blob: 47d9c25d5b6915e36106364b67d1b5bfca0f62bf [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman089efff2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000013//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnera432bc72008-06-02 01:18:21 +000043#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000044#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
Nick Lewycky0185bbf2008-02-03 16:33:09 +000048#include "llvm/Support/ConstantRange.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049#include "llvm/Support/Debug.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/PatternMatch.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/STLExtras.h"
60#include <algorithm>
Edwin Töröka0e6fce2008-04-20 08:33:11 +000061#include <climits>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#include <sstream>
63using namespace llvm;
64using namespace llvm::PatternMatch;
65
66STATISTIC(NumCombined , "Number of insts combined");
67STATISTIC(NumConstProp, "Number of constant folds");
68STATISTIC(NumDeadInst , "Number of dead inst eliminated");
69STATISTIC(NumDeadStore, "Number of dead stores eliminated");
70STATISTIC(NumSunkInst , "Number of instructions sunk");
71
72namespace {
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass,
75 public InstVisitor<InstCombiner, Instruction*> {
76 // Worklist of all of the instructions that need to be simplified.
Chris Lattnera06291a2008-08-15 04:03:01 +000077 SmallVector<Instruction*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 DenseMap<Instruction*, unsigned> WorklistMap;
79 TargetData *TD;
80 bool MustPreserveLCSSA;
81 public:
82 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000083 InstCombiner() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction *I) {
Dan Gohman55d19662008-07-07 17:46:23 +000088 if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089 Worklist.push_back(I);
90 }
91
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction *I) {
94 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
95 if (It == WorklistMap.end()) return; // Not in worklist.
96
97 // Don't bother moving everything down, just null out the slot.
98 Worklist[It->second] = 0;
99
100 WorklistMap.erase(It);
101 }
102
103 Instruction *RemoveOneFromWorkList() {
104 Instruction *I = Worklist.back();
105 Worklist.pop_back();
106 WorklistMap.erase(I);
107 return I;
108 }
109
110
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
113 /// now.
114 ///
115 void AddUsersToWorkList(Value &I) {
116 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
117 UI != UE; ++UI)
118 AddToWorkList(cast<Instruction>(*UI));
119 }
120
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
123 ///
124 void AddUsesToWorkList(Instruction &I) {
Gabor Greif17396002008-06-12 21:37:33 +0000125 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
126 if (Instruction *Op = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 AddToWorkList(Op);
128 }
129
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
133 ///
134 /// Return the specified operand before it is turned into an undef.
135 ///
136 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
137 Value *R = I.getOperand(op);
138
Gabor Greif17396002008-06-12 21:37:33 +0000139 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
140 if (Instruction *Op = dyn_cast<Instruction>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 AddToWorkList(Op);
142 // Set the operand to undef to drop the use.
Gabor Greif17396002008-06-12 21:37:33 +0000143 *i = UndefValue::get(Op->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000144 }
145
146 return R;
147 }
148
149 public:
150 virtual bool runOnFunction(Function &F);
151
152 bool DoOneIteration(Function &F, unsigned ItNum);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.addRequired<TargetData>();
156 AU.addPreservedID(LCSSAID);
157 AU.setPreservesCFG();
158 }
159
160 TargetData &getTargetData() const { return *TD; }
161
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
164 // Return Value:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
168 //
169 Instruction *visitAdd(BinaryOperator &I);
170 Instruction *visitSub(BinaryOperator &I);
171 Instruction *visitMul(BinaryOperator &I);
172 Instruction *visitURem(BinaryOperator &I);
173 Instruction *visitSRem(BinaryOperator &I);
174 Instruction *visitFRem(BinaryOperator &I);
Chris Lattner76972db2008-07-14 00:15:52 +0000175 bool SimplifyDivRemOfSelect(BinaryOperator &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 Instruction *commonRemTransforms(BinaryOperator &I);
177 Instruction *commonIRemTransforms(BinaryOperator &I);
178 Instruction *commonDivTransforms(BinaryOperator &I);
179 Instruction *commonIDivTransforms(BinaryOperator &I);
180 Instruction *visitUDiv(BinaryOperator &I);
181 Instruction *visitSDiv(BinaryOperator &I);
182 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner0631ea72008-11-16 05:06:21 +0000183 Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 Instruction *visitAnd(BinaryOperator &I);
Chris Lattner0c678e52008-11-16 05:20:07 +0000185 Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186 Instruction *visitOr (BinaryOperator &I);
187 Instruction *visitXor(BinaryOperator &I);
188 Instruction *visitShl(BinaryOperator &I);
189 Instruction *visitAShr(BinaryOperator &I);
190 Instruction *visitLShr(BinaryOperator &I);
191 Instruction *commonShiftTransforms(BinaryOperator &I);
Chris Lattnere6b62d92008-05-19 20:18:56 +0000192 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
193 Constant *RHSC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 Instruction *visitFCmpInst(FCmpInst &I);
195 Instruction *visitICmpInst(ICmpInst &I);
196 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
197 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
198 Instruction *LHS,
199 ConstantInt *RHS);
200 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
201 ConstantInt *DivRHS);
202
203 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
204 ICmpInst::Predicate Cond, Instruction &I);
205 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
206 BinaryOperator &I);
207 Instruction *commonCastTransforms(CastInst &CI);
208 Instruction *commonIntCastTransforms(CastInst &CI);
209 Instruction *commonPointerCastTransforms(CastInst &CI);
210 Instruction *visitTrunc(TruncInst &CI);
211 Instruction *visitZExt(ZExtInst &CI);
212 Instruction *visitSExt(SExtInst &CI);
Chris Lattnerdf7e8402008-01-27 05:29:54 +0000213 Instruction *visitFPTrunc(FPTruncInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 Instruction *visitFPExt(CastInst &CI);
Chris Lattnerdeef1a72008-05-19 20:25:04 +0000215 Instruction *visitFPToUI(FPToUIInst &FI);
216 Instruction *visitFPToSI(FPToSIInst &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 Instruction *visitUIToFP(CastInst &CI);
218 Instruction *visitSIToFP(CastInst &CI);
219 Instruction *visitPtrToInt(CastInst &CI);
Chris Lattner7c1626482008-01-08 07:23:51 +0000220 Instruction *visitIntToPtr(IntToPtrInst &CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 Instruction *visitBitCast(BitCastInst &CI);
222 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
223 Instruction *FI);
Dan Gohman58c09632008-09-16 18:46:06 +0000224 Instruction *visitSelectInst(SelectInst &SI);
225 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226 Instruction *visitCallInst(CallInst &CI);
227 Instruction *visitInvokeInst(InvokeInst &II);
228 Instruction *visitPHINode(PHINode &PN);
229 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
230 Instruction *visitAllocationInst(AllocationInst &AI);
231 Instruction *visitFreeInst(FreeInst &FI);
232 Instruction *visitLoadInst(LoadInst &LI);
233 Instruction *visitStoreInst(StoreInst &SI);
234 Instruction *visitBranchInst(BranchInst &BI);
235 Instruction *visitSwitchInst(SwitchInst &SI);
236 Instruction *visitInsertElementInst(InsertElementInst &IE);
237 Instruction *visitExtractElementInst(ExtractElementInst &EI);
238 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000239 Instruction *visitExtractValueInst(ExtractValueInst &EV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240
241 // visitInstruction - Specify what to return for unhandled instructions...
242 Instruction *visitInstruction(Instruction &I) { return 0; }
243
244 private:
245 Instruction *visitCallSite(CallSite CS);
246 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000247 Instruction *transformCallThroughTrampoline(CallSite CS);
Evan Chenge3779cf2008-03-24 00:21:34 +0000248 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
249 bool DoXform = true);
Chris Lattner3554f972008-05-20 05:46:13 +0000250 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251
252 public:
253 // InsertNewInstBefore - insert an instruction New before instruction Old
254 // in the program. Add the new instruction to the worklist.
255 //
256 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
257 assert(New && New->getParent() == 0 &&
258 "New instruction already inserted into a basic block!");
259 BasicBlock *BB = Old.getParent();
260 BB->getInstList().insert(&Old, New); // Insert inst
261 AddToWorkList(New);
262 return New;
263 }
264
265 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
266 /// This also adds the cast to the worklist. Finally, this returns the
267 /// cast.
268 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
269 Instruction &Pos) {
270 if (V->getType() == Ty) return V;
271
272 if (Constant *CV = dyn_cast<Constant>(V))
273 return ConstantExpr::getCast(opc, CV, Ty);
274
Gabor Greifa645dd32008-05-16 19:29:10 +0000275 Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 AddToWorkList(C);
277 return C;
278 }
Chris Lattner13c2d6e2008-01-13 22:23:22 +0000279
280 Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
281 return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
282 }
283
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284
285 // ReplaceInstUsesWith - This method is to be used when an instruction is
286 // found to be dead, replacable with another preexisting expression. Here
287 // we add all uses of I to the worklist, replace all uses of I with the new
288 // value, then return I, so that the inst combiner will know that I was
289 // modified.
290 //
291 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
292 AddUsersToWorkList(I); // Add all modified instrs to worklist
293 if (&I != V) {
294 I.replaceAllUsesWith(V);
295 return &I;
296 } else {
297 // If we are replacing the instruction with itself, this must be in a
298 // segment of unreachable code, so just clobber the instruction.
299 I.replaceAllUsesWith(UndefValue::get(I.getType()));
300 return &I;
301 }
302 }
303
304 // UpdateValueUsesWith - This method is to be used when an value is
305 // found to be replacable with another preexisting expression or was
306 // updated. Here we add all uses of I to the worklist, replace all uses of
307 // I with the new value (unless the instruction was just updated), then
308 // return true, so that the inst combiner will know that I was modified.
309 //
310 bool UpdateValueUsesWith(Value *Old, Value *New) {
311 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
312 if (Old != New)
313 Old->replaceAllUsesWith(New);
314 if (Instruction *I = dyn_cast<Instruction>(Old))
315 AddToWorkList(I);
316 if (Instruction *I = dyn_cast<Instruction>(New))
317 AddToWorkList(I);
318 return true;
319 }
320
321 // EraseInstFromFunction - When dealing with an instruction that has side
322 // effects or produces a void value, we can't rely on DCE to delete the
323 // instruction. Instead, visit methods should return the value returned by
324 // this function.
325 Instruction *EraseInstFromFunction(Instruction &I) {
326 assert(I.use_empty() && "Cannot erase instruction that is used!");
327 AddUsesToWorkList(I);
328 RemoveFromWorkList(&I);
329 I.eraseFromParent();
330 return 0; // Don't do anything with FI
331 }
Chris Lattnera432bc72008-06-02 01:18:21 +0000332
333 void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
334 APInt &KnownOne, unsigned Depth = 0) const {
335 return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
336 }
337
338 bool MaskedValueIsZero(Value *V, const APInt &Mask,
339 unsigned Depth = 0) const {
340 return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
341 }
342 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
343 return llvm::ComputeNumSignBits(Op, TD, Depth);
344 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345
346 private:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348 /// SimplifyCommutative - This performs a few simplifications for
349 /// commutative operators.
350 bool SimplifyCommutative(BinaryOperator &I);
351
352 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
353 /// most-complex to least-complex order.
354 bool SimplifyCompare(CmpInst &I);
355
356 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
357 /// on the demanded bits.
358 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
359 APInt& KnownZero, APInt& KnownOne,
360 unsigned Depth = 0);
361
362 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
363 uint64_t &UndefElts, unsigned Depth = 0);
364
365 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
366 // PHI node as operand #0, see if we can fold the instruction into the PHI
367 // (which is only possible if all operands to the PHI are constants).
368 Instruction *FoldOpIntoPhi(Instruction &I);
369
370 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
371 // operator and they all are only used by the PHI, PHI together their
372 // inputs, and do the operation once, to the result of the PHI.
373 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
374 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Chris Lattner9e1916e2008-12-01 02:34:36 +0000375 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
376
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
378 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
379 ConstantInt *AndRHS, BinaryOperator &TheAnd);
380
381 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
382 bool isSub, Instruction &I);
383 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
384 bool isSigned, bool Inside, Instruction &IB);
385 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
386 Instruction *MatchBSwap(BinaryOperator &I);
387 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000388 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Chris Lattner5af8a912008-04-30 06:39:11 +0000389 Instruction *SimplifyMemSet(MemSetInst *MI);
Chris Lattner00ae5132008-01-13 23:50:23 +0000390
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391
392 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Dan Gohman2d648bb2008-04-10 18:43:06 +0000393
Dan Gohman2d648bb2008-04-10 18:43:06 +0000394 bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
395 unsigned CastOpc,
396 int &NumCastsRemoved);
397 unsigned GetOrEnforceKnownAlignment(Value *V,
398 unsigned PrefAlign = 0);
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +0000399
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401}
402
Dan Gohman089efff2008-05-13 00:00:25 +0000403char InstCombiner::ID = 0;
404static RegisterPass<InstCombiner>
405X("instcombine", "Combine redundant instructions");
406
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407// getComplexity: Assign a complexity or rank value to LLVM Values...
408// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
409static unsigned getComplexity(Value *V) {
410 if (isa<Instruction>(V)) {
411 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
412 return 3;
413 return 4;
414 }
415 if (isa<Argument>(V)) return 3;
416 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
417}
418
419// isOnlyUse - Return true if this instruction will be deleted if we stop using
420// it.
421static bool isOnlyUse(Value *V) {
422 return V->hasOneUse() || isa<Constant>(V);
423}
424
425// getPromotedType - Return the specified type promoted as it would be to pass
426// though a va_arg area...
427static const Type *getPromotedType(const Type *Ty) {
428 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
429 if (ITy->getBitWidth() < 32)
430 return Type::Int32Ty;
431 }
432 return Ty;
433}
434
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000435/// getBitCastOperand - If the specified operand is a CastInst, a constant
436/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
437/// operand value, otherwise return null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438static Value *getBitCastOperand(Value *V) {
439 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000440 // BitCastInst?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 return I->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000442 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
443 // GetElementPtrInst?
444 if (GEP->hasAllZeroIndices())
445 return GEP->getOperand(0);
446 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 if (CE->getOpcode() == Instruction::BitCast)
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000448 // BitCast ConstantExp?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 return CE->getOperand(0);
Matthijs Kooijman5e2a3182008-10-13 15:17:01 +0000450 else if (CE->getOpcode() == Instruction::GetElementPtr) {
451 // GetElementPtr ConstantExp?
452 for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
453 I != E; ++I) {
454 ConstantInt *CI = dyn_cast<ConstantInt>(I);
455 if (!CI || !CI->isZero())
456 // Any non-zero indices? Not cast-like.
457 return 0;
458 }
459 // All-zero indices? This is just like casting.
460 return CE->getOperand(0);
461 }
462 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000463 return 0;
464}
465
466/// This function is a wrapper around CastInst::isEliminableCastPair. It
467/// simply extracts arguments and returns what that function returns.
468static Instruction::CastOps
469isEliminableCastPair(
470 const CastInst *CI, ///< The first cast instruction
471 unsigned opcode, ///< The opcode of the second cast instruction
472 const Type *DstTy, ///< The target type for the second cast instruction
473 TargetData *TD ///< The target data for pointer size
474) {
475
476 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
477 const Type *MidTy = CI->getType(); // B from above
478
479 // Get the opcodes of the two Cast instructions
480 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
481 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
482
483 return Instruction::CastOps(
484 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
485 DstTy, TD->getIntPtrType()));
486}
487
488/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
489/// in any code being generated. It does not require codegen if V is simple
490/// enough or if the cast can be folded into other casts.
491static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
492 const Type *Ty, TargetData *TD) {
493 if (V->getType() == Ty || isa<Constant>(V)) return false;
494
495 // If this is another cast that can be eliminated, it isn't codegen either.
496 if (const CastInst *CI = dyn_cast<CastInst>(V))
497 if (isEliminableCastPair(CI, opcode, Ty, TD))
498 return false;
499 return true;
500}
501
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502// SimplifyCommutative - This performs a few simplifications for commutative
503// operators:
504//
505// 1. Order operands such that they are listed from right (least complex) to
506// left (most complex). This puts constants before unary operators before
507// binary operators.
508//
509// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
510// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
511//
512bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
513 bool Changed = false;
514 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
515 Changed = !I.swapOperands();
516
517 if (!I.isAssociative()) return Changed;
518 Instruction::BinaryOps Opcode = I.getOpcode();
519 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
520 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
521 if (isa<Constant>(I.getOperand(1))) {
522 Constant *Folded = ConstantExpr::get(I.getOpcode(),
523 cast<Constant>(I.getOperand(1)),
524 cast<Constant>(Op->getOperand(1)));
525 I.setOperand(0, Op->getOperand(0));
526 I.setOperand(1, Folded);
527 return true;
528 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
529 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
530 isOnlyUse(Op) && isOnlyUse(Op1)) {
531 Constant *C1 = cast<Constant>(Op->getOperand(1));
532 Constant *C2 = cast<Constant>(Op1->getOperand(1));
533
534 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
535 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +0000536 Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000537 Op1->getOperand(0),
538 Op1->getName(), &I);
539 AddToWorkList(New);
540 I.setOperand(0, New);
541 I.setOperand(1, Folded);
542 return true;
543 }
544 }
545 return Changed;
546}
547
548/// SimplifyCompare - For a CmpInst this function just orders the operands
549/// so that theyare listed from right (least complex) to left (most complex).
550/// This puts constants before unary operators before binary operators.
551bool InstCombiner::SimplifyCompare(CmpInst &I) {
552 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
553 return false;
554 I.swapOperands();
555 // Compare instructions are not associative so there's nothing else we can do.
556 return true;
557}
558
559// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
560// if the LHS is a constant zero (which is the 'negate' form).
561//
562static inline Value *dyn_castNegVal(Value *V) {
563 if (BinaryOperator::isNeg(V))
564 return BinaryOperator::getNegArgument(V);
565
566 // Constants can be considered to be negated values if they can be folded.
567 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
568 return ConstantExpr::getNeg(C);
Nick Lewycky58867bc2008-05-23 04:54:45 +0000569
570 if (ConstantVector *C = dyn_cast<ConstantVector>(V))
571 if (C->getType()->getElementType()->isInteger())
572 return ConstantExpr::getNeg(C);
573
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000574 return 0;
575}
576
577static inline Value *dyn_castNotVal(Value *V) {
578 if (BinaryOperator::isNot(V))
579 return BinaryOperator::getNotArgument(V);
580
581 // Constants can be considered to be not'ed values...
582 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
583 return ConstantInt::get(~C->getValue());
584 return 0;
585}
586
587// dyn_castFoldableMul - If this value is a multiply that can be folded into
588// other computations (because it has a constant operand), return the
589// non-constant operand of the multiply, and set CST to point to the multiplier.
590// Otherwise, return null.
591//
592static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
593 if (V->hasOneUse() && V->getType()->isInteger())
594 if (Instruction *I = dyn_cast<Instruction>(V)) {
595 if (I->getOpcode() == Instruction::Mul)
596 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
597 return I->getOperand(0);
598 if (I->getOpcode() == Instruction::Shl)
599 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
600 // The multiplier is really 1 << CST.
601 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
602 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
603 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
604 return I->getOperand(0);
605 }
606 }
607 return 0;
608}
609
610/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
611/// expression, return it.
612static User *dyn_castGetElementPtr(Value *V) {
613 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
614 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
615 if (CE->getOpcode() == Instruction::GetElementPtr)
616 return cast<User>(V);
617 return false;
618}
619
Dan Gohman2d648bb2008-04-10 18:43:06 +0000620/// getOpcode - If this is an Instruction or a ConstantExpr, return the
621/// opcode value. Otherwise return UserOp1.
Dan Gohman8c397862008-05-29 19:53:46 +0000622static unsigned getOpcode(const Value *V) {
623 if (const Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000624 return I->getOpcode();
Dan Gohman8c397862008-05-29 19:53:46 +0000625 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman2d648bb2008-04-10 18:43:06 +0000626 return CE->getOpcode();
627 // Use UserOp1 to mean there's no opcode.
628 return Instruction::UserOp1;
629}
630
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631/// AddOne - Add one to a ConstantInt
632static ConstantInt *AddOne(ConstantInt *C) {
633 APInt Val(C->getValue());
634 return ConstantInt::get(++Val);
635}
636/// SubOne - Subtract one from a ConstantInt
637static ConstantInt *SubOne(ConstantInt *C) {
638 APInt Val(C->getValue());
639 return ConstantInt::get(--Val);
640}
641/// Add - Add two ConstantInts together
642static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
643 return ConstantInt::get(C1->getValue() + C2->getValue());
644}
645/// And - Bitwise AND two ConstantInts together
646static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
647 return ConstantInt::get(C1->getValue() & C2->getValue());
648}
649/// Subtract - Subtract one ConstantInt from another
650static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
651 return ConstantInt::get(C1->getValue() - C2->getValue());
652}
653/// Multiply - Multiply two ConstantInts together
654static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
655 return ConstantInt::get(C1->getValue() * C2->getValue());
656}
Nick Lewycky9d798f92008-02-18 22:48:05 +0000657/// MultiplyOverflows - True if the multiply can not be expressed in an int
658/// this size.
659static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
660 uint32_t W = C1->getBitWidth();
661 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
662 if (sign) {
663 LHSExt.sext(W * 2);
664 RHSExt.sext(W * 2);
665 } else {
666 LHSExt.zext(W * 2);
667 RHSExt.zext(W * 2);
668 }
669
670 APInt MulExt = LHSExt * RHSExt;
671
672 if (sign) {
673 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
674 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
675 return MulExt.slt(Min) || MulExt.sgt(Max);
676 } else
677 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
678}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000680
681/// ShrinkDemandedConstant - Check to see if the specified operand of the
682/// specified instruction is a constant integer. If so, check to see if there
683/// are any bits set in the constant that are not demanded. If so, shrink the
684/// constant and return true.
685static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
686 APInt Demanded) {
687 assert(I && "No instruction?");
688 assert(OpNo < I->getNumOperands() && "Operand index too large");
689
690 // If the operand is not a constant integer, nothing to do.
691 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
692 if (!OpC) return false;
693
694 // If there are no bits set that aren't demanded, nothing to do.
695 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
696 if ((~Demanded & OpC->getValue()) == 0)
697 return false;
698
699 // This instruction is producing bits that are not demanded. Shrink the RHS.
700 Demanded &= OpC->getValue();
701 I->setOperand(OpNo, ConstantInt::get(Demanded));
702 return true;
703}
704
705// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
706// set of known zero and one bits, compute the maximum and minimum values that
707// could have the specified known zero and known one bits, returning them in
708// min/max.
709static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
710 const APInt& KnownZero,
711 const APInt& KnownOne,
712 APInt& Min, APInt& Max) {
713 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
714 assert(KnownZero.getBitWidth() == BitWidth &&
715 KnownOne.getBitWidth() == BitWidth &&
716 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
717 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
718 APInt UnknownBits = ~(KnownZero|KnownOne);
719
720 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
721 // bit if it is unknown.
722 Min = KnownOne;
723 Max = KnownOne|UnknownBits;
724
725 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
726 Min.set(BitWidth-1);
727 Max.clear(BitWidth-1);
728 }
729}
730
731// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
732// a set of known zero and one bits, compute the maximum and minimum values that
733// could have the specified known zero and known one bits, returning them in
734// min/max.
735static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000736 const APInt &KnownZero,
737 const APInt &KnownOne,
738 APInt &Min, APInt &Max) {
739 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 assert(KnownZero.getBitWidth() == BitWidth &&
741 KnownOne.getBitWidth() == BitWidth &&
742 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
743 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
744 APInt UnknownBits = ~(KnownZero|KnownOne);
745
746 // The minimum value is when the unknown bits are all zeros.
747 Min = KnownOne;
748 // The maximum value is when the unknown bits are all ones.
749 Max = KnownOne|UnknownBits;
750}
751
752/// SimplifyDemandedBits - This function attempts to replace V with a simpler
753/// value based on the demanded bits. When this function is called, it is known
754/// that only the bits set in DemandedMask of the result of V are ever used
755/// downstream. Consequently, depending on the mask and V, it may be possible
756/// to replace V with a constant or one of its operands. In such cases, this
757/// function does the replacement and returns true. In all other cases, it
758/// returns false after analyzing the expression and setting KnownOne and known
759/// to be one in the expression. KnownZero contains all the bits that are known
760/// to be zero in the expression. These are provided to potentially allow the
761/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
762/// the expression. KnownOne and KnownZero always follow the invariant that
763/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
764/// the bits in KnownOne and KnownZero may only be accurate for those bits set
765/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
766/// and KnownOne must all be the same.
767bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
768 APInt& KnownZero, APInt& KnownOne,
769 unsigned Depth) {
770 assert(V != 0 && "Null pointer of Value???");
771 assert(Depth <= 6 && "Limit Search Depth");
772 uint32_t BitWidth = DemandedMask.getBitWidth();
773 const IntegerType *VTy = cast<IntegerType>(V->getType());
774 assert(VTy->getBitWidth() == BitWidth &&
775 KnownZero.getBitWidth() == BitWidth &&
776 KnownOne.getBitWidth() == BitWidth &&
777 "Value *V, DemandedMask, KnownZero and KnownOne \
778 must have same BitWidth");
779 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
780 // We know all of the bits for a constant!
781 KnownOne = CI->getValue() & DemandedMask;
782 KnownZero = ~KnownOne & DemandedMask;
783 return false;
784 }
785
786 KnownZero.clear();
787 KnownOne.clear();
788 if (!V->hasOneUse()) { // Other users may use these bits.
789 if (Depth != 0) { // Not at the root.
790 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
791 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
792 return false;
793 }
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedMask to all bits.
796 DemandedMask = APInt::getAllOnesValue(BitWidth);
797 } else if (DemandedMask == 0) { // Not demanding any bits from V.
798 if (V != UndefValue::get(VTy))
799 return UpdateValueUsesWith(V, UndefValue::get(VTy));
800 return false;
801 } else if (Depth == 6) { // Limit search depth.
802 return false;
803 }
804
805 Instruction *I = dyn_cast<Instruction>(V);
806 if (!I) return false; // Only analyze instructions.
807
808 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
809 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
810 switch (I->getOpcode()) {
Dan Gohmanbec16052008-04-28 17:02:21 +0000811 default:
812 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
813 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 case Instruction::And:
815 // If either the LHS or the RHS are Zero, the result is zero.
816 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
817 RHSKnownZero, RHSKnownOne, Depth+1))
818 return true;
819 assert((RHSKnownZero & RHSKnownOne) == 0 &&
820 "Bits known to be one AND zero?");
821
822 // If something is known zero on the RHS, the bits aren't demanded on the
823 // LHS.
824 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
825 LHSKnownZero, LHSKnownOne, Depth+1))
826 return true;
827 assert((LHSKnownZero & LHSKnownOne) == 0 &&
828 "Bits known to be one AND zero?");
829
830 // If all of the demanded bits are known 1 on one side, return the other.
831 // These bits cannot contribute to the result of the 'and'.
832 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
833 (DemandedMask & ~LHSKnownZero))
834 return UpdateValueUsesWith(I, I->getOperand(0));
835 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
836 (DemandedMask & ~RHSKnownZero))
837 return UpdateValueUsesWith(I, I->getOperand(1));
838
839 // If all of the demanded bits in the inputs are known zeros, return zero.
840 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
841 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
842
843 // If the RHS is a constant, see if we can simplify it.
844 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
845 return UpdateValueUsesWith(I, I);
846
847 // Output known-1 bits are only known if set in both the LHS & RHS.
848 RHSKnownOne &= LHSKnownOne;
849 // Output known-0 are known to be clear if zero in either the LHS | RHS.
850 RHSKnownZero |= LHSKnownZero;
851 break;
852 case Instruction::Or:
853 // If either the LHS or the RHS are One, the result is One.
854 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
855 RHSKnownZero, RHSKnownOne, Depth+1))
856 return true;
857 assert((RHSKnownZero & RHSKnownOne) == 0 &&
858 "Bits known to be one AND zero?");
859 // If something is known one on the RHS, the bits aren't demanded on the
860 // LHS.
861 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
862 LHSKnownZero, LHSKnownOne, Depth+1))
863 return true;
864 assert((LHSKnownZero & LHSKnownOne) == 0 &&
865 "Bits known to be one AND zero?");
866
867 // If all of the demanded bits are known zero on one side, return the other.
868 // These bits cannot contribute to the result of the 'or'.
869 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
870 (DemandedMask & ~LHSKnownOne))
871 return UpdateValueUsesWith(I, I->getOperand(0));
872 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
873 (DemandedMask & ~RHSKnownOne))
874 return UpdateValueUsesWith(I, I->getOperand(1));
875
876 // If all of the potentially set bits on one side are known to be set on
877 // the other side, just use the 'other' side.
878 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
879 (DemandedMask & (~RHSKnownZero)))
880 return UpdateValueUsesWith(I, I->getOperand(0));
881 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
882 (DemandedMask & (~LHSKnownZero)))
883 return UpdateValueUsesWith(I, I->getOperand(1));
884
885 // If the RHS is a constant, see if we can simplify it.
886 if (ShrinkDemandedConstant(I, 1, DemandedMask))
887 return UpdateValueUsesWith(I, I);
888
889 // Output known-0 bits are only known if clear in both the LHS & RHS.
890 RHSKnownZero &= LHSKnownZero;
891 // Output known-1 are known to be set if set in either the LHS | RHS.
892 RHSKnownOne |= LHSKnownOne;
893 break;
894 case Instruction::Xor: {
895 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
896 RHSKnownZero, RHSKnownOne, Depth+1))
897 return true;
898 assert((RHSKnownZero & RHSKnownOne) == 0 &&
899 "Bits known to be one AND zero?");
900 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
901 LHSKnownZero, LHSKnownOne, Depth+1))
902 return true;
903 assert((LHSKnownZero & LHSKnownOne) == 0 &&
904 "Bits known to be one AND zero?");
905
906 // If all of the demanded bits are known zero on one side, return the other.
907 // These bits cannot contribute to the result of the 'xor'.
908 if ((DemandedMask & RHSKnownZero) == DemandedMask)
909 return UpdateValueUsesWith(I, I->getOperand(0));
910 if ((DemandedMask & LHSKnownZero) == DemandedMask)
911 return UpdateValueUsesWith(I, I->getOperand(1));
912
913 // Output known-0 bits are known if clear or set in both the LHS & RHS.
914 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
915 (RHSKnownOne & LHSKnownOne);
916 // Output known-1 are known to be set if set in only one of the LHS, RHS.
917 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
918 (RHSKnownOne & LHSKnownZero);
919
920 // If all of the demanded bits are known to be zero on one side or the
921 // other, turn this into an *inclusive* or.
922 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
923 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
924 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +0000925 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000926 I->getName());
927 InsertNewInstBefore(Or, *I);
928 return UpdateValueUsesWith(I, Or);
929 }
930
931 // If all of the demanded bits on one side are known, and all of the set
932 // bits on that side are also known to be set on the other side, turn this
933 // into an AND, as we know the bits will be cleared.
934 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
935 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
936 // all known
937 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
938 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
939 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +0000940 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000941 InsertNewInstBefore(And, *I);
942 return UpdateValueUsesWith(I, And);
943 }
944 }
945
946 // If the RHS is a constant, see if we can simplify it.
947 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
948 if (ShrinkDemandedConstant(I, 1, DemandedMask))
949 return UpdateValueUsesWith(I, I);
950
951 RHSKnownZero = KnownZeroOut;
952 RHSKnownOne = KnownOneOut;
953 break;
954 }
955 case Instruction::Select:
956 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
957 RHSKnownZero, RHSKnownOne, Depth+1))
958 return true;
959 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
960 LHSKnownZero, LHSKnownOne, Depth+1))
961 return true;
962 assert((RHSKnownZero & RHSKnownOne) == 0 &&
963 "Bits known to be one AND zero?");
964 assert((LHSKnownZero & LHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966
967 // If the operands are constants, see if we can simplify them.
968 if (ShrinkDemandedConstant(I, 1, DemandedMask))
969 return UpdateValueUsesWith(I, I);
970 if (ShrinkDemandedConstant(I, 2, DemandedMask))
971 return UpdateValueUsesWith(I, I);
972
973 // Only known if known in both the LHS and RHS.
974 RHSKnownOne &= LHSKnownOne;
975 RHSKnownZero &= LHSKnownZero;
976 break;
977 case Instruction::Trunc: {
978 uint32_t truncBf =
979 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
980 DemandedMask.zext(truncBf);
981 RHSKnownZero.zext(truncBf);
982 RHSKnownOne.zext(truncBf);
983 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
984 RHSKnownZero, RHSKnownOne, Depth+1))
985 return true;
986 DemandedMask.trunc(BitWidth);
987 RHSKnownZero.trunc(BitWidth);
988 RHSKnownOne.trunc(BitWidth);
989 assert((RHSKnownZero & RHSKnownOne) == 0 &&
990 "Bits known to be one AND zero?");
991 break;
992 }
993 case Instruction::BitCast:
994 if (!I->getOperand(0)->getType()->isInteger())
995 return false;
996
997 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
998 RHSKnownZero, RHSKnownOne, Depth+1))
999 return true;
1000 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1001 "Bits known to be one AND zero?");
1002 break;
1003 case Instruction::ZExt: {
1004 // Compute the bits in the result that are not present in the input.
1005 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1006 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1007
1008 DemandedMask.trunc(SrcBitWidth);
1009 RHSKnownZero.trunc(SrcBitWidth);
1010 RHSKnownOne.trunc(SrcBitWidth);
1011 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1012 RHSKnownZero, RHSKnownOne, Depth+1))
1013 return true;
1014 DemandedMask.zext(BitWidth);
1015 RHSKnownZero.zext(BitWidth);
1016 RHSKnownOne.zext(BitWidth);
1017 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1018 "Bits known to be one AND zero?");
1019 // The top bits are known to be zero.
1020 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1021 break;
1022 }
1023 case Instruction::SExt: {
1024 // Compute the bits in the result that are not present in the input.
1025 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1026 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1027
1028 APInt InputDemandedBits = DemandedMask &
1029 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1030
1031 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1032 // If any of the sign extended bits are demanded, we know that the sign
1033 // bit is demanded.
1034 if ((NewBits & DemandedMask) != 0)
1035 InputDemandedBits.set(SrcBitWidth-1);
1036
1037 InputDemandedBits.trunc(SrcBitWidth);
1038 RHSKnownZero.trunc(SrcBitWidth);
1039 RHSKnownOne.trunc(SrcBitWidth);
1040 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1041 RHSKnownZero, RHSKnownOne, Depth+1))
1042 return true;
1043 InputDemandedBits.zext(BitWidth);
1044 RHSKnownZero.zext(BitWidth);
1045 RHSKnownOne.zext(BitWidth);
1046 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1047 "Bits known to be one AND zero?");
1048
1049 // If the sign bit of the input is known set or clear, then we know the
1050 // top bits of the result.
1051
1052 // If the input sign bit is known zero, or if the NewBits are not demanded
1053 // convert this into a zero extension.
1054 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1055 {
1056 // Convert to ZExt cast
1057 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1058 return UpdateValueUsesWith(I, NewCast);
1059 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1060 RHSKnownOne |= NewBits;
1061 }
1062 break;
1063 }
1064 case Instruction::Add: {
1065 // Figure out what the input bits are. If the top bits of the and result
1066 // are not demanded, then the add doesn't demand them from its input
1067 // either.
1068 uint32_t NLZ = DemandedMask.countLeadingZeros();
1069
1070 // If there is a constant on the RHS, there are a variety of xformations
1071 // we can do.
1072 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1073 // If null, this should be simplified elsewhere. Some of the xforms here
1074 // won't work if the RHS is zero.
1075 if (RHS->isZero())
1076 break;
1077
1078 // If the top bit of the output is demanded, demand everything from the
1079 // input. Otherwise, we demand all the input bits except NLZ top bits.
1080 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1081
1082 // Find information about known zero/one bits in the input.
1083 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1084 LHSKnownZero, LHSKnownOne, Depth+1))
1085 return true;
1086
1087 // If the RHS of the add has bits set that can't affect the input, reduce
1088 // the constant.
1089 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1090 return UpdateValueUsesWith(I, I);
1091
1092 // Avoid excess work.
1093 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1094 break;
1095
1096 // Turn it into OR if input bits are zero.
1097 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1098 Instruction *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00001099 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100 I->getName());
1101 InsertNewInstBefore(Or, *I);
1102 return UpdateValueUsesWith(I, Or);
1103 }
1104
1105 // We can say something about the output known-zero and known-one bits,
1106 // depending on potential carries from the input constant and the
1107 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1108 // bits set and the RHS constant is 0x01001, then we know we have a known
1109 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1110
1111 // To compute this, we first compute the potential carry bits. These are
1112 // the bits which may be modified. I'm not aware of a better way to do
1113 // this scan.
1114 const APInt& RHSVal = RHS->getValue();
1115 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1116
1117 // Now that we know which bits have carries, compute the known-1/0 sets.
1118
1119 // Bits are known one if they are known zero in one operand and one in the
1120 // other, and there is no input carry.
1121 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1122 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1123
1124 // Bits are known zero if they are known zero in both operands and there
1125 // is no input carry.
1126 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1127 } else {
1128 // If the high-bits of this ADD are not demanded, then it does not demand
1129 // the high bits of its LHS or RHS.
1130 if (DemandedMask[BitWidth-1] == 0) {
1131 // Right fill the mask of bits for this ADD to demand the most
1132 // significant bit and all those below it.
1133 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1134 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1135 LHSKnownZero, LHSKnownOne, Depth+1))
1136 return true;
1137 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1138 LHSKnownZero, LHSKnownOne, Depth+1))
1139 return true;
1140 }
1141 }
1142 break;
1143 }
1144 case Instruction::Sub:
1145 // If the high-bits of this SUB are not demanded, then it does not demand
1146 // the high bits of its LHS or RHS.
1147 if (DemandedMask[BitWidth-1] == 0) {
1148 // Right fill the mask of bits for this SUB to demand the most
1149 // significant bit and all those below it.
1150 uint32_t NLZ = DemandedMask.countLeadingZeros();
1151 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1152 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1153 LHSKnownZero, LHSKnownOne, Depth+1))
1154 return true;
1155 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1156 LHSKnownZero, LHSKnownOne, Depth+1))
1157 return true;
1158 }
Dan Gohmanbec16052008-04-28 17:02:21 +00001159 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1160 // the known zeros and ones.
1161 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162 break;
1163 case Instruction::Shl:
1164 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1165 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1166 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1167 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1168 RHSKnownZero, RHSKnownOne, Depth+1))
1169 return true;
1170 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1171 "Bits known to be one AND zero?");
1172 RHSKnownZero <<= ShiftAmt;
1173 RHSKnownOne <<= ShiftAmt;
1174 // low bits known zero.
1175 if (ShiftAmt)
1176 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1177 }
1178 break;
1179 case Instruction::LShr:
1180 // For a logical shift right
1181 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1182 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1183
1184 // Unsigned shift right.
1185 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1186 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1187 RHSKnownZero, RHSKnownOne, Depth+1))
1188 return true;
1189 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1190 "Bits known to be one AND zero?");
1191 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1192 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1193 if (ShiftAmt) {
1194 // Compute the new bits that are at the top now.
1195 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1196 RHSKnownZero |= HighBits; // high bits known zero.
1197 }
1198 }
1199 break;
1200 case Instruction::AShr:
1201 // If this is an arithmetic shift right and only the low-bit is set, we can
1202 // always convert this into a logical shr, even if the shift amount is
1203 // variable. The low bit of the shift cannot be an input sign bit unless
1204 // the shift amount is >= the size of the datatype, which is undefined.
1205 if (DemandedMask == 1) {
1206 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001207 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 I->getOperand(0), I->getOperand(1), I->getName());
1209 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1210 return UpdateValueUsesWith(I, NewVal);
1211 }
1212
1213 // If the sign bit is the only bit demanded by this ashr, then there is no
1214 // need to do it, the shift doesn't change the high bit.
1215 if (DemandedMask.isSignBit())
1216 return UpdateValueUsesWith(I, I->getOperand(0));
1217
1218 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1219 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1220
1221 // Signed shift right.
1222 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1223 // If any of the "high bits" are demanded, we should set the sign bit as
1224 // demanded.
1225 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1226 DemandedMaskIn.set(BitWidth-1);
1227 if (SimplifyDemandedBits(I->getOperand(0),
1228 DemandedMaskIn,
1229 RHSKnownZero, RHSKnownOne, Depth+1))
1230 return true;
1231 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1232 "Bits known to be one AND zero?");
1233 // Compute the new bits that are at the top now.
1234 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1235 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1236 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1237
1238 // Handle the sign bits.
1239 APInt SignBit(APInt::getSignBit(BitWidth));
1240 // Adjust to where it is now in the mask.
1241 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1242
1243 // If the input sign bit is known to be zero, or if none of the top bits
1244 // are demanded, turn this into an unsigned shift right.
Zhou Sheng533604e2008-06-06 08:32:05 +00001245 if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 (HighBits & ~DemandedMask) == HighBits) {
1247 // Perform the logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00001248 Value *NewVal = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 I->getOperand(0), SA, I->getName());
1250 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1251 return UpdateValueUsesWith(I, NewVal);
1252 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1253 RHSKnownOne |= HighBits;
1254 }
1255 }
1256 break;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001257 case Instruction::SRem:
1258 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001259 APInt RA = Rem->getValue().abs();
1260 if (RA.isPowerOf2()) {
Nick Lewycky245de422008-07-12 05:04:38 +00001261 if (DemandedMask.ule(RA)) // srem won't affect demanded bits
1262 return UpdateValueUsesWith(I, I->getOperand(0));
1263
Nick Lewyckycfaaece2008-11-02 02:41:50 +00001264 APInt LowBits = RA - 1;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001265 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1266 if (SimplifyDemandedBits(I->getOperand(0), Mask2,
1267 LHSKnownZero, LHSKnownOne, Depth+1))
1268 return true;
1269
1270 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
1271 LHSKnownZero |= ~LowBits;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001272
1273 KnownZero |= LHSKnownZero & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001274
1275 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1276 }
1277 }
1278 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001279 case Instruction::URem: {
Dan Gohmanbec16052008-04-28 17:02:21 +00001280 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
1281 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
Dan Gohman23ea06d2008-05-01 19:13:24 +00001282 if (SimplifyDemandedBits(I->getOperand(0), AllOnes,
1283 KnownZero2, KnownOne2, Depth+1))
1284 return true;
1285
Dan Gohmanbec16052008-04-28 17:02:21 +00001286 uint32_t Leaders = KnownZero2.countLeadingOnes();
Dan Gohman23ea06d2008-05-01 19:13:24 +00001287 if (SimplifyDemandedBits(I->getOperand(1), AllOnes,
Dan Gohmanbec16052008-04-28 17:02:21 +00001288 KnownZero2, KnownOne2, Depth+1))
1289 return true;
1290
1291 Leaders = std::max(Leaders,
1292 KnownZero2.countLeadingOnes());
1293 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
Nick Lewyckyc1372c82008-03-06 06:48:30 +00001294 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 }
Chris Lattner989ba312008-06-18 04:33:20 +00001296 case Instruction::Call:
1297 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1298 switch (II->getIntrinsicID()) {
1299 default: break;
1300 case Intrinsic::bswap: {
1301 // If the only bits demanded come from one byte of the bswap result,
1302 // just shift the input byte into position to eliminate the bswap.
1303 unsigned NLZ = DemandedMask.countLeadingZeros();
1304 unsigned NTZ = DemandedMask.countTrailingZeros();
1305
1306 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1307 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1308 // have 14 leading zeros, round to 8.
1309 NLZ &= ~7;
1310 NTZ &= ~7;
1311 // If we need exactly one byte, we can do this transformation.
1312 if (BitWidth-NLZ-NTZ == 8) {
1313 unsigned ResultBit = NTZ;
1314 unsigned InputBit = BitWidth-NTZ-8;
1315
1316 // Replace this with either a left or right shift to get the byte into
1317 // the right place.
1318 Instruction *NewVal;
1319 if (InputBit > ResultBit)
1320 NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
1321 ConstantInt::get(I->getType(), InputBit-ResultBit));
1322 else
1323 NewVal = BinaryOperator::CreateShl(I->getOperand(1),
1324 ConstantInt::get(I->getType(), ResultBit-InputBit));
1325 NewVal->takeName(I);
1326 InsertNewInstBefore(NewVal, *I);
1327 return UpdateValueUsesWith(I, NewVal);
1328 }
1329
1330 // TODO: Could compute known zero/one bits based on the input.
1331 break;
1332 }
1333 }
1334 }
Chris Lattner4946e222008-06-18 18:11:55 +00001335 ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
Chris Lattner989ba312008-06-18 04:33:20 +00001336 break;
Dan Gohmanbec16052008-04-28 17:02:21 +00001337 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001338
1339 // If the client is only demanding bits that we know, return the known
1340 // constant.
1341 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1342 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1343 return false;
1344}
1345
1346
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001347/// SimplifyDemandedVectorElts - The specified value produces a vector with
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001348/// 64 or fewer elements. DemandedElts contains the set of elements that are
1349/// actually used by the caller. This method analyzes which elements of the
1350/// operand are undef and returns that information in UndefElts.
1351///
1352/// If the information about demanded elements can be used to simplify the
1353/// operation, the operation is simplified, then the resultant value is
1354/// returned. This returns null if no change was made.
1355Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1356 uint64_t &UndefElts,
1357 unsigned Depth) {
1358 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1359 assert(VWidth <= 64 && "Vector too wide to analyze!");
1360 uint64_t EltMask = ~0ULL >> (64-VWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001361 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362
1363 if (isa<UndefValue>(V)) {
1364 // If the entire vector is undefined, just return this info.
1365 UndefElts = EltMask;
1366 return 0;
1367 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1368 UndefElts = EltMask;
1369 return UndefValue::get(V->getType());
1370 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001371
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 UndefElts = 0;
1373 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1374 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1375 Constant *Undef = UndefValue::get(EltTy);
1376
1377 std::vector<Constant*> Elts;
1378 for (unsigned i = 0; i != VWidth; ++i)
1379 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1380 Elts.push_back(Undef);
1381 UndefElts |= (1ULL << i);
1382 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1383 Elts.push_back(Undef);
1384 UndefElts |= (1ULL << i);
1385 } else { // Otherwise, defined.
1386 Elts.push_back(CP->getOperand(i));
1387 }
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001389 // If we changed the constant, return it.
1390 Constant *NewCP = ConstantVector::get(Elts);
1391 return NewCP != CP ? NewCP : 0;
1392 } else if (isa<ConstantAggregateZero>(V)) {
1393 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1394 // set to undef.
Mon P Wang927daf52008-11-06 22:52:21 +00001395
1396 // Check if this is identity. If so, return 0 since we are not simplifying
1397 // anything.
1398 if (DemandedElts == ((1ULL << VWidth) -1))
1399 return 0;
1400
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001401 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1402 Constant *Zero = Constant::getNullValue(EltTy);
1403 Constant *Undef = UndefValue::get(EltTy);
1404 std::vector<Constant*> Elts;
1405 for (unsigned i = 0; i != VWidth; ++i)
1406 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1407 UndefElts = DemandedElts ^ EltMask;
1408 return ConstantVector::get(Elts);
1409 }
1410
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001411 // Limit search depth.
1412 if (Depth == 10)
1413 return false;
1414
1415 // If multiple users are using the root value, procede with
1416 // simplification conservatively assuming that all elements
1417 // are needed.
1418 if (!V->hasOneUse()) {
1419 // Quit if we find multiple users of a non-root value though.
1420 // They'll be handled when it's their turn to be visited by
1421 // the main instcombine process.
1422 if (Depth != 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001423 // TODO: Just compute the UndefElts information recursively.
1424 return false;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001425
1426 // Conservatively assume that all elements are needed.
1427 DemandedElts = EltMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 }
1429
1430 Instruction *I = dyn_cast<Instruction>(V);
1431 if (!I) return false; // Only analyze instructions.
1432
1433 bool MadeChange = false;
1434 uint64_t UndefElts2;
1435 Value *TmpV;
1436 switch (I->getOpcode()) {
1437 default: break;
1438
1439 case Instruction::InsertElement: {
1440 // If this is a variable index, we don't know which element it overwrites.
1441 // demand exactly the same input as we produce.
1442 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1443 if (Idx == 0) {
1444 // Note that we can't propagate undef elt info, because we don't know
1445 // which elt is getting updated.
1446 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1447 UndefElts2, Depth+1);
1448 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1449 break;
1450 }
1451
1452 // If this is inserting an element that isn't demanded, remove this
1453 // insertelement.
1454 unsigned IdxNo = Idx->getZExtValue();
1455 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1456 return AddSoonDeadInstToWorklist(*I, 0);
1457
1458 // Otherwise, the element inserted overwrites whatever was there, so the
1459 // input demanded set is simpler than the output set.
1460 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1461 DemandedElts & ~(1ULL << IdxNo),
1462 UndefElts, Depth+1);
1463 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1464
1465 // The inserted element is defined.
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001466 UndefElts &= ~(1ULL << IdxNo);
1467 break;
1468 }
1469 case Instruction::ShuffleVector: {
1470 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001471 uint64_t LHSVWidth =
1472 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001473 uint64_t LeftDemanded = 0, RightDemanded = 0;
1474 for (unsigned i = 0; i < VWidth; i++) {
1475 if (DemandedElts & (1ULL << i)) {
1476 unsigned MaskVal = Shuffle->getMaskValue(i);
1477 if (MaskVal != -1u) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001478 assert(MaskVal < LHSVWidth * 2 &&
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001479 "shufflevector mask index out of range!");
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001480 if (MaskVal < LHSVWidth)
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001481 LeftDemanded |= 1ULL << MaskVal;
1482 else
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001483 RightDemanded |= 1ULL << (MaskVal - LHSVWidth);
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001484 }
1485 }
1486 }
1487
1488 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1489 UndefElts2, Depth+1);
1490 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1491
1492 uint64_t UndefElts3;
1493 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1494 UndefElts3, Depth+1);
1495 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1496
1497 bool NewUndefElts = false;
1498 for (unsigned i = 0; i < VWidth; i++) {
1499 unsigned MaskVal = Shuffle->getMaskValue(i);
Dan Gohman24f6ee22008-09-10 01:09:32 +00001500 if (MaskVal == -1u) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001501 uint64_t NewBit = 1ULL << i;
1502 UndefElts |= NewBit;
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001503 } else if (MaskVal < LHSVWidth) {
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001504 uint64_t NewBit = ((UndefElts2 >> MaskVal) & 1) << i;
1505 NewUndefElts |= NewBit;
1506 UndefElts |= NewBit;
1507 } else {
Mon P Wangbff5d9c2008-11-10 04:46:22 +00001508 uint64_t NewBit = ((UndefElts3 >> (MaskVal - LHSVWidth)) & 1) << i;
Dan Gohmanda93bbe2008-09-09 18:11:14 +00001509 NewUndefElts |= NewBit;
1510 UndefElts |= NewBit;
1511 }
1512 }
1513
1514 if (NewUndefElts) {
1515 // Add additional discovered undefs.
1516 std::vector<Constant*> Elts;
1517 for (unsigned i = 0; i < VWidth; ++i) {
1518 if (UndefElts & (1ULL << i))
1519 Elts.push_back(UndefValue::get(Type::Int32Ty));
1520 else
1521 Elts.push_back(ConstantInt::get(Type::Int32Ty,
1522 Shuffle->getMaskValue(i)));
1523 }
1524 I->setOperand(2, ConstantVector::get(Elts));
1525 MadeChange = true;
1526 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527 break;
1528 }
1529 case Instruction::BitCast: {
1530 // Vector->vector casts only.
1531 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1532 if (!VTy) break;
1533 unsigned InVWidth = VTy->getNumElements();
1534 uint64_t InputDemandedElts = 0;
1535 unsigned Ratio;
1536
1537 if (VWidth == InVWidth) {
1538 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1539 // elements as are demanded of us.
1540 Ratio = 1;
1541 InputDemandedElts = DemandedElts;
1542 } else if (VWidth > InVWidth) {
1543 // Untested so far.
1544 break;
1545
1546 // If there are more elements in the result than there are in the source,
1547 // then an input element is live if any of the corresponding output
1548 // elements are live.
1549 Ratio = VWidth/InVWidth;
1550 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1551 if (DemandedElts & (1ULL << OutIdx))
1552 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1553 }
1554 } else {
1555 // Untested so far.
1556 break;
1557
1558 // If there are more elements in the source than there are in the result,
1559 // then an input element is live if the corresponding output element is
1560 // live.
1561 Ratio = InVWidth/VWidth;
1562 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1563 if (DemandedElts & (1ULL << InIdx/Ratio))
1564 InputDemandedElts |= 1ULL << InIdx;
1565 }
1566
1567 // div/rem demand all inputs, because they don't want divide by zero.
1568 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1569 UndefElts2, Depth+1);
1570 if (TmpV) {
1571 I->setOperand(0, TmpV);
1572 MadeChange = true;
1573 }
1574
1575 UndefElts = UndefElts2;
1576 if (VWidth > InVWidth) {
1577 assert(0 && "Unimp");
1578 // If there are more elements in the result than there are in the source,
1579 // then an output element is undef if the corresponding input element is
1580 // undef.
1581 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1582 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1583 UndefElts |= 1ULL << OutIdx;
1584 } else if (VWidth < InVWidth) {
1585 assert(0 && "Unimp");
1586 // If there are more elements in the source than there are in the result,
1587 // then a result element is undef if all of the corresponding input
1588 // elements are undef.
1589 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1590 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1591 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1592 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1593 }
1594 break;
1595 }
1596 case Instruction::And:
1597 case Instruction::Or:
1598 case Instruction::Xor:
1599 case Instruction::Add:
1600 case Instruction::Sub:
1601 case Instruction::Mul:
1602 // div/rem demand all inputs, because they don't want divide by zero.
1603 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1604 UndefElts, Depth+1);
1605 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1606 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1607 UndefElts2, Depth+1);
1608 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1609
1610 // Output elements are undefined if both are undefined. Consider things
1611 // like undef&0. The result is known zero, not undef.
1612 UndefElts &= UndefElts2;
1613 break;
1614
1615 case Instruction::Call: {
1616 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1617 if (!II) break;
1618 switch (II->getIntrinsicID()) {
1619 default: break;
1620
1621 // Binary vector operations that work column-wise. A dest element is a
1622 // function of the corresponding input elements from the two inputs.
1623 case Intrinsic::x86_sse_sub_ss:
1624 case Intrinsic::x86_sse_mul_ss:
1625 case Intrinsic::x86_sse_min_ss:
1626 case Intrinsic::x86_sse_max_ss:
1627 case Intrinsic::x86_sse2_sub_sd:
1628 case Intrinsic::x86_sse2_mul_sd:
1629 case Intrinsic::x86_sse2_min_sd:
1630 case Intrinsic::x86_sse2_max_sd:
1631 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1632 UndefElts, Depth+1);
1633 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1634 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1635 UndefElts2, Depth+1);
1636 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1637
1638 // If only the low elt is demanded and this is a scalarizable intrinsic,
1639 // scalarize it now.
1640 if (DemandedElts == 1) {
1641 switch (II->getIntrinsicID()) {
1642 default: break;
1643 case Intrinsic::x86_sse_sub_ss:
1644 case Intrinsic::x86_sse_mul_ss:
1645 case Intrinsic::x86_sse2_sub_sd:
1646 case Intrinsic::x86_sse2_mul_sd:
1647 // TODO: Lower MIN/MAX/ABS/etc
1648 Value *LHS = II->getOperand(1);
1649 Value *RHS = II->getOperand(2);
1650 // Extract the element as scalars.
1651 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1652 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1653
1654 switch (II->getIntrinsicID()) {
1655 default: assert(0 && "Case stmts out of sync!");
1656 case Intrinsic::x86_sse_sub_ss:
1657 case Intrinsic::x86_sse2_sub_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001658 TmpV = InsertNewInstBefore(BinaryOperator::CreateSub(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659 II->getName()), *II);
1660 break;
1661 case Intrinsic::x86_sse_mul_ss:
1662 case Intrinsic::x86_sse2_mul_sd:
Gabor Greifa645dd32008-05-16 19:29:10 +00001663 TmpV = InsertNewInstBefore(BinaryOperator::CreateMul(LHS, RHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664 II->getName()), *II);
1665 break;
1666 }
1667
1668 Instruction *New =
Gabor Greifd6da1d02008-04-06 20:25:17 +00001669 InsertElementInst::Create(UndefValue::get(II->getType()), TmpV, 0U,
1670 II->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671 InsertNewInstBefore(New, *II);
1672 AddSoonDeadInstToWorklist(*II, 0);
1673 return New;
1674 }
1675 }
1676
1677 // Output elements are undefined if both are undefined. Consider things
1678 // like undef&0. The result is known zero, not undef.
1679 UndefElts &= UndefElts2;
1680 break;
1681 }
1682 break;
1683 }
1684 }
1685 return MadeChange ? I : 0;
1686}
1687
Dan Gohman5d56fd42008-05-19 22:14:15 +00001688
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001689/// AssociativeOpt - Perform an optimization on an associative operator. This
1690/// function is designed to check a chain of associative operators for a
1691/// potential to apply a certain optimization. Since the optimization may be
1692/// applicable if the expression was reassociated, this checks the chain, then
1693/// reassociates the expression as necessary to expose the optimization
1694/// opportunity. This makes use of a special Functor, which must define
1695/// 'shouldApply' and 'apply' methods.
1696///
1697template<typename Functor>
Dan Gohmand8bcf5b2008-05-20 01:14:05 +00001698static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699 unsigned Opcode = Root.getOpcode();
1700 Value *LHS = Root.getOperand(0);
1701
1702 // Quick check, see if the immediate LHS matches...
1703 if (F.shouldApply(LHS))
1704 return F.apply(Root);
1705
1706 // Otherwise, if the LHS is not of the same opcode as the root, return.
1707 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1708 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1709 // Should we apply this transform to the RHS?
1710 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1711
1712 // If not to the RHS, check to see if we should apply to the LHS...
1713 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1714 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1715 ShouldApply = true;
1716 }
1717
1718 // If the functor wants to apply the optimization to the RHS of LHSI,
1719 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1720 if (ShouldApply) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721 // Now all of the instructions are in the current basic block, go ahead
1722 // and perform the reassociation.
1723 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1724
1725 // First move the selected RHS to the LHS of the root...
1726 Root.setOperand(0, LHSI->getOperand(1));
1727
1728 // Make what used to be the LHS of the root be the user of the root...
1729 Value *ExtraOperand = TmpLHSI->getOperand(1);
1730 if (&Root == TmpLHSI) {
1731 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1732 return 0;
1733 }
1734 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1735 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736 BasicBlock::iterator ARI = &Root; ++ARI;
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001737 TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 ARI = Root;
1739
1740 // Now propagate the ExtraOperand down the chain of instructions until we
1741 // get to LHSI.
1742 while (TmpLHSI != LHSI) {
1743 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1744 // Move the instruction to immediately before the chain we are
1745 // constructing to avoid breaking dominance properties.
Dan Gohman0bb9a3d2008-06-19 17:47:47 +00001746 NextLHSI->moveBefore(ARI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747 ARI = NextLHSI;
1748
1749 Value *NextOp = NextLHSI->getOperand(1);
1750 NextLHSI->setOperand(1, ExtraOperand);
1751 TmpLHSI = NextLHSI;
1752 ExtraOperand = NextOp;
1753 }
1754
1755 // Now that the instructions are reassociated, have the functor perform
1756 // the transformation...
1757 return F.apply(Root);
1758 }
1759
1760 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1761 }
1762 return 0;
1763}
1764
Dan Gohman089efff2008-05-13 00:00:25 +00001765namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766
Nick Lewycky27f6c132008-05-23 04:34:58 +00001767// AddRHS - Implements: X + X --> X << 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768struct AddRHS {
1769 Value *RHS;
1770 AddRHS(Value *rhs) : RHS(rhs) {}
1771 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1772 Instruction *apply(BinaryOperator &Add) const {
Nick Lewycky27f6c132008-05-23 04:34:58 +00001773 return BinaryOperator::CreateShl(Add.getOperand(0),
1774 ConstantInt::get(Add.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775 }
1776};
1777
1778// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1779// iff C1&C2 == 0
1780struct AddMaskingAnd {
1781 Constant *C2;
1782 AddMaskingAnd(Constant *c) : C2(c) {}
1783 bool shouldApply(Value *LHS) const {
1784 ConstantInt *C1;
1785 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1786 ConstantExpr::getAnd(C1, C2)->isNullValue();
1787 }
1788 Instruction *apply(BinaryOperator &Add) const {
Gabor Greifa645dd32008-05-16 19:29:10 +00001789 return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001790 }
1791};
1792
Dan Gohman089efff2008-05-13 00:00:25 +00001793}
1794
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1796 InstCombiner *IC) {
1797 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Eli Friedman722b4792008-11-30 21:09:11 +00001798 return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001799 }
1800
1801 // Figure out if the constant is the left or the right argument.
1802 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1803 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1804
1805 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1806 if (ConstIsRHS)
1807 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1808 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1809 }
1810
1811 Value *Op0 = SO, *Op1 = ConstOperand;
1812 if (!ConstIsRHS)
1813 std::swap(Op0, Op1);
1814 Instruction *New;
1815 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001816 New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001817 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001818 New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 SO->getName()+".cmp");
1820 else {
1821 assert(0 && "Unknown binary instruction type!");
1822 abort();
1823 }
1824 return IC->InsertNewInstBefore(New, I);
1825}
1826
1827// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1828// constant as the other operand, try to fold the binary operator into the
1829// select arguments. This also works for Cast instructions, which obviously do
1830// not have a second operand.
1831static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1832 InstCombiner *IC) {
1833 // Don't modify shared select instructions
1834 if (!SI->hasOneUse()) return 0;
1835 Value *TV = SI->getOperand(1);
1836 Value *FV = SI->getOperand(2);
1837
1838 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1839 // Bool selects with constant operands can be folded to logical ops.
1840 if (SI->getType() == Type::Int1Ty) return 0;
1841
1842 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1843 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1844
Gabor Greifd6da1d02008-04-06 20:25:17 +00001845 return SelectInst::Create(SI->getCondition(), SelectTrueVal,
1846 SelectFalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001847 }
1848 return 0;
1849}
1850
1851
1852/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1853/// node as operand #0, see if we can fold the instruction into the PHI (which
1854/// is only possible if all operands to the PHI are constants).
1855Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1856 PHINode *PN = cast<PHINode>(I.getOperand(0));
1857 unsigned NumPHIValues = PN->getNumIncomingValues();
1858 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1859
1860 // Check to see if all of the operands of the PHI are constants. If there is
1861 // one non-constant value, remember the BB it is. If there is more than one
1862 // or if *it* is a PHI, bail out.
1863 BasicBlock *NonConstBB = 0;
1864 for (unsigned i = 0; i != NumPHIValues; ++i)
1865 if (!isa<Constant>(PN->getIncomingValue(i))) {
1866 if (NonConstBB) return 0; // More than one non-const value.
1867 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1868 NonConstBB = PN->getIncomingBlock(i);
1869
1870 // If the incoming non-constant value is in I's block, we have an infinite
1871 // loop.
1872 if (NonConstBB == I.getParent())
1873 return 0;
1874 }
1875
1876 // If there is exactly one non-constant value, we can insert a copy of the
1877 // operation in that block. However, if this is a critical edge, we would be
1878 // inserting the computation one some other paths (e.g. inside a loop). Only
1879 // do this if the pred block is unconditionally branching into the phi block.
1880 if (NonConstBB) {
1881 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1882 if (!BI || !BI->isUnconditional()) return 0;
1883 }
1884
1885 // Okay, we can do the transformation: create the new PHI node.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001886 PHINode *NewPN = PHINode::Create(I.getType(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1888 InsertNewInstBefore(NewPN, *PN);
1889 NewPN->takeName(PN);
1890
1891 // Next, add all of the operands to the PHI.
1892 if (I.getNumOperands() == 2) {
1893 Constant *C = cast<Constant>(I.getOperand(1));
1894 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001895 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1897 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1898 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1899 else
1900 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1901 } else {
1902 assert(PN->getIncomingBlock(i) == NonConstBB);
1903 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001904 InV = BinaryOperator::Create(BO->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905 PN->getIncomingValue(i), C, "phitmp",
1906 NonConstBB->getTerminator());
1907 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
Gabor Greifa645dd32008-05-16 19:29:10 +00001908 InV = CmpInst::Create(CI->getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909 CI->getPredicate(),
1910 PN->getIncomingValue(i), C, "phitmp",
1911 NonConstBB->getTerminator());
1912 else
1913 assert(0 && "Unknown binop!");
1914
1915 AddToWorkList(cast<Instruction>(InV));
1916 }
1917 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1918 }
1919 } else {
1920 CastInst *CI = cast<CastInst>(&I);
1921 const Type *RetTy = CI->getType();
1922 for (unsigned i = 0; i != NumPHIValues; ++i) {
1923 Value *InV;
1924 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1925 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1926 } else {
1927 assert(PN->getIncomingBlock(i) == NonConstBB);
Gabor Greifa645dd32008-05-16 19:29:10 +00001928 InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 I.getType(), "phitmp",
1930 NonConstBB->getTerminator());
1931 AddToWorkList(cast<Instruction>(InV));
1932 }
1933 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1934 }
1935 }
1936 return ReplaceInstUsesWith(I, NewPN);
1937}
1938
Chris Lattner55476162008-01-29 06:52:45 +00001939
Chris Lattner3554f972008-05-20 05:46:13 +00001940/// WillNotOverflowSignedAdd - Return true if we can prove that:
1941/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
1942/// This basically requires proving that the add in the original type would not
1943/// overflow to change the sign bit or have a carry out.
1944bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
1945 // There are different heuristics we can use for this. Here are some simple
1946 // ones.
1947
1948 // Add has the property that adding any two 2's complement numbers can only
1949 // have one carry bit which can change a sign. As such, if LHS and RHS each
1950 // have at least two sign bits, we know that the addition of the two values will
1951 // sign extend fine.
1952 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
1953 return true;
1954
1955
1956 // If one of the operands only has one non-zero bit, and if the other operand
1957 // has a known-zero bit in a more significant place than it (not including the
1958 // sign bit) the ripple may go up to and fill the zero, but won't change the
1959 // sign. For example, (X & ~4) + 1.
1960
1961 // TODO: Implement.
1962
1963 return false;
1964}
1965
Chris Lattner55476162008-01-29 06:52:45 +00001966
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001967Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1968 bool Changed = SimplifyCommutative(I);
1969 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1970
1971 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1972 // X + undef -> undef
1973 if (isa<UndefValue>(RHS))
1974 return ReplaceInstUsesWith(I, RHS);
1975
1976 // X + 0 --> X
1977 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1978 if (RHSC->isNullValue())
1979 return ReplaceInstUsesWith(I, LHS);
1980 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001981 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1982 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001983 return ReplaceInstUsesWith(I, LHS);
1984 }
1985
1986 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1987 // X + (signbit) --> X ^ signbit
1988 const APInt& Val = CI->getValue();
1989 uint32_t BitWidth = Val.getBitWidth();
1990 if (Val == APInt::getSignBit(BitWidth))
Gabor Greifa645dd32008-05-16 19:29:10 +00001991 return BinaryOperator::CreateXor(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001992
1993 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1994 // (X & 254)+1 -> (X&254)|1
1995 if (!isa<VectorType>(I.getType())) {
1996 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1997 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1998 KnownZero, KnownOne))
1999 return &I;
2000 }
Dan Gohman35b76162008-10-30 20:40:10 +00002001
2002 // zext(i1) - 1 -> select i1, 0, -1
2003 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
2004 if (CI->isAllOnesValue() &&
2005 ZI->getOperand(0)->getType() == Type::Int1Ty)
2006 return SelectInst::Create(ZI->getOperand(0),
2007 Constant::getNullValue(I.getType()),
2008 ConstantInt::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002009 }
2010
2011 if (isa<PHINode>(LHS))
2012 if (Instruction *NV = FoldOpIntoPhi(I))
2013 return NV;
2014
2015 ConstantInt *XorRHS = 0;
2016 Value *XorLHS = 0;
2017 if (isa<ConstantInt>(RHSC) &&
2018 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
2019 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
2020 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
2021
2022 uint32_t Size = TySizeBits / 2;
2023 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
2024 APInt CFF80Val(-C0080Val);
2025 do {
2026 if (TySizeBits > Size) {
2027 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2028 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2029 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
2030 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
2031 // This is a sign extend if the top bits are known zero.
2032 if (!MaskedValueIsZero(XorLHS,
2033 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
2034 Size = 0; // Not a sign ext, but can't be any others either.
2035 break;
2036 }
2037 }
2038 Size >>= 1;
2039 C0080Val = APIntOps::lshr(C0080Val, Size);
2040 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2041 } while (Size >= 1);
2042
2043 // FIXME: This shouldn't be necessary. When the backends can handle types
Chris Lattnerdeef1a72008-05-19 20:25:04 +00002044 // with funny bit widths then this switch statement should be removed. It
2045 // is just here to get the size of the "middle" type back up to something
2046 // that the back ends can handle.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002047 const Type *MiddleType = 0;
2048 switch (Size) {
2049 default: break;
2050 case 32: MiddleType = Type::Int32Ty; break;
2051 case 16: MiddleType = Type::Int16Ty; break;
2052 case 8: MiddleType = Type::Int8Ty; break;
2053 }
2054 if (MiddleType) {
2055 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2056 InsertNewInstBefore(NewTrunc, I);
2057 return new SExtInst(NewTrunc, I.getType(), I.getName());
2058 }
2059 }
2060 }
2061
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002062 if (I.getType() == Type::Int1Ty)
2063 return BinaryOperator::CreateXor(LHS, RHS);
2064
Nick Lewycky4d474cd2008-05-23 04:39:38 +00002065 // X + X --> X << 1
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002066 if (I.getType()->isInteger()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002067 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2068
2069 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2070 if (RHSI->getOpcode() == Instruction::Sub)
2071 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2072 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2073 }
2074 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2075 if (LHSI->getOpcode() == Instruction::Sub)
2076 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2077 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2078 }
2079 }
2080
2081 // -A + B --> B - A
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002082 // -A + -B --> -(A + B)
2083 if (Value *LHSV = dyn_castNegVal(LHS)) {
Chris Lattner322a9192008-02-18 17:50:16 +00002084 if (LHS->getType()->isIntOrIntVector()) {
2085 if (Value *RHSV = dyn_castNegVal(RHS)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002086 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
Chris Lattner322a9192008-02-18 17:50:16 +00002087 InsertNewInstBefore(NewAdd, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002088 return BinaryOperator::CreateNeg(NewAdd);
Chris Lattner322a9192008-02-18 17:50:16 +00002089 }
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002090 }
2091
Gabor Greifa645dd32008-05-16 19:29:10 +00002092 return BinaryOperator::CreateSub(RHS, LHSV);
Chris Lattner53c9fbf2008-02-17 21:03:36 +00002093 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002094
2095 // A + -B --> A - B
2096 if (!isa<Constant>(RHS))
2097 if (Value *V = dyn_castNegVal(RHS))
Gabor Greifa645dd32008-05-16 19:29:10 +00002098 return BinaryOperator::CreateSub(LHS, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099
2100
2101 ConstantInt *C2;
2102 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2103 if (X == RHS) // X*C + X --> X * (C+1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002104 return BinaryOperator::CreateMul(RHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002105
2106 // X*C1 + X*C2 --> X * (C1+C2)
2107 ConstantInt *C1;
2108 if (X == dyn_castFoldableMul(RHS, C1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002109 return BinaryOperator::CreateMul(X, Add(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002110 }
2111
2112 // X + X*C --> X * (C+1)
2113 if (dyn_castFoldableMul(RHS, C2) == LHS)
Gabor Greifa645dd32008-05-16 19:29:10 +00002114 return BinaryOperator::CreateMul(LHS, AddOne(C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002115
2116 // X + ~X --> -1 since ~X = -X-1
2117 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2118 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2119
2120
2121 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2122 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2123 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2124 return R;
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002125
2126 // A+B --> A|B iff A and B have no bits set in common.
2127 if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
2128 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
2129 APInt LHSKnownOne(IT->getBitWidth(), 0);
2130 APInt LHSKnownZero(IT->getBitWidth(), 0);
2131 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
2132 if (LHSKnownZero != 0) {
2133 APInt RHSKnownOne(IT->getBitWidth(), 0);
2134 APInt RHSKnownZero(IT->getBitWidth(), 0);
2135 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
2136
2137 // No bits in common -> bitwise or.
Chris Lattner130443c2008-05-19 20:03:53 +00002138 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002139 return BinaryOperator::CreateOr(LHS, RHS);
Chris Lattnerc1575ce2008-05-19 20:01:56 +00002140 }
2141 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002142
Nick Lewycky83598a72008-02-03 07:42:09 +00002143 // W*X + Y*Z --> W * (X+Z) iff W == Y
Nick Lewycky5d03b512008-02-03 08:19:11 +00002144 if (I.getType()->isIntOrIntVector()) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002145 Value *W, *X, *Y, *Z;
2146 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
2147 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
2148 if (W != Y) {
2149 if (W == Z) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002150 std::swap(Y, Z);
Nick Lewycky83598a72008-02-03 07:42:09 +00002151 } else if (Y == X) {
Bill Wendling44a36ea2008-02-26 10:53:30 +00002152 std::swap(W, X);
2153 } else if (X == Z) {
Nick Lewycky83598a72008-02-03 07:42:09 +00002154 std::swap(Y, Z);
2155 std::swap(W, X);
2156 }
2157 }
2158
2159 if (W == Y) {
Gabor Greifa645dd32008-05-16 19:29:10 +00002160 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
Nick Lewycky83598a72008-02-03 07:42:09 +00002161 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002162 return BinaryOperator::CreateMul(W, NewAdd);
Nick Lewycky83598a72008-02-03 07:42:09 +00002163 }
2164 }
2165 }
2166
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2168 Value *X = 0;
2169 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002170 return BinaryOperator::CreateSub(SubOne(CRHS), X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171
2172 // (X & FF00) + xx00 -> (X+xx00) & FF00
2173 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2174 Constant *Anded = And(CRHS, C2);
2175 if (Anded == CRHS) {
2176 // See if all bits from the first bit set in the Add RHS up are included
2177 // in the mask. First, get the rightmost bit.
2178 const APInt& AddRHSV = CRHS->getValue();
2179
2180 // Form a mask of all bits from the lowest bit added through the top.
2181 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2182
2183 // See if the and mask includes all of these bits.
2184 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2185
2186 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2187 // Okay, the xform is safe. Insert the new add pronto.
Gabor Greifa645dd32008-05-16 19:29:10 +00002188 Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 LHS->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00002190 return BinaryOperator::CreateAnd(NewAdd, C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191 }
2192 }
2193 }
2194
2195 // Try to fold constant add into select arguments.
2196 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2197 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2198 return R;
2199 }
2200
2201 // add (cast *A to intptrtype) B ->
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002202 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002203 {
2204 CastInst *CI = dyn_cast<CastInst>(LHS);
2205 Value *Other = RHS;
2206 if (!CI) {
2207 CI = dyn_cast<CastInst>(RHS);
2208 Other = LHS;
2209 }
2210 if (CI && CI->getType()->isSized() &&
2211 (CI->getType()->getPrimitiveSizeInBits() ==
2212 TD->getIntPtrType()->getPrimitiveSizeInBits())
2213 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002214 unsigned AS =
2215 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +00002216 Value *I2 = InsertBitCastBefore(CI->getOperand(0),
2217 PointerType::get(Type::Int8Ty, AS), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00002218 I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002219 return new PtrToIntInst(I2, CI->getType());
2220 }
2221 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002222
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002223 // add (select X 0 (sub n A)) A --> select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002224 {
2225 SelectInst *SI = dyn_cast<SelectInst>(LHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002226 Value *A = RHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002227 if (!SI) {
2228 SI = dyn_cast<SelectInst>(RHS);
Chris Lattner641ea462008-11-16 04:46:19 +00002229 A = LHS;
Christopher Lamb244ec282007-12-18 09:34:41 +00002230 }
Chris Lattnerbf0c5f32007-12-20 01:56:58 +00002231 if (SI && SI->hasOneUse()) {
Christopher Lamb244ec282007-12-18 09:34:41 +00002232 Value *TV = SI->getTrueValue();
2233 Value *FV = SI->getFalseValue();
Chris Lattner641ea462008-11-16 04:46:19 +00002234 Value *N;
Christopher Lamb244ec282007-12-18 09:34:41 +00002235
2236 // Can we fold the add into the argument of the select?
2237 // We check both true and false select arguments for a matching subtract.
Chris Lattner641ea462008-11-16 04:46:19 +00002238 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
2239 // Fold the add into the true select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002240 return SelectInst::Create(SI->getCondition(), N, A);
Chris Lattner641ea462008-11-16 04:46:19 +00002241 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
2242 // Fold the add into the false select value.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002243 return SelectInst::Create(SI->getCondition(), A, N);
Christopher Lamb244ec282007-12-18 09:34:41 +00002244 }
2245 }
Chris Lattner55476162008-01-29 06:52:45 +00002246
2247 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2248 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
2249 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
2250 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251
Chris Lattner3554f972008-05-20 05:46:13 +00002252 // Check for (add (sext x), y), see if we can merge this into an
2253 // integer add followed by a sext.
2254 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
2255 // (add (sext x), cst) --> (sext (add x, cst'))
2256 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2257 Constant *CI =
2258 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
2259 if (LHSConv->hasOneUse() &&
2260 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
2261 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2262 // Insert the new, smaller add.
2263 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2264 CI, "addconv");
2265 InsertNewInstBefore(NewAdd, I);
2266 return new SExtInst(NewAdd, I.getType());
2267 }
2268 }
2269
2270 // (add (sext x), (sext y)) --> (sext (add int x, y))
2271 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
2272 // Only do this if x/y have the same type, if at last one of them has a
2273 // single use (so we don't increase the number of sexts), and if the
2274 // integer add will not overflow.
2275 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2276 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2277 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2278 RHSConv->getOperand(0))) {
2279 // Insert the new integer add.
2280 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2281 RHSConv->getOperand(0),
2282 "addconv");
2283 InsertNewInstBefore(NewAdd, I);
2284 return new SExtInst(NewAdd, I.getType());
2285 }
2286 }
2287 }
2288
2289 // Check for (add double (sitofp x), y), see if we can merge this into an
2290 // integer add followed by a promotion.
2291 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
2292 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2293 // ... if the constant fits in the integer value. This is useful for things
2294 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2295 // requires a constant pool load, and generally allows the add to be better
2296 // instcombined.
2297 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
2298 Constant *CI =
2299 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
2300 if (LHSConv->hasOneUse() &&
2301 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
2302 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
2303 // Insert the new integer add.
2304 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2305 CI, "addconv");
2306 InsertNewInstBefore(NewAdd, I);
2307 return new SIToFPInst(NewAdd, I.getType());
2308 }
2309 }
2310
2311 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2312 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
2313 // Only do this if x/y have the same type, if at last one of them has a
2314 // single use (so we don't increase the number of int->fp conversions),
2315 // and if the integer add will not overflow.
2316 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
2317 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
2318 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
2319 RHSConv->getOperand(0))) {
2320 // Insert the new integer add.
2321 Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
2322 RHSConv->getOperand(0),
2323 "addconv");
2324 InsertNewInstBefore(NewAdd, I);
2325 return new SIToFPInst(NewAdd, I.getType());
2326 }
2327 }
2328 }
2329
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330 return Changed ? &I : 0;
2331}
2332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002333Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2334 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2335
Chris Lattner27fbef42008-07-17 06:07:20 +00002336 if (Op0 == Op1 && // sub X, X -> 0
2337 !I.getType()->isFPOrFPVector())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002338 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2339
2340 // If this is a 'B = x-(-A)', change to B = x+A...
2341 if (Value *V = dyn_castNegVal(Op1))
Gabor Greifa645dd32008-05-16 19:29:10 +00002342 return BinaryOperator::CreateAdd(Op0, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002343
2344 if (isa<UndefValue>(Op0))
2345 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2346 if (isa<UndefValue>(Op1))
2347 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2348
2349 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2350 // Replace (-1 - A) with (~A)...
2351 if (C->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002352 return BinaryOperator::CreateNot(Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353
2354 // C - ~X == X + (1+C)
2355 Value *X = 0;
2356 if (match(Op1, m_Not(m_Value(X))))
Gabor Greifa645dd32008-05-16 19:29:10 +00002357 return BinaryOperator::CreateAdd(X, AddOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358
2359 // -(X >>u 31) -> (X >>s 31)
2360 // -(X >>s 31) -> (X >>u 31)
2361 if (C->isZero()) {
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002362 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002363 if (SI->getOpcode() == Instruction::LShr) {
2364 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2365 // Check to see if we are shifting out everything but the sign bit.
2366 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2367 SI->getType()->getPrimitiveSizeInBits()-1) {
2368 // Ok, the transformation is safe. Insert AShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002369 return BinaryOperator::Create(Instruction::AShr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370 SI->getOperand(0), CU, SI->getName());
2371 }
2372 }
2373 }
2374 else if (SI->getOpcode() == Instruction::AShr) {
2375 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2376 // Check to see if we are shifting out everything but the sign bit.
2377 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2378 SI->getType()->getPrimitiveSizeInBits()-1) {
2379 // Ok, the transformation is safe. Insert LShr.
Gabor Greifa645dd32008-05-16 19:29:10 +00002380 return BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002381 SI->getOperand(0), CU, SI->getName());
2382 }
2383 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002384 }
2385 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 }
2387
2388 // Try to fold constant sub into select arguments.
2389 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2390 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2391 return R;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002392 }
2393
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002394 if (I.getType() == Type::Int1Ty)
2395 return BinaryOperator::CreateXor(Op0, Op1);
2396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002397 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2398 if (Op1I->getOpcode() == Instruction::Add &&
2399 !Op0->getType()->isFPOrFPVector()) {
2400 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002401 return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002403 return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002404 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2405 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2406 // C1-(X+C2) --> (C1-C2)-X
Gabor Greifa645dd32008-05-16 19:29:10 +00002407 return BinaryOperator::CreateSub(Subtract(CI1, CI2),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 Op1I->getOperand(0));
2409 }
2410 }
2411
2412 if (Op1I->hasOneUse()) {
2413 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2414 // is not used by anyone else...
2415 //
2416 if (Op1I->getOpcode() == Instruction::Sub &&
2417 !Op1I->getType()->isFPOrFPVector()) {
2418 // Swap the two operands of the subexpr...
2419 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2420 Op1I->setOperand(0, IIOp1);
2421 Op1I->setOperand(1, IIOp0);
2422
2423 // Create the new top level add instruction...
Gabor Greifa645dd32008-05-16 19:29:10 +00002424 return BinaryOperator::CreateAdd(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425 }
2426
2427 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2428 //
2429 if (Op1I->getOpcode() == Instruction::And &&
2430 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2431 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2432
2433 Value *NewNot =
Gabor Greifa645dd32008-05-16 19:29:10 +00002434 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
2435 return BinaryOperator::CreateAnd(Op0, NewNot);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002436 }
2437
2438 // 0 - (X sdiv C) -> (X sdiv -C)
2439 if (Op1I->getOpcode() == Instruction::SDiv)
2440 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2441 if (CSI->isZero())
2442 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002443 return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002444 ConstantExpr::getNeg(DivRHS));
2445
2446 // X - X*C --> X * (1-C)
2447 ConstantInt *C2 = 0;
2448 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2449 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002450 return BinaryOperator::CreateMul(Op0, CP1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 }
2452 }
2453 }
2454
2455 if (!Op0->getType()->isFPOrFPVector())
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002456 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002457 if (Op0I->getOpcode() == Instruction::Add) {
2458 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2459 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2460 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2461 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2462 } else if (Op0I->getOpcode() == Instruction::Sub) {
2463 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
Gabor Greifa645dd32008-05-16 19:29:10 +00002464 return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002465 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00002466 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467
2468 ConstantInt *C1;
2469 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2470 if (X == Op1) // X*C - X --> X * (C-1)
Gabor Greifa645dd32008-05-16 19:29:10 +00002471 return BinaryOperator::CreateMul(Op1, SubOne(C1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472
2473 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2474 if (X == dyn_castFoldableMul(Op1, C2))
Gabor Greifa645dd32008-05-16 19:29:10 +00002475 return BinaryOperator::CreateMul(X, Subtract(C1, C2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 }
2477 return 0;
2478}
2479
2480/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2481/// comparison only checks the sign bit. If it only checks the sign bit, set
2482/// TrueIfSigned if the result of the comparison is true when the input value is
2483/// signed.
2484static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2485 bool &TrueIfSigned) {
2486 switch (pred) {
2487 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2488 TrueIfSigned = true;
2489 return RHS->isZero();
2490 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2491 TrueIfSigned = true;
2492 return RHS->isAllOnesValue();
2493 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2494 TrueIfSigned = false;
2495 return RHS->isAllOnesValue();
2496 case ICmpInst::ICMP_UGT:
2497 // True if LHS u> RHS and RHS == high-bit-mask - 1
2498 TrueIfSigned = true;
2499 return RHS->getValue() ==
2500 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2501 case ICmpInst::ICMP_UGE:
2502 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2503 TrueIfSigned = true;
Chris Lattner60813c22008-06-02 01:29:46 +00002504 return RHS->getValue().isSignBit();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505 default:
2506 return false;
2507 }
2508}
2509
2510Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2511 bool Changed = SimplifyCommutative(I);
2512 Value *Op0 = I.getOperand(0);
2513
2514 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2515 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2516
2517 // Simplify mul instructions with a constant RHS...
2518 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2519 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2520
2521 // ((X << C1)*C2) == (X * (C2 << C1))
2522 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2523 if (SI->getOpcode() == Instruction::Shl)
2524 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002525 return BinaryOperator::CreateMul(SI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002526 ConstantExpr::getShl(CI, ShOp));
2527
2528 if (CI->isZero())
2529 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2530 if (CI->equalsInt(1)) // X * 1 == X
2531 return ReplaceInstUsesWith(I, Op0);
2532 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Gabor Greifa645dd32008-05-16 19:29:10 +00002533 return BinaryOperator::CreateNeg(Op0, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534
2535 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2536 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
Gabor Greifa645dd32008-05-16 19:29:10 +00002537 return BinaryOperator::CreateShl(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002538 ConstantInt::get(Op0->getType(), Val.logBase2()));
2539 }
2540 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2541 if (Op1F->isNullValue())
2542 return ReplaceInstUsesWith(I, Op1);
2543
2544 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2545 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Chris Lattner6297fc72008-08-11 22:06:05 +00002546 if (Op1F->isExactlyValue(1.0))
2547 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2548 } else if (isa<VectorType>(Op1->getType())) {
2549 if (isa<ConstantAggregateZero>(Op1))
2550 return ReplaceInstUsesWith(I, Op1);
Nick Lewycky94418732008-11-27 20:21:08 +00002551
2552 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2553 if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
2554 return BinaryOperator::CreateNeg(Op0, I.getName());
2555
2556 // As above, vector X*splat(1.0) -> X in all defined cases.
2557 if (Constant *Splat = Op1V->getSplatValue()) {
2558 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
2559 if (F->isExactlyValue(1.0))
2560 return ReplaceInstUsesWith(I, Op0);
2561 if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
2562 if (CI->equalsInt(1))
2563 return ReplaceInstUsesWith(I, Op0);
2564 }
2565 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002566 }
2567
2568 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2569 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
Chris Lattner58194082008-05-18 04:11:26 +00002570 isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
Gabor Greifa645dd32008-05-16 19:29:10 +00002572 Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002573 Op1, "tmp");
2574 InsertNewInstBefore(Add, I);
2575 Value *C1C2 = ConstantExpr::getMul(Op1,
2576 cast<Constant>(Op0I->getOperand(1)));
Gabor Greifa645dd32008-05-16 19:29:10 +00002577 return BinaryOperator::CreateAdd(Add, C1C2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578
2579 }
2580
2581 // Try to fold constant mul into select arguments.
2582 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2583 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2584 return R;
2585
2586 if (isa<PHINode>(Op0))
2587 if (Instruction *NV = FoldOpIntoPhi(I))
2588 return NV;
2589 }
2590
2591 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2592 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00002593 return BinaryOperator::CreateMul(Op0v, Op1v);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594
Nick Lewycky1c246402008-11-21 07:33:58 +00002595 // (X / Y) * Y = X - (X % Y)
2596 // (X / Y) * -Y = (X % Y) - X
2597 {
2598 Value *Op1 = I.getOperand(1);
2599 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
2600 if (!BO ||
2601 (BO->getOpcode() != Instruction::UDiv &&
2602 BO->getOpcode() != Instruction::SDiv)) {
2603 Op1 = Op0;
2604 BO = dyn_cast<BinaryOperator>(I.getOperand(1));
2605 }
2606 Value *Neg = dyn_castNegVal(Op1);
2607 if (BO && BO->hasOneUse() &&
2608 (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
2609 (BO->getOpcode() == Instruction::UDiv ||
2610 BO->getOpcode() == Instruction::SDiv)) {
2611 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
2612
2613 Instruction *Rem;
2614 if (BO->getOpcode() == Instruction::UDiv)
2615 Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
2616 else
2617 Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
2618
2619 InsertNewInstBefore(Rem, I);
2620 Rem->takeName(BO);
2621
2622 if (Op1BO == Op1)
2623 return BinaryOperator::CreateSub(Op0BO, Rem);
2624 else
2625 return BinaryOperator::CreateSub(Rem, Op0BO);
2626 }
2627 }
2628
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002629 if (I.getType() == Type::Int1Ty)
2630 return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
2631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002632 // If one of the operands of the multiply is a cast from a boolean value, then
2633 // we know the bool is either zero or one, so this is a 'masking' multiply.
2634 // See if we can simplify things based on how the boolean was originally
2635 // formed.
2636 CastInst *BoolCast = 0;
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002637 if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002638 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2639 BoolCast = CI;
2640 if (!BoolCast)
2641 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2642 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2643 BoolCast = CI;
2644 if (BoolCast) {
2645 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2646 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2647 const Type *SCOpTy = SCIOp0->getType();
2648 bool TIS = false;
2649
2650 // If the icmp is true iff the sign bit of X is set, then convert this
2651 // multiply into a shift/and combination.
2652 if (isa<ConstantInt>(SCIOp1) &&
2653 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2654 TIS) {
2655 // Shift the X value right to turn it into "all signbits".
2656 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2657 SCOpTy->getPrimitiveSizeInBits()-1);
2658 Value *V =
2659 InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00002660 BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661 BoolCast->getOperand(0)->getName()+
2662 ".mask"), I);
2663
2664 // If the multiply type is not the same as the source type, sign extend
2665 // or truncate to the multiply type.
2666 if (I.getType() != V->getType()) {
2667 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2668 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2669 Instruction::CastOps opcode =
2670 (SrcBits == DstBits ? Instruction::BitCast :
2671 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2672 V = InsertCastBefore(opcode, V, I.getType(), I);
2673 }
2674
2675 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Gabor Greifa645dd32008-05-16 19:29:10 +00002676 return BinaryOperator::CreateAnd(V, OtherOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002677 }
2678 }
2679 }
2680
2681 return Changed ? &I : 0;
2682}
2683
Chris Lattner76972db2008-07-14 00:15:52 +00002684/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2685/// instruction.
2686bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
2687 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
2688
2689 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2690 int NonNullOperand = -1;
2691 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2692 if (ST->isNullValue())
2693 NonNullOperand = 2;
2694 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2695 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2696 if (ST->isNullValue())
2697 NonNullOperand = 1;
2698
2699 if (NonNullOperand == -1)
2700 return false;
2701
2702 Value *SelectCond = SI->getOperand(0);
2703
2704 // Change the div/rem to use 'Y' instead of the select.
2705 I.setOperand(1, SI->getOperand(NonNullOperand));
2706
2707 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2708 // problem. However, the select, or the condition of the select may have
2709 // multiple uses. Based on our knowledge that the operand must be non-zero,
2710 // propagate the known value for the select into other uses of it, and
2711 // propagate a known value of the condition into its other users.
2712
2713 // If the select and condition only have a single use, don't bother with this,
2714 // early exit.
2715 if (SI->use_empty() && SelectCond->hasOneUse())
2716 return true;
2717
2718 // Scan the current block backward, looking for other uses of SI.
2719 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
2720
2721 while (BBI != BBFront) {
2722 --BBI;
2723 // If we found a call to a function, we can't assume it will return, so
2724 // information from below it cannot be propagated above it.
2725 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
2726 break;
2727
2728 // Replace uses of the select or its condition with the known values.
2729 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
2730 I != E; ++I) {
2731 if (*I == SI) {
2732 *I = SI->getOperand(NonNullOperand);
2733 AddToWorkList(BBI);
2734 } else if (*I == SelectCond) {
2735 *I = NonNullOperand == 1 ? ConstantInt::getTrue() :
2736 ConstantInt::getFalse();
2737 AddToWorkList(BBI);
2738 }
2739 }
2740
2741 // If we past the instruction, quit looking for it.
2742 if (&*BBI == SI)
2743 SI = 0;
2744 if (&*BBI == SelectCond)
2745 SelectCond = 0;
2746
2747 // If we ran out of things to eliminate, break out of the loop.
2748 if (SelectCond == 0 && SI == 0)
2749 break;
2750
2751 }
2752 return true;
2753}
2754
2755
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002756/// This function implements the transforms on div instructions that work
2757/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2758/// used by the visitors to those instructions.
2759/// @brief Transforms common to all three div instructions
2760Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2761 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2762
Chris Lattner653ef3c2008-02-19 06:12:18 +00002763 // undef / X -> 0 for integer.
2764 // undef / X -> undef for FP (the undef could be a snan).
2765 if (isa<UndefValue>(Op0)) {
2766 if (Op0->getType()->isFPOrFPVector())
2767 return ReplaceInstUsesWith(I, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002768 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002769 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002770
2771 // X / undef -> undef
2772 if (isa<UndefValue>(Op1))
2773 return ReplaceInstUsesWith(I, Op1);
2774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775 return 0;
2776}
2777
2778/// This function implements the transforms common to both integer division
2779/// instructions (udiv and sdiv). It is called by the visitors to those integer
2780/// division instructions.
2781/// @brief Common integer divide transforms
2782Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2783 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2784
Chris Lattnercefb36c2008-05-16 02:59:42 +00002785 // (sdiv X, X) --> 1 (udiv X, X) --> 1
Nick Lewycky386c0132008-05-23 03:26:47 +00002786 if (Op0 == Op1) {
2787 if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
2788 ConstantInt *CI = ConstantInt::get(Ty->getElementType(), 1);
2789 std::vector<Constant*> Elts(Ty->getNumElements(), CI);
2790 return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
2791 }
2792
2793 ConstantInt *CI = ConstantInt::get(I.getType(), 1);
2794 return ReplaceInstUsesWith(I, CI);
2795 }
Chris Lattnercefb36c2008-05-16 02:59:42 +00002796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002797 if (Instruction *Common = commonDivTransforms(I))
2798 return Common;
Chris Lattner76972db2008-07-14 00:15:52 +00002799
2800 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2801 // This does not apply for fdiv.
2802 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2803 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002804
2805 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2806 // div X, 1 == X
2807 if (RHS->equalsInt(1))
2808 return ReplaceInstUsesWith(I, Op0);
2809
2810 // (X / C1) / C2 -> X / (C1*C2)
2811 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2812 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2813 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Nick Lewycky9d798f92008-02-18 22:48:05 +00002814 if (MultiplyOverflows(RHS, LHSRHS, I.getOpcode()==Instruction::SDiv))
2815 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2816 else
Gabor Greifa645dd32008-05-16 19:29:10 +00002817 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
Nick Lewycky9d798f92008-02-18 22:48:05 +00002818 Multiply(RHS, LHSRHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 }
2820
2821 if (!RHS->isZero()) { // avoid X udiv 0
2822 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2823 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2824 return R;
2825 if (isa<PHINode>(Op0))
2826 if (Instruction *NV = FoldOpIntoPhi(I))
2827 return NV;
2828 }
2829 }
2830
2831 // 0 / X == 0, we don't need to preserve faults!
2832 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2833 if (LHS->equalsInt(0))
2834 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2835
Nick Lewyckyd4b63672008-05-31 17:59:52 +00002836 // It can't be division by zero, hence it must be division by one.
2837 if (I.getType() == Type::Int1Ty)
2838 return ReplaceInstUsesWith(I, Op0);
2839
Nick Lewycky94418732008-11-27 20:21:08 +00002840 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
2841 if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
2842 // div X, 1 == X
2843 if (X->isOne())
2844 return ReplaceInstUsesWith(I, Op0);
2845 }
2846
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002847 return 0;
2848}
2849
2850Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2851 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2852
2853 // Handle the integer div common cases
2854 if (Instruction *Common = commonIDivTransforms(I))
2855 return Common;
2856
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002857 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky240182a2008-11-27 22:41:10 +00002858 // X udiv C^2 -> X >> C
2859 // Check to see if this is an unsigned division with an exact power of 2,
2860 // if so, convert to a right shift.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002861 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
Gabor Greifa645dd32008-05-16 19:29:10 +00002862 return BinaryOperator::CreateLShr(Op0,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
Nick Lewycky240182a2008-11-27 22:41:10 +00002864
2865 // X udiv C, where C >= signbit
2866 if (C->getValue().isNegative()) {
2867 Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
2868 I);
2869 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
2870 ConstantInt::get(I.getType(), 1));
2871 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 }
2873
2874 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2875 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2876 if (RHSI->getOpcode() == Instruction::Shl &&
2877 isa<ConstantInt>(RHSI->getOperand(0))) {
2878 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2879 if (C1.isPowerOf2()) {
2880 Value *N = RHSI->getOperand(1);
2881 const Type *NTy = N->getType();
2882 if (uint32_t C2 = C1.logBase2()) {
2883 Constant *C2V = ConstantInt::get(NTy, C2);
Gabor Greifa645dd32008-05-16 19:29:10 +00002884 N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002885 }
Gabor Greifa645dd32008-05-16 19:29:10 +00002886 return BinaryOperator::CreateLShr(Op0, N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002887 }
2888 }
2889 }
2890
2891 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2892 // where C1&C2 are powers of two.
2893 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2894 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2895 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2896 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2897 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2898 // Compute the shift amounts
2899 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2900 // Construct the "on true" case of the select
2901 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002902 Instruction *TSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002903 Op0, TC, SI->getName()+".t");
2904 TSI = InsertNewInstBefore(TSI, I);
2905
2906 // Construct the "on false" case of the select
2907 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
Gabor Greifa645dd32008-05-16 19:29:10 +00002908 Instruction *FSI = BinaryOperator::CreateLShr(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909 Op0, FC, SI->getName()+".f");
2910 FSI = InsertNewInstBefore(FSI, I);
2911
2912 // construct the select instruction and return it.
Gabor Greifd6da1d02008-04-06 20:25:17 +00002913 return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002914 }
2915 }
2916 return 0;
2917}
2918
2919Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2920 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2921
2922 // Handle the integer div common cases
2923 if (Instruction *Common = commonIDivTransforms(I))
2924 return Common;
2925
2926 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2927 // sdiv X, -1 == -X
2928 if (RHS->isAllOnesValue())
Gabor Greifa645dd32008-05-16 19:29:10 +00002929 return BinaryOperator::CreateNeg(Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002930
Bill Wendling8fd57592008-11-30 03:42:12 +00002931 // -X/C -> X/-C, if and only if negation doesn't overflow.
Bill Wendlingf2e0efd2008-12-01 07:47:02 +00002932 if (Value *LHSNeg = dyn_castNegVal(Op0)) {
2933 if (ConstantInt *CI = dyn_cast<ConstantInt>(LHSNeg)) {
2934 ConstantInt *RHSNeg = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2935 APInt RHSNegAPI(RHSNeg->getValue());
2936
2937 APInt NegOne = -APInt(RHSNeg->getBitWidth(), 1, true);
2938 APInt TwoToExp(RHSNeg->getBitWidth(), 1 << (RHSNeg->getBitWidth() - 1));
2939
2940 if ((RHS->getValue().isNegative() &&
2941 RHSNegAPI.slt(TwoToExp - 1)) ||
2942 (RHS->getValue().isNonNegative() &&
2943 RHSNegAPI.sgt(TwoToExp * NegOne))) {
Bill Wendling8fd57592008-11-30 03:42:12 +00002944 ConstantInt *CINeg = cast<ConstantInt>(ConstantExpr::getNeg(CI));
Bill Wendling6a86a2f2008-11-30 12:41:09 +00002945 APInt CINegAPI(CINeg->getValue());
Bill Wendling8fd57592008-11-30 03:42:12 +00002946
Bill Wendlingb9b1a6f2008-11-30 12:38:24 +00002947 if ((CI->getValue().isNegative() && CINegAPI.slt(TwoToExp - 1)) ||
2948 (CI->getValue().isNonNegative() && CINegAPI.sgt(TwoToExp*NegOne)))
Bill Wendling8fd57592008-11-30 03:42:12 +00002949 return BinaryOperator::CreateSDiv(LHSNeg,
2950 ConstantExpr::getNeg(RHS));
2951 }
2952 }
2953 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954 }
2955
2956 // If the sign bits of both operands are zero (i.e. we can prove they are
2957 // unsigned inputs), turn this into a udiv.
2958 if (I.getType()->isInteger()) {
2959 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2960 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002961 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00002962 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002963 }
2964 }
2965
2966 return 0;
2967}
2968
2969Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2970 return commonDivTransforms(I);
2971}
2972
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973/// This function implements the transforms on rem instructions that work
2974/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2975/// is used by the visitors to those instructions.
2976/// @brief Transforms common to all three rem instructions
2977Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2978 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2979
Chris Lattner653ef3c2008-02-19 06:12:18 +00002980 // 0 % X == 0 for integer, we don't need to preserve faults!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002981 if (Constant *LHS = dyn_cast<Constant>(Op0))
2982 if (LHS->isNullValue())
2983 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2984
Chris Lattner653ef3c2008-02-19 06:12:18 +00002985 if (isa<UndefValue>(Op0)) { // undef % X -> 0
2986 if (I.getType()->isFPOrFPVector())
2987 return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002988 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner653ef3c2008-02-19 06:12:18 +00002989 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002990 if (isa<UndefValue>(Op1))
2991 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2992
2993 // Handle cases involving: rem X, (select Cond, Y, Z)
Chris Lattner76972db2008-07-14 00:15:52 +00002994 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
2995 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002996
2997 return 0;
2998}
2999
3000/// This function implements the transforms common to both integer remainder
3001/// instructions (urem and srem). It is called by the visitors to those integer
3002/// remainder instructions.
3003/// @brief Common integer remainder transforms
3004Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3005 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3006
3007 if (Instruction *common = commonRemTransforms(I))
3008 return common;
3009
3010 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3011 // X % 0 == undef, we don't need to preserve faults!
3012 if (RHS->equalsInt(0))
3013 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3014
3015 if (RHS->equalsInt(1)) // X % 1 == 0
3016 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3017
3018 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3019 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3020 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3021 return R;
3022 } else if (isa<PHINode>(Op0I)) {
3023 if (Instruction *NV = FoldOpIntoPhi(I))
3024 return NV;
3025 }
Nick Lewyckyc1372c82008-03-06 06:48:30 +00003026
3027 // See if we can fold away this rem instruction.
3028 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3029 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3030 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3031 KnownZero, KnownOne))
3032 return &I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003033 }
3034 }
3035
3036 return 0;
3037}
3038
3039Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3040 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3041
3042 if (Instruction *common = commonIRemTransforms(I))
3043 return common;
3044
3045 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3046 // X urem C^2 -> X and C
3047 // Check to see if this is an unsigned remainder with an exact power of 2,
3048 // if so, convert to a bitwise and.
3049 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3050 if (C->getValue().isPowerOf2())
Gabor Greifa645dd32008-05-16 19:29:10 +00003051 return BinaryOperator::CreateAnd(Op0, SubOne(C));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003052 }
3053
3054 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
3055 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3056 if (RHSI->getOpcode() == Instruction::Shl &&
3057 isa<ConstantInt>(RHSI->getOperand(0))) {
3058 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
3059 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00003060 Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003061 "tmp"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003062 return BinaryOperator::CreateAnd(Op0, Add);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003063 }
3064 }
3065 }
3066
3067 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3068 // where C1&C2 are powers of two.
3069 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3070 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3071 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3072 // STO == 0 and SFO == 0 handled above.
3073 if ((STO->getValue().isPowerOf2()) &&
3074 (SFO->getValue().isPowerOf2())) {
3075 Value *TrueAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003076 BinaryOperator::CreateAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003077 Value *FalseAnd = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003078 BinaryOperator::CreateAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
Gabor Greifd6da1d02008-04-06 20:25:17 +00003079 return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 }
3081 }
3082 }
3083
3084 return 0;
3085}
3086
3087Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3088 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3089
Dan Gohmandb3dd962007-11-05 23:16:33 +00003090 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091 if (Instruction *common = commonIRemTransforms(I))
3092 return common;
3093
3094 if (Value *RHSNeg = dyn_castNegVal(Op1))
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00003095 if (!isa<Constant>(RHSNeg) ||
3096 (isa<ConstantInt>(RHSNeg) &&
3097 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003098 // X % -Y -> X % Y
3099 AddUsesToWorkList(I);
3100 I.setOperand(1, RHSNeg);
3101 return &I;
3102 }
Nick Lewycky5515c7a2008-09-30 06:08:34 +00003103
Dan Gohmandb3dd962007-11-05 23:16:33 +00003104 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003105 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00003106 if (I.getType()->isInteger()) {
3107 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
3108 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3109 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Gabor Greifa645dd32008-05-16 19:29:10 +00003110 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
Dan Gohmandb3dd962007-11-05 23:16:33 +00003111 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003112 }
3113
3114 return 0;
3115}
3116
3117Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
3118 return commonRemTransforms(I);
3119}
3120
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003121// isOneBitSet - Return true if there is exactly one bit set in the specified
3122// constant.
3123static bool isOneBitSet(const ConstantInt *CI) {
3124 return CI->getValue().isPowerOf2();
3125}
3126
3127// isHighOnes - Return true if the constant is of the form 1+0+.
3128// This is the same as lowones(~X).
3129static bool isHighOnes(const ConstantInt *CI) {
3130 return (~CI->getValue() + 1).isPowerOf2();
3131}
3132
3133/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3134/// are carefully arranged to allow folding of expressions such as:
3135///
3136/// (A < B) | (A > B) --> (A != B)
3137///
3138/// Note that this is only valid if the first and second predicates have the
3139/// same sign. Is illegal to do: (A u< B) | (A s> B)
3140///
3141/// Three bits are used to represent the condition, as follows:
3142/// 0 A > B
3143/// 1 A == B
3144/// 2 A < B
3145///
3146/// <=> Value Definition
3147/// 000 0 Always false
3148/// 001 1 A > B
3149/// 010 2 A == B
3150/// 011 3 A >= B
3151/// 100 4 A < B
3152/// 101 5 A != B
3153/// 110 6 A <= B
3154/// 111 7 Always true
3155///
3156static unsigned getICmpCode(const ICmpInst *ICI) {
3157 switch (ICI->getPredicate()) {
3158 // False -> 0
3159 case ICmpInst::ICMP_UGT: return 1; // 001
3160 case ICmpInst::ICMP_SGT: return 1; // 001
3161 case ICmpInst::ICMP_EQ: return 2; // 010
3162 case ICmpInst::ICMP_UGE: return 3; // 011
3163 case ICmpInst::ICMP_SGE: return 3; // 011
3164 case ICmpInst::ICMP_ULT: return 4; // 100
3165 case ICmpInst::ICMP_SLT: return 4; // 100
3166 case ICmpInst::ICMP_NE: return 5; // 101
3167 case ICmpInst::ICMP_ULE: return 6; // 110
3168 case ICmpInst::ICMP_SLE: return 6; // 110
3169 // True -> 7
3170 default:
3171 assert(0 && "Invalid ICmp predicate!");
3172 return 0;
3173 }
3174}
3175
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003176/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3177/// predicate into a three bit mask. It also returns whether it is an ordered
3178/// predicate by reference.
3179static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
3180 isOrdered = false;
3181 switch (CC) {
3182 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
3183 case FCmpInst::FCMP_UNO: return 0; // 000
Evan Chengf1f2cea2008-10-14 18:13:38 +00003184 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
3185 case FCmpInst::FCMP_UGT: return 1; // 001
3186 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
3187 case FCmpInst::FCMP_UEQ: return 2; // 010
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003188 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
3189 case FCmpInst::FCMP_UGE: return 3; // 011
3190 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
3191 case FCmpInst::FCMP_ULT: return 4; // 100
Evan Chengf1f2cea2008-10-14 18:13:38 +00003192 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
3193 case FCmpInst::FCMP_UNE: return 5; // 101
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003194 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
3195 case FCmpInst::FCMP_ULE: return 6; // 110
Evan Cheng72988052008-10-14 18:44:08 +00003196 // True -> 7
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003197 default:
3198 // Not expecting FCMP_FALSE and FCMP_TRUE;
3199 assert(0 && "Unexpected FCmp predicate!");
3200 return 0;
3201 }
3202}
3203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204/// getICmpValue - This is the complement of getICmpCode, which turns an
3205/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00003206/// new ICmp instruction. The sign is passed in to determine which kind
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003207/// of predicate to use in the new icmp instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003208static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3209 switch (code) {
3210 default: assert(0 && "Illegal ICmp code!");
3211 case 0: return ConstantInt::getFalse();
3212 case 1:
3213 if (sign)
3214 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3215 else
3216 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3217 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3218 case 3:
3219 if (sign)
3220 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3221 else
3222 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3223 case 4:
3224 if (sign)
3225 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3226 else
3227 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3228 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3229 case 6:
3230 if (sign)
3231 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3232 else
3233 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
3234 case 7: return ConstantInt::getTrue();
3235 }
3236}
3237
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003238/// getFCmpValue - This is the complement of getFCmpCode, which turns an
3239/// opcode and two operands into either a FCmp instruction. isordered is passed
3240/// in to determine which kind of predicate to use in the new fcmp instruction.
3241static Value *getFCmpValue(bool isordered, unsigned code,
3242 Value *LHS, Value *RHS) {
3243 switch (code) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00003244 default: assert(0 && "Illegal FCmp code!");
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003245 case 0:
3246 if (isordered)
3247 return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
3248 else
3249 return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
3250 case 1:
3251 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003252 return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
3253 else
3254 return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
Evan Chengf1f2cea2008-10-14 18:13:38 +00003255 case 2:
3256 if (isordered)
3257 return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
3258 else
3259 return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003260 case 3:
3261 if (isordered)
3262 return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
3263 else
3264 return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
3265 case 4:
3266 if (isordered)
3267 return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
3268 else
3269 return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
3270 case 5:
3271 if (isordered)
Evan Chengf1f2cea2008-10-14 18:13:38 +00003272 return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
3273 else
3274 return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
3275 case 6:
3276 if (isordered)
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003277 return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
3278 else
3279 return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
Evan Cheng72988052008-10-14 18:44:08 +00003280 case 7: return ConstantInt::getTrue();
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00003281 }
3282}
3283
Chris Lattner2972b822008-11-16 04:55:20 +00003284/// PredicatesFoldable - Return true if both predicates match sign or if at
3285/// least one of them is an equality comparison (which is signless).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003286static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3287 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
Chris Lattner2972b822008-11-16 04:55:20 +00003288 (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
3289 (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003290}
3291
3292namespace {
3293// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3294struct FoldICmpLogical {
3295 InstCombiner &IC;
3296 Value *LHS, *RHS;
3297 ICmpInst::Predicate pred;
3298 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3299 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3300 pred(ICI->getPredicate()) {}
3301 bool shouldApply(Value *V) const {
3302 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3303 if (PredicatesFoldable(pred, ICI->getPredicate()))
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003304 return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
3305 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003306 return false;
3307 }
3308 Instruction *apply(Instruction &Log) const {
3309 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3310 if (ICI->getOperand(0) != LHS) {
3311 assert(ICI->getOperand(1) == LHS);
3312 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3313 }
3314
3315 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3316 unsigned LHSCode = getICmpCode(ICI);
3317 unsigned RHSCode = getICmpCode(RHSICI);
3318 unsigned Code;
3319 switch (Log.getOpcode()) {
3320 case Instruction::And: Code = LHSCode & RHSCode; break;
3321 case Instruction::Or: Code = LHSCode | RHSCode; break;
3322 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3323 default: assert(0 && "Illegal logical opcode!"); return 0;
3324 }
3325
3326 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3327 ICmpInst::isSignedPredicate(ICI->getPredicate());
3328
3329 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3330 if (Instruction *I = dyn_cast<Instruction>(RV))
3331 return I;
3332 // Otherwise, it's a constant boolean value...
3333 return IC.ReplaceInstUsesWith(Log, RV);
3334 }
3335};
3336} // end anonymous namespace
3337
3338// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3339// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3340// guaranteed to be a binary operator.
3341Instruction *InstCombiner::OptAndOp(Instruction *Op,
3342 ConstantInt *OpRHS,
3343 ConstantInt *AndRHS,
3344 BinaryOperator &TheAnd) {
3345 Value *X = Op->getOperand(0);
3346 Constant *Together = 0;
3347 if (!Op->isShift())
3348 Together = And(AndRHS, OpRHS);
3349
3350 switch (Op->getOpcode()) {
3351 case Instruction::Xor:
3352 if (Op->hasOneUse()) {
3353 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Gabor Greifa645dd32008-05-16 19:29:10 +00003354 Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355 InsertNewInstBefore(And, TheAnd);
3356 And->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003357 return BinaryOperator::CreateXor(And, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 }
3359 break;
3360 case Instruction::Or:
3361 if (Together == AndRHS) // (X | C) & C --> C
3362 return ReplaceInstUsesWith(TheAnd, AndRHS);
3363
3364 if (Op->hasOneUse() && Together != OpRHS) {
3365 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Gabor Greifa645dd32008-05-16 19:29:10 +00003366 Instruction *Or = BinaryOperator::CreateOr(X, Together);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003367 InsertNewInstBefore(Or, TheAnd);
3368 Or->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003369 return BinaryOperator::CreateAnd(Or, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003370 }
3371 break;
3372 case Instruction::Add:
3373 if (Op->hasOneUse()) {
3374 // Adding a one to a single bit bit-field should be turned into an XOR
3375 // of the bit. First thing to check is to see if this AND is with a
3376 // single bit constant.
3377 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3378
3379 // If there is only one bit set...
3380 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3381 // Ok, at this point, we know that we are masking the result of the
3382 // ADD down to exactly one bit. If the constant we are adding has
3383 // no bits set below this bit, then we can eliminate the ADD.
3384 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3385
3386 // Check to see if any bits below the one bit set in AndRHSV are set.
3387 if ((AddRHS & (AndRHSV-1)) == 0) {
3388 // If not, the only thing that can effect the output of the AND is
3389 // the bit specified by AndRHSV. If that bit is set, the effect of
3390 // the XOR is to toggle the bit. If it is clear, then the ADD has
3391 // no effect.
3392 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3393 TheAnd.setOperand(0, X);
3394 return &TheAnd;
3395 } else {
3396 // Pull the XOR out of the AND.
Gabor Greifa645dd32008-05-16 19:29:10 +00003397 Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003398 InsertNewInstBefore(NewAnd, TheAnd);
3399 NewAnd->takeName(Op);
Gabor Greifa645dd32008-05-16 19:29:10 +00003400 return BinaryOperator::CreateXor(NewAnd, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401 }
3402 }
3403 }
3404 }
3405 break;
3406
3407 case Instruction::Shl: {
3408 // We know that the AND will not produce any of the bits shifted in, so if
3409 // the anded constant includes them, clear them now!
3410 //
3411 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3412 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3413 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3414 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3415
3416 if (CI->getValue() == ShlMask) {
3417 // Masking out bits that the shift already masks
3418 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3419 } else if (CI != AndRHS) { // Reducing bits set in and.
3420 TheAnd.setOperand(1, CI);
3421 return &TheAnd;
3422 }
3423 break;
3424 }
3425 case Instruction::LShr:
3426 {
3427 // We know that the AND will not produce any of the bits shifted in, so if
3428 // the anded constant includes them, clear them now! This only applies to
3429 // unsigned shifts, because a signed shr may bring in set bits!
3430 //
3431 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3432 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3433 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3434 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3435
3436 if (CI->getValue() == ShrMask) {
3437 // Masking out bits that the shift already masks.
3438 return ReplaceInstUsesWith(TheAnd, Op);
3439 } else if (CI != AndRHS) {
3440 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3441 return &TheAnd;
3442 }
3443 break;
3444 }
3445 case Instruction::AShr:
3446 // Signed shr.
3447 // See if this is shifting in some sign extension, then masking it out
3448 // with an and.
3449 if (Op->hasOneUse()) {
3450 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3451 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3452 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3453 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3454 if (C == AndRHS) { // Masking out bits shifted in.
3455 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3456 // Make the argument unsigned.
3457 Value *ShVal = Op->getOperand(0);
3458 ShVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00003459 BinaryOperator::CreateLShr(ShVal, OpRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460 Op->getName()), TheAnd);
Gabor Greifa645dd32008-05-16 19:29:10 +00003461 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462 }
3463 }
3464 break;
3465 }
3466 return 0;
3467}
3468
3469
3470/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3471/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3472/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3473/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3474/// insert new instructions.
3475Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3476 bool isSigned, bool Inside,
3477 Instruction &IB) {
3478 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3479 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3480 "Lo is not <= Hi in range emission code!");
3481
3482 if (Inside) {
3483 if (Lo == Hi) // Trivially false.
3484 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3485
3486 // V >= Min && V < Hi --> V < Hi
3487 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3488 ICmpInst::Predicate pred = (isSigned ?
3489 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3490 return new ICmpInst(pred, V, Hi);
3491 }
3492
3493 // Emit V-Lo <u Hi-Lo
3494 Constant *NegLo = ConstantExpr::getNeg(Lo);
Gabor Greifa645dd32008-05-16 19:29:10 +00003495 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496 InsertNewInstBefore(Add, IB);
3497 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3498 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3499 }
3500
3501 if (Lo == Hi) // Trivially true.
3502 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3503
3504 // V < Min || V >= Hi -> V > Hi-1
3505 Hi = SubOne(cast<ConstantInt>(Hi));
3506 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3507 ICmpInst::Predicate pred = (isSigned ?
3508 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3509 return new ICmpInst(pred, V, Hi);
3510 }
3511
3512 // Emit V-Lo >u Hi-1-Lo
3513 // Note that Hi has already had one subtracted from it, above.
3514 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
Gabor Greifa645dd32008-05-16 19:29:10 +00003515 Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 InsertNewInstBefore(Add, IB);
3517 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3518 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3519}
3520
3521// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3522// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3523// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3524// not, since all 1s are not contiguous.
3525static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3526 const APInt& V = Val->getValue();
3527 uint32_t BitWidth = Val->getType()->getBitWidth();
3528 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3529
3530 // look for the first zero bit after the run of ones
3531 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3532 // look for the first non-zero bit
3533 ME = V.getActiveBits();
3534 return true;
3535}
3536
3537/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3538/// where isSub determines whether the operator is a sub. If we can fold one of
3539/// the following xforms:
3540///
3541/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3542/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3543/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3544///
3545/// return (A +/- B).
3546///
3547Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3548 ConstantInt *Mask, bool isSub,
3549 Instruction &I) {
3550 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3551 if (!LHSI || LHSI->getNumOperands() != 2 ||
3552 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3553
3554 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3555
3556 switch (LHSI->getOpcode()) {
3557 default: return 0;
3558 case Instruction::And:
3559 if (And(N, Mask) == Mask) {
3560 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3561 if ((Mask->getValue().countLeadingZeros() +
3562 Mask->getValue().countPopulation()) ==
3563 Mask->getValue().getBitWidth())
3564 break;
3565
3566 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3567 // part, we don't need any explicit masks to take them out of A. If that
3568 // is all N is, ignore it.
3569 uint32_t MB = 0, ME = 0;
3570 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3571 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3572 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3573 if (MaskedValueIsZero(RHS, Mask))
3574 break;
3575 }
3576 }
3577 return 0;
3578 case Instruction::Or:
3579 case Instruction::Xor:
3580 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3581 if ((Mask->getValue().countLeadingZeros() +
3582 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3583 && And(N, Mask)->isZero())
3584 break;
3585 return 0;
3586 }
3587
3588 Instruction *New;
3589 if (isSub)
Gabor Greifa645dd32008-05-16 19:29:10 +00003590 New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591 else
Gabor Greifa645dd32008-05-16 19:29:10 +00003592 New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003593 return InsertNewInstBefore(New, I);
3594}
3595
Chris Lattner0631ea72008-11-16 05:06:21 +00003596/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3597Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
3598 ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattnerf3803482008-11-16 05:10:52 +00003599 Value *Val, *Val2;
Chris Lattner0631ea72008-11-16 05:06:21 +00003600 ConstantInt *LHSCst, *RHSCst;
3601 ICmpInst::Predicate LHSCC, RHSCC;
3602
Chris Lattnerf3803482008-11-16 05:10:52 +00003603 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Chris Lattner0631ea72008-11-16 05:06:21 +00003604 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
Chris Lattnerf3803482008-11-16 05:10:52 +00003605 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
Chris Lattner0631ea72008-11-16 05:06:21 +00003606 return 0;
Chris Lattnerf3803482008-11-16 05:10:52 +00003607
3608 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3609 // where C is a power of 2
3610 if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
3611 LHSCst->getValue().isPowerOf2()) {
3612 Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
3613 InsertNewInstBefore(NewOr, I);
3614 return new ICmpInst(LHSCC, NewOr, LHSCst);
3615 }
3616
3617 // From here on, we only handle:
3618 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3619 if (Val != Val2) return 0;
3620
Chris Lattner0631ea72008-11-16 05:06:21 +00003621 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3622 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
3623 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
3624 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
3625 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
3626 return 0;
3627
3628 // We can't fold (ugt x, C) & (sgt x, C2).
3629 if (!PredicatesFoldable(LHSCC, RHSCC))
3630 return 0;
3631
3632 // Ensure that the larger constant is on the RHS.
Chris Lattner665298f2008-11-16 05:14:43 +00003633 bool ShouldSwap;
Chris Lattner0631ea72008-11-16 05:06:21 +00003634 if (ICmpInst::isSignedPredicate(LHSCC) ||
3635 (ICmpInst::isEquality(LHSCC) &&
3636 ICmpInst::isSignedPredicate(RHSCC)))
Chris Lattner665298f2008-11-16 05:14:43 +00003637 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
Chris Lattner0631ea72008-11-16 05:06:21 +00003638 else
Chris Lattner665298f2008-11-16 05:14:43 +00003639 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3640
3641 if (ShouldSwap) {
Chris Lattner0631ea72008-11-16 05:06:21 +00003642 std::swap(LHS, RHS);
3643 std::swap(LHSCst, RHSCst);
3644 std::swap(LHSCC, RHSCC);
3645 }
3646
3647 // At this point, we know we have have two icmp instructions
3648 // comparing a value against two constants and and'ing the result
3649 // together. Because of the above check, we know that we only have
3650 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3651 // (from the FoldICmpLogical check above), that the two constants
3652 // are not equal and that the larger constant is on the RHS
3653 assert(LHSCst != RHSCst && "Compares not folded above?");
3654
3655 switch (LHSCC) {
3656 default: assert(0 && "Unknown integer condition code!");
3657 case ICmpInst::ICMP_EQ:
3658 switch (RHSCC) {
3659 default: assert(0 && "Unknown integer condition code!");
3660 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3661 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3662 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3663 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3664 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3665 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3666 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3667 return ReplaceInstUsesWith(I, LHS);
3668 }
3669 case ICmpInst::ICMP_NE:
3670 switch (RHSCC) {
3671 default: assert(0 && "Unknown integer condition code!");
3672 case ICmpInst::ICMP_ULT:
3673 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3674 return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
3675 break; // (X != 13 & X u< 15) -> no change
3676 case ICmpInst::ICMP_SLT:
3677 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3678 return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
3679 break; // (X != 13 & X s< 15) -> no change
3680 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3681 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3682 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3683 return ReplaceInstUsesWith(I, RHS);
3684 case ICmpInst::ICMP_NE:
3685 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3686 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3687 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
3688 Val->getName()+".off");
3689 InsertNewInstBefore(Add, I);
3690 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3691 ConstantInt::get(Add->getType(), 1));
3692 }
3693 break; // (X != 13 & X != 15) -> no change
3694 }
3695 break;
3696 case ICmpInst::ICMP_ULT:
3697 switch (RHSCC) {
3698 default: assert(0 && "Unknown integer condition code!");
3699 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3700 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3701 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3702 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3703 break;
3704 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3705 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3706 return ReplaceInstUsesWith(I, LHS);
3707 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3708 break;
3709 }
3710 break;
3711 case ICmpInst::ICMP_SLT:
3712 switch (RHSCC) {
3713 default: assert(0 && "Unknown integer condition code!");
3714 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3715 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3716 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3717 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3718 break;
3719 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3720 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3721 return ReplaceInstUsesWith(I, LHS);
3722 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3723 break;
3724 }
3725 break;
3726 case ICmpInst::ICMP_UGT:
3727 switch (RHSCC) {
3728 default: assert(0 && "Unknown integer condition code!");
3729 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
3730 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3731 return ReplaceInstUsesWith(I, RHS);
3732 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3733 break;
3734 case ICmpInst::ICMP_NE:
3735 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3736 return new ICmpInst(LHSCC, Val, RHSCst);
3737 break; // (X u> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003738 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003739 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true, I);
3740 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3741 break;
3742 }
3743 break;
3744 case ICmpInst::ICMP_SGT:
3745 switch (RHSCC) {
3746 default: assert(0 && "Unknown integer condition code!");
3747 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
3748 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3749 return ReplaceInstUsesWith(I, RHS);
3750 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3751 break;
3752 case ICmpInst::ICMP_NE:
3753 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3754 return new ICmpInst(LHSCC, Val, RHSCst);
3755 break; // (X s> 13 & X != 15) -> no change
Chris Lattner0c678e52008-11-16 05:20:07 +00003756 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner0631ea72008-11-16 05:06:21 +00003757 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true, I);
3758 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3759 break;
3760 }
3761 break;
3762 }
Chris Lattner0631ea72008-11-16 05:06:21 +00003763
3764 return 0;
3765}
3766
3767
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3769 bool Changed = SimplifyCommutative(I);
3770 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3771
3772 if (isa<UndefValue>(Op1)) // X & undef -> 0
3773 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3774
3775 // and X, X = X
3776 if (Op0 == Op1)
3777 return ReplaceInstUsesWith(I, Op1);
3778
3779 // See if we can simplify any instructions used by the instruction whose sole
3780 // purpose is to compute bits we don't care about.
3781 if (!isa<VectorType>(I.getType())) {
3782 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3783 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3784 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3785 KnownZero, KnownOne))
3786 return &I;
3787 } else {
3788 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3789 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3790 return ReplaceInstUsesWith(I, I.getOperand(0));
3791 } else if (isa<ConstantAggregateZero>(Op1)) {
3792 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3793 }
3794 }
3795
3796 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3797 const APInt& AndRHSMask = AndRHS->getValue();
3798 APInt NotAndRHS(~AndRHSMask);
3799
3800 // Optimize a variety of ((val OP C1) & C2) combinations...
3801 if (isa<BinaryOperator>(Op0)) {
3802 Instruction *Op0I = cast<Instruction>(Op0);
3803 Value *Op0LHS = Op0I->getOperand(0);
3804 Value *Op0RHS = Op0I->getOperand(1);
3805 switch (Op0I->getOpcode()) {
3806 case Instruction::Xor:
3807 case Instruction::Or:
3808 // If the mask is only needed on one incoming arm, push it up.
3809 if (Op0I->hasOneUse()) {
3810 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3811 // Not masking anything out for the LHS, move to RHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003812 Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003813 Op0RHS->getName()+".masked");
3814 InsertNewInstBefore(NewRHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003815 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003816 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3817 }
3818 if (!isa<Constant>(Op0RHS) &&
3819 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3820 // Not masking anything out for the RHS, move to LHS.
Gabor Greifa645dd32008-05-16 19:29:10 +00003821 Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003822 Op0LHS->getName()+".masked");
3823 InsertNewInstBefore(NewLHS, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003824 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3826 }
3827 }
3828
3829 break;
3830 case Instruction::Add:
3831 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3832 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3833 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3834 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003835 return BinaryOperator::CreateAnd(V, AndRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003836 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003837 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003838 break;
3839
3840 case Instruction::Sub:
3841 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3842 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3843 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3844 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
Gabor Greifa645dd32008-05-16 19:29:10 +00003845 return BinaryOperator::CreateAnd(V, AndRHS);
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003846
Nick Lewyckya349ba42008-07-10 05:51:40 +00003847 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3848 // has 1's for all bits that the subtraction with A might affect.
3849 if (Op0I->hasOneUse()) {
3850 uint32_t BitWidth = AndRHSMask.getBitWidth();
3851 uint32_t Zeros = AndRHSMask.countLeadingZeros();
3852 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
3853
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003854 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
Nick Lewyckya349ba42008-07-10 05:51:40 +00003855 if (!(A && A->isZero()) && // avoid infinite recursion.
3856 MaskedValueIsZero(Op0LHS, Mask)) {
Nick Lewyckyffed71b2008-07-09 04:32:37 +00003857 Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
3858 InsertNewInstBefore(NewNeg, I);
3859 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
3860 }
3861 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 break;
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003863
3864 case Instruction::Shl:
3865 case Instruction::LShr:
3866 // (1 << x) & 1 --> zext(x == 0)
3867 // (1 >> x) & 1 --> zext(x == 0)
Nick Lewyckyf1b12222008-07-09 07:35:26 +00003868 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
Nick Lewycky659ed4d2008-07-09 05:20:13 +00003869 Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
3870 Constant::getNullValue(I.getType()));
3871 InsertNewInstBefore(NewICmp, I);
3872 return new ZExtInst(NewICmp, I.getType());
3873 }
3874 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003875 }
3876
3877 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3878 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3879 return Res;
3880 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3881 // If this is an integer truncation or change from signed-to-unsigned, and
3882 // if the source is an and/or with immediate, transform it. This
3883 // frequently occurs for bitfield accesses.
3884 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3885 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3886 CastOp->getNumOperands() == 2)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003887 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 if (CastOp->getOpcode() == Instruction::And) {
3889 // Change: and (cast (and X, C1) to T), C2
3890 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3891 // This will fold the two constants together, which may allow
3892 // other simplifications.
Gabor Greifa645dd32008-05-16 19:29:10 +00003893 Instruction *NewCast = CastInst::CreateTruncOrBitCast(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003894 CastOp->getOperand(0), I.getType(),
3895 CastOp->getName()+".shrunk");
3896 NewCast = InsertNewInstBefore(NewCast, I);
3897 // trunc_or_bitcast(C1)&C2
3898 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3899 C3 = ConstantExpr::getAnd(C3, AndRHS);
Gabor Greifa645dd32008-05-16 19:29:10 +00003900 return BinaryOperator::CreateAnd(NewCast, C3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003901 } else if (CastOp->getOpcode() == Instruction::Or) {
3902 // Change: and (cast (or X, C1) to T), C2
3903 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3904 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3905 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3906 return ReplaceInstUsesWith(I, AndRHS);
3907 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00003908 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 }
3910 }
3911
3912 // Try to fold constant and into select arguments.
3913 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3914 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3915 return R;
3916 if (isa<PHINode>(Op0))
3917 if (Instruction *NV = FoldOpIntoPhi(I))
3918 return NV;
3919 }
3920
3921 Value *Op0NotVal = dyn_castNotVal(Op0);
3922 Value *Op1NotVal = dyn_castNotVal(Op1);
3923
3924 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3925 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3926
3927 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3928 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00003929 Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003930 I.getName()+".demorgan");
3931 InsertNewInstBefore(Or, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003932 return BinaryOperator::CreateNot(Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933 }
3934
3935 {
3936 Value *A = 0, *B = 0, *C = 0, *D = 0;
3937 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3938 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3939 return ReplaceInstUsesWith(I, Op1);
3940
3941 // (A|B) & ~(A&B) -> A^B
3942 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3943 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003944 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003945 }
3946 }
3947
3948 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3949 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3950 return ReplaceInstUsesWith(I, Op0);
3951
3952 // ~(A&B) & (A|B) -> A^B
3953 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3954 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00003955 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003956 }
3957 }
3958
3959 if (Op0->hasOneUse() &&
3960 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3961 if (A == Op1) { // (A^B)&A -> A&(A^B)
3962 I.swapOperands(); // Simplify below
3963 std::swap(Op0, Op1);
3964 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3965 cast<BinaryOperator>(Op0)->swapOperands();
3966 I.swapOperands(); // Simplify below
3967 std::swap(Op0, Op1);
3968 }
3969 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003970
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 if (Op1->hasOneUse() &&
3972 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3973 if (B == Op0) { // B&(A^B) -> B&(B^A)
3974 cast<BinaryOperator>(Op1)->swapOperands();
3975 std::swap(A, B);
3976 }
3977 if (A == Op0) { // A&(A^B) -> A & ~B
Gabor Greifa645dd32008-05-16 19:29:10 +00003978 Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 InsertNewInstBefore(NotB, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00003980 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 }
3982 }
Bill Wendlingce5e0af2008-11-30 13:08:13 +00003983
3984 // (A&((~A)|B)) -> A&B
Chris Lattner9db479f2008-12-01 05:16:26 +00003985 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
3986 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
3987 return BinaryOperator::CreateAnd(A, Op1);
3988 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
3989 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
3990 return BinaryOperator::CreateAnd(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 }
3992
3993 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3994 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3995 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3996 return R;
3997
Chris Lattner0631ea72008-11-16 05:06:21 +00003998 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
3999 if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
4000 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004001 }
4002
4003 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4004 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4005 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4006 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4007 const Type *SrcTy = Op0C->getOperand(0)->getType();
4008 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4009 // Only do this if the casts both really cause code to be generated.
4010 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4011 I.getType(), TD) &&
4012 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4013 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004014 Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004015 Op1C->getOperand(0),
4016 I.getName());
4017 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004018 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004019 }
4020 }
4021
4022 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4023 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4024 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4025 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4026 SI0->getOperand(1) == SI1->getOperand(1) &&
4027 (SI0->hasOneUse() || SI1->hasOneUse())) {
4028 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004029 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030 SI1->getOperand(0),
4031 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004032 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004033 SI1->getOperand(1));
4034 }
4035 }
4036
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004037 // If and'ing two fcmp, try combine them into one.
Chris Lattner91882432007-10-24 05:38:08 +00004038 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4039 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4040 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004041 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
4042 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
Chris Lattner91882432007-10-24 05:38:08 +00004043 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4044 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4045 // If either of the constants are nans, then the whole thing returns
4046 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004047 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004048 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4049 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
4050 RHS->getOperand(0));
4051 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004052 } else {
4053 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4054 FCmpInst::Predicate Op0CC, Op1CC;
4055 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4056 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
Evan Chengf1f2cea2008-10-14 18:13:38 +00004057 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4058 // Swap RHS operands to match LHS.
4059 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4060 std::swap(Op1LHS, Op1RHS);
4061 }
Evan Cheng0ac3a4d2008-10-14 17:15:11 +00004062 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4063 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4064 if (Op0CC == Op1CC)
4065 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4066 else if (Op0CC == FCmpInst::FCMP_FALSE ||
4067 Op1CC == FCmpInst::FCMP_FALSE)
4068 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4069 else if (Op0CC == FCmpInst::FCMP_TRUE)
4070 return ReplaceInstUsesWith(I, Op1);
4071 else if (Op1CC == FCmpInst::FCMP_TRUE)
4072 return ReplaceInstUsesWith(I, Op0);
4073 bool Op0Ordered;
4074 bool Op1Ordered;
4075 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4076 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4077 if (Op1Pred == 0) {
4078 std::swap(Op0, Op1);
4079 std::swap(Op0Pred, Op1Pred);
4080 std::swap(Op0Ordered, Op1Ordered);
4081 }
4082 if (Op0Pred == 0) {
4083 // uno && ueq -> uno && (uno || eq) -> ueq
4084 // ord && olt -> ord && (ord && lt) -> olt
4085 if (Op0Ordered == Op1Ordered)
4086 return ReplaceInstUsesWith(I, Op1);
4087 // uno && oeq -> uno && (ord && eq) -> false
4088 // uno && ord -> false
4089 if (!Op0Ordered)
4090 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4091 // ord && ueq -> ord && (uno || eq) -> oeq
4092 return cast<Instruction>(getFCmpValue(true, Op1Pred,
4093 Op0LHS, Op0RHS));
4094 }
4095 }
4096 }
4097 }
Chris Lattner91882432007-10-24 05:38:08 +00004098 }
4099 }
Nick Lewyckyffed71b2008-07-09 04:32:37 +00004100
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004101 return Changed ? &I : 0;
4102}
4103
Chris Lattner567f5112008-10-05 02:13:19 +00004104/// CollectBSwapParts - Analyze the specified subexpression and see if it is
4105/// capable of providing pieces of a bswap. The subexpression provides pieces
4106/// of a bswap if it is proven that each of the non-zero bytes in the output of
4107/// the expression came from the corresponding "byte swapped" byte in some other
4108/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4109/// we know that the expression deposits the low byte of %X into the high byte
4110/// of the bswap result and that all other bytes are zero. This expression is
4111/// accepted, the high byte of ByteValues is set to X to indicate a correct
4112/// match.
4113///
4114/// This function returns true if the match was unsuccessful and false if so.
4115/// On entry to the function the "OverallLeftShift" is a signed integer value
4116/// indicating the number of bytes that the subexpression is later shifted. For
4117/// example, if the expression is later right shifted by 16 bits, the
4118/// OverallLeftShift value would be -2 on entry. This is used to specify which
4119/// byte of ByteValues is actually being set.
4120///
4121/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4122/// byte is masked to zero by a user. For example, in (X & 255), X will be
4123/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4124/// this function to working on up to 32-byte (256 bit) values. ByteMask is
4125/// always in the local (OverallLeftShift) coordinate space.
4126///
4127static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
4128 SmallVector<Value*, 8> &ByteValues) {
4129 if (Instruction *I = dyn_cast<Instruction>(V)) {
4130 // If this is an or instruction, it may be an inner node of the bswap.
4131 if (I->getOpcode() == Instruction::Or) {
4132 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4133 ByteValues) ||
4134 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
4135 ByteValues);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004136 }
Chris Lattner567f5112008-10-05 02:13:19 +00004137
4138 // If this is a logical shift by a constant multiple of 8, recurse with
4139 // OverallLeftShift and ByteMask adjusted.
4140 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
4141 unsigned ShAmt =
4142 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
4143 // Ensure the shift amount is defined and of a byte value.
4144 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
4145 return true;
4146
4147 unsigned ByteShift = ShAmt >> 3;
4148 if (I->getOpcode() == Instruction::Shl) {
4149 // X << 2 -> collect(X, +2)
4150 OverallLeftShift += ByteShift;
4151 ByteMask >>= ByteShift;
4152 } else {
4153 // X >>u 2 -> collect(X, -2)
4154 OverallLeftShift -= ByteShift;
4155 ByteMask <<= ByteShift;
Chris Lattner44448592008-10-08 06:42:28 +00004156 ByteMask &= (~0U >> (32-ByteValues.size()));
Chris Lattner567f5112008-10-05 02:13:19 +00004157 }
4158
4159 if (OverallLeftShift >= (int)ByteValues.size()) return true;
4160 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
4161
4162 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4163 ByteValues);
4164 }
4165
4166 // If this is a logical 'and' with a mask that clears bytes, clear the
4167 // corresponding bytes in ByteMask.
4168 if (I->getOpcode() == Instruction::And &&
4169 isa<ConstantInt>(I->getOperand(1))) {
4170 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4171 unsigned NumBytes = ByteValues.size();
4172 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
4173 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
4174
4175 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
4176 // If this byte is masked out by a later operation, we don't care what
4177 // the and mask is.
4178 if ((ByteMask & (1 << i)) == 0)
4179 continue;
4180
4181 // If the AndMask is all zeros for this byte, clear the bit.
4182 APInt MaskB = AndMask & Byte;
4183 if (MaskB == 0) {
4184 ByteMask &= ~(1U << i);
4185 continue;
4186 }
4187
4188 // If the AndMask is not all ones for this byte, it's not a bytezap.
4189 if (MaskB != Byte)
4190 return true;
4191
4192 // Otherwise, this byte is kept.
4193 }
4194
4195 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
4196 ByteValues);
4197 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004198 }
4199
Chris Lattner567f5112008-10-05 02:13:19 +00004200 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4201 // the input value to the bswap. Some observations: 1) if more than one byte
4202 // is demanded from this input, then it could not be successfully assembled
4203 // into a byteswap. At least one of the two bytes would not be aligned with
4204 // their ultimate destination.
4205 if (!isPowerOf2_32(ByteMask)) return true;
4206 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004207
Chris Lattner567f5112008-10-05 02:13:19 +00004208 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4209 // is demanded, it needs to go into byte 0 of the result. This means that the
4210 // byte needs to be shifted until it lands in the right byte bucket. The
4211 // shift amount depends on the position: if the byte is coming from the high
4212 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4213 // low part, it must be shifted left.
4214 unsigned DestByteNo = InputByteNo + OverallLeftShift;
4215 if (InputByteNo < ByteValues.size()/2) {
4216 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4217 return true;
4218 } else {
4219 if (ByteValues.size()-1-DestByteNo != InputByteNo)
4220 return true;
4221 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004222
4223 // If the destination byte value is already defined, the values are or'd
4224 // together, which isn't a bswap (unless it's an or of the same bits).
Chris Lattner567f5112008-10-05 02:13:19 +00004225 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004226 return true;
Chris Lattner567f5112008-10-05 02:13:19 +00004227 ByteValues[DestByteNo] = V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228 return false;
4229}
4230
4231/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4232/// If so, insert the new bswap intrinsic and return it.
4233Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
4234 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner567f5112008-10-05 02:13:19 +00004235 if (!ITy || ITy->getBitWidth() % 16 ||
4236 // ByteMask only allows up to 32-byte values.
4237 ITy->getBitWidth() > 32*8)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004238 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4239
4240 /// ByteValues - For each byte of the result, we keep track of which value
4241 /// defines each byte.
4242 SmallVector<Value*, 8> ByteValues;
4243 ByteValues.resize(ITy->getBitWidth()/8);
4244
4245 // Try to find all the pieces corresponding to the bswap.
Chris Lattner567f5112008-10-05 02:13:19 +00004246 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
4247 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004248 return 0;
4249
4250 // Check to see if all of the bytes come from the same value.
4251 Value *V = ByteValues[0];
4252 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4253
4254 // Check to make sure that all of the bytes come from the same value.
4255 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4256 if (ByteValues[i] != V)
4257 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00004258 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004259 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00004260 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +00004261 return CallInst::Create(F, V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004262}
4263
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004264/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4265/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4266/// we can simplify this expression to "cond ? C : D or B".
4267static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
4268 Value *C, Value *D) {
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004269 // If A is not a select of -1/0, this cannot match.
Chris Lattner641ea462008-11-16 04:46:19 +00004270 Value *Cond = 0;
Chris Lattnerd8640f62008-11-16 04:33:38 +00004271 if (!match(A, m_SelectCst(m_Value(Cond), -1, 0)))
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004272 return 0;
4273
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004274 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattner641ea462008-11-16 04:46:19 +00004275 if (match(D, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004276 return SelectInst::Create(Cond, C, B);
Chris Lattner641ea462008-11-16 04:46:19 +00004277 if (match(D, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004278 return SelectInst::Create(Cond, C, B);
4279 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattner641ea462008-11-16 04:46:19 +00004280 if (match(B, m_SelectCst(m_Specific(Cond), 0, -1)))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004281 return SelectInst::Create(Cond, C, D);
Chris Lattner641ea462008-11-16 04:46:19 +00004282 if (match(B, m_Not(m_SelectCst(m_Specific(Cond), -1, 0))))
Chris Lattnerd09b5ba2008-11-16 04:26:55 +00004283 return SelectInst::Create(Cond, C, D);
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004284 return 0;
4285}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004286
Chris Lattner0c678e52008-11-16 05:20:07 +00004287/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4288Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
4289 ICmpInst *LHS, ICmpInst *RHS) {
4290 Value *Val, *Val2;
4291 ConstantInt *LHSCst, *RHSCst;
4292 ICmpInst::Predicate LHSCC, RHSCC;
4293
4294 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4295 if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
4296 !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
4297 return 0;
4298
4299 // From here on, we only handle:
4300 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4301 if (Val != Val2) return 0;
4302
4303 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4304 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
4305 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
4306 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
4307 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
4308 return 0;
4309
4310 // We can't fold (ugt x, C) | (sgt x, C2).
4311 if (!PredicatesFoldable(LHSCC, RHSCC))
4312 return 0;
4313
4314 // Ensure that the larger constant is on the RHS.
4315 bool ShouldSwap;
4316 if (ICmpInst::isSignedPredicate(LHSCC) ||
4317 (ICmpInst::isEquality(LHSCC) &&
4318 ICmpInst::isSignedPredicate(RHSCC)))
4319 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4320 else
4321 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4322
4323 if (ShouldSwap) {
4324 std::swap(LHS, RHS);
4325 std::swap(LHSCst, RHSCst);
4326 std::swap(LHSCC, RHSCC);
4327 }
4328
4329 // At this point, we know we have have two icmp instructions
4330 // comparing a value against two constants and or'ing the result
4331 // together. Because of the above check, we know that we only have
4332 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4333 // FoldICmpLogical check above), that the two constants are not
4334 // equal.
4335 assert(LHSCst != RHSCst && "Compares not folded above?");
4336
4337 switch (LHSCC) {
4338 default: assert(0 && "Unknown integer condition code!");
4339 case ICmpInst::ICMP_EQ:
4340 switch (RHSCC) {
4341 default: assert(0 && "Unknown integer condition code!");
4342 case ICmpInst::ICMP_EQ:
4343 if (LHSCst == SubOne(RHSCst)) { // (X == 13 | X == 14) -> X-13 <u 2
4344 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4345 Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
4346 Val->getName()+".off");
4347 InsertNewInstBefore(Add, I);
4348 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4349 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4350 }
4351 break; // (X == 13 | X == 15) -> no change
4352 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4353 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4354 break;
4355 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4356 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4357 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4358 return ReplaceInstUsesWith(I, RHS);
4359 }
4360 break;
4361 case ICmpInst::ICMP_NE:
4362 switch (RHSCC) {
4363 default: assert(0 && "Unknown integer condition code!");
4364 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4365 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4366 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4367 return ReplaceInstUsesWith(I, LHS);
4368 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4369 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4370 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4371 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4372 }
4373 break;
4374 case ICmpInst::ICMP_ULT:
4375 switch (RHSCC) {
4376 default: assert(0 && "Unknown integer condition code!");
4377 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4378 break;
4379 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
4380 // If RHSCst is [us]MAXINT, it is always false. Not handling
4381 // this can cause overflow.
4382 if (RHSCst->isMaxValue(false))
4383 return ReplaceInstUsesWith(I, LHS);
4384 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false, I);
4385 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4386 break;
4387 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4388 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4389 return ReplaceInstUsesWith(I, RHS);
4390 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4391 break;
4392 }
4393 break;
4394 case ICmpInst::ICMP_SLT:
4395 switch (RHSCC) {
4396 default: assert(0 && "Unknown integer condition code!");
4397 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4398 break;
4399 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
4400 // If RHSCst is [us]MAXINT, it is always false. Not handling
4401 // this can cause overflow.
4402 if (RHSCst->isMaxValue(true))
4403 return ReplaceInstUsesWith(I, LHS);
4404 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false, I);
4405 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4406 break;
4407 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4408 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4409 return ReplaceInstUsesWith(I, RHS);
4410 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4411 break;
4412 }
4413 break;
4414 case ICmpInst::ICMP_UGT:
4415 switch (RHSCC) {
4416 default: assert(0 && "Unknown integer condition code!");
4417 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4418 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4419 return ReplaceInstUsesWith(I, LHS);
4420 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4421 break;
4422 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4423 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4424 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4425 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4426 break;
4427 }
4428 break;
4429 case ICmpInst::ICMP_SGT:
4430 switch (RHSCC) {
4431 default: assert(0 && "Unknown integer condition code!");
4432 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4433 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4434 return ReplaceInstUsesWith(I, LHS);
4435 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4436 break;
4437 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4438 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4439 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4440 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4441 break;
4442 }
4443 break;
4444 }
4445 return 0;
4446}
4447
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004448Instruction *InstCombiner::visitOr(BinaryOperator &I) {
4449 bool Changed = SimplifyCommutative(I);
4450 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4451
4452 if (isa<UndefValue>(Op1)) // X | undef -> -1
4453 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4454
4455 // or X, X = X
4456 if (Op0 == Op1)
4457 return ReplaceInstUsesWith(I, Op0);
4458
4459 // See if we can simplify any instructions used by the instruction whose sole
4460 // purpose is to compute bits we don't care about.
4461 if (!isa<VectorType>(I.getType())) {
4462 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4463 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4464 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4465 KnownZero, KnownOne))
4466 return &I;
4467 } else if (isa<ConstantAggregateZero>(Op1)) {
4468 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
4469 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
4470 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4471 return ReplaceInstUsesWith(I, I.getOperand(1));
4472 }
4473
4474
4475
4476 // or X, -1 == -1
4477 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
4478 ConstantInt *C1 = 0; Value *X = 0;
4479 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4480 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004481 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482 InsertNewInstBefore(Or, I);
4483 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004484 return BinaryOperator::CreateAnd(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004485 ConstantInt::get(RHS->getValue() | C1->getValue()));
4486 }
4487
4488 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4489 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004490 Instruction *Or = BinaryOperator::CreateOr(X, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004491 InsertNewInstBefore(Or, I);
4492 Or->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004493 return BinaryOperator::CreateXor(Or,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004494 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
4495 }
4496
4497 // Try to fold constant and into select arguments.
4498 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4499 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4500 return R;
4501 if (isa<PHINode>(Op0))
4502 if (Instruction *NV = FoldOpIntoPhi(I))
4503 return NV;
4504 }
4505
4506 Value *A = 0, *B = 0;
4507 ConstantInt *C1 = 0, *C2 = 0;
4508
4509 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4510 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4511 return ReplaceInstUsesWith(I, Op1);
4512 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4513 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4514 return ReplaceInstUsesWith(I, Op0);
4515
4516 // (A | B) | C and A | (B | C) -> bswap if possible.
4517 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4518 if (match(Op0, m_Or(m_Value(), m_Value())) ||
4519 match(Op1, m_Or(m_Value(), m_Value())) ||
4520 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4521 match(Op1, m_Shift(m_Value(), m_Value())))) {
4522 if (Instruction *BSwap = MatchBSwap(I))
4523 return BSwap;
4524 }
4525
4526 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4527 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4528 MaskedValueIsZero(Op1, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004529 Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004530 InsertNewInstBefore(NOr, I);
4531 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004532 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004533 }
4534
4535 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4536 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
4537 MaskedValueIsZero(Op0, C1->getValue())) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004538 Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004539 InsertNewInstBefore(NOr, I);
4540 NOr->takeName(Op0);
Gabor Greifa645dd32008-05-16 19:29:10 +00004541 return BinaryOperator::CreateXor(NOr, C1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542 }
4543
4544 // (A & C)|(B & D)
4545 Value *C = 0, *D = 0;
4546 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4547 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4548 Value *V1 = 0, *V2 = 0, *V3 = 0;
4549 C1 = dyn_cast<ConstantInt>(C);
4550 C2 = dyn_cast<ConstantInt>(D);
4551 if (C1 && C2) { // (A & C1)|(B & C2)
4552 // If we have: ((V + N) & C1) | (V & C2)
4553 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4554 // replace with V+N.
4555 if (C1->getValue() == ~C2->getValue()) {
4556 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
4557 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4558 // Add commutes, try both ways.
4559 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
4560 return ReplaceInstUsesWith(I, A);
4561 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
4562 return ReplaceInstUsesWith(I, A);
4563 }
4564 // Or commutes, try both ways.
4565 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
4566 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4567 // Add commutes, try both ways.
4568 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
4569 return ReplaceInstUsesWith(I, B);
4570 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
4571 return ReplaceInstUsesWith(I, B);
4572 }
4573 }
4574 V1 = 0; V2 = 0; V3 = 0;
4575 }
4576
4577 // Check to see if we have any common things being and'ed. If so, find the
4578 // terms for V1 & (V2|V3).
4579 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
4580 if (A == B) // (A & C)|(A & D) == A & (C|D)
4581 V1 = A, V2 = C, V3 = D;
4582 else if (A == D) // (A & C)|(B & A) == A & (B|C)
4583 V1 = A, V2 = B, V3 = C;
4584 else if (C == B) // (A & C)|(C & D) == C & (A|D)
4585 V1 = C, V2 = A, V3 = D;
4586 else if (C == D) // (A & C)|(B & C) == C & (A|B)
4587 V1 = C, V2 = A, V3 = B;
4588
4589 if (V1) {
4590 Value *Or =
Gabor Greifa645dd32008-05-16 19:29:10 +00004591 InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
4592 return BinaryOperator::CreateAnd(V1, Or);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004593 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004594 }
Dan Gohman279952c2008-10-28 22:38:57 +00004595
Dan Gohman35b76162008-10-30 20:40:10 +00004596 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
Chris Lattnerdd7772b2008-11-16 04:24:12 +00004597 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
4598 return Match;
4599 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
4600 return Match;
4601 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
4602 return Match;
4603 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
4604 return Match;
Bill Wendling22ca8352008-11-30 13:52:49 +00004605
Bill Wendling22ca8352008-11-30 13:52:49 +00004606 // ((A&~B)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004607 if ((match(C, m_Not(m_Specific(D))) &&
4608 match(B, m_Not(m_Specific(A)))))
4609 return BinaryOperator::CreateXor(A, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004610 // ((~B&A)|(~A&B)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004611 if ((match(A, m_Not(m_Specific(D))) &&
4612 match(B, m_Not(m_Specific(C)))))
4613 return BinaryOperator::CreateXor(C, D);
Bill Wendling22ca8352008-11-30 13:52:49 +00004614 // ((A&~B)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004615 if ((match(C, m_Not(m_Specific(B))) &&
4616 match(D, m_Not(m_Specific(A)))))
4617 return BinaryOperator::CreateXor(A, B);
Bill Wendling22ca8352008-11-30 13:52:49 +00004618 // ((~B&A)|(B&~A)) -> A^B
Bill Wendlingc1f31132008-12-01 08:09:47 +00004619 if ((match(A, m_Not(m_Specific(B))) &&
4620 match(D, m_Not(m_Specific(C)))))
4621 return BinaryOperator::CreateXor(C, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004622 }
4623
4624 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4625 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4626 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4627 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
4628 SI0->getOperand(1) == SI1->getOperand(1) &&
4629 (SI0->hasOneUse() || SI1->hasOneUse())) {
4630 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00004631 InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004632 SI1->getOperand(0),
4633 SI0->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004634 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004635 SI1->getOperand(1));
4636 }
4637 }
4638
Bill Wendlingd8ce2372008-12-01 01:07:11 +00004639 // ((A|B)&1)|(B&-2) -> (A&1) | B
4640 if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4641 match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4642 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4643 if (CI->getValue() == 1) {
4644 Value *V1 = 0, *C2 = 0;
4645 if (match(Op1, m_And(m_Value(V1), m_Value(C2)))) {
4646 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
4647
4648 if (!CI2) {
4649 std::swap(V1, C2);
4650 CI2 = dyn_cast<ConstantInt>(C2);
4651 }
4652
4653 if (CI2) {
4654 APInt NegTwo = -APInt(CI2->getValue().getBitWidth(), 2, true);
4655 if (CI2->getValue().eq(NegTwo)) {
4656 if (V1 == B) {
4657 Instruction *NewOp =
4658 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI), I);
4659 return BinaryOperator::CreateOr(NewOp, B);
4660 }
4661 if (V1 == A) {
4662 Instruction *NewOp =
4663 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI), I);
4664 return BinaryOperator::CreateOr(NewOp, A);
4665 }
4666 }
4667 }
4668 }
4669 }
4670 }
4671 }
4672 // (B&-2)|((A|B)&1) -> (A&1) | B
4673 if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
4674 match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
4675 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4676 if (CI->getValue() == 1) {
4677 Value *V1 = 0, *C2 = 0;
4678 if (match(Op0, m_And(m_Value(V1), m_Value(C2)))) {
4679 ConstantInt *CI2 = dyn_cast<ConstantInt>(C2);
4680
4681 if (!CI2) {
4682 std::swap(V1, C2);
4683 CI2 = dyn_cast<ConstantInt>(C2);
4684 }
4685
4686 if (CI2) {
4687 APInt NegTwo = -APInt(CI2->getValue().getBitWidth(), 2, true);
4688 if (CI2->getValue().eq(NegTwo)) {
4689 if (V1 == B) {
4690 Instruction *NewOp =
4691 InsertNewInstBefore(BinaryOperator::CreateAnd(A, CI), I);
4692 return BinaryOperator::CreateOr(NewOp, B);
4693 }
4694 if (V1 == A) {
4695 Instruction *NewOp =
4696 InsertNewInstBefore(BinaryOperator::CreateAnd(B, CI), I);
4697 return BinaryOperator::CreateOr(NewOp, A);
4698 }
4699 }
4700 }
4701 }
4702 }
4703 }
4704 }
4705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4707 if (A == Op1) // ~A | A == -1
4708 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4709 } else {
4710 A = 0;
4711 }
4712 // Note, A is still live here!
4713 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4714 if (Op0 == B)
4715 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4716
4717 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4718 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004719 Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004720 I.getName()+".demorgan"), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004721 return BinaryOperator::CreateNot(And);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004722 }
4723 }
4724
4725 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4726 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4727 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4728 return R;
4729
Chris Lattner0c678e52008-11-16 05:20:07 +00004730 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4731 if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
4732 return Res;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004733 }
4734
4735 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004736 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004737 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4738 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Evan Chenge3779cf2008-03-24 00:21:34 +00004739 if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
4740 !isa<ICmpInst>(Op1C->getOperand(0))) {
4741 const Type *SrcTy = Op0C->getOperand(0)->getType();
4742 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4743 // Only do this if the casts both really cause code to be
4744 // generated.
4745 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4746 I.getType(), TD) &&
4747 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4748 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00004749 Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
Evan Chenge3779cf2008-03-24 00:21:34 +00004750 Op1C->getOperand(0),
4751 I.getName());
4752 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00004753 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Evan Chenge3779cf2008-03-24 00:21:34 +00004754 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004755 }
4756 }
Chris Lattner91882432007-10-24 05:38:08 +00004757 }
4758
4759
4760 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4761 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4762 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4763 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
Chris Lattnerbe9e63e2008-02-29 06:09:11 +00004764 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
Evan Cheng72988052008-10-14 18:44:08 +00004765 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
Chris Lattner91882432007-10-24 05:38:08 +00004766 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4767 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4768 // If either of the constants are nans, then the whole thing returns
4769 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004770 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004771 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4772
4773 // Otherwise, no need to compare the two constants, compare the
4774 // rest.
4775 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4776 RHS->getOperand(0));
4777 }
Evan Cheng72988052008-10-14 18:44:08 +00004778 } else {
4779 Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
4780 FCmpInst::Predicate Op0CC, Op1CC;
4781 if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
4782 match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
4783 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
4784 // Swap RHS operands to match LHS.
4785 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
4786 std::swap(Op1LHS, Op1RHS);
4787 }
4788 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
4789 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4790 if (Op0CC == Op1CC)
4791 return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
4792 else if (Op0CC == FCmpInst::FCMP_TRUE ||
4793 Op1CC == FCmpInst::FCMP_TRUE)
4794 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4795 else if (Op0CC == FCmpInst::FCMP_FALSE)
4796 return ReplaceInstUsesWith(I, Op1);
4797 else if (Op1CC == FCmpInst::FCMP_FALSE)
4798 return ReplaceInstUsesWith(I, Op0);
4799 bool Op0Ordered;
4800 bool Op1Ordered;
4801 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
4802 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
4803 if (Op0Ordered == Op1Ordered) {
4804 // If both are ordered or unordered, return a new fcmp with
4805 // or'ed predicates.
4806 Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
4807 Op0LHS, Op0RHS);
4808 if (Instruction *I = dyn_cast<Instruction>(RV))
4809 return I;
4810 // Otherwise, it's a constant boolean value...
4811 return ReplaceInstUsesWith(I, RV);
4812 }
4813 }
4814 }
4815 }
Chris Lattner91882432007-10-24 05:38:08 +00004816 }
4817 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004818
4819 return Changed ? &I : 0;
4820}
4821
Dan Gohman089efff2008-05-13 00:00:25 +00004822namespace {
4823
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004824// XorSelf - Implements: X ^ X --> 0
4825struct XorSelf {
4826 Value *RHS;
4827 XorSelf(Value *rhs) : RHS(rhs) {}
4828 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4829 Instruction *apply(BinaryOperator &Xor) const {
4830 return &Xor;
4831 }
4832};
4833
Dan Gohman089efff2008-05-13 00:00:25 +00004834}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004835
4836Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4837 bool Changed = SimplifyCommutative(I);
4838 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4839
Evan Chenge5cd8032008-03-25 20:07:13 +00004840 if (isa<UndefValue>(Op1)) {
4841 if (isa<UndefValue>(Op0))
4842 // Handle undef ^ undef -> 0 special case. This is a common
4843 // idiom (misuse).
4844 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004845 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
Evan Chenge5cd8032008-03-25 20:07:13 +00004846 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004847
4848 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4849 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004850 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004851 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4852 }
4853
4854 // See if we can simplify any instructions used by the instruction whose sole
4855 // purpose is to compute bits we don't care about.
4856 if (!isa<VectorType>(I.getType())) {
4857 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4858 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4859 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4860 KnownZero, KnownOne))
4861 return &I;
4862 } else if (isa<ConstantAggregateZero>(Op1)) {
4863 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4864 }
4865
4866 // Is this a ~ operation?
4867 if (Value *NotOp = dyn_castNotVal(&I)) {
4868 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4869 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4870 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4871 if (Op0I->getOpcode() == Instruction::And ||
4872 Op0I->getOpcode() == Instruction::Or) {
4873 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4874 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4875 Instruction *NotY =
Gabor Greifa645dd32008-05-16 19:29:10 +00004876 BinaryOperator::CreateNot(Op0I->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004877 Op0I->getOperand(1)->getName()+".not");
4878 InsertNewInstBefore(NotY, I);
4879 if (Op0I->getOpcode() == Instruction::And)
Gabor Greifa645dd32008-05-16 19:29:10 +00004880 return BinaryOperator::CreateOr(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004881 else
Gabor Greifa645dd32008-05-16 19:29:10 +00004882 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004883 }
4884 }
4885 }
4886 }
4887
4888
4889 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004890 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4891 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4892 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004893 return new ICmpInst(ICI->getInversePredicate(),
4894 ICI->getOperand(0), ICI->getOperand(1));
4895
Nick Lewycky1405e922007-08-06 20:04:16 +00004896 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4897 return new FCmpInst(FCI->getInversePredicate(),
4898 FCI->getOperand(0), FCI->getOperand(1));
4899 }
4900
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00004901 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4902 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
4903 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
4904 if (CI->hasOneUse() && Op0C->hasOneUse()) {
4905 Instruction::CastOps Opcode = Op0C->getOpcode();
4906 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
4907 if (RHS == ConstantExpr::getCast(Opcode, ConstantInt::getTrue(),
4908 Op0C->getDestTy())) {
4909 Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
4910 CI->getOpcode(), CI->getInversePredicate(),
4911 CI->getOperand(0), CI->getOperand(1)), I);
4912 NewCI->takeName(CI);
4913 return CastInst::Create(Opcode, NewCI, Op0C->getType());
4914 }
4915 }
4916 }
4917 }
4918 }
4919
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004920 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4921 // ~(c-X) == X-c-1 == X+(-c-1)
4922 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4923 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4924 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4925 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4926 ConstantInt::get(I.getType(), 1));
Gabor Greifa645dd32008-05-16 19:29:10 +00004927 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004928 }
4929
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004930 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 if (Op0I->getOpcode() == Instruction::Add) {
4932 // ~(X-c) --> (-c-1)-X
4933 if (RHS->isAllOnesValue()) {
4934 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00004935 return BinaryOperator::CreateSub(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004936 ConstantExpr::getSub(NegOp0CI,
4937 ConstantInt::get(I.getType(), 1)),
4938 Op0I->getOperand(0));
4939 } else if (RHS->getValue().isSignBit()) {
4940 // (X + C) ^ signbit -> (X + C + signbit)
4941 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
Gabor Greifa645dd32008-05-16 19:29:10 +00004942 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004943
4944 }
4945 } else if (Op0I->getOpcode() == Instruction::Or) {
4946 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4947 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4948 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4949 // Anything in both C1 and C2 is known to be zero, remove it from
4950 // NewRHS.
4951 Constant *CommonBits = And(Op0CI, RHS);
4952 NewRHS = ConstantExpr::getAnd(NewRHS,
4953 ConstantExpr::getNot(CommonBits));
4954 AddToWorkList(Op0I);
4955 I.setOperand(0, Op0I->getOperand(0));
4956 I.setOperand(1, NewRHS);
4957 return &I;
4958 }
4959 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00004960 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004961 }
4962
4963 // Try to fold constant and into select arguments.
4964 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4965 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4966 return R;
4967 if (isa<PHINode>(Op0))
4968 if (Instruction *NV = FoldOpIntoPhi(I))
4969 return NV;
4970 }
4971
4972 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4973 if (X == Op1)
4974 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4975
4976 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4977 if (X == Op0)
4978 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4979
4980
4981 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4982 if (Op1I) {
4983 Value *A, *B;
4984 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4985 if (A == Op0) { // B^(B|A) == (A|B)^B
4986 Op1I->swapOperands();
4987 I.swapOperands();
4988 std::swap(Op0, Op1);
4989 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4990 I.swapOperands(); // Simplified below.
4991 std::swap(Op0, Op1);
4992 }
Chris Lattner3b874082008-11-16 05:38:51 +00004993 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
4994 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
4995 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
4996 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004997 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4998 if (A == Op0) { // A^(A&B) -> A^(B&A)
4999 Op1I->swapOperands();
5000 std::swap(A, B);
5001 }
5002 if (B == Op0) { // A^(B&A) -> (B&A)^A
5003 I.swapOperands(); // Simplified below.
5004 std::swap(Op0, Op1);
5005 }
5006 }
5007 }
5008
5009 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
5010 if (Op0I) {
5011 Value *A, *B;
5012 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
5013 if (A == Op1) // (B|A)^B == (A|B)^B
5014 std::swap(A, B);
5015 if (B == Op1) { // (A|B)^B == A & ~B
5016 Instruction *NotB =
Gabor Greifa645dd32008-05-16 19:29:10 +00005017 InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
5018 return BinaryOperator::CreateAnd(A, NotB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005019 }
Chris Lattner3b874082008-11-16 05:38:51 +00005020 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
5021 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
5022 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
5023 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
5025 if (A == Op1) // (A&B)^A -> (B&A)^A
5026 std::swap(A, B);
5027 if (B == Op1 && // (B&A)^A == ~B & A
5028 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
5029 Instruction *N =
Gabor Greifa645dd32008-05-16 19:29:10 +00005030 InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
5031 return BinaryOperator::CreateAnd(N, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005032 }
5033 }
5034 }
5035
5036 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5037 if (Op0I && Op1I && Op0I->isShift() &&
5038 Op0I->getOpcode() == Op1I->getOpcode() &&
5039 Op0I->getOperand(1) == Op1I->getOperand(1) &&
5040 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
5041 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005042 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005043 Op1I->getOperand(0),
5044 Op0I->getName()), I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005045 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005046 Op1I->getOperand(1));
5047 }
5048
5049 if (Op0I && Op1I) {
5050 Value *A, *B, *C, *D;
5051 // (A & B)^(A | B) -> A ^ B
5052 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5053 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
5054 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005055 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005056 }
5057 // (A | B)^(A & B) -> A ^ B
5058 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
5059 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5060 if ((A == C && B == D) || (A == D && B == C))
Gabor Greifa645dd32008-05-16 19:29:10 +00005061 return BinaryOperator::CreateXor(A, B);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005062 }
5063
5064 // (A & B)^(C & D)
5065 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
5066 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
5067 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
5068 // (X & Y)^(X & Y) -> (Y^Z) & X
5069 Value *X = 0, *Y = 0, *Z = 0;
5070 if (A == C)
5071 X = A, Y = B, Z = D;
5072 else if (A == D)
5073 X = A, Y = B, Z = C;
5074 else if (B == C)
5075 X = B, Y = A, Z = D;
5076 else if (B == D)
5077 X = B, Y = A, Z = C;
5078
5079 if (X) {
5080 Instruction *NewOp =
Gabor Greifa645dd32008-05-16 19:29:10 +00005081 InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
5082 return BinaryOperator::CreateAnd(NewOp, X);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005083 }
5084 }
5085 }
5086
5087 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5088 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5089 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
5090 return R;
5091
5092 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00005093 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005094 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
5095 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
5096 const Type *SrcTy = Op0C->getOperand(0)->getType();
5097 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
5098 // Only do this if the casts both really cause code to be generated.
5099 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
5100 I.getType(), TD) &&
5101 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
5102 I.getType(), TD)) {
Gabor Greifa645dd32008-05-16 19:29:10 +00005103 Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005104 Op1C->getOperand(0),
5105 I.getName());
5106 InsertNewInstBefore(NewOp, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005107 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005108 }
5109 }
Chris Lattner91882432007-10-24 05:38:08 +00005110 }
Nick Lewycky0aa63aa2008-05-31 19:01:33 +00005111
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005112 return Changed ? &I : 0;
5113}
5114
5115/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5116/// overflowed for this type.
5117static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5118 ConstantInt *In2, bool IsSigned = false) {
5119 Result = cast<ConstantInt>(Add(In1, In2));
5120
5121 if (IsSigned)
5122 if (In2->getValue().isNegative())
5123 return Result->getValue().sgt(In1->getValue());
5124 else
5125 return Result->getValue().slt(In1->getValue());
5126 else
5127 return Result->getValue().ult(In1->getValue());
5128}
5129
Dan Gohmanb80d5612008-09-10 23:30:57 +00005130/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5131/// overflowed for this type.
5132static bool SubWithOverflow(ConstantInt *&Result, ConstantInt *In1,
5133 ConstantInt *In2, bool IsSigned = false) {
Dan Gohman2c3b4892008-09-11 18:53:02 +00005134 Result = cast<ConstantInt>(Subtract(In1, In2));
Dan Gohmanb80d5612008-09-10 23:30:57 +00005135
5136 if (IsSigned)
5137 if (In2->getValue().isNegative())
5138 return Result->getValue().slt(In1->getValue());
5139 else
5140 return Result->getValue().sgt(In1->getValue());
5141 else
5142 return Result->getValue().ugt(In1->getValue());
5143}
5144
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005145/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5146/// code necessary to compute the offset from the base pointer (without adding
5147/// in the base pointer). Return the result as a signed integer of intptr size.
5148static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
5149 TargetData &TD = IC.getTargetData();
5150 gep_type_iterator GTI = gep_type_begin(GEP);
5151 const Type *IntPtrTy = TD.getIntPtrType();
5152 Value *Result = Constant::getNullValue(IntPtrTy);
5153
5154 // Build a mask for high order bits.
Chris Lattnereba75862008-04-22 02:53:33 +00005155 unsigned IntPtrWidth = TD.getPointerSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005156 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5157
Gabor Greif17396002008-06-12 21:37:33 +00005158 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
5159 ++i, ++GTI) {
5160 Value *Op = *i;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00005161 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005162 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
5163 if (OpC->isZero()) continue;
5164
5165 // Handle a struct index, which adds its field offset to the pointer.
5166 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5167 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5168
5169 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
5170 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
5171 else
5172 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005173 BinaryOperator::CreateAdd(Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005174 ConstantInt::get(IntPtrTy, Size),
5175 GEP->getName()+".offs"), I);
5176 continue;
5177 }
5178
5179 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5180 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
5181 Scale = ConstantExpr::getMul(OC, Scale);
5182 if (Constant *RC = dyn_cast<Constant>(Result))
5183 Result = ConstantExpr::getAdd(RC, Scale);
5184 else {
5185 // Emit an add instruction.
5186 Result = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00005187 BinaryOperator::CreateAdd(Result, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005188 GEP->getName()+".offs"), I);
5189 }
5190 continue;
5191 }
5192 // Convert to correct type.
5193 if (Op->getType() != IntPtrTy) {
5194 if (Constant *OpC = dyn_cast<Constant>(Op))
5195 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
5196 else
5197 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
5198 Op->getName()+".c"), I);
5199 }
5200 if (Size != 1) {
5201 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
5202 if (Constant *OpC = dyn_cast<Constant>(Op))
5203 Op = ConstantExpr::getMul(OpC, Scale);
5204 else // We'll let instcombine(mul) convert this to a shl if possible.
Gabor Greifa645dd32008-05-16 19:29:10 +00005205 Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005206 GEP->getName()+".idx"), I);
5207 }
5208
5209 // Emit an add instruction.
5210 if (isa<Constant>(Op) && isa<Constant>(Result))
5211 Result = ConstantExpr::getAdd(cast<Constant>(Op),
5212 cast<Constant>(Result));
5213 else
Gabor Greifa645dd32008-05-16 19:29:10 +00005214 Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005215 GEP->getName()+".offs"), I);
5216 }
5217 return Result;
5218}
5219
Chris Lattnereba75862008-04-22 02:53:33 +00005220
5221/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5222/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5223/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5224/// complex, and scales are involved. The above expression would also be legal
5225/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5226/// later form is less amenable to optimization though, and we are allowed to
5227/// generate the first by knowing that pointer arithmetic doesn't overflow.
5228///
5229/// If we can't emit an optimized form for this expression, this returns null.
5230///
5231static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
5232 InstCombiner &IC) {
Chris Lattnereba75862008-04-22 02:53:33 +00005233 TargetData &TD = IC.getTargetData();
5234 gep_type_iterator GTI = gep_type_begin(GEP);
5235
5236 // Check to see if this gep only has a single variable index. If so, and if
5237 // any constant indices are a multiple of its scale, then we can compute this
5238 // in terms of the scale of the variable index. For example, if the GEP
5239 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5240 // because the expression will cross zero at the same point.
5241 unsigned i, e = GEP->getNumOperands();
5242 int64_t Offset = 0;
5243 for (i = 1; i != e; ++i, ++GTI) {
5244 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5245 // Compute the aggregate offset of constant indices.
5246 if (CI->isZero()) continue;
5247
5248 // Handle a struct index, which adds its field offset to the pointer.
5249 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5250 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5251 } else {
5252 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5253 Offset += Size*CI->getSExtValue();
5254 }
5255 } else {
5256 // Found our variable index.
5257 break;
5258 }
5259 }
5260
5261 // If there are no variable indices, we must have a constant offset, just
5262 // evaluate it the general way.
5263 if (i == e) return 0;
5264
5265 Value *VariableIdx = GEP->getOperand(i);
5266 // Determine the scale factor of the variable element. For example, this is
5267 // 4 if the variable index is into an array of i32.
5268 uint64_t VariableScale = TD.getABITypeSize(GTI.getIndexedType());
5269
5270 // Verify that there are no other variable indices. If so, emit the hard way.
5271 for (++i, ++GTI; i != e; ++i, ++GTI) {
5272 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
5273 if (!CI) return 0;
5274
5275 // Compute the aggregate offset of constant indices.
5276 if (CI->isZero()) continue;
5277
5278 // Handle a struct index, which adds its field offset to the pointer.
5279 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
5280 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
5281 } else {
5282 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
5283 Offset += Size*CI->getSExtValue();
5284 }
5285 }
5286
5287 // Okay, we know we have a single variable index, which must be a
5288 // pointer/array/vector index. If there is no offset, life is simple, return
5289 // the index.
5290 unsigned IntPtrWidth = TD.getPointerSizeInBits();
5291 if (Offset == 0) {
5292 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5293 // we don't need to bother extending: the extension won't affect where the
5294 // computation crosses zero.
5295 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
5296 VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
5297 VariableIdx->getNameStart(), &I);
5298 return VariableIdx;
5299 }
5300
5301 // Otherwise, there is an index. The computation we will do will be modulo
5302 // the pointer size, so get it.
5303 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
5304
5305 Offset &= PtrSizeMask;
5306 VariableScale &= PtrSizeMask;
5307
5308 // To do this transformation, any constant index must be a multiple of the
5309 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5310 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5311 // multiple of the variable scale.
5312 int64_t NewOffs = Offset / (int64_t)VariableScale;
5313 if (Offset != NewOffs*(int64_t)VariableScale)
5314 return 0;
5315
5316 // Okay, we can do this evaluation. Start by converting the index to intptr.
5317 const Type *IntPtrTy = TD.getIntPtrType();
5318 if (VariableIdx->getType() != IntPtrTy)
Gabor Greifa645dd32008-05-16 19:29:10 +00005319 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
Chris Lattnereba75862008-04-22 02:53:33 +00005320 true /*SExt*/,
5321 VariableIdx->getNameStart(), &I);
5322 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Gabor Greifa645dd32008-05-16 19:29:10 +00005323 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
Chris Lattnereba75862008-04-22 02:53:33 +00005324}
5325
5326
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005327/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5328/// else. At this point we know that the GEP is on the LHS of the comparison.
5329Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
5330 ICmpInst::Predicate Cond,
5331 Instruction &I) {
5332 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
5333
Chris Lattnereba75862008-04-22 02:53:33 +00005334 // Look through bitcasts.
5335 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
5336 RHS = BCI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005337
5338 Value *PtrBase = GEPLHS->getOperand(0);
5339 if (PtrBase == RHS) {
Chris Lattneraf97d022008-02-05 04:45:32 +00005340 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
Chris Lattnereba75862008-04-22 02:53:33 +00005341 // This transformation (ignoring the base and scales) is valid because we
5342 // know pointers can't overflow. See if we can output an optimized form.
5343 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
5344
5345 // If not, synthesize the offset the hard way.
5346 if (Offset == 0)
5347 Offset = EmitGEPOffset(GEPLHS, I, *this);
Chris Lattneraf97d022008-02-05 04:45:32 +00005348 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5349 Constant::getNullValue(Offset->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005350 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
5351 // If the base pointers are different, but the indices are the same, just
5352 // compare the base pointer.
5353 if (PtrBase != GEPRHS->getOperand(0)) {
5354 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
5355 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
5356 GEPRHS->getOperand(0)->getType();
5357 if (IndicesTheSame)
5358 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5359 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5360 IndicesTheSame = false;
5361 break;
5362 }
5363
5364 // If all indices are the same, just compare the base pointers.
5365 if (IndicesTheSame)
5366 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5367 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
5368
5369 // Otherwise, the base pointers are different and the indices are
5370 // different, bail out.
5371 return 0;
5372 }
5373
5374 // If one of the GEPs has all zero indices, recurse.
5375 bool AllZeros = true;
5376 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5377 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5378 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5379 AllZeros = false;
5380 break;
5381 }
5382 if (AllZeros)
5383 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5384 ICmpInst::getSwappedPredicate(Cond), I);
5385
5386 // If the other GEP has all zero indices, recurse.
5387 AllZeros = true;
5388 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5389 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5390 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5391 AllZeros = false;
5392 break;
5393 }
5394 if (AllZeros)
5395 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
5396
5397 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5398 // If the GEPs only differ by one index, compare it.
5399 unsigned NumDifferences = 0; // Keep track of # differences.
5400 unsigned DiffOperand = 0; // The operand that differs.
5401 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5402 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5403 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5404 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
5405 // Irreconcilable differences.
5406 NumDifferences = 2;
5407 break;
5408 } else {
5409 if (NumDifferences++) break;
5410 DiffOperand = i;
5411 }
5412 }
5413
5414 if (NumDifferences == 0) // SAME GEP?
5415 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00005416 ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005417 ICmpInst::isTrueWhenEqual(Cond)));
Nick Lewycky2de09a92007-09-06 02:40:25 +00005418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005419 else if (NumDifferences == 1) {
5420 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5421 Value *RHSV = GEPRHS->getOperand(DiffOperand);
5422 // Make sure we do a signed comparison here.
5423 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
5424 }
5425 }
5426
5427 // Only lower this if the icmp is the only user of the GEP or if we expect
5428 // the result to fold to a constant!
5429 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5430 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5431 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5432 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5433 Value *R = EmitGEPOffset(GEPRHS, I, *this);
5434 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
5435 }
5436 }
5437 return 0;
5438}
5439
Chris Lattnere6b62d92008-05-19 20:18:56 +00005440/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5441///
5442Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
5443 Instruction *LHSI,
5444 Constant *RHSC) {
5445 if (!isa<ConstantFP>(RHSC)) return 0;
5446 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5447
5448 // Get the width of the mantissa. We don't want to hack on conversions that
5449 // might lose information from the integer, e.g. "i64 -> float"
Chris Lattner9ce836b2008-05-19 21:17:23 +00005450 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Chris Lattnere6b62d92008-05-19 20:18:56 +00005451 if (MantissaWidth == -1) return 0; // Unknown.
5452
5453 // Check to see that the input is converted from an integer type that is small
5454 // enough that preserves all bits. TODO: check here for "known" sign bits.
5455 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5456 unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
5457
5458 // If this is a uitofp instruction, we need an extra bit to hold the sign.
Bill Wendling20636df2008-11-09 04:26:50 +00005459 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5460 if (LHSUnsigned)
Chris Lattnere6b62d92008-05-19 20:18:56 +00005461 ++InputSize;
5462
5463 // If the conversion would lose info, don't hack on this.
5464 if ((int)InputSize > MantissaWidth)
5465 return 0;
5466
5467 // Otherwise, we can potentially simplify the comparison. We know that it
5468 // will always come through as an integer value and we know the constant is
5469 // not a NAN (it would have been previously simplified).
5470 assert(!RHS.isNaN() && "NaN comparison not already folded!");
5471
5472 ICmpInst::Predicate Pred;
5473 switch (I.getPredicate()) {
5474 default: assert(0 && "Unexpected predicate!");
5475 case FCmpInst::FCMP_UEQ:
Bill Wendling20636df2008-11-09 04:26:50 +00005476 case FCmpInst::FCMP_OEQ:
5477 Pred = ICmpInst::ICMP_EQ;
5478 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005479 case FCmpInst::FCMP_UGT:
Bill Wendling20636df2008-11-09 04:26:50 +00005480 case FCmpInst::FCMP_OGT:
5481 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5482 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005483 case FCmpInst::FCMP_UGE:
Bill Wendling20636df2008-11-09 04:26:50 +00005484 case FCmpInst::FCMP_OGE:
5485 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5486 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005487 case FCmpInst::FCMP_ULT:
Bill Wendling20636df2008-11-09 04:26:50 +00005488 case FCmpInst::FCMP_OLT:
5489 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5490 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005491 case FCmpInst::FCMP_ULE:
Bill Wendling20636df2008-11-09 04:26:50 +00005492 case FCmpInst::FCMP_OLE:
5493 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5494 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005495 case FCmpInst::FCMP_UNE:
Bill Wendling20636df2008-11-09 04:26:50 +00005496 case FCmpInst::FCMP_ONE:
5497 Pred = ICmpInst::ICMP_NE;
5498 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005499 case FCmpInst::FCMP_ORD:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005500 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005501 case FCmpInst::FCMP_UNO:
Eli Friedmanc9c96242008-11-30 22:48:49 +00005502 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005503 }
5504
5505 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5506
5507 // Now we know that the APFloat is a normal number, zero or inf.
5508
Chris Lattnerf13ff492008-05-20 03:50:52 +00005509 // See if the FP constant is too large for the integer. For example,
Chris Lattnere6b62d92008-05-19 20:18:56 +00005510 // comparing an i8 to 300.0.
5511 unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
5512
Bill Wendling20636df2008-11-09 04:26:50 +00005513 if (!LHSUnsigned) {
5514 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5515 // and large values.
5516 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
5517 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5518 APFloat::rmNearestTiesToEven);
5519 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5520 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5521 Pred == ICmpInst::ICMP_SLE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005522 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5523 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005524 }
5525 } else {
5526 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5527 // +INF and large values.
5528 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
5529 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5530 APFloat::rmNearestTiesToEven);
5531 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5532 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5533 Pred == ICmpInst::ICMP_ULE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005534 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5535 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005536 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005537 }
5538
Bill Wendling20636df2008-11-09 04:26:50 +00005539 if (!LHSUnsigned) {
5540 // See if the RHS value is < SignedMin.
5541 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
5542 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5543 APFloat::rmNearestTiesToEven);
5544 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5545 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5546 Pred == ICmpInst::ICMP_SGE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005547 return ReplaceInstUsesWith(I,ConstantInt::getTrue());
5548 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005549 }
Chris Lattnere6b62d92008-05-19 20:18:56 +00005550 }
5551
Bill Wendling20636df2008-11-09 04:26:50 +00005552 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5553 // [0, UMAX], but it may still be fractional. See if it is fractional by
5554 // casting the FP value to the integer value and back, checking for equality.
5555 // Don't do this for zero, because -0.0 is not fractional.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005556 Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
5557 if (!RHS.isZero() &&
5558 ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
Bill Wendling20636df2008-11-09 04:26:50 +00005559 // If we had a comparison against a fractional value, we have to adjust the
5560 // compare predicate and sometimes the value. RHSC is rounded towards zero
5561 // at this point.
Chris Lattnere6b62d92008-05-19 20:18:56 +00005562 switch (Pred) {
5563 default: assert(0 && "Unexpected integer comparison!");
5564 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Eli Friedmanc9c96242008-11-30 22:48:49 +00005565 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005566 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Eli Friedmanc9c96242008-11-30 22:48:49 +00005567 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005568 case ICmpInst::ICMP_ULE:
5569 // (float)int <= 4.4 --> int <= 4
5570 // (float)int <= -4.4 --> false
5571 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005572 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005573 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005574 case ICmpInst::ICMP_SLE:
5575 // (float)int <= 4.4 --> int <= 4
5576 // (float)int <= -4.4 --> int < -4
5577 if (RHS.isNegative())
5578 Pred = ICmpInst::ICMP_SLT;
5579 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005580 case ICmpInst::ICMP_ULT:
5581 // (float)int < -4.4 --> false
5582 // (float)int < 4.4 --> int <= 4
5583 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005584 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Bill Wendling20636df2008-11-09 04:26:50 +00005585 Pred = ICmpInst::ICMP_ULE;
5586 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005587 case ICmpInst::ICMP_SLT:
5588 // (float)int < -4.4 --> int < -4
5589 // (float)int < 4.4 --> int <= 4
5590 if (!RHS.isNegative())
5591 Pred = ICmpInst::ICMP_SLE;
5592 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005593 case ICmpInst::ICMP_UGT:
5594 // (float)int > 4.4 --> int > 4
5595 // (float)int > -4.4 --> true
5596 if (RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005597 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005598 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005599 case ICmpInst::ICMP_SGT:
5600 // (float)int > 4.4 --> int > 4
5601 // (float)int > -4.4 --> int >= -4
5602 if (RHS.isNegative())
5603 Pred = ICmpInst::ICMP_SGE;
5604 break;
Bill Wendling20636df2008-11-09 04:26:50 +00005605 case ICmpInst::ICMP_UGE:
5606 // (float)int >= -4.4 --> true
5607 // (float)int >= 4.4 --> int > 4
5608 if (!RHS.isNegative())
Eli Friedmanc9c96242008-11-30 22:48:49 +00005609 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Bill Wendling20636df2008-11-09 04:26:50 +00005610 Pred = ICmpInst::ICMP_UGT;
5611 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005612 case ICmpInst::ICMP_SGE:
5613 // (float)int >= -4.4 --> int >= -4
5614 // (float)int >= 4.4 --> int > 4
5615 if (!RHS.isNegative())
5616 Pred = ICmpInst::ICMP_SGT;
5617 break;
5618 }
5619 }
5620
5621 // Lower this FP comparison into an appropriate integer version of the
5622 // comparison.
5623 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5624}
5625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005626Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5627 bool Changed = SimplifyCompare(I);
5628 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5629
5630 // Fold trivial predicates.
5631 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005632 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005633 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
Eli Friedmanc9c96242008-11-30 22:48:49 +00005634 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005635
5636 // Simplify 'fcmp pred X, X'
5637 if (Op0 == Op1) {
5638 switch (I.getPredicate()) {
5639 default: assert(0 && "Unknown predicate!");
5640 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5641 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5642 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005643 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005644 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5645 case FCmpInst::FCMP_OLT: // True if ordered and less than
5646 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
Eli Friedmanc9c96242008-11-30 22:48:49 +00005647 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005648
5649 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5650 case FCmpInst::FCMP_ULT: // True if unordered or less than
5651 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5652 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5653 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5654 I.setPredicate(FCmpInst::FCMP_UNO);
5655 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5656 return &I;
5657
5658 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5659 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5660 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5661 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5662 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5663 I.setPredicate(FCmpInst::FCMP_ORD);
5664 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5665 return &I;
5666 }
5667 }
5668
5669 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
5670 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
5671
5672 // Handle fcmp with constant RHS
5673 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
Chris Lattnere6b62d92008-05-19 20:18:56 +00005674 // If the constant is a nan, see if we can fold the comparison based on it.
5675 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
5676 if (CFP->getValueAPF().isNaN()) {
5677 if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
Eli Friedmanc9c96242008-11-30 22:48:49 +00005678 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnerf13ff492008-05-20 03:50:52 +00005679 assert(FCmpInst::isUnordered(I.getPredicate()) &&
5680 "Comparison must be either ordered or unordered!");
5681 // True if unordered.
Eli Friedmanc9c96242008-11-30 22:48:49 +00005682 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere6b62d92008-05-19 20:18:56 +00005683 }
5684 }
5685
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005686 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5687 switch (LHSI->getOpcode()) {
5688 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005689 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5690 // block. If in the same block, we're encouraging jump threading. If
5691 // not, we are just pessimizing the code by making an i1 phi.
5692 if (LHSI->getParent() == I.getParent())
5693 if (Instruction *NV = FoldOpIntoPhi(I))
5694 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005695 break;
Chris Lattnere6b62d92008-05-19 20:18:56 +00005696 case Instruction::SIToFP:
5697 case Instruction::UIToFP:
5698 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
5699 return NV;
5700 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005701 case Instruction::Select:
5702 // If either operand of the select is a constant, we can fold the
5703 // comparison into the select arms, which will cause one to be
5704 // constant folded and the select turned into a bitwise or.
5705 Value *Op1 = 0, *Op2 = 0;
5706 if (LHSI->hasOneUse()) {
5707 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5708 // Fold the known value into the constant operand.
5709 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5710 // Insert a new FCmp of the other select operand.
5711 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5712 LHSI->getOperand(2), RHSC,
5713 I.getName()), I);
5714 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5715 // Fold the known value into the constant operand.
5716 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5717 // Insert a new FCmp of the other select operand.
5718 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5719 LHSI->getOperand(1), RHSC,
5720 I.getName()), I);
5721 }
5722 }
5723
5724 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00005725 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005726 break;
5727 }
5728 }
5729
5730 return Changed ? &I : 0;
5731}
5732
5733Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5734 bool Changed = SimplifyCompare(I);
5735 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5736 const Type *Ty = Op0->getType();
5737
5738 // icmp X, X
5739 if (Op0 == Op1)
5740 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005741 I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005742
5743 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
5744 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Christopher Lambf78cd322007-12-18 21:32:20 +00005745
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005746 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5747 // addresses never equal each other! We already know that Op0 != Op1.
5748 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5749 isa<ConstantPointerNull>(Op0)) &&
5750 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
5751 isa<ConstantPointerNull>(Op1)))
5752 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00005753 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005754
5755 // icmp's with boolean values can always be turned into bitwise operations
5756 if (Ty == Type::Int1Ty) {
5757 switch (I.getPredicate()) {
5758 default: assert(0 && "Invalid icmp instruction!");
Chris Lattnera02893d2008-07-11 04:20:58 +00005759 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Gabor Greifa645dd32008-05-16 19:29:10 +00005760 Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005761 InsertNewInstBefore(Xor, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005762 return BinaryOperator::CreateNot(Xor);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005763 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005764 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
Gabor Greifa645dd32008-05-16 19:29:10 +00005765 return BinaryOperator::CreateXor(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005766
5767 case ICmpInst::ICMP_UGT:
Chris Lattnera02893d2008-07-11 04:20:58 +00005768 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005769 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005770 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Gabor Greifa645dd32008-05-16 19:29:10 +00005771 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005772 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005773 return BinaryOperator::CreateAnd(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005774 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005775 case ICmpInst::ICMP_SGT:
5776 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005777 // FALL THROUGH
Chris Lattnera02893d2008-07-11 04:20:58 +00005778 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
5779 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5780 InsertNewInstBefore(Not, I);
5781 return BinaryOperator::CreateAnd(Not, Op0);
5782 }
5783 case ICmpInst::ICMP_UGE:
5784 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
5785 // FALL THROUGH
5786 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Gabor Greifa645dd32008-05-16 19:29:10 +00005787 Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005788 InsertNewInstBefore(Not, I);
Gabor Greifa645dd32008-05-16 19:29:10 +00005789 return BinaryOperator::CreateOr(Not, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005790 }
Chris Lattnera02893d2008-07-11 04:20:58 +00005791 case ICmpInst::ICMP_SGE:
5792 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
5793 // FALL THROUGH
5794 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
5795 Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
5796 InsertNewInstBefore(Not, I);
5797 return BinaryOperator::CreateOr(Not, Op0);
5798 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005799 }
5800 }
5801
Dan Gohman58c09632008-09-16 18:46:06 +00005802 // See if we are doing a comparison with a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005803 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3d816532008-07-11 04:09:09 +00005804 Value *A, *B;
Christopher Lambfa6b3102007-12-20 07:21:11 +00005805
Chris Lattnerbe6c54a2008-01-05 01:18:20 +00005806 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5807 if (I.isEquality() && CI->isNullValue() &&
5808 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
5809 // (icmp cond A B) if cond is equality
5810 return new ICmpInst(I.getPredicate(), A, B);
Owen Anderson42f61ed2007-12-28 07:42:12 +00005811 }
Christopher Lambfa6b3102007-12-20 07:21:11 +00005812
Dan Gohman58c09632008-09-16 18:46:06 +00005813 // If we have an icmp le or icmp ge instruction, turn it into the
5814 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5815 // them being folded in the code below.
Chris Lattner62d0f232008-07-11 05:08:55 +00005816 switch (I.getPredicate()) {
5817 default: break;
5818 case ICmpInst::ICMP_ULE:
5819 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
5820 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5821 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5822 case ICmpInst::ICMP_SLE:
5823 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
5824 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5825 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5826 case ICmpInst::ICMP_UGE:
5827 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
5828 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5829 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5830 case ICmpInst::ICMP_SGE:
5831 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
5832 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5833 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
5834 }
5835
Chris Lattnera1308652008-07-11 05:40:05 +00005836 // See if we can fold the comparison based on range information we can get
5837 // by checking whether bits are known to be zero or one in the input.
5838 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
5839 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5840
5841 // If this comparison is a normal comparison, it demands all
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005842 // bits, if it is a sign bit comparison, it only demands the sign bit.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005843 bool UnusedBit;
5844 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
5845
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005846 if (SimplifyDemandedBits(Op0,
5847 isSignBit ? APInt::getSignBit(BitWidth)
5848 : APInt::getAllOnesValue(BitWidth),
5849 KnownZero, KnownOne, 0))
5850 return &I;
5851
5852 // Given the known and unknown bits, compute a range that the LHS could be
Chris Lattner62d0f232008-07-11 05:08:55 +00005853 // in. Compute the Min, Max and RHS values based on the known bits. For the
5854 // EQ and NE we use unsigned values.
5855 APInt Min(BitWidth, 0), Max(BitWidth, 0);
Chris Lattner62d0f232008-07-11 05:08:55 +00005856 if (ICmpInst::isSignedPredicate(I.getPredicate()))
5857 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max);
5858 else
5859 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,Min,Max);
5860
Chris Lattnera1308652008-07-11 05:40:05 +00005861 // If Min and Max are known to be the same, then SimplifyDemandedBits
5862 // figured out that the LHS is a constant. Just constant fold this now so
5863 // that code below can assume that Min != Max.
5864 if (Min == Max)
5865 return ReplaceInstUsesWith(I, ConstantExpr::getICmp(I.getPredicate(),
5866 ConstantInt::get(Min),
5867 CI));
5868
5869 // Based on the range information we know about the LHS, see if we can
5870 // simplify this comparison. For example, (x&4) < 8 is always true.
5871 const APInt &RHSVal = CI->getValue();
Chris Lattner62d0f232008-07-11 05:08:55 +00005872 switch (I.getPredicate()) { // LE/GE have been folded already.
5873 default: assert(0 && "Unknown icmp opcode!");
5874 case ICmpInst::ICMP_EQ:
5875 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5876 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5877 break;
5878 case ICmpInst::ICMP_NE:
5879 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
5880 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5881 break;
5882 case ICmpInst::ICMP_ULT:
Chris Lattnera1308652008-07-11 05:40:05 +00005883 if (Max.ult(RHSVal)) // A <u C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005884 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005885 if (Min.uge(RHSVal)) // A <u C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005886 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005887 if (RHSVal == Max) // A <u MAX -> A != MAX
5888 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5889 if (RHSVal == Min+1) // A <u MIN+1 -> A == MIN
5890 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5891
5892 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5893 if (CI->isMinValue(true))
5894 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
5895 ConstantInt::getAllOnesValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005896 break;
5897 case ICmpInst::ICMP_UGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005898 if (Min.ugt(RHSVal)) // A >u C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005899 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005900 if (Max.ule(RHSVal)) // A >u C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005901 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005902
5903 if (RHSVal == Min) // A >u MIN -> A != MIN
5904 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5905 if (RHSVal == Max-1) // A >u MAX-1 -> A == MAX
5906 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5907
5908 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5909 if (CI->isMaxValue(true))
5910 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
5911 ConstantInt::getNullValue(Op0->getType()));
Chris Lattner62d0f232008-07-11 05:08:55 +00005912 break;
5913 case ICmpInst::ICMP_SLT:
Chris Lattnera1308652008-07-11 05:40:05 +00005914 if (Max.slt(RHSVal)) // A <s C -> true iff max(A) < C
Chris Lattner62d0f232008-07-11 05:08:55 +00005915 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner611b43e2008-07-11 06:40:29 +00005916 if (Min.sge(RHSVal)) // A <s C -> false iff min(A) >= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005917 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005918 if (RHSVal == Max) // A <s MAX -> A != MAX
5919 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
Chris Lattner3496f3e2008-07-11 06:36:01 +00005920 if (RHSVal == Min+1) // A <s MIN+1 -> A == MIN
Chris Lattner55ab3152008-07-11 06:38:16 +00005921 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005922 break;
5923 case ICmpInst::ICMP_SGT:
Chris Lattnera1308652008-07-11 05:40:05 +00005924 if (Min.sgt(RHSVal)) // A >s C -> true iff min(A) > C
Chris Lattner62d0f232008-07-11 05:08:55 +00005925 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnera1308652008-07-11 05:40:05 +00005926 if (Max.sle(RHSVal)) // A >s C -> false iff max(A) <= C
Chris Lattner62d0f232008-07-11 05:08:55 +00005927 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattnera1308652008-07-11 05:40:05 +00005928
5929 if (RHSVal == Min) // A >s MIN -> A != MIN
5930 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5931 if (RHSVal == Max-1) // A >s MAX-1 -> A == MAX
5932 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
Chris Lattner62d0f232008-07-11 05:08:55 +00005933 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005934 }
Dan Gohman58c09632008-09-16 18:46:06 +00005935 }
5936
5937 // Test if the ICmpInst instruction is used exclusively by a select as
5938 // part of a minimum or maximum operation. If so, refrain from doing
5939 // any other folding. This helps out other analyses which understand
5940 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5941 // and CodeGen. And in this case, at least one of the comparison
5942 // operands has at least one user besides the compare (the select),
5943 // which would often largely negate the benefit of folding anyway.
5944 if (I.hasOneUse())
5945 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
5946 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
5947 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
5948 return 0;
5949
5950 // See if we are doing a comparison between a constant and an instruction that
5951 // can be folded into the comparison.
5952 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005953 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5954 // instruction, see if that instruction also has constants so that the
5955 // instruction can be folded into the icmp
5956 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5957 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5958 return Res;
5959 }
5960
5961 // Handle icmp with constant (but not simple integer constant) RHS
5962 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5963 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5964 switch (LHSI->getOpcode()) {
5965 case Instruction::GetElementPtr:
5966 if (RHSC->isNullValue()) {
5967 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5968 bool isAllZeros = true;
5969 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5970 if (!isa<Constant>(LHSI->getOperand(i)) ||
5971 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5972 isAllZeros = false;
5973 break;
5974 }
5975 if (isAllZeros)
5976 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5977 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5978 }
5979 break;
5980
5981 case Instruction::PHI:
Chris Lattnera2417ba2008-06-08 20:52:11 +00005982 // Only fold icmp into the PHI if the phi and fcmp are in the same
5983 // block. If in the same block, we're encouraging jump threading. If
5984 // not, we are just pessimizing the code by making an i1 phi.
5985 if (LHSI->getParent() == I.getParent())
5986 if (Instruction *NV = FoldOpIntoPhi(I))
5987 return NV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005988 break;
5989 case Instruction::Select: {
5990 // If either operand of the select is a constant, we can fold the
5991 // comparison into the select arms, which will cause one to be
5992 // constant folded and the select turned into a bitwise or.
5993 Value *Op1 = 0, *Op2 = 0;
5994 if (LHSI->hasOneUse()) {
5995 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5996 // Fold the known value into the constant operand.
5997 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5998 // Insert a new ICmp of the other select operand.
5999 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
6000 LHSI->getOperand(2), RHSC,
6001 I.getName()), I);
6002 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
6003 // Fold the known value into the constant operand.
6004 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6005 // Insert a new ICmp of the other select operand.
6006 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
6007 LHSI->getOperand(1), RHSC,
6008 I.getName()), I);
6009 }
6010 }
6011
6012 if (Op1)
Gabor Greifd6da1d02008-04-06 20:25:17 +00006013 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006014 break;
6015 }
6016 case Instruction::Malloc:
6017 // If we have (malloc != null), and if the malloc has a single use, we
6018 // can assume it is successful and remove the malloc.
6019 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
6020 AddToWorkList(LHSI);
6021 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Nick Lewycky09284cf2008-05-17 07:33:39 +00006022 !I.isTrueWhenEqual()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006023 }
6024 break;
6025 }
6026 }
6027
6028 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6029 if (User *GEP = dyn_castGetElementPtr(Op0))
6030 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
6031 return NI;
6032 if (User *GEP = dyn_castGetElementPtr(Op1))
6033 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6034 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
6035 return NI;
6036
6037 // Test to see if the operands of the icmp are casted versions of other
6038 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6039 // now.
6040 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6041 if (isa<PointerType>(Op0->getType()) &&
6042 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
6043 // We keep moving the cast from the left operand over to the right
6044 // operand, where it can often be eliminated completely.
6045 Op0 = CI->getOperand(0);
6046
6047 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6048 // so eliminate it as well.
6049 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6050 Op1 = CI2->getOperand(0);
6051
6052 // If Op1 is a constant, we can fold the cast into the constant.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006053 if (Op0->getType() != Op1->getType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006054 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
6055 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
6056 } else {
6057 // Otherwise, cast the RHS right before the icmp
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006058 Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006059 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006060 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006061 return new ICmpInst(I.getPredicate(), Op0, Op1);
6062 }
6063 }
6064
6065 if (isa<CastInst>(Op0)) {
6066 // Handle the special case of: icmp (cast bool to X), <cst>
6067 // This comes up when you have code like
6068 // int X = A < B;
6069 // if (X) ...
6070 // For generality, we handle any zero-extension of any operand comparison
6071 // with a constant or another cast from the same type.
6072 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
6073 if (Instruction *R = visitICmpInstWithCastAndCast(I))
6074 return R;
6075 }
6076
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006077 // See if it's the same type of instruction on the left and right.
6078 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
6079 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006080 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
6081 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1) &&
6082 I.isEquality()) {
Nick Lewyckycfadfbd2008-09-03 06:24:21 +00006083 switch (Op0I->getOpcode()) {
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006084 default: break;
6085 case Instruction::Add:
6086 case Instruction::Sub:
6087 case Instruction::Xor:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006088 // a+x icmp eq/ne b+x --> a icmp b
6089 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
6090 Op1I->getOperand(0));
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006091 break;
6092 case Instruction::Mul:
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006093 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
6094 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6095 // Mask = -1 >> count-trailing-zeros(Cst).
6096 if (!CI->isZero() && !CI->isOne()) {
6097 const APInt &AP = CI->getValue();
6098 ConstantInt *Mask = ConstantInt::get(
6099 APInt::getLowBitsSet(AP.getBitWidth(),
6100 AP.getBitWidth() -
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006101 AP.countTrailingZeros()));
Nick Lewycky58ecfb22008-08-21 05:56:10 +00006102 Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
6103 Mask);
6104 Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
6105 Mask);
6106 InsertNewInstBefore(And1, I);
6107 InsertNewInstBefore(And2, I);
6108 return new ICmpInst(I.getPredicate(), And1, And2);
Nick Lewyckyd4c5ea02008-07-11 07:20:53 +00006109 }
6110 }
6111 break;
6112 }
6113 }
6114 }
6115 }
6116
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006117 // ~x < ~y --> y < x
6118 { Value *A, *B;
6119 if (match(Op0, m_Not(m_Value(A))) &&
6120 match(Op1, m_Not(m_Value(B))))
6121 return new ICmpInst(I.getPredicate(), B, A);
6122 }
6123
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006124 if (I.isEquality()) {
6125 Value *A, *B, *C, *D;
Chris Lattnera4e1eef2008-05-09 05:19:28 +00006126
6127 // -x == -y --> x == y
6128 if (match(Op0, m_Neg(m_Value(A))) &&
6129 match(Op1, m_Neg(m_Value(B))))
6130 return new ICmpInst(I.getPredicate(), A, B);
6131
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006132 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6133 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6134 Value *OtherVal = A == Op1 ? B : A;
6135 return new ICmpInst(I.getPredicate(), OtherVal,
6136 Constant::getNullValue(A->getType()));
6137 }
6138
6139 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6140 // A^c1 == C^c2 --> A == C^(c1^c2)
Chris Lattner3b874082008-11-16 05:38:51 +00006141 ConstantInt *C1, *C2;
6142 if (match(B, m_ConstantInt(C1)) &&
6143 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
6144 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
6145 Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
6146 return new ICmpInst(I.getPredicate(), A,
6147 InsertNewInstBefore(Xor, I));
6148 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006149
6150 // A^B == A^D -> B == D
6151 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6152 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6153 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6154 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6155 }
6156 }
6157
6158 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6159 (A == Op0 || B == Op0)) {
6160 // A == (A^B) -> B == 0
6161 Value *OtherVal = A == Op0 ? B : A;
6162 return new ICmpInst(I.getPredicate(), OtherVal,
6163 Constant::getNullValue(A->getType()));
6164 }
Chris Lattner3b874082008-11-16 05:38:51 +00006165
6166 // (A-B) == A -> B == 0
6167 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
6168 return new ICmpInst(I.getPredicate(), B,
6169 Constant::getNullValue(B->getType()));
6170
6171 // A == (A-B) -> B == 0
6172 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006173 return new ICmpInst(I.getPredicate(), B,
6174 Constant::getNullValue(B->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006175
6176 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6177 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6178 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6179 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6180 Value *X = 0, *Y = 0, *Z = 0;
6181
6182 if (A == C) {
6183 X = B; Y = D; Z = A;
6184 } else if (A == D) {
6185 X = B; Y = C; Z = A;
6186 } else if (B == C) {
6187 X = A; Y = D; Z = B;
6188 } else if (B == D) {
6189 X = A; Y = C; Z = B;
6190 }
6191
6192 if (X) { // Build (X^Y) & Z
Gabor Greifa645dd32008-05-16 19:29:10 +00006193 Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
6194 Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006195 I.setOperand(0, Op1);
6196 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6197 return &I;
6198 }
6199 }
6200 }
6201 return Changed ? &I : 0;
6202}
6203
6204
6205/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6206/// and CmpRHS are both known to be integer constants.
6207Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
6208 ConstantInt *DivRHS) {
6209 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
6210 const APInt &CmpRHSV = CmpRHS->getValue();
6211
6212 // FIXME: If the operand types don't match the type of the divide
6213 // then don't attempt this transform. The code below doesn't have the
6214 // logic to deal with a signed divide and an unsigned compare (and
6215 // vice versa). This is because (x /s C1) <s C2 produces different
6216 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6217 // (x /u C1) <u C2. Simply casting the operands and result won't
6218 // work. :( The if statement below tests that condition and bails
6219 // if it finds it.
6220 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
6221 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
6222 return 0;
6223 if (DivRHS->isZero())
6224 return 0; // The ProdOV computation fails on divide by zero.
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006225 if (DivIsSigned && DivRHS->isAllOnesValue())
6226 return 0; // The overflow computation also screws up here
6227 if (DivRHS->isOne())
6228 return 0; // Not worth bothering, and eliminates some funny cases
6229 // with INT_MIN.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006230
6231 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6232 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6233 // C2 (CI). By solving for X we can turn this into a range check
6234 // instead of computing a divide.
6235 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
6236
6237 // Determine if the product overflows by seeing if the product is
6238 // not equal to the divide. Make sure we do the same kind of divide
6239 // as in the LHS instruction that we're folding.
6240 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
6241 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
6242
6243 // Get the ICmp opcode
6244 ICmpInst::Predicate Pred = ICI.getPredicate();
6245
6246 // Figure out the interval that is being checked. For example, a comparison
6247 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6248 // Compute this interval based on the constants involved and the signedness of
6249 // the compare/divide. This computes a half-open interval, keeping track of
6250 // whether either value in the interval overflows. After analysis each
6251 // overflow variable is set to 0 if it's corresponding bound variable is valid
6252 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6253 int LoOverflow = 0, HiOverflow = 0;
6254 ConstantInt *LoBound = 0, *HiBound = 0;
6255
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006256 if (!DivIsSigned) { // udiv
6257 // e.g. X/5 op 3 --> [15, 20)
6258 LoBound = Prod;
6259 HiOverflow = LoOverflow = ProdOV;
6260 if (!HiOverflow)
6261 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
Dan Gohman5dceed12008-02-13 22:09:18 +00006262 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006263 if (CmpRHSV == 0) { // (X / pos) op 0
6264 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6265 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
6266 HiBound = DivRHS;
Dan Gohman5dceed12008-02-13 22:09:18 +00006267 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006268 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
6269 HiOverflow = LoOverflow = ProdOV;
6270 if (!HiOverflow)
6271 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
6272 } else { // (X / pos) op neg
6273 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006274 HiBound = AddOne(Prod);
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006275 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
6276 if (!LoOverflow) {
6277 ConstantInt* DivNeg = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6278 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg,
6279 true) ? -1 : 0;
6280 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006281 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006282 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006283 if (CmpRHSV == 0) { // (X / neg) op 0
6284 // e.g. X/-5 op 0 --> [-4, 5)
6285 LoBound = AddOne(DivRHS);
6286 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
6287 if (HiBound == DivRHS) { // -INTMIN = INTMIN
6288 HiOverflow = 1; // [INTMIN+1, overflow)
6289 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6290 }
Dan Gohman5dceed12008-02-13 22:09:18 +00006291 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006292 // e.g. X/-5 op 3 --> [-19, -14)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006293 HiBound = AddOne(Prod);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006294 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
6295 if (!LoOverflow)
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006296 LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006297 } else { // (X / neg) op neg
Chris Lattnerbd85a5f2008-10-11 22:55:00 +00006298 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
6299 LoOverflow = HiOverflow = ProdOV;
Dan Gohman45408ea2008-09-11 00:25:00 +00006300 if (!HiOverflow)
6301 HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006302 }
6303
6304 // Dividing by a negative swaps the condition. LT <-> GT
6305 Pred = ICmpInst::getSwappedPredicate(Pred);
6306 }
6307
6308 Value *X = DivI->getOperand(0);
6309 switch (Pred) {
6310 default: assert(0 && "Unhandled icmp opcode!");
6311 case ICmpInst::ICMP_EQ:
6312 if (LoOverflow && HiOverflow)
6313 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6314 else if (HiOverflow)
6315 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6316 ICmpInst::ICMP_UGE, X, LoBound);
6317 else if (LoOverflow)
6318 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6319 ICmpInst::ICMP_ULT, X, HiBound);
6320 else
6321 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
6322 case ICmpInst::ICMP_NE:
6323 if (LoOverflow && HiOverflow)
6324 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6325 else if (HiOverflow)
6326 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
6327 ICmpInst::ICMP_ULT, X, LoBound);
6328 else if (LoOverflow)
6329 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
6330 ICmpInst::ICMP_UGE, X, HiBound);
6331 else
6332 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
6333 case ICmpInst::ICMP_ULT:
6334 case ICmpInst::ICMP_SLT:
6335 if (LoOverflow == +1) // Low bound is greater than input range.
6336 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6337 if (LoOverflow == -1) // Low bound is less than input range.
6338 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6339 return new ICmpInst(Pred, X, LoBound);
6340 case ICmpInst::ICMP_UGT:
6341 case ICmpInst::ICMP_SGT:
6342 if (HiOverflow == +1) // High bound greater than input range.
6343 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6344 else if (HiOverflow == -1) // High bound less than input range.
6345 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6346 if (Pred == ICmpInst::ICMP_UGT)
6347 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
6348 else
6349 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
6350 }
6351}
6352
6353
6354/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6355///
6356Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
6357 Instruction *LHSI,
6358 ConstantInt *RHS) {
6359 const APInt &RHSV = RHS->getValue();
6360
6361 switch (LHSI->getOpcode()) {
6362 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
6363 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
6364 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6365 // fold the xor.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00006366 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
6367 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006368 Value *CompareVal = LHSI->getOperand(0);
6369
6370 // If the sign bit of the XorCST is not set, there is no change to
6371 // the operation, just stop using the Xor.
6372 if (!XorCST->getValue().isNegative()) {
6373 ICI.setOperand(0, CompareVal);
6374 AddToWorkList(LHSI);
6375 return &ICI;
6376 }
6377
6378 // Was the old condition true if the operand is positive?
6379 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
6380
6381 // If so, the new one isn't.
6382 isTrueIfPositive ^= true;
6383
6384 if (isTrueIfPositive)
6385 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
6386 else
6387 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
6388 }
6389 }
6390 break;
6391 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
6392 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
6393 LHSI->getOperand(0)->hasOneUse()) {
6394 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
6395
6396 // If the LHS is an AND of a truncating cast, we can widen the
6397 // and/compare to be the input width without changing the value
6398 // produced, eliminating a cast.
6399 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
6400 // We can do this transformation if either the AND constant does not
6401 // have its sign bit set or if it is an equality comparison.
6402 // Extending a relational comparison when we're checking the sign
6403 // bit would not work.
6404 if (Cast->hasOneUse() &&
Anton Korobeynikov6a4a9332008-02-20 12:07:57 +00006405 (ICI.isEquality() ||
6406 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006407 uint32_t BitWidth =
6408 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
6409 APInt NewCST = AndCST->getValue();
6410 NewCST.zext(BitWidth);
6411 APInt NewCI = RHSV;
6412 NewCI.zext(BitWidth);
6413 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006414 BinaryOperator::CreateAnd(Cast->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006415 ConstantInt::get(NewCST),LHSI->getName());
6416 InsertNewInstBefore(NewAnd, ICI);
6417 return new ICmpInst(ICI.getPredicate(), NewAnd,
6418 ConstantInt::get(NewCI));
6419 }
6420 }
6421
6422 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6423 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6424 // happens a LOT in code produced by the C front-end, for bitfield
6425 // access.
6426 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
6427 if (Shift && !Shift->isShift())
6428 Shift = 0;
6429
6430 ConstantInt *ShAmt;
6431 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
6432 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
6433 const Type *AndTy = AndCST->getType(); // Type of the and.
6434
6435 // We can fold this as long as we can't shift unknown bits
6436 // into the mask. This can only happen with signed shift
6437 // rights, as they sign-extend.
6438 if (ShAmt) {
6439 bool CanFold = Shift->isLogicalShift();
6440 if (!CanFold) {
6441 // To test for the bad case of the signed shr, see if any
6442 // of the bits shifted in could be tested after the mask.
6443 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
6444 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
6445
6446 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
6447 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
6448 AndCST->getValue()) == 0)
6449 CanFold = true;
6450 }
6451
6452 if (CanFold) {
6453 Constant *NewCst;
6454 if (Shift->getOpcode() == Instruction::Shl)
6455 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
6456 else
6457 NewCst = ConstantExpr::getShl(RHS, ShAmt);
6458
6459 // Check to see if we are shifting out any of the bits being
6460 // compared.
6461 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
6462 // If we shifted bits out, the fold is not going to work out.
6463 // As a special case, check to see if this means that the
6464 // result is always true or false now.
6465 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6466 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6467 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6468 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6469 } else {
6470 ICI.setOperand(1, NewCst);
6471 Constant *NewAndCST;
6472 if (Shift->getOpcode() == Instruction::Shl)
6473 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
6474 else
6475 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
6476 LHSI->setOperand(1, NewAndCST);
6477 LHSI->setOperand(0, Shift->getOperand(0));
6478 AddToWorkList(Shift); // Shift is dead.
6479 AddUsesToWorkList(ICI);
6480 return &ICI;
6481 }
6482 }
6483 }
6484
6485 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6486 // preferable because it allows the C<<Y expression to be hoisted out
6487 // of a loop if Y is invariant and X is not.
6488 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
6489 ICI.isEquality() && !Shift->isArithmeticShift() &&
6490 isa<Instruction>(Shift->getOperand(0))) {
6491 // Compute C << Y.
6492 Value *NS;
6493 if (Shift->getOpcode() == Instruction::LShr) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006494 NS = BinaryOperator::CreateShl(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006495 Shift->getOperand(1), "tmp");
6496 } else {
6497 // Insert a logical shift.
Gabor Greifa645dd32008-05-16 19:29:10 +00006498 NS = BinaryOperator::CreateLShr(AndCST,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006499 Shift->getOperand(1), "tmp");
6500 }
6501 InsertNewInstBefore(cast<Instruction>(NS), ICI);
6502
6503 // Compute X & (C << Y).
6504 Instruction *NewAnd =
Gabor Greifa645dd32008-05-16 19:29:10 +00006505 BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006506 InsertNewInstBefore(NewAnd, ICI);
6507
6508 ICI.setOperand(0, NewAnd);
6509 return &ICI;
6510 }
6511 }
6512 break;
6513
6514 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
6515 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6516 if (!ShAmt) break;
6517
6518 uint32_t TypeBits = RHSV.getBitWidth();
6519
6520 // Check that the shift amount is in range. If not, don't perform
6521 // undefined shifts. When the shift is visited it will be
6522 // simplified.
6523 if (ShAmt->uge(TypeBits))
6524 break;
6525
6526 if (ICI.isEquality()) {
6527 // If we are comparing against bits always shifted out, the
6528 // comparison cannot succeed.
6529 Constant *Comp =
6530 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
6531 if (Comp != RHS) {// Comparing against a bit that we know is zero.
6532 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6533 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6534 return ReplaceInstUsesWith(ICI, Cst);
6535 }
6536
6537 if (LHSI->hasOneUse()) {
6538 // Otherwise strength reduce the shift into an and.
6539 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
6540 Constant *Mask =
6541 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
6542
6543 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006544 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006545 Mask, LHSI->getName()+".mask");
6546 Value *And = InsertNewInstBefore(AndI, ICI);
6547 return new ICmpInst(ICI.getPredicate(), And,
6548 ConstantInt::get(RHSV.lshr(ShAmtVal)));
6549 }
6550 }
6551
6552 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6553 bool TrueIfSigned = false;
6554 if (LHSI->hasOneUse() &&
6555 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
6556 // (X << 31) <s 0 --> (X&1) != 0
6557 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
6558 (TypeBits-ShAmt->getZExtValue()-1));
6559 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006560 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006561 Mask, LHSI->getName()+".mask");
6562 Value *And = InsertNewInstBefore(AndI, ICI);
6563
6564 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
6565 And, Constant::getNullValue(And->getType()));
6566 }
6567 break;
6568 }
6569
6570 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
6571 case Instruction::AShr: {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006572 // Only handle equality comparisons of shift-by-constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006573 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
Chris Lattner5ee84f82008-03-21 05:19:58 +00006574 if (!ShAmt || !ICI.isEquality()) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006575
Chris Lattner5ee84f82008-03-21 05:19:58 +00006576 // Check that the shift amount is in range. If not, don't perform
6577 // undefined shifts. When the shift is visited it will be
6578 // simplified.
6579 uint32_t TypeBits = RHSV.getBitWidth();
6580 if (ShAmt->uge(TypeBits))
6581 break;
6582
6583 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006584
Chris Lattner5ee84f82008-03-21 05:19:58 +00006585 // If we are comparing against bits always shifted out, the
6586 // comparison cannot succeed.
6587 APInt Comp = RHSV << ShAmtVal;
6588 if (LHSI->getOpcode() == Instruction::LShr)
6589 Comp = Comp.lshr(ShAmtVal);
6590 else
6591 Comp = Comp.ashr(ShAmtVal);
6592
6593 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
6594 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6595 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
6596 return ReplaceInstUsesWith(ICI, Cst);
6597 }
6598
6599 // Otherwise, check to see if the bits shifted out are known to be zero.
6600 // If so, we can compare against the unshifted value:
6601 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Evan Chengfb9292a2008-04-23 00:38:06 +00006602 if (LHSI->hasOneUse() &&
6603 MaskedValueIsZero(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006604 APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
6605 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
6606 ConstantExpr::getShl(RHS, ShAmt));
6607 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006608
Evan Chengfb9292a2008-04-23 00:38:06 +00006609 if (LHSI->hasOneUse()) {
Chris Lattner5ee84f82008-03-21 05:19:58 +00006610 // Otherwise strength reduce the shift into an and.
6611 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
6612 Constant *Mask = ConstantInt::get(Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006613
Chris Lattner5ee84f82008-03-21 05:19:58 +00006614 Instruction *AndI =
Gabor Greifa645dd32008-05-16 19:29:10 +00006615 BinaryOperator::CreateAnd(LHSI->getOperand(0),
Chris Lattner5ee84f82008-03-21 05:19:58 +00006616 Mask, LHSI->getName()+".mask");
6617 Value *And = InsertNewInstBefore(AndI, ICI);
6618 return new ICmpInst(ICI.getPredicate(), And,
6619 ConstantExpr::getShl(RHS, ShAmt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006620 }
6621 break;
6622 }
6623
6624 case Instruction::SDiv:
6625 case Instruction::UDiv:
6626 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6627 // Fold this div into the comparison, producing a range check.
6628 // Determine, based on the divide type, what the range is being
6629 // checked. If there is an overflow on the low or high side, remember
6630 // it, otherwise compute the range [low, hi) bounding the new value.
6631 // See: InsertRangeTest above for the kinds of replacements possible.
6632 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
6633 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
6634 DivRHS))
6635 return R;
6636 break;
Nick Lewycky0185bbf2008-02-03 16:33:09 +00006637
6638 case Instruction::Add:
6639 // Fold: icmp pred (add, X, C1), C2
6640
6641 if (!ICI.isEquality()) {
6642 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
6643 if (!LHSC) break;
6644 const APInt &LHSV = LHSC->getValue();
6645
6646 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
6647 .subtract(LHSV);
6648
6649 if (ICI.isSignedPredicate()) {
6650 if (CR.getLower().isSignBit()) {
6651 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
6652 ConstantInt::get(CR.getUpper()));
6653 } else if (CR.getUpper().isSignBit()) {
6654 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
6655 ConstantInt::get(CR.getLower()));
6656 }
6657 } else {
6658 if (CR.getLower().isMinValue()) {
6659 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
6660 ConstantInt::get(CR.getUpper()));
6661 } else if (CR.getUpper().isMinValue()) {
6662 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
6663 ConstantInt::get(CR.getLower()));
6664 }
6665 }
6666 }
6667 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006668 }
6669
6670 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6671 if (ICI.isEquality()) {
6672 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
6673
6674 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6675 // the second operand is a constant, simplify a bit.
6676 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
6677 switch (BO->getOpcode()) {
6678 case Instruction::SRem:
6679 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6680 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
6681 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
6682 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
6683 Instruction *NewRem =
Gabor Greifa645dd32008-05-16 19:29:10 +00006684 BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006685 BO->getName());
6686 InsertNewInstBefore(NewRem, ICI);
6687 return new ICmpInst(ICI.getPredicate(), NewRem,
6688 Constant::getNullValue(BO->getType()));
6689 }
6690 }
6691 break;
6692 case Instruction::Add:
6693 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6694 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6695 if (BO->hasOneUse())
6696 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6697 Subtract(RHS, BOp1C));
6698 } else if (RHSV == 0) {
6699 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6700 // efficiently invertible, or if the add has just this one use.
6701 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
6702
6703 if (Value *NegVal = dyn_castNegVal(BOp1))
6704 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
6705 else if (Value *NegVal = dyn_castNegVal(BOp0))
6706 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
6707 else if (BO->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00006708 Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006709 InsertNewInstBefore(Neg, ICI);
6710 Neg->takeName(BO);
6711 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
6712 }
6713 }
6714 break;
6715 case Instruction::Xor:
6716 // For the xor case, we can xor two constants together, eliminating
6717 // the explicit xor.
6718 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
6719 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6720 ConstantExpr::getXor(RHS, BOC));
6721
6722 // FALLTHROUGH
6723 case Instruction::Sub:
6724 // Replace (([sub|xor] A, B) != 0) with (A != B)
6725 if (RHSV == 0)
6726 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
6727 BO->getOperand(1));
6728 break;
6729
6730 case Instruction::Or:
6731 // If bits are being or'd in that are not present in the constant we
6732 // are comparing against, then the comparison could never succeed!
6733 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
6734 Constant *NotCI = ConstantExpr::getNot(RHS);
6735 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
6736 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6737 isICMP_NE));
6738 }
6739 break;
6740
6741 case Instruction::And:
6742 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6743 // If bits are being compared against that are and'd out, then the
6744 // comparison can never succeed!
6745 if ((RHSV & ~BOC->getValue()) != 0)
6746 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
6747 isICMP_NE));
6748
6749 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6750 if (RHS == BOC && RHSV.isPowerOf2())
6751 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
6752 ICmpInst::ICMP_NE, LHSI,
6753 Constant::getNullValue(RHS->getType()));
6754
6755 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattner60813c22008-06-02 01:29:46 +00006756 if (BOC->getValue().isSignBit()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006757 Value *X = BO->getOperand(0);
6758 Constant *Zero = Constant::getNullValue(X->getType());
6759 ICmpInst::Predicate pred = isICMP_NE ?
6760 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
6761 return new ICmpInst(pred, X, Zero);
6762 }
6763
6764 // ((X & ~7) == 0) --> X < 8
6765 if (RHSV == 0 && isHighOnes(BOC)) {
6766 Value *X = BO->getOperand(0);
6767 Constant *NegX = ConstantExpr::getNeg(BOC);
6768 ICmpInst::Predicate pred = isICMP_NE ?
6769 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
6770 return new ICmpInst(pred, X, NegX);
6771 }
6772 }
6773 default: break;
6774 }
6775 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
6776 // Handle icmp {eq|ne} <intrinsic>, intcst.
6777 if (II->getIntrinsicID() == Intrinsic::bswap) {
6778 AddToWorkList(II);
6779 ICI.setOperand(0, II->getOperand(1));
6780 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
6781 return &ICI;
6782 }
6783 }
6784 } else { // Not a ICMP_EQ/ICMP_NE
6785 // If the LHS is a cast from an integral value of the same size,
6786 // then since we know the RHS is a constant, try to simlify.
6787 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
6788 Value *CastOp = Cast->getOperand(0);
6789 const Type *SrcTy = CastOp->getType();
6790 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
6791 if (SrcTy->isInteger() &&
6792 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
6793 // If this is an unsigned comparison, try to make the comparison use
6794 // smaller constant values.
6795 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
6796 // X u< 128 => X s> -1
6797 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
6798 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
6799 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
6800 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
6801 // X u> 127 => X s< 0
6802 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
6803 Constant::getNullValue(SrcTy));
6804 }
6805 }
6806 }
6807 }
6808 return 0;
6809}
6810
6811/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6812/// We only handle extending casts so far.
6813///
6814Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6815 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
6816 Value *LHSCIOp = LHSCI->getOperand(0);
6817 const Type *SrcTy = LHSCIOp->getType();
6818 const Type *DestTy = LHSCI->getType();
6819 Value *RHSCIOp;
6820
6821 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6822 // integer type is the same size as the pointer type.
6823 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
6824 getTargetData().getPointerSizeInBits() ==
6825 cast<IntegerType>(DestTy)->getBitWidth()) {
6826 Value *RHSOp = 0;
6827 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
6828 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6829 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
6830 RHSOp = RHSC->getOperand(0);
6831 // If the pointer types don't match, insert a bitcast.
6832 if (LHSCIOp->getType() != RHSOp->getType())
Chris Lattner13c2d6e2008-01-13 22:23:22 +00006833 RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006834 }
6835
6836 if (RHSOp)
6837 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
6838 }
6839
6840 // The code below only handles extension cast instructions, so far.
6841 // Enforce this.
6842 if (LHSCI->getOpcode() != Instruction::ZExt &&
6843 LHSCI->getOpcode() != Instruction::SExt)
6844 return 0;
6845
6846 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6847 bool isSignedCmp = ICI.isSignedPredicate();
6848
6849 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
6850 // Not an extension from the same type?
6851 RHSCIOp = CI->getOperand(0);
6852 if (RHSCIOp->getType() != LHSCIOp->getType())
6853 return 0;
6854
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006855 // If the signedness of the two casts doesn't agree (i.e. one is a sext
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006856 // and the other is a zext), then we can't handle this.
6857 if (CI->getOpcode() != LHSCI->getOpcode())
6858 return 0;
6859
Nick Lewyckyd4264dc2008-01-28 03:48:02 +00006860 // Deal with equality cases early.
6861 if (ICI.isEquality())
6862 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6863
6864 // A signed comparison of sign extended values simplifies into a
6865 // signed comparison.
6866 if (isSignedCmp && isSignedExt)
6867 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
6868
6869 // The other three cases all fold into an unsigned comparison.
6870 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006871 }
6872
6873 // If we aren't dealing with a constant on the RHS, exit early
6874 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6875 if (!CI)
6876 return 0;
6877
6878 // Compute the constant that would happen if we truncated to SrcTy then
6879 // reextended to DestTy.
6880 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6881 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6882
6883 // If the re-extended constant didn't change...
6884 if (Res2 == CI) {
6885 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6886 // For example, we might have:
6887 // %A = sext short %X to uint
6888 // %B = icmp ugt uint %A, 1330
6889 // It is incorrect to transform this into
6890 // %B = icmp ugt short %X, 1330
6891 // because %A may have negative value.
6892 //
Chris Lattner3d816532008-07-11 04:09:09 +00006893 // However, we allow this when the compare is EQ/NE, because they are
6894 // signless.
6895 if (isSignedExt == isSignedCmp || ICI.isEquality())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006896 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
Chris Lattner3d816532008-07-11 04:09:09 +00006897 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006898 }
6899
6900 // The re-extended constant changed so the constant cannot be represented
6901 // in the shorter type. Consequently, we cannot emit a simple comparison.
6902
6903 // First, handle some easy cases. We know the result cannot be equal at this
6904 // point so handle the ICI.isEquality() cases
6905 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
6906 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
6907 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
6908 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
6909
6910 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6911 // should have been folded away previously and not enter in here.
6912 Value *Result;
6913 if (isSignedCmp) {
6914 // We're performing a signed comparison.
6915 if (cast<ConstantInt>(CI)->getValue().isNegative())
6916 Result = ConstantInt::getFalse(); // X < (small) --> false
6917 else
6918 Result = ConstantInt::getTrue(); // X < (large) --> true
6919 } else {
6920 // We're performing an unsigned comparison.
6921 if (isSignedExt) {
6922 // We're performing an unsigned comp with a sign extended value.
6923 // This is true if the input is >= 0. [aka >s -1]
6924 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
6925 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6926 NegOne, ICI.getName()), ICI);
6927 } else {
6928 // Unsigned extend & unsigned compare -> always true.
6929 Result = ConstantInt::getTrue();
6930 }
6931 }
6932
6933 // Finally, return the value computed.
6934 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
Chris Lattner3d816532008-07-11 04:09:09 +00006935 ICI.getPredicate() == ICmpInst::ICMP_SLT)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006936 return ReplaceInstUsesWith(ICI, Result);
Chris Lattner3d816532008-07-11 04:09:09 +00006937
6938 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6939 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6940 "ICmp should be folded!");
6941 if (Constant *CI = dyn_cast<Constant>(Result))
6942 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6943 return BinaryOperator::CreateNot(Result);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006944}
6945
6946Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6947 return commonShiftTransforms(I);
6948}
6949
6950Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6951 return commonShiftTransforms(I);
6952}
6953
6954Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00006955 if (Instruction *R = commonShiftTransforms(I))
6956 return R;
6957
6958 Value *Op0 = I.getOperand(0);
6959
6960 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6961 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
6962 if (CSI->isAllOnesValue())
6963 return ReplaceInstUsesWith(I, CSI);
6964
6965 // See if we can turn a signed shr into an unsigned shr.
Nate Begemanbb1ce942008-07-29 15:49:41 +00006966 if (!isa<VectorType>(I.getType()) &&
6967 MaskedValueIsZero(Op0,
Chris Lattnere3c504f2007-12-06 01:59:46 +00006968 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
Gabor Greifa645dd32008-05-16 19:29:10 +00006969 return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
Chris Lattnere3c504f2007-12-06 01:59:46 +00006970
6971 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006972}
6973
6974Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6975 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
6976 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6977
6978 // shl X, 0 == X and shr X, 0 == X
6979 // shl 0, X == 0 and shr 0, X == 0
6980 if (Op1 == Constant::getNullValue(Op1->getType()) ||
6981 Op0 == Constant::getNullValue(Op0->getType()))
6982 return ReplaceInstUsesWith(I, Op0);
6983
6984 if (isa<UndefValue>(Op0)) {
6985 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
6986 return ReplaceInstUsesWith(I, Op0);
6987 else // undef << X -> 0, undef >>u X -> 0
6988 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6989 }
6990 if (isa<UndefValue>(Op1)) {
6991 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6992 return ReplaceInstUsesWith(I, Op0);
6993 else // X << undef, X >>u undef -> 0
6994 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6995 }
6996
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006997 // Try to fold constant and into select arguments.
6998 if (isa<Constant>(Op0))
6999 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
7000 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7001 return R;
7002
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007003 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
7004 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
7005 return Res;
7006 return 0;
7007}
7008
7009Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
7010 BinaryOperator &I) {
7011 bool isLeftShift = I.getOpcode() == Instruction::Shl;
7012
7013 // See if we can simplify any instructions used by the instruction whose sole
7014 // purpose is to compute bits we don't care about.
7015 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
7016 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
7017 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
7018 KnownZero, KnownOne))
7019 return &I;
7020
7021 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7022 // of a signed value.
7023 //
7024 if (Op1->uge(TypeBits)) {
7025 if (I.getOpcode() != Instruction::AShr)
7026 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
7027 else {
7028 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
7029 return &I;
7030 }
7031 }
7032
7033 // ((X*C1) << C2) == (X * (C1 << C2))
7034 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
7035 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
7036 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
Gabor Greifa645dd32008-05-16 19:29:10 +00007037 return BinaryOperator::CreateMul(BO->getOperand(0),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007038 ConstantExpr::getShl(BOOp, Op1));
7039
7040 // Try to fold constant and into select arguments.
7041 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
7042 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
7043 return R;
7044 if (isa<PHINode>(Op0))
7045 if (Instruction *NV = FoldOpIntoPhi(I))
7046 return NV;
7047
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007048 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7049 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
7050 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
7051 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7052 // place. Don't try to do this transformation in this case. Also, we
7053 // require that the input operand is a shift-by-constant so that we have
7054 // confidence that the shifts will get folded together. We could do this
7055 // xform in more cases, but it is unlikely to be profitable.
7056 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
7057 isa<ConstantInt>(TrOp->getOperand(1))) {
7058 // Okay, we'll do this xform. Make the shift of shift.
7059 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Gabor Greifa645dd32008-05-16 19:29:10 +00007060 Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007061 I.getName());
7062 InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
7063
7064 // For logical shifts, the truncation has the effect of making the high
7065 // part of the register be zeros. Emulate this by inserting an AND to
7066 // clear the top bits as needed. This 'and' will usually be zapped by
7067 // other xforms later if dead.
7068 unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
7069 unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
7070 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
7071
7072 // The mask we constructed says what the trunc would do if occurring
7073 // between the shifts. We want to know the effect *after* the second
7074 // shift. We know that it is a logical shift by a constant, so adjust the
7075 // mask as appropriate.
7076 if (I.getOpcode() == Instruction::Shl)
7077 MaskV <<= Op1->getZExtValue();
7078 else {
7079 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
7080 MaskV = MaskV.lshr(Op1->getZExtValue());
7081 }
7082
Gabor Greifa645dd32008-05-16 19:29:10 +00007083 Instruction *And = BinaryOperator::CreateAnd(NSh, ConstantInt::get(MaskV),
Chris Lattnerc6d1f642007-12-22 09:07:47 +00007084 TI->getName());
7085 InsertNewInstBefore(And, I); // shift1 & 0x00FF
7086
7087 // Return the value truncated to the interesting size.
7088 return new TruncInst(And, I.getType());
7089 }
7090 }
7091
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007092 if (Op0->hasOneUse()) {
7093 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
7094 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7095 Value *V1, *V2;
7096 ConstantInt *CC;
7097 switch (Op0BO->getOpcode()) {
7098 default: break;
7099 case Instruction::Add:
7100 case Instruction::And:
7101 case Instruction::Or:
7102 case Instruction::Xor: {
7103 // These operators commute.
7104 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7105 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007106 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007107 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007108 Op0BO->getOperand(0), Op1,
7109 Op0BO->getName());
7110 InsertNewInstBefore(YS, I); // (Y << C)
7111 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007112 BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007113 Op0BO->getOperand(1)->getName());
7114 InsertNewInstBefore(X, I); // (X + (Y << C))
7115 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007116 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007117 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7118 }
7119
7120 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7121 Value *Op0BOOp1 = Op0BO->getOperand(1);
7122 if (isLeftShift && Op0BOOp1->hasOneUse() &&
7123 match(Op0BOOp1,
Chris Lattner3b874082008-11-16 05:38:51 +00007124 m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
7125 m_ConstantInt(CC))) &&
7126 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007127 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007128 Op0BO->getOperand(0), Op1,
7129 Op0BO->getName());
7130 InsertNewInstBefore(YS, I); // (Y << C)
7131 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007132 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007133 V1->getName()+".mask");
7134 InsertNewInstBefore(XM, I); // X & (CC << C)
7135
Gabor Greifa645dd32008-05-16 19:29:10 +00007136 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007137 }
7138 }
7139
7140 // FALL THROUGH.
7141 case Instruction::Sub: {
7142 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7143 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
Chris Lattner3b874082008-11-16 05:38:51 +00007144 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
Gabor Greifa645dd32008-05-16 19:29:10 +00007145 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007146 Op0BO->getOperand(1), Op1,
7147 Op0BO->getName());
7148 InsertNewInstBefore(YS, I); // (Y << C)
7149 Instruction *X =
Gabor Greifa645dd32008-05-16 19:29:10 +00007150 BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007151 Op0BO->getOperand(0)->getName());
7152 InsertNewInstBefore(X, I); // (X + (Y << C))
7153 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
Gabor Greifa645dd32008-05-16 19:29:10 +00007154 return BinaryOperator::CreateAnd(X, ConstantInt::get(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007155 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
7156 }
7157
7158 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7159 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
7160 match(Op0BO->getOperand(0),
7161 m_And(m_Shr(m_Value(V1), m_Value(V2)),
7162 m_ConstantInt(CC))) && V2 == Op1 &&
7163 cast<BinaryOperator>(Op0BO->getOperand(0))
7164 ->getOperand(0)->hasOneUse()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007165 Instruction *YS = BinaryOperator::CreateShl(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007166 Op0BO->getOperand(1), Op1,
7167 Op0BO->getName());
7168 InsertNewInstBefore(YS, I); // (Y << C)
7169 Instruction *XM =
Gabor Greifa645dd32008-05-16 19:29:10 +00007170 BinaryOperator::CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007171 V1->getName()+".mask");
7172 InsertNewInstBefore(XM, I); // X & (CC << C)
7173
Gabor Greifa645dd32008-05-16 19:29:10 +00007174 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007175 }
7176
7177 break;
7178 }
7179 }
7180
7181
7182 // If the operand is an bitwise operator with a constant RHS, and the
7183 // shift is the only use, we can pull it out of the shift.
7184 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
7185 bool isValid = true; // Valid only for And, Or, Xor
7186 bool highBitSet = false; // Transform if high bit of constant set?
7187
7188 switch (Op0BO->getOpcode()) {
7189 default: isValid = false; break; // Do not perform transform!
7190 case Instruction::Add:
7191 isValid = isLeftShift;
7192 break;
7193 case Instruction::Or:
7194 case Instruction::Xor:
7195 highBitSet = false;
7196 break;
7197 case Instruction::And:
7198 highBitSet = true;
7199 break;
7200 }
7201
7202 // If this is a signed shift right, and the high bit is modified
7203 // by the logical operation, do not perform the transformation.
7204 // The highBitSet boolean indicates the value of the high bit of
7205 // the constant which would cause it to be modified for this
7206 // operation.
7207 //
Chris Lattner15b76e32007-12-06 06:25:04 +00007208 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007209 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007210
7211 if (isValid) {
7212 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
7213
7214 Instruction *NewShift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007215 BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007216 InsertNewInstBefore(NewShift, I);
7217 NewShift->takeName(Op0BO);
7218
Gabor Greifa645dd32008-05-16 19:29:10 +00007219 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007220 NewRHS);
7221 }
7222 }
7223 }
7224 }
7225
7226 // Find out if this is a shift of a shift by a constant.
7227 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
7228 if (ShiftOp && !ShiftOp->isShift())
7229 ShiftOp = 0;
7230
7231 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
7232 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
7233 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
7234 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
7235 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
7236 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
7237 Value *X = ShiftOp->getOperand(0);
7238
7239 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
7240 if (AmtSum > TypeBits)
7241 AmtSum = TypeBits;
7242
7243 const IntegerType *Ty = cast<IntegerType>(I.getType());
7244
7245 // Check for (X << c1) << c2 and (X >> c1) >> c2
7246 if (I.getOpcode() == ShiftOp->getOpcode()) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007247 return BinaryOperator::Create(I.getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007248 ConstantInt::get(Ty, AmtSum));
7249 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
7250 I.getOpcode() == Instruction::AShr) {
7251 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
Gabor Greifa645dd32008-05-16 19:29:10 +00007252 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007253 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
7254 I.getOpcode() == Instruction::LShr) {
7255 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7256 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007257 BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007258 InsertNewInstBefore(Shift, I);
7259
7260 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007261 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007262 }
7263
7264 // Okay, if we get here, one shift must be left, and the other shift must be
7265 // right. See if the amounts are equal.
7266 if (ShiftAmt1 == ShiftAmt2) {
7267 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7268 if (I.getOpcode() == Instruction::Shl) {
7269 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007270 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007271 }
7272 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7273 if (I.getOpcode() == Instruction::LShr) {
7274 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
Gabor Greifa645dd32008-05-16 19:29:10 +00007275 return BinaryOperator::CreateAnd(X, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007276 }
7277 // We can simplify ((X << C) >>s C) into a trunc + sext.
7278 // NOTE: we could do this for any C, but that would make 'unusual' integer
7279 // types. For now, just stick to ones well-supported by the code
7280 // generators.
7281 const Type *SExtType = 0;
7282 switch (Ty->getBitWidth() - ShiftAmt1) {
7283 case 1 :
7284 case 8 :
7285 case 16 :
7286 case 32 :
7287 case 64 :
7288 case 128:
7289 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
7290 break;
7291 default: break;
7292 }
7293 if (SExtType) {
7294 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
7295 InsertNewInstBefore(NewTrunc, I);
7296 return new SExtInst(NewTrunc, Ty);
7297 }
7298 // Otherwise, we can't handle it yet.
7299 } else if (ShiftAmt1 < ShiftAmt2) {
7300 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
7301
7302 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7303 if (I.getOpcode() == Instruction::Shl) {
7304 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7305 ShiftOp->getOpcode() == Instruction::AShr);
7306 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007307 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007308 InsertNewInstBefore(Shift, I);
7309
7310 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007311 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007312 }
7313
7314 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7315 if (I.getOpcode() == Instruction::LShr) {
7316 assert(ShiftOp->getOpcode() == Instruction::Shl);
7317 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007318 BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007319 InsertNewInstBefore(Shift, I);
7320
7321 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007322 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007323 }
7324
7325 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7326 } else {
7327 assert(ShiftAmt2 < ShiftAmt1);
7328 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
7329
7330 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7331 if (I.getOpcode() == Instruction::Shl) {
7332 assert(ShiftOp->getOpcode() == Instruction::LShr ||
7333 ShiftOp->getOpcode() == Instruction::AShr);
7334 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007335 BinaryOperator::Create(ShiftOp->getOpcode(), X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007336 ConstantInt::get(Ty, ShiftDiff));
7337 InsertNewInstBefore(Shift, I);
7338
7339 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007340 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007341 }
7342
7343 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7344 if (I.getOpcode() == Instruction::LShr) {
7345 assert(ShiftOp->getOpcode() == Instruction::Shl);
7346 Instruction *Shift =
Gabor Greifa645dd32008-05-16 19:29:10 +00007347 BinaryOperator::CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007348 InsertNewInstBefore(Shift, I);
7349
7350 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
Gabor Greifa645dd32008-05-16 19:29:10 +00007351 return BinaryOperator::CreateAnd(Shift, ConstantInt::get(Mask));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007352 }
7353
7354 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7355 }
7356 }
7357 return 0;
7358}
7359
7360
7361/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7362/// expression. If so, decompose it, returning some value X, such that Val is
7363/// X*Scale+Offset.
7364///
7365static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
7366 int &Offset) {
7367 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
7368 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
7369 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00007370 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007371 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00007372 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
7373 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
7374 if (I->getOpcode() == Instruction::Shl) {
7375 // This is a value scaled by '1 << the shift amt'.
7376 Scale = 1U << RHS->getZExtValue();
7377 Offset = 0;
7378 return I->getOperand(0);
7379 } else if (I->getOpcode() == Instruction::Mul) {
7380 // This value is scaled by 'RHS'.
7381 Scale = RHS->getZExtValue();
7382 Offset = 0;
7383 return I->getOperand(0);
7384 } else if (I->getOpcode() == Instruction::Add) {
7385 // We have X+C. Check to see if we really have (X*C2)+C1,
7386 // where C1 is divisible by C2.
7387 unsigned SubScale;
7388 Value *SubVal =
7389 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
7390 Offset += RHS->getZExtValue();
7391 Scale = SubScale;
7392 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007393 }
7394 }
7395 }
7396
7397 // Otherwise, we can't look past this.
7398 Scale = 1;
7399 Offset = 0;
7400 return Val;
7401}
7402
7403
7404/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7405/// try to eliminate the cast by moving the type information into the alloc.
7406Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
7407 AllocationInst &AI) {
7408 const PointerType *PTy = cast<PointerType>(CI.getType());
7409
7410 // Remove any uses of AI that are dead.
7411 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
7412
7413 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
7414 Instruction *User = cast<Instruction>(*UI++);
7415 if (isInstructionTriviallyDead(User)) {
7416 while (UI != E && *UI == User)
7417 ++UI; // If this instruction uses AI more than once, don't break UI.
7418
7419 ++NumDeadInst;
7420 DOUT << "IC: DCE: " << *User;
7421 EraseInstFromFunction(*User);
7422 }
7423 }
7424
7425 // Get the type really allocated and the type casted to.
7426 const Type *AllocElTy = AI.getAllocatedType();
7427 const Type *CastElTy = PTy->getElementType();
7428 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
7429
7430 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
7431 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
7432 if (CastElTyAlign < AllocElTyAlign) return 0;
7433
7434 // If the allocation has multiple uses, only promote it if we are strictly
7435 // increasing the alignment of the resultant allocation. If we keep it the
7436 // same, we open the door to infinite loops of various kinds.
7437 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
7438
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007439 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
7440 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007441 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
7442
7443 // See if we can satisfy the modulus by pulling a scale out of the array
7444 // size argument.
7445 unsigned ArraySizeScale;
7446 int ArrayOffset;
7447 Value *NumElements = // See if the array size is a decomposable linear expr.
7448 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
7449
7450 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7451 // do the xform.
7452 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
7453 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
7454
7455 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
7456 Value *Amt = 0;
7457 if (Scale == 1) {
7458 Amt = NumElements;
7459 } else {
7460 // If the allocation size is constant, form a constant mul expression
7461 Amt = ConstantInt::get(Type::Int32Ty, Scale);
7462 if (isa<ConstantInt>(NumElements))
7463 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
7464 // otherwise multiply the amount and the number of elements
7465 else if (Scale != 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00007466 Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007467 Amt = InsertNewInstBefore(Tmp, AI);
7468 }
7469 }
7470
7471 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
7472 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
Gabor Greifa645dd32008-05-16 19:29:10 +00007473 Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007474 Amt = InsertNewInstBefore(Tmp, AI);
7475 }
7476
7477 AllocationInst *New;
7478 if (isa<MallocInst>(AI))
7479 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
7480 else
7481 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
7482 InsertNewInstBefore(New, AI);
7483 New->takeName(&AI);
7484
7485 // If the allocation has multiple uses, insert a cast and change all things
7486 // that used it to use the new cast. This will also hack on CI, but it will
7487 // die soon.
7488 if (!AI.hasOneUse()) {
7489 AddUsesToWorkList(AI);
7490 // New is the allocation instruction, pointer typed. AI is the original
7491 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7492 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
7493 InsertNewInstBefore(NewCast, AI);
7494 AI.replaceAllUsesWith(NewCast);
7495 }
7496 return ReplaceInstUsesWith(CI, New);
7497}
7498
7499/// CanEvaluateInDifferentType - Return true if we can take the specified value
7500/// and return it as type Ty without inserting any new casts and without
7501/// changing the computed value. This is used by code that tries to decide
7502/// whether promoting or shrinking integer operations to wider or smaller types
7503/// will allow us to eliminate a truncate or extend.
7504///
7505/// This is a truncation operation if Ty is smaller than V->getType(), or an
7506/// extension operation if Ty is larger.
Chris Lattner4200c2062008-06-18 04:00:49 +00007507///
7508/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7509/// should return true if trunc(V) can be computed by computing V in the smaller
7510/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7511/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7512/// efficiently truncated.
7513///
7514/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7515/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7516/// the final result.
Dan Gohman2d648bb2008-04-10 18:43:06 +00007517bool InstCombiner::CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
7518 unsigned CastOpc,
7519 int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007520 // We can always evaluate constants in another type.
7521 if (isa<ConstantInt>(V))
7522 return true;
7523
7524 Instruction *I = dyn_cast<Instruction>(V);
7525 if (!I) return false;
7526
7527 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
7528
Chris Lattneref70bb82007-08-02 06:11:14 +00007529 // If this is an extension or truncate, we can often eliminate it.
7530 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7531 // If this is a cast from the destination type, we can trivially eliminate
7532 // it, and this will remove a cast overall.
7533 if (I->getOperand(0)->getType() == Ty) {
7534 // If the first operand is itself a cast, and is eliminable, do not count
7535 // this as an eliminable cast. We would prefer to eliminate those two
7536 // casts first.
Chris Lattner4200c2062008-06-18 04:00:49 +00007537 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
Chris Lattneref70bb82007-08-02 06:11:14 +00007538 ++NumCastsRemoved;
7539 return true;
7540 }
7541 }
7542
7543 // We can't extend or shrink something that has multiple uses: doing so would
7544 // require duplicating the instruction in general, which isn't profitable.
7545 if (!I->hasOneUse()) return false;
7546
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007547 switch (I->getOpcode()) {
7548 case Instruction::Add:
7549 case Instruction::Sub:
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007550 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007551 case Instruction::And:
7552 case Instruction::Or:
7553 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007554 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00007555 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7556 NumCastsRemoved) &&
7557 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
7558 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007559
7560 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007561 // If we are truncating the result of this SHL, and if it's a shift of a
7562 // constant amount, we can always perform a SHL in a smaller type.
7563 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7564 uint32_t BitWidth = Ty->getBitWidth();
7565 if (BitWidth < OrigTy->getBitWidth() &&
7566 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00007567 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7568 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007569 }
7570 break;
7571 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007572 // If this is a truncate of a logical shr, we can truncate it to a smaller
7573 // lshr iff we know that the bits we would otherwise be shifting in are
7574 // already zeros.
7575 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
7576 uint32_t OrigBitWidth = OrigTy->getBitWidth();
7577 uint32_t BitWidth = Ty->getBitWidth();
7578 if (BitWidth < OrigBitWidth &&
7579 MaskedValueIsZero(I->getOperand(0),
7580 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
7581 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00007582 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
7583 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007584 }
7585 }
7586 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007587 case Instruction::ZExt:
7588 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00007589 case Instruction::Trunc:
7590 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00007591 // can safely replace it. Note that replacing it does not reduce the number
7592 // of casts in the input.
7593 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007594 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007595 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007596 case Instruction::Select: {
7597 SelectInst *SI = cast<SelectInst>(I);
7598 return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
7599 NumCastsRemoved) &&
7600 CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
7601 NumCastsRemoved);
7602 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007603 case Instruction::PHI: {
7604 // We can change a phi if we can change all operands.
7605 PHINode *PN = cast<PHINode>(I);
7606 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
7607 if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
7608 NumCastsRemoved))
7609 return false;
7610 return true;
7611 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007612 default:
7613 // TODO: Can handle more cases here.
7614 break;
7615 }
7616
7617 return false;
7618}
7619
7620/// EvaluateInDifferentType - Given an expression that
7621/// CanEvaluateInDifferentType returns true for, actually insert the code to
7622/// evaluate the expression.
7623Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
7624 bool isSigned) {
7625 if (Constant *C = dyn_cast<Constant>(V))
7626 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
7627
7628 // Otherwise, it must be an instruction.
7629 Instruction *I = cast<Instruction>(V);
7630 Instruction *Res = 0;
7631 switch (I->getOpcode()) {
7632 case Instruction::Add:
7633 case Instruction::Sub:
Nick Lewyckyc52646a2008-01-22 05:08:48 +00007634 case Instruction::Mul:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007635 case Instruction::And:
7636 case Instruction::Or:
7637 case Instruction::Xor:
7638 case Instruction::AShr:
7639 case Instruction::LShr:
7640 case Instruction::Shl: {
7641 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
7642 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Gabor Greifa645dd32008-05-16 19:29:10 +00007643 Res = BinaryOperator::Create((Instruction::BinaryOps)I->getOpcode(),
Chris Lattner4200c2062008-06-18 04:00:49 +00007644 LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007645 break;
7646 }
7647 case Instruction::Trunc:
7648 case Instruction::ZExt:
7649 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007650 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00007651 // just return the source. There's no need to insert it because it is not
7652 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007653 if (I->getOperand(0)->getType() == Ty)
7654 return I->getOperand(0);
7655
Chris Lattner4200c2062008-06-18 04:00:49 +00007656 // Otherwise, must be the same type of cast, so just reinsert a new one.
Gabor Greifa645dd32008-05-16 19:29:10 +00007657 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
Chris Lattner4200c2062008-06-18 04:00:49 +00007658 Ty);
Chris Lattneref70bb82007-08-02 06:11:14 +00007659 break;
Nick Lewycky1265a7d2008-07-05 21:19:34 +00007660 case Instruction::Select: {
7661 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
7662 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
7663 Res = SelectInst::Create(I->getOperand(0), True, False);
7664 break;
7665 }
Chris Lattner4200c2062008-06-18 04:00:49 +00007666 case Instruction::PHI: {
7667 PHINode *OPN = cast<PHINode>(I);
7668 PHINode *NPN = PHINode::Create(Ty);
7669 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
7670 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
7671 NPN->addIncoming(V, OPN->getIncomingBlock(i));
7672 }
7673 Res = NPN;
7674 break;
7675 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007676 default:
7677 // TODO: Can handle more cases here.
7678 assert(0 && "Unreachable!");
7679 break;
7680 }
7681
Chris Lattner4200c2062008-06-18 04:00:49 +00007682 Res->takeName(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007683 return InsertNewInstBefore(Res, *I);
7684}
7685
7686/// @brief Implement the transforms common to all CastInst visitors.
7687Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
7688 Value *Src = CI.getOperand(0);
7689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007690 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7691 // eliminate it now.
7692 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
7693 if (Instruction::CastOps opc =
7694 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
7695 // The first cast (CSrc) is eliminable so we need to fix up or replace
7696 // the second cast (CI). CSrc will then have a good chance of being dead.
Gabor Greifa645dd32008-05-16 19:29:10 +00007697 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007698 }
7699 }
7700
7701 // If we are casting a select then fold the cast into the select
7702 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
7703 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
7704 return NV;
7705
7706 // If we are casting a PHI then fold the cast into the PHI
7707 if (isa<PHINode>(Src))
7708 if (Instruction *NV = FoldOpIntoPhi(CI))
7709 return NV;
7710
7711 return 0;
7712}
7713
7714/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7715Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
7716 Value *Src = CI.getOperand(0);
7717
7718 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
7719 // If casting the result of a getelementptr instruction with no offset, turn
7720 // this into a cast of the original pointer!
7721 if (GEP->hasAllZeroIndices()) {
7722 // Changing the cast operand is usually not a good idea but it is safe
7723 // here because the pointer operand is being replaced with another
7724 // pointer operand so the opcode doesn't need to change.
7725 AddToWorkList(GEP);
7726 CI.setOperand(0, GEP->getOperand(0));
7727 return &CI;
7728 }
7729
7730 // If the GEP has a single use, and the base pointer is a bitcast, and the
7731 // GEP computes a constant offset, see if we can convert these three
7732 // instructions into fewer. This typically happens with unions and other
7733 // non-type-safe code.
7734 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
7735 if (GEP->hasAllConstantIndices()) {
7736 // We are guaranteed to get a constant from EmitGEPOffset.
7737 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
7738 int64_t Offset = OffsetV->getSExtValue();
7739
7740 // Get the base pointer input of the bitcast, and the type it points to.
7741 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
7742 const Type *GEPIdxTy =
7743 cast<PointerType>(OrigBase->getType())->getElementType();
7744 if (GEPIdxTy->isSized()) {
7745 SmallVector<Value*, 8> NewIndices;
7746
7747 // Start with the index over the outer type. Note that the type size
7748 // might be zero (even if the offset isn't zero) if the indexed type
7749 // is something like [0 x {int, int}]
7750 const Type *IntPtrTy = TD->getIntPtrType();
7751 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007752 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007753 FirstIdx = Offset/TySize;
7754 Offset %= TySize;
7755
7756 // Handle silly modulus not returning values values [0..TySize).
7757 if (Offset < 0) {
7758 --FirstIdx;
7759 Offset += TySize;
7760 assert(Offset >= 0);
7761 }
7762 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
7763 }
7764
7765 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
7766
7767 // Index into the types. If we fail, set OrigBase to null.
7768 while (Offset) {
7769 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
7770 const StructLayout *SL = TD->getStructLayout(STy);
7771 if (Offset < (int64_t)SL->getSizeInBytes()) {
7772 unsigned Elt = SL->getElementContainingOffset(Offset);
7773 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
7774
7775 Offset -= SL->getElementOffset(Elt);
7776 GEPIdxTy = STy->getElementType(Elt);
7777 } else {
7778 // Otherwise, we can't index into this, bail out.
7779 Offset = 0;
7780 OrigBase = 0;
7781 }
7782 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
7783 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00007784 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007785 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
7786 Offset %= EltSize;
7787 } else {
7788 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
7789 }
7790 GEPIdxTy = STy->getElementType();
7791 } else {
7792 // Otherwise, we can't index into this, bail out.
7793 Offset = 0;
7794 OrigBase = 0;
7795 }
7796 }
7797 if (OrigBase) {
7798 // If we were able to index down into an element, create the GEP
7799 // and bitcast the result. This eliminates one bitcast, potentially
7800 // two.
Gabor Greifd6da1d02008-04-06 20:25:17 +00007801 Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
7802 NewIndices.begin(),
7803 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007804 InsertNewInstBefore(NGEP, CI);
7805 NGEP->takeName(GEP);
7806
7807 if (isa<BitCastInst>(CI))
7808 return new BitCastInst(NGEP, CI.getType());
7809 assert(isa<PtrToIntInst>(CI));
7810 return new PtrToIntInst(NGEP, CI.getType());
7811 }
7812 }
7813 }
7814 }
7815 }
7816
7817 return commonCastTransforms(CI);
7818}
7819
7820
7821
7822/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
7823/// integer types. This function implements the common transforms for all those
7824/// cases.
7825/// @brief Implement the transforms common to CastInst with integer operands
7826Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
7827 if (Instruction *Result = commonCastTransforms(CI))
7828 return Result;
7829
7830 Value *Src = CI.getOperand(0);
7831 const Type *SrcTy = Src->getType();
7832 const Type *DestTy = CI.getType();
7833 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
7834 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
7835
7836 // See if we can simplify any instructions used by the LHS whose sole
7837 // purpose is to compute bits we don't care about.
7838 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
7839 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
7840 KnownZero, KnownOne))
7841 return &CI;
7842
7843 // If the source isn't an instruction or has more than one use then we
7844 // can't do anything more.
7845 Instruction *SrcI = dyn_cast<Instruction>(Src);
7846 if (!SrcI || !Src->hasOneUse())
7847 return 0;
7848
7849 // Attempt to propagate the cast into the instruction for int->int casts.
7850 int NumCastsRemoved = 0;
7851 if (!isa<BitCastInst>(CI) &&
7852 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00007853 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007854 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00007855 // eliminates the cast, so it is always a win. If this is a zero-extension,
7856 // we need to do an AND to maintain the clear top-part of the computation,
7857 // so we require that the input have eliminated at least one cast. If this
7858 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007859 // require that two casts have been eliminated.
7860 bool DoXForm;
7861 switch (CI.getOpcode()) {
7862 default:
7863 // All the others use floating point so we shouldn't actually
7864 // get here because of the check above.
7865 assert(0 && "Unknown cast type");
7866 case Instruction::Trunc:
7867 DoXForm = true;
7868 break;
7869 case Instruction::ZExt:
7870 DoXForm = NumCastsRemoved >= 1;
7871 break;
7872 case Instruction::SExt:
7873 DoXForm = NumCastsRemoved >= 2;
7874 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007875 }
7876
7877 if (DoXForm) {
7878 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7879 CI.getOpcode() == Instruction::SExt);
7880 assert(Res->getType() == DestTy);
7881 switch (CI.getOpcode()) {
7882 default: assert(0 && "Unknown cast type!");
7883 case Instruction::Trunc:
7884 case Instruction::BitCast:
7885 // Just replace this cast with the result.
7886 return ReplaceInstUsesWith(CI, Res);
7887 case Instruction::ZExt: {
7888 // We need to emit an AND to clear the high bits.
7889 assert(SrcBitSize < DestBitSize && "Not a zext?");
7890 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
7891 SrcBitSize));
Gabor Greifa645dd32008-05-16 19:29:10 +00007892 return BinaryOperator::CreateAnd(Res, C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007893 }
7894 case Instruction::SExt:
7895 // We need to emit a cast to truncate, then a cast to sext.
Gabor Greifa645dd32008-05-16 19:29:10 +00007896 return CastInst::Create(Instruction::SExt,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007897 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7898 CI), DestTy);
7899 }
7900 }
7901 }
7902
7903 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7904 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7905
7906 switch (SrcI->getOpcode()) {
7907 case Instruction::Add:
7908 case Instruction::Mul:
7909 case Instruction::And:
7910 case Instruction::Or:
7911 case Instruction::Xor:
7912 // If we are discarding information, rewrite.
7913 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7914 // Don't insert two casts if they cannot be eliminated. We allow
7915 // two casts to be inserted if the sizes are the same. This could
7916 // only be converting signedness, which is a noop.
7917 if (DestBitSize == SrcBitSize ||
7918 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7919 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
7920 Instruction::CastOps opcode = CI.getOpcode();
Eli Friedman722b4792008-11-30 21:09:11 +00007921 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7922 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007923 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007924 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7925 }
7926 }
7927
7928 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7929 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7930 SrcI->getOpcode() == Instruction::Xor &&
7931 Op1 == ConstantInt::getTrue() &&
7932 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Eli Friedman722b4792008-11-30 21:09:11 +00007933 Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007934 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007935 }
7936 break;
7937 case Instruction::SDiv:
7938 case Instruction::UDiv:
7939 case Instruction::SRem:
7940 case Instruction::URem:
7941 // If we are just changing the sign, rewrite.
7942 if (DestBitSize == SrcBitSize) {
7943 // Don't insert two casts if they cannot be eliminated. We allow
7944 // two casts to be inserted if the sizes are the same. This could
7945 // only be converting signedness, which is a noop.
7946 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7947 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Eli Friedman722b4792008-11-30 21:09:11 +00007948 Value *Op0c = InsertCastBefore(Instruction::BitCast,
7949 Op0, DestTy, *SrcI);
7950 Value *Op1c = InsertCastBefore(Instruction::BitCast,
7951 Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007952 return BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007953 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7954 }
7955 }
7956 break;
7957
7958 case Instruction::Shl:
7959 // Allow changing the sign of the source operand. Do not allow
7960 // changing the size of the shift, UNLESS the shift amount is a
7961 // constant. We must not change variable sized shifts to a smaller
7962 // size, because it is undefined to shift more bits out than exist
7963 // in the value.
7964 if (DestBitSize == SrcBitSize ||
7965 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
7966 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7967 Instruction::BitCast : Instruction::Trunc);
Eli Friedman722b4792008-11-30 21:09:11 +00007968 Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
7969 Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
Gabor Greifa645dd32008-05-16 19:29:10 +00007970 return BinaryOperator::CreateShl(Op0c, Op1c);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007971 }
7972 break;
7973 case Instruction::AShr:
7974 // If this is a signed shr, and if all bits shifted in are about to be
7975 // truncated off, turn it into an unsigned shr to allow greater
7976 // simplifications.
7977 if (DestBitSize < SrcBitSize &&
7978 isa<ConstantInt>(Op1)) {
7979 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
7980 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7981 // Insert the new logical shift right.
Gabor Greifa645dd32008-05-16 19:29:10 +00007982 return BinaryOperator::CreateLShr(Op0, Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007983 }
7984 }
7985 break;
7986 }
7987 return 0;
7988}
7989
7990Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
7991 if (Instruction *Result = commonIntCastTransforms(CI))
7992 return Result;
7993
7994 Value *Src = CI.getOperand(0);
7995 const Type *Ty = CI.getType();
7996 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
7997 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
7998
7999 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
8000 switch (SrcI->getOpcode()) {
8001 default: break;
8002 case Instruction::LShr:
8003 // We can shrink lshr to something smaller if we know the bits shifted in
8004 // are already zeros.
8005 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
8006 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
8007
8008 // Get a mask for the bits shifting in.
8009 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
8010 Value* SrcIOp0 = SrcI->getOperand(0);
8011 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
8012 if (ShAmt >= DestBitWidth) // All zeros.
8013 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
8014
8015 // Okay, we can shrink this. Truncate the input, then return a new
8016 // shift.
8017 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
8018 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
8019 Ty, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008020 return BinaryOperator::CreateLShr(V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008021 }
8022 } else { // This is a variable shr.
8023
8024 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
8025 // more LLVM instructions, but allows '1 << Y' to be hoisted if
8026 // loop-invariant and CSE'd.
8027 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
8028 Value *One = ConstantInt::get(SrcI->getType(), 1);
8029
8030 Value *V = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008031 BinaryOperator::CreateShl(One, SrcI->getOperand(1),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008032 "tmp"), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008033 V = InsertNewInstBefore(BinaryOperator::CreateAnd(V,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008034 SrcI->getOperand(0),
8035 "tmp"), CI);
8036 Value *Zero = Constant::getNullValue(V->getType());
8037 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
8038 }
8039 }
8040 break;
8041 }
8042 }
8043
8044 return 0;
8045}
8046
Evan Chenge3779cf2008-03-24 00:21:34 +00008047/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8048/// in order to eliminate the icmp.
8049Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
8050 bool DoXform) {
8051 // If we are just checking for a icmp eq of a single bit and zext'ing it
8052 // to an integer, then shift the bit to the appropriate place and then
8053 // cast to integer to avoid the comparison.
8054 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
8055 const APInt &Op1CV = Op1C->getValue();
8056
8057 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8058 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8059 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
8060 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
8061 if (!DoXform) return ICI;
8062
8063 Value *In = ICI->getOperand(0);
8064 Value *Sh = ConstantInt::get(In->getType(),
8065 In->getType()->getPrimitiveSizeInBits()-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008066 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
Evan Chenge3779cf2008-03-24 00:21:34 +00008067 In->getName()+".lobit"),
8068 CI);
8069 if (In->getType() != CI.getType())
Gabor Greifa645dd32008-05-16 19:29:10 +00008070 In = CastInst::CreateIntegerCast(In, CI.getType(),
Evan Chenge3779cf2008-03-24 00:21:34 +00008071 false/*ZExt*/, "tmp", &CI);
8072
8073 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
8074 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008075 In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
Evan Chenge3779cf2008-03-24 00:21:34 +00008076 In->getName()+".not"),
8077 CI);
8078 }
8079
8080 return ReplaceInstUsesWith(CI, In);
8081 }
8082
8083
8084
8085 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8086 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8087 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8088 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8089 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8090 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8091 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8092 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8093 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
8094 // This only works for EQ and NE
8095 ICI->isEquality()) {
8096 // If Op1C some other power of two, convert:
8097 uint32_t BitWidth = Op1C->getType()->getBitWidth();
8098 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
8099 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
8100 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
8101
8102 APInt KnownZeroMask(~KnownZero);
8103 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
8104 if (!DoXform) return ICI;
8105
8106 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
8107 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
8108 // (X&4) == 2 --> false
8109 // (X&4) != 2 --> true
8110 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
8111 Res = ConstantExpr::getZExt(Res, CI.getType());
8112 return ReplaceInstUsesWith(CI, Res);
8113 }
8114
8115 uint32_t ShiftAmt = KnownZeroMask.logBase2();
8116 Value *In = ICI->getOperand(0);
8117 if (ShiftAmt) {
8118 // Perform a logical shr by shiftamt.
8119 // Insert the shift to put the result in the low bit.
Gabor Greifa645dd32008-05-16 19:29:10 +00008120 In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
Evan Chenge3779cf2008-03-24 00:21:34 +00008121 ConstantInt::get(In->getType(), ShiftAmt),
8122 In->getName()+".lobit"), CI);
8123 }
8124
8125 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
8126 Constant *One = ConstantInt::get(In->getType(), 1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008127 In = BinaryOperator::CreateXor(In, One, "tmp");
Evan Chenge3779cf2008-03-24 00:21:34 +00008128 InsertNewInstBefore(cast<Instruction>(In), CI);
8129 }
8130
8131 if (CI.getType() == In->getType())
8132 return ReplaceInstUsesWith(CI, In);
8133 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008134 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Evan Chenge3779cf2008-03-24 00:21:34 +00008135 }
8136 }
8137 }
8138
8139 return 0;
8140}
8141
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008142Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
8143 // If one of the common conversion will work ..
8144 if (Instruction *Result = commonIntCastTransforms(CI))
8145 return Result;
8146
8147 Value *Src = CI.getOperand(0);
8148
8149 // If this is a cast of a cast
8150 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
8151 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8152 // types and if the sizes are just right we can convert this into a logical
8153 // 'and' which will be much cheaper than the pair of casts.
8154 if (isa<TruncInst>(CSrc)) {
8155 // Get the sizes of the types involved
8156 Value *A = CSrc->getOperand(0);
8157 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
8158 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
8159 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
8160 // If we're actually extending zero bits and the trunc is a no-op
8161 if (MidSize < DstSize && SrcSize == DstSize) {
8162 // Replace both of the casts with an And of the type mask.
8163 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
8164 Constant *AndConst = ConstantInt::get(AndValue);
8165 Instruction *And =
Gabor Greifa645dd32008-05-16 19:29:10 +00008166 BinaryOperator::CreateAnd(CSrc->getOperand(0), AndConst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008167 // Unfortunately, if the type changed, we need to cast it back.
8168 if (And->getType() != CI.getType()) {
8169 And->setName(CSrc->getName()+".mask");
8170 InsertNewInstBefore(And, CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008171 And = CastInst::CreateIntegerCast(And, CI.getType(), false/*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008172 }
8173 return And;
8174 }
8175 }
8176 }
8177
Evan Chenge3779cf2008-03-24 00:21:34 +00008178 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
8179 return transformZExtICmp(ICI, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008180
Evan Chenge3779cf2008-03-24 00:21:34 +00008181 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
8182 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
8183 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8184 // of the (zext icmp) will be transformed.
8185 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
8186 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
8187 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
8188 (transformZExtICmp(LHS, CI, false) ||
8189 transformZExtICmp(RHS, CI, false))) {
8190 Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
8191 Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008192 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008193 }
Evan Chenge3779cf2008-03-24 00:21:34 +00008194 }
8195
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008196 return 0;
8197}
8198
8199Instruction *InstCombiner::visitSExt(SExtInst &CI) {
8200 if (Instruction *I = commonIntCastTransforms(CI))
8201 return I;
8202
8203 Value *Src = CI.getOperand(0);
8204
Dan Gohman35b76162008-10-30 20:40:10 +00008205 // Canonicalize sign-extend from i1 to a select.
8206 if (Src->getType() == Type::Int1Ty)
8207 return SelectInst::Create(Src,
8208 ConstantInt::getAllOnesValue(CI.getType()),
8209 Constant::getNullValue(CI.getType()));
Dan Gohmanf0f12022008-05-20 21:01:12 +00008210
8211 // See if the value being truncated is already sign extended. If so, just
8212 // eliminate the trunc/sext pair.
8213 if (getOpcode(Src) == Instruction::Trunc) {
8214 Value *Op = cast<User>(Src)->getOperand(0);
8215 unsigned OpBits = cast<IntegerType>(Op->getType())->getBitWidth();
8216 unsigned MidBits = cast<IntegerType>(Src->getType())->getBitWidth();
8217 unsigned DestBits = cast<IntegerType>(CI.getType())->getBitWidth();
8218 unsigned NumSignBits = ComputeNumSignBits(Op);
8219
8220 if (OpBits == DestBits) {
8221 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8222 // bits, it is already ready.
8223 if (NumSignBits > DestBits-MidBits)
8224 return ReplaceInstUsesWith(CI, Op);
8225 } else if (OpBits < DestBits) {
8226 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8227 // bits, just sext from i32.
8228 if (NumSignBits > OpBits-MidBits)
8229 return new SExtInst(Op, CI.getType(), "tmp");
8230 } else {
8231 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8232 // bits, just truncate to i32.
8233 if (NumSignBits > OpBits-MidBits)
8234 return new TruncInst(Op, CI.getType(), "tmp");
8235 }
8236 }
Chris Lattner8a2d0592008-08-06 07:35:52 +00008237
8238 // If the input is a shl/ashr pair of a same constant, then this is a sign
8239 // extension from a smaller value. If we could trust arbitrary bitwidth
8240 // integers, we could turn this into a truncate to the smaller bit and then
8241 // use a sext for the whole extension. Since we don't, look deeper and check
8242 // for a truncate. If the source and dest are the same type, eliminate the
8243 // trunc and extend and just do shifts. For example, turn:
8244 // %a = trunc i32 %i to i8
8245 // %b = shl i8 %a, 6
8246 // %c = ashr i8 %b, 6
8247 // %d = sext i8 %c to i32
8248 // into:
8249 // %a = shl i32 %i, 30
8250 // %d = ashr i32 %a, 30
8251 Value *A = 0;
8252 ConstantInt *BA = 0, *CA = 0;
8253 if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
8254 m_ConstantInt(CA))) &&
8255 BA == CA && isa<TruncInst>(A)) {
8256 Value *I = cast<TruncInst>(A)->getOperand(0);
8257 if (I->getType() == CI.getType()) {
8258 unsigned MidSize = Src->getType()->getPrimitiveSizeInBits();
8259 unsigned SrcDstSize = CI.getType()->getPrimitiveSizeInBits();
8260 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
8261 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
8262 I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
8263 CI.getName()), CI);
8264 return BinaryOperator::CreateAShr(I, ShAmtV);
8265 }
8266 }
8267
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008268 return 0;
8269}
8270
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008271/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8272/// in the specified FP type without changing its value.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008273static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Dale Johannesen6e547b42008-10-09 23:00:39 +00008274 bool losesInfo;
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008275 APFloat F = CFP->getValueAPF();
Dale Johannesen6e547b42008-10-09 23:00:39 +00008276 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
8277 if (!losesInfo)
Chris Lattner5e0610f2008-04-20 00:41:09 +00008278 return ConstantFP::get(F);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008279 return 0;
8280}
8281
8282/// LookThroughFPExtensions - If this is an fp extension instruction, look
8283/// through it until we get the source value.
8284static Value *LookThroughFPExtensions(Value *V) {
8285 if (Instruction *I = dyn_cast<Instruction>(V))
8286 if (I->getOpcode() == Instruction::FPExt)
8287 return LookThroughFPExtensions(I->getOperand(0));
8288
8289 // If this value is a constant, return the constant in the smallest FP type
8290 // that can accurately represent it. This allows us to turn
8291 // (float)((double)X+2.0) into x+2.0f.
8292 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
8293 if (CFP->getType() == Type::PPC_FP128Ty)
8294 return V; // No constant folding of this.
8295 // See if the value can be truncated to float and then reextended.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008296 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008297 return V;
8298 if (CFP->getType() == Type::DoubleTy)
8299 return V; // Won't shrink.
Chris Lattner5e0610f2008-04-20 00:41:09 +00008300 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008301 return V;
8302 // Don't try to shrink to various long double types.
8303 }
8304
8305 return V;
8306}
8307
8308Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
8309 if (Instruction *I = commonCastTransforms(CI))
8310 return I;
8311
8312 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8313 // smaller than the destination type, we can eliminate the truncate by doing
8314 // the add as the smaller type. This applies to add/sub/mul/div as well as
8315 // many builtins (sqrt, etc).
8316 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
8317 if (OpI && OpI->hasOneUse()) {
8318 switch (OpI->getOpcode()) {
8319 default: break;
8320 case Instruction::Add:
8321 case Instruction::Sub:
8322 case Instruction::Mul:
8323 case Instruction::FDiv:
8324 case Instruction::FRem:
8325 const Type *SrcTy = OpI->getType();
8326 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
8327 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
8328 if (LHSTrunc->getType() != SrcTy &&
8329 RHSTrunc->getType() != SrcTy) {
8330 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
8331 // If the source types were both smaller than the destination type of
8332 // the cast, do this xform.
8333 if (LHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize &&
8334 RHSTrunc->getType()->getPrimitiveSizeInBits() <= DstSize) {
8335 LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
8336 CI.getType(), CI);
8337 RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
8338 CI.getType(), CI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008339 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
Chris Lattnerdf7e8402008-01-27 05:29:54 +00008340 }
8341 }
8342 break;
8343 }
8344 }
8345 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008346}
8347
8348Instruction *InstCombiner::visitFPExt(CastInst &CI) {
8349 return commonCastTransforms(CI);
8350}
8351
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008352Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008353 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8354 if (OpI == 0)
8355 return commonCastTransforms(FI);
8356
8357 // fptoui(uitofp(X)) --> X
8358 // fptoui(sitofp(X)) --> X
8359 // This is safe if the intermediate type has enough bits in its mantissa to
8360 // accurately represent all values of X. For example, do not do this with
8361 // i64->float->i64. This is also safe for sitofp case, because any negative
8362 // 'X' value would cause an undefined result for the fptoui.
8363 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8364 OpI->getOperand(0)->getType() == FI.getType() &&
8365 (int)FI.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8366 OpI->getType()->getFPMantissaWidth())
8367 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008368
8369 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008370}
8371
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008372Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Chris Lattner5f4d6912008-08-06 05:13:06 +00008373 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
8374 if (OpI == 0)
8375 return commonCastTransforms(FI);
8376
8377 // fptosi(sitofp(X)) --> X
8378 // fptosi(uitofp(X)) --> X
8379 // This is safe if the intermediate type has enough bits in its mantissa to
8380 // accurately represent all values of X. For example, do not do this with
8381 // i64->float->i64. This is also safe for sitofp case, because any negative
8382 // 'X' value would cause an undefined result for the fptoui.
8383 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
8384 OpI->getOperand(0)->getType() == FI.getType() &&
8385 (int)FI.getType()->getPrimitiveSizeInBits() <=
8386 OpI->getType()->getFPMantissaWidth())
8387 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
Chris Lattnerdeef1a72008-05-19 20:25:04 +00008388
8389 return commonCastTransforms(FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008390}
8391
8392Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
8393 return commonCastTransforms(CI);
8394}
8395
8396Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
8397 return commonCastTransforms(CI);
8398}
8399
8400Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
8401 return commonPointerCastTransforms(CI);
8402}
8403
Chris Lattner7c1626482008-01-08 07:23:51 +00008404Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
8405 if (Instruction *I = commonCastTransforms(CI))
8406 return I;
8407
8408 const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
8409 if (!DestPointee->isSized()) return 0;
8410
8411 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8412 ConstantInt *Cst;
8413 Value *X;
8414 if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
8415 m_ConstantInt(Cst)))) {
8416 // If the source and destination operands have the same type, see if this
8417 // is a single-index GEP.
8418 if (X->getType() == CI.getType()) {
8419 // Get the size of the pointee type.
Bill Wendling9594af02008-03-14 05:12:19 +00008420 uint64_t Size = TD->getABITypeSize(DestPointee);
Chris Lattner7c1626482008-01-08 07:23:51 +00008421
8422 // Convert the constant to intptr type.
8423 APInt Offset = Cst->getValue();
8424 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8425
8426 // If Offset is evenly divisible by Size, we can do this xform.
8427 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8428 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
Gabor Greifd6da1d02008-04-06 20:25:17 +00008429 return GetElementPtrInst::Create(X, ConstantInt::get(Offset));
Chris Lattner7c1626482008-01-08 07:23:51 +00008430 }
8431 }
8432 // TODO: Could handle other cases, e.g. where add is indexing into field of
8433 // struct etc.
8434 } else if (CI.getOperand(0)->hasOneUse() &&
8435 match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
8436 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8437 // "inttoptr+GEP" instead of "add+intptr".
8438
8439 // Get the size of the pointee type.
8440 uint64_t Size = TD->getABITypeSize(DestPointee);
8441
8442 // Convert the constant to intptr type.
8443 APInt Offset = Cst->getValue();
8444 Offset.sextOrTrunc(TD->getPointerSizeInBits());
8445
8446 // If Offset is evenly divisible by Size, we can do this xform.
8447 if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
8448 Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
8449
8450 Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
8451 "tmp"), CI);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008452 return GetElementPtrInst::Create(P, ConstantInt::get(Offset), "tmp");
Chris Lattner7c1626482008-01-08 07:23:51 +00008453 }
8454 }
8455 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008456}
8457
8458Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
8459 // If the operands are integer typed then apply the integer transforms,
8460 // otherwise just apply the common ones.
8461 Value *Src = CI.getOperand(0);
8462 const Type *SrcTy = Src->getType();
8463 const Type *DestTy = CI.getType();
8464
8465 if (SrcTy->isInteger() && DestTy->isInteger()) {
8466 if (Instruction *Result = commonIntCastTransforms(CI))
8467 return Result;
8468 } else if (isa<PointerType>(SrcTy)) {
8469 if (Instruction *I = commonPointerCastTransforms(CI))
8470 return I;
8471 } else {
8472 if (Instruction *Result = commonCastTransforms(CI))
8473 return Result;
8474 }
8475
8476
8477 // Get rid of casts from one type to the same type. These are useless and can
8478 // be replaced by the operand.
8479 if (DestTy == Src->getType())
8480 return ReplaceInstUsesWith(CI, Src);
8481
8482 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
8483 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
8484 const Type *DstElTy = DstPTy->getElementType();
8485 const Type *SrcElTy = SrcPTy->getElementType();
8486
Nate Begemandf5b3612008-03-31 00:22:16 +00008487 // If the address spaces don't match, don't eliminate the bitcast, which is
8488 // required for changing types.
8489 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
8490 return 0;
8491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008492 // If we are casting a malloc or alloca to a pointer to a type of the same
8493 // size, rewrite the allocation instruction to allocate the "right" type.
8494 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
8495 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
8496 return V;
8497
8498 // If the source and destination are pointers, and this cast is equivalent
8499 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8500 // This can enhance SROA and other transforms that want type-safe pointers.
8501 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
8502 unsigned NumZeros = 0;
8503 while (SrcElTy != DstElTy &&
8504 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
8505 SrcElTy->getNumContainedTypes() /* not "{}" */) {
8506 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
8507 ++NumZeros;
8508 }
8509
8510 // If we found a path from the src to dest, create the getelementptr now.
8511 if (SrcElTy == DstElTy) {
8512 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Gabor Greifd6da1d02008-04-06 20:25:17 +00008513 return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
8514 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008515 }
8516 }
8517
8518 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
8519 if (SVI->hasOneUse()) {
8520 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8521 // a bitconvert to a vector with the same # elts.
8522 if (isa<VectorType>(DestTy) &&
Mon P Wangbff5d9c2008-11-10 04:46:22 +00008523 cast<VectorType>(DestTy)->getNumElements() ==
8524 SVI->getType()->getNumElements() &&
8525 SVI->getType()->getNumElements() ==
8526 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008527 CastInst *Tmp;
8528 // If either of the operands is a cast from CI.getType(), then
8529 // evaluating the shuffle in the casted destination's type will allow
8530 // us to eliminate at least one cast.
8531 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
8532 Tmp->getOperand(0)->getType() == DestTy) ||
8533 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
8534 Tmp->getOperand(0)->getType() == DestTy)) {
Eli Friedman722b4792008-11-30 21:09:11 +00008535 Value *LHS = InsertCastBefore(Instruction::BitCast,
8536 SVI->getOperand(0), DestTy, CI);
8537 Value *RHS = InsertCastBefore(Instruction::BitCast,
8538 SVI->getOperand(1), DestTy, CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008539 // Return a new shuffle vector. Use the same element ID's, as we
8540 // know the vector types match #elts.
8541 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
8542 }
8543 }
8544 }
8545 }
8546 return 0;
8547}
8548
8549/// GetSelectFoldableOperands - We want to turn code that looks like this:
8550/// %C = or %A, %B
8551/// %D = select %cond, %C, %A
8552/// into:
8553/// %C = select %cond, %B, 0
8554/// %D = or %A, %C
8555///
8556/// Assuming that the specified instruction is an operand to the select, return
8557/// a bitmask indicating which operands of this instruction are foldable if they
8558/// equal the other incoming value of the select.
8559///
8560static unsigned GetSelectFoldableOperands(Instruction *I) {
8561 switch (I->getOpcode()) {
8562 case Instruction::Add:
8563 case Instruction::Mul:
8564 case Instruction::And:
8565 case Instruction::Or:
8566 case Instruction::Xor:
8567 return 3; // Can fold through either operand.
8568 case Instruction::Sub: // Can only fold on the amount subtracted.
8569 case Instruction::Shl: // Can only fold on the shift amount.
8570 case Instruction::LShr:
8571 case Instruction::AShr:
8572 return 1;
8573 default:
8574 return 0; // Cannot fold
8575 }
8576}
8577
8578/// GetSelectFoldableConstant - For the same transformation as the previous
8579/// function, return the identity constant that goes into the select.
8580static Constant *GetSelectFoldableConstant(Instruction *I) {
8581 switch (I->getOpcode()) {
8582 default: assert(0 && "This cannot happen!"); abort();
8583 case Instruction::Add:
8584 case Instruction::Sub:
8585 case Instruction::Or:
8586 case Instruction::Xor:
8587 case Instruction::Shl:
8588 case Instruction::LShr:
8589 case Instruction::AShr:
8590 return Constant::getNullValue(I->getType());
8591 case Instruction::And:
8592 return Constant::getAllOnesValue(I->getType());
8593 case Instruction::Mul:
8594 return ConstantInt::get(I->getType(), 1);
8595 }
8596}
8597
8598/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8599/// have the same opcode and only one use each. Try to simplify this.
8600Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
8601 Instruction *FI) {
8602 if (TI->getNumOperands() == 1) {
8603 // If this is a non-volatile load or a cast from the same type,
8604 // merge.
8605 if (TI->isCast()) {
8606 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
8607 return 0;
8608 } else {
8609 return 0; // unknown unary op.
8610 }
8611
8612 // Fold this by inserting a select from the input values.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008613 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
8614 FI->getOperand(0), SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008615 InsertNewInstBefore(NewSI, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008616 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008617 TI->getType());
8618 }
8619
8620 // Only handle binary operators here.
8621 if (!isa<BinaryOperator>(TI))
8622 return 0;
8623
8624 // Figure out if the operations have any operands in common.
8625 Value *MatchOp, *OtherOpT, *OtherOpF;
8626 bool MatchIsOpZero;
8627 if (TI->getOperand(0) == FI->getOperand(0)) {
8628 MatchOp = TI->getOperand(0);
8629 OtherOpT = TI->getOperand(1);
8630 OtherOpF = FI->getOperand(1);
8631 MatchIsOpZero = true;
8632 } else if (TI->getOperand(1) == FI->getOperand(1)) {
8633 MatchOp = TI->getOperand(1);
8634 OtherOpT = TI->getOperand(0);
8635 OtherOpF = FI->getOperand(0);
8636 MatchIsOpZero = false;
8637 } else if (!TI->isCommutative()) {
8638 return 0;
8639 } else if (TI->getOperand(0) == FI->getOperand(1)) {
8640 MatchOp = TI->getOperand(0);
8641 OtherOpT = TI->getOperand(1);
8642 OtherOpF = FI->getOperand(0);
8643 MatchIsOpZero = true;
8644 } else if (TI->getOperand(1) == FI->getOperand(0)) {
8645 MatchOp = TI->getOperand(1);
8646 OtherOpT = TI->getOperand(0);
8647 OtherOpF = FI->getOperand(1);
8648 MatchIsOpZero = true;
8649 } else {
8650 return 0;
8651 }
8652
8653 // If we reach here, they do have operations in common.
Gabor Greifd6da1d02008-04-06 20:25:17 +00008654 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
8655 OtherOpF, SI.getName()+".v");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008656 InsertNewInstBefore(NewSI, SI);
8657
8658 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
8659 if (MatchIsOpZero)
Gabor Greifa645dd32008-05-16 19:29:10 +00008660 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008661 else
Gabor Greifa645dd32008-05-16 19:29:10 +00008662 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008663 }
8664 assert(0 && "Shouldn't get here");
8665 return 0;
8666}
8667
Dan Gohman58c09632008-09-16 18:46:06 +00008668/// visitSelectInstWithICmp - Visit a SelectInst that has an
8669/// ICmpInst as its first operand.
8670///
8671Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
8672 ICmpInst *ICI) {
8673 bool Changed = false;
8674 ICmpInst::Predicate Pred = ICI->getPredicate();
8675 Value *CmpLHS = ICI->getOperand(0);
8676 Value *CmpRHS = ICI->getOperand(1);
8677 Value *TrueVal = SI.getTrueValue();
8678 Value *FalseVal = SI.getFalseValue();
8679
8680 // Check cases where the comparison is with a constant that
8681 // can be adjusted to fit the min/max idiom. We may edit ICI in
8682 // place here, so make sure the select is the only user.
8683 if (ICI->hasOneUse())
Dan Gohman35b76162008-10-30 20:40:10 +00008684 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
Dan Gohman58c09632008-09-16 18:46:06 +00008685 switch (Pred) {
8686 default: break;
8687 case ICmpInst::ICMP_ULT:
8688 case ICmpInst::ICMP_SLT: {
8689 // X < MIN ? T : F --> F
8690 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
8691 return ReplaceInstUsesWith(SI, FalseVal);
8692 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
8693 Constant *AdjustedRHS = SubOne(CI);
8694 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8695 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8696 Pred = ICmpInst::getSwappedPredicate(Pred);
8697 CmpRHS = AdjustedRHS;
8698 std::swap(FalseVal, TrueVal);
8699 ICI->setPredicate(Pred);
8700 ICI->setOperand(1, CmpRHS);
8701 SI.setOperand(1, TrueVal);
8702 SI.setOperand(2, FalseVal);
8703 Changed = true;
8704 }
8705 break;
8706 }
8707 case ICmpInst::ICMP_UGT:
8708 case ICmpInst::ICMP_SGT: {
8709 // X > MAX ? T : F --> F
8710 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
8711 return ReplaceInstUsesWith(SI, FalseVal);
8712 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
8713 Constant *AdjustedRHS = AddOne(CI);
8714 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
8715 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
8716 Pred = ICmpInst::getSwappedPredicate(Pred);
8717 CmpRHS = AdjustedRHS;
8718 std::swap(FalseVal, TrueVal);
8719 ICI->setPredicate(Pred);
8720 ICI->setOperand(1, CmpRHS);
8721 SI.setOperand(1, TrueVal);
8722 SI.setOperand(2, FalseVal);
8723 Changed = true;
8724 }
8725 break;
8726 }
8727 }
8728
Dan Gohman35b76162008-10-30 20:40:10 +00008729 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
8730 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
Chris Lattner3b874082008-11-16 05:38:51 +00008731 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
8732 if (match(TrueVal, m_ConstantInt(-1)) &&
8733 match(FalseVal, m_ConstantInt(0)))
8734 Pred = ICI->getPredicate();
8735 else if (match(TrueVal, m_ConstantInt(0)) &&
8736 match(FalseVal, m_ConstantInt(-1)))
8737 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
8738
Dan Gohman35b76162008-10-30 20:40:10 +00008739 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
8740 // If we are just checking for a icmp eq of a single bit and zext'ing it
8741 // to an integer, then shift the bit to the appropriate place and then
8742 // cast to integer to avoid the comparison.
8743 const APInt &Op1CV = CI->getValue();
8744
8745 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
8746 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
8747 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Chris Lattner3b874082008-11-16 05:38:51 +00008748 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Dan Gohman35b76162008-10-30 20:40:10 +00008749 Value *In = ICI->getOperand(0);
8750 Value *Sh = ConstantInt::get(In->getType(),
8751 In->getType()->getPrimitiveSizeInBits()-1);
8752 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
8753 In->getName()+".lobit"),
8754 *ICI);
Dan Gohman47a60772008-11-02 00:17:33 +00008755 if (In->getType() != SI.getType())
8756 In = CastInst::CreateIntegerCast(In, SI.getType(),
Dan Gohman35b76162008-10-30 20:40:10 +00008757 true/*SExt*/, "tmp", ICI);
8758
8759 if (Pred == ICmpInst::ICMP_SGT)
8760 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
8761 In->getName()+".not"), *ICI);
8762
8763 return ReplaceInstUsesWith(SI, In);
8764 }
8765 }
8766 }
8767
Dan Gohman58c09632008-09-16 18:46:06 +00008768 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
8769 // Transform (X == Y) ? X : Y -> Y
8770 if (Pred == ICmpInst::ICMP_EQ)
8771 return ReplaceInstUsesWith(SI, FalseVal);
8772 // Transform (X != Y) ? X : Y -> X
8773 if (Pred == ICmpInst::ICMP_NE)
8774 return ReplaceInstUsesWith(SI, TrueVal);
8775 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8776
8777 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
8778 // Transform (X == Y) ? Y : X -> X
8779 if (Pred == ICmpInst::ICMP_EQ)
8780 return ReplaceInstUsesWith(SI, FalseVal);
8781 // Transform (X != Y) ? Y : X -> Y
8782 if (Pred == ICmpInst::ICMP_NE)
8783 return ReplaceInstUsesWith(SI, TrueVal);
8784 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
8785 }
8786
8787 /// NOTE: if we wanted to, this is where to detect integer ABS
8788
8789 return Changed ? &SI : 0;
8790}
8791
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008792Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
8793 Value *CondVal = SI.getCondition();
8794 Value *TrueVal = SI.getTrueValue();
8795 Value *FalseVal = SI.getFalseValue();
8796
8797 // select true, X, Y -> X
8798 // select false, X, Y -> Y
8799 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
8800 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
8801
8802 // select C, X, X -> X
8803 if (TrueVal == FalseVal)
8804 return ReplaceInstUsesWith(SI, TrueVal);
8805
8806 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
8807 return ReplaceInstUsesWith(SI, FalseVal);
8808 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
8809 return ReplaceInstUsesWith(SI, TrueVal);
8810 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
8811 if (isa<Constant>(TrueVal))
8812 return ReplaceInstUsesWith(SI, TrueVal);
8813 else
8814 return ReplaceInstUsesWith(SI, FalseVal);
8815 }
8816
8817 if (SI.getType() == Type::Int1Ty) {
8818 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
8819 if (C->getZExtValue()) {
8820 // Change: A = select B, true, C --> A = or B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008821 return BinaryOperator::CreateOr(CondVal, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008822 } else {
8823 // Change: A = select B, false, C --> A = and !B, C
8824 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008825 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008826 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008827 return BinaryOperator::CreateAnd(NotCond, FalseVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008828 }
8829 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
8830 if (C->getZExtValue() == false) {
8831 // Change: A = select B, C, false --> A = and B, C
Gabor Greifa645dd32008-05-16 19:29:10 +00008832 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008833 } else {
8834 // Change: A = select B, C, true --> A = or !B, C
8835 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008836 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008837 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008838 return BinaryOperator::CreateOr(NotCond, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008839 }
8840 }
Chris Lattner53f85a72007-11-25 21:27:53 +00008841
8842 // select a, b, a -> a&b
8843 // select a, a, b -> a|b
8844 if (CondVal == TrueVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008845 return BinaryOperator::CreateOr(CondVal, FalseVal);
Chris Lattner53f85a72007-11-25 21:27:53 +00008846 else if (CondVal == FalseVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008847 return BinaryOperator::CreateAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008848 }
8849
8850 // Selecting between two integer constants?
8851 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
8852 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
8853 // select C, 1, 0 -> zext C to int
8854 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
Gabor Greifa645dd32008-05-16 19:29:10 +00008855 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008856 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
8857 // select C, 0, 1 -> zext !C to int
8858 Value *NotCond =
Gabor Greifa645dd32008-05-16 19:29:10 +00008859 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008860 "not."+CondVal->getName()), SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00008861 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008862 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008863
8864 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
8865
8866 // (x <s 0) ? -1 : 0 -> ashr x, 31
8867 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
8868 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
8869 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
8870 // The comparison constant and the result are not neccessarily the
8871 // same width. Make an all-ones value by inserting a AShr.
8872 Value *X = IC->getOperand(0);
8873 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
8874 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
Gabor Greifa645dd32008-05-16 19:29:10 +00008875 Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008876 ShAmt, "ones");
8877 InsertNewInstBefore(SRA, SI);
Eli Friedman722b4792008-11-30 21:09:11 +00008878
8879 // Then cast to the appropriate width.
8880 return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008881 }
8882 }
8883
8884
8885 // If one of the constants is zero (we know they can't both be) and we
8886 // have an icmp instruction with zero, and we have an 'and' with the
8887 // non-constant value, eliminate this whole mess. This corresponds to
8888 // cases like this: ((X & 27) ? 27 : 0)
8889 if (TrueValC->isZero() || FalseValC->isZero())
8890 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
8891 cast<Constant>(IC->getOperand(1))->isNullValue())
8892 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
8893 if (ICA->getOpcode() == Instruction::And &&
8894 isa<ConstantInt>(ICA->getOperand(1)) &&
8895 (ICA->getOperand(1) == TrueValC ||
8896 ICA->getOperand(1) == FalseValC) &&
8897 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
8898 // Okay, now we know that everything is set up, we just don't
8899 // know whether we have a icmp_ne or icmp_eq and whether the
8900 // true or false val is the zero.
8901 bool ShouldNotVal = !TrueValC->isZero();
8902 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
8903 Value *V = ICA;
8904 if (ShouldNotVal)
Gabor Greifa645dd32008-05-16 19:29:10 +00008905 V = InsertNewInstBefore(BinaryOperator::Create(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008906 Instruction::Xor, V, ICA->getOperand(1)), SI);
8907 return ReplaceInstUsesWith(SI, V);
8908 }
8909 }
8910 }
8911
8912 // See if we are selecting two values based on a comparison of the two values.
8913 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
8914 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
8915 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008916 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8917 // This is not safe in general for floating point:
8918 // consider X== -0, Y== +0.
8919 // It becomes safe if either operand is a nonzero constant.
8920 ConstantFP *CFPt, *CFPf;
8921 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8922 !CFPt->getValueAPF().isZero()) ||
8923 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8924 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008925 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008926 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008927 // Transform (X != Y) ? X : Y -> X
8928 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8929 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008930 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008931
8932 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
8933 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00008934 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
8935 // This is not safe in general for floating point:
8936 // consider X== -0, Y== +0.
8937 // It becomes safe if either operand is a nonzero constant.
8938 ConstantFP *CFPt, *CFPf;
8939 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
8940 !CFPt->getValueAPF().isZero()) ||
8941 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
8942 !CFPf->getValueAPF().isZero()))
8943 return ReplaceInstUsesWith(SI, FalseVal);
8944 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008945 // Transform (X != Y) ? Y : X -> Y
8946 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
8947 return ReplaceInstUsesWith(SI, TrueVal);
Dan Gohman58c09632008-09-16 18:46:06 +00008948 // NOTE: if we wanted to, this is where to detect MIN/MAX
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008949 }
Dan Gohman58c09632008-09-16 18:46:06 +00008950 // NOTE: if we wanted to, this is where to detect ABS
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008951 }
8952
8953 // See if we are selecting two values based on a comparison of the two values.
Dan Gohman58c09632008-09-16 18:46:06 +00008954 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
8955 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
8956 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008957
8958 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
8959 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
8960 if (TI->hasOneUse() && FI->hasOneUse()) {
8961 Instruction *AddOp = 0, *SubOp = 0;
8962
8963 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
8964 if (TI->getOpcode() == FI->getOpcode())
8965 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
8966 return IV;
8967
8968 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
8969 // even legal for FP.
8970 if (TI->getOpcode() == Instruction::Sub &&
8971 FI->getOpcode() == Instruction::Add) {
8972 AddOp = FI; SubOp = TI;
8973 } else if (FI->getOpcode() == Instruction::Sub &&
8974 TI->getOpcode() == Instruction::Add) {
8975 AddOp = TI; SubOp = FI;
8976 }
8977
8978 if (AddOp) {
8979 Value *OtherAddOp = 0;
8980 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
8981 OtherAddOp = AddOp->getOperand(1);
8982 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
8983 OtherAddOp = AddOp->getOperand(0);
8984 }
8985
8986 if (OtherAddOp) {
8987 // So at this point we know we have (Y -> OtherAddOp):
8988 // select C, (add X, Y), (sub X, Z)
8989 Value *NegVal; // Compute -Z
8990 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
8991 NegVal = ConstantExpr::getNeg(C);
8992 } else {
8993 NegVal = InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +00008994 BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008995 }
8996
8997 Value *NewTrueOp = OtherAddOp;
8998 Value *NewFalseOp = NegVal;
8999 if (AddOp != TI)
9000 std::swap(NewTrueOp, NewFalseOp);
9001 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009002 SelectInst::Create(CondVal, NewTrueOp,
9003 NewFalseOp, SI.getName() + ".p");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009004
9005 NewSel = InsertNewInstBefore(NewSel, SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00009006 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009007 }
9008 }
9009 }
9010
9011 // See if we can fold the select into one of our operands.
9012 if (SI.getType()->isInteger()) {
9013 // See the comment above GetSelectFoldableOperands for a description of the
9014 // transformation we are doing here.
9015 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
9016 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
9017 !isa<Constant>(FalseVal))
9018 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
9019 unsigned OpToFold = 0;
9020 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
9021 OpToFold = 1;
9022 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
9023 OpToFold = 2;
9024 }
9025
9026 if (OpToFold) {
9027 Constant *C = GetSelectFoldableConstant(TVI);
9028 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009029 SelectInst::Create(SI.getCondition(),
9030 TVI->getOperand(2-OpToFold), C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009031 InsertNewInstBefore(NewSel, SI);
9032 NewSel->takeName(TVI);
9033 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009034 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009035 else {
9036 assert(0 && "Unknown instruction!!");
9037 }
9038 }
9039 }
9040
9041 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
9042 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
9043 !isa<Constant>(TrueVal))
9044 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
9045 unsigned OpToFold = 0;
9046 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
9047 OpToFold = 1;
9048 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
9049 OpToFold = 2;
9050 }
9051
9052 if (OpToFold) {
9053 Constant *C = GetSelectFoldableConstant(FVI);
9054 Instruction *NewSel =
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009055 SelectInst::Create(SI.getCondition(), C,
9056 FVI->getOperand(2-OpToFold));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009057 InsertNewInstBefore(NewSel, SI);
9058 NewSel->takeName(FVI);
9059 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
Gabor Greifa645dd32008-05-16 19:29:10 +00009060 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009061 else
9062 assert(0 && "Unknown instruction!!");
9063 }
9064 }
9065 }
9066
9067 if (BinaryOperator::isNot(CondVal)) {
9068 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
9069 SI.setOperand(1, FalseVal);
9070 SI.setOperand(2, TrueVal);
9071 return &SI;
9072 }
9073
9074 return 0;
9075}
9076
Dan Gohman2d648bb2008-04-10 18:43:06 +00009077/// EnforceKnownAlignment - If the specified pointer points to an object that
9078/// we control, modify the object's alignment to PrefAlign. This isn't
9079/// often possible though. If alignment is important, a more reliable approach
9080/// is to simply align all global variables and allocation instructions to
9081/// their preferred alignment from the beginning.
9082///
9083static unsigned EnforceKnownAlignment(Value *V,
9084 unsigned Align, unsigned PrefAlign) {
Chris Lattner47cf3452007-08-09 19:05:49 +00009085
Dan Gohman2d648bb2008-04-10 18:43:06 +00009086 User *U = dyn_cast<User>(V);
9087 if (!U) return Align;
9088
9089 switch (getOpcode(U)) {
9090 default: break;
9091 case Instruction::BitCast:
9092 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
9093 case Instruction::GetElementPtr: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009094 // If all indexes are zero, it is just the alignment of the base pointer.
9095 bool AllZeroOperands = true;
Gabor Greife92fbe22008-06-12 21:51:29 +00009096 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
Gabor Greif17396002008-06-12 21:37:33 +00009097 if (!isa<Constant>(*i) ||
9098 !cast<Constant>(*i)->isNullValue()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009099 AllZeroOperands = false;
9100 break;
9101 }
Chris Lattner47cf3452007-08-09 19:05:49 +00009102
9103 if (AllZeroOperands) {
9104 // Treat this like a bitcast.
Dan Gohman2d648bb2008-04-10 18:43:06 +00009105 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
Chris Lattner47cf3452007-08-09 19:05:49 +00009106 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009107 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009108 }
Dan Gohman2d648bb2008-04-10 18:43:06 +00009109 }
9110
9111 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
9112 // If there is a large requested alignment and we can, bump up the alignment
9113 // of the global.
9114 if (!GV->isDeclaration()) {
9115 GV->setAlignment(PrefAlign);
9116 Align = PrefAlign;
9117 }
9118 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
9119 // If there is a requested alignment and if this is an alloca, round up. We
9120 // don't do this for malloc, because some systems can't respect the request.
9121 if (isa<AllocaInst>(AI)) {
9122 AI->setAlignment(PrefAlign);
9123 Align = PrefAlign;
9124 }
9125 }
9126
9127 return Align;
9128}
9129
9130/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9131/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9132/// and it is more than the alignment of the ultimate object, see if we can
9133/// increase the alignment of the ultimate object, making this check succeed.
9134unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
9135 unsigned PrefAlign) {
9136 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
9137 sizeof(PrefAlign) * CHAR_BIT;
9138 APInt Mask = APInt::getAllOnesValue(BitWidth);
9139 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
9140 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
9141 unsigned TrailZ = KnownZero.countTrailingOnes();
9142 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
9143
9144 if (PrefAlign > Align)
9145 Align = EnforceKnownAlignment(V, Align, PrefAlign);
9146
9147 // We don't need to make any adjustment.
9148 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009149}
9150
Chris Lattner00ae5132008-01-13 23:50:23 +00009151Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
Dan Gohman2d648bb2008-04-10 18:43:06 +00009152 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
9153 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
Chris Lattner00ae5132008-01-13 23:50:23 +00009154 unsigned MinAlign = std::min(DstAlign, SrcAlign);
9155 unsigned CopyAlign = MI->getAlignment()->getZExtValue();
9156
9157 if (CopyAlign < MinAlign) {
9158 MI->setAlignment(ConstantInt::get(Type::Int32Ty, MinAlign));
9159 return MI;
9160 }
9161
9162 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9163 // load/store.
9164 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
9165 if (MemOpLength == 0) return 0;
9166
Chris Lattnerc669fb62008-01-14 00:28:35 +00009167 // Source and destination pointer types are always "i8*" for intrinsic. See
9168 // if the size is something we can handle with a single primitive load/store.
9169 // A single load+store correctly handles overlapping memory in the memmove
9170 // case.
Chris Lattner00ae5132008-01-13 23:50:23 +00009171 unsigned Size = MemOpLength->getZExtValue();
Chris Lattner5af8a912008-04-30 06:39:11 +00009172 if (Size == 0) return MI; // Delete this mem transfer.
9173
9174 if (Size > 8 || (Size&(Size-1)))
Chris Lattnerc669fb62008-01-14 00:28:35 +00009175 return 0; // If not 1/2/4/8 bytes, exit.
Chris Lattner00ae5132008-01-13 23:50:23 +00009176
Chris Lattnerc669fb62008-01-14 00:28:35 +00009177 // Use an integer load+store unless we can find something better.
Chris Lattner00ae5132008-01-13 23:50:23 +00009178 Type *NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Chris Lattnerc669fb62008-01-14 00:28:35 +00009179
9180 // Memcpy forces the use of i8* for the source and destination. That means
9181 // that if you're using memcpy to move one double around, you'll get a cast
9182 // from double* to i8*. We'd much rather use a double load+store rather than
9183 // an i64 load+store, here because this improves the odds that the source or
9184 // dest address will be promotable. See if we can find a better type than the
9185 // integer datatype.
9186 if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
9187 const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
9188 if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
9189 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9190 // down through these levels if so.
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009191 while (!SrcETy->isSingleValueType()) {
Chris Lattnerc669fb62008-01-14 00:28:35 +00009192 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
9193 if (STy->getNumElements() == 1)
9194 SrcETy = STy->getElementType(0);
9195 else
9196 break;
9197 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
9198 if (ATy->getNumElements() == 1)
9199 SrcETy = ATy->getElementType();
9200 else
9201 break;
9202 } else
9203 break;
9204 }
9205
Dan Gohmanb8e94f62008-05-23 01:52:21 +00009206 if (SrcETy->isSingleValueType())
Chris Lattnerc669fb62008-01-14 00:28:35 +00009207 NewPtrTy = PointerType::getUnqual(SrcETy);
9208 }
9209 }
9210
9211
Chris Lattner00ae5132008-01-13 23:50:23 +00009212 // If the memcpy/memmove provides better alignment info than we can
9213 // infer, use it.
9214 SrcAlign = std::max(SrcAlign, CopyAlign);
9215 DstAlign = std::max(DstAlign, CopyAlign);
9216
9217 Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
9218 Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
Chris Lattnerc669fb62008-01-14 00:28:35 +00009219 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
9220 InsertNewInstBefore(L, *MI);
9221 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
9222
9223 // Set the size of the copy to 0, it will be deleted on the next iteration.
9224 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
9225 return MI;
Chris Lattner00ae5132008-01-13 23:50:23 +00009226}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009227
Chris Lattner5af8a912008-04-30 06:39:11 +00009228Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
9229 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
9230 if (MI->getAlignment()->getZExtValue() < Alignment) {
9231 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
9232 return MI;
9233 }
9234
9235 // Extract the length and alignment and fill if they are constant.
9236 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
9237 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
9238 if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
9239 return 0;
9240 uint64_t Len = LenC->getZExtValue();
9241 Alignment = MI->getAlignment()->getZExtValue();
9242
9243 // If the length is zero, this is a no-op
9244 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
9245
9246 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9247 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
9248 const Type *ITy = IntegerType::get(Len*8); // n=1 -> i8.
9249
9250 Value *Dest = MI->getDest();
9251 Dest = InsertBitCastBefore(Dest, PointerType::getUnqual(ITy), *MI);
9252
9253 // Alignment 0 is identity for alignment 1 for memset, but not store.
9254 if (Alignment == 0) Alignment = 1;
9255
9256 // Extract the fill value and store.
9257 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
9258 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), Dest, false,
9259 Alignment), *MI);
9260
9261 // Set the size of the copy to 0, it will be deleted on the next iteration.
9262 MI->setLength(Constant::getNullValue(LenC->getType()));
9263 return MI;
9264 }
9265
9266 return 0;
9267}
9268
9269
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009270/// visitCallInst - CallInst simplification. This mostly only handles folding
9271/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9272/// the heavy lifting.
9273///
9274Instruction *InstCombiner::visitCallInst(CallInst &CI) {
9275 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
9276 if (!II) return visitCallSite(&CI);
9277
9278 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9279 // visitCallSite.
9280 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
9281 bool Changed = false;
9282
9283 // memmove/cpy/set of zero bytes is a noop.
9284 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
9285 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
9286
9287 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
9288 if (CI->getZExtValue() == 1) {
9289 // Replace the instruction with just byte operations. We would
9290 // transform other cases to loads/stores, but we don't know if
9291 // alignment is sufficient.
9292 }
9293 }
9294
9295 // If we have a memmove and the source operation is a constant global,
9296 // then the source and dest pointers can't alias, so we can change this
9297 // into a call to memcpy.
Chris Lattner00ae5132008-01-13 23:50:23 +00009298 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009299 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
9300 if (GVSrc->isConstant()) {
9301 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner82c2e432008-11-21 16:42:48 +00009302 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
9303 const Type *Tys[1];
9304 Tys[0] = CI.getOperand(3)->getType();
9305 CI.setOperand(0,
9306 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009307 Changed = true;
9308 }
Chris Lattner59b27d92008-05-28 05:30:41 +00009309
9310 // memmove(x,x,size) -> noop.
9311 if (MMI->getSource() == MMI->getDest())
9312 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009313 }
9314
9315 // If we can determine a pointer alignment that is bigger than currently
9316 // set, update the alignment.
9317 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner00ae5132008-01-13 23:50:23 +00009318 if (Instruction *I = SimplifyMemTransfer(MI))
9319 return I;
Chris Lattner5af8a912008-04-30 06:39:11 +00009320 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
9321 if (Instruction *I = SimplifyMemSet(MSI))
9322 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009323 }
9324
9325 if (Changed) return II;
Chris Lattner989ba312008-06-18 04:33:20 +00009326 }
9327
9328 switch (II->getIntrinsicID()) {
9329 default: break;
9330 case Intrinsic::bswap:
9331 // bswap(bswap(x)) -> x
9332 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
9333 if (Operand->getIntrinsicID() == Intrinsic::bswap)
9334 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
9335 break;
9336 case Intrinsic::ppc_altivec_lvx:
9337 case Intrinsic::ppc_altivec_lvxl:
9338 case Intrinsic::x86_sse_loadu_ps:
9339 case Intrinsic::x86_sse2_loadu_pd:
9340 case Intrinsic::x86_sse2_loadu_dq:
9341 // Turn PPC lvx -> load if the pointer is known aligned.
9342 // Turn X86 loadups -> load if the pointer is known aligned.
9343 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9344 Value *Ptr = InsertBitCastBefore(II->getOperand(1),
9345 PointerType::getUnqual(II->getType()),
9346 CI);
9347 return new LoadInst(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009348 }
Chris Lattner989ba312008-06-18 04:33:20 +00009349 break;
9350 case Intrinsic::ppc_altivec_stvx:
9351 case Intrinsic::ppc_altivec_stvxl:
9352 // Turn stvx -> store if the pointer is known aligned.
9353 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
9354 const Type *OpPtrTy =
9355 PointerType::getUnqual(II->getOperand(1)->getType());
9356 Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
9357 return new StoreInst(II->getOperand(1), Ptr);
9358 }
9359 break;
9360 case Intrinsic::x86_sse_storeu_ps:
9361 case Intrinsic::x86_sse2_storeu_pd:
9362 case Intrinsic::x86_sse2_storeu_dq:
Chris Lattner989ba312008-06-18 04:33:20 +00009363 // Turn X86 storeu -> store if the pointer is known aligned.
9364 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
9365 const Type *OpPtrTy =
9366 PointerType::getUnqual(II->getOperand(2)->getType());
9367 Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
9368 return new StoreInst(II->getOperand(2), Ptr);
9369 }
9370 break;
9371
9372 case Intrinsic::x86_sse_cvttss2si: {
9373 // These intrinsics only demands the 0th element of its input vector. If
9374 // we can simplify the input based on that, do so now.
9375 uint64_t UndefElts;
9376 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
9377 UndefElts)) {
9378 II->setOperand(1, V);
9379 return II;
9380 }
9381 break;
9382 }
9383
9384 case Intrinsic::ppc_altivec_vperm:
9385 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9386 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
9387 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009388
Chris Lattner989ba312008-06-18 04:33:20 +00009389 // Check that all of the elements are integer constants or undefs.
9390 bool AllEltsOk = true;
9391 for (unsigned i = 0; i != 16; ++i) {
9392 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
9393 !isa<UndefValue>(Mask->getOperand(i))) {
9394 AllEltsOk = false;
9395 break;
9396 }
9397 }
9398
9399 if (AllEltsOk) {
9400 // Cast the input vectors to byte vectors.
9401 Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
9402 Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
9403 Value *Result = UndefValue::get(Op0->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009404
Chris Lattner989ba312008-06-18 04:33:20 +00009405 // Only extract each element once.
9406 Value *ExtractedElts[32];
9407 memset(ExtractedElts, 0, sizeof(ExtractedElts));
9408
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009409 for (unsigned i = 0; i != 16; ++i) {
Chris Lattner989ba312008-06-18 04:33:20 +00009410 if (isa<UndefValue>(Mask->getOperand(i)))
9411 continue;
9412 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
9413 Idx &= 31; // Match the hardware behavior.
9414
9415 if (ExtractedElts[Idx] == 0) {
9416 Instruction *Elt =
9417 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
9418 InsertNewInstBefore(Elt, CI);
9419 ExtractedElts[Idx] = Elt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009420 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009421
Chris Lattner989ba312008-06-18 04:33:20 +00009422 // Insert this value into the result vector.
9423 Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
9424 i, "tmp");
9425 InsertNewInstBefore(cast<Instruction>(Result), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009426 }
Chris Lattner989ba312008-06-18 04:33:20 +00009427 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009428 }
Chris Lattner989ba312008-06-18 04:33:20 +00009429 }
9430 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009431
Chris Lattner989ba312008-06-18 04:33:20 +00009432 case Intrinsic::stackrestore: {
9433 // If the save is right next to the restore, remove the restore. This can
9434 // happen when variable allocas are DCE'd.
9435 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
9436 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
9437 BasicBlock::iterator BI = SS;
9438 if (&*++BI == II)
9439 return EraseInstFromFunction(CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009440 }
Chris Lattner989ba312008-06-18 04:33:20 +00009441 }
9442
9443 // Scan down this block to see if there is another stack restore in the
9444 // same block without an intervening call/alloca.
9445 BasicBlock::iterator BI = II;
9446 TerminatorInst *TI = II->getParent()->getTerminator();
9447 bool CannotRemove = false;
9448 for (++BI; &*BI != TI; ++BI) {
9449 if (isa<AllocaInst>(BI)) {
9450 CannotRemove = true;
9451 break;
9452 }
Chris Lattnera6b477c2008-06-25 05:59:28 +00009453 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
9454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
9455 // If there is a stackrestore below this one, remove this one.
9456 if (II->getIntrinsicID() == Intrinsic::stackrestore)
9457 return EraseInstFromFunction(CI);
9458 // Otherwise, ignore the intrinsic.
9459 } else {
9460 // If we found a non-intrinsic call, we can't remove the stack
9461 // restore.
Chris Lattner416d91c2008-02-18 06:12:38 +00009462 CannotRemove = true;
9463 break;
9464 }
Chris Lattner989ba312008-06-18 04:33:20 +00009465 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009466 }
Chris Lattner989ba312008-06-18 04:33:20 +00009467
9468 // If the stack restore is in a return/unwind block and if there are no
9469 // allocas or calls between the restore and the return, nuke the restore.
9470 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
9471 return EraseInstFromFunction(CI);
9472 break;
9473 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009474 }
9475
9476 return visitCallSite(II);
9477}
9478
9479// InvokeInst simplification
9480//
9481Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
9482 return visitCallSite(&II);
9483}
9484
Dale Johannesen96021832008-04-25 21:16:07 +00009485/// isSafeToEliminateVarargsCast - If this cast does not affect the value
9486/// passed through the varargs area, we can eliminate the use of the cast.
Dale Johannesen35615462008-04-23 18:34:37 +00009487static bool isSafeToEliminateVarargsCast(const CallSite CS,
9488 const CastInst * const CI,
9489 const TargetData * const TD,
9490 const int ix) {
9491 if (!CI->isLosslessCast())
9492 return false;
9493
9494 // The size of ByVal arguments is derived from the type, so we
9495 // can't change to a type with a different size. If the size were
9496 // passed explicitly we could avoid this check.
Devang Pateld222f862008-09-25 21:00:45 +00009497 if (!CS.paramHasAttr(ix, Attribute::ByVal))
Dale Johannesen35615462008-04-23 18:34:37 +00009498 return true;
9499
9500 const Type* SrcTy =
9501 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
9502 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
9503 if (!SrcTy->isSized() || !DstTy->isSized())
9504 return false;
9505 if (TD->getABITypeSize(SrcTy) != TD->getABITypeSize(DstTy))
9506 return false;
9507 return true;
9508}
9509
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009510// visitCallSite - Improvements for call and invoke instructions.
9511//
9512Instruction *InstCombiner::visitCallSite(CallSite CS) {
9513 bool Changed = false;
9514
9515 // If the callee is a constexpr cast of a function, attempt to move the cast
9516 // to the arguments of the call/invoke.
9517 if (transformConstExprCastCall(CS)) return 0;
9518
9519 Value *Callee = CS.getCalledValue();
9520
9521 if (Function *CalleeF = dyn_cast<Function>(Callee))
9522 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
9523 Instruction *OldCall = CS.getInstruction();
9524 // If the call and callee calling conventions don't match, this call must
9525 // be unreachable, as the call is undefined.
9526 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009527 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
9528 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009529 if (!OldCall->use_empty())
9530 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
9531 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
9532 return EraseInstFromFunction(*OldCall);
9533 return 0;
9534 }
9535
9536 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
9537 // This instruction is not reachable, just remove it. We insert a store to
9538 // undef so that we know that this code is not reachable, despite the fact
9539 // that we can't modify the CFG here.
9540 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009541 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009542 CS.getInstruction());
9543
9544 if (!CS.getInstruction()->use_empty())
9545 CS.getInstruction()->
9546 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
9547
9548 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
9549 // Don't break the CFG, insert a dummy cond branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +00009550 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
9551 ConstantInt::getTrue(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009552 }
9553 return EraseInstFromFunction(*CS.getInstruction());
9554 }
9555
Duncan Sands74833f22007-09-17 10:26:40 +00009556 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
9557 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
9558 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
9559 return transformCallThroughTrampoline(CS);
9560
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009561 const PointerType *PTy = cast<PointerType>(Callee->getType());
9562 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
9563 if (FTy->isVarArg()) {
Dale Johannesen502336c2008-04-23 01:03:05 +00009564 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009565 // See if we can optimize any arguments passed through the varargs area of
9566 // the call.
9567 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
Dale Johannesen35615462008-04-23 18:34:37 +00009568 E = CS.arg_end(); I != E; ++I, ++ix) {
9569 CastInst *CI = dyn_cast<CastInst>(*I);
9570 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
9571 *I = CI->getOperand(0);
9572 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009573 }
Dale Johannesen35615462008-04-23 18:34:37 +00009574 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009575 }
9576
Duncan Sands2937e352007-12-19 21:13:37 +00009577 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00009578 // Inline asm calls cannot throw - mark them 'nounwind'.
Duncan Sands2937e352007-12-19 21:13:37 +00009579 CS.setDoesNotThrow();
Duncan Sands7868f3c2007-12-16 15:51:49 +00009580 Changed = true;
9581 }
9582
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009583 return Changed ? CS.getInstruction() : 0;
9584}
9585
9586// transformConstExprCastCall - If the callee is a constexpr cast of a function,
9587// attempt to move the cast to the arguments of the call/invoke.
9588//
9589bool InstCombiner::transformConstExprCastCall(CallSite CS) {
9590 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
9591 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
9592 if (CE->getOpcode() != Instruction::BitCast ||
9593 !isa<Function>(CE->getOperand(0)))
9594 return false;
9595 Function *Callee = cast<Function>(CE->getOperand(0));
9596 Instruction *Caller = CS.getInstruction();
Devang Pateld222f862008-09-25 21:00:45 +00009597 const AttrListPtr &CallerPAL = CS.getAttributes();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009598
9599 // Okay, this is a cast from a function to a different type. Unless doing so
9600 // would cause a type conversion of one of our arguments, change this call to
9601 // be a direct call with arguments casted to the appropriate types.
9602 //
9603 const FunctionType *FT = Callee->getFunctionType();
9604 const Type *OldRetTy = Caller->getType();
Duncan Sands7901ce12008-06-01 07:38:42 +00009605 const Type *NewRetTy = FT->getReturnType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009606
Duncan Sands7901ce12008-06-01 07:38:42 +00009607 if (isa<StructType>(NewRetTy))
Devang Pateld091d322008-03-11 18:04:06 +00009608 return false; // TODO: Handle multiple return values.
9609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009610 // Check to see if we are changing the return type...
Duncan Sands7901ce12008-06-01 07:38:42 +00009611 if (OldRetTy != NewRetTy) {
Bill Wendlingd9644a42008-05-14 22:45:20 +00009612 if (Callee->isDeclaration() &&
Duncan Sands7901ce12008-06-01 07:38:42 +00009613 // Conversion is ok if changing from one pointer type to another or from
9614 // a pointer to an integer of the same size.
9615 !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
Duncan Sands886cadb2008-06-17 15:55:30 +00009616 (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009617 return false; // Cannot transform this return value.
9618
Duncan Sands5c489582008-01-06 10:12:28 +00009619 if (!Caller->use_empty() &&
Duncan Sands5c489582008-01-06 10:12:28 +00009620 // void -> non-void is handled specially
Duncan Sands7901ce12008-06-01 07:38:42 +00009621 NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
Duncan Sands5c489582008-01-06 10:12:28 +00009622 return false; // Cannot transform this return value.
9623
Chris Lattner1c8733e2008-03-12 17:45:29 +00009624 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
Devang Patelf2a4a922008-09-26 22:53:05 +00009625 Attributes RAttrs = CallerPAL.getRetAttributes();
Devang Pateld222f862008-09-25 21:00:45 +00009626 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
Duncan Sandsdbe97dc2008-01-07 17:16:06 +00009627 return false; // Attribute not compatible with transformed value.
9628 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009629
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009630 // If the callsite is an invoke instruction, and the return value is used by
9631 // a PHI node in a successor, we cannot change the return type of the call
9632 // because there is no place to put the cast instruction (without breaking
9633 // the critical edge). Bail out in this case.
9634 if (!Caller->use_empty())
9635 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
9636 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
9637 UI != E; ++UI)
9638 if (PHINode *PN = dyn_cast<PHINode>(*UI))
9639 if (PN->getParent() == II->getNormalDest() ||
9640 PN->getParent() == II->getUnwindDest())
9641 return false;
9642 }
9643
9644 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
9645 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
9646
9647 CallSite::arg_iterator AI = CS.arg_begin();
9648 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
9649 const Type *ParamTy = FT->getParamType(i);
9650 const Type *ActTy = (*AI)->getType();
Duncan Sands5c489582008-01-06 10:12:28 +00009651
9652 if (!CastInst::isCastable(ActTy, ParamTy))
Duncan Sandsc849e662008-01-06 18:27:01 +00009653 return false; // Cannot transform this parameter value.
9654
Devang Patelf2a4a922008-09-26 22:53:05 +00009655 if (CallerPAL.getParamAttributes(i + 1)
9656 & Attribute::typeIncompatible(ParamTy))
Chris Lattner1c8733e2008-03-12 17:45:29 +00009657 return false; // Attribute not compatible with transformed value.
Duncan Sands5c489582008-01-06 10:12:28 +00009658
Duncan Sands7901ce12008-06-01 07:38:42 +00009659 // Converting from one pointer type to another or between a pointer and an
9660 // integer of the same size is safe even if we do not have a body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009661 bool isConvertible = ActTy == ParamTy ||
Duncan Sands7901ce12008-06-01 07:38:42 +00009662 ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
9663 (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009664 if (Callee->isDeclaration() && !isConvertible) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009665 }
9666
9667 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
9668 Callee->isDeclaration())
Chris Lattner1c8733e2008-03-12 17:45:29 +00009669 return false; // Do not delete arguments unless we have a function body.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009670
Chris Lattner1c8733e2008-03-12 17:45:29 +00009671 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
9672 !CallerPAL.isEmpty())
Duncan Sandsc849e662008-01-06 18:27:01 +00009673 // In this case we have more arguments than the new function type, but we
Duncan Sands4ced1f82008-01-13 08:02:44 +00009674 // won't be dropping them. Check that these extra arguments have attributes
9675 // that are compatible with being a vararg call argument.
Chris Lattner1c8733e2008-03-12 17:45:29 +00009676 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
9677 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
Duncan Sands4ced1f82008-01-13 08:02:44 +00009678 break;
Devang Patele480dfa2008-09-23 23:03:40 +00009679 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
Devang Pateld222f862008-09-25 21:00:45 +00009680 if (PAttrs & Attribute::VarArgsIncompatible)
Duncan Sands4ced1f82008-01-13 08:02:44 +00009681 return false;
9682 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009683
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009684 // Okay, we decided that this is a safe thing to do: go ahead and start
9685 // inserting cast instructions as necessary...
9686 std::vector<Value*> Args;
9687 Args.reserve(NumActualArgs);
Devang Pateld222f862008-09-25 21:00:45 +00009688 SmallVector<AttributeWithIndex, 8> attrVec;
Duncan Sandsc849e662008-01-06 18:27:01 +00009689 attrVec.reserve(NumCommonArgs);
9690
9691 // Get any return attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009692 Attributes RAttrs = CallerPAL.getRetAttributes();
Duncan Sandsc849e662008-01-06 18:27:01 +00009693
9694 // If the return value is not being used, the type may not be compatible
9695 // with the existing attributes. Wipe out any problematic attributes.
Devang Pateld222f862008-09-25 21:00:45 +00009696 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
Duncan Sandsc849e662008-01-06 18:27:01 +00009697
9698 // Add the new return attributes.
9699 if (RAttrs)
Devang Pateld222f862008-09-25 21:00:45 +00009700 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009701
9702 AI = CS.arg_begin();
9703 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
9704 const Type *ParamTy = FT->getParamType(i);
9705 if ((*AI)->getType() == ParamTy) {
9706 Args.push_back(*AI);
9707 } else {
9708 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
9709 false, ParamTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009710 CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009711 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
9712 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009713
9714 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009715 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009716 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009717 }
9718
9719 // If the function takes more arguments than the call was taking, add them
9720 // now...
9721 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
9722 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
9723
9724 // If we are removing arguments to the function, emit an obnoxious warning...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009725 if (FT->getNumParams() < NumActualArgs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009726 if (!FT->isVarArg()) {
9727 cerr << "WARNING: While resolving call to function '"
9728 << Callee->getName() << "' arguments were dropped!\n";
9729 } else {
9730 // Add all of the arguments in their promoted form to the arg list...
9731 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
9732 const Type *PTy = getPromotedType((*AI)->getType());
9733 if (PTy != (*AI)->getType()) {
9734 // Must promote to pass through va_arg area!
9735 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
9736 PTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009737 Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009738 InsertNewInstBefore(Cast, *Caller);
9739 Args.push_back(Cast);
9740 } else {
9741 Args.push_back(*AI);
9742 }
Duncan Sandsc849e662008-01-06 18:27:01 +00009743
Duncan Sands4ced1f82008-01-13 08:02:44 +00009744 // Add any parameter attributes.
Devang Patelf2a4a922008-09-26 22:53:05 +00009745 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
Devang Pateld222f862008-09-25 21:00:45 +00009746 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
Duncan Sands4ced1f82008-01-13 08:02:44 +00009747 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009748 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00009749 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009750
Devang Patelf2a4a922008-09-26 22:53:05 +00009751 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
9752 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
9753
Duncan Sands7901ce12008-06-01 07:38:42 +00009754 if (NewRetTy == Type::VoidTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009755 Caller->setName(""); // Void type should not have a name.
9756
Devang Pateld222f862008-09-25 21:00:45 +00009757 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
Duncan Sandsc849e662008-01-06 18:27:01 +00009758
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009759 Instruction *NC;
9760 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009761 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
Gabor Greifb91ea9d2008-05-15 10:04:30 +00009762 Args.begin(), Args.end(),
9763 Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00009764 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009765 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009766 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009767 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
9768 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009769 CallInst *CI = cast<CallInst>(Caller);
9770 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009771 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009772 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009773 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009774 }
9775
9776 // Insert a cast of the return type as necessary.
9777 Value *NV = NC;
Duncan Sands5c489582008-01-06 10:12:28 +00009778 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009779 if (NV->getType() != Type::VoidTy) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009780 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Duncan Sands5c489582008-01-06 10:12:28 +00009781 OldRetTy, false);
Gabor Greifa645dd32008-05-16 19:29:10 +00009782 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009783
9784 // If this is an invoke instruction, we should insert it after the first
9785 // non-phi, instruction in the normal successor block.
9786 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Dan Gohman514277c2008-05-23 21:05:58 +00009787 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009788 InsertNewInstBefore(NC, *I);
9789 } else {
9790 // Otherwise, it's a call, just insert cast right after the call instr
9791 InsertNewInstBefore(NC, *Caller);
9792 }
9793 AddUsersToWorkList(*Caller);
9794 } else {
9795 NV = UndefValue::get(Caller->getType());
9796 }
9797 }
9798
9799 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9800 Caller->replaceAllUsesWith(NV);
9801 Caller->eraseFromParent();
9802 RemoveFromWorkList(Caller);
9803 return true;
9804}
9805
Duncan Sands74833f22007-09-17 10:26:40 +00009806// transformCallThroughTrampoline - Turn a call to a function created by the
9807// init_trampoline intrinsic into a direct call to the underlying function.
9808//
9809Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
9810 Value *Callee = CS.getCalledValue();
9811 const PointerType *PTy = cast<PointerType>(Callee->getType());
9812 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Devang Pateld222f862008-09-25 21:00:45 +00009813 const AttrListPtr &Attrs = CS.getAttributes();
Duncan Sands48b81112008-01-14 19:52:09 +00009814
9815 // If the call already has the 'nest' attribute somewhere then give up -
9816 // otherwise 'nest' would occur twice after splicing in the chain.
Devang Pateld222f862008-09-25 21:00:45 +00009817 if (Attrs.hasAttrSomewhere(Attribute::Nest))
Duncan Sands48b81112008-01-14 19:52:09 +00009818 return 0;
Duncan Sands74833f22007-09-17 10:26:40 +00009819
9820 IntrinsicInst *Tramp =
9821 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
9822
Anton Korobeynikov48fc88f2008-05-07 22:54:15 +00009823 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
Duncan Sands74833f22007-09-17 10:26:40 +00009824 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
9825 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
9826
Devang Pateld222f862008-09-25 21:00:45 +00009827 const AttrListPtr &NestAttrs = NestF->getAttributes();
Chris Lattner1c8733e2008-03-12 17:45:29 +00009828 if (!NestAttrs.isEmpty()) {
Duncan Sands74833f22007-09-17 10:26:40 +00009829 unsigned NestIdx = 1;
9830 const Type *NestTy = 0;
Devang Pateld222f862008-09-25 21:00:45 +00009831 Attributes NestAttr = Attribute::None;
Duncan Sands74833f22007-09-17 10:26:40 +00009832
9833 // Look for a parameter marked with the 'nest' attribute.
9834 for (FunctionType::param_iterator I = NestFTy->param_begin(),
9835 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
Devang Pateld222f862008-09-25 21:00:45 +00009836 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
Duncan Sands74833f22007-09-17 10:26:40 +00009837 // Record the parameter type and any other attributes.
9838 NestTy = *I;
Devang Patelf2a4a922008-09-26 22:53:05 +00009839 NestAttr = NestAttrs.getParamAttributes(NestIdx);
Duncan Sands74833f22007-09-17 10:26:40 +00009840 break;
9841 }
9842
9843 if (NestTy) {
9844 Instruction *Caller = CS.getInstruction();
9845 std::vector<Value*> NewArgs;
9846 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
9847
Devang Pateld222f862008-09-25 21:00:45 +00009848 SmallVector<AttributeWithIndex, 8> NewAttrs;
Chris Lattner1c8733e2008-03-12 17:45:29 +00009849 NewAttrs.reserve(Attrs.getNumSlots() + 1);
Duncan Sands48b81112008-01-14 19:52:09 +00009850
Duncan Sands74833f22007-09-17 10:26:40 +00009851 // Insert the nest argument into the call argument list, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009852 // mean appending it. Likewise for attributes.
9853
Devang Patelf2a4a922008-09-26 22:53:05 +00009854 // Add any result attributes.
9855 if (Attributes Attr = Attrs.getRetAttributes())
Devang Pateld222f862008-09-25 21:00:45 +00009856 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
Duncan Sands48b81112008-01-14 19:52:09 +00009857
Duncan Sands74833f22007-09-17 10:26:40 +00009858 {
9859 unsigned Idx = 1;
9860 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
9861 do {
9862 if (Idx == NestIdx) {
Duncan Sands48b81112008-01-14 19:52:09 +00009863 // Add the chain argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009864 Value *NestVal = Tramp->getOperand(3);
9865 if (NestVal->getType() != NestTy)
9866 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
9867 NewArgs.push_back(NestVal);
Devang Pateld222f862008-09-25 21:00:45 +00009868 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
Duncan Sands74833f22007-09-17 10:26:40 +00009869 }
9870
9871 if (I == E)
9872 break;
9873
Duncan Sands48b81112008-01-14 19:52:09 +00009874 // Add the original argument and attributes.
Duncan Sands74833f22007-09-17 10:26:40 +00009875 NewArgs.push_back(*I);
Devang Patelf2a4a922008-09-26 22:53:05 +00009876 if (Attributes Attr = Attrs.getParamAttributes(Idx))
Duncan Sands48b81112008-01-14 19:52:09 +00009877 NewAttrs.push_back
Devang Pateld222f862008-09-25 21:00:45 +00009878 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
Duncan Sands74833f22007-09-17 10:26:40 +00009879
9880 ++Idx, ++I;
9881 } while (1);
9882 }
9883
Devang Patelf2a4a922008-09-26 22:53:05 +00009884 // Add any function attributes.
9885 if (Attributes Attr = Attrs.getFnAttributes())
9886 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
9887
Duncan Sands74833f22007-09-17 10:26:40 +00009888 // The trampoline may have been bitcast to a bogus type (FTy).
9889 // Handle this by synthesizing a new function type, equal to FTy
Duncan Sands48b81112008-01-14 19:52:09 +00009890 // with the chain parameter inserted.
Duncan Sands74833f22007-09-17 10:26:40 +00009891
Duncan Sands74833f22007-09-17 10:26:40 +00009892 std::vector<const Type*> NewTypes;
Duncan Sands74833f22007-09-17 10:26:40 +00009893 NewTypes.reserve(FTy->getNumParams()+1);
9894
Duncan Sands74833f22007-09-17 10:26:40 +00009895 // Insert the chain's type into the list of parameter types, which may
Duncan Sands48b81112008-01-14 19:52:09 +00009896 // mean appending it.
Duncan Sands74833f22007-09-17 10:26:40 +00009897 {
9898 unsigned Idx = 1;
9899 FunctionType::param_iterator I = FTy->param_begin(),
9900 E = FTy->param_end();
9901
9902 do {
Duncan Sands48b81112008-01-14 19:52:09 +00009903 if (Idx == NestIdx)
9904 // Add the chain's type.
Duncan Sands74833f22007-09-17 10:26:40 +00009905 NewTypes.push_back(NestTy);
Duncan Sands74833f22007-09-17 10:26:40 +00009906
9907 if (I == E)
9908 break;
9909
Duncan Sands48b81112008-01-14 19:52:09 +00009910 // Add the original type.
Duncan Sands74833f22007-09-17 10:26:40 +00009911 NewTypes.push_back(*I);
Duncan Sands74833f22007-09-17 10:26:40 +00009912
9913 ++Idx, ++I;
9914 } while (1);
9915 }
9916
9917 // Replace the trampoline call with a direct call. Let the generic
9918 // code sort out any function type mismatches.
9919 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00009920 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00009921 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
9922 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Devang Pateld222f862008-09-25 21:00:45 +00009923 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
Duncan Sands74833f22007-09-17 10:26:40 +00009924
9925 Instruction *NewCaller;
9926 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009927 NewCaller = InvokeInst::Create(NewCallee,
9928 II->getNormalDest(), II->getUnwindDest(),
9929 NewArgs.begin(), NewArgs.end(),
9930 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009931 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009932 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009933 } else {
Gabor Greifd6da1d02008-04-06 20:25:17 +00009934 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
9935 Caller->getName(), Caller);
Duncan Sands74833f22007-09-17 10:26:40 +00009936 if (cast<CallInst>(Caller)->isTailCall())
9937 cast<CallInst>(NewCaller)->setTailCall();
9938 cast<CallInst>(NewCaller)->
9939 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Devang Pateld222f862008-09-25 21:00:45 +00009940 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00009941 }
9942 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
9943 Caller->replaceAllUsesWith(NewCaller);
9944 Caller->eraseFromParent();
9945 RemoveFromWorkList(Caller);
9946 return 0;
9947 }
9948 }
9949
9950 // Replace the trampoline call with a direct call. Since there is no 'nest'
9951 // parameter, there is no need to adjust the argument list. Let the generic
9952 // code sort out any function type mismatches.
9953 Constant *NewCallee =
9954 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
9955 CS.setCalledFunction(NewCallee);
9956 return CS.getInstruction();
9957}
9958
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009959/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
9960/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
9961/// and a single binop.
9962Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
9963 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Chris Lattner30078012008-12-01 03:42:51 +00009964 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009965 unsigned Opc = FirstInst->getOpcode();
9966 Value *LHSVal = FirstInst->getOperand(0);
9967 Value *RHSVal = FirstInst->getOperand(1);
9968
9969 const Type *LHSType = LHSVal->getType();
9970 const Type *RHSType = RHSVal->getType();
9971
9972 // Scan to see if all operands are the same opcode, all have one use, and all
9973 // kill their operands (i.e. the operands have one use).
Chris Lattner9e1916e2008-12-01 02:34:36 +00009974 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009975 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
9976 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
9977 // Verify type of the LHS matches so we don't fold cmp's of different
9978 // types or GEP's with different index types.
9979 I->getOperand(0)->getType() != LHSType ||
9980 I->getOperand(1)->getType() != RHSType)
9981 return 0;
9982
9983 // If they are CmpInst instructions, check their predicates
9984 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
9985 if (cast<CmpInst>(I)->getPredicate() !=
9986 cast<CmpInst>(FirstInst)->getPredicate())
9987 return 0;
9988
9989 // Keep track of which operand needs a phi node.
9990 if (I->getOperand(0) != LHSVal) LHSVal = 0;
9991 if (I->getOperand(1) != RHSVal) RHSVal = 0;
9992 }
9993
Chris Lattner30078012008-12-01 03:42:51 +00009994 // Otherwise, this is safe to transform!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009995
9996 Value *InLHS = FirstInst->getOperand(0);
9997 Value *InRHS = FirstInst->getOperand(1);
9998 PHINode *NewLHS = 0, *NewRHS = 0;
9999 if (LHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010000 NewLHS = PHINode::Create(LHSType,
10001 FirstInst->getOperand(0)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010002 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
10003 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
10004 InsertNewInstBefore(NewLHS, PN);
10005 LHSVal = NewLHS;
10006 }
10007
10008 if (RHSVal == 0) {
Gabor Greifb91ea9d2008-05-15 10:04:30 +000010009 NewRHS = PHINode::Create(RHSType,
10010 FirstInst->getOperand(1)->getName() + ".pn");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010011 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
10012 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
10013 InsertNewInstBefore(NewRHS, PN);
10014 RHSVal = NewRHS;
10015 }
10016
10017 // Add all operands to the new PHIs.
Chris Lattner9e1916e2008-12-01 02:34:36 +000010018 if (NewLHS || NewRHS) {
10019 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10020 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
10021 if (NewLHS) {
10022 Value *NewInLHS = InInst->getOperand(0);
10023 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
10024 }
10025 if (NewRHS) {
10026 Value *NewInRHS = InInst->getOperand(1);
10027 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
10028 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010029 }
10030 }
10031
10032 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010033 return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
Chris Lattner30078012008-12-01 03:42:51 +000010034 CmpInst *CIOp = cast<CmpInst>(FirstInst);
10035 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
10036 RHSVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010037}
10038
Chris Lattner9e1916e2008-12-01 02:34:36 +000010039Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
10040 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
10041
10042 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
10043 FirstInst->op_end());
10044
10045 // Scan to see if all operands are the same opcode, all have one use, and all
10046 // kill their operands (i.e. the operands have one use).
10047 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
10048 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
10049 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
10050 GEP->getNumOperands() != FirstInst->getNumOperands())
10051 return 0;
10052
10053 // Compare the operand lists.
10054 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
10055 if (FirstInst->getOperand(op) == GEP->getOperand(op))
10056 continue;
10057
10058 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10059 // if one of the PHIs has a constant for the index. The index may be
10060 // substantially cheaper to compute for the constants, so making it a
10061 // variable index could pessimize the path. This also handles the case
10062 // for struct indices, which must always be constant.
10063 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
10064 isa<ConstantInt>(GEP->getOperand(op)))
10065 return 0;
10066
10067 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
10068 return 0;
10069 FixedOperands[op] = 0; // Needs a PHI.
10070 }
10071 }
10072
10073 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10074 // that is variable.
10075 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
10076
10077 bool HasAnyPHIs = false;
10078 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
10079 if (FixedOperands[i]) continue; // operand doesn't need a phi.
10080 Value *FirstOp = FirstInst->getOperand(i);
10081 PHINode *NewPN = PHINode::Create(FirstOp->getType(),
10082 FirstOp->getName()+".pn");
10083 InsertNewInstBefore(NewPN, PN);
10084
10085 NewPN->reserveOperandSpace(e);
10086 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
10087 OperandPhis[i] = NewPN;
10088 FixedOperands[i] = NewPN;
10089 HasAnyPHIs = true;
10090 }
10091
10092
10093 // Add all operands to the new PHIs.
10094 if (HasAnyPHIs) {
10095 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10096 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
10097 BasicBlock *InBB = PN.getIncomingBlock(i);
10098
10099 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
10100 if (PHINode *OpPhi = OperandPhis[op])
10101 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
10102 }
10103 }
10104
10105 Value *Base = FixedOperands[0];
10106 return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
10107 FixedOperands.end());
10108}
10109
10110
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010111/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
10112/// of the block that defines it. This means that it must be obvious the value
10113/// of the load is not changed from the point of the load to the end of the
10114/// block it is in.
10115///
10116/// Finally, it is safe, but not profitable, to sink a load targetting a
10117/// non-address-taken alloca. Doing so will cause us to not promote the alloca
10118/// to a register.
10119static bool isSafeToSinkLoad(LoadInst *L) {
10120 BasicBlock::iterator BBI = L, E = L->getParent()->end();
10121
10122 for (++BBI; BBI != E; ++BBI)
10123 if (BBI->mayWriteToMemory())
10124 return false;
10125
10126 // Check for non-address taken alloca. If not address-taken already, it isn't
10127 // profitable to do this xform.
10128 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
10129 bool isAddressTaken = false;
10130 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
10131 UI != E; ++UI) {
10132 if (isa<LoadInst>(UI)) continue;
10133 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
10134 // If storing TO the alloca, then the address isn't taken.
10135 if (SI->getOperand(1) == AI) continue;
10136 }
10137 isAddressTaken = true;
10138 break;
10139 }
10140
10141 if (!isAddressTaken)
10142 return false;
10143 }
10144
10145 return true;
10146}
10147
10148
10149// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10150// operator and they all are only used by the PHI, PHI together their
10151// inputs, and do the operation once, to the result of the PHI.
10152Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
10153 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
10154
10155 // Scan the instruction, looking for input operations that can be folded away.
10156 // If all input operands to the phi are the same instruction (e.g. a cast from
10157 // the same type or "+42") we can pull the operation through the PHI, reducing
10158 // code size and simplifying code.
10159 Constant *ConstantOp = 0;
10160 const Type *CastSrcTy = 0;
10161 bool isVolatile = false;
10162 if (isa<CastInst>(FirstInst)) {
10163 CastSrcTy = FirstInst->getOperand(0)->getType();
10164 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
10165 // Can fold binop, compare or shift here if the RHS is a constant,
10166 // otherwise call FoldPHIArgBinOpIntoPHI.
10167 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
10168 if (ConstantOp == 0)
10169 return FoldPHIArgBinOpIntoPHI(PN);
10170 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
10171 isVolatile = LI->isVolatile();
10172 // We can't sink the load if the loaded value could be modified between the
10173 // load and the PHI.
10174 if (LI->getParent() != PN.getIncomingBlock(0) ||
10175 !isSafeToSinkLoad(LI))
10176 return 0;
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010177
10178 // If the PHI is of volatile loads and the load block has multiple
10179 // successors, sinking it would remove a load of the volatile value from
10180 // the path through the other successor.
10181 if (isVolatile &&
10182 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10183 return 0;
10184
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010185 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner9e1916e2008-12-01 02:34:36 +000010186 return FoldPHIArgGEPIntoPHI(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010187 } else {
10188 return 0; // Cannot fold this operation.
10189 }
10190
10191 // Check to see if all arguments are the same operation.
10192 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10193 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
10194 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
10195 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
10196 return 0;
10197 if (CastSrcTy) {
10198 if (I->getOperand(0)->getType() != CastSrcTy)
10199 return 0; // Cast operation must match.
10200 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10201 // We can't sink the load if the loaded value could be modified between
10202 // the load and the PHI.
10203 if (LI->isVolatile() != isVolatile ||
10204 LI->getParent() != PN.getIncomingBlock(i) ||
10205 !isSafeToSinkLoad(LI))
10206 return 0;
Chris Lattnerf7867012008-04-29 17:28:22 +000010207
Chris Lattner2d9fdd82008-07-08 17:18:32 +000010208 // If the PHI is of volatile loads and the load block has multiple
10209 // successors, sinking it would remove a load of the volatile value from
10210 // the path through the other successor.
Chris Lattnerf7867012008-04-29 17:28:22 +000010211 if (isVolatile &&
10212 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
10213 return 0;
10214
10215
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010216 } else if (I->getOperand(1) != ConstantOp) {
10217 return 0;
10218 }
10219 }
10220
10221 // Okay, they are all the same operation. Create a new PHI node of the
10222 // correct type, and PHI together all of the LHS's of the instructions.
Gabor Greifd6da1d02008-04-06 20:25:17 +000010223 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
10224 PN.getName()+".in");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010225 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
10226
10227 Value *InVal = FirstInst->getOperand(0);
10228 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
10229
10230 // Add all operands to the new PHI.
10231 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
10232 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
10233 if (NewInVal != InVal)
10234 InVal = 0;
10235 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
10236 }
10237
10238 Value *PhiVal;
10239 if (InVal) {
10240 // The new PHI unions all of the same values together. This is really
10241 // common, so we handle it intelligently here for compile-time speed.
10242 PhiVal = InVal;
10243 delete NewPN;
10244 } else {
10245 InsertNewInstBefore(NewPN, PN);
10246 PhiVal = NewPN;
10247 }
10248
10249 // Insert and return the new operation.
10250 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010251 return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
Chris Lattnerfc984e92008-04-29 17:13:43 +000010252 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010253 return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010254 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
Gabor Greifa645dd32008-05-16 19:29:10 +000010255 return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010256 PhiVal, ConstantOp);
Chris Lattnerfc984e92008-04-29 17:13:43 +000010257 assert(isa<LoadInst>(FirstInst) && "Unknown operation");
10258
10259 // If this was a volatile load that we are merging, make sure to loop through
10260 // and mark all the input loads as non-volatile. If we don't do this, we will
10261 // insert a new volatile load and the old ones will not be deletable.
10262 if (isVolatile)
10263 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
10264 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
10265
10266 return new LoadInst(PhiVal, "", isVolatile);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010267}
10268
10269/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10270/// that is dead.
10271static bool DeadPHICycle(PHINode *PN,
10272 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
10273 if (PN->use_empty()) return true;
10274 if (!PN->hasOneUse()) return false;
10275
10276 // Remember this node, and if we find the cycle, return.
10277 if (!PotentiallyDeadPHIs.insert(PN))
10278 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +000010279
10280 // Don't scan crazily complex things.
10281 if (PotentiallyDeadPHIs.size() == 16)
10282 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010283
10284 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
10285 return DeadPHICycle(PU, PotentiallyDeadPHIs);
10286
10287 return false;
10288}
10289
Chris Lattner27b695d2007-11-06 21:52:06 +000010290/// PHIsEqualValue - Return true if this phi node is always equal to
10291/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10292/// z = some value; x = phi (y, z); y = phi (x, z)
10293static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
10294 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
10295 // See if we already saw this PHI node.
10296 if (!ValueEqualPHIs.insert(PN))
10297 return true;
10298
10299 // Don't scan crazily complex things.
10300 if (ValueEqualPHIs.size() == 16)
10301 return false;
10302
10303 // Scan the operands to see if they are either phi nodes or are equal to
10304 // the value.
10305 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
10306 Value *Op = PN->getIncomingValue(i);
10307 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
10308 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
10309 return false;
10310 } else if (Op != NonPhiInVal)
10311 return false;
10312 }
10313
10314 return true;
10315}
10316
10317
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010318// PHINode simplification
10319//
10320Instruction *InstCombiner::visitPHINode(PHINode &PN) {
10321 // If LCSSA is around, don't mess with Phi nodes
10322 if (MustPreserveLCSSA) return 0;
10323
10324 if (Value *V = PN.hasConstantValue())
10325 return ReplaceInstUsesWith(PN, V);
10326
10327 // If all PHI operands are the same operation, pull them through the PHI,
10328 // reducing code size.
10329 if (isa<Instruction>(PN.getIncomingValue(0)) &&
Chris Lattner9e1916e2008-12-01 02:34:36 +000010330 isa<Instruction>(PN.getIncomingValue(1)) &&
10331 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
10332 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
10333 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10334 // than themselves more than once.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010335 PN.getIncomingValue(0)->hasOneUse())
10336 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
10337 return Result;
10338
10339 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10340 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10341 // PHI)... break the cycle.
10342 if (PN.hasOneUse()) {
10343 Instruction *PHIUser = cast<Instruction>(PN.use_back());
10344 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
10345 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
10346 PotentiallyDeadPHIs.insert(&PN);
10347 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
10348 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10349 }
10350
10351 // If this phi has a single use, and if that use just computes a value for
10352 // the next iteration of a loop, delete the phi. This occurs with unused
10353 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10354 // common case here is good because the only other things that catch this
10355 // are induction variable analysis (sometimes) and ADCE, which is only run
10356 // late.
10357 if (PHIUser->hasOneUse() &&
10358 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
10359 PHIUser->use_back() == &PN) {
10360 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
10361 }
10362 }
10363
Chris Lattner27b695d2007-11-06 21:52:06 +000010364 // We sometimes end up with phi cycles that non-obviously end up being the
10365 // same value, for example:
10366 // z = some value; x = phi (y, z); y = phi (x, z)
10367 // where the phi nodes don't necessarily need to be in the same block. Do a
10368 // quick check to see if the PHI node only contains a single non-phi value, if
10369 // so, scan to see if the phi cycle is actually equal to that value.
10370 {
10371 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
10372 // Scan for the first non-phi operand.
10373 while (InValNo != NumOperandVals &&
10374 isa<PHINode>(PN.getIncomingValue(InValNo)))
10375 ++InValNo;
10376
10377 if (InValNo != NumOperandVals) {
10378 Value *NonPhiInVal = PN.getOperand(InValNo);
10379
10380 // Scan the rest of the operands to see if there are any conflicts, if so
10381 // there is no need to recursively scan other phis.
10382 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
10383 Value *OpVal = PN.getIncomingValue(InValNo);
10384 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
10385 break;
10386 }
10387
10388 // If we scanned over all operands, then we have one unique value plus
10389 // phi values. Scan PHI nodes to see if they all merge in each other or
10390 // the value.
10391 if (InValNo == NumOperandVals) {
10392 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
10393 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
10394 return ReplaceInstUsesWith(PN, NonPhiInVal);
10395 }
10396 }
10397 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010398 return 0;
10399}
10400
10401static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
10402 Instruction *InsertPoint,
10403 InstCombiner *IC) {
10404 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
10405 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
10406 // We must cast correctly to the pointer type. Ensure that we
10407 // sign extend the integer value if it is smaller as this is
10408 // used for address computation.
10409 Instruction::CastOps opcode =
10410 (VTySize < PtrSize ? Instruction::SExt :
10411 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
10412 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
10413}
10414
10415
10416Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
10417 Value *PtrOp = GEP.getOperand(0);
10418 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10419 // If so, eliminate the noop.
10420 if (GEP.getNumOperands() == 1)
10421 return ReplaceInstUsesWith(GEP, PtrOp);
10422
10423 if (isa<UndefValue>(GEP.getOperand(0)))
10424 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
10425
10426 bool HasZeroPointerIndex = false;
10427 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
10428 HasZeroPointerIndex = C->isNullValue();
10429
10430 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
10431 return ReplaceInstUsesWith(GEP, PtrOp);
10432
10433 // Eliminate unneeded casts for indices.
10434 bool MadeChange = false;
10435
10436 gep_type_iterator GTI = gep_type_begin(GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010437 for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
10438 i != e; ++i, ++GTI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010439 if (isa<SequentialType>(*GTI)) {
Gabor Greif17396002008-06-12 21:37:33 +000010440 if (CastInst *CI = dyn_cast<CastInst>(*i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010441 if (CI->getOpcode() == Instruction::ZExt ||
10442 CI->getOpcode() == Instruction::SExt) {
10443 const Type *SrcTy = CI->getOperand(0)->getType();
10444 // We can eliminate a cast from i32 to i64 iff the target
10445 // is a 32-bit pointer target.
10446 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
10447 MadeChange = true;
Gabor Greif17396002008-06-12 21:37:33 +000010448 *i = CI->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010449 }
10450 }
10451 }
10452 // If we are using a wider index than needed for this platform, shrink it
Dan Gohman5d639ed2008-09-11 23:06:38 +000010453 // to what we need. If narrower, sign-extend it to what we need.
10454 // If the incoming value needs a cast instruction,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010455 // insert it. This explicit cast can make subsequent optimizations more
10456 // obvious.
Gabor Greif17396002008-06-12 21:37:33 +000010457 Value *Op = *i;
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010458 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010459 if (Constant *C = dyn_cast<Constant>(Op)) {
Gabor Greif17396002008-06-12 21:37:33 +000010460 *i = ConstantExpr::getTrunc(C, TD->getIntPtrType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010461 MadeChange = true;
10462 } else {
10463 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
10464 GEP);
Gabor Greif17396002008-06-12 21:37:33 +000010465 *i = Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010466 MadeChange = true;
10467 }
Dan Gohman5d639ed2008-09-11 23:06:38 +000010468 } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
10469 if (Constant *C = dyn_cast<Constant>(Op)) {
10470 *i = ConstantExpr::getSExt(C, TD->getIntPtrType());
10471 MadeChange = true;
10472 } else {
10473 Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
10474 GEP);
10475 *i = Op;
10476 MadeChange = true;
10477 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010478 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010479 }
10480 }
10481 if (MadeChange) return &GEP;
10482
10483 // If this GEP instruction doesn't move the pointer, and if the input operand
10484 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
10485 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +000010486 if (GEP.hasAllZeroIndices()) {
10487 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
10488 // If the bitcast is of an allocation, and the allocation will be
10489 // converted to match the type of the cast, don't touch this.
10490 if (isa<AllocationInst>(BCI->getOperand(0))) {
10491 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +000010492 if (Instruction *I = visitBitCast(*BCI)) {
10493 if (I != BCI) {
10494 I->takeName(BCI);
10495 BCI->getParent()->getInstList().insert(BCI, I);
10496 ReplaceInstUsesWith(*BCI, I);
10497 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010498 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +000010499 }
Chris Lattnerc59171a2007-10-12 05:30:59 +000010500 }
10501 return new BitCastInst(BCI->getOperand(0), GEP.getType());
10502 }
10503 }
10504
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010505 // Combine Indices - If the source pointer to this getelementptr instruction
10506 // is a getelementptr instruction, combine the indices of the two
10507 // getelementptr instructions into a single instruction.
10508 //
10509 SmallVector<Value*, 8> SrcGEPOperands;
10510 if (User *Src = dyn_castGetElementPtr(PtrOp))
10511 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
10512
10513 if (!SrcGEPOperands.empty()) {
10514 // Note that if our source is a gep chain itself that we wait for that
10515 // chain to be resolved before we perform this transformation. This
10516 // avoids us creating a TON of code in some cases.
10517 //
10518 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
10519 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
10520 return 0; // Wait until our source is folded to completion.
10521
10522 SmallVector<Value*, 8> Indices;
10523
10524 // Find out whether the last index in the source GEP is a sequential idx.
10525 bool EndsWithSequential = false;
10526 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
10527 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
10528 EndsWithSequential = !isa<StructType>(*I);
10529
10530 // Can we combine the two pointer arithmetics offsets?
10531 if (EndsWithSequential) {
10532 // Replace: gep (gep %P, long B), long A, ...
10533 // With: T = long A+B; gep %P, T, ...
10534 //
10535 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
10536 if (SO1 == Constant::getNullValue(SO1->getType())) {
10537 Sum = GO1;
10538 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
10539 Sum = SO1;
10540 } else {
10541 // If they aren't the same type, convert both to an integer of the
10542 // target's pointer size.
10543 if (SO1->getType() != GO1->getType()) {
10544 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
10545 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
10546 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
10547 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
10548 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010549 unsigned PS = TD->getPointerSizeInBits();
10550 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010551 // Convert GO1 to SO1's type.
10552 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
10553
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010554 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010555 // Convert SO1 to GO1's type.
10556 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
10557 } else {
10558 const Type *PT = TD->getIntPtrType();
10559 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
10560 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
10561 }
10562 }
10563 }
10564 if (isa<Constant>(SO1) && isa<Constant>(GO1))
10565 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
10566 else {
Gabor Greifa645dd32008-05-16 19:29:10 +000010567 Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010568 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
10569 }
10570 }
10571
10572 // Recycle the GEP we already have if possible.
10573 if (SrcGEPOperands.size() == 2) {
10574 GEP.setOperand(0, SrcGEPOperands[0]);
10575 GEP.setOperand(1, Sum);
10576 return &GEP;
10577 } else {
10578 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10579 SrcGEPOperands.end()-1);
10580 Indices.push_back(Sum);
10581 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
10582 }
10583 } else if (isa<Constant>(*GEP.idx_begin()) &&
10584 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
10585 SrcGEPOperands.size() != 1) {
10586 // Otherwise we can do the fold if the first index of the GEP is a zero
10587 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
10588 SrcGEPOperands.end());
10589 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
10590 }
10591
10592 if (!Indices.empty())
Gabor Greifd6da1d02008-04-06 20:25:17 +000010593 return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
10594 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010595
10596 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
10597 // GEP of global variable. If all of the indices for this GEP are
10598 // constants, we can promote this to a constexpr instead of an instruction.
10599
10600 // Scan for nonconstants...
10601 SmallVector<Constant*, 8> Indices;
10602 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
10603 for (; I != E && isa<Constant>(*I); ++I)
10604 Indices.push_back(cast<Constant>(*I));
10605
10606 if (I == E) { // If they are all constants...
10607 Constant *CE = ConstantExpr::getGetElementPtr(GV,
10608 &Indices[0],Indices.size());
10609
10610 // Replace all uses of the GEP with the new constexpr...
10611 return ReplaceInstUsesWith(GEP, CE);
10612 }
10613 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
10614 if (!isa<PointerType>(X->getType())) {
10615 // Not interesting. Source pointer must be a cast from pointer.
10616 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010617 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10618 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010619 //
10620 // This occurs when the program declares an array extern like "int X[];"
10621 //
10622 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
10623 const PointerType *XTy = cast<PointerType>(X->getType());
10624 if (const ArrayType *XATy =
10625 dyn_cast<ArrayType>(XTy->getElementType()))
10626 if (const ArrayType *CATy =
10627 dyn_cast<ArrayType>(CPTy->getElementType()))
10628 if (CATy->getElementType() == XATy->getElementType()) {
10629 // At this point, we know that the cast source type is a pointer
10630 // to an array of the same type as the destination pointer
10631 // array. Because the array type is never stepped over (there
10632 // is a leading zero) we can fold the cast into this GEP.
10633 GEP.setOperand(0, X);
10634 return &GEP;
10635 }
10636 } else if (GEP.getNumOperands() == 2) {
10637 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010638 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10639 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010640 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
10641 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
10642 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010643 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
10644 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +000010645 Value *Idx[2];
10646 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10647 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010648 Value *V = InsertNewInstBefore(
Gabor Greifd6da1d02008-04-06 20:25:17 +000010649 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010650 // V and GEP are both pointer types --> BitCast
10651 return new BitCastInst(V, GEP.getType());
10652 }
10653
10654 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010655 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010656 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010657 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010658
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010659 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010660 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010661 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010662
10663 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10664 // allow either a mul, shift, or constant here.
10665 Value *NewIdx = 0;
10666 ConstantInt *Scale = 0;
10667 if (ArrayEltSize == 1) {
10668 NewIdx = GEP.getOperand(1);
10669 Scale = ConstantInt::get(NewIdx->getType(), 1);
10670 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
10671 NewIdx = ConstantInt::get(CI->getType(), 1);
10672 Scale = CI;
10673 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
10674 if (Inst->getOpcode() == Instruction::Shl &&
10675 isa<ConstantInt>(Inst->getOperand(1))) {
10676 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
10677 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
10678 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
10679 NewIdx = Inst->getOperand(0);
10680 } else if (Inst->getOpcode() == Instruction::Mul &&
10681 isa<ConstantInt>(Inst->getOperand(1))) {
10682 Scale = cast<ConstantInt>(Inst->getOperand(1));
10683 NewIdx = Inst->getOperand(0);
10684 }
10685 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010686
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010687 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010688 // out, perform the transformation. Note, we don't know whether Scale is
10689 // signed or not. We'll use unsigned version of division/modulo
10690 // operation after making sure Scale doesn't have the sign bit set.
10691 if (Scale && Scale->getSExtValue() >= 0LL &&
10692 Scale->getZExtValue() % ArrayEltSize == 0) {
10693 Scale = ConstantInt::get(Scale->getType(),
10694 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010695 if (Scale->getZExtValue() != 1) {
10696 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +000010697 false /*ZExt*/);
Gabor Greifa645dd32008-05-16 19:29:10 +000010698 Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010699 NewIdx = InsertNewInstBefore(Sc, GEP);
10700 }
10701
10702 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +000010703 Value *Idx[2];
10704 Idx[0] = Constant::getNullValue(Type::Int32Ty);
10705 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010706 Instruction *NewGEP =
Gabor Greifd6da1d02008-04-06 20:25:17 +000010707 GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010708 NewGEP = InsertNewInstBefore(NewGEP, GEP);
10709 // The NewGEP must be pointer typed, so must the old one -> BitCast
10710 return new BitCastInst(NewGEP, GEP.getType());
10711 }
10712 }
10713 }
10714 }
10715
10716 return 0;
10717}
10718
10719Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
10720 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010721 if (AI.isArrayAllocation()) { // Check C != 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010722 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
10723 const Type *NewTy =
10724 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
10725 AllocationInst *New = 0;
10726
10727 // Create and insert the replacement instruction...
10728 if (isa<MallocInst>(AI))
10729 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
10730 else {
10731 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
10732 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
10733 }
10734
10735 InsertNewInstBefore(New, AI);
10736
10737 // Scan to the end of the allocation instructions, to skip over a block of
10738 // allocas if possible...
10739 //
10740 BasicBlock::iterator It = New;
10741 while (isa<AllocationInst>(*It)) ++It;
10742
10743 // Now that I is pointing to the first non-allocation-inst in the block,
10744 // insert our getelementptr instruction...
10745 //
10746 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +000010747 Value *Idx[2];
10748 Idx[0] = NullIdx;
10749 Idx[1] = NullIdx;
Gabor Greifd6da1d02008-04-06 20:25:17 +000010750 Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
10751 New->getName()+".sub", It);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010752
10753 // Now make everything use the getelementptr instead of the original
10754 // allocation.
10755 return ReplaceInstUsesWith(AI, V);
10756 } else if (isa<UndefValue>(AI.getArraySize())) {
10757 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10758 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010759 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010760
10761 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
10762 // Note that we only do this for alloca's, because malloc should allocate and
10763 // return a unique pointer, even for a zero byte allocation.
10764 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +000010765 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010766 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
10767
10768 return 0;
10769}
10770
10771Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
10772 Value *Op = FI.getOperand(0);
10773
10774 // free undef -> unreachable.
10775 if (isa<UndefValue>(Op)) {
10776 // Insert a new store to null because we cannot modify the CFG here.
10777 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +000010778 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010779 return EraseInstFromFunction(FI);
10780 }
10781
10782 // If we have 'free null' delete the instruction. This can happen in stl code
10783 // when lots of inlining happens.
10784 if (isa<ConstantPointerNull>(Op))
10785 return EraseInstFromFunction(FI);
10786
10787 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
10788 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
10789 FI.setOperand(0, CI->getOperand(0));
10790 return &FI;
10791 }
10792
10793 // Change free (gep X, 0,0,0,0) into free(X)
10794 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10795 if (GEPI->hasAllZeroIndices()) {
10796 AddToWorkList(GEPI);
10797 FI.setOperand(0, GEPI->getOperand(0));
10798 return &FI;
10799 }
10800 }
10801
10802 // Change free(malloc) into nothing, if the malloc has a single use.
10803 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
10804 if (MI->hasOneUse()) {
10805 EraseInstFromFunction(FI);
10806 return EraseInstFromFunction(*MI);
10807 }
10808
10809 return 0;
10810}
10811
10812
10813/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +000010814static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Bill Wendling44a36ea2008-02-26 10:53:30 +000010815 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010816 User *CI = cast<User>(LI.getOperand(0));
10817 Value *CastOp = CI->getOperand(0);
10818
Devang Patela0f8ea82007-10-18 19:52:32 +000010819 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
10820 // Instead of loading constant c string, use corresponding integer value
10821 // directly if string length is small enough.
Evan Cheng833501d2008-06-30 07:31:25 +000010822 std::string Str;
10823 if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000010824 unsigned len = Str.length();
10825 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
10826 unsigned numBits = Ty->getPrimitiveSizeInBits();
10827 // Replace LI with immediate integer store.
10828 if ((numBits >> 3) == len + 1) {
Bill Wendling44a36ea2008-02-26 10:53:30 +000010829 APInt StrVal(numBits, 0);
10830 APInt SingleChar(numBits, 0);
10831 if (TD->isLittleEndian()) {
10832 for (signed i = len-1; i >= 0; i--) {
10833 SingleChar = (uint64_t) Str[i];
10834 StrVal = (StrVal << 8) | SingleChar;
10835 }
10836 } else {
10837 for (unsigned i = 0; i < len; i++) {
10838 SingleChar = (uint64_t) Str[i];
10839 StrVal = (StrVal << 8) | SingleChar;
10840 }
10841 // Append NULL at the end.
10842 SingleChar = 0;
10843 StrVal = (StrVal << 8) | SingleChar;
10844 }
10845 Value *NL = ConstantInt::get(StrVal);
10846 return IC.ReplaceInstUsesWith(LI, NL);
Devang Patela0f8ea82007-10-18 19:52:32 +000010847 }
10848 }
10849 }
10850
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010851 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
10852 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
10853 const Type *SrcPTy = SrcTy->getElementType();
10854
10855 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
10856 isa<VectorType>(DestPTy)) {
10857 // If the source is an array, the code below will not succeed. Check to
10858 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
10859 // constants.
10860 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
10861 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
10862 if (ASrcTy->getNumElements() != 0) {
10863 Value *Idxs[2];
10864 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
10865 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
10866 SrcTy = cast<PointerType>(CastOp->getType());
10867 SrcPTy = SrcTy->getElementType();
10868 }
10869
10870 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
10871 isa<VectorType>(SrcPTy)) &&
10872 // Do not allow turning this into a load of an integer, which is then
10873 // casted to a pointer, this pessimizes pointer analysis a lot.
10874 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
10875 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
10876 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
10877
10878 // Okay, we are casting from one integer or pointer type to another of
10879 // the same size. Instead of casting the pointer before the load, cast
10880 // the result of the loaded value.
10881 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
10882 CI->getName(),
10883 LI.isVolatile()),LI);
10884 // Now cast the result of the load.
10885 return new BitCastInst(NewLoad, LI.getType());
10886 }
10887 }
10888 }
10889 return 0;
10890}
10891
10892/// isSafeToLoadUnconditionally - Return true if we know that executing a load
10893/// from this value cannot trap. If it is not obviously safe to load from the
10894/// specified pointer, we do a quick local scan of the basic block containing
10895/// ScanFrom, to determine if the address is already accessed.
10896static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010897 // If it is an alloca it is always safe to load from.
10898 if (isa<AllocaInst>(V)) return true;
10899
Duncan Sandse40a94a2007-09-19 10:25:38 +000010900 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010901 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +000010902 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +000010903 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010904
10905 // Otherwise, be a little bit agressive by scanning the local block where we
10906 // want to check to see if the pointer is already being loaded or stored
10907 // from/to. If so, the previous load or store would have already trapped,
10908 // so there is no harm doing an extra load (also, CSE will later eliminate
10909 // the load entirely).
10910 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
10911
10912 while (BBI != E) {
10913 --BBI;
10914
Chris Lattner476983a2008-06-20 05:12:56 +000010915 // If we see a free or a call (which might do a free) the pointer could be
10916 // marked invalid.
10917 if (isa<FreeInst>(BBI) || isa<CallInst>(BBI))
10918 return false;
10919
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010920 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
10921 if (LI->getOperand(0) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010922 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010923 if (SI->getOperand(1) == V) return true;
Chris Lattner476983a2008-06-20 05:12:56 +000010924 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010925
10926 }
10927 return false;
10928}
10929
10930Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
10931 Value *Op = LI.getOperand(0);
10932
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010933 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000010934 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op);
10935 if (KnownAlign >
10936 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
10937 LI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000010938 LI.setAlignment(KnownAlign);
10939
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010940 // load (cast X) --> cast (load X) iff safe
10941 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +000010942 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010943 return Res;
10944
10945 // None of the following transforms are legal for volatile loads.
10946 if (LI.isVolatile()) return 0;
10947
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000010948 // Do really simple store-to-load forwarding and load CSE, to catch cases
10949 // where there are several consequtive memory accesses to the same location,
10950 // separated by a few arithmetic operations.
10951 BasicBlock::iterator BBI = &LI;
Chris Lattner6fd8c802008-11-27 08:56:30 +000010952 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
10953 return ReplaceInstUsesWith(LI, AvailableVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010954
Christopher Lamb2c175392007-12-29 07:56:53 +000010955 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
10956 const Value *GEPI0 = GEPI->getOperand(0);
10957 // TODO: Consider a target hook for valid address spaces for this xform.
10958 if (isa<ConstantPointerNull>(GEPI0) &&
10959 cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010960 // Insert a new store to null instruction before the load to indicate
10961 // that this code is not reachable. We do this instead of inserting
10962 // an unreachable instruction directly because we cannot modify the
10963 // CFG.
10964 new StoreInst(UndefValue::get(LI.getType()),
10965 Constant::getNullValue(Op->getType()), &LI);
10966 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10967 }
Christopher Lamb2c175392007-12-29 07:56:53 +000010968 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010969
10970 if (Constant *C = dyn_cast<Constant>(Op)) {
10971 // load null/undef -> undef
Christopher Lamb2c175392007-12-29 07:56:53 +000010972 // TODO: Consider a target hook for valid address spaces for this xform.
10973 if (isa<UndefValue>(C) || (C->isNullValue() &&
10974 cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010975 // Insert a new store to null instruction before the load to indicate that
10976 // this code is not reachable. We do this instead of inserting an
10977 // unreachable instruction directly because we cannot modify the CFG.
10978 new StoreInst(UndefValue::get(LI.getType()),
10979 Constant::getNullValue(Op->getType()), &LI);
10980 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
10981 }
10982
10983 // Instcombine load (constant global) into the value loaded.
10984 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
10985 if (GV->isConstant() && !GV->isDeclaration())
10986 return ReplaceInstUsesWith(LI, GV->getInitializer());
10987
10988 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000010989 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010990 if (CE->getOpcode() == Instruction::GetElementPtr) {
10991 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
10992 if (GV->isConstant() && !GV->isDeclaration())
10993 if (Constant *V =
10994 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
10995 return ReplaceInstUsesWith(LI, V);
10996 if (CE->getOperand(0)->isNullValue()) {
10997 // Insert a new store to null instruction before the load to indicate
10998 // that this code is not reachable. We do this instead of inserting
10999 // an unreachable instruction directly because we cannot modify the
11000 // CFG.
11001 new StoreInst(UndefValue::get(LI.getType()),
11002 Constant::getNullValue(Op->getType()), &LI);
11003 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11004 }
11005
11006 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +000011007 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011008 return Res;
11009 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +000011010 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011011 }
Chris Lattner0270a112007-08-11 18:48:48 +000011012
11013 // If this load comes from anywhere in a constant global, and if the global
11014 // is all undef or zero, we know what it loads.
Duncan Sands52fb8732008-10-01 15:25:41 +000011015 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
Chris Lattner0270a112007-08-11 18:48:48 +000011016 if (GV->isConstant() && GV->hasInitializer()) {
11017 if (GV->getInitializer()->isNullValue())
11018 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
11019 else if (isa<UndefValue>(GV->getInitializer()))
11020 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
11021 }
11022 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011023
11024 if (Op->hasOneUse()) {
11025 // Change select and PHI nodes to select values instead of addresses: this
11026 // helps alias analysis out a lot, allows many others simplifications, and
11027 // exposes redundancy in the code.
11028 //
11029 // Note that we cannot do the transformation unless we know that the
11030 // introduced loads cannot trap! Something like this is valid as long as
11031 // the condition is always false: load (select bool %C, int* null, int* %G),
11032 // but it would not be valid if we transformed it to load from null
11033 // unconditionally.
11034 //
11035 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
11036 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11037 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
11038 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
11039 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
11040 SI->getOperand(1)->getName()+".val"), LI);
11041 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
11042 SI->getOperand(2)->getName()+".val"), LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +000011043 return SelectInst::Create(SI->getCondition(), V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011044 }
11045
11046 // load (select (cond, null, P)) -> load P
11047 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
11048 if (C->isNullValue()) {
11049 LI.setOperand(0, SI->getOperand(2));
11050 return &LI;
11051 }
11052
11053 // load (select (cond, P, null)) -> load P
11054 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
11055 if (C->isNullValue()) {
11056 LI.setOperand(0, SI->getOperand(1));
11057 return &LI;
11058 }
11059 }
11060 }
11061 return 0;
11062}
11063
11064/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11065/// when possible.
11066static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
11067 User *CI = cast<User>(SI.getOperand(1));
11068 Value *CastOp = CI->getOperand(0);
11069
11070 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
11071 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
11072 const Type *SrcPTy = SrcTy->getElementType();
11073
11074 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
11075 // If the source is an array, the code below will not succeed. Check to
11076 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11077 // constants.
11078 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
11079 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
11080 if (ASrcTy->getNumElements() != 0) {
11081 Value* Idxs[2];
11082 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
11083 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
11084 SrcTy = cast<PointerType>(CastOp->getType());
11085 SrcPTy = SrcTy->getElementType();
11086 }
11087
11088 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
11089 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
11090 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
11091
11092 // Okay, we are casting from one integer or pointer type to another of
11093 // the same size. Instead of casting the pointer before
11094 // the store, cast the value to be stored.
11095 Value *NewCast;
11096 Value *SIOp0 = SI.getOperand(0);
11097 Instruction::CastOps opcode = Instruction::BitCast;
11098 const Type* CastSrcTy = SIOp0->getType();
11099 const Type* CastDstTy = SrcPTy;
11100 if (isa<PointerType>(CastDstTy)) {
11101 if (CastSrcTy->isInteger())
11102 opcode = Instruction::IntToPtr;
11103 } else if (isa<IntegerType>(CastDstTy)) {
11104 if (isa<PointerType>(SIOp0->getType()))
11105 opcode = Instruction::PtrToInt;
11106 }
11107 if (Constant *C = dyn_cast<Constant>(SIOp0))
11108 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
11109 else
11110 NewCast = IC.InsertNewInstBefore(
Gabor Greifa645dd32008-05-16 19:29:10 +000011111 CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011112 SI);
11113 return new StoreInst(NewCast, CastOp);
11114 }
11115 }
11116 }
11117 return 0;
11118}
11119
Chris Lattner6fd8c802008-11-27 08:56:30 +000011120/// equivalentAddressValues - Test if A and B will obviously have the same
11121/// value. This includes recognizing that %t0 and %t1 will have the same
11122/// value in code like this:
11123/// %t0 = getelementptr @a, 0, 3
11124/// store i32 0, i32* %t0
11125/// %t1 = getelementptr @a, 0, 3
11126/// %t2 = load i32* %t1
11127///
11128static bool equivalentAddressValues(Value *A, Value *B) {
11129 // Test if the values are trivially equivalent.
11130 if (A == B) return true;
11131
11132 // Test if the values come form identical arithmetic instructions.
11133 if (isa<BinaryOperator>(A) ||
11134 isa<CastInst>(A) ||
11135 isa<PHINode>(A) ||
11136 isa<GetElementPtrInst>(A))
11137 if (Instruction *BI = dyn_cast<Instruction>(B))
11138 if (cast<Instruction>(A)->isIdenticalTo(BI))
11139 return true;
11140
11141 // Otherwise they may not be equivalent.
11142 return false;
11143}
11144
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011145Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
11146 Value *Val = SI.getOperand(0);
11147 Value *Ptr = SI.getOperand(1);
11148
11149 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
11150 EraseInstFromFunction(SI);
11151 ++NumCombined;
11152 return 0;
11153 }
11154
11155 // If the RHS is an alloca with a single use, zapify the store, making the
11156 // alloca dead.
Chris Lattnera02bacc2008-04-29 04:58:38 +000011157 if (Ptr->hasOneUse() && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011158 if (isa<AllocaInst>(Ptr)) {
11159 EraseInstFromFunction(SI);
11160 ++NumCombined;
11161 return 0;
11162 }
11163
11164 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
11165 if (isa<AllocaInst>(GEP->getOperand(0)) &&
11166 GEP->getOperand(0)->hasOneUse()) {
11167 EraseInstFromFunction(SI);
11168 ++NumCombined;
11169 return 0;
11170 }
11171 }
11172
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011173 // Attempt to improve the alignment.
Dan Gohman2d648bb2008-04-10 18:43:06 +000011174 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr);
11175 if (KnownAlign >
11176 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
11177 SI.getAlignment()))
Dan Gohman5c4d0e12007-07-20 16:34:21 +000011178 SI.setAlignment(KnownAlign);
11179
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011180 // Do really simple DSE, to catch cases where there are several consequtive
11181 // stores to the same location, separated by a few arithmetic operations. This
11182 // situation often occurs with bitfield accesses.
11183 BasicBlock::iterator BBI = &SI;
11184 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
11185 --ScanInsts) {
11186 --BBI;
11187
11188 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
11189 // Prev store isn't volatile, and stores to the same location?
Chris Lattner6fd8c802008-11-27 08:56:30 +000011190 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
11191 SI.getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011192 ++NumDeadStore;
11193 ++BBI;
11194 EraseInstFromFunction(*PrevSI);
11195 continue;
11196 }
11197 break;
11198 }
11199
11200 // If this is a load, we have to stop. However, if the loaded value is from
11201 // the pointer we're loading and is producing the pointer we're storing,
11202 // then *this* store is dead (X = load P; store X -> P).
11203 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Dan Gohman0ff5a1f2008-10-15 23:19:35 +000011204 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
11205 !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011206 EraseInstFromFunction(SI);
11207 ++NumCombined;
11208 return 0;
11209 }
11210 // Otherwise, this is a load from some other location. Stores before it
11211 // may not be dead.
11212 break;
11213 }
11214
11215 // Don't skip over loads or things that can modify memory.
Chris Lattner84504282008-05-08 17:20:30 +000011216 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011217 break;
11218 }
11219
11220
11221 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
11222
11223 // store X, null -> turns into 'unreachable' in SimplifyCFG
11224 if (isa<ConstantPointerNull>(Ptr)) {
11225 if (!isa<UndefValue>(Val)) {
11226 SI.setOperand(0, UndefValue::get(Val->getType()));
11227 if (Instruction *U = dyn_cast<Instruction>(Val))
11228 AddToWorkList(U); // Dropped a use.
11229 ++NumCombined;
11230 }
11231 return 0; // Do not modify these!
11232 }
11233
11234 // store undef, Ptr -> noop
11235 if (isa<UndefValue>(Val)) {
11236 EraseInstFromFunction(SI);
11237 ++NumCombined;
11238 return 0;
11239 }
11240
11241 // If the pointer destination is a cast, see if we can fold the cast into the
11242 // source instead.
11243 if (isa<CastInst>(Ptr))
11244 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11245 return Res;
11246 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
11247 if (CE->isCast())
11248 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
11249 return Res;
11250
11251
11252 // If this store is the last instruction in the basic block, and if the block
11253 // ends with an unconditional branch, try to move it to the successor block.
11254 BBI = &SI; ++BBI;
11255 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
11256 if (BI->isUnconditional())
11257 if (SimplifyStoreAtEndOfBlock(SI))
11258 return 0; // xform done!
11259
11260 return 0;
11261}
11262
11263/// SimplifyStoreAtEndOfBlock - Turn things like:
11264/// if () { *P = v1; } else { *P = v2 }
11265/// into a phi node with a store in the successor.
11266///
11267/// Simplify things like:
11268/// *P = v1; if () { *P = v2; }
11269/// into a phi node with a store in the successor.
11270///
11271bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
11272 BasicBlock *StoreBB = SI.getParent();
11273
11274 // Check to see if the successor block has exactly two incoming edges. If
11275 // so, see if the other predecessor contains a store to the same location.
11276 // if so, insert a PHI node (if needed) and move the stores down.
11277 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
11278
11279 // Determine whether Dest has exactly two predecessors and, if so, compute
11280 // the other predecessor.
11281 pred_iterator PI = pred_begin(DestBB);
11282 BasicBlock *OtherBB = 0;
11283 if (*PI != StoreBB)
11284 OtherBB = *PI;
11285 ++PI;
11286 if (PI == pred_end(DestBB))
11287 return false;
11288
11289 if (*PI != StoreBB) {
11290 if (OtherBB)
11291 return false;
11292 OtherBB = *PI;
11293 }
11294 if (++PI != pred_end(DestBB))
11295 return false;
Eli Friedmanab39f9a2008-06-13 21:17:49 +000011296
11297 // Bail out if all the relevant blocks aren't distinct (this can happen,
11298 // for example, if SI is in an infinite loop)
11299 if (StoreBB == DestBB || OtherBB == DestBB)
11300 return false;
11301
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011302 // Verify that the other block ends in a branch and is not otherwise empty.
11303 BasicBlock::iterator BBI = OtherBB->getTerminator();
11304 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
11305 if (!OtherBr || BBI == OtherBB->begin())
11306 return false;
11307
11308 // If the other block ends in an unconditional branch, check for the 'if then
11309 // else' case. there is an instruction before the branch.
11310 StoreInst *OtherStore = 0;
11311 if (OtherBr->isUnconditional()) {
11312 // If this isn't a store, or isn't a store to the same location, bail out.
11313 --BBI;
11314 OtherStore = dyn_cast<StoreInst>(BBI);
11315 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
11316 return false;
11317 } else {
11318 // Otherwise, the other block ended with a conditional branch. If one of the
11319 // destinations is StoreBB, then we have the if/then case.
11320 if (OtherBr->getSuccessor(0) != StoreBB &&
11321 OtherBr->getSuccessor(1) != StoreBB)
11322 return false;
11323
11324 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11325 // if/then triangle. See if there is a store to the same ptr as SI that
11326 // lives in OtherBB.
11327 for (;; --BBI) {
11328 // Check to see if we find the matching store.
11329 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
11330 if (OtherStore->getOperand(1) != SI.getOperand(1))
11331 return false;
11332 break;
11333 }
Eli Friedman3a311d52008-06-13 22:02:12 +000011334 // If we find something that may be using or overwriting the stored
11335 // value, or if we run out of instructions, we can't do the xform.
11336 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011337 BBI == OtherBB->begin())
11338 return false;
11339 }
11340
11341 // In order to eliminate the store in OtherBr, we have to
Eli Friedman3a311d52008-06-13 22:02:12 +000011342 // make sure nothing reads or overwrites the stored value in
11343 // StoreBB.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011344 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
11345 // FIXME: This should really be AA driven.
Eli Friedman3a311d52008-06-13 22:02:12 +000011346 if (I->mayReadFromMemory() || I->mayWriteToMemory())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011347 return false;
11348 }
11349 }
11350
11351 // Insert a PHI node now if we need it.
11352 Value *MergedVal = OtherStore->getOperand(0);
11353 if (MergedVal != SI.getOperand(0)) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000011354 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011355 PN->reserveOperandSpace(2);
11356 PN->addIncoming(SI.getOperand(0), SI.getParent());
11357 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
11358 MergedVal = InsertNewInstBefore(PN, DestBB->front());
11359 }
11360
11361 // Advance to a place where it is safe to insert the new store and
11362 // insert it.
Dan Gohman514277c2008-05-23 21:05:58 +000011363 BBI = DestBB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011364 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
11365 OtherStore->isVolatile()), *BBI);
11366
11367 // Nuke the old stores.
11368 EraseInstFromFunction(SI);
11369 EraseInstFromFunction(*OtherStore);
11370 ++NumCombined;
11371 return true;
11372}
11373
11374
11375Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
11376 // Change br (not X), label True, label False to: br X, label False, True
11377 Value *X = 0;
11378 BasicBlock *TrueDest;
11379 BasicBlock *FalseDest;
11380 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
11381 !isa<Constant>(X)) {
11382 // Swap Destinations and condition...
11383 BI.setCondition(X);
11384 BI.setSuccessor(0, FalseDest);
11385 BI.setSuccessor(1, TrueDest);
11386 return &BI;
11387 }
11388
11389 // Cannonicalize fcmp_one -> fcmp_oeq
11390 FCmpInst::Predicate FPred; Value *Y;
11391 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
11392 TrueDest, FalseDest)))
11393 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
11394 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
11395 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
11396 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
11397 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
11398 NewSCC->takeName(I);
11399 // Swap Destinations and condition...
11400 BI.setCondition(NewSCC);
11401 BI.setSuccessor(0, FalseDest);
11402 BI.setSuccessor(1, TrueDest);
11403 RemoveFromWorkList(I);
11404 I->eraseFromParent();
11405 AddToWorkList(NewSCC);
11406 return &BI;
11407 }
11408
11409 // Cannonicalize icmp_ne -> icmp_eq
11410 ICmpInst::Predicate IPred;
11411 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
11412 TrueDest, FalseDest)))
11413 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
11414 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
11415 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
11416 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
11417 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
11418 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
11419 NewSCC->takeName(I);
11420 // Swap Destinations and condition...
11421 BI.setCondition(NewSCC);
11422 BI.setSuccessor(0, FalseDest);
11423 BI.setSuccessor(1, TrueDest);
11424 RemoveFromWorkList(I);
11425 I->eraseFromParent();;
11426 AddToWorkList(NewSCC);
11427 return &BI;
11428 }
11429
11430 return 0;
11431}
11432
11433Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
11434 Value *Cond = SI.getCondition();
11435 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
11436 if (I->getOpcode() == Instruction::Add)
11437 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
11438 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11439 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
11440 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
11441 AddRHS));
11442 SI.setOperand(0, I->getOperand(0));
11443 AddToWorkList(I);
11444 return &SI;
11445 }
11446 }
11447 return 0;
11448}
11449
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011450Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011451 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011452
Matthijs Kooijman45e8eb42008-07-16 12:55:45 +000011453 if (!EV.hasIndices())
11454 return ReplaceInstUsesWith(EV, Agg);
11455
11456 if (Constant *C = dyn_cast<Constant>(Agg)) {
11457 if (isa<UndefValue>(C))
11458 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
11459
11460 if (isa<ConstantAggregateZero>(C))
11461 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
11462
11463 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
11464 // Extract the element indexed by the first index out of the constant
11465 Value *V = C->getOperand(*EV.idx_begin());
11466 if (EV.getNumIndices() > 1)
11467 // Extract the remaining indices out of the constant indexed by the
11468 // first index
11469 return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
11470 else
11471 return ReplaceInstUsesWith(EV, V);
11472 }
11473 return 0; // Can't handle other constants
11474 }
11475 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
11476 // We're extracting from an insertvalue instruction, compare the indices
11477 const unsigned *exti, *exte, *insi, *inse;
11478 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
11479 exte = EV.idx_end(), inse = IV->idx_end();
11480 exti != exte && insi != inse;
11481 ++exti, ++insi) {
11482 if (*insi != *exti)
11483 // The insert and extract both reference distinctly different elements.
11484 // This means the extract is not influenced by the insert, and we can
11485 // replace the aggregate operand of the extract with the aggregate
11486 // operand of the insert. i.e., replace
11487 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11488 // %E = extractvalue { i32, { i32 } } %I, 0
11489 // with
11490 // %E = extractvalue { i32, { i32 } } %A, 0
11491 return ExtractValueInst::Create(IV->getAggregateOperand(),
11492 EV.idx_begin(), EV.idx_end());
11493 }
11494 if (exti == exte && insi == inse)
11495 // Both iterators are at the end: Index lists are identical. Replace
11496 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11497 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11498 // with "i32 42"
11499 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
11500 if (exti == exte) {
11501 // The extract list is a prefix of the insert list. i.e. replace
11502 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11503 // %E = extractvalue { i32, { i32 } } %I, 1
11504 // with
11505 // %X = extractvalue { i32, { i32 } } %A, 1
11506 // %E = insertvalue { i32 } %X, i32 42, 0
11507 // by switching the order of the insert and extract (though the
11508 // insertvalue should be left in, since it may have other uses).
11509 Value *NewEV = InsertNewInstBefore(
11510 ExtractValueInst::Create(IV->getAggregateOperand(),
11511 EV.idx_begin(), EV.idx_end()),
11512 EV);
11513 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
11514 insi, inse);
11515 }
11516 if (insi == inse)
11517 // The insert list is a prefix of the extract list
11518 // We can simply remove the common indices from the extract and make it
11519 // operate on the inserted value instead of the insertvalue result.
11520 // i.e., replace
11521 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11522 // %E = extractvalue { i32, { i32 } } %I, 1, 0
11523 // with
11524 // %E extractvalue { i32 } { i32 42 }, 0
11525 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
11526 exti, exte);
11527 }
11528 // Can't simplify extracts from other values. Note that nested extracts are
11529 // already simplified implicitely by the above (extract ( extract (insert) )
11530 // will be translated into extract ( insert ( extract ) ) first and then just
11531 // the value inserted, if appropriate).
Matthijs Kooijmanda9ef702008-06-11 14:05:05 +000011532 return 0;
11533}
11534
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011535/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
11536/// is to leave as a vector operation.
11537static bool CheapToScalarize(Value *V, bool isConstant) {
11538 if (isa<ConstantAggregateZero>(V))
11539 return true;
11540 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
11541 if (isConstant) return true;
11542 // If all elts are the same, we can extract.
11543 Constant *Op0 = C->getOperand(0);
11544 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11545 if (C->getOperand(i) != Op0)
11546 return false;
11547 return true;
11548 }
11549 Instruction *I = dyn_cast<Instruction>(V);
11550 if (!I) return false;
11551
11552 // Insert element gets simplified to the inserted element or is deleted if
11553 // this is constant idx extract element and its a constant idx insertelt.
11554 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
11555 isa<ConstantInt>(I->getOperand(2)))
11556 return true;
11557 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
11558 return true;
11559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
11560 if (BO->hasOneUse() &&
11561 (CheapToScalarize(BO->getOperand(0), isConstant) ||
11562 CheapToScalarize(BO->getOperand(1), isConstant)))
11563 return true;
11564 if (CmpInst *CI = dyn_cast<CmpInst>(I))
11565 if (CI->hasOneUse() &&
11566 (CheapToScalarize(CI->getOperand(0), isConstant) ||
11567 CheapToScalarize(CI->getOperand(1), isConstant)))
11568 return true;
11569
11570 return false;
11571}
11572
11573/// Read and decode a shufflevector mask.
11574///
11575/// It turns undef elements into values that are larger than the number of
11576/// elements in the input.
11577static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
11578 unsigned NElts = SVI->getType()->getNumElements();
11579 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
11580 return std::vector<unsigned>(NElts, 0);
11581 if (isa<UndefValue>(SVI->getOperand(2)))
11582 return std::vector<unsigned>(NElts, 2*NElts);
11583
11584 std::vector<unsigned> Result;
11585 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Gabor Greif17396002008-06-12 21:37:33 +000011586 for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
11587 if (isa<UndefValue>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011588 Result.push_back(NElts*2); // undef -> 8
11589 else
Gabor Greif17396002008-06-12 21:37:33 +000011590 Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011591 return Result;
11592}
11593
11594/// FindScalarElement - Given a vector and an element number, see if the scalar
11595/// value is already around as a register, for example if it were inserted then
11596/// extracted from the vector.
11597static Value *FindScalarElement(Value *V, unsigned EltNo) {
11598 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
11599 const VectorType *PTy = cast<VectorType>(V->getType());
11600 unsigned Width = PTy->getNumElements();
11601 if (EltNo >= Width) // Out of range access.
11602 return UndefValue::get(PTy->getElementType());
11603
11604 if (isa<UndefValue>(V))
11605 return UndefValue::get(PTy->getElementType());
11606 else if (isa<ConstantAggregateZero>(V))
11607 return Constant::getNullValue(PTy->getElementType());
11608 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
11609 return CP->getOperand(EltNo);
11610 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
11611 // If this is an insert to a variable element, we don't know what it is.
11612 if (!isa<ConstantInt>(III->getOperand(2)))
11613 return 0;
11614 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
11615
11616 // If this is an insert to the element we are looking for, return the
11617 // inserted value.
11618 if (EltNo == IIElt)
11619 return III->getOperand(1);
11620
11621 // Otherwise, the insertelement doesn't modify the value, recurse on its
11622 // vector input.
11623 return FindScalarElement(III->getOperand(0), EltNo);
11624 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011625 unsigned LHSWidth =
11626 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011627 unsigned InEl = getShuffleMask(SVI)[EltNo];
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011628 if (InEl < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011629 return FindScalarElement(SVI->getOperand(0), InEl);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011630 else if (InEl < LHSWidth*2)
11631 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011632 else
11633 return UndefValue::get(PTy->getElementType());
11634 }
11635
11636 // Otherwise, we don't know.
11637 return 0;
11638}
11639
11640Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011641 // If vector val is undef, replace extract with scalar undef.
11642 if (isa<UndefValue>(EI.getOperand(0)))
11643 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11644
11645 // If vector val is constant 0, replace extract with scalar 0.
11646 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
11647 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
11648
11649 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Matthijs Kooijmandd3425f2008-06-11 09:00:12 +000011650 // If vector val is constant with all elements the same, replace EI with
11651 // that element. When the elements are not identical, we cannot replace yet
11652 // (we do that below, but only when the index is constant).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011653 Constant *op0 = C->getOperand(0);
11654 for (unsigned i = 1; i < C->getNumOperands(); ++i)
11655 if (C->getOperand(i) != op0) {
11656 op0 = 0;
11657 break;
11658 }
11659 if (op0)
11660 return ReplaceInstUsesWith(EI, op0);
11661 }
11662
11663 // If extracting a specified index from the vector, see if we can recursively
11664 // find a previously computed scalar that was inserted into the vector.
11665 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11666 unsigned IndexVal = IdxC->getZExtValue();
11667 unsigned VectorWidth =
11668 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
11669
11670 // If this is extracting an invalid index, turn this into undef, to avoid
11671 // crashing the code below.
11672 if (IndexVal >= VectorWidth)
11673 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11674
11675 // This instruction only demands the single element from the input vector.
11676 // If the input vector has a single use, simplify it based on this use
11677 // property.
11678 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
11679 uint64_t UndefElts;
11680 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
11681 1 << IndexVal,
11682 UndefElts)) {
11683 EI.setOperand(0, V);
11684 return &EI;
11685 }
11686 }
11687
11688 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
11689 return ReplaceInstUsesWith(EI, Elt);
11690
11691 // If the this extractelement is directly using a bitcast from a vector of
11692 // the same number of elements, see if we can find the source element from
11693 // it. In this case, we will end up needing to bitcast the scalars.
11694 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
11695 if (const VectorType *VT =
11696 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
11697 if (VT->getNumElements() == VectorWidth)
11698 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
11699 return new BitCastInst(Elt, EI.getType());
11700 }
11701 }
11702
11703 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
11704 if (I->hasOneUse()) {
11705 // Push extractelement into predecessor operation if legal and
11706 // profitable to do so
11707 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
11708 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
11709 if (CheapToScalarize(BO, isConstantElt)) {
11710 ExtractElementInst *newEI0 =
11711 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
11712 EI.getName()+".lhs");
11713 ExtractElementInst *newEI1 =
11714 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
11715 EI.getName()+".rhs");
11716 InsertNewInstBefore(newEI0, EI);
11717 InsertNewInstBefore(newEI1, EI);
Gabor Greifa645dd32008-05-16 19:29:10 +000011718 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011719 }
11720 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +000011721 unsigned AS =
11722 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Chris Lattner13c2d6e2008-01-13 22:23:22 +000011723 Value *Ptr = InsertBitCastBefore(I->getOperand(0),
11724 PointerType::get(EI.getType(), AS),EI);
Gabor Greifb91ea9d2008-05-15 10:04:30 +000011725 GetElementPtrInst *GEP =
11726 GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011727 InsertNewInstBefore(GEP, EI);
11728 return new LoadInst(GEP);
11729 }
11730 }
11731 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
11732 // Extracting the inserted element?
11733 if (IE->getOperand(2) == EI.getOperand(1))
11734 return ReplaceInstUsesWith(EI, IE->getOperand(1));
11735 // If the inserted and extracted elements are constants, they must not
11736 // be the same value, extract from the pre-inserted value instead.
11737 if (isa<Constant>(IE->getOperand(2)) &&
11738 isa<Constant>(EI.getOperand(1))) {
11739 AddUsesToWorkList(EI);
11740 EI.setOperand(0, IE->getOperand(0));
11741 return &EI;
11742 }
11743 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
11744 // If this is extracting an element from a shufflevector, figure out where
11745 // it came from and extract from the appropriate input element instead.
11746 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
11747 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
11748 Value *Src;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011749 unsigned LHSWidth =
11750 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
11751
11752 if (SrcIdx < LHSWidth)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011753 Src = SVI->getOperand(0);
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011754 else if (SrcIdx < LHSWidth*2) {
11755 SrcIdx -= LHSWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011756 Src = SVI->getOperand(1);
11757 } else {
11758 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
11759 }
11760 return new ExtractElementInst(Src, SrcIdx);
11761 }
11762 }
11763 }
11764 return 0;
11765}
11766
11767/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
11768/// elements from either LHS or RHS, return the shuffle mask and true.
11769/// Otherwise, return false.
11770static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
11771 std::vector<Constant*> &Mask) {
11772 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
11773 "Invalid CollectSingleShuffleElements");
11774 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11775
11776 if (isa<UndefValue>(V)) {
11777 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11778 return true;
11779 } else if (V == LHS) {
11780 for (unsigned i = 0; i != NumElts; ++i)
11781 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11782 return true;
11783 } else if (V == RHS) {
11784 for (unsigned i = 0; i != NumElts; ++i)
11785 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
11786 return true;
11787 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11788 // If this is an insert of an extract from some other vector, include it.
11789 Value *VecOp = IEI->getOperand(0);
11790 Value *ScalarOp = IEI->getOperand(1);
11791 Value *IdxOp = IEI->getOperand(2);
11792
11793 if (!isa<ConstantInt>(IdxOp))
11794 return false;
11795 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11796
11797 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
11798 // Okay, we can handle this if the vector we are insertinting into is
11799 // transitively ok.
11800 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11801 // If so, update the mask to reflect the inserted undef.
11802 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
11803 return true;
11804 }
11805 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
11806 if (isa<ConstantInt>(EI->getOperand(1)) &&
11807 EI->getOperand(0)->getType() == V->getType()) {
11808 unsigned ExtractedIdx =
11809 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11810
11811 // This must be extracting from either LHS or RHS.
11812 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
11813 // Okay, we can handle this if the vector we are insertinting into is
11814 // transitively ok.
11815 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
11816 // If so, update the mask to reflect the inserted value.
11817 if (EI->getOperand(0) == LHS) {
Mon P Wang6bf3c592008-08-20 02:23:25 +000011818 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011819 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11820 } else {
11821 assert(EI->getOperand(0) == RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011822 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011823 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
11824
11825 }
11826 return true;
11827 }
11828 }
11829 }
11830 }
11831 }
11832 // TODO: Handle shufflevector here!
11833
11834 return false;
11835}
11836
11837/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
11838/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
11839/// that computes V and the LHS value of the shuffle.
11840static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
11841 Value *&RHS) {
11842 assert(isa<VectorType>(V->getType()) &&
11843 (RHS == 0 || V->getType() == RHS->getType()) &&
11844 "Invalid shuffle!");
11845 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
11846
11847 if (isa<UndefValue>(V)) {
11848 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
11849 return V;
11850 } else if (isa<ConstantAggregateZero>(V)) {
11851 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
11852 return V;
11853 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
11854 // If this is an insert of an extract from some other vector, include it.
11855 Value *VecOp = IEI->getOperand(0);
11856 Value *ScalarOp = IEI->getOperand(1);
11857 Value *IdxOp = IEI->getOperand(2);
11858
11859 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11860 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11861 EI->getOperand(0)->getType() == V->getType()) {
11862 unsigned ExtractedIdx =
11863 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11864 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11865
11866 // Either the extracted from or inserted into vector must be RHSVec,
11867 // otherwise we'd end up with a shuffle of three inputs.
11868 if (EI->getOperand(0) == RHS || RHS == 0) {
11869 RHS = EI->getOperand(0);
11870 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mon P Wang6bf3c592008-08-20 02:23:25 +000011871 Mask[InsertedIdx % NumElts] =
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011872 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
11873 return V;
11874 }
11875
11876 if (VecOp == RHS) {
11877 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
11878 // Everything but the extracted element is replaced with the RHS.
11879 for (unsigned i = 0; i != NumElts; ++i) {
11880 if (i != InsertedIdx)
11881 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
11882 }
11883 return V;
11884 }
11885
11886 // If this insertelement is a chain that comes from exactly these two
11887 // vectors, return the vector and the effective shuffle.
11888 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
11889 return EI->getOperand(0);
11890
11891 }
11892 }
11893 }
11894 // TODO: Handle shufflevector here!
11895
11896 // Otherwise, can't do anything fancy. Return an identity vector.
11897 for (unsigned i = 0; i != NumElts; ++i)
11898 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
11899 return V;
11900}
11901
11902Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
11903 Value *VecOp = IE.getOperand(0);
11904 Value *ScalarOp = IE.getOperand(1);
11905 Value *IdxOp = IE.getOperand(2);
11906
11907 // Inserting an undef or into an undefined place, remove this.
11908 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
11909 ReplaceInstUsesWith(IE, VecOp);
11910
11911 // If the inserted element was extracted from some other vector, and if the
11912 // indexes are constant, try to turn this into a shufflevector operation.
11913 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
11914 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
11915 EI->getOperand(0)->getType() == IE.getType()) {
11916 unsigned NumVectorElts = IE.getType()->getNumElements();
11917 unsigned ExtractedIdx =
11918 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
11919 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
11920
11921 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
11922 return ReplaceInstUsesWith(IE, VecOp);
11923
11924 if (InsertedIdx >= NumVectorElts) // Out of range insert.
11925 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
11926
11927 // If we are extracting a value from a vector, then inserting it right
11928 // back into the same place, just use the input vector.
11929 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
11930 return ReplaceInstUsesWith(IE, VecOp);
11931
11932 // We could theoretically do this for ANY input. However, doing so could
11933 // turn chains of insertelement instructions into a chain of shufflevector
11934 // instructions, and right now we do not merge shufflevectors. As such,
11935 // only do this in a situation where it is clear that there is benefit.
11936 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
11937 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
11938 // the values of VecOp, except then one read from EIOp0.
11939 // Build a new shuffle mask.
11940 std::vector<Constant*> Mask;
11941 if (isa<UndefValue>(VecOp))
11942 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
11943 else {
11944 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
11945 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
11946 NumVectorElts));
11947 }
11948 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
11949 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
11950 ConstantVector::get(Mask));
11951 }
11952
11953 // If this insertelement isn't used by some other insertelement, turn it
11954 // (and any insertelements it points to), into one big shuffle.
11955 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
11956 std::vector<Constant*> Mask;
11957 Value *RHS = 0;
11958 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
11959 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
11960 // We now have a shuffle of LHS, RHS, Mask.
11961 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
11962 }
11963 }
11964 }
11965
11966 return 0;
11967}
11968
11969
11970Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
11971 Value *LHS = SVI.getOperand(0);
11972 Value *RHS = SVI.getOperand(1);
11973 std::vector<unsigned> Mask = getShuffleMask(&SVI);
11974
11975 bool MadeChange = false;
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011976
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011977 // Undefined shuffle mask -> undefined value.
11978 if (isa<UndefValue>(SVI.getOperand(2)))
11979 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011980
11981 uint64_t UndefElts;
11982 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
Mon P Wangbff5d9c2008-11-10 04:46:22 +000011983
11984 if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
11985 return 0;
11986
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011987 uint64_t AllOnesEltMask = ~0ULL >> (64-VWidth);
11988 if (VWidth <= 64 &&
Dan Gohman83b702d2008-09-11 22:47:57 +000011989 SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
11990 LHS = SVI.getOperand(0);
11991 RHS = SVI.getOperand(1);
Dan Gohmanda93bbe2008-09-09 18:11:14 +000011992 MadeChange = true;
Dan Gohman83b702d2008-09-11 22:47:57 +000011993 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000011994
11995 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
11996 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
11997 if (LHS == RHS || isa<UndefValue>(LHS)) {
11998 if (isa<UndefValue>(LHS) && LHS == RHS) {
11999 // shuffle(undef,undef,mask) -> undef.
12000 return ReplaceInstUsesWith(SVI, LHS);
12001 }
12002
12003 // Remap any references to RHS to use LHS.
12004 std::vector<Constant*> Elts;
12005 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12006 if (Mask[i] >= 2*e)
12007 Elts.push_back(UndefValue::get(Type::Int32Ty));
12008 else {
12009 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
Dan Gohmanbba96b92008-08-06 18:17:32 +000012010 (Mask[i] < e && isa<UndefValue>(LHS))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012011 Mask[i] = 2*e; // Turn into undef.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012012 Elts.push_back(UndefValue::get(Type::Int32Ty));
12013 } else {
Mon P Wang6bf3c592008-08-20 02:23:25 +000012014 Mask[i] = Mask[i] % e; // Force to LHS.
Dan Gohmanbba96b92008-08-06 18:17:32 +000012015 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
12016 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012017 }
12018 }
12019 SVI.setOperand(0, SVI.getOperand(1));
12020 SVI.setOperand(1, UndefValue::get(RHS->getType()));
12021 SVI.setOperand(2, ConstantVector::get(Elts));
12022 LHS = SVI.getOperand(0);
12023 RHS = SVI.getOperand(1);
12024 MadeChange = true;
12025 }
12026
12027 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12028 bool isLHSID = true, isRHSID = true;
12029
12030 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
12031 if (Mask[i] >= e*2) continue; // Ignore undef values.
12032 // Is this an identity shuffle of the LHS value?
12033 isLHSID &= (Mask[i] == i);
12034
12035 // Is this an identity shuffle of the RHS value?
12036 isRHSID &= (Mask[i]-e == i);
12037 }
12038
12039 // Eliminate identity shuffles.
12040 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
12041 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
12042
12043 // If the LHS is a shufflevector itself, see if we can combine it with this
12044 // one without producing an unusual shuffle. Here we are really conservative:
12045 // we are absolutely afraid of producing a shuffle mask not in the input
12046 // program, because the code gen may not be smart enough to turn a merged
12047 // shuffle into two specific shuffles: it may produce worse code. As such,
12048 // we only merge two shuffles if the result is one of the two input shuffle
12049 // masks. In this case, merging the shuffles just removes one instruction,
12050 // which we know is safe. This is good for things like turning:
12051 // (splat(splat)) -> splat.
12052 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
12053 if (isa<UndefValue>(RHS)) {
12054 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
12055
12056 std::vector<unsigned> NewMask;
12057 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
12058 if (Mask[i] >= 2*e)
12059 NewMask.push_back(2*e);
12060 else
12061 NewMask.push_back(LHSMask[Mask[i]]);
12062
12063 // If the result mask is equal to the src shuffle or this shuffle mask, do
12064 // the replacement.
12065 if (NewMask == LHSMask || NewMask == Mask) {
12066 std::vector<Constant*> Elts;
12067 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
12068 if (NewMask[i] >= e*2) {
12069 Elts.push_back(UndefValue::get(Type::Int32Ty));
12070 } else {
12071 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
12072 }
12073 }
12074 return new ShuffleVectorInst(LHSSVI->getOperand(0),
12075 LHSSVI->getOperand(1),
12076 ConstantVector::get(Elts));
12077 }
12078 }
12079 }
12080
12081 return MadeChange ? &SVI : 0;
12082}
12083
12084
12085
12086
12087/// TryToSinkInstruction - Try to move the specified instruction from its
12088/// current block into the beginning of DestBlock, which can only happen if it's
12089/// safe to move the instruction past all of the instructions between it and the
12090/// end of its block.
12091static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
12092 assert(I->hasOneUse() && "Invariants didn't hold!");
12093
12094 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Chris Lattnercb19a1c2008-05-09 15:07:33 +000012095 if (isa<PHINode>(I) || I->mayWriteToMemory() || isa<TerminatorInst>(I))
12096 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012097
12098 // Do not sink alloca instructions out of the entry block.
12099 if (isa<AllocaInst>(I) && I->getParent() ==
12100 &DestBlock->getParent()->getEntryBlock())
12101 return false;
12102
12103 // We can only sink load instructions if there is nothing between the load and
12104 // the end of block that could change the value.
Chris Lattner0db40a62008-05-08 17:37:37 +000012105 if (I->mayReadFromMemory()) {
12106 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012107 Scan != E; ++Scan)
12108 if (Scan->mayWriteToMemory())
12109 return false;
12110 }
12111
Dan Gohman514277c2008-05-23 21:05:58 +000012112 BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012113
12114 I->moveBefore(InsertPos);
12115 ++NumSunkInst;
12116 return true;
12117}
12118
12119
12120/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12121/// all reachable code to the worklist.
12122///
12123/// This has a couple of tricks to make the code faster and more powerful. In
12124/// particular, we constant fold and DCE instructions as we go, to avoid adding
12125/// them to the worklist (this significantly speeds up instcombine on code where
12126/// many instructions are dead or constant). Additionally, if we find a branch
12127/// whose condition is a known constant, we only visit the reachable successors.
12128///
12129static void AddReachableCodeToWorklist(BasicBlock *BB,
12130 SmallPtrSet<BasicBlock*, 64> &Visited,
12131 InstCombiner &IC,
12132 const TargetData *TD) {
Chris Lattnera06291a2008-08-15 04:03:01 +000012133 SmallVector<BasicBlock*, 256> Worklist;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012134 Worklist.push_back(BB);
12135
12136 while (!Worklist.empty()) {
12137 BB = Worklist.back();
12138 Worklist.pop_back();
12139
12140 // We have now visited this block! If we've already been here, ignore it.
12141 if (!Visited.insert(BB)) continue;
Devang Patel794140c2008-11-19 18:56:50 +000012142
12143 DbgInfoIntrinsic *DBI_Prev = NULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012144 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
12145 Instruction *Inst = BBI++;
12146
12147 // DCE instruction if trivially dead.
12148 if (isInstructionTriviallyDead(Inst)) {
12149 ++NumDeadInst;
12150 DOUT << "IC: DCE: " << *Inst;
12151 Inst->eraseFromParent();
12152 continue;
12153 }
12154
12155 // ConstantProp instruction if trivially constant.
12156 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
12157 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
12158 Inst->replaceAllUsesWith(C);
12159 ++NumConstProp;
12160 Inst->eraseFromParent();
12161 continue;
12162 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000012163
Devang Patel794140c2008-11-19 18:56:50 +000012164 // If there are two consecutive llvm.dbg.stoppoint calls then
12165 // it is likely that the optimizer deleted code in between these
12166 // two intrinsics.
12167 DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
12168 if (DBI_Next) {
12169 if (DBI_Prev
12170 && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12171 && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
12172 IC.RemoveFromWorkList(DBI_Prev);
12173 DBI_Prev->eraseFromParent();
12174 }
12175 DBI_Prev = DBI_Next;
12176 }
12177
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012178 IC.AddToWorkList(Inst);
12179 }
12180
12181 // Recursively visit successors. If this is a branch or switch on a
12182 // constant, only visit the reachable successor.
12183 TerminatorInst *TI = BB->getTerminator();
12184 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
12185 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
12186 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012187 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012188 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012189 continue;
12190 }
12191 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
12192 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
12193 // See if this is an explicit destination.
12194 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
12195 if (SI->getCaseValue(i) == Cond) {
Nick Lewyckyd551cf12008-03-09 08:50:23 +000012196 BasicBlock *ReachableBB = SI->getSuccessor(i);
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +000012197 Worklist.push_back(ReachableBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012198 continue;
12199 }
12200
12201 // Otherwise it is the default destination.
12202 Worklist.push_back(SI->getSuccessor(0));
12203 continue;
12204 }
12205 }
12206
12207 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
12208 Worklist.push_back(TI->getSuccessor(i));
12209 }
12210}
12211
12212bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
12213 bool Changed = false;
12214 TD = &getAnalysis<TargetData>();
12215
12216 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
12217 << F.getNameStr() << "\n");
12218
12219 {
12220 // Do a depth-first traversal of the function, populate the worklist with
12221 // the reachable instructions. Ignore blocks that are not reachable. Keep
12222 // track of which blocks we visit.
12223 SmallPtrSet<BasicBlock*, 64> Visited;
12224 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
12225
12226 // Do a quick scan over the function. If we find any blocks that are
12227 // unreachable, remove any instructions inside of them. This prevents
12228 // the instcombine code from having to deal with some bad special cases.
12229 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
12230 if (!Visited.count(BB)) {
12231 Instruction *Term = BB->getTerminator();
12232 while (Term != BB->begin()) { // Remove instrs bottom-up
12233 BasicBlock::iterator I = Term; --I;
12234
12235 DOUT << "IC: DCE: " << *I;
12236 ++NumDeadInst;
12237
12238 if (!I->use_empty())
12239 I->replaceAllUsesWith(UndefValue::get(I->getType()));
12240 I->eraseFromParent();
12241 }
12242 }
12243 }
12244
12245 while (!Worklist.empty()) {
12246 Instruction *I = RemoveOneFromWorkList();
12247 if (I == 0) continue; // skip null values.
12248
12249 // Check to see if we can DCE the instruction.
12250 if (isInstructionTriviallyDead(I)) {
12251 // Add operands to the worklist.
12252 if (I->getNumOperands() < 4)
12253 AddUsesToWorkList(*I);
12254 ++NumDeadInst;
12255
12256 DOUT << "IC: DCE: " << *I;
12257
12258 I->eraseFromParent();
12259 RemoveFromWorkList(I);
12260 continue;
12261 }
12262
12263 // Instruction isn't dead, see if we can constant propagate it.
12264 if (Constant *C = ConstantFoldInstruction(I, TD)) {
12265 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
12266
12267 // Add operands to the worklist.
12268 AddUsesToWorkList(*I);
12269 ReplaceInstUsesWith(*I, C);
12270
12271 ++NumConstProp;
12272 I->eraseFromParent();
12273 RemoveFromWorkList(I);
12274 continue;
12275 }
12276
Nick Lewyckyadb67922008-05-25 20:56:15 +000012277 if (TD && I->getType()->getTypeID() == Type::VoidTyID) {
12278 // See if we can constant fold its operands.
12279 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
12280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i)) {
12281 if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
12282 i->set(NewC);
12283 }
12284 }
12285 }
12286
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012287 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohman29474e92008-07-23 00:34:11 +000012288 if (I->hasOneUse()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012289 BasicBlock *BB = I->getParent();
12290 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
12291 if (UserParent != BB) {
12292 bool UserIsSuccessor = false;
12293 // See if the user is one of our successors.
12294 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
12295 if (*SI == UserParent) {
12296 UserIsSuccessor = true;
12297 break;
12298 }
12299
12300 // If the user is one of our immediate successors, and if that successor
12301 // only has us as a predecessors (we'd have to split the critical edge
12302 // otherwise), we can keep going.
12303 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
12304 next(pred_begin(UserParent)) == pred_end(UserParent))
12305 // Okay, the CFG is simple enough, try to sink this instruction.
12306 Changed |= TryToSinkInstruction(I, UserParent);
12307 }
12308 }
12309
12310 // Now that we have an instruction, try combining it to simplify it...
12311#ifndef NDEBUG
12312 std::string OrigI;
12313#endif
12314 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
12315 if (Instruction *Result = visit(*I)) {
12316 ++NumCombined;
12317 // Should we replace the old instruction with a new one?
12318 if (Result != I) {
12319 DOUT << "IC: Old = " << *I
12320 << " New = " << *Result;
12321
12322 // Everything uses the new instruction now.
12323 I->replaceAllUsesWith(Result);
12324
12325 // Push the new instruction and any users onto the worklist.
12326 AddToWorkList(Result);
12327 AddUsersToWorkList(*Result);
12328
12329 // Move the name to the new instruction first.
12330 Result->takeName(I);
12331
12332 // Insert the new instruction into the basic block...
12333 BasicBlock *InstParent = I->getParent();
12334 BasicBlock::iterator InsertPos = I;
12335
12336 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
12337 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
12338 ++InsertPos;
12339
12340 InstParent->getInstList().insert(InsertPos, Result);
12341
12342 // Make sure that we reprocess all operands now that we reduced their
12343 // use counts.
12344 AddUsesToWorkList(*I);
12345
12346 // Instructions can end up on the worklist more than once. Make sure
12347 // we do not process an instruction that has been deleted.
12348 RemoveFromWorkList(I);
12349
12350 // Erase the old instruction.
12351 InstParent->getInstList().erase(I);
12352 } else {
12353#ifndef NDEBUG
12354 DOUT << "IC: Mod = " << OrigI
12355 << " New = " << *I;
12356#endif
12357
12358 // If the instruction was modified, it's possible that it is now dead.
12359 // if so, remove it.
12360 if (isInstructionTriviallyDead(I)) {
12361 // Make sure we process all operands now that we are reducing their
12362 // use counts.
12363 AddUsesToWorkList(*I);
12364
12365 // Instructions may end up in the worklist more than once. Erase all
12366 // occurrences of this instruction.
12367 RemoveFromWorkList(I);
12368 I->eraseFromParent();
12369 } else {
12370 AddToWorkList(I);
12371 AddUsersToWorkList(*I);
12372 }
12373 }
12374 Changed = true;
12375 }
12376 }
12377
12378 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000012379
12380 // Do an explicit clear, this shrinks the map if needed.
12381 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012382 return Changed;
12383}
12384
12385
12386bool InstCombiner::runOnFunction(Function &F) {
12387 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
12388
12389 bool EverMadeChange = false;
12390
12391 // Iterate while there is work to do.
12392 unsigned Iteration = 0;
Bill Wendlingd9644a42008-05-14 22:45:20 +000012393 while (DoOneIteration(F, Iteration++))
Dan Gohmanf17a25c2007-07-18 16:29:46 +000012394 EverMadeChange = true;
12395 return EverMadeChange;
12396}
12397
12398FunctionPass *llvm::createInstructionCombiningPass() {
12399 return new InstCombiner();
12400}
12401
Chris Lattner6297fc72008-08-11 22:06:05 +000012402