blob: 4ac4753b05d07c6b076327b64e0587d3d9064e2d [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
Eli Friedman74703252011-07-20 21:57:23 +000015#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000016#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000018#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/IntrinsicInst.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000020#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000023#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner02446fc2010-01-04 07:37:31 +000024using namespace llvm;
25using namespace PatternMatch;
26
Chris Lattnerb20c0b52011-02-10 05:23:05 +000027static ConstantInt *getOne(Constant *C) {
28 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
Chris Lattner02446fc2010-01-04 07:37:31 +000031/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000036static Constant *SubOne(Constant *C) {
37 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000038}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45 ConstantInt *In1, ConstantInt *In2,
46 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000047 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000048 return Result->getValue().ult(In1->getValue());
Chris Lattnerc73b24d2011-07-15 06:08:15 +000049
50 if (In2->isNegative())
51 return Result->getValue().sgt(In1->getValue());
52 return Result->getValue().slt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000053}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58 Constant *In2, bool IsSigned = false) {
59 Result = ConstantExpr::getAdd(In1, In2);
60
Chris Lattnerdb125cf2011-07-18 04:54:35 +000061 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000062 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64 if (HasAddOverflow(ExtractElement(Result, Idx),
65 ExtractElement(In1, Idx),
66 ExtractElement(In2, Idx),
67 IsSigned))
68 return true;
69 }
70 return false;
71 }
72
73 return HasAddOverflow(cast<ConstantInt>(Result),
74 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75 IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79 ConstantInt *In1, ConstantInt *In2,
80 bool IsSigned) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +000081 if (!IsSigned)
Chris Lattner02446fc2010-01-04 07:37:31 +000082 return Result->getValue().ugt(In1->getValue());
Jim Grosbach0cc4a952011-09-30 18:09:53 +000083
Chris Lattnerc73b24d2011-07-15 06:08:15 +000084 if (In2->isNegative())
85 return Result->getValue().slt(In1->getValue());
86
87 return Result->getValue().sgt(In1->getValue());
Chris Lattner02446fc2010-01-04 07:37:31 +000088}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93 Constant *In2, bool IsSigned = false) {
94 Result = ConstantExpr::getSub(In1, In2);
95
Chris Lattnerdb125cf2011-07-18 04:54:35 +000096 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner02446fc2010-01-04 07:37:31 +000097 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99 if (HasSubOverflow(ExtractElement(Result, Idx),
100 ExtractElement(In1, Idx),
101 ExtractElement(In2, Idx),
102 IsSigned))
103 return true;
104 }
105 return false;
106 }
107
108 return HasSubOverflow(cast<ConstantInt>(Result),
109 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110 IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit. If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118 bool &TrueIfSigned) {
119 switch (pred) {
120 case ICmpInst::ICMP_SLT: // True if LHS s< 0
121 TrueIfSigned = true;
122 return RHS->isZero();
123 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
124 TrueIfSigned = true;
125 return RHS->isAllOnesValue();
126 case ICmpInst::ICMP_SGT: // True if LHS s> -1
127 TrueIfSigned = false;
128 return RHS->isAllOnesValue();
129 case ICmpInst::ICMP_UGT:
130 // True if LHS u> RHS and RHS == high-bit-mask - 1
131 TrueIfSigned = true;
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000132 return RHS->isMaxValue(true);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000133 case ICmpInst::ICMP_UGE:
Chris Lattner02446fc2010-01-04 07:37:31 +0000134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135 TrueIfSigned = true;
136 return RHS->getValue().isSignBit();
137 default:
138 return false;
139 }
140}
141
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000142/// Returns true if the exploded icmp can be expressed as a signed comparison
143/// to zero and updates the predicate accordingly.
144/// The signedness of the comparison is preserved.
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000145static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146 if (!ICmpInst::isSigned(pred))
147 return false;
148
149 if (RHS->isZero())
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000150 return ICmpInst::isRelational(pred);
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000151
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000152 if (RHS->isOne()) {
153 if (pred == ICmpInst::ICMP_SLT) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000154 pred = ICmpInst::ICMP_SLE;
155 return true;
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000156 }
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000157 } else if (RHS->isAllOnesValue()) {
158 if (pred == ICmpInst::ICMP_SGT) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000159 pred = ICmpInst::ICMP_SGE;
160 return true;
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000161 }
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +0000162 }
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +0000163
164 return false;
165}
166
Chris Lattner02446fc2010-01-04 07:37:31 +0000167// isHighOnes - Return true if the constant is of the form 1+0+.
168// This is the same as lowones(~X).
169static bool isHighOnes(const ConstantInt *CI) {
170 return (~CI->getValue() + 1).isPowerOf2();
171}
172
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000173/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
Chris Lattner02446fc2010-01-04 07:37:31 +0000174/// set of known zero and one bits, compute the maximum and minimum values that
175/// could have the specified known zero and known one bits, returning them in
176/// min/max.
177static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178 const APInt& KnownOne,
179 APInt& Min, APInt& Max) {
180 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181 KnownZero.getBitWidth() == Min.getBitWidth() &&
182 KnownZero.getBitWidth() == Max.getBitWidth() &&
183 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184 APInt UnknownBits = ~(KnownZero|KnownOne);
185
186 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187 // bit if it is unknown.
188 Min = KnownOne;
189 Max = KnownOne|UnknownBits;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000190
Chris Lattner02446fc2010-01-04 07:37:31 +0000191 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000192 Min.setBit(Min.getBitWidth()-1);
193 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000194 }
195}
196
197// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198// a set of known zero and one bits, compute the maximum and minimum values that
199// could have the specified known zero and known one bits, returning them in
200// min/max.
201static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202 const APInt &KnownOne,
203 APInt &Min, APInt &Max) {
204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205 KnownZero.getBitWidth() == Min.getBitWidth() &&
206 KnownZero.getBitWidth() == Max.getBitWidth() &&
207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208 APInt UnknownBits = ~(KnownZero|KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000209
Chris Lattner02446fc2010-01-04 07:37:31 +0000210 // The minimum value is when the unknown bits are all zeros.
211 Min = KnownOne;
212 // The maximum value is when the unknown bits are all ones.
213 Max = KnownOne|UnknownBits;
214}
215
216
217
218/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219/// cmp pred (load (gep GV, ...)), cmpcst
220/// where GV is a global variable with a constant initializer. Try to simplify
221/// this into some simple computation that does not need the load. For example
222/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223///
224/// If AndCst is non-null, then the loaded value is masked with that constant
225/// before doing the comparison. This handles cases like "A[i]&4 == 0".
226Instruction *InstCombiner::
227FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
228 CmpInst &ICI, ConstantInt *AndCst) {
Matt Arsenaulta630cb02013-08-15 23:11:07 +0000229 if (!GEP->isInBounds())
230 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000231
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000232 Constant *Init = GV->getInitializer();
233 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234 return 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000235
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000236 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237 if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000238
Chris Lattner02446fc2010-01-04 07:37:31 +0000239 // There are many forms of this optimization we can handle, for now, just do
240 // the simple index into a single-dimensional array.
241 //
242 // Require: GEP GV, 0, i {{, constant indices}}
243 if (GEP->getNumOperands() < 3 ||
244 !isa<ConstantInt>(GEP->getOperand(1)) ||
245 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246 isa<Constant>(GEP->getOperand(2)))
247 return 0;
248
249 // Check that indices after the variable are constants and in-range for the
250 // type they index. Collect the indices. This is typically for arrays of
251 // structs.
252 SmallVector<unsigned, 4> LaterIndices;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000253
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000254 Type *EltTy = Init->getType()->getArrayElementType();
Chris Lattner02446fc2010-01-04 07:37:31 +0000255 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257 if (Idx == 0) return 0; // Variable index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000258
Chris Lattner02446fc2010-01-04 07:37:31 +0000259 uint64_t IdxVal = Idx->getZExtValue();
260 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000261
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000262 if (StructType *STy = dyn_cast<StructType>(EltTy))
Chris Lattner02446fc2010-01-04 07:37:31 +0000263 EltTy = STy->getElementType(IdxVal);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000264 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000265 if (IdxVal >= ATy->getNumElements()) return 0;
266 EltTy = ATy->getElementType();
267 } else {
268 return 0; // Unknown type.
269 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000270
Chris Lattner02446fc2010-01-04 07:37:31 +0000271 LaterIndices.push_back(IdxVal);
272 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000273
Chris Lattner02446fc2010-01-04 07:37:31 +0000274 enum { Overdefined = -3, Undefined = -2 };
275
276 // Variables for our state machines.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000277
Chris Lattner02446fc2010-01-04 07:37:31 +0000278 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280 // and 87 is the second (and last) index. FirstTrueElement is -2 when
281 // undefined, otherwise set to the first true element. SecondTrueElement is
282 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286 // form "i != 47 & i != 87". Same state transitions as for true elements.
287 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000288
Chris Lattner02446fc2010-01-04 07:37:31 +0000289 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290 /// define a state machine that triggers for ranges of values that the index
291 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
292 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293 /// index in the range (inclusive). We use -2 for undefined here because we
294 /// use relative comparisons and don't want 0-1 to match -1.
295 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000296
Chris Lattner02446fc2010-01-04 07:37:31 +0000297 // MagicBitvector - This is a magic bitvector where we set a bit if the
298 // comparison is true for element 'i'. If there are 64 elements or less in
299 // the array, this will fully represent all the comparison results.
300 uint64_t MagicBitvector = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000301
302
Chris Lattner02446fc2010-01-04 07:37:31 +0000303 // Scan the array and see if one of our patterns matches.
304 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
Chris Lattnerc8d75c72012-01-31 02:55:06 +0000305 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
306 Constant *Elt = Init->getAggregateElement(i);
307 if (Elt == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000308
Chris Lattner02446fc2010-01-04 07:37:31 +0000309 // If this is indexing an array of structures, get the structure element.
310 if (!LaterIndices.empty())
Jay Foadfc6d3a42011-07-13 10:26:04 +0000311 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000312
Chris Lattner02446fc2010-01-04 07:37:31 +0000313 // If the element is masked, handle it.
314 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000315
Chris Lattner02446fc2010-01-04 07:37:31 +0000316 // Find out if the comparison would be true or false for the i'th element.
317 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
Chad Rosieraab8e282011-12-02 01:26:24 +0000318 CompareRHS, TD, TLI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000319 // If the result is undef for this element, ignore it.
320 if (isa<UndefValue>(C)) {
321 // Extend range state machines to cover this element in case there is an
322 // undef in the middle of the range.
323 if (TrueRangeEnd == (int)i-1)
324 TrueRangeEnd = i;
325 if (FalseRangeEnd == (int)i-1)
326 FalseRangeEnd = i;
327 continue;
328 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000329
Chris Lattner02446fc2010-01-04 07:37:31 +0000330 // If we can't compute the result for any of the elements, we have to give
331 // up evaluating the entire conditional.
332 if (!isa<ConstantInt>(C)) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000333
Chris Lattner02446fc2010-01-04 07:37:31 +0000334 // Otherwise, we know if the comparison is true or false for this element,
335 // update our state machines.
336 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000337
Chris Lattner02446fc2010-01-04 07:37:31 +0000338 // State machine for single/double/range index comparison.
339 if (IsTrueForElt) {
340 // Update the TrueElement state machine.
341 if (FirstTrueElement == Undefined)
342 FirstTrueElement = TrueRangeEnd = i; // First true element.
343 else {
344 // Update double-compare state machine.
345 if (SecondTrueElement == Undefined)
346 SecondTrueElement = i;
347 else
348 SecondTrueElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000349
Chris Lattner02446fc2010-01-04 07:37:31 +0000350 // Update range state machine.
351 if (TrueRangeEnd == (int)i-1)
352 TrueRangeEnd = i;
353 else
354 TrueRangeEnd = Overdefined;
355 }
356 } else {
357 // Update the FalseElement state machine.
358 if (FirstFalseElement == Undefined)
359 FirstFalseElement = FalseRangeEnd = i; // First false element.
360 else {
361 // Update double-compare state machine.
362 if (SecondFalseElement == Undefined)
363 SecondFalseElement = i;
364 else
365 SecondFalseElement = Overdefined;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000366
Chris Lattner02446fc2010-01-04 07:37:31 +0000367 // Update range state machine.
368 if (FalseRangeEnd == (int)i-1)
369 FalseRangeEnd = i;
370 else
371 FalseRangeEnd = Overdefined;
372 }
373 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000374
375
Chris Lattner02446fc2010-01-04 07:37:31 +0000376 // If this element is in range, update our magic bitvector.
377 if (i < 64 && IsTrueForElt)
378 MagicBitvector |= 1ULL << i;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000379
Chris Lattner02446fc2010-01-04 07:37:31 +0000380 // If all of our states become overdefined, bail out early. Since the
381 // predicate is expensive, only check it every 8 elements. This is only
382 // really useful for really huge arrays.
383 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
384 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
385 FalseRangeEnd == Overdefined)
386 return 0;
387 }
388
389 // Now that we've scanned the entire array, emit our new comparison(s). We
390 // order the state machines in complexity of the generated code.
391 Value *Idx = GEP->getOperand(2);
392
Chris Lattner02446fc2010-01-04 07:37:31 +0000393 // If the comparison is only true for one or two elements, emit direct
394 // comparisons.
395 if (SecondTrueElement != Overdefined) {
396 // None true -> false.
397 if (FirstTrueElement == Undefined)
Jakub Staszak3facc432013-06-06 20:18:46 +0000398 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000399
Chris Lattner02446fc2010-01-04 07:37:31 +0000400 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000401
Chris Lattner02446fc2010-01-04 07:37:31 +0000402 // True for one element -> 'i == 47'.
403 if (SecondTrueElement == Undefined)
404 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000405
Chris Lattner02446fc2010-01-04 07:37:31 +0000406 // True for two elements -> 'i == 47 | i == 72'.
407 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
408 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
409 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
410 return BinaryOperator::CreateOr(C1, C2);
411 }
412
413 // If the comparison is only false for one or two elements, emit direct
414 // comparisons.
415 if (SecondFalseElement != Overdefined) {
416 // None false -> true.
417 if (FirstFalseElement == Undefined)
Jakub Staszak3facc432013-06-06 20:18:46 +0000418 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000419
Chris Lattner02446fc2010-01-04 07:37:31 +0000420 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
421
422 // False for one element -> 'i != 47'.
423 if (SecondFalseElement == Undefined)
424 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000425
Chris Lattner02446fc2010-01-04 07:37:31 +0000426 // False for two elements -> 'i != 47 & i != 72'.
427 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
428 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
429 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
430 return BinaryOperator::CreateAnd(C1, C2);
431 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000432
Chris Lattner02446fc2010-01-04 07:37:31 +0000433 // If the comparison can be replaced with a range comparison for the elements
434 // where it is true, emit the range check.
435 if (TrueRangeEnd != Overdefined) {
436 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000437
Chris Lattner02446fc2010-01-04 07:37:31 +0000438 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
439 if (FirstTrueElement) {
440 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
441 Idx = Builder->CreateAdd(Idx, Offs);
442 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000443
Chris Lattner02446fc2010-01-04 07:37:31 +0000444 Value *End = ConstantInt::get(Idx->getType(),
445 TrueRangeEnd-FirstTrueElement+1);
446 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
447 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000448
Chris Lattner02446fc2010-01-04 07:37:31 +0000449 // False range check.
450 if (FalseRangeEnd != Overdefined) {
451 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
452 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
453 if (FirstFalseElement) {
454 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
455 Idx = Builder->CreateAdd(Idx, Offs);
456 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000457
Chris Lattner02446fc2010-01-04 07:37:31 +0000458 Value *End = ConstantInt::get(Idx->getType(),
459 FalseRangeEnd-FirstFalseElement);
460 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
461 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000462
463
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000464 // If a magic bitvector captures the entire comparison state
Chris Lattner02446fc2010-01-04 07:37:31 +0000465 // of this load, replace it with computation that does:
466 // ((magic_cst >> i) & 1) != 0
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000467 {
468 Type *Ty = 0;
469
470 // Look for an appropriate type:
471 // - The type of Idx if the magic fits
472 // - The smallest fitting legal type if we have a DataLayout
473 // - Default to i32
474 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
475 Ty = Idx->getType();
476 else if (TD)
477 Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
478 else if (ArrayElementCount <= 32)
Chris Lattner02446fc2010-01-04 07:37:31 +0000479 Ty = Type::getInt32Ty(Init->getContext());
Arnaud A. de Grandmaison2be921a2013-03-22 08:25:01 +0000480
481 if (Ty != 0) {
482 Value *V = Builder->CreateIntCast(Idx, Ty, false);
483 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
484 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
485 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
486 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000487 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000488
Chris Lattner02446fc2010-01-04 07:37:31 +0000489 return 0;
490}
491
492
493/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
494/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
495/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
496/// be complex, and scales are involved. The above expression would also be
497/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
498/// This later form is less amenable to optimization though, and we are allowed
499/// to generate the first by knowing that pointer arithmetic doesn't overflow.
500///
501/// If we can't emit an optimized form for this expression, this returns null.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000502///
Eli Friedman107ffd52011-05-18 23:11:30 +0000503static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
Micah Villmow3574eca2012-10-08 16:38:25 +0000504 DataLayout &TD = *IC.getDataLayout();
Chris Lattner02446fc2010-01-04 07:37:31 +0000505 gep_type_iterator GTI = gep_type_begin(GEP);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000506
Chris Lattner02446fc2010-01-04 07:37:31 +0000507 // Check to see if this gep only has a single variable index. If so, and if
508 // any constant indices are a multiple of its scale, then we can compute this
509 // in terms of the scale of the variable index. For example, if the GEP
510 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
511 // because the expression will cross zero at the same point.
512 unsigned i, e = GEP->getNumOperands();
513 int64_t Offset = 0;
514 for (i = 1; i != e; ++i, ++GTI) {
515 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
516 // Compute the aggregate offset of constant indices.
517 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000518
Chris Lattner02446fc2010-01-04 07:37:31 +0000519 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000520 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000521 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522 } else {
523 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524 Offset += Size*CI->getSExtValue();
525 }
526 } else {
527 // Found our variable index.
528 break;
529 }
530 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000531
Chris Lattner02446fc2010-01-04 07:37:31 +0000532 // If there are no variable indices, we must have a constant offset, just
533 // evaluate it the general way.
534 if (i == e) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000535
Chris Lattner02446fc2010-01-04 07:37:31 +0000536 Value *VariableIdx = GEP->getOperand(i);
537 // Determine the scale factor of the variable element. For example, this is
538 // 4 if the variable index is into an array of i32.
539 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000540
Chris Lattner02446fc2010-01-04 07:37:31 +0000541 // Verify that there are no other variable indices. If so, emit the hard way.
542 for (++i, ++GTI; i != e; ++i, ++GTI) {
543 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
544 if (!CI) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000545
Chris Lattner02446fc2010-01-04 07:37:31 +0000546 // Compute the aggregate offset of constant indices.
547 if (CI->isZero()) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000548
Chris Lattner02446fc2010-01-04 07:37:31 +0000549 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000550 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000551 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
552 } else {
553 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
554 Offset += Size*CI->getSExtValue();
555 }
556 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000557
Chris Lattner02446fc2010-01-04 07:37:31 +0000558 // Okay, we know we have a single variable index, which must be a
559 // pointer/array/vector index. If there is no offset, life is simple, return
560 // the index.
Chandler Carruth426c2bf2012-11-01 09:14:31 +0000561 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Chris Lattner02446fc2010-01-04 07:37:31 +0000562 if (Offset == 0) {
563 // Cast to intptrty in case a truncation occurs. If an extension is needed,
564 // we don't need to bother extending: the extension won't affect where the
565 // computation crosses zero.
Eli Friedman107ffd52011-05-18 23:11:30 +0000566 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000567 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Eli Friedman107ffd52011-05-18 23:11:30 +0000568 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
569 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000570 return VariableIdx;
571 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000572
Chris Lattner02446fc2010-01-04 07:37:31 +0000573 // Otherwise, there is an index. The computation we will do will be modulo
574 // the pointer size, so get it.
575 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000576
Chris Lattner02446fc2010-01-04 07:37:31 +0000577 Offset &= PtrSizeMask;
578 VariableScale &= PtrSizeMask;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000579
Chris Lattner02446fc2010-01-04 07:37:31 +0000580 // To do this transformation, any constant index must be a multiple of the
581 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
582 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
583 // multiple of the variable scale.
584 int64_t NewOffs = Offset / (int64_t)VariableScale;
585 if (Offset != NewOffs*(int64_t)VariableScale)
586 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000587
Chris Lattner02446fc2010-01-04 07:37:31 +0000588 // Okay, we can do this evaluation. Start by converting the index to intptr.
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000589 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
Chris Lattner02446fc2010-01-04 07:37:31 +0000590 if (VariableIdx->getType() != IntPtrTy)
Eli Friedman107ffd52011-05-18 23:11:30 +0000591 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
592 true /*Signed*/);
Chris Lattner02446fc2010-01-04 07:37:31 +0000593 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Eli Friedman107ffd52011-05-18 23:11:30 +0000594 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
Chris Lattner02446fc2010-01-04 07:37:31 +0000595}
596
597/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
598/// else. At this point we know that the GEP is on the LHS of the comparison.
599Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
600 ICmpInst::Predicate Cond,
601 Instruction &I) {
Benjamin Kramer8294eb52012-02-21 13:31:09 +0000602 // Don't transform signed compares of GEPs into index compares. Even if the
603 // GEP is inbounds, the final add of the base pointer can have signed overflow
604 // and would change the result of the icmp.
605 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
Benjamin Kramera42d5c42012-02-21 13:40:06 +0000606 // the maximum signed value for the pointer type.
Benjamin Kramer8294eb52012-02-21 13:31:09 +0000607 if (ICmpInst::isSigned(Cond))
608 return 0;
609
Chris Lattner02446fc2010-01-04 07:37:31 +0000610 // Look through bitcasts.
611 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
612 RHS = BCI->getOperand(0);
613
614 Value *PtrBase = GEPLHS->getOperand(0);
615 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
616 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
617 // This transformation (ignoring the base and scales) is valid because we
618 // know pointers can't overflow since the gep is inbounds. See if we can
619 // output an optimized form.
Eli Friedman107ffd52011-05-18 23:11:30 +0000620 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000621
Chris Lattner02446fc2010-01-04 07:37:31 +0000622 // If not, synthesize the offset the hard way.
623 if (Offset == 0)
624 Offset = EmitGEPOffset(GEPLHS);
625 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
626 Constant::getNullValue(Offset->getType()));
627 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
628 // If the base pointers are different, but the indices are the same, just
629 // compare the base pointer.
630 if (PtrBase != GEPRHS->getOperand(0)) {
631 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
632 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
633 GEPRHS->getOperand(0)->getType();
634 if (IndicesTheSame)
635 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
636 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
637 IndicesTheSame = false;
638 break;
639 }
640
641 // If all indices are the same, just compare the base pointers.
642 if (IndicesTheSame)
David Majnemerc22a4ee2013-06-29 10:28:04 +0000643 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +0000644
Benjamin Kramer9bb40852012-02-20 15:07:47 +0000645 // If we're comparing GEPs with two base pointers that only differ in type
646 // and both GEPs have only constant indices or just one use, then fold
647 // the compare with the adjusted indices.
Benjamin Kramer6ad48f42012-02-20 18:45:10 +0000648 if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
Benjamin Kramer9bb40852012-02-20 15:07:47 +0000649 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
650 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
651 PtrBase->stripPointerCasts() ==
652 GEPRHS->getOperand(0)->stripPointerCasts()) {
653 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
654 EmitGEPOffset(GEPLHS),
655 EmitGEPOffset(GEPRHS));
656 return ReplaceInstUsesWith(I, Cmp);
657 }
658
Chris Lattner02446fc2010-01-04 07:37:31 +0000659 // Otherwise, the base pointers are different and the indices are
660 // different, bail out.
661 return 0;
662 }
663
664 // If one of the GEPs has all zero indices, recurse.
665 bool AllZeros = true;
666 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
667 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
668 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
669 AllZeros = false;
670 break;
671 }
672 if (AllZeros)
673 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
David Majnemerdf703252013-06-29 09:45:35 +0000674 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner02446fc2010-01-04 07:37:31 +0000675
676 // If the other GEP has all zero indices, recurse.
677 AllZeros = true;
678 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
679 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
680 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
681 AllZeros = false;
682 break;
683 }
684 if (AllZeros)
685 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
686
Stuart Hastings67f071e2011-05-14 05:55:10 +0000687 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
Chris Lattner02446fc2010-01-04 07:37:31 +0000688 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
689 // If the GEPs only differ by one index, compare it.
690 unsigned NumDifferences = 0; // Keep track of # differences.
691 unsigned DiffOperand = 0; // The operand that differs.
692 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
693 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
694 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
695 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
696 // Irreconcilable differences.
697 NumDifferences = 2;
698 break;
699 } else {
700 if (NumDifferences++) break;
701 DiffOperand = i;
702 }
703 }
704
Rafael Espindola7de80e02013-06-06 17:03:05 +0000705 if (NumDifferences == 0) // SAME GEP?
706 return ReplaceInstUsesWith(I, // No comparison is needed here.
Jakub Staszak3facc432013-06-06 20:18:46 +0000707 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
Chris Lattner02446fc2010-01-04 07:37:31 +0000708
Stuart Hastings67f071e2011-05-14 05:55:10 +0000709 else if (NumDifferences == 1 && GEPsInBounds) {
Chris Lattner02446fc2010-01-04 07:37:31 +0000710 Value *LHSV = GEPLHS->getOperand(DiffOperand);
711 Value *RHSV = GEPRHS->getOperand(DiffOperand);
712 // Make sure we do a signed comparison here.
713 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
714 }
715 }
716
717 // Only lower this if the icmp is the only user of the GEP or if we expect
718 // the result to fold to a constant!
719 if (TD &&
Stuart Hastings67f071e2011-05-14 05:55:10 +0000720 GEPsInBounds &&
Chris Lattner02446fc2010-01-04 07:37:31 +0000721 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
722 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
723 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
724 Value *L = EmitGEPOffset(GEPLHS);
725 Value *R = EmitGEPOffset(GEPRHS);
726 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
727 }
728 }
729 return 0;
730}
731
732/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
733Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
734 Value *X, ConstantInt *CI,
735 ICmpInst::Predicate Pred,
736 Value *TheAdd) {
737 // If we have X+0, exit early (simplifying logic below) and let it get folded
738 // elsewhere. icmp X+0, X -> icmp X, X
739 if (CI->isZero()) {
740 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
741 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
742 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000743
Chris Lattner02446fc2010-01-04 07:37:31 +0000744 // (X+4) == X -> false.
745 if (Pred == ICmpInst::ICMP_EQ)
Jakub Staszak3facc432013-06-06 20:18:46 +0000746 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +0000747
748 // (X+4) != X -> true.
749 if (Pred == ICmpInst::ICMP_NE)
Jakub Staszak3facc432013-06-06 20:18:46 +0000750 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +0000751
Chris Lattner02446fc2010-01-04 07:37:31 +0000752 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000753 // so the values can never be equal. Similarly for all other "or equals"
Chris Lattner02446fc2010-01-04 07:37:31 +0000754 // operators.
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000755
Chris Lattner9aa1e242010-01-08 17:48:19 +0000756 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000757 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
758 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
759 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000760 Value *R =
Chris Lattner9aa1e242010-01-08 17:48:19 +0000761 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000762 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
763 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000764
Chris Lattner02446fc2010-01-04 07:37:31 +0000765 // (X+1) >u X --> X <u (0-1) --> X != 255
766 // (X+2) >u X --> X <u (0-2) --> X <u 254
767 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
Duncan Sandsa7724332011-02-17 07:46:37 +0000768 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000769 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000770
Chris Lattner02446fc2010-01-04 07:37:31 +0000771 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
772 ConstantInt *SMax = ConstantInt::get(X->getContext(),
773 APInt::getSignedMaxValue(BitWidth));
774
775 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
776 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
777 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
778 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
779 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
780 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
Duncan Sandsa7724332011-02-17 07:46:37 +0000781 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
Chris Lattner02446fc2010-01-04 07:37:31 +0000782 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000783
Chris Lattner02446fc2010-01-04 07:37:31 +0000784 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
785 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
786 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
787 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
788 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
789 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000790
Chris Lattner02446fc2010-01-04 07:37:31 +0000791 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Jakub Staszak3facc432013-06-06 20:18:46 +0000792 Constant *C = Builder->getInt(CI->getValue()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000793 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
794}
795
796/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
797/// and CmpRHS are both known to be integer constants.
798Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
799 ConstantInt *DivRHS) {
800 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
801 const APInt &CmpRHSV = CmpRHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000802
803 // FIXME: If the operand types don't match the type of the divide
Chris Lattner02446fc2010-01-04 07:37:31 +0000804 // then don't attempt this transform. The code below doesn't have the
805 // logic to deal with a signed divide and an unsigned compare (and
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000806 // vice versa). This is because (x /s C1) <s C2 produces different
Chris Lattner02446fc2010-01-04 07:37:31 +0000807 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000808 // (x /u C1) <u C2. Simply casting the operands and result won't
809 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000810 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000811 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
812 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
813 return 0;
814 if (DivRHS->isZero())
815 return 0; // The ProdOV computation fails on divide by zero.
816 if (DivIsSigned && DivRHS->isAllOnesValue())
817 return 0; // The overflow computation also screws up here
Chris Lattnerbb75d332011-02-13 08:07:21 +0000818 if (DivRHS->isOne()) {
819 // This eliminates some funny cases with INT_MIN.
820 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
821 return &ICI;
822 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000823
824 // Compute Prod = CI * DivRHS. We are essentially solving an equation
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000825 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
826 // C2 (CI). By solving for X we can turn this into a range check
827 // instead of computing a divide.
Chris Lattner02446fc2010-01-04 07:37:31 +0000828 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
829
830 // Determine if the product overflows by seeing if the product is
831 // not equal to the divide. Make sure we do the same kind of divide
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000832 // as in the LHS instruction that we're folding.
Chris Lattner02446fc2010-01-04 07:37:31 +0000833 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
834 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
835
836 // Get the ICmp opcode
837 ICmpInst::Predicate Pred = ICI.getPredicate();
838
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000839 /// If the division is known to be exact, then there is no remainder from the
840 /// divide, so the covered range size is unit, otherwise it is the divisor.
841 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000842
Chris Lattner02446fc2010-01-04 07:37:31 +0000843 // Figure out the interval that is being checked. For example, a comparison
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000844 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
Chris Lattner02446fc2010-01-04 07:37:31 +0000845 // Compute this interval based on the constants involved and the signedness of
846 // the compare/divide. This computes a half-open interval, keeping track of
847 // whether either value in the interval overflows. After analysis each
848 // overflow variable is set to 0 if it's corresponding bound variable is valid
849 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
850 int LoOverflow = 0, HiOverflow = 0;
851 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000852
Chris Lattner02446fc2010-01-04 07:37:31 +0000853 if (!DivIsSigned) { // udiv
854 // e.g. X/5 op 3 --> [15, 20)
855 LoBound = Prod;
856 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000857 if (!HiOverflow) {
858 // If this is not an exact divide, then many values in the range collapse
859 // to the same result value.
860 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
861 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000862
Chris Lattner02446fc2010-01-04 07:37:31 +0000863 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
864 if (CmpRHSV == 0) { // (X / pos) op 0
865 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000866 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
867 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000868 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
869 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
870 HiOverflow = LoOverflow = ProdOV;
871 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000872 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000873 } else { // (X / pos) op neg
874 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
875 HiBound = AddOne(Prod);
876 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
877 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000878 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000879 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000880 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000881 }
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000882 } else if (DivRHS->isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000883 if (DivI->isExact())
884 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000885 if (CmpRHSV == 0) { // (X / neg) op 0
886 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000887 LoBound = AddOne(RangeSize);
888 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000889 if (HiBound == DivRHS) { // -INTMIN = INTMIN
890 HiOverflow = 1; // [INTMIN+1, overflow)
891 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
892 }
893 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
894 // e.g. X/-5 op 3 --> [-19, -14)
895 HiBound = AddOne(Prod);
896 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
897 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000898 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000899 } else { // (X / neg) op neg
900 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
901 LoOverflow = HiOverflow = ProdOV;
902 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000903 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000904 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000905
Chris Lattner02446fc2010-01-04 07:37:31 +0000906 // Dividing by a negative swaps the condition. LT <-> GT
907 Pred = ICmpInst::getSwappedPredicate(Pred);
908 }
909
910 Value *X = DivI->getOperand(0);
911 switch (Pred) {
912 default: llvm_unreachable("Unhandled icmp opcode!");
913 case ICmpInst::ICMP_EQ:
914 if (LoOverflow && HiOverflow)
Jakub Staszak3facc432013-06-06 20:18:46 +0000915 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000916 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000917 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
918 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000919 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000920 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
921 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000922 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
923 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000924 case ICmpInst::ICMP_NE:
925 if (LoOverflow && HiOverflow)
Jakub Staszak3facc432013-06-06 20:18:46 +0000926 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000927 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000928 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
929 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000930 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000931 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
932 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000933 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
934 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000935 case ICmpInst::ICMP_ULT:
936 case ICmpInst::ICMP_SLT:
937 if (LoOverflow == +1) // Low bound is greater than input range.
Jakub Staszak3facc432013-06-06 20:18:46 +0000938 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +0000939 if (LoOverflow == -1) // Low bound is less than input range.
Jakub Staszak3facc432013-06-06 20:18:46 +0000940 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +0000941 return new ICmpInst(Pred, X, LoBound);
942 case ICmpInst::ICMP_UGT:
943 case ICmpInst::ICMP_SGT:
944 if (HiOverflow == +1) // High bound greater than input range.
Jakub Staszak3facc432013-06-06 20:18:46 +0000945 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000946 if (HiOverflow == -1) // High bound less than input range.
Jakub Staszak3facc432013-06-06 20:18:46 +0000947 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +0000948 if (Pred == ICmpInst::ICMP_UGT)
949 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000950 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000951 }
952}
953
Chris Lattner74542aa2011-02-13 07:43:07 +0000954/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
955Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
956 ConstantInt *ShAmt) {
Chris Lattner74542aa2011-02-13 07:43:07 +0000957 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000958
Chris Lattner74542aa2011-02-13 07:43:07 +0000959 // Check that the shift amount is in range. If not, don't perform
960 // undefined shifts. When the shift is visited it will be
961 // simplified.
962 uint32_t TypeBits = CmpRHSV.getBitWidth();
963 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerbb75d332011-02-13 08:07:21 +0000964 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
Chris Lattner74542aa2011-02-13 07:43:07 +0000965 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000966
Chris Lattnerbb75d332011-02-13 08:07:21 +0000967 if (!ICI.isEquality()) {
968 // If we have an unsigned comparison and an ashr, we can't simplify this.
969 // Similarly for signed comparisons with lshr.
970 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
971 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000972
Eli Friedmana831a9b2011-05-25 23:26:20 +0000973 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
974 // by a power of 2. Since we already have logic to simplify these,
975 // transform to div and then simplify the resultant comparison.
Chris Lattnerbb75d332011-02-13 08:07:21 +0000976 if (Shr->getOpcode() == Instruction::AShr &&
Eli Friedmana831a9b2011-05-25 23:26:20 +0000977 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
Chris Lattnerbb75d332011-02-13 08:07:21 +0000978 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000979
Chris Lattnerbb75d332011-02-13 08:07:21 +0000980 // Revisit the shift (to delete it).
981 Worklist.Add(Shr);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000982
Chris Lattnerbb75d332011-02-13 08:07:21 +0000983 Constant *DivCst =
984 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000985
Chris Lattnerbb75d332011-02-13 08:07:21 +0000986 Value *Tmp =
987 Shr->getOpcode() == Instruction::AShr ?
988 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
989 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000990
Chris Lattnerbb75d332011-02-13 08:07:21 +0000991 ICI.setOperand(0, Tmp);
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000992
Chris Lattnerbb75d332011-02-13 08:07:21 +0000993 // If the builder folded the binop, just return it.
994 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
995 if (TheDiv == 0)
996 return &ICI;
Jim Grosbach0cc4a952011-09-30 18:09:53 +0000997
Chris Lattnerbb75d332011-02-13 08:07:21 +0000998 // Otherwise, fold this div/compare.
999 assert(TheDiv->getOpcode() == Instruction::SDiv ||
1000 TheDiv->getOpcode() == Instruction::UDiv);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001001
Chris Lattnerbb75d332011-02-13 08:07:21 +00001002 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1003 assert(Res && "This div/cst should have folded!");
1004 return Res;
1005 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001006
1007
Chris Lattner74542aa2011-02-13 07:43:07 +00001008 // If we are comparing against bits always shifted out, the
1009 // comparison cannot succeed.
1010 APInt Comp = CmpRHSV << ShAmtVal;
Jakub Staszak3facc432013-06-06 20:18:46 +00001011 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
Chris Lattner74542aa2011-02-13 07:43:07 +00001012 if (Shr->getOpcode() == Instruction::LShr)
1013 Comp = Comp.lshr(ShAmtVal);
1014 else
1015 Comp = Comp.ashr(ShAmtVal);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001016
Chris Lattner74542aa2011-02-13 07:43:07 +00001017 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1018 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jakub Staszak3facc432013-06-06 20:18:46 +00001019 Constant *Cst = Builder->getInt1(IsICMP_NE);
Chris Lattner74542aa2011-02-13 07:43:07 +00001020 return ReplaceInstUsesWith(ICI, Cst);
1021 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001022
Chris Lattner74542aa2011-02-13 07:43:07 +00001023 // Otherwise, check to see if the bits shifted out are known to be zero.
1024 // If so, we can compare against the unshifted value:
1025 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnere5116f82011-02-13 18:30:09 +00001026 if (Shr->hasOneUse() && Shr->isExact())
Chris Lattner74542aa2011-02-13 07:43:07 +00001027 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001028
Chris Lattner74542aa2011-02-13 07:43:07 +00001029 if (Shr->hasOneUse()) {
1030 // Otherwise strength reduce the shift into an and.
1031 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
Jakub Staszak3facc432013-06-06 20:18:46 +00001032 Constant *Mask = Builder->getInt(Val);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001033
Chris Lattner74542aa2011-02-13 07:43:07 +00001034 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1035 Mask, Shr->getName()+".mask");
1036 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1037 }
1038 return 0;
1039}
1040
Chris Lattner02446fc2010-01-04 07:37:31 +00001041
1042/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1043///
1044Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1045 Instruction *LHSI,
1046 ConstantInt *RHS) {
1047 const APInt &RHSV = RHS->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001048
Chris Lattner02446fc2010-01-04 07:37:31 +00001049 switch (LHSI->getOpcode()) {
1050 case Instruction::Trunc:
1051 if (ICI.isEquality() && LHSI->hasOneUse()) {
1052 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1053 // of the high bits truncated out of x are known.
1054 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1055 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
Chris Lattner02446fc2010-01-04 07:37:31 +00001056 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00001057 ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001058
Chris Lattner02446fc2010-01-04 07:37:31 +00001059 // If all the high bits are known, we can do this xform.
1060 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1061 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +00001062 APInt NewRHS = RHS->getValue().zext(SrcBits);
Eli Friedman5b6dfee2012-05-11 01:32:59 +00001063 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
Chris Lattner02446fc2010-01-04 07:37:31 +00001064 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001065 Builder->getInt(NewRHS));
Chris Lattner02446fc2010-01-04 07:37:31 +00001066 }
1067 }
1068 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001069
Chris Lattner02446fc2010-01-04 07:37:31 +00001070 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1071 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1072 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1073 // fold the xor.
1074 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1075 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1076 Value *CompareVal = LHSI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001077
Chris Lattner02446fc2010-01-04 07:37:31 +00001078 // If the sign bit of the XorCST is not set, there is no change to
1079 // the operation, just stop using the Xor.
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001080 if (!XorCST->isNegative()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001081 ICI.setOperand(0, CompareVal);
1082 Worklist.Add(LHSI);
1083 return &ICI;
1084 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001085
Chris Lattner02446fc2010-01-04 07:37:31 +00001086 // Was the old condition true if the operand is positive?
1087 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001088
Chris Lattner02446fc2010-01-04 07:37:31 +00001089 // If so, the new one isn't.
1090 isTrueIfPositive ^= true;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001091
Chris Lattner02446fc2010-01-04 07:37:31 +00001092 if (isTrueIfPositive)
1093 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1094 SubOne(RHS));
1095 else
1096 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1097 AddOne(RHS));
1098 }
1099
1100 if (LHSI->hasOneUse()) {
1101 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1102 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1103 const APInt &SignBit = XorCST->getValue();
1104 ICmpInst::Predicate Pred = ICI.isSigned()
1105 ? ICI.getUnsignedPredicate()
1106 : ICI.getSignedPredicate();
1107 return new ICmpInst(Pred, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001108 Builder->getInt(RHSV ^ SignBit));
Chris Lattner02446fc2010-01-04 07:37:31 +00001109 }
1110
1111 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001112 if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001113 const APInt &NotSignBit = XorCST->getValue();
1114 ICmpInst::Predicate Pred = ICI.isSigned()
1115 ? ICI.getUnsignedPredicate()
1116 : ICI.getSignedPredicate();
1117 Pred = ICI.getSwappedPredicate(Pred);
1118 return new ICmpInst(Pred, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001119 Builder->getInt(RHSV ^ NotSignBit));
Chris Lattner02446fc2010-01-04 07:37:31 +00001120 }
1121 }
David Majnemerfecf0d72013-07-09 09:20:58 +00001122
1123 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1124 // iff -C is a power of 2
1125 if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1126 XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1127 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
1128
1129 // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1130 // iff -C is a power of 2
1131 if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1132 XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
1133 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
Chris Lattner02446fc2010-01-04 07:37:31 +00001134 }
1135 break;
1136 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1137 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1138 LHSI->getOperand(0)->hasOneUse()) {
1139 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001140
Chris Lattner02446fc2010-01-04 07:37:31 +00001141 // If the LHS is an AND of a truncating cast, we can widen the
1142 // and/compare to be the input width without changing the value
1143 // produced, eliminating a cast.
1144 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1145 // We can do this transformation if either the AND constant does not
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001146 // have its sign bit set or if it is an equality comparison.
Chris Lattner02446fc2010-01-04 07:37:31 +00001147 // Extending a relational comparison when we're checking the sign
1148 // bit would not work.
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001149 if (ICI.isEquality() ||
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001150 (!AndCST->isNegative() && RHSV.isNonNegative())) {
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001151 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001152 Builder->CreateAnd(Cast->getOperand(0),
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001153 ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1154 NewAnd->takeName(LHSI);
Chris Lattner02446fc2010-01-04 07:37:31 +00001155 return new ICmpInst(ICI.getPredicate(), NewAnd,
Benjamin Kramer7e7c9cc2011-06-12 22:47:53 +00001156 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001157 }
1158 }
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001159
1160 // If the LHS is an AND of a zext, and we have an equality compare, we can
1161 // shrink the and/compare to the smaller type, eliminating the cast.
1162 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001163 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
Benjamin Kramerffd0ae62011-06-12 22:48:00 +00001164 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1165 // should fold the icmp to true/false in that case.
1166 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1167 Value *NewAnd =
1168 Builder->CreateAnd(Cast->getOperand(0),
1169 ConstantExpr::getTrunc(AndCST, Ty));
1170 NewAnd->takeName(LHSI);
1171 return new ICmpInst(ICI.getPredicate(), NewAnd,
1172 ConstantExpr::getTrunc(RHS, Ty));
1173 }
1174 }
1175
Chris Lattner02446fc2010-01-04 07:37:31 +00001176 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1177 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1178 // happens a LOT in code produced by the C front-end, for bitfield
1179 // access.
1180 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1181 if (Shift && !Shift->isShift())
1182 Shift = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001183
Chris Lattner02446fc2010-01-04 07:37:31 +00001184 ConstantInt *ShAmt;
1185 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001186 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1187 Type *AndTy = AndCST->getType(); // Type of the and.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001188
Chris Lattner02446fc2010-01-04 07:37:31 +00001189 // We can fold this as long as we can't shift unknown bits
1190 // into the mask. This can only happen with signed shift
1191 // rights, as they sign-extend.
1192 if (ShAmt) {
1193 bool CanFold = Shift->isLogicalShift();
1194 if (!CanFold) {
1195 // To test for the bad case of the signed shr, see if any
1196 // of the bits shifted in could be tested after the mask.
1197 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1198 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001199
Chris Lattner02446fc2010-01-04 07:37:31 +00001200 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001201 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
Chris Lattner02446fc2010-01-04 07:37:31 +00001202 AndCST->getValue()) == 0)
1203 CanFold = true;
1204 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001205
Chris Lattner02446fc2010-01-04 07:37:31 +00001206 if (CanFold) {
1207 Constant *NewCst;
1208 if (Shift->getOpcode() == Instruction::Shl)
1209 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1210 else
1211 NewCst = ConstantExpr::getShl(RHS, ShAmt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001212
Chris Lattner02446fc2010-01-04 07:37:31 +00001213 // Check to see if we are shifting out any of the bits being
1214 // compared.
1215 if (ConstantExpr::get(Shift->getOpcode(),
1216 NewCst, ShAmt) != RHS) {
1217 // If we shifted bits out, the fold is not going to work out.
1218 // As a special case, check to see if this means that the
1219 // result is always true or false now.
1220 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Jakub Staszak3facc432013-06-06 20:18:46 +00001221 return ReplaceInstUsesWith(ICI, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00001222 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Jakub Staszak3facc432013-06-06 20:18:46 +00001223 return ReplaceInstUsesWith(ICI, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +00001224 } else {
1225 ICI.setOperand(1, NewCst);
1226 Constant *NewAndCST;
1227 if (Shift->getOpcode() == Instruction::Shl)
1228 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1229 else
1230 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1231 LHSI->setOperand(1, NewAndCST);
1232 LHSI->setOperand(0, Shift->getOperand(0));
1233 Worklist.Add(Shift); // Shift is dead.
1234 return &ICI;
1235 }
1236 }
1237 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001238
Chris Lattner02446fc2010-01-04 07:37:31 +00001239 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1240 // preferable because it allows the C<<Y expression to be hoisted out
1241 // of a loop if Y is invariant and X is not.
1242 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1243 ICI.isEquality() && !Shift->isArithmeticShift() &&
1244 !isa<Constant>(Shift->getOperand(0))) {
1245 // Compute C << Y.
1246 Value *NS;
1247 if (Shift->getOpcode() == Instruction::LShr) {
Benjamin Kramera9390a42011-09-27 20:39:19 +00001248 NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001249 } else {
1250 // Insert a logical shift.
Benjamin Kramera9390a42011-09-27 20:39:19 +00001251 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001252 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001253
Chris Lattner02446fc2010-01-04 07:37:31 +00001254 // Compute X & (C << Y).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001255 Value *NewAnd =
Chris Lattner02446fc2010-01-04 07:37:31 +00001256 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001257
Chris Lattner02446fc2010-01-04 07:37:31 +00001258 ICI.setOperand(0, NewAnd);
1259 return &ICI;
1260 }
Paul Redmond6da2e222012-12-19 19:47:13 +00001261
1262 // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1263 // bit set in (X & AndCST) will produce a result greater than RHSV.
1264 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1265 unsigned NTZ = AndCST->getValue().countTrailingZeros();
1266 if ((NTZ < AndCST->getBitWidth()) &&
1267 APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1268 return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1269 Constant::getNullValue(RHS->getType()));
1270 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001271 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001272
Chris Lattner02446fc2010-01-04 07:37:31 +00001273 // Try to optimize things like "A[i]&42 == 0" to index computations.
1274 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1275 if (GetElementPtrInst *GEP =
1276 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1277 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1278 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1279 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1280 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1281 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1282 return Res;
1283 }
1284 }
David Majnemer36b6f742013-07-09 08:09:32 +00001285
1286 // X & -C == -C -> X > u ~C
1287 // X & -C != -C -> X <= u ~C
1288 // iff C is a power of 2
1289 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1290 return new ICmpInst(
1291 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1292 : ICmpInst::ICMP_ULE,
1293 LHSI->getOperand(0), SubOne(RHS));
Chris Lattner02446fc2010-01-04 07:37:31 +00001294 break;
1295
1296 case Instruction::Or: {
1297 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1298 break;
1299 Value *P, *Q;
1300 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1301 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1302 // -> and (icmp eq P, null), (icmp eq Q, null).
Chris Lattner02446fc2010-01-04 07:37:31 +00001303 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1304 Constant::getNullValue(P->getType()));
1305 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1306 Constant::getNullValue(Q->getType()));
1307 Instruction *Op;
1308 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1309 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1310 else
1311 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1312 return Op;
1313 }
1314 break;
1315 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001316
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001317 case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
1318 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1319 if (!Val) break;
1320
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +00001321 // If this is a signed comparison to 0 and the mul is sign preserving,
1322 // use the mul LHS operand instead.
1323 ICmpInst::Predicate pred = ICI.getPredicate();
1324 if (isSignTest(pred, RHS) && !Val->isZero() &&
1325 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1326 return new ICmpInst(Val->isNegative() ?
1327 ICmpInst::getSwappedPredicate(pred) : pred,
1328 LHSI->getOperand(0),
1329 Constant::getNullValue(RHS->getType()));
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001330
1331 break;
1332 }
1333
Chris Lattner02446fc2010-01-04 07:37:31 +00001334 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
Chris Lattner02446fc2010-01-04 07:37:31 +00001335 uint32_t TypeBits = RHSV.getBitWidth();
David Majnemerb41f4bb2013-06-28 23:42:03 +00001336 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1337 if (!ShAmt) {
1338 Value *X;
1339 // (1 << X) pred P2 -> X pred Log2(P2)
1340 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1341 bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1342 ICmpInst::Predicate Pred = ICI.getPredicate();
1343 if (ICI.isUnsigned()) {
1344 if (!RHSVIsPowerOf2) {
1345 // (1 << X) < 30 -> X <= 4
1346 // (1 << X) <= 30 -> X <= 4
1347 // (1 << X) >= 30 -> X > 4
1348 // (1 << X) > 30 -> X > 4
1349 if (Pred == ICmpInst::ICMP_ULT)
1350 Pred = ICmpInst::ICMP_ULE;
1351 else if (Pred == ICmpInst::ICMP_UGE)
1352 Pred = ICmpInst::ICMP_UGT;
1353 }
1354 unsigned RHSLog2 = RHSV.logBase2();
1355
1356 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1357 // (1 << X) > 2147483648 -> X > 31 -> false
1358 // (1 << X) <= 2147483648 -> X <= 31 -> true
1359 // (1 << X) < 2147483648 -> X < 31 -> X != 31
1360 if (RHSLog2 == TypeBits-1) {
1361 if (Pred == ICmpInst::ICMP_UGE)
1362 Pred = ICmpInst::ICMP_EQ;
1363 else if (Pred == ICmpInst::ICMP_UGT)
1364 return ReplaceInstUsesWith(ICI, Builder->getFalse());
1365 else if (Pred == ICmpInst::ICMP_ULE)
1366 return ReplaceInstUsesWith(ICI, Builder->getTrue());
1367 else if (Pred == ICmpInst::ICMP_ULT)
1368 Pred = ICmpInst::ICMP_NE;
1369 }
1370
1371 return new ICmpInst(Pred, X,
1372 ConstantInt::get(RHS->getType(), RHSLog2));
1373 } else if (ICI.isSigned()) {
1374 if (RHSV.isAllOnesValue()) {
1375 // (1 << X) <= -1 -> X == 31
1376 if (Pred == ICmpInst::ICMP_SLE)
1377 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1378 ConstantInt::get(RHS->getType(), TypeBits-1));
1379
1380 // (1 << X) > -1 -> X != 31
1381 if (Pred == ICmpInst::ICMP_SGT)
1382 return new ICmpInst(ICmpInst::ICMP_NE, X,
1383 ConstantInt::get(RHS->getType(), TypeBits-1));
1384 } else if (!RHSV) {
1385 // (1 << X) < 0 -> X == 31
1386 // (1 << X) <= 0 -> X == 31
1387 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1388 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1389 ConstantInt::get(RHS->getType(), TypeBits-1));
1390
1391 // (1 << X) >= 0 -> X != 31
1392 // (1 << X) > 0 -> X != 31
1393 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1394 return new ICmpInst(ICmpInst::ICMP_NE, X,
1395 ConstantInt::get(RHS->getType(), TypeBits-1));
1396 }
1397 } else if (ICI.isEquality()) {
1398 if (RHSVIsPowerOf2)
1399 return new ICmpInst(
1400 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1401
1402 return ReplaceInstUsesWith(
1403 ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1404 : Builder->getTrue());
1405 }
1406 }
1407 break;
1408 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001409
Chris Lattner02446fc2010-01-04 07:37:31 +00001410 // Check that the shift amount is in range. If not, don't perform
1411 // undefined shifts. When the shift is visited it will be
1412 // simplified.
1413 if (ShAmt->uge(TypeBits))
1414 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001415
Chris Lattner02446fc2010-01-04 07:37:31 +00001416 if (ICI.isEquality()) {
1417 // If we are comparing against bits always shifted out, the
1418 // comparison cannot succeed.
1419 Constant *Comp =
1420 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1421 ShAmt);
1422 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1423 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jakub Staszak3facc432013-06-06 20:18:46 +00001424 Constant *Cst = Builder->getInt1(IsICMP_NE);
Chris Lattner02446fc2010-01-04 07:37:31 +00001425 return ReplaceInstUsesWith(ICI, Cst);
1426 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001427
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001428 // If the shift is NUW, then it is just shifting out zeros, no need for an
1429 // AND.
1430 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1431 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1432 ConstantExpr::getLShr(RHS, ShAmt));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001433
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001434 // If the shift is NSW and we compare to 0, then it is just shifting out
1435 // sign bits, no need for an AND either.
1436 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1437 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1438 ConstantExpr::getLShr(RHS, ShAmt));
1439
Chris Lattner02446fc2010-01-04 07:37:31 +00001440 if (LHSI->hasOneUse()) {
1441 // Otherwise strength reduce the shift into an and.
1442 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Jakub Staszak3facc432013-06-06 20:18:46 +00001443 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1444 TypeBits - ShAmtVal));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001445
Chris Lattner02446fc2010-01-04 07:37:31 +00001446 Value *And =
1447 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1448 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001449 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001450 }
1451 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001452
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001453 // If this is a signed comparison to 0 and the shift is sign preserving,
1454 // use the shift LHS operand instead.
1455 ICmpInst::Predicate pred = ICI.getPredicate();
1456 if (isSignTest(pred, RHS) &&
1457 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1458 return new ICmpInst(pred,
1459 LHSI->getOperand(0),
1460 Constant::getNullValue(RHS->getType()));
1461
Chris Lattner02446fc2010-01-04 07:37:31 +00001462 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1463 bool TrueIfSigned = false;
1464 if (LHSI->hasOneUse() &&
1465 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1466 // (X << 31) <s 0 --> (X&1) != 0
Chris Lattnerbb75d332011-02-13 08:07:21 +00001467 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001468 APInt::getOneBitSet(TypeBits,
Chris Lattnerbb75d332011-02-13 08:07:21 +00001469 TypeBits-ShAmt->getZExtValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00001470 Value *And =
1471 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1472 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1473 And, Constant::getNullValue(And->getType()));
1474 }
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001475
1476 // Transform (icmp pred iM (shl iM %v, N), CI)
Arnaud A. de Grandmaisonbdd2d982013-03-13 14:40:37 +00001477 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1478 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001479 // This enables to get rid of the shift in favor of a trunc which can be
1480 // free on the target. It has the additional benefit of comparing to a
1481 // smaller constant, which will be target friendly.
1482 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
Arnaud A. de Grandmaisonbdd2d982013-03-13 14:40:37 +00001483 if (LHSI->hasOneUse() &&
1484 Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001485 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1486 Constant *NCI = ConstantExpr::getTrunc(
1487 ConstantExpr::getAShr(RHS,
1488 ConstantInt::get(RHS->getType(), Amt)),
1489 NTy);
1490 return new ICmpInst(ICI.getPredicate(),
1491 Builder->CreateTrunc(LHSI->getOperand(0), NTy),
Arnaud A. de Grandmaisonad079b22013-02-15 15:18:17 +00001492 NCI);
Arnaud A. de Grandmaison7c5c9b32013-02-15 14:35:47 +00001493 }
1494
Chris Lattner02446fc2010-01-04 07:37:31 +00001495 break;
1496 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001497
Chris Lattner02446fc2010-01-04 07:37:31 +00001498 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001499 case Instruction::AShr: {
1500 // Handle equality comparisons of shift-by-constant.
1501 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1502 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1503 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
Chris Lattner74542aa2011-02-13 07:43:07 +00001504 return Res;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001505 }
1506
1507 // Handle exact shr's.
1508 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1509 if (RHSV.isMinValue())
1510 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1511 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001512 break;
Nick Lewyckyb042f8e2011-02-28 08:31:40 +00001513 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001514
Chris Lattner02446fc2010-01-04 07:37:31 +00001515 case Instruction::SDiv:
1516 case Instruction::UDiv:
1517 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001518 // Fold this div into the comparison, producing a range check.
1519 // Determine, based on the divide type, what the range is being
1520 // checked. If there is an overflow on the low or high side, remember
Chris Lattner02446fc2010-01-04 07:37:31 +00001521 // it, otherwise compute the range [low, hi) bounding the new value.
1522 // See: InsertRangeTest above for the kinds of replacements possible.
1523 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1524 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1525 DivRHS))
1526 return R;
1527 break;
1528
David Majnemer377a5c12013-07-09 07:50:59 +00001529 case Instruction::Sub: {
1530 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1531 if (!LHSC) break;
1532 const APInt &LHSV = LHSC->getValue();
1533
1534 // C1-X <u C2 -> (X|(C2-1)) == C1
1535 // iff C1 & (C2-1) == C2-1
1536 // C2 is a power of 2
1537 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1538 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1539 return new ICmpInst(ICmpInst::ICMP_EQ,
1540 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1541 LHSC);
1542
David Majnemerfcb7b972013-07-09 09:24:35 +00001543 // C1-X >u C2 -> (X|C2) != C1
David Majnemer377a5c12013-07-09 07:50:59 +00001544 // iff C1 & C2 == C2
1545 // C2+1 is a power of 2
1546 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1547 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1548 return new ICmpInst(ICmpInst::ICMP_NE,
1549 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1550 break;
1551 }
1552
Chris Lattner02446fc2010-01-04 07:37:31 +00001553 case Instruction::Add:
1554 // Fold: icmp pred (add X, C1), C2
1555 if (!ICI.isEquality()) {
1556 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1557 if (!LHSC) break;
1558 const APInt &LHSV = LHSC->getValue();
1559
1560 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1561 .subtract(LHSV);
1562
1563 if (ICI.isSigned()) {
1564 if (CR.getLower().isSignBit()) {
1565 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001566 Builder->getInt(CR.getUpper()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001567 } else if (CR.getUpper().isSignBit()) {
1568 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001569 Builder->getInt(CR.getLower()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001570 }
1571 } else {
1572 if (CR.getLower().isMinValue()) {
1573 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001574 Builder->getInt(CR.getUpper()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001575 } else if (CR.getUpper().isMinValue()) {
1576 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
Jakub Staszak3facc432013-06-06 20:18:46 +00001577 Builder->getInt(CR.getLower()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001578 }
1579 }
David Majnemer53fc3992013-07-08 11:53:08 +00001580
David Majnemer11c29ba2013-07-09 07:58:32 +00001581 // X-C1 <u C2 -> (X & -C2) == C1
1582 // iff C1 & (C2-1) == 0
1583 // C2 is a power of 2
David Majnemer53fc3992013-07-08 11:53:08 +00001584 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
David Majnemer11c29ba2013-07-09 07:58:32 +00001585 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
David Majnemer53fc3992013-07-08 11:53:08 +00001586 return new ICmpInst(ICmpInst::ICMP_EQ,
1587 Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1588 ConstantExpr::getNeg(LHSC));
David Majnemer11c29ba2013-07-09 07:58:32 +00001589
David Majnemerfcb7b972013-07-09 09:24:35 +00001590 // X-C1 >u C2 -> (X & ~C2) != C1
David Majnemer11c29ba2013-07-09 07:58:32 +00001591 // iff C1 & C2 == 0
1592 // C2+1 is a power of 2
1593 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1594 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1595 return new ICmpInst(ICmpInst::ICMP_NE,
1596 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1597 ConstantExpr::getNeg(LHSC));
Chris Lattner02446fc2010-01-04 07:37:31 +00001598 }
1599 break;
1600 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001601
Chris Lattner02446fc2010-01-04 07:37:31 +00001602 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1603 if (ICI.isEquality()) {
1604 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001605
1606 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
Chris Lattner02446fc2010-01-04 07:37:31 +00001607 // the second operand is a constant, simplify a bit.
1608 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1609 switch (BO->getOpcode()) {
1610 case Instruction::SRem:
1611 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1612 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1613 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001614 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001615 Value *NewRem =
1616 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1617 BO->getName());
1618 return new ICmpInst(ICI.getPredicate(), NewRem,
1619 Constant::getNullValue(BO->getType()));
1620 }
1621 }
1622 break;
1623 case Instruction::Add:
1624 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1625 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1626 if (BO->hasOneUse())
1627 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1628 ConstantExpr::getSub(RHS, BOp1C));
1629 } else if (RHSV == 0) {
1630 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1631 // efficiently invertible, or if the add has just this one use.
1632 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001633
Chris Lattner02446fc2010-01-04 07:37:31 +00001634 if (Value *NegVal = dyn_castNegVal(BOp1))
1635 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
Chris Lattner5036ce42011-04-26 20:02:45 +00001636 if (Value *NegVal = dyn_castNegVal(BOp0))
Chris Lattner02446fc2010-01-04 07:37:31 +00001637 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
Chris Lattner5036ce42011-04-26 20:02:45 +00001638 if (BO->hasOneUse()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001639 Value *Neg = Builder->CreateNeg(BOp1);
1640 Neg->takeName(BO);
1641 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1642 }
1643 }
1644 break;
1645 case Instruction::Xor:
1646 // For the xor case, we can xor two constants together, eliminating
1647 // the explicit xor.
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001648 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1649 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Chris Lattner02446fc2010-01-04 07:37:31 +00001650 ConstantExpr::getXor(RHS, BOC));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001651 } else if (RHSV == 0) {
1652 // Replace ((xor A, B) != 0) with (A != B)
Chris Lattner02446fc2010-01-04 07:37:31 +00001653 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1654 BO->getOperand(1));
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001655 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001656 break;
Benjamin Kramere7fdcad2011-06-13 15:24:24 +00001657 case Instruction::Sub:
1658 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1659 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1660 if (BO->hasOneUse())
1661 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1662 ConstantExpr::getSub(BOp0C, RHS));
1663 } else if (RHSV == 0) {
1664 // Replace ((sub A, B) != 0) with (A != B)
1665 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1666 BO->getOperand(1));
1667 }
1668 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001669 case Instruction::Or:
1670 // If bits are being or'd in that are not present in the constant we
1671 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001672 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001673 Constant *NotCI = ConstantExpr::getNot(RHS);
1674 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Jakub Staszak3facc432013-06-06 20:18:46 +00001675 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
Chris Lattner02446fc2010-01-04 07:37:31 +00001676 }
1677 break;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001678
Chris Lattner02446fc2010-01-04 07:37:31 +00001679 case Instruction::And:
1680 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1681 // If bits are being compared against that are and'd out, then the
1682 // comparison can never succeed!
1683 if ((RHSV & ~BOC->getValue()) != 0)
Jakub Staszak3facc432013-06-06 20:18:46 +00001684 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001685
Chris Lattner02446fc2010-01-04 07:37:31 +00001686 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1687 if (RHS == BOC && RHSV.isPowerOf2())
1688 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1689 ICmpInst::ICMP_NE, LHSI,
1690 Constant::getNullValue(RHS->getType()));
Benjamin Kramerfc87cdc2011-07-04 20:16:36 +00001691
1692 // Don't perform the following transforms if the AND has multiple uses
1693 if (!BO->hasOneUse())
1694 break;
1695
Chris Lattner02446fc2010-01-04 07:37:31 +00001696 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1697 if (BOC->getValue().isSignBit()) {
1698 Value *X = BO->getOperand(0);
1699 Constant *Zero = Constant::getNullValue(X->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001700 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001701 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1702 return new ICmpInst(pred, X, Zero);
1703 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001704
Chris Lattner02446fc2010-01-04 07:37:31 +00001705 // ((X & ~7) == 0) --> X < 8
1706 if (RHSV == 0 && isHighOnes(BOC)) {
1707 Value *X = BO->getOperand(0);
1708 Constant *NegX = ConstantExpr::getNeg(BOC);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001709 ICmpInst::Predicate pred = isICMP_NE ?
Chris Lattner02446fc2010-01-04 07:37:31 +00001710 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1711 return new ICmpInst(pred, X, NegX);
1712 }
1713 }
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001714 break;
1715 case Instruction::Mul:
Arnaud A. de Grandmaison1bb93a92013-03-25 11:47:38 +00001716 if (RHSV == 0 && BO->hasNoSignedWrap()) {
Arnaud A. de Grandmaison35763b12013-03-25 09:48:49 +00001717 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1718 // The trivial case (mul X, 0) is handled by InstSimplify
1719 // General case : (mul X, C) != 0 iff X != 0
1720 // (mul X, C) == 0 iff X == 0
1721 if (!BOC->isZero())
1722 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1723 Constant::getNullValue(RHS->getType()));
1724 }
1725 }
1726 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001727 default: break;
1728 }
1729 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1730 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001731 switch (II->getIntrinsicID()) {
1732 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001733 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001734 ICI.setOperand(0, II->getArgOperand(0));
Jakub Staszak3facc432013-06-06 20:18:46 +00001735 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
Chris Lattner02446fc2010-01-04 07:37:31 +00001736 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001737 case Intrinsic::ctlz:
1738 case Intrinsic::cttz:
1739 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1740 if (RHSV == RHS->getType()->getBitWidth()) {
1741 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001742 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001743 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1744 return &ICI;
1745 }
1746 break;
1747 case Intrinsic::ctpop:
1748 // popcount(A) == 0 -> A == 0 and likewise for !=
1749 if (RHS->isZero()) {
1750 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001751 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001752 ICI.setOperand(1, RHS);
1753 return &ICI;
1754 }
1755 break;
1756 default:
Duncan Sands34727662010-07-12 08:16:59 +00001757 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001758 }
1759 }
1760 }
1761 return 0;
1762}
1763
1764/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1765/// We only handle extending casts so far.
1766///
1767Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1768 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1769 Value *LHSCIOp = LHSCI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001770 Type *SrcTy = LHSCIOp->getType();
1771 Type *DestTy = LHSCI->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00001772 Value *RHSCIOp;
1773
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001774 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
Chris Lattner02446fc2010-01-04 07:37:31 +00001775 // integer type is the same size as the pointer type.
1776 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
Chandler Carruth426c2bf2012-11-01 09:14:31 +00001777 TD->getPointerSizeInBits() ==
Chris Lattner02446fc2010-01-04 07:37:31 +00001778 cast<IntegerType>(DestTy)->getBitWidth()) {
1779 Value *RHSOp = 0;
1780 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1781 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1782 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1783 RHSOp = RHSC->getOperand(0);
1784 // If the pointer types don't match, insert a bitcast.
1785 if (LHSCIOp->getType() != RHSOp->getType())
1786 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1787 }
1788
1789 if (RHSOp)
1790 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1791 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001792
Chris Lattner02446fc2010-01-04 07:37:31 +00001793 // The code below only handles extension cast instructions, so far.
1794 // Enforce this.
1795 if (LHSCI->getOpcode() != Instruction::ZExt &&
1796 LHSCI->getOpcode() != Instruction::SExt)
1797 return 0;
1798
1799 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1800 bool isSignedCmp = ICI.isSigned();
1801
1802 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1803 // Not an extension from the same type?
1804 RHSCIOp = CI->getOperand(0);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001805 if (RHSCIOp->getType() != LHSCIOp->getType())
Chris Lattner02446fc2010-01-04 07:37:31 +00001806 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001807
Chris Lattner02446fc2010-01-04 07:37:31 +00001808 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1809 // and the other is a zext), then we can't handle this.
1810 if (CI->getOpcode() != LHSCI->getOpcode())
1811 return 0;
1812
1813 // Deal with equality cases early.
1814 if (ICI.isEquality())
1815 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1816
1817 // A signed comparison of sign extended values simplifies into a
1818 // signed comparison.
1819 if (isSignedCmp && isSignedExt)
1820 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1821
1822 // The other three cases all fold into an unsigned comparison.
1823 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1824 }
1825
1826 // If we aren't dealing with a constant on the RHS, exit early
1827 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1828 if (!CI)
1829 return 0;
1830
1831 // Compute the constant that would happen if we truncated to SrcTy then
1832 // reextended to DestTy.
1833 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1834 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1835 Res1, DestTy);
1836
1837 // If the re-extended constant didn't change...
1838 if (Res2 == CI) {
1839 // Deal with equality cases early.
1840 if (ICI.isEquality())
1841 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1842
1843 // A signed comparison of sign extended values simplifies into a
1844 // signed comparison.
1845 if (isSignedExt && isSignedCmp)
1846 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1847
1848 // The other three cases all fold into an unsigned comparison.
1849 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1850 }
1851
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001852 // The re-extended constant changed so the constant cannot be represented
Chris Lattner02446fc2010-01-04 07:37:31 +00001853 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001854 // All the cases that fold to true or false will have already been handled
1855 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001856
Duncan Sands9d32f602011-01-20 13:21:55 +00001857 if (isSignedCmp || !isSignedExt)
1858 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001859
1860 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1861 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001862
1863 // We're performing an unsigned comp with a sign extended value.
1864 // This is true if the input is >= 0. [aka >s -1]
1865 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1866 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001867
1868 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001869 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001870 return ReplaceInstUsesWith(ICI, Result);
1871
Duncan Sands9d32f602011-01-20 13:21:55 +00001872 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001873 return BinaryOperator::CreateNot(Result);
1874}
1875
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001876/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1877/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001878/// If this is of the form:
1879/// sum = a + b
1880/// if (sum+128 >u 255)
1881/// Then replace it with llvm.sadd.with.overflow.i8.
1882///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001883static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1884 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001885 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001886 // The transformation we're trying to do here is to transform this into an
1887 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1888 // with a narrower add, and discard the add-with-constant that is part of the
1889 // range check (if we can't eliminate it, this isn't profitable).
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001890
Chris Lattner368397b2010-12-19 17:59:02 +00001891 // In order to eliminate the add-with-constant, the compare can be its only
1892 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001893 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001894 if (!AddWithCst->hasOneUse()) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001895
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001896 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1897 if (!CI2->getValue().isPowerOf2()) return 0;
1898 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1899 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001900
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001901 // The width of the new add formed is 1 more than the bias.
1902 ++NewWidth;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001903
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001904 // Check to see that CI1 is an all-ones value with NewWidth bits.
1905 if (CI1->getBitWidth() == NewWidth ||
1906 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1907 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001908
Eli Friedman54b92112011-11-28 23:32:19 +00001909 // This is only really a signed overflow check if the inputs have been
1910 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1911 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1912 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1913 if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1914 IC.ComputeNumSignBits(B) < NeededSignBits)
1915 return 0;
1916
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001917 // In order to replace the original add with a narrower
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001918 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1919 // and truncates that discard the high bits of the add. Verify that this is
1920 // the case.
1921 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1922 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1923 UI != E; ++UI) {
1924 if (*UI == AddWithCst) continue;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001925
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001926 // Only accept truncates for now. We would really like a nice recursive
1927 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1928 // chain to see which bits of a value are actually demanded. If the
1929 // original add had another add which was then immediately truncated, we
1930 // could still do the transformation.
1931 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1932 if (TI == 0 ||
1933 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1934 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001935
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001936 // If the pattern matches, truncate the inputs to the narrower type and
1937 // use the sadd_with_overflow intrinsic to efficiently compute both the
1938 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001939 Module *M = I.getParent()->getParent()->getParent();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001940
Jay Foad5fdd6c82011-07-12 14:06:48 +00001941 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Chris Lattner0a624742010-12-19 18:35:09 +00001942 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001943 NewType);
Chris Lattner0a624742010-12-19 18:35:09 +00001944
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001945 InstCombiner::BuilderTy *Builder = IC.Builder;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001946
Chris Lattner0a624742010-12-19 18:35:09 +00001947 // Put the new code above the original add, in case there are any uses of the
1948 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001949 Builder->SetInsertPoint(OrigAdd);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001950
Chris Lattner0a624742010-12-19 18:35:09 +00001951 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1952 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1953 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1954 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1955 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001956
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001957 // The inner add was the result of the narrow add, zero extended to the
1958 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001959 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001960
Chris Lattner0a624742010-12-19 18:35:09 +00001961 // The original icmp gets replaced with the overflow value.
1962 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001963}
Chris Lattner02446fc2010-01-04 07:37:31 +00001964
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001965static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1966 InstCombiner &IC) {
1967 // Don't bother doing this transformation for pointers, don't do it for
1968 // vectors.
1969 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001970
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001971 // If the add is a constant expr, then we don't bother transforming it.
1972 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1973 if (OrigAdd == 0) return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001974
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001975 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00001976
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001977 // Put the new code above the original add, in case there are any uses of the
1978 // add between the add and the compare.
1979 InstCombiner::BuilderTy *Builder = IC.Builder;
1980 Builder->SetInsertPoint(OrigAdd);
1981
1982 Module *M = I.getParent()->getParent()->getParent();
Jay Foad5fdd6c82011-07-12 14:06:48 +00001983 Type *Ty = LHS->getType();
Benjamin Kramereb9a85f2011-07-14 17:45:39 +00001984 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001985 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1986 Value *Add = Builder->CreateExtractValue(Call, 0);
1987
1988 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1989
1990 // The original icmp gets replaced with the overflow value.
1991 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1992}
1993
Owen Andersonda1c1222011-01-11 00:36:45 +00001994// DemandedBitsLHSMask - When performing a comparison against a constant,
1995// it is possible that not all the bits in the LHS are demanded. This helper
1996// method computes the mask that IS demanded.
1997static APInt DemandedBitsLHSMask(ICmpInst &I,
1998 unsigned BitWidth, bool isSignCheck) {
1999 if (isSignCheck)
2000 return APInt::getSignBit(BitWidth);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002001
Owen Andersonda1c1222011-01-11 00:36:45 +00002002 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2003 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00002004 const APInt &RHS = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002005
Owen Andersonda1c1222011-01-11 00:36:45 +00002006 switch (I.getPredicate()) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002007 // For a UGT comparison, we don't care about any bits that
Owen Andersonda1c1222011-01-11 00:36:45 +00002008 // correspond to the trailing ones of the comparand. The value of these
2009 // bits doesn't impact the outcome of the comparison, because any value
2010 // greater than the RHS must differ in a bit higher than these due to carry.
2011 case ICmpInst::ICMP_UGT: {
2012 unsigned trailingOnes = RHS.countTrailingOnes();
2013 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2014 return ~lowBitsSet;
2015 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002016
Owen Andersonda1c1222011-01-11 00:36:45 +00002017 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2018 // Any value less than the RHS must differ in a higher bit because of carries.
2019 case ICmpInst::ICMP_ULT: {
2020 unsigned trailingZeros = RHS.countTrailingZeros();
2021 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2022 return ~lowBitsSet;
2023 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002024
Owen Andersonda1c1222011-01-11 00:36:45 +00002025 default:
2026 return APInt::getAllOnesValue(BitWidth);
2027 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002028
Owen Andersonda1c1222011-01-11 00:36:45 +00002029}
Chris Lattner02446fc2010-01-04 07:37:31 +00002030
2031Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2032 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00002033 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002034
Chris Lattner02446fc2010-01-04 07:37:31 +00002035 /// Orders the operands of the compare so that they are listed from most
2036 /// complex to least complex. This puts constants before unary operators,
2037 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00002038 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002039 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00002040 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00002041 Changed = true;
2042 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002043
Chris Lattner02446fc2010-01-04 07:37:31 +00002044 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
2045 return ReplaceInstUsesWith(I, V);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002046
Pete Cooper65a6b572011-12-01 03:58:40 +00002047 // comparing -val or val with non-zero is the same as just comparing val
Pete Cooper165695d2011-12-01 19:13:26 +00002048 // ie, abs(val) != 0 -> val != 0
Pete Cooper65a6b572011-12-01 03:58:40 +00002049 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2050 {
Pete Cooper165695d2011-12-01 19:13:26 +00002051 Value *Cond, *SelectTrue, *SelectFalse;
2052 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
Pete Cooper65a6b572011-12-01 03:58:40 +00002053 m_Value(SelectFalse)))) {
Pete Cooper165695d2011-12-01 19:13:26 +00002054 if (Value *V = dyn_castNegVal(SelectTrue)) {
2055 if (V == SelectFalse)
2056 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2057 }
2058 else if (Value *V = dyn_castNegVal(SelectFalse)) {
2059 if (V == SelectTrue)
2060 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
Pete Cooper65a6b572011-12-01 03:58:40 +00002061 }
2062 }
2063 }
2064
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002065 Type *Ty = Op0->getType();
Chris Lattner02446fc2010-01-04 07:37:31 +00002066
2067 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002068 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002069 switch (I.getPredicate()) {
2070 default: llvm_unreachable("Invalid icmp instruction!");
2071 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
2072 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2073 return BinaryOperator::CreateNot(Xor);
2074 }
2075 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
2076 return BinaryOperator::CreateXor(Op0, Op1);
2077
2078 case ICmpInst::ICMP_UGT:
2079 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
2080 // FALL THROUGH
2081 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
2082 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2083 return BinaryOperator::CreateAnd(Not, Op1);
2084 }
2085 case ICmpInst::ICMP_SGT:
2086 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
2087 // FALL THROUGH
2088 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
2089 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2090 return BinaryOperator::CreateAnd(Not, Op0);
2091 }
2092 case ICmpInst::ICMP_UGE:
2093 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
2094 // FALL THROUGH
2095 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
2096 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2097 return BinaryOperator::CreateOr(Not, Op1);
2098 }
2099 case ICmpInst::ICMP_SGE:
2100 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
2101 // FALL THROUGH
2102 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
2103 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2104 return BinaryOperator::CreateOr(Not, Op0);
2105 }
2106 }
2107 }
2108
2109 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002110 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00002111 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002112 else if (TD) // Pointers require TD info to get their size.
2113 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002114
Chris Lattner02446fc2010-01-04 07:37:31 +00002115 bool isSignBit = false;
2116
2117 // See if we are doing a comparison with a constant.
2118 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2119 Value *A = 0, *B = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002120
Owen Andersone63dda52010-12-17 18:08:00 +00002121 // Match the following pattern, which is a common idiom when writing
2122 // overflow-safe integer arithmetic function. The source performs an
2123 // addition in wider type, and explicitly checks for overflow using
2124 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
2125 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002126 //
2127 // TODO: This could probably be generalized to handle other overflow-safe
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002128 // operations if we worked out the formulas to compute the appropriate
Owen Andersone63dda52010-12-17 18:08:00 +00002129 // magic constants.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002130 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002131 // sum = a + b
2132 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00002133 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002134 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00002135 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002136 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00002137 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00002138 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00002139 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002140
Chris Lattner02446fc2010-01-04 07:37:31 +00002141 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2142 if (I.isEquality() && CI->isZero() &&
2143 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2144 // (icmp cond A B) if cond is equality
2145 return new ICmpInst(I.getPredicate(), A, B);
2146 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002147
Chris Lattner02446fc2010-01-04 07:37:31 +00002148 // If we have an icmp le or icmp ge instruction, turn it into the
2149 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
2150 // them being folded in the code below. The SimplifyICmpInst code has
2151 // already handled the edge cases for us, so we just assert on them.
2152 switch (I.getPredicate()) {
2153 default: break;
2154 case ICmpInst::ICMP_ULE:
2155 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
2156 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002157 Builder->getInt(CI->getValue()+1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002158 case ICmpInst::ICMP_SLE:
2159 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
2160 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002161 Builder->getInt(CI->getValue()+1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002162 case ICmpInst::ICMP_UGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002163 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00002164 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002165 Builder->getInt(CI->getValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002166 case ICmpInst::ICMP_SGE:
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002167 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
Chris Lattner02446fc2010-01-04 07:37:31 +00002168 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002169 Builder->getInt(CI->getValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002170 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002171
Chris Lattner02446fc2010-01-04 07:37:31 +00002172 // If this comparison is a normal comparison, it demands all
2173 // bits, if it is a sign bit comparison, it only demands the sign bit.
2174 bool UnusedBit;
2175 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2176 }
2177
2178 // See if we can fold the comparison based on range information we can get
2179 // by checking whether bits are known to be zero or one in the input.
2180 if (BitWidth != 0) {
2181 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2182 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2183
2184 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00002185 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00002186 Op0KnownZero, Op0KnownOne, 0))
2187 return &I;
2188 if (SimplifyDemandedBits(I.getOperandUse(1),
2189 APInt::getAllOnesValue(BitWidth),
2190 Op1KnownZero, Op1KnownOne, 0))
2191 return &I;
2192
2193 // Given the known and unknown bits, compute a range that the LHS could be
2194 // in. Compute the Min, Max and RHS values based on the known bits. For the
2195 // EQ and NE we use unsigned values.
2196 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2197 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2198 if (I.isSigned()) {
2199 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2200 Op0Min, Op0Max);
2201 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2202 Op1Min, Op1Max);
2203 } else {
2204 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2205 Op0Min, Op0Max);
2206 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2207 Op1Min, Op1Max);
2208 }
2209
2210 // If Min and Max are known to be the same, then SimplifyDemandedBits
2211 // figured out that the LHS is a constant. Just constant fold this now so
2212 // that code below can assume that Min != Max.
2213 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2214 return new ICmpInst(I.getPredicate(),
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002215 ConstantInt::get(Op0->getType(), Op0Min), Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00002216 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2217 return new ICmpInst(I.getPredicate(), Op0,
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002218 ConstantInt::get(Op1->getType(), Op1Min));
Chris Lattner02446fc2010-01-04 07:37:31 +00002219
2220 // Based on the range information we know about the LHS, see if we can
Nick Lewyckyd8d15842011-02-28 06:20:05 +00002221 // simplify this comparison. For example, (x&4) < 8 is always true.
Chris Lattner02446fc2010-01-04 07:37:31 +00002222 switch (I.getPredicate()) {
2223 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00002224 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002225 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002226 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002227
Chris Lattner75d8f592010-11-21 06:44:42 +00002228 // If all bits are known zero except for one, then we know at most one
2229 // bit is set. If the comparison is against zero, then this is a check
2230 // to see if *that* bit is set.
2231 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2232 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2233 // If the LHS is an AND with the same constant, look through it.
2234 Value *LHS = 0;
2235 ConstantInt *LHSC = 0;
2236 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2237 LHSC->getValue() != Op0KnownZeroInverted)
2238 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002239
Chris Lattner75d8f592010-11-21 06:44:42 +00002240 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002241 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002242 Value *X = 0;
2243 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2244 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002245 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002246 ConstantInt::get(X->getType(), CmpVal));
2247 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002248
Chris Lattner75d8f592010-11-21 06:44:42 +00002249 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002250 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002251 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002252 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002253 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002254 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002255 ConstantInt::get(X->getType(),
2256 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002257 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002258
Chris Lattner02446fc2010-01-04 07:37:31 +00002259 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002260 }
2261 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00002262 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002263 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002264
Chris Lattner75d8f592010-11-21 06:44:42 +00002265 // If all bits are known zero except for one, then we know at most one
2266 // bit is set. If the comparison is against zero, then this is a check
2267 // to see if *that* bit is set.
2268 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2269 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2270 // If the LHS is an AND with the same constant, look through it.
2271 Value *LHS = 0;
2272 ConstantInt *LHSC = 0;
2273 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2274 LHSC->getValue() != Op0KnownZeroInverted)
2275 LHS = Op0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002276
Chris Lattner75d8f592010-11-21 06:44:42 +00002277 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00002278 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00002279 Value *X = 0;
2280 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2281 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00002282 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00002283 ConstantInt::get(X->getType(), CmpVal));
2284 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002285
Chris Lattner75d8f592010-11-21 06:44:42 +00002286 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00002287 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002288 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00002289 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002290 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00002291 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00002292 ConstantInt::get(X->getType(),
2293 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00002294 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002295
Chris Lattner02446fc2010-01-04 07:37:31 +00002296 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00002297 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002298 case ICmpInst::ICMP_ULT:
2299 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002300 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002301 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002302 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002303 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2304 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2305 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2306 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2307 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002308 Builder->getInt(CI->getValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002309
2310 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2311 if (CI->isMinValue(true))
2312 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2313 Constant::getAllOnesValue(Op0->getType()));
2314 }
2315 break;
2316 case ICmpInst::ICMP_UGT:
2317 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002318 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002319 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002320 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002321
2322 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2323 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2324 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2325 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2326 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002327 Builder->getInt(CI->getValue()+1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002328
2329 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2330 if (CI->isMaxValue(true))
2331 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2332 Constant::getNullValue(Op0->getType()));
2333 }
2334 break;
2335 case ICmpInst::ICMP_SLT:
2336 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002337 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002338 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002339 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002340 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2341 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2342 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2343 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2344 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002345 Builder->getInt(CI->getValue()-1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002346 }
2347 break;
2348 case ICmpInst::ICMP_SGT:
2349 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002350 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002351 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002352 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002353
2354 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2355 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2356 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2357 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2358 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Jakub Staszak3facc432013-06-06 20:18:46 +00002359 Builder->getInt(CI->getValue()+1));
Chris Lattner02446fc2010-01-04 07:37:31 +00002360 }
2361 break;
2362 case ICmpInst::ICMP_SGE:
2363 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2364 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002365 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002366 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002367 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002368 break;
2369 case ICmpInst::ICMP_SLE:
2370 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2371 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002372 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002373 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002374 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002375 break;
2376 case ICmpInst::ICMP_UGE:
2377 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2378 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002379 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002380 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002381 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002382 break;
2383 case ICmpInst::ICMP_ULE:
2384 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2385 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002386 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002387 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002388 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Chris Lattner02446fc2010-01-04 07:37:31 +00002389 break;
2390 }
2391
2392 // Turn a signed comparison into an unsigned one if both operands
2393 // are known to have the same sign.
2394 if (I.isSigned() &&
2395 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2396 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2397 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2398 }
2399
2400 // Test if the ICmpInst instruction is used exclusively by a select as
2401 // part of a minimum or maximum operation. If so, refrain from doing
2402 // any other folding. This helps out other analyses which understand
2403 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2404 // and CodeGen. And in this case, at least one of the comparison
2405 // operands has at least one user besides the compare (the select),
2406 // which would often largely negate the benefit of folding anyway.
2407 if (I.hasOneUse())
2408 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2409 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2410 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2411 return 0;
2412
2413 // See if we are doing a comparison between a constant and an instruction that
2414 // can be folded into the comparison.
2415 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002416 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2417 // instruction, see if that instruction also has constants so that the
2418 // instruction can be folded into the icmp
Chris Lattner02446fc2010-01-04 07:37:31 +00002419 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2420 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2421 return Res;
2422 }
2423
2424 // Handle icmp with constant (but not simple integer constant) RHS
2425 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2426 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2427 switch (LHSI->getOpcode()) {
2428 case Instruction::GetElementPtr:
2429 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2430 if (RHSC->isNullValue() &&
2431 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2432 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2433 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2434 break;
2435 case Instruction::PHI:
2436 // Only fold icmp into the PHI if the phi and icmp are in the same
2437 // block. If in the same block, we're encouraging jump threading. If
2438 // not, we are just pessimizing the code by making an i1 phi.
2439 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002440 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002441 return NV;
2442 break;
2443 case Instruction::Select: {
2444 // If either operand of the select is a constant, we can fold the
2445 // comparison into the select arms, which will cause one to be
2446 // constant folded and the select turned into a bitwise or.
2447 Value *Op1 = 0, *Op2 = 0;
2448 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2449 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2450 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2451 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2452
2453 // We only want to perform this transformation if it will not lead to
2454 // additional code. This is true if either both sides of the select
2455 // fold to a constant (in which case the icmp is replaced with a select
2456 // which will usually simplify) or this is the only user of the
2457 // select (in which case we are trading a select+icmp for a simpler
2458 // select+icmp).
2459 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2460 if (!Op1)
2461 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2462 RHSC, I.getName());
2463 if (!Op2)
2464 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2465 RHSC, I.getName());
2466 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2467 }
2468 break;
2469 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002470 case Instruction::IntToPtr:
2471 // icmp pred inttoptr(X), null -> icmp pred X, 0
2472 if (RHSC->isNullValue() && TD &&
Chandler Carruthece6c6b2012-11-01 08:07:29 +00002473 TD->getIntPtrType(RHSC->getContext()) ==
Chris Lattner02446fc2010-01-04 07:37:31 +00002474 LHSI->getOperand(0)->getType())
2475 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2476 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2477 break;
2478
2479 case Instruction::Load:
2480 // Try to optimize things like "A[i] > 4" to index computations.
2481 if (GetElementPtrInst *GEP =
2482 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2483 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2484 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2485 !cast<LoadInst>(LHSI)->isVolatile())
2486 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2487 return Res;
2488 }
2489 break;
2490 }
2491 }
2492
2493 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2494 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2495 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2496 return NI;
2497 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2498 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2499 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2500 return NI;
2501
2502 // Test to see if the operands of the icmp are casted versions of other
2503 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2504 // now.
2505 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002506 if (Op0->getType()->isPointerTy() &&
2507 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002508 // We keep moving the cast from the left operand over to the right
2509 // operand, where it can often be eliminated completely.
2510 Op0 = CI->getOperand(0);
2511
2512 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2513 // so eliminate it as well.
2514 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2515 Op1 = CI2->getOperand(0);
2516
2517 // If Op1 is a constant, we can fold the cast into the constant.
2518 if (Op0->getType() != Op1->getType()) {
2519 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2520 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2521 } else {
2522 // Otherwise, cast the RHS right before the icmp
2523 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2524 }
2525 }
2526 return new ICmpInst(I.getPredicate(), Op0, Op1);
2527 }
2528 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002529
Chris Lattner02446fc2010-01-04 07:37:31 +00002530 if (isa<CastInst>(Op0)) {
2531 // Handle the special case of: icmp (cast bool to X), <cst>
2532 // This comes up when you have code like
2533 // int X = A < B;
2534 // if (X) ...
2535 // For generality, we handle any zero-extension of any operand comparison
2536 // with a constant or another cast from the same type.
2537 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2538 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2539 return R;
2540 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002541
Duncan Sandsa7724332011-02-17 07:46:37 +00002542 // Special logic for binary operators.
2543 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2544 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2545 if (BO0 || BO1) {
2546 CmpInst::Predicate Pred = I.getPredicate();
2547 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2548 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2549 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2550 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2551 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2552 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2553 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2554 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2555 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2556
2557 // Analyze the case when either Op0 or Op1 is an add instruction.
2558 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2559 Value *A = 0, *B = 0, *C = 0, *D = 0;
2560 if (BO0 && BO0->getOpcode() == Instruction::Add)
2561 A = BO0->getOperand(0), B = BO0->getOperand(1);
2562 if (BO1 && BO1->getOpcode() == Instruction::Add)
2563 C = BO1->getOperand(0), D = BO1->getOperand(1);
2564
2565 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2566 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2567 return new ICmpInst(Pred, A == Op1 ? B : A,
2568 Constant::getNullValue(Op1->getType()));
2569
2570 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2571 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2572 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2573 C == Op0 ? D : C);
2574
Duncan Sands39a7de72011-02-18 16:25:37 +00002575 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002576 if (A && C && (A == C || A == D || B == C || B == D) &&
2577 NoOp0WrapProblem && NoOp1WrapProblem &&
2578 // Try not to increase register pressure.
2579 BO0->hasOneUse() && BO1->hasOneUse()) {
2580 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsafe45392012-11-16 18:55:49 +00002581 Value *Y, *Z;
2582 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002583 // C + B == C + D -> B == D
Duncan Sandsafe45392012-11-16 18:55:49 +00002584 Y = B;
2585 Z = D;
2586 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002587 // D + B == C + D -> B == C
Duncan Sandsafe45392012-11-16 18:55:49 +00002588 Y = B;
2589 Z = C;
2590 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002591 // A + C == C + D -> A == D
Duncan Sandsafe45392012-11-16 18:55:49 +00002592 Y = A;
2593 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002594 } else {
2595 assert(B == D);
2596 // A + D == C + D -> A == C
Duncan Sandsafe45392012-11-16 18:55:49 +00002597 Y = A;
2598 Z = C;
2599 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002600 return new ICmpInst(Pred, Y, Z);
2601 }
2602
David Majnemer59b11c42013-04-11 20:05:46 +00002603 // icmp slt (X + -1), Y -> icmp sle X, Y
2604 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2605 match(B, m_AllOnes()))
2606 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2607
2608 // icmp sge (X + -1), Y -> icmp sgt X, Y
2609 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2610 match(B, m_AllOnes()))
2611 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2612
2613 // icmp sle (X + 1), Y -> icmp slt X, Y
2614 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2615 match(B, m_One()))
2616 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2617
2618 // icmp sgt (X + 1), Y -> icmp sge X, Y
2619 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2620 match(B, m_One()))
2621 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2622
2623 // if C1 has greater magnitude than C2:
2624 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2625 // s.t. C3 = C1 - C2
2626 //
2627 // if C2 has greater magnitude than C1:
2628 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2629 // s.t. C3 = C2 - C1
2630 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2631 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2632 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2633 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2634 const APInt &AP1 = C1->getValue();
2635 const APInt &AP2 = C2->getValue();
2636 if (AP1.isNegative() == AP2.isNegative()) {
2637 APInt AP1Abs = C1->getValue().abs();
2638 APInt AP2Abs = C2->getValue().abs();
2639 if (AP1Abs.uge(AP2Abs)) {
2640 ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2641 Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2642 return new ICmpInst(Pred, NewAdd, C);
2643 } else {
2644 ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2645 Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2646 return new ICmpInst(Pred, A, NewAdd);
2647 }
2648 }
2649 }
2650
2651
Duncan Sandsa7724332011-02-17 07:46:37 +00002652 // Analyze the case when either Op0 or Op1 is a sub instruction.
2653 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2654 A = 0; B = 0; C = 0; D = 0;
2655 if (BO0 && BO0->getOpcode() == Instruction::Sub)
2656 A = BO0->getOperand(0), B = BO0->getOperand(1);
2657 if (BO1 && BO1->getOpcode() == Instruction::Sub)
2658 C = BO1->getOperand(0), D = BO1->getOperand(1);
2659
Duncan Sands39a7de72011-02-18 16:25:37 +00002660 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2661 if (A == Op1 && NoOp0WrapProblem)
2662 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2663
2664 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2665 if (C == Op0 && NoOp1WrapProblem)
2666 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2667
2668 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
Duncan Sandsa7724332011-02-17 07:46:37 +00002669 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2670 // Try not to increase register pressure.
2671 BO0->hasOneUse() && BO1->hasOneUse())
2672 return new ICmpInst(Pred, A, C);
2673
Duncan Sands39a7de72011-02-18 16:25:37 +00002674 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2675 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2676 // Try not to increase register pressure.
2677 BO0->hasOneUse() && BO1->hasOneUse())
2678 return new ICmpInst(Pred, D, B);
2679
Nick Lewycky9feda172011-03-05 04:28:48 +00002680 BinaryOperator *SRem = NULL;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002681 // icmp (srem X, Y), Y
Nick Lewycky9feda172011-03-05 04:28:48 +00002682 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2683 Op1 == BO0->getOperand(1))
2684 SRem = BO0;
Nick Lewyckydcf77572011-03-08 06:29:47 +00002685 // icmp Y, (srem X, Y)
Nick Lewycky9feda172011-03-05 04:28:48 +00002686 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2687 Op0 == BO1->getOperand(1))
2688 SRem = BO1;
2689 if (SRem) {
2690 // We don't check hasOneUse to avoid increasing register pressure because
2691 // the value we use is the same value this instruction was already using.
2692 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2693 default: break;
2694 case ICmpInst::ICMP_EQ:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002695 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002696 case ICmpInst::ICMP_NE:
Nick Lewyckyd01f50f2011-03-06 03:36:19 +00002697 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
Nick Lewycky9feda172011-03-05 04:28:48 +00002698 case ICmpInst::ICMP_SGT:
2699 case ICmpInst::ICMP_SGE:
2700 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2701 Constant::getAllOnesValue(SRem->getType()));
2702 case ICmpInst::ICMP_SLT:
2703 case ICmpInst::ICMP_SLE:
2704 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2705 Constant::getNullValue(SRem->getType()));
2706 }
2707 }
2708
Duncan Sandsa7724332011-02-17 07:46:37 +00002709 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2710 BO0->hasOneUse() && BO1->hasOneUse() &&
2711 BO0->getOperand(1) == BO1->getOperand(1)) {
2712 switch (BO0->getOpcode()) {
2713 default: break;
2714 case Instruction::Add:
2715 case Instruction::Sub:
2716 case Instruction::Xor:
2717 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2718 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2719 BO1->getOperand(0));
2720 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2721 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2722 if (CI->getValue().isSignBit()) {
2723 ICmpInst::Predicate Pred = I.isSigned()
2724 ? I.getUnsignedPredicate()
2725 : I.getSignedPredicate();
2726 return new ICmpInst(Pred, BO0->getOperand(0),
2727 BO1->getOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00002728 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002729
Chris Lattnerc73b24d2011-07-15 06:08:15 +00002730 if (CI->isMaxValue(true)) {
Duncan Sandsa7724332011-02-17 07:46:37 +00002731 ICmpInst::Predicate Pred = I.isSigned()
2732 ? I.getUnsignedPredicate()
2733 : I.getSignedPredicate();
2734 Pred = I.getSwappedPredicate(Pred);
2735 return new ICmpInst(Pred, BO0->getOperand(0),
2736 BO1->getOperand(0));
2737 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002738 }
Duncan Sandsa7724332011-02-17 07:46:37 +00002739 break;
2740 case Instruction::Mul:
2741 if (!I.isEquality())
2742 break;
2743
2744 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2745 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2746 // Mask = -1 >> count-trailing-zeros(Cst).
2747 if (!CI->isZero() && !CI->isOne()) {
2748 const APInt &AP = CI->getValue();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002749 ConstantInt *Mask = ConstantInt::get(I.getContext(),
Duncan Sandsa7724332011-02-17 07:46:37 +00002750 APInt::getLowBitsSet(AP.getBitWidth(),
2751 AP.getBitWidth() -
2752 AP.countTrailingZeros()));
2753 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2754 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2755 return new ICmpInst(I.getPredicate(), And1, And2);
2756 }
2757 }
2758 break;
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002759 case Instruction::UDiv:
2760 case Instruction::LShr:
2761 if (I.isSigned())
2762 break;
2763 // fall-through
2764 case Instruction::SDiv:
2765 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002766 if (!BO0->isExact() || !BO1->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002767 break;
2768 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2769 BO1->getOperand(0));
2770 case Instruction::Shl: {
2771 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2772 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2773 if (!NUW && !NSW)
2774 break;
2775 if (!NSW && I.isSigned())
2776 break;
2777 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2778 BO1->getOperand(0));
2779 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002780 }
2781 }
2782 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002783
Chris Lattner02446fc2010-01-04 07:37:31 +00002784 { Value *A, *B;
David Majnemerfb1cd692013-04-12 17:25:07 +00002785 // Transform (A & ~B) == 0 --> (A & B) != 0
2786 // and (A & ~B) != 0 --> (A & B) == 0
2787 // if A is a power of 2.
2788 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2789 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
2790 return new ICmpInst(I.getInversePredicate(),
2791 Builder->CreateAnd(A, B),
2792 Op1);
2793
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002794 // ~x < ~y --> y < x
2795 // ~x < cst --> ~cst < x
2796 if (match(Op0, m_Not(m_Value(A)))) {
2797 if (match(Op1, m_Not(m_Value(B))))
2798 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002799 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002800 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2801 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002802
2803 // (a+b) <u a --> llvm.uadd.with.overflow.
2804 // (a+b) <u b --> llvm.uadd.with.overflow.
2805 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002806 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002807 (Op1 == A || Op1 == B))
2808 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2809 return R;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002810
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002811 // a >u (a+b) --> llvm.uadd.with.overflow.
2812 // b >u (a+b) --> llvm.uadd.with.overflow.
2813 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2814 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2815 (Op0 == A || Op0 == B))
2816 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2817 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002818 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002819
Chris Lattner02446fc2010-01-04 07:37:31 +00002820 if (I.isEquality()) {
2821 Value *A, *B, *C, *D;
Duncan Sands39a7de72011-02-18 16:25:37 +00002822
Chris Lattner02446fc2010-01-04 07:37:31 +00002823 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2824 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2825 Value *OtherVal = A == Op1 ? B : A;
2826 return new ICmpInst(I.getPredicate(), OtherVal,
2827 Constant::getNullValue(A->getType()));
2828 }
2829
2830 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2831 // A^c1 == C^c2 --> A == C^(c1^c2)
2832 ConstantInt *C1, *C2;
2833 if (match(B, m_ConstantInt(C1)) &&
2834 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
Jakub Staszak3facc432013-06-06 20:18:46 +00002835 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +00002836 Value *Xor = Builder->CreateXor(C, NC);
Chris Lattner02446fc2010-01-04 07:37:31 +00002837 return new ICmpInst(I.getPredicate(), A, Xor);
2838 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002839
Chris Lattner02446fc2010-01-04 07:37:31 +00002840 // A^B == A^D -> B == D
2841 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2842 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2843 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2844 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2845 }
2846 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002847
Chris Lattner02446fc2010-01-04 07:37:31 +00002848 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2849 (A == Op0 || B == Op0)) {
2850 // A == (A^B) -> B == 0
2851 Value *OtherVal = A == Op0 ? B : A;
2852 return new ICmpInst(I.getPredicate(), OtherVal,
2853 Constant::getNullValue(A->getType()));
2854 }
2855
Chris Lattner02446fc2010-01-04 07:37:31 +00002856 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002857 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
Chris Lattner5036ce42011-04-26 20:02:45 +00002858 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00002859 Value *X = 0, *Y = 0, *Z = 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002860
Chris Lattner02446fc2010-01-04 07:37:31 +00002861 if (A == C) {
2862 X = B; Y = D; Z = A;
2863 } else if (A == D) {
2864 X = B; Y = C; Z = A;
2865 } else if (B == C) {
2866 X = A; Y = D; Z = B;
2867 } else if (B == D) {
2868 X = A; Y = C; Z = B;
2869 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002870
Chris Lattner02446fc2010-01-04 07:37:31 +00002871 if (X) { // Build (X^Y) & Z
Benjamin Kramera9390a42011-09-27 20:39:19 +00002872 Op1 = Builder->CreateXor(X, Y);
2873 Op1 = Builder->CreateAnd(Op1, Z);
Chris Lattner02446fc2010-01-04 07:37:31 +00002874 I.setOperand(0, Op1);
2875 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2876 return &I;
2877 }
2878 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002879
Benjamin Kramer66821d92012-06-10 20:35:00 +00002880 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
Benjamin Kramer7a99b462012-06-11 08:01:25 +00002881 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
Benjamin Kramer66821d92012-06-10 20:35:00 +00002882 ConstantInt *Cst1;
Benjamin Kramer7a99b462012-06-11 08:01:25 +00002883 if ((Op0->hasOneUse() &&
2884 match(Op0, m_ZExt(m_Value(A))) &&
2885 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2886 (Op1->hasOneUse() &&
2887 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2888 match(Op1, m_ZExt(m_Value(A))))) {
Benjamin Kramer66821d92012-06-10 20:35:00 +00002889 APInt Pow2 = Cst1->getValue() + 1;
2890 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2891 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2892 return new ICmpInst(I.getPredicate(), A,
2893 Builder->CreateTrunc(B, A->getType()));
2894 }
2895
Chris Lattner325eeb12011-04-26 20:18:20 +00002896 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2897 // "icmp (and X, mask), cst"
2898 uint64_t ShAmt = 0;
Chris Lattner325eeb12011-04-26 20:18:20 +00002899 if (Op0->hasOneUse() &&
2900 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2901 m_ConstantInt(ShAmt))))) &&
2902 match(Op1, m_ConstantInt(Cst1)) &&
2903 // Only do this when A has multiple uses. This is most important to do
2904 // when it exposes other optimizations.
2905 !A->hasOneUse()) {
2906 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002907
Chris Lattner325eeb12011-04-26 20:18:20 +00002908 if (ShAmt < ASize) {
2909 APInt MaskV =
2910 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2911 MaskV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002912
Chris Lattner325eeb12011-04-26 20:18:20 +00002913 APInt CmpV = Cst1->getValue().zext(ASize);
2914 CmpV <<= ShAmt;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002915
Chris Lattner325eeb12011-04-26 20:18:20 +00002916 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2917 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2918 }
2919 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002920 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002921
Chris Lattner02446fc2010-01-04 07:37:31 +00002922 {
2923 Value *X; ConstantInt *Cst;
2924 // icmp X+Cst, X
2925 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2926 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2927
2928 // icmp X, X+Cst
2929 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2930 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2931 }
2932 return Changed ? &I : 0;
2933}
2934
2935
2936
2937
2938
2939
2940/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2941///
2942Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2943 Instruction *LHSI,
2944 Constant *RHSC) {
2945 if (!isa<ConstantFP>(RHSC)) return 0;
2946 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002947
Chris Lattner02446fc2010-01-04 07:37:31 +00002948 // Get the width of the mantissa. We don't want to hack on conversions that
2949 // might lose information from the integer, e.g. "i64 -> float"
2950 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2951 if (MantissaWidth == -1) return 0; // Unknown.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002952
Chris Lattner02446fc2010-01-04 07:37:31 +00002953 // Check to see that the input is converted from an integer type that is small
2954 // enough that preserves all bits. TODO: check here for "known" sign bits.
2955 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2956 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002957
Chris Lattner02446fc2010-01-04 07:37:31 +00002958 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2959 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2960 if (LHSUnsigned)
2961 ++InputSize;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002962
Chris Lattner02446fc2010-01-04 07:37:31 +00002963 // If the conversion would lose info, don't hack on this.
2964 if ((int)InputSize > MantissaWidth)
2965 return 0;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002966
Chris Lattner02446fc2010-01-04 07:37:31 +00002967 // Otherwise, we can potentially simplify the comparison. We know that it
2968 // will always come through as an integer value and we know the constant is
2969 // not a NAN (it would have been previously simplified).
2970 assert(!RHS.isNaN() && "NaN comparison not already folded!");
Jim Grosbach0cc4a952011-09-30 18:09:53 +00002971
Chris Lattner02446fc2010-01-04 07:37:31 +00002972 ICmpInst::Predicate Pred;
2973 switch (I.getPredicate()) {
2974 default: llvm_unreachable("Unexpected predicate!");
2975 case FCmpInst::FCMP_UEQ:
2976 case FCmpInst::FCMP_OEQ:
2977 Pred = ICmpInst::ICMP_EQ;
2978 break;
2979 case FCmpInst::FCMP_UGT:
2980 case FCmpInst::FCMP_OGT:
2981 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2982 break;
2983 case FCmpInst::FCMP_UGE:
2984 case FCmpInst::FCMP_OGE:
2985 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2986 break;
2987 case FCmpInst::FCMP_ULT:
2988 case FCmpInst::FCMP_OLT:
2989 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2990 break;
2991 case FCmpInst::FCMP_ULE:
2992 case FCmpInst::FCMP_OLE:
2993 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2994 break;
2995 case FCmpInst::FCMP_UNE:
2996 case FCmpInst::FCMP_ONE:
2997 Pred = ICmpInst::ICMP_NE;
2998 break;
2999 case FCmpInst::FCMP_ORD:
Jakub Staszak3facc432013-06-06 20:18:46 +00003000 return ReplaceInstUsesWith(I, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +00003001 case FCmpInst::FCMP_UNO:
Jakub Staszak3facc432013-06-06 20:18:46 +00003002 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003003 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003004
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003005 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003006
Chris Lattner02446fc2010-01-04 07:37:31 +00003007 // Now we know that the APFloat is a normal number, zero or inf.
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003008
Chris Lattner02446fc2010-01-04 07:37:31 +00003009 // See if the FP constant is too large for the integer. For example,
3010 // comparing an i8 to 300.0.
3011 unsigned IntWidth = IntTy->getScalarSizeInBits();
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003012
Chris Lattner02446fc2010-01-04 07:37:31 +00003013 if (!LHSUnsigned) {
3014 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
3015 // and large values.
Michael Gottesman4dfc2572013-06-27 21:58:19 +00003016 APFloat SMax(RHS.getSemantics());
Chris Lattner02446fc2010-01-04 07:37:31 +00003017 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3018 APFloat::rmNearestTiesToEven);
3019 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
3020 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
3021 Pred == ICmpInst::ICMP_SLE)
Jakub Staszak3facc432013-06-06 20:18:46 +00003022 return ReplaceInstUsesWith(I, Builder->getTrue());
3023 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003024 }
3025 } else {
3026 // If the RHS value is > UnsignedMax, fold the comparison. This handles
3027 // +INF and large values.
Michael Gottesman4dfc2572013-06-27 21:58:19 +00003028 APFloat UMax(RHS.getSemantics());
Chris Lattner02446fc2010-01-04 07:37:31 +00003029 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3030 APFloat::rmNearestTiesToEven);
3031 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
3032 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
3033 Pred == ICmpInst::ICMP_ULE)
Jakub Staszak3facc432013-06-06 20:18:46 +00003034 return ReplaceInstUsesWith(I, Builder->getTrue());
3035 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003036 }
3037 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003038
Chris Lattner02446fc2010-01-04 07:37:31 +00003039 if (!LHSUnsigned) {
3040 // See if the RHS value is < SignedMin.
Michael Gottesman4dfc2572013-06-27 21:58:19 +00003041 APFloat SMin(RHS.getSemantics());
Chris Lattner02446fc2010-01-04 07:37:31 +00003042 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3043 APFloat::rmNearestTiesToEven);
3044 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3045 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3046 Pred == ICmpInst::ICMP_SGE)
Jakub Staszak3facc432013-06-06 20:18:46 +00003047 return ReplaceInstUsesWith(I, Builder->getTrue());
3048 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003049 }
Devang Patela2e0f6b2012-02-13 23:05:18 +00003050 } else {
3051 // See if the RHS value is < UnsignedMin.
Michael Gottesman4dfc2572013-06-27 21:58:19 +00003052 APFloat SMin(RHS.getSemantics());
Devang Patela2e0f6b2012-02-13 23:05:18 +00003053 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3054 APFloat::rmNearestTiesToEven);
3055 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3056 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3057 Pred == ICmpInst::ICMP_UGE)
Jakub Staszak3facc432013-06-06 20:18:46 +00003058 return ReplaceInstUsesWith(I, Builder->getTrue());
3059 return ReplaceInstUsesWith(I, Builder->getFalse());
Devang Patela2e0f6b2012-02-13 23:05:18 +00003060 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003061 }
3062
3063 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3064 // [0, UMAX], but it may still be fractional. See if it is fractional by
3065 // casting the FP value to the integer value and back, checking for equality.
3066 // Don't do this for zero, because -0.0 is not fractional.
3067 Constant *RHSInt = LHSUnsigned
3068 ? ConstantExpr::getFPToUI(RHSC, IntTy)
3069 : ConstantExpr::getFPToSI(RHSC, IntTy);
3070 if (!RHS.isZero()) {
3071 bool Equal = LHSUnsigned
3072 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3073 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3074 if (!Equal) {
3075 // If we had a comparison against a fractional value, we have to adjust
3076 // the compare predicate and sometimes the value. RHSC is rounded towards
3077 // zero at this point.
3078 switch (Pred) {
3079 default: llvm_unreachable("Unexpected integer comparison!");
3080 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Jakub Staszak3facc432013-06-06 20:18:46 +00003081 return ReplaceInstUsesWith(I, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +00003082 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Jakub Staszak3facc432013-06-06 20:18:46 +00003083 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003084 case ICmpInst::ICMP_ULE:
3085 // (float)int <= 4.4 --> int <= 4
3086 // (float)int <= -4.4 --> false
3087 if (RHS.isNegative())
Jakub Staszak3facc432013-06-06 20:18:46 +00003088 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003089 break;
3090 case ICmpInst::ICMP_SLE:
3091 // (float)int <= 4.4 --> int <= 4
3092 // (float)int <= -4.4 --> int < -4
3093 if (RHS.isNegative())
3094 Pred = ICmpInst::ICMP_SLT;
3095 break;
3096 case ICmpInst::ICMP_ULT:
3097 // (float)int < -4.4 --> false
3098 // (float)int < 4.4 --> int <= 4
3099 if (RHS.isNegative())
Jakub Staszak3facc432013-06-06 20:18:46 +00003100 return ReplaceInstUsesWith(I, Builder->getFalse());
Chris Lattner02446fc2010-01-04 07:37:31 +00003101 Pred = ICmpInst::ICMP_ULE;
3102 break;
3103 case ICmpInst::ICMP_SLT:
3104 // (float)int < -4.4 --> int < -4
3105 // (float)int < 4.4 --> int <= 4
3106 if (!RHS.isNegative())
3107 Pred = ICmpInst::ICMP_SLE;
3108 break;
3109 case ICmpInst::ICMP_UGT:
3110 // (float)int > 4.4 --> int > 4
3111 // (float)int > -4.4 --> true
3112 if (RHS.isNegative())
Jakub Staszak3facc432013-06-06 20:18:46 +00003113 return ReplaceInstUsesWith(I, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +00003114 break;
3115 case ICmpInst::ICMP_SGT:
3116 // (float)int > 4.4 --> int > 4
3117 // (float)int > -4.4 --> int >= -4
3118 if (RHS.isNegative())
3119 Pred = ICmpInst::ICMP_SGE;
3120 break;
3121 case ICmpInst::ICMP_UGE:
3122 // (float)int >= -4.4 --> true
3123 // (float)int >= 4.4 --> int > 4
Bob Wilsonf12c95a2012-08-07 22:35:16 +00003124 if (RHS.isNegative())
Jakub Staszak3facc432013-06-06 20:18:46 +00003125 return ReplaceInstUsesWith(I, Builder->getTrue());
Chris Lattner02446fc2010-01-04 07:37:31 +00003126 Pred = ICmpInst::ICMP_UGT;
3127 break;
3128 case ICmpInst::ICMP_SGE:
3129 // (float)int >= -4.4 --> int >= -4
3130 // (float)int >= 4.4 --> int > 4
3131 if (!RHS.isNegative())
3132 Pred = ICmpInst::ICMP_SGT;
3133 break;
3134 }
3135 }
3136 }
3137
3138 // Lower this FP comparison into an appropriate integer version of the
3139 // comparison.
3140 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3141}
3142
3143Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3144 bool Changed = false;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003145
Chris Lattner02446fc2010-01-04 07:37:31 +00003146 /// Orders the operands of the compare so that they are listed from most
3147 /// complex to least complex. This puts constants before unary operators,
3148 /// before binary operators.
3149 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3150 I.swapOperands();
3151 Changed = true;
3152 }
3153
3154 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003155
Chris Lattner02446fc2010-01-04 07:37:31 +00003156 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
3157 return ReplaceInstUsesWith(I, V);
3158
3159 // Simplify 'fcmp pred X, X'
3160 if (Op0 == Op1) {
3161 switch (I.getPredicate()) {
3162 default: llvm_unreachable("Unknown predicate!");
3163 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
3164 case FCmpInst::FCMP_ULT: // True if unordered or less than
3165 case FCmpInst::FCMP_UGT: // True if unordered or greater than
3166 case FCmpInst::FCMP_UNE: // True if unordered or not equal
3167 // Canonicalize these to be 'fcmp uno %X, 0.0'.
3168 I.setPredicate(FCmpInst::FCMP_UNO);
3169 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3170 return &I;
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003171
Chris Lattner02446fc2010-01-04 07:37:31 +00003172 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
3173 case FCmpInst::FCMP_OEQ: // True if ordered and equal
3174 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
3175 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
3176 // Canonicalize these to be 'fcmp ord %X, 0.0'.
3177 I.setPredicate(FCmpInst::FCMP_ORD);
3178 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3179 return &I;
3180 }
3181 }
Jim Grosbach0cc4a952011-09-30 18:09:53 +00003182
Chris Lattner02446fc2010-01-04 07:37:31 +00003183 // Handle fcmp with constant RHS
3184 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3185 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3186 switch (LHSI->getOpcode()) {
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003187 case Instruction::FPExt: {
3188 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3189 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3190 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3191 if (!RHSF)
3192 break;
3193
3194 const fltSemantics *Sem;
3195 // FIXME: This shouldn't be here.
Dan Gohmance163392011-12-17 00:04:22 +00003196 if (LHSExt->getSrcTy()->isHalfTy())
3197 Sem = &APFloat::IEEEhalf;
3198 else if (LHSExt->getSrcTy()->isFloatTy())
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003199 Sem = &APFloat::IEEEsingle;
3200 else if (LHSExt->getSrcTy()->isDoubleTy())
3201 Sem = &APFloat::IEEEdouble;
3202 else if (LHSExt->getSrcTy()->isFP128Ty())
3203 Sem = &APFloat::IEEEquad;
3204 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3205 Sem = &APFloat::x87DoubleExtended;
Ulrich Weigand3467b9f2012-10-30 12:33:18 +00003206 else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3207 Sem = &APFloat::PPCDoubleDouble;
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003208 else
3209 break;
3210
3211 bool Lossy;
3212 APFloat F = RHSF->getValueAPF();
3213 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3214
Jim Grosbachcbf676b2011-09-30 18:45:50 +00003215 // Avoid lossy conversions and denormals. Zero is a special case
3216 // that's OK to convert.
Jim Grosbach68e05fb2011-09-30 19:58:46 +00003217 APFloat Fabs = F;
3218 Fabs.clearSign();
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003219 if (!Lossy &&
Jim Grosbach68e05fb2011-09-30 19:58:46 +00003220 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3221 APFloat::cmpLessThan) || Fabs.isZero()))
Jim Grosbachcbf676b2011-09-30 18:45:50 +00003222
Benjamin Kramerb194bdc2011-03-31 10:12:07 +00003223 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3224 ConstantFP::get(RHSC->getContext(), F));
3225 break;
3226 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003227 case Instruction::PHI:
3228 // Only fold fcmp into the PHI if the phi and fcmp are in the same
3229 // block. If in the same block, we're encouraging jump threading. If
3230 // not, we are just pessimizing the code by making an i1 phi.
3231 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00003232 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00003233 return NV;
3234 break;
3235 case Instruction::SIToFP:
3236 case Instruction::UIToFP:
3237 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3238 return NV;
3239 break;
3240 case Instruction::Select: {
3241 // If either operand of the select is a constant, we can fold the
3242 // comparison into the select arms, which will cause one to be
3243 // constant folded and the select turned into a bitwise or.
3244 Value *Op1 = 0, *Op2 = 0;
3245 if (LHSI->hasOneUse()) {
3246 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3247 // Fold the known value into the constant operand.
3248 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3249 // Insert a new FCmp of the other select operand.
3250 Op2 = Builder->CreateFCmp(I.getPredicate(),
3251 LHSI->getOperand(2), RHSC, I.getName());
3252 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3253 // Fold the known value into the constant operand.
3254 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3255 // Insert a new FCmp of the other select operand.
3256 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3257 RHSC, I.getName());
3258 }
3259 }
3260
3261 if (Op1)
3262 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3263 break;
3264 }
Benjamin Kramer0db50182011-03-31 10:12:15 +00003265 case Instruction::FSub: {
3266 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3267 Value *Op;
3268 if (match(LHSI, m_FNeg(m_Value(Op))))
3269 return new FCmpInst(I.getSwappedPredicate(), Op,
3270 ConstantExpr::getFNeg(RHSC));
3271 break;
3272 }
Dan Gohman39516a62010-02-24 06:46:09 +00003273 case Instruction::Load:
3274 if (GetElementPtrInst *GEP =
3275 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3276 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3277 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3278 !cast<LoadInst>(LHSI)->isVolatile())
3279 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3280 return Res;
3281 }
3282 break;
Benjamin Kramer00abcd32012-08-18 20:06:47 +00003283 case Instruction::Call: {
3284 CallInst *CI = cast<CallInst>(LHSI);
3285 LibFunc::Func Func;
3286 // Various optimization for fabs compared with zero.
Benjamin Kramera4b57172012-08-18 22:04:34 +00003287 if (RHSC->isNullValue() && CI->getCalledFunction() &&
Benjamin Kramer00abcd32012-08-18 20:06:47 +00003288 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3289 TLI->has(Func)) {
3290 if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3291 Func == LibFunc::fabsl) {
3292 switch (I.getPredicate()) {
3293 default: break;
3294 // fabs(x) < 0 --> false
3295 case FCmpInst::FCMP_OLT:
3296 return ReplaceInstUsesWith(I, Builder->getFalse());
3297 // fabs(x) > 0 --> x != 0
3298 case FCmpInst::FCMP_OGT:
3299 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3300 RHSC);
3301 // fabs(x) <= 0 --> x == 0
3302 case FCmpInst::FCMP_OLE:
3303 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3304 RHSC);
3305 // fabs(x) >= 0 --> !isnan(x)
3306 case FCmpInst::FCMP_OGE:
3307 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3308 RHSC);
3309 // fabs(x) == 0 --> x == 0
3310 // fabs(x) != 0 --> x != 0
3311 case FCmpInst::FCMP_OEQ:
3312 case FCmpInst::FCMP_UEQ:
3313 case FCmpInst::FCMP_ONE:
3314 case FCmpInst::FCMP_UNE:
3315 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3316 RHSC);
3317 }
3318 }
3319 }
3320 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003321 }
Chris Lattner02446fc2010-01-04 07:37:31 +00003322 }
3323
Benjamin Kramer00e00d62011-03-31 10:46:03 +00003324 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00003325 Value *X, *Y;
3326 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
Benjamin Kramer00e00d62011-03-31 10:46:03 +00003327 return new FCmpInst(I.getSwappedPredicate(), X, Y);
Benjamin Kramer68b4bd02011-03-31 10:12:22 +00003328
Benjamin Kramercd0274c2011-03-31 10:11:58 +00003329 // fcmp (fpext x), (fpext y) -> fcmp x, y
3330 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3331 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3332 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3333 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3334 RHSExt->getOperand(0));
3335
Chris Lattner02446fc2010-01-04 07:37:31 +00003336 return Changed ? &I : 0;
3337}