Elt);
7782 GEPIdxTy = STy->getElementType(Elt);
7783 } else {
7784 // Otherwise, we can't index into this, bail out.
7785 Offset = 0;
7786 OrigBase = 0;
7787 }
7788 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7789 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007790 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007791 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7792 Offset %= EltSize;
7793 } else {
7794 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7795 }
7796 GEPIdxTy = STy->getElementType();
7797 } else {
7798 // Otherwise, we can't index into this, bail out.
7799 Offset = 0;
7800 OrigBase = 0;
7801 }
7802 }
7803 if (OrigBase) {
7804 // If we were able to index down into an element, create the GEP
7805 // and bitcast the result. This eliminates one bitcast, potentially
7806 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007807 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7808 NewIndices.begin(),
7809 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007810 InsertNewInstBefore(NGEP, CI);
7811 NGEP->takeName(GEP);
7812
7813 if (isa<BitCastInst>(CI))
7814 return new BitCastInst(NGEP, CI.getType());
7815 assert(isa<PtrToIntInst>(CI));
7816 return new PtrToIntInst(NGEP, CI.getType());
7817 }
7818 }
7819 }
7820 }
7821 }
7822
7823 return commonCastTransforms(CI);
7824}
7825
7826
7827
7828/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7829/// integer types. This function implements the common transforms for all those
7830/// cases.
7831/// @brief Implement the transforms common to CastInst with integer operands
7832Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7833 if (Instruction *Result = commonCastTransforms(CI))
7834 return Result;
7835
7836 Value *Src = CI.getOperand(0);
7837 const Type *SrcTy = Src->getType();
7838 const Type *DestTy = CI.getType();
7839 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7840 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7841
7842 // See if we can simplify any instructions used by the LHS whose sole
7843 // purpose is to compute bits we don't care about.
7844 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7845 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7846 KnownZero, KnownOne))
7847 return &CI;
7848
7849 // If the source isn't an instruction or has more than one use then we
7850 // can't do anything more.
7851 Instruction *SrcI = dyn_cast<Instruction>(Src);
7852 if (!SrcI || !Src->hasOneUse())
7853 return 0;
7854
7855 // Attempt to propagate the cast into the instruction for int->int casts.
7856 int NumCastsRemoved = 0;
7857 if (!isa<BitCastInst>(CI) &&
7858 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007859 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007860 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007861 // eliminates the cast, so it is always a win. If this is a zero-extension,
7862 // we need to do an AND to maintain the clear top-part of the computation,
7863 // so we require that the input have eliminated at least one cast. If this
7864 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007865 // require that two casts have been eliminated.
7866 bool DoXForm;
7867 switch (CI.getOpcode()) {
7868 default:
7869 // All the others use floating point so we shouldn't actually
7870 // get here because of the check above.
7871 assert(0 && "Unknown cast type");
7872 case Instruction::Trunc:
7873 DoXForm = true;
7874 break;
7875 case Instruction::ZExt:
7876 DoXForm = NumCastsRemoved >= 1;
7877 break;
7878 case Instruction::SExt:
7879 DoXForm = NumCastsRemoved >= 2;
7880 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007881 }
7882
7883 if (DoXForm) {
7884 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7885 CI.getOpcode() == Instruction::SExt);
7886 assert(Res->getType() == DestTy);
7887 switch (CI.getOpcode()) {
7888 default: assert(0 && "Unknown cast type!");
7889 case Instruction::Trunc:
7890 case Instruction::BitCast:
7891 // Just replace this cast with the result.
7892 return ReplaceInstUsesWith(CI, Res);
7893 case Instruction::ZExt: {
7894 // We need to emit an AND to clear the high bits.
7895 assert(SrcBitSize < DestBitSize && "Not a zext?");
7896 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7897 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007898 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007899 }
7900 case Instruction::SExt:
7901 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007902 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007903 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7904 CI), DestTy);
7905 }
7906 }
7907 }
7908
7909 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7910 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7911
7912 switch (SrcI->getOpcode()) {
7913 case Instruction::Add:
7914 case Instruction::Mul:
7915 case Instruction::And:
7916 case Instruction::Or:
7917 case Instruction::Xor:
7918 // If we are discarding information, rewrite.
7919 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7920 // Don't insert two casts if they cannot be eliminated. We allow
7921 // two casts to be inserted if the sizes are the same. This could
7922 // only be converting signedness, which is a noop.
7923 if (DestBitSize == SrcBitSize ||
7924 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7925 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7926 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007927 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7928 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007929 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007930 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7931 }
7932 }
7933
7934 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7935 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7936 SrcI->getOpcode() == Instruction::Xor &&
7937 Op1 == ConstantInt::getTrue() &&
7938 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007939 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007940 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007941 }
7942 break;
7943 case Instruction::SDiv:
7944 case Instruction::UDiv:
7945 case Instruction::SRem:
7946 case Instruction::URem:
7947 // If we are just changing the sign, rewrite.
7948 if (DestBitSize == SrcBitSize) {
7949 // Don't insert two casts if they cannot be eliminated. We allow
7950 // two casts to be inserted if the sizes are the same. This could
7951 // only be converting signedness, which is a noop.
7952 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7953 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007954 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7955 Op0, DestTy, *SrcI);
7956 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7957 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007958 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007959 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7960 }
7961 }
7962 break;
7963
7964 case Instruction::Shl:
7965 // Allow changing the sign of the source operand. Do not allow
7966 // changing the size of the shift, UNLESS the shift amount is a
7967 // constant. We must not change variable sized shifts to a smaller
7968 // size, because it is undefined to shift more bits out than exist
7969 // in the value.
7970 if (DestBitSize == SrcBitSize ||
7971 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7972 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7973 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007974 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7975 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007976 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007977 }
7978 break;
7979 case Instruction::AShr:
7980 // If this is a signed shr, and if all bits shifted in are about to be
7981 // truncated off, turn it into an unsigned shr to allow greater
7982 // simplifications.
7983 if (DestBitSize < SrcBitSize &&
7984 isa<ConstantInt>(Op1)) {
7985 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7986 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7987 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007988 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007989 }
7990 }
7991 break;
7992 }
7993 return 0;
7994}
7995
7996Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7997 if (Instruction *Result = commonIntCastTransforms(CI))
7998 return Result;
7999
8000 Value *Src = CI.getOperand(0);
8001 const Type *Ty = CI.getType();
8002 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
8003 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
8004
8005 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
8006 switch (SrcI->getOpcode()) {
8007 default: break;
8008 case Instruction::LShr:
8009 // We can shrink lshr to something smaller if we know the bits shifted in
8010 // are already zeros.
8011 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
8012 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
8013
8014 // Get a mask for the bits shifting in.
8015 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
8016 Value* SrcIOp0 = SrcI->getOperand(0);
8017 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
8018 if (ShAmt >= DestBitWidth) // All zeros.
8019 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
8020
8021 // Okay, we can shrink this. Truncate the input, then return a new
8022 // shift.
8023 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
8024 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
8025 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008026 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008027 }
8028 } else { // This is a variable shr.
8029
8030 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
8031 // more LLVM instructions, but allows '1 << Y' to be hoisted if
8032 // loop-invariant and CSE'd.
8033 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
8034 Value *One = ConstantInt::get(SrcI->getType(), 1);
8035
8036 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008037 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008038 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008039 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008040 SrcI->getOperand(0),
8041 "tmp"), CI);
8042 Value *Zero = Constant::getNullValue(V->getType());
8043 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
8044 }
8045 }
8046 break;
8047 }
8048 }
8049
8050 return 0;
8051}
8052
Evan Chenge3779cf2008-03-24 00:21:34 +00008053/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8054/// in order to eliminate the icmp.
8055Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8056 bool DoXform) {
8057 // If we are just checking for a icmp eq of a single bit and zext'ing it
8058 // to an integer, then shift the bit to the appropriate place and then
8059 // cast to integer to avoid the comparison.
8060 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8061 const APInt &Op1CV = Op1C->getValue();
8062
8063 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8064 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8065 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8066 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8067 if (!DoXform) return ICI;
8068
8069 Value *In = ICI->getOperand(0);
8070 Value *Sh = ConstantInt::get(In->getType(),
8071 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008072 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008073 In->getName()+".lobit"),
8074 CI);
8075 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008076 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008077 false/*ZExt*/, "tmp", &CI);
8078
8079 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8080 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008081 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008082 In->getName()+".not"),
8083 CI);
8084 }
8085
8086 return ReplaceInstUsesWith(CI, In);
8087 }
8088
8089
8090
8091 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8092 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8093 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8094 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8095 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8096 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8097 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8098 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8099 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8100 // This only works for EQ and NE
8101 ICI->isEquality()) {
8102 // If Op1C some other power of two, convert:
8103 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8104 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8105 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8106 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8107
8108 APInt KnownZeroMask(~KnownZero);
8109 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8110 if (!DoXform) return ICI;
8111
8112 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8113 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8114 // (X&4) == 2 --> false
8115 // (X&4) != 2 --> true
8116 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8117 Res = ConstantExpr::getZExt(Res, CI.getType());
8118 return ReplaceInstUsesWith(CI, Res);
8119 }
8120
8121 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8122 Value *In = ICI->getOperand(0);
8123 if (ShiftAmt) {
8124 // Perform a logical shr by shiftamt.
8125 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008126 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008127 ConstantInt::get(In->getType(), ShiftAmt),
8128 In->getName()+".lobit"), CI);
8129 }
8130
8131 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8132 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008133 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008134 InsertNewInstBefore(cast<Instruction>(In), CI);
8135 }
8136
8137 if (CI.getType() == In->getType())
8138 return ReplaceInstUsesWith(CI, In);
8139 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008140 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008141 }
8142 }
8143 }
8144
8145 return 0;
8146}
8147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008148Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8149 // If one of the common conversion will work ..
8150 if (Instruction *Result = commonIntCastTransforms(CI))
8151 return Result;
8152
8153 Value *Src = CI.getOperand(0);
8154
8155 // If this is a cast of a cast
8156 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8157 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8158 // types and if the sizes are just right we can convert this into a logical
8159 // 'and' which will be much cheaper than the pair of casts.
8160 if (isa<TruncInst>(CSrc)) {
8161 // Get the sizes of the types involved
8162 Value *A = CSrc->getOperand(0);
8163 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8164 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8165 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8166 // If we're actually extending zero bits and the trunc is a no-op
8167 if (MidSize < DstSize && SrcSize == DstSize) {
8168 // Replace both of the casts with an And of the type mask.
8169 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8170 Constant *AndConst = ConstantInt::get(AndValue);
8171 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008172 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008173 // Unfortunately, if the type changed, we need to cast it back.
8174 if (And->getType() != CI.getType()) {
8175 And->setName(CSrc->getName()+".mask");
8176 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008177 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008178 }
8179 return And;
8180 }
8181 }
8182 }
8183
Evan Chenge3779cf2008-03-24 00:21:34 +00008184 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8185 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008186
Evan Chenge3779cf2008-03-24 00:21:34 +00008187 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8188 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8189 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8190 // of the (zext icmp) will be transformed.
8191 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8192 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8193 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8194 (transformZExtICmp(LHS, CI, false) ||
8195 transformZExtICmp(RHS, CI, false))) {
8196 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8197 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008198 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008199 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008200 }
8201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008202 return 0;
8203}
8204
8205Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8206 if (Instruction *I = commonIntCastTransforms(CI))
8207 return I;
8208
8209 Value *Src = CI.getOperand(0);
8210
Dan Gohman35b76162008-10-30 20:40:10 +00008211 // Canonicalize sign-extend from i1 to a select.
8212 if (Src->getType() == Type::Int1Ty)
8213 return SelectInst::Create(Src,
8214 ConstantInt::getAllOnesValue(CI.getType()),
8215 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008216
8217 // See if the value being truncated is already sign extended. If so, just
8218 // eliminate the trunc/sext pair.
8219 if (getOpcode(Src) == Instruction::Trunc) {
8220 Value *Op = cast<User>(Src)->getOperand(0);
8221 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8222 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8223 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8224 unsigned NumSignBits = ComputeNumSignBits(Op);
8225
8226 if (OpBits == DestBits) {
8227 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8228 // bits, it is already ready.
8229 if (NumSignBits > DestBits-MidBits)
8230 return ReplaceInstUsesWith(CI, Op);
8231 } else if (OpBits < DestBits) {
8232 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8233 // bits, just sext from i32.
8234 if (NumSignBits > OpBits-MidBits)
8235 return new SExtInst(Op, CI.getType(), "tmp");
8236 } else {
8237 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8238 // bits, just truncate to i32.
8239 if (NumSignBits > OpBits-MidBits)
8240 return new TruncInst(Op, CI.getType(), "tmp");
8241 }
8242 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008243
8244 // If the input is a shl/ashr pair of a same constant, then this is a sign
8245 // extension from a smaller value. If we could trust arbitrary bitwidth
8246 // integers, we could turn this into a truncate to the smaller bit and then
8247 // use a sext for the whole extension. Since we don't, look deeper and check
8248 // for a truncate. If the source and dest are the same type, eliminate the
8249 // trunc and extend and just do shifts. For example, turn:
8250 // %a = trunc i32 %i to i8
8251 // %b = shl i8 %a, 6
8252 // %c = ashr i8 %b, 6
8253 // %d = sext i8 %c to i32
8254 // into:
8255 // %a = shl i32 %i, 30
8256 // %d = ashr i32 %a, 30
8257 Value *A = 0;
8258 ConstantInt *BA = 0, *CA = 0;
8259 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8260 m_ConstantInt(CA))) &&
8261 BA == CA && isa<TruncInst>(A)) {
8262 Value *I = cast<TruncInst>(A)->getOperand(0);
8263 if (I->getType() == CI.getType()) {
8264 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8265 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8266 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8267 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8268 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8269 CI.getName()), CI);
8270 return BinaryOperator::CreateAShr(I, ShAmtV);
8271 }
8272 }
8273
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008274 return 0;
8275}
8276
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008277/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8278/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008279static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008280 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008281 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008282 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8283 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008284 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008285 return 0;
8286}
8287
8288/// LookThroughFPExtensions - If this is an fp extension instruction, look
8289/// through it until we get the source value.
8290static Value *LookThroughFPExtensions(Value *V) {
8291 if (Instruction *I = dyn_cast<Instruction>(V))
8292 if (I->getOpcode() == Instruction::FPExt)
8293 return LookThroughFPExtensions(I->getOperand(0));
8294
8295 // If this value is a constant, return the constant in the smallest FP type
8296 // that can accurately represent it. This allows us to turn
8297 // (float)((double)X+2.0) into x+2.0f.
8298 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8299 if (CFP->getType() == Type::PPC_FP128Ty)
8300 return V; // No constant folding of this.
8301 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008302 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008303 return V;
8304 if (CFP->getType() == Type::DoubleTy)
8305 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008306 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008307 return V;
8308 // Don't try to shrink to various long double types.
8309 }
8310
8311 return V;
8312}
8313
8314Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8315 if (Instruction *I = commonCastTransforms(CI))
8316 return I;
8317
8318 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8319 // smaller than the destination type, we can eliminate the truncate by doing
8320 // the add as the smaller type. This applies to add/sub/mul/div as well as
8321 // many builtins (sqrt, etc).
8322 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8323 if (OpI && OpI->hasOneUse()) {
8324 switch (OpI->getOpcode()) {
8325 default: break;
8326 case Instruction::Add:
8327 case Instruction::Sub:
8328 case Instruction::Mul:
8329 case Instruction::FDiv:
8330 case Instruction::FRem:
8331 const Type *SrcTy = OpI->getType();
8332 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8333 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8334 if (LHSTrunc->getType() != SrcTy &&
8335 RHSTrunc->getType() != SrcTy) {
8336 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8337 // If the source types were both smaller than the destination type of
8338 // the cast, do this xform.
8339 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8340 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8341 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8342 CI.getType(), CI);
8343 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8344 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008345 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008346 }
8347 }
8348 break;
8349 }
8350 }
8351 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008352}
8353
8354Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8355 return commonCastTransforms(CI);
8356}
8357
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008358Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008359 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8360 if (OpI == 0)
8361 return commonCastTransforms(FI);
8362
8363 // fptoui(uitofp(X)) --> X
8364 // fptoui(sitofp(X)) --> X
8365 // This is safe if the intermediate type has enough bits in its mantissa to
8366 // accurately represent all values of X. For example, do not do this with
8367 // i64->float->i64. This is also safe for sitofp case, because any negative
8368 // 'X' value would cause an undefined result for the fptoui.
8369 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8370 OpI->getOperand(0)->getType() == FI.getType() &&
8371 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8372 OpI->getType()->getFPMantissaWidth())
8373 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008374
8375 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008376}
8377
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008378Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008379 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8380 if (OpI == 0)
8381 return commonCastTransforms(FI);
8382
8383 // fptosi(sitofp(X)) --> X
8384 // fptosi(uitofp(X)) --> X
8385 // This is safe if the intermediate type has enough bits in its mantissa to
8386 // accurately represent all values of X. For example, do not do this with
8387 // i64->float->i64. This is also safe for sitofp case, because any negative
8388 // 'X' value would cause an undefined result for the fptoui.
8389 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8390 OpI->getOperand(0)->getType() == FI.getType() &&
8391 (int)FI.getType()->getPrimitiveSizeInBits() <=
8392 OpI->getType()->getFPMantissaWidth())
8393 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008394
8395 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008396}
8397
8398Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8399 return commonCastTransforms(CI);
8400}
8401
8402Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8403 return commonCastTransforms(CI);
8404}
8405
8406Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8407 return commonPointerCastTransforms(CI);
8408}
8409
Chris Lattner7c1626482008-01-08 07:23:51 +00008410Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8411 if (Instruction *I = commonCastTransforms(CI))
8412 return I;
8413
8414 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8415 if (!DestPointee->isSized()) return 0;
8416
8417 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8418 ConstantInt *Cst;
8419 Value *X;
8420 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8421 m_ConstantInt(Cst)))) {
8422 // If the source and destination operands have the same type, see if this
8423 // is a single-index GEP.
8424 if (X->getType() == CI.getType()) {
8425 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008426 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008427
8428 // Convert the constant to intptr type.
8429 APInt Offset = Cst->getValue();
8430 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8431
8432 // If Offset is evenly divisible by Size, we can do this xform.
8433 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8434 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008435 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008436 }
8437 }
8438 // TODO: Could handle other cases, e.g. where add is indexing into field of
8439 // struct etc.
8440 } else if (CI.getOperand(0)->hasOneUse() &&
8441 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8442 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8443 // "inttoptr+GEP" instead of "add+intptr".
8444
8445 // Get the size of the pointee type.
8446 uint64_t Size = TD->getABITypeSize(DestPointee);
8447
8448 // Convert the constant to intptr type.
8449 APInt Offset = Cst->getValue();
8450 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8451
8452 // If Offset is evenly divisible by Size, we can do this xform.
8453 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8454 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8455
8456 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8457 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008458 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008459 }
8460 }
8461 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008462}
8463
8464Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8465 // If the operands are integer typed then apply the integer transforms,
8466 // otherwise just apply the common ones.
8467 Value *Src = CI.getOperand(0);
8468 const Type *SrcTy = Src->getType();
8469 const Type *DestTy = CI.getType();
8470
8471 if (SrcTy->isInteger() && DestTy->isInteger()) {
8472 if (Instruction *Result = commonIntCastTransforms(CI))
8473 return Result;
8474 } else if (isa<PointerType>(SrcTy)) {
8475 if (Instruction *I = commonPointerCastTransforms(CI))
8476 return I;
8477 } else {
8478 if (Instruction *Result = commonCastTransforms(CI))
8479 return Result;
8480 }
8481
8482
8483 // Get rid of casts from one type to the same type. These are useless and can
8484 // be replaced by the operand.
8485 if (DestTy == Src->getType())
8486 return ReplaceInstUsesWith(CI, Src);
8487
8488 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8489 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8490 const Type *DstElTy = DstPTy->getElementType();
8491 const Type *SrcElTy = SrcPTy->getElementType();
8492
Nate Begemandf5b3612008-03-31 00:22:16 +00008493 // If the address spaces don't match, don't eliminate the bitcast, which is
8494 // required for changing types.
8495 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8496 return 0;
8497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008498 // If we are casting a malloc or alloca to a pointer to a type of the same
8499 // size, rewrite the allocation instruction to allocate the "right" type.
8500 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8501 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8502 return V;
8503
8504 // If the source and destination are pointers, and this cast is equivalent
8505 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8506 // This can enhance SROA and other transforms that want type-safe pointers.
8507 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8508 unsigned NumZeros = 0;
8509 while (SrcElTy != DstElTy &&
8510 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8511 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8512 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8513 ++NumZeros;
8514 }
8515
8516 // If we found a path from the src to dest, create the getelementptr now.
8517 if (SrcElTy == DstElTy) {
8518 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008519 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8520 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008521 }
8522 }
8523
8524 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8525 if (SVI->hasOneUse()) {
8526 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8527 // a bitconvert to a vector with the same # elts.
8528 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008529 cast<VectorType>(DestTy)->getNumElements() ==
8530 SVI->getType()->getNumElements() &&
8531 SVI->getType()->getNumElements() ==
8532 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008533 CastInst *Tmp;
8534 // If either of the operands is a cast from CI.getType(), then
8535 // evaluating the shuffle in the casted destination's type will allow
8536 // us to eliminate at least one cast.
8537 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8538 Tmp->getOperand(0)->getType() == DestTy) ||
8539 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8540 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008541 Value *LHS = InsertCastBefore(Instruction::BitCast,
8542 SVI->getOperand(0), DestTy, CI);
8543 Value *RHS = InsertCastBefore(Instruction::BitCast,
8544 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008545 // Return a new shuffle vector. Use the same element ID's, as we
8546 // know the vector types match #elts.
8547 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8548 }
8549 }
8550 }
8551 }
8552 return 0;
8553}
8554
8555/// GetSelectFoldableOperands - We want to turn code that looks like this:
8556/// %C = or %A, %B
8557/// %D = select %cond, %C, %A
8558/// into:
8559/// %C = select %cond, %B, 0
8560/// %D = or %A, %C
8561///
8562/// Assuming that the specified instruction is an operand to the select, return
8563/// a bitmask indicating which operands of this instruction are foldable if they
8564/// equal the other incoming value of the select.
8565///
8566static unsigned GetSelectFoldableOperands(Instruction *I) {
8567 switch (I->getOpcode()) {
8568 case Instruction::Add:
8569 case Instruction::Mul:
8570 case Instruction::And:
8571 case Instruction::Or:
8572 case Instruction::Xor:
8573 return 3; // Can fold through either operand.
8574 case Instruction::Sub: // Can only fold on the amount subtracted.
8575 case Instruction::Shl: // Can only fold on the shift amount.
8576 case Instruction::LShr:
8577 case Instruction::AShr:
8578 return 1;
8579 default:
8580 return 0; // Cannot fold
8581 }
8582}
8583
8584/// GetSelectFoldableConstant - For the same transformation as the previous
8585/// function, return the identity constant that goes into the select.
8586static Constant *GetSelectFoldableConstant(Instruction *I) {
8587 switch (I->getOpcode()) {
8588 default: assert(0 && "This cannot happen!"); abort();
8589 case Instruction::Add:
8590 case Instruction::Sub:
8591 case Instruction::Or:
8592 case Instruction::Xor:
8593 case Instruction::Shl:
8594 case Instruction::LShr:
8595 case Instruction::AShr:
8596 return Constant::getNullValue(I->getType());
8597 case Instruction::And:
8598 return Constant::getAllOnesValue(I->getType());
8599 case Instruction::Mul:
8600 return ConstantInt::get(I->getType(), 1);
8601 }
8602}
8603
8604/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8605/// have the same opcode and only one use each. Try to simplify this.
8606Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8607 Instruction *FI) {
8608 if (TI->getNumOperands() == 1) {
8609 // If this is a non-volatile load or a cast from the same type,
8610 // merge.
8611 if (TI->isCast()) {
8612 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8613 return 0;
8614 } else {
8615 return 0; // unknown unary op.
8616 }
8617
8618 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008619 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8620 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008621 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008622 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008623 TI->getType());
8624 }
8625
8626 // Only handle binary operators here.
8627 if (!isa<BinaryOperator>(TI))
8628 return 0;
8629
8630 // Figure out if the operations have any operands in common.
8631 Value *MatchOp, *OtherOpT, *OtherOpF;
8632 bool MatchIsOpZero;
8633 if (TI->getOperand(0) == FI->getOperand(0)) {
8634 MatchOp = TI->getOperand(0);
8635 OtherOpT = TI->getOperand(1);
8636 OtherOpF = FI->getOperand(1);
8637 MatchIsOpZero = true;
8638 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8639 MatchOp = TI->getOperand(1);
8640 OtherOpT = TI->getOperand(0);
8641 OtherOpF = FI->getOperand(0);
8642 MatchIsOpZero = false;
8643 } else if (!TI->isCommutative()) {
8644 return 0;
8645 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8646 MatchOp = TI->getOperand(0);
8647 OtherOpT = TI->getOperand(1);
8648 OtherOpF = FI->getOperand(0);
8649 MatchIsOpZero = true;
8650 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8651 MatchOp = TI->getOperand(1);
8652 OtherOpT = TI->getOperand(0);
8653 OtherOpF = FI->getOperand(1);
8654 MatchIsOpZero = true;
8655 } else {
8656 return 0;
8657 }
8658
8659 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008660 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8661 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008662 InsertNewInstBefore(NewSI, SI);
8663
8664 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8665 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008666 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008667 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008668 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008669 }
8670 assert(0 && "Shouldn't get here");
8671 return 0;
8672}
8673
Dan Gohman58c09632008-09-16 18:46:06 +00008674/// visitSelectInstWithICmp - Visit a SelectInst that has an
8675/// ICmpInst as its first operand.
8676///
8677Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8678 ICmpInst *ICI) {
8679 bool Changed = false;
8680 ICmpInst::Predicate Pred = ICI->getPredicate();
8681 Value *CmpLHS = ICI->getOperand(0);
8682 Value *CmpRHS = ICI->getOperand(1);
8683 Value *TrueVal = SI.getTrueValue();
8684 Value *FalseVal = SI.getFalseValue();
8685
8686 // Check cases where the comparison is with a constant that
8687 // can be adjusted to fit the min/max idiom. We may edit ICI in
8688 // place here, so make sure the select is the only user.
8689 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008690 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008691 switch (Pred) {
8692 default: break;
8693 case ICmpInst::ICMP_ULT:
8694 case ICmpInst::ICMP_SLT: {
8695 // X < MIN ? T : F --> F
8696 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8697 return ReplaceInstUsesWith(SI, FalseVal);
8698 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8699 Constant *AdjustedRHS = SubOne(CI);
8700 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8701 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8702 Pred = ICmpInst::getSwappedPredicate(Pred);
8703 CmpRHS = AdjustedRHS;
8704 std::swap(FalseVal, TrueVal);
8705 ICI->setPredicate(Pred);
8706 ICI->setOperand(1, CmpRHS);
8707 SI.setOperand(1, TrueVal);
8708 SI.setOperand(2, FalseVal);
8709 Changed = true;
8710 }
8711 break;
8712 }
8713 case ICmpInst::ICMP_UGT:
8714 case ICmpInst::ICMP_SGT: {
8715 // X > MAX ? T : F --> F
8716 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8717 return ReplaceInstUsesWith(SI, FalseVal);
8718 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8719 Constant *AdjustedRHS = AddOne(CI);
8720 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8721 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8722 Pred = ICmpInst::getSwappedPredicate(Pred);
8723 CmpRHS = AdjustedRHS;
8724 std::swap(FalseVal, TrueVal);
8725 ICI->setPredicate(Pred);
8726 ICI->setOperand(1, CmpRHS);
8727 SI.setOperand(1, TrueVal);
8728 SI.setOperand(2, FalseVal);
8729 Changed = true;
8730 }
8731 break;
8732 }
8733 }
8734
Dan Gohman35b76162008-10-30 20:40:10 +00008735 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8736 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008737 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8738 if (match(TrueVal, m_ConstantInt(-1)) &&
8739 match(FalseVal, m_ConstantInt(0)))
8740 Pred = ICI->getPredicate();
8741 else if (match(TrueVal, m_ConstantInt(0)) &&
8742 match(FalseVal, m_ConstantInt(-1)))
8743 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8744
Dan Gohman35b76162008-10-30 20:40:10 +00008745 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8746 // If we are just checking for a icmp eq of a single bit and zext'ing it
8747 // to an integer, then shift the bit to the appropriate place and then
8748 // cast to integer to avoid the comparison.
8749 const APInt &Op1CV = CI->getValue();
8750
8751 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8752 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8753 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008754 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008755 Value *In = ICI->getOperand(0);
8756 Value *Sh = ConstantInt::get(In->getType(),
8757 In->getType()->getPrimitiveSizeInBits()-1);
8758 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8759 In->getName()+".lobit"),
8760 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008761 if (In->getType() != SI.getType())
8762 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008763 true/*SExt*/, "tmp", ICI);
8764
8765 if (Pred == ICmpInst::ICMP_SGT)
8766 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8767 In->getName()+".not"), *ICI);
8768
8769 return ReplaceInstUsesWith(SI, In);
8770 }
8771 }
8772 }
8773
Dan Gohman58c09632008-09-16 18:46:06 +00008774 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8775 // Transform (X == Y) ? X : Y -> Y
8776 if (Pred == ICmpInst::ICMP_EQ)
8777 return ReplaceInstUsesWith(SI, FalseVal);
8778 // Transform (X != Y) ? X : Y -> X
8779 if (Pred == ICmpInst::ICMP_NE)
8780 return ReplaceInstUsesWith(SI, TrueVal);
8781 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8782
8783 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8784 // Transform (X == Y) ? Y : X -> X
8785 if (Pred == ICmpInst::ICMP_EQ)
8786 return ReplaceInstUsesWith(SI, FalseVal);
8787 // Transform (X != Y) ? Y : X -> Y
8788 if (Pred == ICmpInst::ICMP_NE)
8789 return ReplaceInstUsesWith(SI, TrueVal);
8790 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8791 }
8792
8793 /// NOTE: if we wanted to, this is where to detect integer ABS
8794
8795 return Changed ? &SI : 0;
8796}
8797
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008798Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8799 Value *CondVal = SI.getCondition();
8800 Value *TrueVal = SI.getTrueValue();
8801 Value *FalseVal = SI.getFalseValue();
8802
8803 // select true, X, Y -> X
8804 // select false, X, Y -> Y
8805 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8806 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8807
8808 // select C, X, X -> X
8809 if (TrueVal == FalseVal)
8810 return ReplaceInstUsesWith(SI, TrueVal);
8811
8812 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8813 return ReplaceInstUsesWith(SI, FalseVal);
8814 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8815 return ReplaceInstUsesWith(SI, TrueVal);
8816 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8817 if (isa<Constant>(TrueVal))
8818 return ReplaceInstUsesWith(SI, TrueVal);
8819 else
8820 return ReplaceInstUsesWith(SI, FalseVal);
8821 }
8822
8823 if (SI.getType() == Type::Int1Ty) {
8824 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8825 if (C->getZExtValue()) {
8826 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008827 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008828 } else {
8829 // Change: A = select B, false, C --> A = and !B, C
8830 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008831 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008832 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008833 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008834 }
8835 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8836 if (C->getZExtValue() == false) {
8837 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008838 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008839 } else {
8840 // Change: A = select B, C, true --> A = or !B, C
8841 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008842 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008843 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008844 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008845 }
8846 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008847
8848 // select a, b, a -> a&b
8849 // select a, a, b -> a|b
8850 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008851 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008852 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008853 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008854 }
8855
8856 // Selecting between two integer constants?
8857 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8858 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8859 // select C, 1, 0 -> zext C to int
8860 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008861 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008862 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8863 // select C, 0, 1 -> zext !C to int
8864 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008865 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008866 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008867 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008868 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008869
8870 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8871
8872 // (x <s 0) ? -1 : 0 -> ashr x, 31
8873 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8874 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8875 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8876 // The comparison constant and the result are not neccessarily the
8877 // same width. Make an all-ones value by inserting a AShr.
8878 Value *X = IC->getOperand(0);
8879 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8880 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008881 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008882 ShAmt, "ones");
8883 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008884
8885 // Then cast to the appropriate width.
8886 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008887 }
8888 }
8889
8890
8891 // If one of the constants is zero (we know they can't both be) and we
8892 // have an icmp instruction with zero, and we have an 'and' with the
8893 // non-constant value, eliminate this whole mess. This corresponds to
8894 // cases like this: ((X & 27) ? 27 : 0)
8895 if (TrueValC->isZero() || FalseValC->isZero())
8896 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8897 cast<Constant>(IC->getOperand(1))->isNullValue())
8898 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8899 if (ICA->getOpcode() == Instruction::And &&
8900 isa<ConstantInt>(ICA->getOperand(1)) &&
8901 (ICA->getOperand(1) == TrueValC ||
8902 ICA->getOperand(1) == FalseValC) &&
8903 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8904 // Okay, now we know that everything is set up, we just don't
8905 // know whether we have a icmp_ne or icmp_eq and whether the
8906 // true or false val is the zero.
8907 bool ShouldNotVal = !TrueValC->isZero();
8908 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8909 Value *V = ICA;
8910 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008911 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008912 Instruction::Xor, V, ICA->getOperand(1)), SI);
8913 return ReplaceInstUsesWith(SI, V);
8914 }
8915 }
8916 }
8917
8918 // See if we are selecting two values based on a comparison of the two values.
8919 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8920 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8921 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008922 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8923 // This is not safe in general for floating point:
8924 // consider X== -0, Y== +0.
8925 // It becomes safe if either operand is a nonzero constant.
8926 ConstantFP *CFPt, *CFPf;
8927 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8928 !CFPt->getValueAPF().isZero()) ||
8929 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8930 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008931 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008932 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008933 // Transform (X != Y) ? X : Y -> X
8934 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8935 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008936 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008937
8938 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8939 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008940 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8941 // This is not safe in general for floating point:
8942 // consider X== -0, Y== +0.
8943 // It becomes safe if either operand is a nonzero constant.
8944 ConstantFP *CFPt, *CFPf;
8945 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8946 !CFPt->getValueAPF().isZero()) ||
8947 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8948 !CFPf->getValueAPF().isZero()))
8949 return ReplaceInstUsesWith(SI, FalseVal);
8950 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008951 // Transform (X != Y) ? Y : X -> Y
8952 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8953 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008954 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008955 }
Dan Gohman58c09632008-09-16 18:46:06 +00008956 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008957 }
8958
8959 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008960 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8961 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8962 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008963
8964 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8965 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8966 if (TI->hasOneUse() && FI->hasOneUse()) {
8967 Instruction *AddOp = 0, *SubOp = 0;
8968
8969 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8970 if (TI->getOpcode() == FI->getOpcode())
8971 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8972 return IV;
8973
8974 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8975 // even legal for FP.
8976 if (TI->getOpcode() == Instruction::Sub &&
8977 FI->getOpcode() == Instruction::Add) {
8978 AddOp = FI; SubOp = TI;
8979 } else if (FI->getOpcode() == Instruction::Sub &&
8980 TI->getOpcode() == Instruction::Add) {
8981 AddOp = TI; SubOp = FI;
8982 }
8983
8984 if (AddOp) {
8985 Value *OtherAddOp = 0;
8986 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8987 OtherAddOp = AddOp->getOperand(1);
8988 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8989 OtherAddOp = AddOp->getOperand(0);
8990 }
8991
8992 if (OtherAddOp) {
8993 // So at this point we know we have (Y -> OtherAddOp):
8994 // select C, (add X, Y), (sub X, Z)
8995 Value *NegVal; // Compute -Z
8996 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8997 NegVal = ConstantExpr::getNeg(C);
8998 } else {
8999 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00009000 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009001 }
9002
9003 Value *NewTrueOp = OtherAddOp;
9004 Value *NewFalseOp = NegVal;
9005 if (AddOp != TI)
9006 std::swap(NewTrueOp, NewFalseOp);
9007 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009008 SelectInst::Create(CondVal, NewTrueOp,
9009 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009010
9011 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00009012 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009013 }
9014 }
9015 }
9016
9017 // See if we can fold the select into one of our operands.
9018 if (SI.getType()->isInteger()) {
9019 // See the comment above GetSelectFoldableOperands for a description of the
9020 // transformation we are doing here.
9021 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
9022 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
9023 !isa<Constant>(FalseVal))
9024 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
9025 unsigned OpToFold = 0;
9026 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
9027 OpToFold = 1;
9028 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9029 OpToFold = 2;
9030 }
9031
9032 if (OpToFold) {
9033 Constant *C = GetSelectFoldableConstant(TVI);
9034 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009035 SelectInst::Create(SI.getCondition(),
9036 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009037 InsertNewInstBefore(NewSel, SI);
9038 NewSel->takeName(TVI);
9039 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009040 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009041 else {
9042 assert(0 && "Unknown instruction!!");
9043 }
9044 }
9045 }
9046
9047 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9048 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9049 !isa<Constant>(TrueVal))
9050 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9051 unsigned OpToFold = 0;
9052 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9053 OpToFold = 1;
9054 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9055 OpToFold = 2;
9056 }
9057
9058 if (OpToFold) {
9059 Constant *C = GetSelectFoldableConstant(FVI);
9060 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009061 SelectInst::Create(SI.getCondition(), C,
9062 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009063 InsertNewInstBefore(NewSel, SI);
9064 NewSel->takeName(FVI);
9065 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009066 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009067 else
9068 assert(0 && "Unknown instruction!!");
9069 }
9070 }
9071 }
9072
9073 if (BinaryOperator::isNot(CondVal)) {
9074 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9075 SI.setOperand(1, FalseVal);
9076 SI.setOperand(2, TrueVal);
9077 return &SI;
9078 }
9079
9080 return 0;
9081}
9082
Dan Gohman2d648bb2008-04-10 18:43:06 +00009083/// EnforceKnownAlignment - If the specified pointer points to an object that
9084/// we control, modify the object's alignment to PrefAlign. This isn't
9085/// often possible though. If alignment is important, a more reliable approach
9086/// is to simply align all global variables and allocation instructions to
9087/// their preferred alignment from the beginning.
9088///
9089static unsigned EnforceKnownAlignment(Value *V,
9090 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009091
Dan Gohman2d648bb2008-04-10 18:43:06 +00009092 User *U = dyn_cast<User>(V);
9093 if (!U) return Align;
9094
9095 switch (getOpcode(U)) {
9096 default: break;
9097 case Instruction::BitCast:
9098 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9099 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009100 // If all indexes are zero, it is just the alignment of the base pointer.
9101 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009102 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009103 if (!isa<Constant>(*i) ||
9104 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009105 AllZeroOperands = false;
9106 break;
9107 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009108
9109 if (AllZeroOperands) {
9110 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009111 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009112 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009113 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009114 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009115 }
9116
9117 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9118 // If there is a large requested alignment and we can, bump up the alignment
9119 // of the global.
9120 if (!GV->isDeclaration()) {
9121 GV->setAlignment(PrefAlign);
9122 Align = PrefAlign;
9123 }
9124 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9125 // If there is a requested alignment and if this is an alloca, round up. We
9126 // don't do this for malloc, because some systems can't respect the request.
9127 if (isa<AllocaInst>(AI)) {
9128 AI->setAlignment(PrefAlign);
9129 Align = PrefAlign;
9130 }
9131 }
9132
9133 return Align;
9134}
9135
9136/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9137/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9138/// and it is more than the alignment of the ultimate object, see if we can
9139/// increase the alignment of the ultimate object, making this check succeed.
9140unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9141 unsigned PrefAlign) {
9142 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9143 sizeof(PrefAlign) * CHAR_BIT;
9144 APInt Mask = APInt::getAllOnesValue(BitWidth);
9145 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9146 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9147 unsigned TrailZ = KnownZero.countTrailingOnes();
9148 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9149
9150 if (PrefAlign > Align)
9151 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9152
9153 // We don't need to make any adjustment.
9154 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009155}
9156
Chris Lattner00ae5132008-01-13 23:50:23 +00009157Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009158 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9159 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009160 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9161 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9162
9163 if (CopyAlign < MinAlign) {
9164 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9165 return MI;
9166 }
9167
9168 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9169 // load/store.
9170 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9171 if (MemOpLength == 0) return 0;
9172
Chris Lattnerc669fb62008-01-14 00:28:35 +00009173 // Source and destination pointer types are always "i8*" for intrinsic. See
9174 // if the size is something we can handle with a single primitive load/store.
9175 // A single load+store correctly handles overlapping memory in the memmove
9176 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009177 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009178 if (Size == 0) return MI; // Delete this mem transfer.
9179
9180 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009181 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009182
Chris Lattnerc669fb62008-01-14 00:28:35 +00009183 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009184 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009185
9186 // Memcpy forces the use of i8* for the source and destination. That means
9187 // that if you're using memcpy to move one double around, you'll get a cast
9188 // from double* to i8*. We'd much rather use a double load+store rather than
9189 // an i64 load+store, here because this improves the odds that the source or
9190 // dest address will be promotable. See if we can find a better type than the
9191 // integer datatype.
9192 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9193 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9194 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9195 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9196 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009197 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009198 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9199 if (STy->getNumElements() == 1)
9200 SrcETy = STy->getElementType(0);
9201 else
9202 break;
9203 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9204 if (ATy->getNumElements() == 1)
9205 SrcETy = ATy->getElementType();
9206 else
9207 break;
9208 } else
9209 break;
9210 }
9211
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009212 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009213 NewPtrTy = PointerType::getUnqual(SrcETy);
9214 }
9215 }
9216
9217
Chris Lattner00ae5132008-01-13 23:50:23 +00009218 // If the memcpy/memmove provides better alignment info than we can
9219 // infer, use it.
9220 SrcAlign = std::max(SrcAlign, CopyAlign);
9221 DstAlign = std::max(DstAlign, CopyAlign);
9222
9223 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9224 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009225 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9226 InsertNewInstBefore(L, *MI);
9227 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9228
9229 // Set the size of the copy to 0, it will be deleted on the next iteration.
9230 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9231 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009232}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009233
Chris Lattner5af8a912008-04-30 06:39:11 +00009234Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9235 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9236 if (MI->getAlignment()->getZExtValue() < Alignment) {
9237 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9238 return MI;
9239 }
9240
9241 // Extract the length and alignment and fill if they are constant.
9242 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9243 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9244 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9245 return 0;
9246 uint64_t Len = LenC->getZExtValue();
9247 Alignment = MI->getAlignment()->getZExtValue();
9248
9249 // If the length is zero, this is a no-op
9250 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9251
9252 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9253 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9254 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9255
9256 Value *Dest = MI->getDest();
9257 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9258
9259 // Alignment 0 is identity for alignment 1 for memset, but not store.
9260 if (Alignment == 0) Alignment = 1;
9261
9262 // Extract the fill value and store.
9263 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9264 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9265 Alignment), *MI);
9266
9267 // Set the size of the copy to 0, it will be deleted on the next iteration.
9268 MI->setLength(Constant::getNullValue(LenC->getType()));
9269 return MI;
9270 }
9271
9272 return 0;
9273}
9274
9275
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009276/// visitCallInst - CallInst simplification. This mostly only handles folding
9277/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9278/// the heavy lifting.
9279///
9280Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9281 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9282 if (!II) return visitCallSite(&CI);
9283
9284 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9285 // visitCallSite.
9286 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9287 bool Changed = false;
9288
9289 // memmove/cpy/set of zero bytes is a noop.
9290 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9291 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9292
9293 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9294 if (CI->getZExtValue() == 1) {
9295 // Replace the instruction with just byte operations. We would
9296 // transform other cases to loads/stores, but we don't know if
9297 // alignment is sufficient.
9298 }
9299 }
9300
9301 // If we have a memmove and the source operation is a constant global,
9302 // then the source and dest pointers can't alias, so we can change this
9303 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009304 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009305 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9306 if (GVSrc->isConstant()) {
9307 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009308 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9309 const Type *Tys[1];
9310 Tys[0] = CI.getOperand(3)->getType();
9311 CI.setOperand(0,
9312 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009313 Changed = true;
9314 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009315
9316 // memmove(x,x,size) -> noop.
9317 if (MMI->getSource() == MMI->getDest())
9318 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009319 }
9320
9321 // If we can determine a pointer alignment that is bigger than currently
9322 // set, update the alignment.
9323 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009324 if (Instruction *I = SimplifyMemTransfer(MI))
9325 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009326 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9327 if (Instruction *I = SimplifyMemSet(MSI))
9328 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009329 }
9330
9331 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009332 }
9333
9334 switch (II->getIntrinsicID()) {
9335 default: break;
9336 case Intrinsic::bswap:
9337 // bswap(bswap(x)) -> x
9338 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9339 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9340 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9341 break;
9342 case Intrinsic::ppc_altivec_lvx:
9343 case Intrinsic::ppc_altivec_lvxl:
9344 case Intrinsic::x86_sse_loadu_ps:
9345 case Intrinsic::x86_sse2_loadu_pd:
9346 case Intrinsic::x86_sse2_loadu_dq:
9347 // Turn PPC lvx -> load if the pointer is known aligned.
9348 // Turn X86 loadups -> load if the pointer is known aligned.
9349 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9350 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9351 PointerType::getUnqual(II->getType()),
9352 CI);
9353 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009354 }
Chris Lattner989ba312008-06-18 04:33:20 +00009355 break;
9356 case Intrinsic::ppc_altivec_stvx:
9357 case Intrinsic::ppc_altivec_stvxl:
9358 // Turn stvx -> store if the pointer is known aligned.
9359 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9360 const Type *OpPtrTy =
9361 PointerType::getUnqual(II->getOperand(1)->getType());
9362 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9363 return new StoreInst(II->getOperand(1), Ptr);
9364 }
9365 break;
9366 case Intrinsic::x86_sse_storeu_ps:
9367 case Intrinsic::x86_sse2_storeu_pd:
9368 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009369 // Turn X86 storeu -> store if the pointer is known aligned.
9370 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9371 const Type *OpPtrTy =
9372 PointerType::getUnqual(II->getOperand(2)->getType());
9373 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9374 return new StoreInst(II->getOperand(2), Ptr);
9375 }
9376 break;
9377
9378 case Intrinsic::x86_sse_cvttss2si: {
9379 // These intrinsics only demands the 0th element of its input vector. If
9380 // we can simplify the input based on that, do so now.
9381 uint64_t UndefElts;
9382 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9383 UndefElts)) {
9384 II->setOperand(1, V);
9385 return II;
9386 }
9387 break;
9388 }
9389
9390 case Intrinsic::ppc_altivec_vperm:
9391 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9392 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9393 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009394
Chris Lattner989ba312008-06-18 04:33:20 +00009395 // Check that all of the elements are integer constants or undefs.
9396 bool AllEltsOk = true;
9397 for (unsigned i = 0; i != 16; ++i) {
9398 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9399 !isa<UndefValue>(Mask->getOperand(i))) {
9400 AllEltsOk = false;
9401 break;
9402 }
9403 }
9404
9405 if (AllEltsOk) {
9406 // Cast the input vectors to byte vectors.
9407 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9408 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9409 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009410
Chris Lattner989ba312008-06-18 04:33:20 +00009411 // Only extract each element once.
9412 Value *ExtractedElts[32];
9413 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9414
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009415 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009416 if (isa<UndefValue>(Mask->getOperand(i)))
9417 continue;
9418 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9419 Idx &= 31; // Match the hardware behavior.
9420
9421 if (ExtractedElts[Idx] == 0) {
9422 Instruction *Elt =
9423 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9424 InsertNewInstBefore(Elt, CI);
9425 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009426 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009427
Chris Lattner989ba312008-06-18 04:33:20 +00009428 // Insert this value into the result vector.
9429 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9430 i, "tmp");
9431 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009432 }
Chris Lattner989ba312008-06-18 04:33:20 +00009433 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009434 }
Chris Lattner989ba312008-06-18 04:33:20 +00009435 }
9436 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009437
Chris Lattner989ba312008-06-18 04:33:20 +00009438 case Intrinsic::stackrestore: {
9439 // If the save is right next to the restore, remove the restore. This can
9440 // happen when variable allocas are DCE'd.
9441 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9442 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9443 BasicBlock::iterator BI = SS;
9444 if (&*++BI == II)
9445 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009446 }
Chris Lattner989ba312008-06-18 04:33:20 +00009447 }
9448
9449 // Scan down this block to see if there is another stack restore in the
9450 // same block without an intervening call/alloca.
9451 BasicBlock::iterator BI = II;
9452 TerminatorInst *TI = II->getParent()->getTerminator();
9453 bool CannotRemove = false;
9454 for (++BI; &*BI != TI; ++BI) {
9455 if (isa<AllocaInst>(BI)) {
9456 CannotRemove = true;
9457 break;
9458 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009459 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9460 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9461 // If there is a stackrestore below this one, remove this one.
9462 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9463 return EraseInstFromFunction(CI);
9464 // Otherwise, ignore the intrinsic.
9465 } else {
9466 // If we found a non-intrinsic call, we can't remove the stack
9467 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009468 CannotRemove = true;
9469 break;
9470 }
Chris Lattner989ba312008-06-18 04:33:20 +00009471 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009472 }
Chris Lattner989ba312008-06-18 04:33:20 +00009473
9474 // If the stack restore is in a return/unwind block and if there are no
9475 // allocas or calls between the restore and the return, nuke the restore.
9476 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9477 return EraseInstFromFunction(CI);
9478 break;
9479 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009480 }
9481
9482 return visitCallSite(II);
9483}
9484
9485// InvokeInst simplification
9486//
9487Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9488 return visitCallSite(&II);
9489}
9490
Dale Johannesen96021832008-04-25 21:16:07 +00009491/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9492/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009493static bool isSafeToEliminateVarargsCast(const CallSite CS,
9494 const CastInst * const CI,
9495 const TargetData * const TD,
9496 const int ix) {
9497 if (!CI->isLosslessCast())
9498 return false;
9499
9500 // The size of ByVal arguments is derived from the type, so we
9501 // can't change to a type with a different size. If the size were
9502 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009503 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009504 return true;
9505
9506 const Type* SrcTy =
9507 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9508 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9509 if (!SrcTy->isSized() || !DstTy->isSized())
9510 return false;
9511 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9512 return false;
9513 return true;
9514}
9515
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009516// visitCallSite - Improvements for call and invoke instructions.
9517//
9518Instruction *InstCombiner::visitCallSite(CallSite CS) {
9519 bool Changed = false;
9520
9521 // If the callee is a constexpr cast of a function, attempt to move the cast
9522 // to the arguments of the call/invoke.
9523 if (transformConstExprCastCall(CS)) return 0;
9524
9525 Value *Callee = CS.getCalledValue();
9526
9527 if (Function *CalleeF = dyn_cast<Function>(Callee))
9528 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9529 Instruction *OldCall = CS.getInstruction();
9530 // If the call and callee calling conventions don't match, this call must
9531 // be unreachable, as the call is undefined.
9532 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009533 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9534 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009535 if (!OldCall->use_empty())
9536 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9537 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9538 return EraseInstFromFunction(*OldCall);
9539 return 0;
9540 }
9541
9542 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9543 // This instruction is not reachable, just remove it. We insert a store to
9544 // undef so that we know that this code is not reachable, despite the fact
9545 // that we can't modify the CFG here.
9546 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009547 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009548 CS.getInstruction());
9549
9550 if (!CS.getInstruction()->use_empty())
9551 CS.getInstruction()->
9552 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9553
9554 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9555 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009556 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9557 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009558 }
9559 return EraseInstFromFunction(*CS.getInstruction());
9560 }
9561
Duncan Sands74833f22007-09-17 10:26:40 +00009562 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9563 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9564 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9565 return transformCallThroughTrampoline(CS);
9566
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009567 const PointerType *PTy = cast<PointerType>(Callee->getType());
9568 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9569 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009570 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009571 // See if we can optimize any arguments passed through the varargs area of
9572 // the call.
9573 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009574 E = CS.arg_end(); I != E; ++I, ++ix) {
9575 CastInst *CI = dyn_cast<CastInst>(*I);
9576 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9577 *I = CI->getOperand(0);
9578 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009579 }
Dale Johannesen35615462008-04-23 18:34:37 +00009580 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009581 }
9582
Duncan Sands2937e352007-12-19 21:13:37 +00009583 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009584 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009585 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009586 Changed = true;
9587 }
9588
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009589 return Changed ? CS.getInstruction() : 0;
9590}
9591
9592// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9593// attempt to move the cast to the arguments of the call/invoke.
9594//
9595bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9596 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9597 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9598 if (CE->getOpcode() != Instruction::BitCast ||
9599 !isa<Function>(CE->getOperand(0)))
9600 return false;
9601 Function *Callee = cast<Function>(CE->getOperand(0));
9602 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009603 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009604
9605 // Okay, this is a cast from a function to a different type. Unless doing so
9606 // would cause a type conversion of one of our arguments, change this call to
9607 // be a direct call with arguments casted to the appropriate types.
9608 //
9609 const FunctionType *FT = Callee->getFunctionType();
9610 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009611 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009612
Duncan Sands7901ce12008-06-01 07:38:42 +00009613 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009614 return false; // TODO: Handle multiple return values.
9615
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009616 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009617 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009618 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009619 // Conversion is ok if changing from one pointer type to another or from
9620 // a pointer to an integer of the same size.
9621 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009622 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009623 return false; // Cannot transform this return value.
9624
Duncan Sands5c489582008-01-06 10:12:28 +00009625 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009626 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009627 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009628 return false; // Cannot transform this return value.
9629
Chris Lattner1c8733e2008-03-12 17:45:29 +00009630 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009631 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009632 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009633 return false; // Attribute not compatible with transformed value.
9634 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009635
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009636 // If the callsite is an invoke instruction, and the return value is used by
9637 // a PHI node in a successor, we cannot change the return type of the call
9638 // because there is no place to put the cast instruction (without breaking
9639 // the critical edge). Bail out in this case.
9640 if (!Caller->use_empty())
9641 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9642 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9643 UI != E; ++UI)
9644 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9645 if (PN->getParent() == II->getNormalDest() ||
9646 PN->getParent() == II->getUnwindDest())
9647 return false;
9648 }
9649
9650 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9651 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9652
9653 CallSite::arg_iterator AI = CS.arg_begin();
9654 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9655 const Type *ParamTy = FT->getParamType(i);
9656 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009657
9658 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009659 return false; // Cannot transform this parameter value.
9660
Devang Patelf2a4a922008-09-26 22:53:05 +00009661 if (CallerPAL.getParamAttributes(i + 1)
9662 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009663 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009664
Duncan Sands7901ce12008-06-01 07:38:42 +00009665 // Converting from one pointer type to another or between a pointer and an
9666 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009667 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009668 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9669 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009670 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009671 }
9672
9673 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9674 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009675 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009676
Chris Lattner1c8733e2008-03-12 17:45:29 +00009677 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9678 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009679 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009680 // won't be dropping them. Check that these extra arguments have attributes
9681 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009682 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9683 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009684 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009685 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009686 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009687 return false;
9688 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009690 // Okay, we decided that this is a safe thing to do: go ahead and start
9691 // inserting cast instructions as necessary...
9692 std::vector<Value*> Args;
9693 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009694 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009695 attrVec.reserve(NumCommonArgs);
9696
9697 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009698 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009699
9700 // If the return value is not being used, the type may not be compatible
9701 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009702 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009703
9704 // Add the new return attributes.
9705 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009706 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009707
9708 AI = CS.arg_begin();
9709 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9710 const Type *ParamTy = FT->getParamType(i);
9711 if ((*AI)->getType() == ParamTy) {
9712 Args.push_back(*AI);
9713 } else {
9714 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9715 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009716 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009717 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9718 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009719
9720 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009721 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009722 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009723 }
9724
9725 // If the function takes more arguments than the call was taking, add them
9726 // now...
9727 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9728 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9729
9730 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009731 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009732 if (!FT->isVarArg()) {
9733 cerr << "WARNING: While resolving call to function '"
9734 << Callee->getName() << "' arguments were dropped!\n";
9735 } else {
9736 // Add all of the arguments in their promoted form to the arg list...
9737 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9738 const Type *PTy = getPromotedType((*AI)->getType());
9739 if (PTy != (*AI)->getType()) {
9740 // Must promote to pass through va_arg area!
9741 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9742 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009743 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009744 InsertNewInstBefore(Cast, *Caller);
9745 Args.push_back(Cast);
9746 } else {
9747 Args.push_back(*AI);
9748 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009749
Duncan Sands4ced1f82008-01-13 08:02:44 +00009750 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009751 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009752 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009753 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009754 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009755 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009756
Devang Patelf2a4a922008-09-26 22:53:05 +00009757 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9758 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9759
Duncan Sands7901ce12008-06-01 07:38:42 +00009760 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009761 Caller->setName(""); // Void type should not have a name.
9762
Devang Pateld222f862008-09-25 21:00:45 +00009763 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009764
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009765 Instruction *NC;
9766 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009767 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009768 Args.begin(), Args.end(),
9769 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009770 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009771 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009772 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009773 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9774 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009775 CallInst *CI = cast<CallInst>(Caller);
9776 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009777 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009778 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009779 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009780 }
9781
9782 // Insert a cast of the return type as necessary.
9783 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009784 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009785 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009786 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009787 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009788 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009789
9790 // If this is an invoke instruction, we should insert it after the first
9791 // non-phi, instruction in the normal successor block.
9792 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009793 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009794 InsertNewInstBefore(NC, *I);
9795 } else {
9796 // Otherwise, it's a call, just insert cast right after the call instr
9797 InsertNewInstBefore(NC, *Caller);
9798 }
9799 AddUsersToWorkList(*Caller);
9800 } else {
9801 NV = UndefValue::get(Caller->getType());
9802 }
9803 }
9804
9805 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9806 Caller->replaceAllUsesWith(NV);
9807 Caller->eraseFromParent();
9808 RemoveFromWorkList(Caller);
9809 return true;
9810}
9811
Duncan Sands74833f22007-09-17 10:26:40 +00009812// transformCallThroughTrampoline - Turn a call to a function created by the
9813// init_trampoline intrinsic into a direct call to the underlying function.
9814//
9815Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9816 Value *Callee = CS.getCalledValue();
9817 const PointerType *PTy = cast<PointerType>(Callee->getType());
9818 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009819 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009820
9821 // If the call already has the 'nest' attribute somewhere then give up -
9822 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009823 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009824 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009825
9826 IntrinsicInst *Tramp =
9827 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9828
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009829 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009830 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9831 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9832
Devang Pateld222f862008-09-25 21:00:45 +00009833 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009834 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009835 unsigned NestIdx = 1;
9836 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009837 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009838
9839 // Look for a parameter marked with the 'nest' attribute.
9840 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9841 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009842 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009843 // Record the parameter type and any other attributes.
9844 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009845 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009846 break;
9847 }
9848
9849 if (NestTy) {
9850 Instruction *Caller = CS.getInstruction();
9851 std::vector<Value*> NewArgs;
9852 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9853
Devang Pateld222f862008-09-25 21:00:45 +00009854 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009855 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009856
Duncan Sands74833f22007-09-17 10:26:40 +00009857 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009858 // mean appending it. Likewise for attributes.
9859
Devang Patelf2a4a922008-09-26 22:53:05 +00009860 // Add any result attributes.
9861 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009862 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009863
Duncan Sands74833f22007-09-17 10:26:40 +00009864 {
9865 unsigned Idx = 1;
9866 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9867 do {
9868 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009869 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009870 Value *NestVal = Tramp->getOperand(3);
9871 if (NestVal->getType() != NestTy)
9872 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9873 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009874 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009875 }
9876
9877 if (I == E)
9878 break;
9879
Duncan Sands48b81112008-01-14 19:52:09 +00009880 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009881 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009882 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009883 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009884 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009885
9886 ++Idx, ++I;
9887 } while (1);
9888 }
9889
Devang Patelf2a4a922008-09-26 22:53:05 +00009890 // Add any function attributes.
9891 if (Attributes Attr = Attrs.getFnAttributes())
9892 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9893
Duncan Sands74833f22007-09-17 10:26:40 +00009894 // The trampoline may have been bitcast to a bogus type (FTy).
9895 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009896 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009897
Duncan Sands74833f22007-09-17 10:26:40 +00009898 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009899 NewTypes.reserve(FTy->getNumParams()+1);
9900
Duncan Sands74833f22007-09-17 10:26:40 +00009901 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009902 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009903 {
9904 unsigned Idx = 1;
9905 FunctionType::param_iterator I = FTy->param_begin(),
9906 E = FTy->param_end();
9907
9908 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009909 if (Idx == NestIdx)
9910 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009911 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009912
9913 if (I == E)
9914 break;
9915
Duncan Sands48b81112008-01-14 19:52:09 +00009916 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009917 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009918
9919 ++Idx, ++I;
9920 } while (1);
9921 }
9922
9923 // Replace the trampoline call with a direct call. Let the generic
9924 // code sort out any function type mismatches.
9925 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009926 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009927 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9928 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009929 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009930
9931 Instruction *NewCaller;
9932 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009933 NewCaller = InvokeInst::Create(NewCallee,
9934 II->getNormalDest(), II->getUnwindDest(),
9935 NewArgs.begin(), NewArgs.end(),
9936 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009937 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009938 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009939 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009940 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9941 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009942 if (cast<CallInst>(Caller)->isTailCall())
9943 cast<CallInst>(NewCaller)->setTailCall();
9944 cast<CallInst>(NewCaller)->
9945 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009946 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009947 }
9948 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9949 Caller->replaceAllUsesWith(NewCaller);
9950 Caller->eraseFromParent();
9951 RemoveFromWorkList(Caller);
9952 return 0;
9953 }
9954 }
9955
9956 // Replace the trampoline call with a direct call. Since there is no 'nest'
9957 // parameter, there is no need to adjust the argument list. Let the generic
9958 // code sort out any function type mismatches.
9959 Constant *NewCallee =
9960 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9961 CS.setCalledFunction(NewCallee);
9962 return CS.getInstruction();
9963}
9964
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009965/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9966/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9967/// and a single binop.
9968Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9969 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009970 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009971 unsigned Opc = FirstInst->getOpcode();
9972 Value *LHSVal = FirstInst->getOperand(0);
9973 Value *RHSVal = FirstInst->getOperand(1);
9974
9975 const Type *LHSType = LHSVal->getType();
9976 const Type *RHSType = RHSVal->getType();
9977
9978 // Scan to see if all operands are the same opcode, all have one use, and all
9979 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009980 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009981 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9982 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9983 // Verify type of the LHS matches so we don't fold cmp's of different
9984 // types or GEP's with different index types.
9985 I->getOperand(0)->getType() != LHSType ||
9986 I->getOperand(1)->getType() != RHSType)
9987 return 0;
9988
9989 // If they are CmpInst instructions, check their predicates
9990 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9991 if (cast<CmpInst>(I)->getPredicate() !=
9992 cast<CmpInst>(FirstInst)->getPredicate())
9993 return 0;
9994
9995 // Keep track of which operand needs a phi node.
9996 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9997 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9998 }
9999
Chris Lattner30078012008-12-01 03:42:51 +000010000 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010001
10002 Value *InLHS = FirstInst->getOperand(0);
10003 Value *InRHS = FirstInst->getOperand(1);
10004 PHINode *NewLHS = 0, *NewRHS = 0;
10005 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010006 NewLHS = PHINode::Create(LHSType,
10007 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010008 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
10009 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
10010 InsertNewInstBefore(NewLHS, PN);
10011 LHSVal = NewLHS;
10012 }
10013
10014 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010015 NewRHS = PHINode::Create(RHSType,
10016 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010017 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
10018 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
10019 InsertNewInstBefore(NewRHS, PN);
10020 RHSVal = NewRHS;
10021 }
10022
10023 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +000010024 if (NewLHS || NewRHS) {
10025 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10026 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
10027 if (NewLHS) {
10028 Value *NewInLHS = InInst->getOperand(0);
10029 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10030 }
10031 if (NewRHS) {
10032 Value *NewInRHS = InInst->getOperand(1);
10033 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10034 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010035 }
10036 }
10037
10038 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010039 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +000010040 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10041 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10042 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010043}
10044
Chris Lattner9e1916e2008-12-01 02:34:36 +000010045Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10046 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10047
10048 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10049 FirstInst->op_end());
10050
10051 // Scan to see if all operands are the same opcode, all have one use, and all
10052 // kill their operands (i.e. the operands have one use).
10053 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10054 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10055 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10056 GEP->getNumOperands() != FirstInst->getNumOperands())
10057 return 0;
10058
10059 // Compare the operand lists.
10060 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10061 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10062 continue;
10063
10064 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10065 // if one of the PHIs has a constant for the index. The index may be
10066 // substantially cheaper to compute for the constants, so making it a
10067 // variable index could pessimize the path. This also handles the case
10068 // for struct indices, which must always be constant.
10069 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10070 isa<ConstantInt>(GEP->getOperand(op)))
10071 return 0;
10072
10073 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10074 return 0;
10075 FixedOperands[op] = 0; // Needs a PHI.
10076 }
10077 }
10078
10079 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10080 // that is variable.
10081 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10082
10083 bool HasAnyPHIs = false;
10084 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10085 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10086 Value *FirstOp = FirstInst->getOperand(i);
10087 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10088 FirstOp->getName()+".pn");
10089 InsertNewInstBefore(NewPN, PN);
10090
10091 NewPN->reserveOperandSpace(e);
10092 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10093 OperandPhis[i] = NewPN;
10094 FixedOperands[i] = NewPN;
10095 HasAnyPHIs = true;
10096 }
10097
10098
10099 // Add all operands to the new PHIs.
10100 if (HasAnyPHIs) {
10101 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10102 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10103 BasicBlock *InBB = PN.getIncomingBlock(i);
10104
10105 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10106 if (PHINode *OpPhi = OperandPhis[op])
10107 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10108 }
10109 }
10110
10111 Value *Base = FixedOperands[0];
10112 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10113 FixedOperands.end());
10114}
10115
10116
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010117/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10118/// of the block that defines it. This means that it must be obvious the value
10119/// of the load is not changed from the point of the load to the end of the
10120/// block it is in.
10121///
10122/// Finally, it is safe, but not profitable, to sink a load targetting a
10123/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10124/// to a register.
10125static bool isSafeToSinkLoad(LoadInst *L) {
10126 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10127
10128 for (++BBI; BBI != E; ++BBI)
10129 if (BBI->mayWriteToMemory())
10130 return false;
10131
10132 // Check for non-address taken alloca. If not address-taken already, it isn't
10133 // profitable to do this xform.
10134 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10135 bool isAddressTaken = false;
10136 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10137 UI != E; ++UI) {
10138 if (isa<LoadInst>(UI)) continue;
10139 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10140 // If storing TO the alloca, then the address isn't taken.
10141 if (SI->getOperand(1) == AI) continue;
10142 }
10143 isAddressTaken = true;
10144 break;
10145 }
10146
10147 if (!isAddressTaken)
10148 return false;
10149 }
10150
10151 return true;
10152}
10153
10154
10155// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10156// operator and they all are only used by the PHI, PHI together their
10157// inputs, and do the operation once, to the result of the PHI.
10158Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10159 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10160
10161 // Scan the instruction, looking for input operations that can be folded away.
10162 // If all input operands to the phi are the same instruction (e.g. a cast from
10163 // the same type or "+42") we can pull the operation through the PHI, reducing
10164 // code size and simplifying code.
10165 Constant *ConstantOp = 0;
10166 const Type *CastSrcTy = 0;
10167 bool isVolatile = false;
10168 if (isa<CastInst>(FirstInst)) {
10169 CastSrcTy = FirstInst->getOperand(0)->getType();
10170 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10171 // Can fold binop, compare or shift here if the RHS is a constant,
10172 // otherwise call FoldPHIArgBinOpIntoPHI.
10173 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10174 if (ConstantOp == 0)
10175 return FoldPHIArgBinOpIntoPHI(PN);
10176 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10177 isVolatile = LI->isVolatile();
10178 // We can't sink the load if the loaded value could be modified between the
10179 // load and the PHI.
10180 if (LI->getParent() != PN.getIncomingBlock(0) ||
10181 !isSafeToSinkLoad(LI))
10182 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010183
10184 // If the PHI is of volatile loads and the load block has multiple
10185 // successors, sinking it would remove a load of the volatile value from
10186 // the path through the other successor.
10187 if (isVolatile &&
10188 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10189 return 0;
10190
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010191 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010192 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010193 } else {
10194 return 0; // Cannot fold this operation.
10195 }
10196
10197 // Check to see if all arguments are the same operation.
10198 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10199 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10200 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10201 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10202 return 0;
10203 if (CastSrcTy) {
10204 if (I->getOperand(0)->getType() != CastSrcTy)
10205 return 0; // Cast operation must match.
10206 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10207 // We can't sink the load if the loaded value could be modified between
10208 // the load and the PHI.
10209 if (LI->isVolatile() != isVolatile ||
10210 LI->getParent() != PN.getIncomingBlock(i) ||
10211 !isSafeToSinkLoad(LI))
10212 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010213
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010214 // If the PHI is of volatile loads and the load block has multiple
10215 // successors, sinking it would remove a load of the volatile value from
10216 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010217 if (isVolatile &&
10218 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10219 return 0;
10220
10221
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010222 } else if (I->getOperand(1) != ConstantOp) {
10223 return 0;
10224 }
10225 }
10226
10227 // Okay, they are all the same operation. Create a new PHI node of the
10228 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010229 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10230 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010231 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10232
10233 Value *InVal = FirstInst->getOperand(0);
10234 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10235
10236 // Add all operands to the new PHI.
10237 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10238 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10239 if (NewInVal != InVal)
10240 InVal = 0;
10241 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10242 }
10243
10244 Value *PhiVal;
10245 if (InVal) {
10246 // The new PHI unions all of the same values together. This is really
10247 // common, so we handle it intelligently here for compile-time speed.
10248 PhiVal = InVal;
10249 delete NewPN;
10250 } else {
10251 InsertNewInstBefore(NewPN, PN);
10252 PhiVal = NewPN;
10253 }
10254
10255 // Insert and return the new operation.
10256 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010257 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010258 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010259 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010260 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010261 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010262 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010263 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10264
10265 // If this was a volatile load that we are merging, make sure to loop through
10266 // and mark all the input loads as non-volatile. If we don't do this, we will
10267 // insert a new volatile load and the old ones will not be deletable.
10268 if (isVolatile)
10269 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10270 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10271
10272 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010273}
10274
10275/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10276/// that is dead.
10277static bool DeadPHICycle(PHINode *PN,
10278 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10279 if (PN->use_empty()) return true;
10280 if (!PN->hasOneUse()) return false;
10281
10282 // Remember this node, and if we find the cycle, return.
10283 if (!PotentiallyDeadPHIs.insert(PN))
10284 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010285
10286 // Don't scan crazily complex things.
10287 if (PotentiallyDeadPHIs.size() == 16)
10288 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010289
10290 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10291 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10292
10293 return false;
10294}
10295
Chris Lattner27b695d2007-11-06 21:52:06 +000010296/// PHIsEqualValue - Return true if this phi node is always equal to
10297/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10298/// z = some value; x = phi (y, z); y = phi (x, z)
10299static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10300 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10301 // See if we already saw this PHI node.
10302 if (!ValueEqualPHIs.insert(PN))
10303 return true;
10304
10305 // Don't scan crazily complex things.
10306 if (ValueEqualPHIs.size() == 16)
10307 return false;
10308
10309 // Scan the operands to see if they are either phi nodes or are equal to
10310 // the value.
10311 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10312 Value *Op = PN->getIncomingValue(i);
10313 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10314 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10315 return false;
10316 } else if (Op != NonPhiInVal)
10317 return false;
10318 }
10319
10320 return true;
10321}
10322
10323
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010324// PHINode simplification
10325//
10326Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10327 // If LCSSA is around, don't mess with Phi nodes
10328 if (MustPreserveLCSSA) return 0;
10329
10330 if (Value *V = PN.hasConstantValue())
10331 return ReplaceInstUsesWith(PN, V);
10332
10333 // If all PHI operands are the same operation, pull them through the PHI,
10334 // reducing code size.
10335 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010336 isa<Instruction>(PN.getIncomingValue(1)) &&
10337 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10338 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10339 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10340 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010341 PN.getIncomingValue(0)->hasOneUse())
10342 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10343 return Result;
10344
10345 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10346 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10347 // PHI)... break the cycle.
10348 if (PN.hasOneUse()) {
10349 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10350 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10351 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10352 PotentiallyDeadPHIs.insert(&PN);
10353 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10354 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10355 }
10356
10357 // If this phi has a single use, and if that use just computes a value for
10358 // the next iteration of a loop, delete the phi. This occurs with unused
10359 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10360 // common case here is good because the only other things that catch this
10361 // are induction variable analysis (sometimes) and ADCE, which is only run
10362 // late.
10363 if (PHIUser->hasOneUse() &&
10364 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10365 PHIUser->use_back() == &PN) {
10366 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10367 }
10368 }
10369
Chris Lattner27b695d2007-11-06 21:52:06 +000010370 // We sometimes end up with phi cycles that non-obviously end up being the
10371 // same value, for example:
10372 // z = some value; x = phi (y, z); y = phi (x, z)
10373 // where the phi nodes don't necessarily need to be in the same block. Do a
10374 // quick check to see if the PHI node only contains a single non-phi value, if
10375 // so, scan to see if the phi cycle is actually equal to that value.
10376 {
10377 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10378 // Scan for the first non-phi operand.
10379 while (InValNo != NumOperandVals &&
10380 isa<PHINode>(PN.getIncomingValue(InValNo)))
10381 ++InValNo;
10382
10383 if (InValNo != NumOperandVals) {
10384 Value *NonPhiInVal = PN.getOperand(InValNo);
10385
10386 // Scan the rest of the operands to see if there are any conflicts, if so
10387 // there is no need to recursively scan other phis.
10388 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10389 Value *OpVal = PN.getIncomingValue(InValNo);
10390 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10391 break;
10392 }
10393
10394 // If we scanned over all operands, then we have one unique value plus
10395 // phi values. Scan PHI nodes to see if they all merge in each other or
10396 // the value.
10397 if (InValNo == NumOperandVals) {
10398 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10399 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10400 return ReplaceInstUsesWith(PN, NonPhiInVal);
10401 }
10402 }
10403 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010404 return 0;
10405}
10406
10407static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10408 Instruction *InsertPoint,
10409 InstCombiner *IC) {
10410 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10411 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10412 // We must cast correctly to the pointer type. Ensure that we
10413 // sign extend the integer value if it is smaller as this is
10414 // used for address computation.
10415 Instruction::CastOps opcode =
10416 (VTySize < PtrSize ? Instruction::SExt :
10417 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10418 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10419}
10420
10421
10422Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10423 Value *PtrOp = GEP.getOperand(0);
10424 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10425 // If so, eliminate the noop.
10426 if (GEP.getNumOperands() == 1)
10427 return ReplaceInstUsesWith(GEP, PtrOp);
10428
10429 if (isa<UndefValue>(GEP.getOperand(0)))
10430 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10431
10432 bool HasZeroPointerIndex = false;
10433 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10434 HasZeroPointerIndex = C->isNullValue();
10435
10436 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10437 return ReplaceInstUsesWith(GEP, PtrOp);
10438
10439 // Eliminate unneeded casts for indices.
10440 bool MadeChange = false;
10441
10442 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010443 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10444 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010445 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010446 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010447 if (CI->getOpcode() == Instruction::ZExt ||
10448 CI->getOpcode() == Instruction::SExt) {
10449 const Type *SrcTy = CI->getOperand(0)->getType();
10450 // We can eliminate a cast from i32 to i64 iff the target
10451 // is a 32-bit pointer target.
10452 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10453 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010454 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010455 }
10456 }
10457 }
10458 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010459 // to what we need. If narrower, sign-extend it to what we need.
10460 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010461 // insert it. This explicit cast can make subsequent optimizations more
10462 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010463 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010464 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010465 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010466 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010467 MadeChange = true;
10468 } else {
10469 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10470 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010471 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010472 MadeChange = true;
10473 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010474 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10475 if (Constant *C = dyn_cast<Constant>(Op)) {
10476 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10477 MadeChange = true;
10478 } else {
10479 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10480 GEP);
10481 *i = Op;
10482 MadeChange = true;
10483 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010484 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010485 }
10486 }
10487 if (MadeChange) return &GEP;
10488
10489 // If this GEP instruction doesn't move the pointer, and if the input operand
10490 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10491 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010492 if (GEP.hasAllZeroIndices()) {
10493 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10494 // If the bitcast is of an allocation, and the allocation will be
10495 // converted to match the type of the cast, don't touch this.
10496 if (isa<AllocationInst>(BCI->getOperand(0))) {
10497 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010498 if (Instruction *I = visitBitCast(*BCI)) {
10499 if (I != BCI) {
10500 I->takeName(BCI);
10501 BCI->getParent()->getInstList().insert(BCI, I);
10502 ReplaceInstUsesWith(*BCI, I);
10503 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010504 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010505 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010506 }
10507 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10508 }
10509 }
10510
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010511 // Combine Indices - If the source pointer to this getelementptr instruction
10512 // is a getelementptr instruction, combine the indices of the two
10513 // getelementptr instructions into a single instruction.
10514 //
10515 SmallVector<Value*, 8> SrcGEPOperands;
10516 if (User *Src = dyn_castGetElementPtr(PtrOp))
10517 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10518
10519 if (!SrcGEPOperands.empty()) {
10520 // Note that if our source is a gep chain itself that we wait for that
10521 // chain to be resolved before we perform this transformation. This
10522 // avoids us creating a TON of code in some cases.
10523 //
10524 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10525 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10526 return 0; // Wait until our source is folded to completion.
10527
10528 SmallVector<Value*, 8> Indices;
10529
10530 // Find out whether the last index in the source GEP is a sequential idx.
10531 bool EndsWithSequential = false;
10532 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10533 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10534 EndsWithSequential = !isa<StructType>(*I);
10535
10536 // Can we combine the two pointer arithmetics offsets?
10537 if (EndsWithSequential) {
10538 // Replace: gep (gep %P, long B), long A, ...
10539 // With: T = long A+B; gep %P, T, ...
10540 //
10541 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10542 if (SO1 == Constant::getNullValue(SO1->getType())) {
10543 Sum = GO1;
10544 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10545 Sum = SO1;
10546 } else {
10547 // If they aren't the same type, convert both to an integer of the
10548 // target's pointer size.
10549 if (SO1->getType() != GO1->getType()) {
10550 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10551 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10552 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10553 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10554 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010555 unsigned PS = TD->getPointerSizeInBits();
10556 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010557 // Convert GO1 to SO1's type.
10558 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10559
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010560 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010561 // Convert SO1 to GO1's type.
10562 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10563 } else {
10564 const Type *PT = TD->getIntPtrType();
10565 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10566 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10567 }
10568 }
10569 }
10570 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10571 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10572 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010573 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010574 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10575 }
10576 }
10577
10578 // Recycle the GEP we already have if possible.
10579 if (SrcGEPOperands.size() == 2) {
10580 GEP.setOperand(0, SrcGEPOperands[0]);
10581 GEP.setOperand(1, Sum);
10582 return &GEP;
10583 } else {
10584 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10585 SrcGEPOperands.end()-1);
10586 Indices.push_back(Sum);
10587 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10588 }
10589 } else if (isa<Constant>(*GEP.idx_begin()) &&
10590 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10591 SrcGEPOperands.size() != 1) {
10592 // Otherwise we can do the fold if the first index of the GEP is a zero
10593 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10594 SrcGEPOperands.end());
10595 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10596 }
10597
10598 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010599 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10600 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010601
10602 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10603 // GEP of global variable. If all of the indices for this GEP are
10604 // constants, we can promote this to a constexpr instead of an instruction.
10605
10606 // Scan for nonconstants...
10607 SmallVector<Constant*, 8> Indices;
10608 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10609 for (; I != E && isa<Constant>(*I); ++I)
10610 Indices.push_back(cast<Constant>(*I));
10611
10612 if (I == E) { // If they are all constants...
10613 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10614 &Indices[0],Indices.size());
10615
10616 // Replace all uses of the GEP with the new constexpr...
10617 return ReplaceInstUsesWith(GEP, CE);
10618 }
10619 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10620 if (!isa<PointerType>(X->getType())) {
10621 // Not interesting. Source pointer must be a cast from pointer.
10622 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010623 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10624 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010625 //
10626 // This occurs when the program declares an array extern like "int X[];"
10627 //
10628 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10629 const PointerType *XTy = cast<PointerType>(X->getType());
10630 if (const ArrayType *XATy =
10631 dyn_cast<ArrayType>(XTy->getElementType()))
10632 if (const ArrayType *CATy =
10633 dyn_cast<ArrayType>(CPTy->getElementType()))
10634 if (CATy->getElementType() == XATy->getElementType()) {
10635 // At this point, we know that the cast source type is a pointer
10636 // to an array of the same type as the destination pointer
10637 // array. Because the array type is never stepped over (there
10638 // is a leading zero) we can fold the cast into this GEP.
10639 GEP.setOperand(0, X);
10640 return &GEP;
10641 }
10642 } else if (GEP.getNumOperands() == 2) {
10643 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010644 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10645 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010646 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10647 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10648 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010649 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10650 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010651 Value *Idx[2];
10652 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10653 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010654 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010655 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010656 // V and GEP are both pointer types --> BitCast
10657 return new BitCastInst(V, GEP.getType());
10658 }
10659
10660 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010661 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010662 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010663 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010664
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010665 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010666 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010667 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010668
10669 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10670 // allow either a mul, shift, or constant here.
10671 Value *NewIdx = 0;
10672 ConstantInt *Scale = 0;
10673 if (ArrayEltSize == 1) {
10674 NewIdx = GEP.getOperand(1);
10675 Scale = ConstantInt::get(NewIdx->getType(), 1);
10676 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10677 NewIdx = ConstantInt::get(CI->getType(), 1);
10678 Scale = CI;
10679 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10680 if (Inst->getOpcode() == Instruction::Shl &&
10681 isa<ConstantInt>(Inst->getOperand(1))) {
10682 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10683 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10684 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10685 NewIdx = Inst->getOperand(0);
10686 } else if (Inst->getOpcode() == Instruction::Mul &&
10687 isa<ConstantInt>(Inst->getOperand(1))) {
10688 Scale = cast<ConstantInt>(Inst->getOperand(1));
10689 NewIdx = Inst->getOperand(0);
10690 }
10691 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010692
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010693 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010694 // out, perform the transformation. Note, we don't know whether Scale is
10695 // signed or not. We'll use unsigned version of division/modulo
10696 // operation after making sure Scale doesn't have the sign bit set.
10697 if (Scale && Scale->getSExtValue() >= 0LL &&
10698 Scale->getZExtValue() % ArrayEltSize == 0) {
10699 Scale = ConstantInt::get(Scale->getType(),
10700 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010701 if (Scale->getZExtValue() != 1) {
10702 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010703 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010704 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010705 NewIdx = InsertNewInstBefore(Sc, GEP);
10706 }
10707
10708 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010709 Value *Idx[2];
10710 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10711 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010712 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010713 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010714 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10715 // The NewGEP must be pointer typed, so must the old one -> BitCast
10716 return new BitCastInst(NewGEP, GEP.getType());
10717 }
10718 }
10719 }
10720 }
10721
10722 return 0;
10723}
10724
10725Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10726 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010727 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010728 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10729 const Type *NewTy =
10730 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10731 AllocationInst *New = 0;
10732
10733 // Create and insert the replacement instruction...
10734 if (isa<MallocInst>(AI))
10735 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10736 else {
10737 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10738 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10739 }
10740
10741 InsertNewInstBefore(New, AI);
10742
10743 // Scan to the end of the allocation instructions, to skip over a block of
10744 // allocas if possible...
10745 //
10746 BasicBlock::iterator It = New;
10747 while (isa<AllocationInst>(*It)) ++It;
10748
10749 // Now that I is pointing to the first non-allocation-inst in the block,
10750 // insert our getelementptr instruction...
10751 //
10752 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010753 Value *Idx[2];
10754 Idx[0] = NullIdx;
10755 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010756 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10757 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010758
10759 // Now make everything use the getelementptr instead of the original
10760 // allocation.
10761 return ReplaceInstUsesWith(AI, V);
10762 } else if (isa<UndefValue>(AI.getArraySize())) {
10763 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10764 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010765 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010766
10767 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10768 // Note that we only do this for alloca's, because malloc should allocate and
10769 // return a unique pointer, even for a zero byte allocation.
10770 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010771 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010772 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10773
10774 return 0;
10775}
10776
10777Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10778 Value *Op = FI.getOperand(0);
10779
10780 // free undef -> unreachable.
10781 if (isa<UndefValue>(Op)) {
10782 // Insert a new store to null because we cannot modify the CFG here.
10783 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010784 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010785 return EraseInstFromFunction(FI);
10786 }
10787
10788 // If we have 'free null' delete the instruction. This can happen in stl code
10789 // when lots of inlining happens.
10790 if (isa<ConstantPointerNull>(Op))
10791 return EraseInstFromFunction(FI);
10792
10793 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10794 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10795 FI.setOperand(0, CI->getOperand(0));
10796 return &FI;
10797 }
10798
10799 // Change free (gep X, 0,0,0,0) into free(X)
10800 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10801 if (GEPI->hasAllZeroIndices()) {
10802 AddToWorkList(GEPI);
10803 FI.setOperand(0, GEPI->getOperand(0));
10804 return &FI;
10805 }
10806 }
10807
10808 // Change free(malloc) into nothing, if the malloc has a single use.
10809 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10810 if (MI->hasOneUse()) {
10811 EraseInstFromFunction(FI);
10812 return EraseInstFromFunction(*MI);
10813 }
10814
10815 return 0;
10816}
10817
10818
10819/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010820static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010821 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010822 User *CI = cast<User>(LI.getOperand(0));
10823 Value *CastOp = CI->getOperand(0);
10824
Devang Patela0f8ea82007-10-18 19:52:32 +000010825 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10826 // Instead of loading constant c string, use corresponding integer value
10827 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010828 std::string Str;
10829 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010830 unsigned len = Str.length();
10831 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10832 unsigned numBits = Ty->getPrimitiveSizeInBits();
10833 // Replace LI with immediate integer store.
10834 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010835 APInt StrVal(numBits, 0);
10836 APInt SingleChar(numBits, 0);
10837 if (TD->isLittleEndian()) {
10838 for (signed i = len-1; i >= 0; i--) {
10839 SingleChar = (uint64_t) Str[i];
10840 StrVal = (StrVal << 8) | SingleChar;
10841 }
10842 } else {
10843 for (unsigned i = 0; i < len; i++) {
10844 SingleChar = (uint64_t) Str[i];
10845 StrVal = (StrVal << 8) | SingleChar;
10846 }
10847 // Append NULL at the end.
10848 SingleChar = 0;
10849 StrVal = (StrVal << 8) | SingleChar;
10850 }
10851 Value *NL = ConstantInt::get(StrVal);
10852 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010853 }
10854 }
10855 }
10856
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010857 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10858 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10859 const Type *SrcPTy = SrcTy->getElementType();
10860
10861 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10862 isa<VectorType>(DestPTy)) {
10863 // If the source is an array, the code below will not succeed. Check to
10864 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10865 // constants.
10866 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10867 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10868 if (ASrcTy->getNumElements() != 0) {
10869 Value *Idxs[2];
10870 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10871 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10872 SrcTy = cast<PointerType>(CastOp->getType());
10873 SrcPTy = SrcTy->getElementType();
10874 }
10875
10876 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10877 isa<VectorType>(SrcPTy)) &&
10878 // Do not allow turning this into a load of an integer, which is then
10879 // casted to a pointer, this pessimizes pointer analysis a lot.
10880 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10881 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10882 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10883
10884 // Okay, we are casting from one integer or pointer type to another of
10885 // the same size. Instead of casting the pointer before the load, cast
10886 // the result of the loaded value.
10887 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10888 CI->getName(),
10889 LI.isVolatile()),LI);
10890 // Now cast the result of the load.
10891 return new BitCastInst(NewLoad, LI.getType());
10892 }
10893 }
10894 }
10895 return 0;
10896}
10897
10898/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10899/// from this value cannot trap. If it is not obviously safe to load from the
10900/// specified pointer, we do a quick local scan of the basic block containing
10901/// ScanFrom, to determine if the address is already accessed.
10902static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010903 // If it is an alloca it is always safe to load from.
10904 if (isa<AllocaInst>(V)) return true;
10905
Duncan Sandse40a94a2007-09-19 10:25:38 +000010906 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010907 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010908 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010909 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010910
10911 // Otherwise, be a little bit agressive by scanning the local block where we
10912 // want to check to see if the pointer is already being loaded or stored
10913 // from/to. If so, the previous load or store would have already trapped,
10914 // so there is no harm doing an extra load (also, CSE will later eliminate
10915 // the load entirely).
10916 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10917
10918 while (BBI != E) {
10919 --BBI;
10920
Chris Lattner476983a2008-06-20 05:12:56 +000010921 // If we see a free or a call (which might do a free) the pointer could be
10922 // marked invalid.
10923 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10924 return false;
10925
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010926 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10927 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010928 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010929 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010930 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010931
10932 }
10933 return false;
10934}
10935
10936Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10937 Value *Op = LI.getOperand(0);
10938
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010939 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010940 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10941 if (KnownAlign >
10942 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10943 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010944 LI.setAlignment(KnownAlign);
10945
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010946 // load (cast X) --> cast (load X) iff safe
10947 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010948 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010949 return Res;
10950
10951 // None of the following transforms are legal for volatile loads.
10952 if (LI.isVolatile()) return 0;
10953
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010954 // Do really simple store-to-load forwarding and load CSE, to catch cases
10955 // where there are several consequtive memory accesses to the same location,
10956 // separated by a few arithmetic operations.
10957 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000010958 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10959 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010960
Christopher Lamb2c175392007-12-29 07:56:53 +000010961 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10962 const Value *GEPI0 = GEPI->getOperand(0);
10963 // TODO: Consider a target hook for valid address spaces for this xform.
10964 if (isa<ConstantPointerNull>(GEPI0) &&
10965 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010966 // Insert a new store to null instruction before the load to indicate
10967 // that this code is not reachable. We do this instead of inserting
10968 // an unreachable instruction directly because we cannot modify the
10969 // CFG.
10970 new StoreInst(UndefValue::get(LI.getType()),
10971 Constant::getNullValue(Op->getType()), &LI);
10972 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10973 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010974 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010975
10976 if (Constant *C = dyn_cast<Constant>(Op)) {
10977 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010978 // TODO: Consider a target hook for valid address spaces for this xform.
10979 if (isa<UndefValue>(C) || (C->isNullValue() &&
10980 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010981 // Insert a new store to null instruction before the load to indicate that
10982 // this code is not reachable. We do this instead of inserting an
10983 // unreachable instruction directly because we cannot modify the CFG.
10984 new StoreInst(UndefValue::get(LI.getType()),
10985 Constant::getNullValue(Op->getType()), &LI);
10986 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10987 }
10988
10989 // Instcombine load (constant global) into the value loaded.
10990 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10991 if (GV->isConstant() && !GV->isDeclaration())
10992 return ReplaceInstUsesWith(LI, GV->getInitializer());
10993
10994 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010995 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010996 if (CE->getOpcode() == Instruction::GetElementPtr) {
10997 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10998 if (GV->isConstant() && !GV->isDeclaration())
10999 if (Constant *V =
11000 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
11001 return ReplaceInstUsesWith(LI, V);
11002 if (CE->getOperand(0)->isNullValue()) {
11003 // Insert a new store to null instruction before the load to indicate
11004 // that this code is not reachable. We do this instead of inserting
11005 // an unreachable instruction directly because we cannot modify the
11006 // CFG.
11007 new StoreInst(UndefValue::get(LI.getType()),
11008 Constant::getNullValue(Op->getType()), &LI);
11009 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11010 }
11011
11012 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000011013 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011014 return Res;
11015 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000011016 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011017 }
Chris Lattner0270a112007-08-11 18:48:48 +000011018
11019 // If this load comes from anywhere in a constant global, and if the global
11020 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000011021 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000011022 if (GV->isConstant() && GV->hasInitializer()) {
11023 if (GV->getInitializer()->isNullValue())
11024 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
11025 else if (isa<UndefValue>(GV->getInitializer()))
11026 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11027 }
11028 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011029
11030 if (Op->hasOneUse()) {
11031 // Change select and PHI nodes to select values instead of addresses: this
11032 // helps alias analysis out a lot, allows many others simplifications, and
11033 // exposes redundancy in the code.
11034 //
11035 // Note that we cannot do the transformation unless we know that the
11036 // introduced loads cannot trap! Something like this is valid as long as
11037 // the condition is always false: load (select bool %C, int* null, int* %G),
11038 // but it would not be valid if we transformed it to load from null
11039 // unconditionally.
11040 //
11041 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11042 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11043 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11044 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11045 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
11046 SI->getOperand(1)->getName()+".val"), LI);
11047 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
11048 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011049 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011050 }
11051
11052 // load (select (cond, null, P)) -> load P
11053 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11054 if (C->isNullValue()) {
11055 LI.setOperand(0, SI->getOperand(2));
11056 return &LI;
11057 }
11058
11059 // load (select (cond, P, null)) -> load P
11060 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11061 if (C->isNullValue()) {
11062 LI.setOperand(0, SI->getOperand(1));
11063 return &LI;
11064 }
11065 }
11066 }
11067 return 0;
11068}
11069
11070/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11071/// when possible.
11072static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11073 User *CI = cast<User>(SI.getOperand(1));
11074 Value *CastOp = CI->getOperand(0);
11075
11076 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11077 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11078 const Type *SrcPTy = SrcTy->getElementType();
11079
11080 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11081 // If the source is an array, the code below will not succeed. Check to
11082 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11083 // constants.
11084 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11085 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11086 if (ASrcTy->getNumElements() != 0) {
11087 Value* Idxs[2];
11088 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11089 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11090 SrcTy = cast<PointerType>(CastOp->getType());
11091 SrcPTy = SrcTy->getElementType();
11092 }
11093
11094 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11095 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11096 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11097
11098 // Okay, we are casting from one integer or pointer type to another of
11099 // the same size. Instead of casting the pointer before
11100 // the store, cast the value to be stored.
11101 Value *NewCast;
11102 Value *SIOp0 = SI.getOperand(0);
11103 Instruction::CastOps opcode = Instruction::BitCast;
11104 const Type* CastSrcTy = SIOp0->getType();
11105 const Type* CastDstTy = SrcPTy;
11106 if (isa<PointerType>(CastDstTy)) {
11107 if (CastSrcTy->isInteger())
11108 opcode = Instruction::IntToPtr;
11109 } else if (isa<IntegerType>(CastDstTy)) {
11110 if (isa<PointerType>(SIOp0->getType()))
11111 opcode = Instruction::PtrToInt;
11112 }
11113 if (Constant *C = dyn_cast<Constant>(SIOp0))
11114 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11115 else
11116 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011117 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011118 SI);
11119 return new StoreInst(NewCast, CastOp);
11120 }
11121 }
11122 }
11123 return 0;
11124}
11125
Chris Lattner6fd8c802008-11-27 08:56:30 +000011126/// equivalentAddressValues - Test if A and B will obviously have the same
11127/// value. This includes recognizing that %t0 and %t1 will have the same
11128/// value in code like this:
11129/// %t0 = getelementptr @a, 0, 3
11130/// store i32 0, i32* %t0
11131/// %t1 = getelementptr @a, 0, 3
11132/// %t2 = load i32* %t1
11133///
11134static bool equivalentAddressValues(Value *A, Value *B) {
11135 // Test if the values are trivially equivalent.
11136 if (A == B) return true;
11137
11138 // Test if the values come form identical arithmetic instructions.
11139 if (isa<BinaryOperator>(A) ||
11140 isa<CastInst>(A) ||
11141 isa<PHINode>(A) ||
11142 isa<GetElementPtrInst>(A))
11143 if (Instruction *BI = dyn_cast<Instruction>(B))
11144 if (cast<Instruction>(A)->isIdenticalTo(BI))
11145 return true;
11146
11147 // Otherwise they may not be equivalent.
11148 return false;
11149}
11150
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011151Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11152 Value *Val = SI.getOperand(0);
11153 Value *Ptr = SI.getOperand(1);
11154
11155 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11156 EraseInstFromFunction(SI);
11157 ++NumCombined;
11158 return 0;
11159 }
11160
11161 // If the RHS is an alloca with a single use, zapify the store, making the
11162 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011163 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011164 if (isa<AllocaInst>(Ptr)) {
11165 EraseInstFromFunction(SI);
11166 ++NumCombined;
11167 return 0;
11168 }
11169
11170 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11171 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11172 GEP->getOperand(0)->hasOneUse()) {
11173 EraseInstFromFunction(SI);
11174 ++NumCombined;
11175 return 0;
11176 }
11177 }
11178
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011179 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011180 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11181 if (KnownAlign >
11182 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11183 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011184 SI.setAlignment(KnownAlign);
11185
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011186 // Do really simple DSE, to catch cases where there are several consequtive
11187 // stores to the same location, separated by a few arithmetic operations. This
11188 // situation often occurs with bitfield accesses.
11189 BasicBlock::iterator BBI = &SI;
11190 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11191 --ScanInsts) {
11192 --BBI;
11193
11194 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11195 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011196 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11197 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011198 ++NumDeadStore;
11199 ++BBI;
11200 EraseInstFromFunction(*PrevSI);
11201 continue;
11202 }
11203 break;
11204 }
11205
11206 // If this is a load, we have to stop. However, if the loaded value is from
11207 // the pointer we're loading and is producing the pointer we're storing,
11208 // then *this* store is dead (X = load P; store X -> P).
11209 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011210 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11211 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011212 EraseInstFromFunction(SI);
11213 ++NumCombined;
11214 return 0;
11215 }
11216 // Otherwise, this is a load from some other location. Stores before it
11217 // may not be dead.
11218 break;
11219 }
11220
11221 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011222 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011223 break;
11224 }
11225
11226
11227 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11228
11229 // store X, null -> turns into 'unreachable' in SimplifyCFG
11230 if (isa<ConstantPointerNull>(Ptr)) {
11231 if (!isa<UndefValue>(Val)) {
11232 SI.setOperand(0, UndefValue::get(Val->getType()));
11233 if (Instruction *U = dyn_cast<Instruction>(Val))
11234 AddToWorkList(U); // Dropped a use.
11235 ++NumCombined;
11236 }
11237 return 0; // Do not modify these!
11238 }
11239
11240 // store undef, Ptr -> noop
11241 if (isa<UndefValue>(Val)) {
11242 EraseInstFromFunction(SI);
11243 ++NumCombined;
11244 return 0;
11245 }
11246
11247 // If the pointer destination is a cast, see if we can fold the cast into the
11248 // source instead.
11249 if (isa<CastInst>(Ptr))
11250 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11251 return Res;
11252 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11253 if (CE->isCast())
11254 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11255 return Res;
11256
11257
11258 // If this store is the last instruction in the basic block, and if the block
11259 // ends with an unconditional branch, try to move it to the successor block.
11260 BBI = &SI; ++BBI;
11261 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11262 if (BI->isUnconditional())
11263 if (SimplifyStoreAtEndOfBlock(SI))
11264 return 0; // xform done!
11265
11266 return 0;
11267}
11268
11269/// SimplifyStoreAtEndOfBlock - Turn things like:
11270/// if () { *P = v1; } else { *P = v2 }
11271/// into a phi node with a store in the successor.
11272///
11273/// Simplify things like:
11274/// *P = v1; if () { *P = v2; }
11275/// into a phi node with a store in the successor.
11276///
11277bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11278 BasicBlock *StoreBB = SI.getParent();
11279
11280 // Check to see if the successor block has exactly two incoming edges. If
11281 // so, see if the other predecessor contains a store to the same location.
11282 // if so, insert a PHI node (if needed) and move the stores down.
11283 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11284
11285 // Determine whether Dest has exactly two predecessors and, if so, compute
11286 // the other predecessor.
11287 pred_iterator PI = pred_begin(DestBB);
11288 BasicBlock *OtherBB = 0;
11289 if (*PI != StoreBB)
11290 OtherBB = *PI;
11291 ++PI;
11292 if (PI == pred_end(DestBB))
11293 return false;
11294
11295 if (*PI != StoreBB) {
11296 if (OtherBB)
11297 return false;
11298 OtherBB = *PI;
11299 }
11300 if (++PI != pred_end(DestBB))
11301 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011302
11303 // Bail out if all the relevant blocks aren't distinct (this can happen,
11304 // for example, if SI is in an infinite loop)
11305 if (StoreBB == DestBB || OtherBB == DestBB)
11306 return false;
11307
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011308 // Verify that the other block ends in a branch and is not otherwise empty.
11309 BasicBlock::iterator BBI = OtherBB->getTerminator();
11310 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11311 if (!OtherBr || BBI == OtherBB->begin())
11312 return false;
11313
11314 // If the other block ends in an unconditional branch, check for the 'if then
11315 // else' case. there is an instruction before the branch.
11316 StoreInst *OtherStore = 0;
11317 if (OtherBr->isUnconditional()) {
11318 // If this isn't a store, or isn't a store to the same location, bail out.
11319 --BBI;
11320 OtherStore = dyn_cast<StoreInst>(BBI);
11321 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11322 return false;
11323 } else {
11324 // Otherwise, the other block ended with a conditional branch. If one of the
11325 // destinations is StoreBB, then we have the if/then case.
11326 if (OtherBr->getSuccessor(0) != StoreBB &&
11327 OtherBr->getSuccessor(1) != StoreBB)
11328 return false;
11329
11330 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11331 // if/then triangle. See if there is a store to the same ptr as SI that
11332 // lives in OtherBB.
11333 for (;; --BBI) {
11334 // Check to see if we find the matching store.
11335 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11336 if (OtherStore->getOperand(1) != SI.getOperand(1))
11337 return false;
11338 break;
11339 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011340 // If we find something that may be using or overwriting the stored
11341 // value, or if we run out of instructions, we can't do the xform.
11342 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011343 BBI == OtherBB->begin())
11344 return false;
11345 }
11346
11347 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011348 // make sure nothing reads or overwrites the stored value in
11349 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011350 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11351 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011352 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011353 return false;
11354 }
11355 }
11356
11357 // Insert a PHI node now if we need it.
11358 Value *MergedVal = OtherStore->getOperand(0);
11359 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011360 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011361 PN->reserveOperandSpace(2);
11362 PN->addIncoming(SI.getOperand(0), SI.getParent());
11363 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11364 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11365 }
11366
11367 // Advance to a place where it is safe to insert the new store and
11368 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011369 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011370 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11371 OtherStore->isVolatile()), *BBI);
11372
11373 // Nuke the old stores.
11374 EraseInstFromFunction(SI);
11375 EraseInstFromFunction(*OtherStore);
11376 ++NumCombined;
11377 return true;
11378}
11379
11380
11381Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11382 // Change br (not X), label True, label False to: br X, label False, True
11383 Value *X = 0;
11384 BasicBlock *TrueDest;
11385 BasicBlock *FalseDest;
11386 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11387 !isa<Constant>(X)) {
11388 // Swap Destinations and condition...
11389 BI.setCondition(X);
11390 BI.setSuccessor(0, FalseDest);
11391 BI.setSuccessor(1, TrueDest);
11392 return &BI;
11393 }
11394
11395 // Cannonicalize fcmp_one -> fcmp_oeq
11396 FCmpInst::Predicate FPred; Value *Y;
11397 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11398 TrueDest, FalseDest)))
11399 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11400 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11401 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11402 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11403 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11404 NewSCC->takeName(I);
11405 // Swap Destinations and condition...
11406 BI.setCondition(NewSCC);
11407 BI.setSuccessor(0, FalseDest);
11408 BI.setSuccessor(1, TrueDest);
11409 RemoveFromWorkList(I);
11410 I->eraseFromParent();
11411 AddToWorkList(NewSCC);
11412 return &BI;
11413 }
11414
11415 // Cannonicalize icmp_ne -> icmp_eq
11416 ICmpInst::Predicate IPred;
11417 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11418 TrueDest, FalseDest)))
11419 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11420 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11421 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11422 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11423 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11424 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11425 NewSCC->takeName(I);
11426 // Swap Destinations and condition...
11427 BI.setCondition(NewSCC);
11428 BI.setSuccessor(0, FalseDest);
11429 BI.setSuccessor(1, TrueDest);
11430 RemoveFromWorkList(I);
11431 I->eraseFromParent();;
11432 AddToWorkList(NewSCC);
11433 return &BI;
11434 }
11435
11436 return 0;
11437}
11438
11439Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11440 Value *Cond = SI.getCondition();
11441 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11442 if (I->getOpcode() == Instruction::Add)
11443 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11444 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11445 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11446 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11447 AddRHS));
11448 SI.setOperand(0, I->getOperand(0));
11449 AddToWorkList(I);
11450 return &SI;
11451 }
11452 }
11453 return 0;
11454}
11455
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011456Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011457 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011458
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011459 if (!EV.hasIndices())
11460 return ReplaceInstUsesWith(EV, Agg);
11461
11462 if (Constant *C = dyn_cast<Constant>(Agg)) {
11463 if (isa<UndefValue>(C))
11464 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11465
11466 if (isa<ConstantAggregateZero>(C))
11467 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11468
11469 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11470 // Extract the element indexed by the first index out of the constant
11471 Value *V = C->getOperand(*EV.idx_begin());
11472 if (EV.getNumIndices() > 1)
11473 // Extract the remaining indices out of the constant indexed by the
11474 // first index
11475 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11476 else
11477 return ReplaceInstUsesWith(EV, V);
11478 }
11479 return 0; // Can't handle other constants
11480 }
11481 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11482 // We're extracting from an insertvalue instruction, compare the indices
11483 const unsigned *exti, *exte, *insi, *inse;
11484 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11485 exte = EV.idx_end(), inse = IV->idx_end();
11486 exti != exte && insi != inse;
11487 ++exti, ++insi) {
11488 if (*insi != *exti)
11489 // The insert and extract both reference distinctly different elements.
11490 // This means the extract is not influenced by the insert, and we can
11491 // replace the aggregate operand of the extract with the aggregate
11492 // operand of the insert. i.e., replace
11493 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11494 // %E = extractvalue { i32, { i32 } } %I, 0
11495 // with
11496 // %E = extractvalue { i32, { i32 } } %A, 0
11497 return ExtractValueInst::Create(IV->getAggregateOperand(),
11498 EV.idx_begin(), EV.idx_end());
11499 }
11500 if (exti == exte && insi == inse)
11501 // Both iterators are at the end: Index lists are identical. Replace
11502 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11503 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11504 // with "i32 42"
11505 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11506 if (exti == exte) {
11507 // The extract list is a prefix of the insert list. i.e. replace
11508 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11509 // %E = extractvalue { i32, { i32 } } %I, 1
11510 // with
11511 // %X = extractvalue { i32, { i32 } } %A, 1
11512 // %E = insertvalue { i32 } %X, i32 42, 0
11513 // by switching the order of the insert and extract (though the
11514 // insertvalue should be left in, since it may have other uses).
11515 Value *NewEV = InsertNewInstBefore(
11516 ExtractValueInst::Create(IV->getAggregateOperand(),
11517 EV.idx_begin(), EV.idx_end()),
11518 EV);
11519 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11520 insi, inse);
11521 }
11522 if (insi == inse)
11523 // The insert list is a prefix of the extract list
11524 // We can simply remove the common indices from the extract and make it
11525 // operate on the inserted value instead of the insertvalue result.
11526 // i.e., replace
11527 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11528 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11529 // with
11530 // %E extractvalue { i32 } { i32 42 }, 0
11531 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11532 exti, exte);
11533 }
11534 // Can't simplify extracts from other values. Note that nested extracts are
11535 // already simplified implicitely by the above (extract ( extract (insert) )
11536 // will be translated into extract ( insert ( extract ) ) first and then just
11537 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011538 return 0;
11539}
11540
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011541/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11542/// is to leave as a vector operation.
11543static bool CheapToScalarize(Value *V, bool isConstant) {
11544 if (isa<ConstantAggregateZero>(V))
11545 return true;
11546 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11547 if (isConstant) return true;
11548 // If all elts are the same, we can extract.
11549 Constant *Op0 = C->getOperand(0);
11550 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11551 if (C->getOperand(i) != Op0)
11552 return false;
11553 return true;
11554 }
11555 Instruction *I = dyn_cast<Instruction>(V);
11556 if (!I) return false;
11557
11558 // Insert element gets simplified to the inserted element or is deleted if
11559 // this is constant idx extract element and its a constant idx insertelt.
11560 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11561 isa<ConstantInt>(I->getOperand(2)))
11562 return true;
11563 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11564 return true;
11565 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11566 if (BO->hasOneUse() &&
11567 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11568 CheapToScalarize(BO->getOperand(1), isConstant)))
11569 return true;
11570 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11571 if (CI->hasOneUse() &&
11572 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11573 CheapToScalarize(CI->getOperand(1), isConstant)))
11574 return true;
11575
11576 return false;
11577}
11578
11579/// Read and decode a shufflevector mask.
11580///
11581/// It turns undef elements into values that are larger than the number of
11582/// elements in the input.
11583static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11584 unsigned NElts = SVI->getType()->getNumElements();
11585 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11586 return std::vector<unsigned>(NElts, 0);
11587 if (isa<UndefValue>(SVI->getOperand(2)))
11588 return std::vector<unsigned>(NElts, 2*NElts);
11589
11590 std::vector<unsigned> Result;
11591 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011592 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11593 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011594 Result.push_back(NElts*2); // undef -> 8
11595 else
Gabor Greif17396002008-06-12 21:37:33 +000011596 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011597 return Result;
11598}
11599
11600/// FindScalarElement - Given a vector and an element number, see if the scalar
11601/// value is already around as a register, for example if it were inserted then
11602/// extracted from the vector.
11603static Value *FindScalarElement(Value *V, unsigned EltNo) {
11604 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11605 const VectorType *PTy = cast<VectorType>(V->getType());
11606 unsigned Width = PTy->getNumElements();
11607 if (EltNo >= Width) // Out of range access.
11608 return UndefValue::get(PTy->getElementType());
11609
11610 if (isa<UndefValue>(V))
11611 return UndefValue::get(PTy->getElementType());
11612 else if (isa<ConstantAggregateZero>(V))
11613 return Constant::getNullValue(PTy->getElementType());
11614 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11615 return CP->getOperand(EltNo);
11616 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11617 // If this is an insert to a variable element, we don't know what it is.
11618 if (!isa<ConstantInt>(III->getOperand(2)))
11619 return 0;
11620 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11621
11622 // If this is an insert to the element we are looking for, return the
11623 // inserted value.
11624 if (EltNo == IIElt)
11625 return III->getOperand(1);
11626
11627 // Otherwise, the insertelement doesn't modify the value, recurse on its
11628 // vector input.
11629 return FindScalarElement(III->getOperand(0), EltNo);
11630 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011631 unsigned LHSWidth =
11632 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011633 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011634 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011635 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011636 else if (InEl < LHSWidth*2)
11637 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011638 else
11639 return UndefValue::get(PTy->getElementType());
11640 }
11641
11642 // Otherwise, we don't know.
11643 return 0;
11644}
11645
11646Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011647 // If vector val is undef, replace extract with scalar undef.
11648 if (isa<UndefValue>(EI.getOperand(0)))
11649 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11650
11651 // If vector val is constant 0, replace extract with scalar 0.
11652 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11653 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11654
11655 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011656 // If vector val is constant with all elements the same, replace EI with
11657 // that element. When the elements are not identical, we cannot replace yet
11658 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011659 Constant *op0 = C->getOperand(0);
11660 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11661 if (C->getOperand(i) != op0) {
11662 op0 = 0;
11663 break;
11664 }
11665 if (op0)
11666 return ReplaceInstUsesWith(EI, op0);
11667 }
11668
11669 // If extracting a specified index from the vector, see if we can recursively
11670 // find a previously computed scalar that was inserted into the vector.
11671 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11672 unsigned IndexVal = IdxC->getZExtValue();
11673 unsigned VectorWidth =
11674 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11675
11676 // If this is extracting an invalid index, turn this into undef, to avoid
11677 // crashing the code below.
11678 if (IndexVal >= VectorWidth)
11679 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11680
11681 // This instruction only demands the single element from the input vector.
11682 // If the input vector has a single use, simplify it based on this use
11683 // property.
11684 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11685 uint64_t UndefElts;
11686 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11687 1 << IndexVal,
11688 UndefElts)) {
11689 EI.setOperand(0, V);
11690 return &EI;
11691 }
11692 }
11693
11694 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11695 return ReplaceInstUsesWith(EI, Elt);
11696
11697 // If the this extractelement is directly using a bitcast from a vector of
11698 // the same number of elements, see if we can find the source element from
11699 // it. In this case, we will end up needing to bitcast the scalars.
11700 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11701 if (const VectorType *VT =
11702 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11703 if (VT->getNumElements() == VectorWidth)
11704 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11705 return new BitCastInst(Elt, EI.getType());
11706 }
11707 }
11708
11709 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11710 if (I->hasOneUse()) {
11711 // Push extractelement into predecessor operation if legal and
11712 // profitable to do so
11713 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11714 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11715 if (CheapToScalarize(BO, isConstantElt)) {
11716 ExtractElementInst *newEI0 =
11717 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11718 EI.getName()+".lhs");
11719 ExtractElementInst *newEI1 =
11720 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11721 EI.getName()+".rhs");
11722 InsertNewInstBefore(newEI0, EI);
11723 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011724 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011725 }
11726 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011727 unsigned AS =
11728 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011729 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11730 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011731 GetElementPtrInst *GEP =
11732 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011733 InsertNewInstBefore(GEP, EI);
11734 return new LoadInst(GEP);
11735 }
11736 }
11737 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11738 // Extracting the inserted element?
11739 if (IE->getOperand(2) == EI.getOperand(1))
11740 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11741 // If the inserted and extracted elements are constants, they must not
11742 // be the same value, extract from the pre-inserted value instead.
11743 if (isa<Constant>(IE->getOperand(2)) &&
11744 isa<Constant>(EI.getOperand(1))) {
11745 AddUsesToWorkList(EI);
11746 EI.setOperand(0, IE->getOperand(0));
11747 return &EI;
11748 }
11749 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11750 // If this is extracting an element from a shufflevector, figure out where
11751 // it came from and extract from the appropriate input element instead.
11752 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11753 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11754 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011755 unsigned LHSWidth =
11756 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11757
11758 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011759 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011760 else if (SrcIdx < LHSWidth*2) {
11761 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011762 Src = SVI->getOperand(1);
11763 } else {
11764 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11765 }
11766 return new ExtractElementInst(Src, SrcIdx);
11767 }
11768 }
11769 }
11770 return 0;
11771}
11772
11773/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11774/// elements from either LHS or RHS, return the shuffle mask and true.
11775/// Otherwise, return false.
11776static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11777 std::vector<Constant*> &Mask) {
11778 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11779 "Invalid CollectSingleShuffleElements");
11780 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11781
11782 if (isa<UndefValue>(V)) {
11783 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11784 return true;
11785 } else if (V == LHS) {
11786 for (unsigned i = 0; i != NumElts; ++i)
11787 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11788 return true;
11789 } else if (V == RHS) {
11790 for (unsigned i = 0; i != NumElts; ++i)
11791 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11792 return true;
11793 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11794 // If this is an insert of an extract from some other vector, include it.
11795 Value *VecOp = IEI->getOperand(0);
11796 Value *ScalarOp = IEI->getOperand(1);
11797 Value *IdxOp = IEI->getOperand(2);
11798
11799 if (!isa<ConstantInt>(IdxOp))
11800 return false;
11801 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11802
11803 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11804 // Okay, we can handle this if the vector we are insertinting into is
11805 // transitively ok.
11806 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11807 // If so, update the mask to reflect the inserted undef.
11808 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11809 return true;
11810 }
11811 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11812 if (isa<ConstantInt>(EI->getOperand(1)) &&
11813 EI->getOperand(0)->getType() == V->getType()) {
11814 unsigned ExtractedIdx =
11815 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11816
11817 // This must be extracting from either LHS or RHS.
11818 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11819 // Okay, we can handle this if the vector we are insertinting into is
11820 // transitively ok.
11821 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11822 // If so, update the mask to reflect the inserted value.
11823 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011824 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011825 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11826 } else {
11827 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011828 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011829 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11830
11831 }
11832 return true;
11833 }
11834 }
11835 }
11836 }
11837 }
11838 // TODO: Handle shufflevector here!
11839
11840 return false;
11841}
11842
11843/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11844/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11845/// that computes V and the LHS value of the shuffle.
11846static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11847 Value *&RHS) {
11848 assert(isa<VectorType>(V->getType()) &&
11849 (RHS == 0 || V->getType() == RHS->getType()) &&
11850 "Invalid shuffle!");
11851 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11852
11853 if (isa<UndefValue>(V)) {
11854 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11855 return V;
11856 } else if (isa<ConstantAggregateZero>(V)) {
11857 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11858 return V;
11859 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11860 // If this is an insert of an extract from some other vector, include it.
11861 Value *VecOp = IEI->getOperand(0);
11862 Value *ScalarOp = IEI->getOperand(1);
11863 Value *IdxOp = IEI->getOperand(2);
11864
11865 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11866 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11867 EI->getOperand(0)->getType() == V->getType()) {
11868 unsigned ExtractedIdx =
11869 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11870 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11871
11872 // Either the extracted from or inserted into vector must be RHSVec,
11873 // otherwise we'd end up with a shuffle of three inputs.
11874 if (EI->getOperand(0) == RHS || RHS == 0) {
11875 RHS = EI->getOperand(0);
11876 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011877 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011878 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11879 return V;
11880 }
11881
11882 if (VecOp == RHS) {
11883 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11884 // Everything but the extracted element is replaced with the RHS.
11885 for (unsigned i = 0; i != NumElts; ++i) {
11886 if (i != InsertedIdx)
11887 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11888 }
11889 return V;
11890 }
11891
11892 // If this insertelement is a chain that comes from exactly these two
11893 // vectors, return the vector and the effective shuffle.
11894 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11895 return EI->getOperand(0);
11896
11897 }
11898 }
11899 }
11900 // TODO: Handle shufflevector here!
11901
11902 // Otherwise, can't do anything fancy. Return an identity vector.
11903 for (unsigned i = 0; i != NumElts; ++i)
11904 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11905 return V;
11906}
11907
11908Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11909 Value *VecOp = IE.getOperand(0);
11910 Value *ScalarOp = IE.getOperand(1);
11911 Value *IdxOp = IE.getOperand(2);
11912
11913 // Inserting an undef or into an undefined place, remove this.
11914 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11915 ReplaceInstUsesWith(IE, VecOp);
11916
11917 // If the inserted element was extracted from some other vector, and if the
11918 // indexes are constant, try to turn this into a shufflevector operation.
11919 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11920 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11921 EI->getOperand(0)->getType() == IE.getType()) {
11922 unsigned NumVectorElts = IE.getType()->getNumElements();
11923 unsigned ExtractedIdx =
11924 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11925 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11926
11927 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11928 return ReplaceInstUsesWith(IE, VecOp);
11929
11930 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11931 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11932
11933 // If we are extracting a value from a vector, then inserting it right
11934 // back into the same place, just use the input vector.
11935 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11936 return ReplaceInstUsesWith(IE, VecOp);
11937
11938 // We could theoretically do this for ANY input. However, doing so could
11939 // turn chains of insertelement instructions into a chain of shufflevector
11940 // instructions, and right now we do not merge shufflevectors. As such,
11941 // only do this in a situation where it is clear that there is benefit.
11942 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11943 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11944 // the values of VecOp, except then one read from EIOp0.
11945 // Build a new shuffle mask.
11946 std::vector<Constant*> Mask;
11947 if (isa<UndefValue>(VecOp))
11948 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11949 else {
11950 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11951 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11952 NumVectorElts));
11953 }
11954 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11955 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11956 ConstantVector::get(Mask));
11957 }
11958
11959 // If this insertelement isn't used by some other insertelement, turn it
11960 // (and any insertelements it points to), into one big shuffle.
11961 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11962 std::vector<Constant*> Mask;
11963 Value *RHS = 0;
11964 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11965 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11966 // We now have a shuffle of LHS, RHS, Mask.
11967 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11968 }
11969 }
11970 }
11971
11972 return 0;
11973}
11974
11975
11976Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11977 Value *LHS = SVI.getOperand(0);
11978 Value *RHS = SVI.getOperand(1);
11979 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11980
11981 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011982
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011983 // Undefined shuffle mask -> undefined value.
11984 if (isa<UndefValue>(SVI.getOperand(2)))
11985 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011986
11987 uint64_t UndefElts;
11988 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011989
11990 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11991 return 0;
11992
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011993 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11994 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011995 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11996 LHS = SVI.getOperand(0);
11997 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011998 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011999 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012000
12001 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
12002 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
12003 if (LHS == RHS || isa<UndefValue>(LHS)) {
12004 if (isa<UndefValue>(LHS) && LHS == RHS) {
12005 // shuffle(undef,undef,mask) -> undef.
12006 return ReplaceInstUsesWith(SVI, LHS);
12007 }
12008
12009 // Remap any references to RHS to use LHS.
12010 std::vector<Constant*> Elts;
12011 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12012 if (Mask[i] >= 2*e)
12013 Elts.push_back(UndefValue::get(Type::Int32Ty));
12014 else {
12015 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000012016 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012017 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012018 Elts.push_back(UndefValue::get(Type::Int32Ty));
12019 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000012020 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012021 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
12022 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012023 }
12024 }
12025 SVI.setOperand(0, SVI.getOperand(1));
12026 SVI.setOperand(1, UndefValue::get(RHS->getType()));
12027 SVI.setOperand(2, ConstantVector::get(Elts));
12028 LHS = SVI.getOperand(0);
12029 RHS = SVI.getOperand(1);
12030 MadeChange = true;
12031 }
12032
12033 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12034 bool isLHSID = true, isRHSID = true;
12035
12036 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12037 if (Mask[i] >= e*2) continue; // Ignore undef values.
12038 // Is this an identity shuffle of the LHS value?
12039 isLHSID &= (Mask[i] == i);
12040
12041 // Is this an identity shuffle of the RHS value?
12042 isRHSID &= (Mask[i]-e == i);
12043 }
12044
12045 // Eliminate identity shuffles.
12046 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12047 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12048
12049 // If the LHS is a shufflevector itself, see if we can combine it with this
12050 // one without producing an unusual shuffle. Here we are really conservative:
12051 // we are absolutely afraid of producing a shuffle mask not in the input
12052 // program, because the code gen may not be smart enough to turn a merged
12053 // shuffle into two specific shuffles: it may produce worse code. As such,
12054 // we only merge two shuffles if the result is one of the two input shuffle
12055 // masks. In this case, merging the shuffles just removes one instruction,
12056 // which we know is safe. This is good for things like turning:
12057 // (splat(splat)) -> splat.
12058 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12059 if (isa<UndefValue>(RHS)) {
12060 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12061
12062 std::vector<unsigned> NewMask;
12063 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12064 if (Mask[i] >= 2*e)
12065 NewMask.push_back(2*e);
12066 else
12067 NewMask.push_back(LHSMask[Mask[i]]);
12068
12069 // If the result mask is equal to the src shuffle or this shuffle mask, do
12070 // the replacement.
12071 if (NewMask == LHSMask || NewMask == Mask) {
12072 std::vector<Constant*> Elts;
12073 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12074 if (NewMask[i] >= e*2) {
12075 Elts.push_back(UndefValue::get(Type::Int32Ty));
12076 } else {
12077 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12078 }
12079 }
12080 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12081 LHSSVI->getOperand(1),
12082 ConstantVector::get(Elts));
12083 }
12084 }
12085 }
12086
12087 return MadeChange ? &SVI : 0;
12088}
12089
12090
12091
12092
12093/// TryToSinkInstruction - Try to move the specified instruction from its
12094/// current block into the beginning of DestBlock, which can only happen if it's
12095/// safe to move the instruction past all of the instructions between it and the
12096/// end of its block.
12097static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12098 assert(I->hasOneUse() && "Invariants didn't hold!");
12099
12100 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012101 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12102 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012103
12104 // Do not sink alloca instructions out of the entry block.
12105 if (isa<AllocaInst>(I) && I->getParent() ==
12106 &DestBlock->getParent()->getEntryBlock())
12107 return false;
12108
12109 // We can only sink load instructions if there is nothing between the load and
12110 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012111 if (I->mayReadFromMemory()) {
12112 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012113 Scan != E; ++Scan)
12114 if (Scan->mayWriteToMemory())
12115 return false;
12116 }
12117
Dan Gohman514277c2008-05-23 21:05:58 +000012118 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012119
12120 I->moveBefore(InsertPos);
12121 ++NumSunkInst;
12122 return true;
12123}
12124
12125
12126/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12127/// all reachable code to the worklist.
12128///
12129/// This has a couple of tricks to make the code faster and more powerful. In
12130/// particular, we constant fold and DCE instructions as we go, to avoid adding
12131/// them to the worklist (this significantly speeds up instcombine on code where
12132/// many instructions are dead or constant). Additionally, if we find a branch
12133/// whose condition is a known constant, we only visit the reachable successors.
12134///
12135static void AddReachableCodeToWorklist(BasicBlock *BB,
12136 SmallPtrSet<BasicBlock*, 64> &Visited,
12137 InstCombiner &IC,
12138 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012139 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012140 Worklist.push_back(BB);
12141
12142 while (!Worklist.empty()) {
12143 BB = Worklist.back();
12144 Worklist.pop_back();
12145
12146 // We have now visited this block! If we've already been here, ignore it.
12147 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012148
12149 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012150 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12151 Instruction *Inst = BBI++;
12152
12153 // DCE instruction if trivially dead.
12154 if (isInstructionTriviallyDead(Inst)) {
12155 ++NumDeadInst;
12156 DOUT << "IC: DCE: " << *Inst;
12157 Inst->eraseFromParent();
12158 continue;
12159 }
12160
12161 // ConstantProp instruction if trivially constant.
12162 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12163 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12164 Inst->replaceAllUsesWith(C);
12165 ++NumConstProp;
12166 Inst->eraseFromParent();
12167 continue;
12168 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012169
Devang Patel794140c2008-11-19 18:56:50 +000012170 // If there are two consecutive llvm.dbg.stoppoint calls then
12171 // it is likely that the optimizer deleted code in between these
12172 // two intrinsics.
12173 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12174 if (DBI_Next) {
12175 if (DBI_Prev
12176 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12177 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12178 IC.RemoveFromWorkList(DBI_Prev);
12179 DBI_Prev->eraseFromParent();
12180 }
12181 DBI_Prev = DBI_Next;
12182 }
12183
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012184 IC.AddToWorkList(Inst);
12185 }
12186
12187 // Recursively visit successors. If this is a branch or switch on a
12188 // constant, only visit the reachable successor.
12189 TerminatorInst *TI = BB->getTerminator();
12190 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12191 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12192 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012193 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012194 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012195 continue;
12196 }
12197 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12198 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12199 // See if this is an explicit destination.
12200 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12201 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012202 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012203 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012204 continue;
12205 }
12206
12207 // Otherwise it is the default destination.
12208 Worklist.push_back(SI->getSuccessor(0));
12209 continue;
12210 }
12211 }
12212
12213 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12214 Worklist.push_back(TI->getSuccessor(i));
12215 }
12216}
12217
12218bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12219 bool Changed = false;
12220 TD = &getAnalysis<TargetData>();
12221
12222 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12223 << F.getNameStr() << "\n");
12224
12225 {
12226 // Do a depth-first traversal of the function, populate the worklist with
12227 // the reachable instructions. Ignore blocks that are not reachable. Keep
12228 // track of which blocks we visit.
12229 SmallPtrSet<BasicBlock*, 64> Visited;
12230 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12231
12232 // Do a quick scan over the function. If we find any blocks that are
12233 // unreachable, remove any instructions inside of them. This prevents
12234 // the instcombine code from having to deal with some bad special cases.
12235 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12236 if (!Visited.count(BB)) {
12237 Instruction *Term = BB->getTerminator();
12238 while (Term != BB->begin()) { // Remove instrs bottom-up
12239 BasicBlock::iterator I = Term; --I;
12240
12241 DOUT << "IC: DCE: " << *I;
12242 ++NumDeadInst;
12243
12244 if (!I->use_empty())
12245 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12246 I->eraseFromParent();
12247 }
12248 }
12249 }
12250
12251 while (!Worklist.empty()) {
12252 Instruction *I = RemoveOneFromWorkList();
12253 if (I == 0) continue; // skip null values.
12254
12255 // Check to see if we can DCE the instruction.
12256 if (isInstructionTriviallyDead(I)) {
12257 // Add operands to the worklist.
12258 if (I->getNumOperands() < 4)
12259 AddUsesToWorkList(*I);
12260 ++NumDeadInst;
12261
12262 DOUT << "IC: DCE: " << *I;
12263
12264 I->eraseFromParent();
12265 RemoveFromWorkList(I);
12266 continue;
12267 }
12268
12269 // Instruction isn't dead, see if we can constant propagate it.
12270 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12271 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12272
12273 // Add operands to the worklist.
12274 AddUsesToWorkList(*I);
12275 ReplaceInstUsesWith(*I, C);
12276
12277 ++NumConstProp;
12278 I->eraseFromParent();
12279 RemoveFromWorkList(I);
12280 continue;
12281 }
12282
Nick Lewyckyadb67922008-05-25 20:56:15 +000012283 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12284 // See if we can constant fold its operands.
12285 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12286 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12287 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12288 i->set(NewC);
12289 }
12290 }
12291 }
12292
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012293 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012294 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012295 BasicBlock *BB = I->getParent();
12296 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12297 if (UserParent != BB) {
12298 bool UserIsSuccessor = false;
12299 // See if the user is one of our successors.
12300 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12301 if (*SI == UserParent) {
12302 UserIsSuccessor = true;
12303 break;
12304 }
12305
12306 // If the user is one of our immediate successors, and if that successor
12307 // only has us as a predecessors (we'd have to split the critical edge
12308 // otherwise), we can keep going.
12309 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12310 next(pred_begin(UserParent)) == pred_end(UserParent))
12311 // Okay, the CFG is simple enough, try to sink this instruction.
12312 Changed |= TryToSinkInstruction(I, UserParent);
12313 }
12314 }
12315
12316 // Now that we have an instruction, try combining it to simplify it...
12317#ifndef NDEBUG
12318 std::string OrigI;
12319#endif
12320 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12321 if (Instruction *Result = visit(*I)) {
12322 ++NumCombined;
12323 // Should we replace the old instruction with a new one?
12324 if (Result != I) {
12325 DOUT << "IC: Old = " << *I
12326 << " New = " << *Result;
12327
12328 // Everything uses the new instruction now.
12329 I->replaceAllUsesWith(Result);
12330
12331 // Push the new instruction and any users onto the worklist.
12332 AddToWorkList(Result);
12333 AddUsersToWorkList(*Result);
12334
12335 // Move the name to the new instruction first.
12336 Result->takeName(I);
12337
12338 // Insert the new instruction into the basic block...
12339 BasicBlock *InstParent = I->getParent();
12340 BasicBlock::iterator InsertPos = I;
12341
12342 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12343 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12344 ++InsertPos;
12345
12346 InstParent->getInstList().insert(InsertPos, Result);
12347
12348 // Make sure that we reprocess all operands now that we reduced their
12349 // use counts.
12350 AddUsesToWorkList(*I);
12351
12352 // Instructions can end up on the worklist more than once. Make sure
12353 // we do not process an instruction that has been deleted.
12354 RemoveFromWorkList(I);
12355
12356 // Erase the old instruction.
12357 InstParent->getInstList().erase(I);
12358 } else {
12359#ifndef NDEBUG
12360 DOUT << "IC: Mod = " << OrigI
12361 << " New = " << *I;
12362#endif
12363
12364 // If the instruction was modified, it's possible that it is now dead.
12365 // if so, remove it.
12366 if (isInstructionTriviallyDead(I)) {
12367 // Make sure we process all operands now that we are reducing their
12368 // use counts.
12369 AddUsesToWorkList(*I);
12370
12371 // Instructions may end up in the worklist more than once. Erase all
12372 // occurrences of this instruction.
12373 RemoveFromWorkList(I);
12374 I->eraseFromParent();
12375 } else {
12376 AddToWorkList(I);
12377 AddUsersToWorkList(*I);
12378 }
12379 }
12380 Changed = true;
12381 }
12382 }
12383
12384 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012385
12386 // Do an explicit clear, this shrinks the map if needed.
12387 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012388 return Changed;
12389}
12390
12391
12392bool InstCombiner::runOnFunction(Function &F) {
12393 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12394
12395 bool EverMadeChange = false;
12396
12397 // Iterate while there is work to do.
12398 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012399 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012400 EverMadeChange = true;
12401 return EverMadeChange;
12402}
12403
12404FunctionPass *llvm::createInstructionCombiningPass() {
12405 return new InstCombiner();
12406}
12407
Chris Lattner6297fc72008-08-11 22:06:05 +000012408