blob: d22b9bfc40bec26522e1778e89813cb3f547e7bd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Support/Debug.h"
Chris Lattner3bbf2a72009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner8a6411c2009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnera0d64b92009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000040#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000049 struct ValueEntry {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
57}
58
Devang Patele93afd52008-11-21 21:00:20 +000059#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
Chris Lattner4780eb22009-12-31 18:40:32 +000062static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063 Module *M = I->getParent()->getParent()->getParent();
Chris Lattnerb0659d42009-08-23 04:52:46 +000064 errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000065 << *Ops[0].Op->getType() << '\t';
Chris Lattner51216ad2008-08-19 04:45:19 +000066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner0f4ee1a2009-12-31 07:17:37 +000067 errs() << "[ ";
68 WriteAsOperand(errs(), Ops[i].Op, false, M);
69 errs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner51216ad2008-08-19 04:45:19 +000070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
Devang Patel4354f5c2008-11-21 20:00:59 +000072#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073
Dan Gohman089efff2008-05-13 00:00:25 +000074namespace {
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000075 class Reassociate : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner3bbf2a72009-03-31 22:13:29 +000077 std::map<AssertingVH<>, unsigned> ValueRankMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 bool MadeChange;
79 public:
80 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000081 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000082
83 bool runOnFunction(Function &F);
84
85 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86 AU.setPreservesCFG();
87 }
88 private:
89 void BuildRankMap(Function &F);
90 unsigned getRank(Value *V);
Chris Lattner2ab9d282009-12-31 19:24:52 +000091 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner4780eb22009-12-31 18:40:32 +000092 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 unsigned Idx = 0);
Chris Lattner4780eb22009-12-31 18:40:32 +000094 Value *OptimizeExpression(BinaryOperator *I,
95 SmallVectorImpl<ValueEntry> &Ops);
96 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 void LinearizeExpr(BinaryOperator *I);
99 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
100 void ReassociateBB(BasicBlock *BB);
101
102 void RemoveDeadBinaryOp(Value *V);
103 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104}
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109// Public interface to the Reassociate pass
110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
111
112void Reassociate::RemoveDeadBinaryOp(Value *V) {
113 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000114 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115 return;
116
117 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000118
119 ValueRankMap.erase(Op);
120 Op->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 RemoveDeadBinaryOp(LHS);
122 RemoveDeadBinaryOp(RHS);
123}
124
125
126static bool isUnmovableInstruction(Instruction *I) {
127 if (I->getOpcode() == Instruction::PHI ||
128 I->getOpcode() == Instruction::Alloca ||
129 I->getOpcode() == Instruction::Load ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000130 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000131 (I->getOpcode() == Instruction::Call &&
132 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000133 I->getOpcode() == Instruction::UDiv ||
134 I->getOpcode() == Instruction::SDiv ||
135 I->getOpcode() == Instruction::FDiv ||
136 I->getOpcode() == Instruction::URem ||
137 I->getOpcode() == Instruction::SRem ||
138 I->getOpcode() == Instruction::FRem)
139 return true;
140 return false;
141}
142
143void Reassociate::BuildRankMap(Function &F) {
144 unsigned i = 2;
145
146 // Assign distinct ranks to function arguments
147 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000148 ValueRankMap[&*I] = ++i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000149
150 ReversePostOrderTraversal<Function*> RPOT(&F);
151 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
152 E = RPOT.end(); I != E; ++I) {
153 BasicBlock *BB = *I;
154 unsigned BBRank = RankMap[BB] = ++i << 16;
155
156 // Walk the basic block, adding precomputed ranks for any instructions that
157 // we cannot move. This ensures that the ranks for these instructions are
158 // all different in the block.
159 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160 if (isUnmovableInstruction(I))
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000161 ValueRankMap[&*I] = ++BBRank;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 }
163}
164
165unsigned Reassociate::getRank(Value *V) {
166 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
167
168 Instruction *I = dyn_cast<Instruction>(V);
169 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
170
171 unsigned &CachedRank = ValueRankMap[I];
172 if (CachedRank) return CachedRank; // Rank already known?
173
174 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175 // we can reassociate expressions for code motion! Since we do not recurse
176 // for PHI nodes, we cannot have infinite recursion here, because there
177 // cannot be loops in the value graph that do not go through PHI nodes.
178 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179 for (unsigned i = 0, e = I->getNumOperands();
180 i != e && Rank != MaxRank; ++i)
181 Rank = std::max(Rank, getRank(I->getOperand(i)));
182
183 // If this is a not or neg instruction, do not count it for rank. This
184 // assures us that X and ~X will have the same rank.
185 if (!I->getType()->isInteger() ||
Owen Anderson76f49252009-07-13 22:18:28 +0000186 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187 ++Rank;
188
Chris Lattner8a6411c2009-08-23 04:37:46 +0000189 //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
190 // << Rank << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191
192 return CachedRank = Rank;
193}
194
195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199 cast<Instruction>(V)->getOpcode() == Opcode)
200 return cast<BinaryOperator>(V);
201 return 0;
202}
203
204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000206static Instruction *LowerNegateToMultiply(Instruction *Neg,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000207 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersonaac28372009-07-31 20:28:14 +0000208 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209
Gabor Greifa645dd32008-05-16 19:29:10 +0000210 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000211 ValueRankMap.erase(Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 Res->takeName(Neg);
213 Neg->replaceAllUsesWith(Res);
214 Neg->eraseFromParent();
215 return Res;
216}
217
218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well. Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225 assert(isReassociableOp(LHS, I->getOpcode()) &&
226 isReassociableOp(RHS, I->getOpcode()) &&
227 "Not an expression that needs linearization?");
228
Chris Lattner8a6411c2009-08-23 04:37:46 +0000229 DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230
231 // Move the RHS instruction to live immediately before I, avoiding breaking
232 // dominator properties.
233 RHS->moveBefore(I);
234
235 // Move operands around to do the linearization.
236 I->setOperand(1, RHS->getOperand(0));
237 RHS->setOperand(0, LHS);
238 I->setOperand(0, RHS);
239
240 ++NumLinear;
241 MadeChange = true;
Chris Lattner8a6411c2009-08-23 04:37:46 +0000242 DEBUG(errs() << "Linearized: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243
244 // If D is part of this expression tree, tail recurse.
245 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246 LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form. This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values. This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
259void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000260 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262 unsigned Opcode = I->getOpcode();
263
264 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
268 // If this is a multiply expression tree and it contains internal negations,
269 // transform them into multiplies by -1 so they can be reassociated.
270 if (I->getOpcode() == Instruction::Mul) {
Owen Anderson76f49252009-07-13 22:18:28 +0000271 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000272 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 LHSBO = isReassociableOp(LHS, Opcode);
274 }
Owen Anderson76f49252009-07-13 22:18:28 +0000275 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000276 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 RHSBO = isReassociableOp(RHS, Opcode);
278 }
279 }
280
281 if (!LHSBO) {
282 if (!RHSBO) {
283 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
284 // such, just remember these operands and their rank.
285 Ops.push_back(ValueEntry(getRank(LHS), LHS));
286 Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288 // Clear the leaves out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000289 I->setOperand(0, UndefValue::get(I->getType()));
290 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 }
Chris Lattnere3b19f32009-12-31 07:59:34 +0000293
294 // Turn X+(Y+Z) -> (Y+Z)+X
295 std::swap(LHSBO, RHSBO);
296 std::swap(LHS, RHS);
297 bool Success = !I->swapOperands();
298 assert(Success && "swapOperands failed");
299 Success = false;
300 MadeChange = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000301 } else if (RHSBO) {
302 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
303 // part of the expression tree.
304 LinearizeExpr(I);
305 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306 RHS = I->getOperand(1);
307 RHSBO = 0;
308 }
309
310 // Okay, now we know that the LHS is a nested expression and that the RHS is
311 // not. Perform reassociation.
312 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314 // Move LHS right before I to make sure that the tree expression dominates all
315 // values.
316 LHSBO->moveBefore(I);
317
318 // Linearize the expression tree on the LHS.
319 LinearizeExprTree(LHSBO, Ops);
320
321 // Remember the RHS operand and its rank.
322 Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324 // Clear the RHS leaf out.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000325 I->setOperand(1, UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order. This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000332 SmallVectorImpl<ValueEntry> &Ops,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000333 unsigned i) {
334 if (i+2 == Ops.size()) {
335 if (I->getOperand(0) != Ops[i].Op ||
336 I->getOperand(1) != Ops[i+1].Op) {
337 Value *OldLHS = I->getOperand(0);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000338 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 I->setOperand(0, Ops[i].Op);
340 I->setOperand(1, Ops[i+1].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000341 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 MadeChange = true;
343 ++NumChanged;
344
345 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346 // delete the extra, now dead, nodes.
347 RemoveDeadBinaryOp(OldLHS);
348 }
349 return;
350 }
351 assert(i+2 < Ops.size() && "Ops index out of range!");
352
353 if (I->getOperand(1) != Ops[i].Op) {
Chris Lattner8a6411c2009-08-23 04:37:46 +0000354 DEBUG(errs() << "RA: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 I->setOperand(1, Ops[i].Op);
Chris Lattner8a6411c2009-08-23 04:37:46 +0000356 DEBUG(errs() << "TO: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 MadeChange = true;
358 ++NumChanged;
359 }
360
361 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362 assert(LHS->getOpcode() == I->getOpcode() &&
363 "Improper expression tree!");
364
365 // Compactify the tree instructions together with each other to guarantee
366 // that the expression tree is dominated by all of Ops.
367 LHS->moveBefore(I);
368 RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified. The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000378static Value *NegateValue(Value *V, Instruction *BI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 // We are trying to expose opportunity for reassociation. One of the things
380 // that we want to do to achieve this is to push a negation as deep into an
381 // expression chain as possible, to expose the add instructions. In practice,
382 // this means that we turn this:
383 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
384 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385 // the constants. We assume that instcombine will clean up the mess later if
386 // we introduce tons of unnecessary negation instructions...
387 //
388 if (Instruction *I = dyn_cast<Instruction>(V))
389 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
390 // Push the negates through the add.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000391 I->setOperand(0, NegateValue(I->getOperand(0), BI));
392 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393
394 // We must move the add instruction here, because the neg instructions do
395 // not dominate the old add instruction in general. By moving it, we are
396 // assured that the neg instructions we just inserted dominate the
397 // instruction we are about to insert after them.
398 //
399 I->moveBefore(BI);
400 I->setName(I->getName()+".neg");
401 return I;
402 }
403
404 // Insert a 'neg' instruction that subtracts the value from zero to get the
405 // negation.
406 //
Dan Gohmancdff2122009-08-12 16:23:25 +0000407 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408}
409
Chris Lattner6cf17172008-02-17 20:44:51 +0000410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000412static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000413 // If this is a negation, we can't split it up!
Owen Anderson76f49252009-07-13 22:18:28 +0000414 if (BinaryOperator::isNeg(Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000415 return false;
416
417 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000418 // subtract or if this is only used by one.
419 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000421 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000422 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000423 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000424 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000425 if (Sub->hasOneUse() &&
426 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000428 return true;
429
430 return false;
431}
432
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000436static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattner3bbf2a72009-03-31 22:13:29 +0000437 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 // Convert a subtract into an add and a neg instruction... so that sub
439 // instructions can be commuted with other add instructions...
440 //
441 // Calculate the negative value of Operand 1 of the sub instruction...
442 // and set it as the RHS of the add instruction we just made...
443 //
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000444 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000446 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 New->takeName(Sub);
448
449 // Everyone now refers to the add instruction.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000450 ValueRankMap.erase(Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 Sub->replaceAllUsesWith(New);
452 Sub->eraseFromParent();
453
Chris Lattner8a6411c2009-08-23 04:37:46 +0000454 DEBUG(errs() << "Negated: " << *New << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return New;
456}
457
458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000461static Instruction *ConvertShiftToMul(Instruction *Shl,
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000462 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466 (Shl->hasOneUse() &&
467 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneacb44d2009-07-24 23:12:02 +0000469 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000470 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471
Chris Lattnere3b19f32009-12-31 07:59:34 +0000472 Instruction *Mul =
473 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf3da1d92009-03-19 17:22:53 +0000474 ValueRankMap.erase(Shl);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475 Mul->takeName(Shl);
476 Shl->replaceAllUsesWith(Mul);
477 Shl->eraseFromParent();
478 return Mul;
479 }
480 return 0;
481}
482
483// Scan backwards and forwards among values with the same rank as element i to
484// see if X exists. If X does not exist, return i.
Chris Lattner4780eb22009-12-31 18:40:32 +0000485static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 Value *X) {
487 unsigned XRank = Ops[i].Rank;
488 unsigned e = Ops.size();
489 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
490 if (Ops[j].Op == X)
491 return j;
492 // Scan backwards
493 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
494 if (Ops[j].Op == X)
495 return j;
496 return i;
497}
498
499/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
500/// and returning the result. Insert the tree before I.
Chris Lattner4f663d02009-12-31 07:48:51 +0000501static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502 if (Ops.size() == 1) return Ops.back();
503
504 Value *V1 = Ops.back();
505 Ops.pop_back();
506 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000507 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508}
509
510/// RemoveFactorFromExpression - If V is an expression tree that is a
511/// multiplication sequence, and if this sequence contains a multiply by Factor,
512/// remove Factor from the tree and return the new tree.
513Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
514 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
515 if (!BO) return 0;
516
Chris Lattner4780eb22009-12-31 18:40:32 +0000517 SmallVector<ValueEntry, 8> Factors;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000518 LinearizeExprTree(BO, Factors);
519
520 bool FoundFactor = false;
521 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
522 if (Factors[i].Op == Factor) {
523 FoundFactor = true;
524 Factors.erase(Factors.begin()+i);
525 break;
526 }
527 if (!FoundFactor) {
528 // Make sure to restore the operands to the expression tree.
529 RewriteExprTree(BO, Factors);
530 return 0;
531 }
532
Chris Lattner415cc052009-12-31 19:34:45 +0000533 // If this was just a single multiply, remove the multiply and return the only
534 // remaining operand.
535 if (Factors.size() == 1) {
536 ValueRankMap.erase(BO);
537 BO->eraseFromParent();
538 return Factors[0].Op;
539 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000540
541 RewriteExprTree(BO, Factors);
542 return BO;
543}
544
545/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
546/// add its operands as factors, otherwise add V to the list of factors.
547static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner4f663d02009-12-31 07:48:51 +0000548 SmallVectorImpl<Value*> &Factors) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000549 BinaryOperator *BO;
550 if ((!V->hasOneUse() && !V->use_empty()) ||
551 !(BO = dyn_cast<BinaryOperator>(V)) ||
552 BO->getOpcode() != Instruction::Mul) {
553 Factors.push_back(V);
554 return;
555 }
556
557 // Otherwise, add the LHS and RHS to the list of factors.
558 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
559 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
560}
561
Chris Lattnere3b19f32009-12-31 07:59:34 +0000562/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
563/// instruction. This optimizes based on identities. If it can be reduced to
564/// a single Value, it is returned, otherwise the Ops list is mutated as
565/// necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000566static Value *OptimizeAndOrXor(unsigned Opcode,
567 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere3b19f32009-12-31 07:59:34 +0000568 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
569 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
570 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
571 // First, check for X and ~X in the operand list.
572 assert(i < Ops.size());
573 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
574 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
575 unsigned FoundX = FindInOperandList(Ops, i, X);
576 if (FoundX != i) {
Chris Lattnerff3866c2009-12-31 17:51:05 +0000577 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnere3b19f32009-12-31 07:59:34 +0000578 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000579
Chris Lattnerff3866c2009-12-31 17:51:05 +0000580 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnere3b19f32009-12-31 07:59:34 +0000581 return Constant::getAllOnesValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000582 }
583 }
584
585 // Next, check for duplicate pairs of values, which we assume are next to
586 // each other, due to our sorting criteria.
587 assert(i < Ops.size());
588 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
589 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000590 // Drop duplicate values for And and Or.
Chris Lattnere3b19f32009-12-31 07:59:34 +0000591 Ops.erase(Ops.begin()+i);
592 --i; --e;
593 ++NumAnnihil;
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000594 continue;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000595 }
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000596
597 // Drop pairs of values for Xor.
598 assert(Opcode == Instruction::Xor);
599 if (e == 2)
600 return Constant::getNullValue(Ops[0].Op->getType());
601
602 // ... X^X -> ...
603 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
604 i -= 1; e -= 2;
605 ++NumAnnihil;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000606 }
607 }
608 return 0;
609}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610
Chris Lattnere3b19f32009-12-31 07:59:34 +0000611/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
612/// optimizes based on identities. If it can be reduced to a single Value, it
613/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner4780eb22009-12-31 18:40:32 +0000614Value *Reassociate::OptimizeAdd(Instruction *I,
615 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere3b19f32009-12-31 07:59:34 +0000616 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner2ab9d282009-12-31 19:24:52 +0000617 // can simplify the expression. X+-X == 0. While we're at it, scan for any
618 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattnere3b19f32009-12-31 07:59:34 +0000619 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner2ab9d282009-12-31 19:24:52 +0000620 Value *TheOp = Ops[i].Op;
621 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000622 // instances of the operand together. Due to our sorting criteria, we know
623 // that these need to be next to each other in the vector.
624 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
625 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner2ab9d282009-12-31 19:24:52 +0000626 unsigned NumFound = 0;
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000627 do {
628 Ops.erase(Ops.begin()+i);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000629 ++NumFound;
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000630 } while (i != Ops.size() && Ops[i].Op == TheOp);
631
Chris Lattner85722192009-12-31 19:25:19 +0000632 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner2ab9d282009-12-31 19:24:52 +0000633 ++NumFactor;
Chris Lattner2ab9d282009-12-31 19:24:52 +0000634
635 // Insert a new multiply.
636 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
637 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
638
639 // Now that we have inserted a multiply, optimize it. This allows us to
640 // handle cases that require multiple factoring steps, such as this:
641 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
642 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
643
644 // If every add operand was a duplicate, return the multiply.
645 if (Ops.empty())
646 return Mul;
647
648 // Otherwise, we had some input that didn't have the dupe, such as
649 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
650 // things being added by this operation.
651 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000652
653 --i;
654 e = Ops.size();
655 continue;
Chris Lattner2ab9d282009-12-31 19:24:52 +0000656 }
657
Chris Lattnere3b19f32009-12-31 07:59:34 +0000658 // Check for X and -X in the operand list.
Chris Lattner2ab9d282009-12-31 19:24:52 +0000659 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnere3b19f32009-12-31 07:59:34 +0000660 continue;
661
Chris Lattner2ab9d282009-12-31 19:24:52 +0000662 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnere3b19f32009-12-31 07:59:34 +0000663 unsigned FoundX = FindInOperandList(Ops, i, X);
664 if (FoundX == i)
665 continue;
666
667 // Remove X and -X from the operand list.
Chris Lattnerff3866c2009-12-31 17:51:05 +0000668 if (Ops.size() == 2)
Chris Lattnere3b19f32009-12-31 07:59:34 +0000669 return Constant::getNullValue(X->getType());
Chris Lattnere3b19f32009-12-31 07:59:34 +0000670
671 Ops.erase(Ops.begin()+i);
672 if (i < FoundX)
673 --FoundX;
674 else
675 --i; // Need to back up an extra one.
676 Ops.erase(Ops.begin()+FoundX);
677 ++NumAnnihil;
678 --i; // Revisit element.
679 e -= 2; // Removed two elements.
680 }
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000681
682 // Scan the operand list, checking to see if there are any common factors
683 // between operands. Consider something like A*A+A*B*C+D. We would like to
684 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
685 // To efficiently find this, we count the number of times a factor occurs
686 // for any ADD operands that are MULs.
687 DenseMap<Value*, unsigned> FactorOccurrences;
688
689 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
690 // where they are actually the same multiply.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000691 unsigned MaxOcc = 0;
692 Value *MaxOccVal = 0;
693 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
694 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
695 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
696 continue;
697
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000698 // Compute all of the factors of this added value.
699 SmallVector<Value*, 8> Factors;
700 FindSingleUseMultiplyFactors(BOp, Factors);
701 assert(Factors.size() > 1 && "Bad linearize!");
702
703 // Add one to FactorOccurrences for each unique factor in this op.
704 if (Factors.size() == 2) {
705 unsigned Occ = ++FactorOccurrences[Factors[0]];
706 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
707 if (Factors[0] != Factors[1]) { // Don't double count A*A.
708 Occ = ++FactorOccurrences[Factors[1]];
709 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
710 }
711 } else {
712 SmallPtrSet<Value*, 4> Duplicates;
713 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
714 if (!Duplicates.insert(Factors[i])) continue;
715
716 unsigned Occ = ++FactorOccurrences[Factors[i]];
717 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
718 }
719 }
720 }
721
722 // If any factor occurred more than one time, we can pull it out.
723 if (MaxOcc > 1) {
Chris Lattner2ab9d282009-12-31 19:24:52 +0000724 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000725 ++NumFactor;
726
727 // Create a new instruction that uses the MaxOccVal twice. If we don't do
728 // this, we could otherwise run into situations where removing a factor
729 // from an expression will drop a use of maxocc, and this can cause
730 // RemoveFactorFromExpression on successive values to behave differently.
731 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
732 SmallVector<Value*, 4> NewMulOps;
733 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
734 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
735 NewMulOps.push_back(V);
736 Ops.erase(Ops.begin()+i);
737 --i; --e;
738 }
739 }
740
741 // No need for extra uses anymore.
742 delete DummyInst;
743
744 unsigned NumAddedValues = NewMulOps.size();
745 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000746
Chris Lattner2ab9d282009-12-31 19:24:52 +0000747 // Now that we have inserted the add tree, optimize it. This allows us to
748 // handle cases that require multiple factoring steps, such as this:
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000749 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner19bacd42009-12-31 18:18:46 +0000750 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Chris Lattner2ab9d282009-12-31 19:24:52 +0000751 V = ReassociateExpression(cast<BinaryOperator>(V));
752
753 // Create the multiply.
754 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
755
Chris Lattnerf36f0da2009-12-31 19:49:01 +0000756 // Rerun associate on the multiply in case the inner expression turned into
757 // a multiply. We want to make sure that we keep things in canonical form.
758 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000759
760 // If every add operand included the factor (e.g. "A*B + A*C"), then the
761 // entire result expression is just the multiply "A*(B+C)".
762 if (Ops.empty())
763 return V2;
764
Chris Lattner19bacd42009-12-31 18:18:46 +0000765 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000766 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner19bacd42009-12-31 18:18:46 +0000767 // things being added by this operation.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000768 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
769 }
770
Chris Lattnere3b19f32009-12-31 07:59:34 +0000771 return 0;
772}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773
774Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner4780eb22009-12-31 18:40:32 +0000775 SmallVectorImpl<ValueEntry> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 // Now that we have the linearized expression tree, try to optimize it.
777 // Start by folding any constants that we found.
778 bool IterateOptimization = false;
779 if (Ops.size() == 1) return Ops[0].Op;
780
781 unsigned Opcode = I->getOpcode();
782
783 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
784 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
785 Ops.pop_back();
Owen Anderson02b48c32009-07-29 18:55:55 +0000786 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 return OptimizeExpression(I, Ops);
788 }
789
790 // Check for destructive annihilation due to a constant being used.
791 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
792 switch (Opcode) {
793 default: break;
794 case Instruction::And:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000795 if (CstVal->isZero()) // ... & 0 -> 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 return CstVal;
Chris Lattnerff3866c2009-12-31 17:51:05 +0000797 if (CstVal->isAllOnesValue()) // ... & -1 -> ...
Chris Lattner4f663d02009-12-31 07:48:51 +0000798 Ops.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 break;
800 case Instruction::Mul:
801 if (CstVal->isZero()) { // ... * 0 -> 0
802 ++NumAnnihil;
803 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804 }
Chris Lattner4f663d02009-12-31 07:48:51 +0000805
806 if (cast<ConstantInt>(CstVal)->isOne())
807 Ops.pop_back(); // ... * 1 -> ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808 break;
809 case Instruction::Or:
Chris Lattnerff3866c2009-12-31 17:51:05 +0000810 if (CstVal->isAllOnesValue()) // ... | -1 -> -1
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000811 return CstVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000812 // FALLTHROUGH!
813 case Instruction::Add:
814 case Instruction::Xor:
815 if (CstVal->isZero()) // ... [|^+] 0 -> ...
816 Ops.pop_back();
817 break;
818 }
819 if (Ops.size() == 1) return Ops[0].Op;
820
Chris Lattnera0d64b92009-12-31 07:33:14 +0000821 // Handle destructive annihilation due to identities between elements in the
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822 // argument list here.
823 switch (Opcode) {
824 default: break;
825 case Instruction::And:
826 case Instruction::Or:
Chris Lattnere3b19f32009-12-31 07:59:34 +0000827 case Instruction::Xor: {
828 unsigned NumOps = Ops.size();
829 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
830 return Result;
831 IterateOptimization |= Ops.size() != NumOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832 break;
Chris Lattnere3b19f32009-12-31 07:59:34 +0000833 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834
Chris Lattnere3b19f32009-12-31 07:59:34 +0000835 case Instruction::Add: {
836 unsigned NumOps = Ops.size();
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000837 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnere3b19f32009-12-31 07:59:34 +0000838 return Result;
839 IterateOptimization |= Ops.size() != NumOps;
840 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000841
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000842 break;
843 //case Instruction::Mul:
844 }
845
846 if (IterateOptimization)
847 return OptimizeExpression(I, Ops);
848 return 0;
849}
850
851
852/// ReassociateBB - Inspect all of the instructions in this basic block,
853/// reassociating them as we go.
854void Reassociate::ReassociateBB(BasicBlock *BB) {
855 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
856 Instruction *BI = BBI++;
857 if (BI->getOpcode() == Instruction::Shl &&
858 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000859 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 MadeChange = true;
861 BI = NI;
862 }
863
864 // Reject cases where it is pointless to do this.
865 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
866 isa<VectorType>(BI->getType()))
867 continue; // Floating point ops are not associative.
868
869 // If this is a subtract instruction which is not already in negate form,
870 // see if we can convert it to X+-Y.
871 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000872 if (ShouldBreakUpSubtract(BI)) {
873 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000874 MadeChange = true;
Owen Anderson76f49252009-07-13 22:18:28 +0000875 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 // Otherwise, this is a negation. See if the operand is a multiply tree
877 // and if this is not an inner node of a multiply tree.
878 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
879 (!BI->hasOneUse() ||
880 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewycky216b9ea2009-11-14 07:25:54 +0000881 BI = LowerNegateToMultiply(BI, ValueRankMap);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882 MadeChange = true;
883 }
884 }
885 }
886
887 // If this instruction is a commutative binary operator, process it.
888 if (!BI->isAssociative()) continue;
889 BinaryOperator *I = cast<BinaryOperator>(BI);
890
891 // If this is an interior node of a reassociable tree, ignore it until we
892 // get to the root of the tree, to avoid N^2 analysis.
893 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
894 continue;
895
896 // If this is an add tree that is used by a sub instruction, ignore it
897 // until we process the subtract.
898 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
899 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
900 continue;
901
902 ReassociateExpression(I);
903 }
904}
905
Chris Lattner2ab9d282009-12-31 19:24:52 +0000906Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907
Chris Lattner2ab9d282009-12-31 19:24:52 +0000908 // First, walk the expression tree, linearizing the tree, collecting the
909 // operand information.
Chris Lattner4780eb22009-12-31 18:40:32 +0000910 SmallVector<ValueEntry, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000911 LinearizeExprTree(I, Ops);
912
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000913 DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000914
915 // Now that we have linearized the tree to a list and have gathered all of
916 // the operands and their ranks, sort the operands by their rank. Use a
917 // stable_sort so that values with equal ranks will have their relative
918 // positions maintained (and so the compiler is deterministic). Note that
919 // this sorts so that the highest ranking values end up at the beginning of
920 // the vector.
921 std::stable_sort(Ops.begin(), Ops.end());
922
923 // OptimizeExpression - Now that we have the expression tree in a convenient
924 // sorted form, optimize it globally if possible.
925 if (Value *V = OptimizeExpression(I, Ops)) {
926 // This expression tree simplified to something that isn't a tree,
927 // eliminate it.
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000928 DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929 I->replaceAllUsesWith(V);
930 RemoveDeadBinaryOp(I);
Chris Lattnerff3866c2009-12-31 17:51:05 +0000931 ++NumAnnihil;
Chris Lattner2ab9d282009-12-31 19:24:52 +0000932 return V;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 }
934
935 // We want to sink immediates as deeply as possible except in the case where
936 // this is a multiply tree used only by an add, and the immediate is a -1.
937 // In this case we reassociate to put the negation on the outside so that we
938 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
939 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
940 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
941 isa<ConstantInt>(Ops.back().Op) &&
942 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner4780eb22009-12-31 18:40:32 +0000943 ValueEntry Tmp = Ops.pop_back_val();
944 Ops.insert(Ops.begin(), Tmp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 }
946
Chris Lattnerf433d8d2009-12-31 18:17:13 +0000947 DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948
949 if (Ops.size() == 1) {
950 // This expression tree simplified to something that isn't a tree,
951 // eliminate it.
952 I->replaceAllUsesWith(Ops[0].Op);
953 RemoveDeadBinaryOp(I);
Chris Lattner2ab9d282009-12-31 19:24:52 +0000954 return Ops[0].Op;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000955 }
Chris Lattner2ab9d282009-12-31 19:24:52 +0000956
957 // Now that we ordered and optimized the expressions, splat them back into
958 // the expression tree, removing any unneeded nodes.
959 RewriteExprTree(I, Ops);
960 return I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961}
962
963
964bool Reassociate::runOnFunction(Function &F) {
965 // Recalculate the rank map for F
966 BuildRankMap(F);
967
968 MadeChange = false;
969 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
970 ReassociateBB(FI);
971
972 // We are done with the rank map...
973 RankMap.clear();
974 ValueRankMap.clear();
975 return MadeChange;
976}
977