blob: 330b4d6ac8561bda8729f758a9fd5c0228ceb40c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000022#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000023#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000025#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000027#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000028#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000029#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000030
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031using namespace llvm;
32
Owen Anderson9a184ef2008-01-07 01:35:02 +000033namespace {
34 cl::opt<bool>
35 NoFusing("disable-spill-fusing",
36 cl::desc("Disable fusing of spill code into instructions"));
37 cl::opt<bool>
38 PrintFailedFusing("print-failed-fuse-candidates",
39 cl::desc("Print instructions that the allocator wants to"
40 " fuse, but the X86 backend currently can't"),
41 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000042 cl::opt<bool>
43 ReMatPICStubLoad("remat-pic-stub-load",
44 cl::desc("Re-materialize load from stub in PIC mode"),
45 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000046}
47
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000049 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000050 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000051 SmallVector<unsigned,16> AmbEntries;
52 static const unsigned OpTbl2Addr[][2] = {
53 { X86::ADC32ri, X86::ADC32mi },
54 { X86::ADC32ri8, X86::ADC32mi8 },
55 { X86::ADC32rr, X86::ADC32mr },
56 { X86::ADC64ri32, X86::ADC64mi32 },
57 { X86::ADC64ri8, X86::ADC64mi8 },
58 { X86::ADC64rr, X86::ADC64mr },
59 { X86::ADD16ri, X86::ADD16mi },
60 { X86::ADD16ri8, X86::ADD16mi8 },
61 { X86::ADD16rr, X86::ADD16mr },
62 { X86::ADD32ri, X86::ADD32mi },
63 { X86::ADD32ri8, X86::ADD32mi8 },
64 { X86::ADD32rr, X86::ADD32mr },
65 { X86::ADD64ri32, X86::ADD64mi32 },
66 { X86::ADD64ri8, X86::ADD64mi8 },
67 { X86::ADD64rr, X86::ADD64mr },
68 { X86::ADD8ri, X86::ADD8mi },
69 { X86::ADD8rr, X86::ADD8mr },
70 { X86::AND16ri, X86::AND16mi },
71 { X86::AND16ri8, X86::AND16mi8 },
72 { X86::AND16rr, X86::AND16mr },
73 { X86::AND32ri, X86::AND32mi },
74 { X86::AND32ri8, X86::AND32mi8 },
75 { X86::AND32rr, X86::AND32mr },
76 { X86::AND64ri32, X86::AND64mi32 },
77 { X86::AND64ri8, X86::AND64mi8 },
78 { X86::AND64rr, X86::AND64mr },
79 { X86::AND8ri, X86::AND8mi },
80 { X86::AND8rr, X86::AND8mr },
81 { X86::DEC16r, X86::DEC16m },
82 { X86::DEC32r, X86::DEC32m },
83 { X86::DEC64_16r, X86::DEC64_16m },
84 { X86::DEC64_32r, X86::DEC64_32m },
85 { X86::DEC64r, X86::DEC64m },
86 { X86::DEC8r, X86::DEC8m },
87 { X86::INC16r, X86::INC16m },
88 { X86::INC32r, X86::INC32m },
89 { X86::INC64_16r, X86::INC64_16m },
90 { X86::INC64_32r, X86::INC64_32m },
91 { X86::INC64r, X86::INC64m },
92 { X86::INC8r, X86::INC8m },
93 { X86::NEG16r, X86::NEG16m },
94 { X86::NEG32r, X86::NEG32m },
95 { X86::NEG64r, X86::NEG64m },
96 { X86::NEG8r, X86::NEG8m },
97 { X86::NOT16r, X86::NOT16m },
98 { X86::NOT32r, X86::NOT32m },
99 { X86::NOT64r, X86::NOT64m },
100 { X86::NOT8r, X86::NOT8m },
101 { X86::OR16ri, X86::OR16mi },
102 { X86::OR16ri8, X86::OR16mi8 },
103 { X86::OR16rr, X86::OR16mr },
104 { X86::OR32ri, X86::OR32mi },
105 { X86::OR32ri8, X86::OR32mi8 },
106 { X86::OR32rr, X86::OR32mr },
107 { X86::OR64ri32, X86::OR64mi32 },
108 { X86::OR64ri8, X86::OR64mi8 },
109 { X86::OR64rr, X86::OR64mr },
110 { X86::OR8ri, X86::OR8mi },
111 { X86::OR8rr, X86::OR8mr },
112 { X86::ROL16r1, X86::ROL16m1 },
113 { X86::ROL16rCL, X86::ROL16mCL },
114 { X86::ROL16ri, X86::ROL16mi },
115 { X86::ROL32r1, X86::ROL32m1 },
116 { X86::ROL32rCL, X86::ROL32mCL },
117 { X86::ROL32ri, X86::ROL32mi },
118 { X86::ROL64r1, X86::ROL64m1 },
119 { X86::ROL64rCL, X86::ROL64mCL },
120 { X86::ROL64ri, X86::ROL64mi },
121 { X86::ROL8r1, X86::ROL8m1 },
122 { X86::ROL8rCL, X86::ROL8mCL },
123 { X86::ROL8ri, X86::ROL8mi },
124 { X86::ROR16r1, X86::ROR16m1 },
125 { X86::ROR16rCL, X86::ROR16mCL },
126 { X86::ROR16ri, X86::ROR16mi },
127 { X86::ROR32r1, X86::ROR32m1 },
128 { X86::ROR32rCL, X86::ROR32mCL },
129 { X86::ROR32ri, X86::ROR32mi },
130 { X86::ROR64r1, X86::ROR64m1 },
131 { X86::ROR64rCL, X86::ROR64mCL },
132 { X86::ROR64ri, X86::ROR64mi },
133 { X86::ROR8r1, X86::ROR8m1 },
134 { X86::ROR8rCL, X86::ROR8mCL },
135 { X86::ROR8ri, X86::ROR8mi },
136 { X86::SAR16r1, X86::SAR16m1 },
137 { X86::SAR16rCL, X86::SAR16mCL },
138 { X86::SAR16ri, X86::SAR16mi },
139 { X86::SAR32r1, X86::SAR32m1 },
140 { X86::SAR32rCL, X86::SAR32mCL },
141 { X86::SAR32ri, X86::SAR32mi },
142 { X86::SAR64r1, X86::SAR64m1 },
143 { X86::SAR64rCL, X86::SAR64mCL },
144 { X86::SAR64ri, X86::SAR64mi },
145 { X86::SAR8r1, X86::SAR8m1 },
146 { X86::SAR8rCL, X86::SAR8mCL },
147 { X86::SAR8ri, X86::SAR8mi },
148 { X86::SBB32ri, X86::SBB32mi },
149 { X86::SBB32ri8, X86::SBB32mi8 },
150 { X86::SBB32rr, X86::SBB32mr },
151 { X86::SBB64ri32, X86::SBB64mi32 },
152 { X86::SBB64ri8, X86::SBB64mi8 },
153 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000154 { X86::SHL16rCL, X86::SHL16mCL },
155 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000156 { X86::SHL32rCL, X86::SHL32mCL },
157 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000158 { X86::SHL64rCL, X86::SHL64mCL },
159 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000160 { X86::SHL8rCL, X86::SHL8mCL },
161 { X86::SHL8ri, X86::SHL8mi },
162 { X86::SHLD16rrCL, X86::SHLD16mrCL },
163 { X86::SHLD16rri8, X86::SHLD16mri8 },
164 { X86::SHLD32rrCL, X86::SHLD32mrCL },
165 { X86::SHLD32rri8, X86::SHLD32mri8 },
166 { X86::SHLD64rrCL, X86::SHLD64mrCL },
167 { X86::SHLD64rri8, X86::SHLD64mri8 },
168 { X86::SHR16r1, X86::SHR16m1 },
169 { X86::SHR16rCL, X86::SHR16mCL },
170 { X86::SHR16ri, X86::SHR16mi },
171 { X86::SHR32r1, X86::SHR32m1 },
172 { X86::SHR32rCL, X86::SHR32mCL },
173 { X86::SHR32ri, X86::SHR32mi },
174 { X86::SHR64r1, X86::SHR64m1 },
175 { X86::SHR64rCL, X86::SHR64mCL },
176 { X86::SHR64ri, X86::SHR64mi },
177 { X86::SHR8r1, X86::SHR8m1 },
178 { X86::SHR8rCL, X86::SHR8mCL },
179 { X86::SHR8ri, X86::SHR8mi },
180 { X86::SHRD16rrCL, X86::SHRD16mrCL },
181 { X86::SHRD16rri8, X86::SHRD16mri8 },
182 { X86::SHRD32rrCL, X86::SHRD32mrCL },
183 { X86::SHRD32rri8, X86::SHRD32mri8 },
184 { X86::SHRD64rrCL, X86::SHRD64mrCL },
185 { X86::SHRD64rri8, X86::SHRD64mri8 },
186 { X86::SUB16ri, X86::SUB16mi },
187 { X86::SUB16ri8, X86::SUB16mi8 },
188 { X86::SUB16rr, X86::SUB16mr },
189 { X86::SUB32ri, X86::SUB32mi },
190 { X86::SUB32ri8, X86::SUB32mi8 },
191 { X86::SUB32rr, X86::SUB32mr },
192 { X86::SUB64ri32, X86::SUB64mi32 },
193 { X86::SUB64ri8, X86::SUB64mi8 },
194 { X86::SUB64rr, X86::SUB64mr },
195 { X86::SUB8ri, X86::SUB8mi },
196 { X86::SUB8rr, X86::SUB8mr },
197 { X86::XOR16ri, X86::XOR16mi },
198 { X86::XOR16ri8, X86::XOR16mi8 },
199 { X86::XOR16rr, X86::XOR16mr },
200 { X86::XOR32ri, X86::XOR32mi },
201 { X86::XOR32ri8, X86::XOR32mi8 },
202 { X86::XOR32rr, X86::XOR32mr },
203 { X86::XOR64ri32, X86::XOR64mi32 },
204 { X86::XOR64ri8, X86::XOR64mi8 },
205 { X86::XOR64rr, X86::XOR64mr },
206 { X86::XOR8ri, X86::XOR8mi },
207 { X86::XOR8rr, X86::XOR8mr }
208 };
209
210 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
211 unsigned RegOp = OpTbl2Addr[i][0];
212 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000213 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
214 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000215 assert(false && "Duplicated entries?");
216 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
217 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000218 std::make_pair(RegOp,
219 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000220 AmbEntries.push_back(MemOp);
221 }
222
223 // If the third value is 1, then it's folding either a load or a store.
224 static const unsigned OpTbl0[][3] = {
225 { X86::CALL32r, X86::CALL32m, 1 },
226 { X86::CALL64r, X86::CALL64m, 1 },
227 { X86::CMP16ri, X86::CMP16mi, 1 },
228 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000229 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000230 { X86::CMP32ri, X86::CMP32mi, 1 },
231 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000232 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000233 { X86::CMP64ri32, X86::CMP64mi32, 1 },
234 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000235 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000236 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000237 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000238 { X86::DIV16r, X86::DIV16m, 1 },
239 { X86::DIV32r, X86::DIV32m, 1 },
240 { X86::DIV64r, X86::DIV64m, 1 },
241 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000242 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000243 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
244 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
245 { X86::IDIV16r, X86::IDIV16m, 1 },
246 { X86::IDIV32r, X86::IDIV32m, 1 },
247 { X86::IDIV64r, X86::IDIV64m, 1 },
248 { X86::IDIV8r, X86::IDIV8m, 1 },
249 { X86::IMUL16r, X86::IMUL16m, 1 },
250 { X86::IMUL32r, X86::IMUL32m, 1 },
251 { X86::IMUL64r, X86::IMUL64m, 1 },
252 { X86::IMUL8r, X86::IMUL8m, 1 },
253 { X86::JMP32r, X86::JMP32m, 1 },
254 { X86::JMP64r, X86::JMP64m, 1 },
255 { X86::MOV16ri, X86::MOV16mi, 0 },
256 { X86::MOV16rr, X86::MOV16mr, 0 },
257 { X86::MOV16to16_, X86::MOV16_mr, 0 },
258 { X86::MOV32ri, X86::MOV32mi, 0 },
259 { X86::MOV32rr, X86::MOV32mr, 0 },
260 { X86::MOV32to32_, X86::MOV32_mr, 0 },
261 { X86::MOV64ri32, X86::MOV64mi32, 0 },
262 { X86::MOV64rr, X86::MOV64mr, 0 },
263 { X86::MOV8ri, X86::MOV8mi, 0 },
264 { X86::MOV8rr, X86::MOV8mr, 0 },
265 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
266 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
267 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
268 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
269 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
270 { X86::MOVSDrr, X86::MOVSDmr, 0 },
271 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
272 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
273 { X86::MOVSSrr, X86::MOVSSmr, 0 },
274 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
275 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
276 { X86::MUL16r, X86::MUL16m, 1 },
277 { X86::MUL32r, X86::MUL32m, 1 },
278 { X86::MUL64r, X86::MUL64m, 1 },
279 { X86::MUL8r, X86::MUL8m, 1 },
280 { X86::SETAEr, X86::SETAEm, 0 },
281 { X86::SETAr, X86::SETAm, 0 },
282 { X86::SETBEr, X86::SETBEm, 0 },
283 { X86::SETBr, X86::SETBm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000284 { X86::SETCr, X86::SETCm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000285 { X86::SETEr, X86::SETEm, 0 },
286 { X86::SETGEr, X86::SETGEm, 0 },
287 { X86::SETGr, X86::SETGm, 0 },
288 { X86::SETLEr, X86::SETLEm, 0 },
289 { X86::SETLr, X86::SETLm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000290 { X86::SETNCr, X86::SETNCm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000291 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000292 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000293 { X86::SETNPr, X86::SETNPm, 0 },
294 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000295 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000296 { X86::SETPr, X86::SETPm, 0 },
297 { X86::SETSr, X86::SETSm, 0 },
298 { X86::TAILJMPr, X86::TAILJMPm, 1 },
299 { X86::TEST16ri, X86::TEST16mi, 1 },
300 { X86::TEST32ri, X86::TEST32mi, 1 },
301 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000302 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000303 };
304
305 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
306 unsigned RegOp = OpTbl0[i][0];
307 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000308 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
309 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000310 assert(false && "Duplicated entries?");
311 unsigned FoldedLoad = OpTbl0[i][2];
312 // Index 0, folded load or store.
313 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
314 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
315 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000316 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000317 AmbEntries.push_back(MemOp);
318 }
319
320 static const unsigned OpTbl1[][2] = {
321 { X86::CMP16rr, X86::CMP16rm },
322 { X86::CMP32rr, X86::CMP32rm },
323 { X86::CMP64rr, X86::CMP64rm },
324 { X86::CMP8rr, X86::CMP8rm },
325 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
326 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
327 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
328 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
329 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
330 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
331 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
332 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
333 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
334 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
335 { X86::FsMOVAPDrr, X86::MOVSDrm },
336 { X86::FsMOVAPSrr, X86::MOVSSrm },
337 { X86::IMUL16rri, X86::IMUL16rmi },
338 { X86::IMUL16rri8, X86::IMUL16rmi8 },
339 { X86::IMUL32rri, X86::IMUL32rmi },
340 { X86::IMUL32rri8, X86::IMUL32rmi8 },
341 { X86::IMUL64rri32, X86::IMUL64rmi32 },
342 { X86::IMUL64rri8, X86::IMUL64rmi8 },
343 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
344 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
345 { X86::Int_COMISDrr, X86::Int_COMISDrm },
346 { X86::Int_COMISSrr, X86::Int_COMISSrm },
347 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
348 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
349 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
350 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
351 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
352 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
353 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
354 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
355 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
356 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
357 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
358 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
359 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
360 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
361 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
362 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
363 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
364 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
365 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
366 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
367 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
368 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
369 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
370 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
371 { X86::MOV16rr, X86::MOV16rm },
372 { X86::MOV16to16_, X86::MOV16_rm },
373 { X86::MOV32rr, X86::MOV32rm },
374 { X86::MOV32to32_, X86::MOV32_rm },
375 { X86::MOV64rr, X86::MOV64rm },
376 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
377 { X86::MOV64toSDrr, X86::MOV64toSDrm },
378 { X86::MOV8rr, X86::MOV8rm },
379 { X86::MOVAPDrr, X86::MOVAPDrm },
380 { X86::MOVAPSrr, X86::MOVAPSrm },
381 { X86::MOVDDUPrr, X86::MOVDDUPrm },
382 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
383 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
384 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
385 { X86::MOVSDrr, X86::MOVSDrm },
386 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
387 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
388 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
389 { X86::MOVSSrr, X86::MOVSSrm },
390 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
391 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
392 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
393 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
394 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
395 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
396 { X86::MOVUPDrr, X86::MOVUPDrm },
397 { X86::MOVUPSrr, X86::MOVUPSrm },
398 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
399 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
400 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
401 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
402 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
403 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
404 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000405 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000406 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
407 { X86::PSHUFDri, X86::PSHUFDmi },
408 { X86::PSHUFHWri, X86::PSHUFHWmi },
409 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000410 { X86::RCPPSr, X86::RCPPSm },
411 { X86::RCPPSr_Int, X86::RCPPSm_Int },
412 { X86::RSQRTPSr, X86::RSQRTPSm },
413 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
414 { X86::RSQRTSSr, X86::RSQRTSSm },
415 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
416 { X86::SQRTPDr, X86::SQRTPDm },
417 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
418 { X86::SQRTPSr, X86::SQRTPSm },
419 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
420 { X86::SQRTSDr, X86::SQRTSDm },
421 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
422 { X86::SQRTSSr, X86::SQRTSSm },
423 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
424 { X86::TEST16rr, X86::TEST16rm },
425 { X86::TEST32rr, X86::TEST32rm },
426 { X86::TEST64rr, X86::TEST64rm },
427 { X86::TEST8rr, X86::TEST8rm },
428 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
429 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000430 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000431 };
432
433 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
434 unsigned RegOp = OpTbl1[i][0];
435 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000436 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
437 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000438 assert(false && "Duplicated entries?");
439 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
440 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
441 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000442 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000443 AmbEntries.push_back(MemOp);
444 }
445
446 static const unsigned OpTbl2[][2] = {
447 { X86::ADC32rr, X86::ADC32rm },
448 { X86::ADC64rr, X86::ADC64rm },
449 { X86::ADD16rr, X86::ADD16rm },
450 { X86::ADD32rr, X86::ADD32rm },
451 { X86::ADD64rr, X86::ADD64rm },
452 { X86::ADD8rr, X86::ADD8rm },
453 { X86::ADDPDrr, X86::ADDPDrm },
454 { X86::ADDPSrr, X86::ADDPSrm },
455 { X86::ADDSDrr, X86::ADDSDrm },
456 { X86::ADDSSrr, X86::ADDSSrm },
457 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
458 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
459 { X86::AND16rr, X86::AND16rm },
460 { X86::AND32rr, X86::AND32rm },
461 { X86::AND64rr, X86::AND64rm },
462 { X86::AND8rr, X86::AND8rm },
463 { X86::ANDNPDrr, X86::ANDNPDrm },
464 { X86::ANDNPSrr, X86::ANDNPSrm },
465 { X86::ANDPDrr, X86::ANDPDrm },
466 { X86::ANDPSrr, X86::ANDPSrm },
467 { X86::CMOVA16rr, X86::CMOVA16rm },
468 { X86::CMOVA32rr, X86::CMOVA32rm },
469 { X86::CMOVA64rr, X86::CMOVA64rm },
470 { X86::CMOVAE16rr, X86::CMOVAE16rm },
471 { X86::CMOVAE32rr, X86::CMOVAE32rm },
472 { X86::CMOVAE64rr, X86::CMOVAE64rm },
473 { X86::CMOVB16rr, X86::CMOVB16rm },
474 { X86::CMOVB32rr, X86::CMOVB32rm },
475 { X86::CMOVB64rr, X86::CMOVB64rm },
476 { X86::CMOVBE16rr, X86::CMOVBE16rm },
477 { X86::CMOVBE32rr, X86::CMOVBE32rm },
478 { X86::CMOVBE64rr, X86::CMOVBE64rm },
479 { X86::CMOVE16rr, X86::CMOVE16rm },
480 { X86::CMOVE32rr, X86::CMOVE32rm },
481 { X86::CMOVE64rr, X86::CMOVE64rm },
482 { X86::CMOVG16rr, X86::CMOVG16rm },
483 { X86::CMOVG32rr, X86::CMOVG32rm },
484 { X86::CMOVG64rr, X86::CMOVG64rm },
485 { X86::CMOVGE16rr, X86::CMOVGE16rm },
486 { X86::CMOVGE32rr, X86::CMOVGE32rm },
487 { X86::CMOVGE64rr, X86::CMOVGE64rm },
488 { X86::CMOVL16rr, X86::CMOVL16rm },
489 { X86::CMOVL32rr, X86::CMOVL32rm },
490 { X86::CMOVL64rr, X86::CMOVL64rm },
491 { X86::CMOVLE16rr, X86::CMOVLE16rm },
492 { X86::CMOVLE32rr, X86::CMOVLE32rm },
493 { X86::CMOVLE64rr, X86::CMOVLE64rm },
494 { X86::CMOVNE16rr, X86::CMOVNE16rm },
495 { X86::CMOVNE32rr, X86::CMOVNE32rm },
496 { X86::CMOVNE64rr, X86::CMOVNE64rm },
497 { X86::CMOVNP16rr, X86::CMOVNP16rm },
498 { X86::CMOVNP32rr, X86::CMOVNP32rm },
499 { X86::CMOVNP64rr, X86::CMOVNP64rm },
500 { X86::CMOVNS16rr, X86::CMOVNS16rm },
501 { X86::CMOVNS32rr, X86::CMOVNS32rm },
502 { X86::CMOVNS64rr, X86::CMOVNS64rm },
503 { X86::CMOVP16rr, X86::CMOVP16rm },
504 { X86::CMOVP32rr, X86::CMOVP32rm },
505 { X86::CMOVP64rr, X86::CMOVP64rm },
506 { X86::CMOVS16rr, X86::CMOVS16rm },
507 { X86::CMOVS32rr, X86::CMOVS32rm },
508 { X86::CMOVS64rr, X86::CMOVS64rm },
509 { X86::CMPPDrri, X86::CMPPDrmi },
510 { X86::CMPPSrri, X86::CMPPSrmi },
511 { X86::CMPSDrr, X86::CMPSDrm },
512 { X86::CMPSSrr, X86::CMPSSrm },
513 { X86::DIVPDrr, X86::DIVPDrm },
514 { X86::DIVPSrr, X86::DIVPSrm },
515 { X86::DIVSDrr, X86::DIVSDrm },
516 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000517 { X86::FsANDNPDrr, X86::FsANDNPDrm },
518 { X86::FsANDNPSrr, X86::FsANDNPSrm },
519 { X86::FsANDPDrr, X86::FsANDPDrm },
520 { X86::FsANDPSrr, X86::FsANDPSrm },
521 { X86::FsORPDrr, X86::FsORPDrm },
522 { X86::FsORPSrr, X86::FsORPSrm },
523 { X86::FsXORPDrr, X86::FsXORPDrm },
524 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000525 { X86::HADDPDrr, X86::HADDPDrm },
526 { X86::HADDPSrr, X86::HADDPSrm },
527 { X86::HSUBPDrr, X86::HSUBPDrm },
528 { X86::HSUBPSrr, X86::HSUBPSrm },
529 { X86::IMUL16rr, X86::IMUL16rm },
530 { X86::IMUL32rr, X86::IMUL32rm },
531 { X86::IMUL64rr, X86::IMUL64rm },
532 { X86::MAXPDrr, X86::MAXPDrm },
533 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
534 { X86::MAXPSrr, X86::MAXPSrm },
535 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
536 { X86::MAXSDrr, X86::MAXSDrm },
537 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
538 { X86::MAXSSrr, X86::MAXSSrm },
539 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
540 { X86::MINPDrr, X86::MINPDrm },
541 { X86::MINPDrr_Int, X86::MINPDrm_Int },
542 { X86::MINPSrr, X86::MINPSrm },
543 { X86::MINPSrr_Int, X86::MINPSrm_Int },
544 { X86::MINSDrr, X86::MINSDrm },
545 { X86::MINSDrr_Int, X86::MINSDrm_Int },
546 { X86::MINSSrr, X86::MINSSrm },
547 { X86::MINSSrr_Int, X86::MINSSrm_Int },
548 { X86::MULPDrr, X86::MULPDrm },
549 { X86::MULPSrr, X86::MULPSrm },
550 { X86::MULSDrr, X86::MULSDrm },
551 { X86::MULSSrr, X86::MULSSrm },
552 { X86::OR16rr, X86::OR16rm },
553 { X86::OR32rr, X86::OR32rm },
554 { X86::OR64rr, X86::OR64rm },
555 { X86::OR8rr, X86::OR8rm },
556 { X86::ORPDrr, X86::ORPDrm },
557 { X86::ORPSrr, X86::ORPSrm },
558 { X86::PACKSSDWrr, X86::PACKSSDWrm },
559 { X86::PACKSSWBrr, X86::PACKSSWBrm },
560 { X86::PACKUSWBrr, X86::PACKUSWBrm },
561 { X86::PADDBrr, X86::PADDBrm },
562 { X86::PADDDrr, X86::PADDDrm },
563 { X86::PADDQrr, X86::PADDQrm },
564 { X86::PADDSBrr, X86::PADDSBrm },
565 { X86::PADDSWrr, X86::PADDSWrm },
566 { X86::PADDWrr, X86::PADDWrm },
567 { X86::PANDNrr, X86::PANDNrm },
568 { X86::PANDrr, X86::PANDrm },
569 { X86::PAVGBrr, X86::PAVGBrm },
570 { X86::PAVGWrr, X86::PAVGWrm },
571 { X86::PCMPEQBrr, X86::PCMPEQBrm },
572 { X86::PCMPEQDrr, X86::PCMPEQDrm },
573 { X86::PCMPEQWrr, X86::PCMPEQWrm },
574 { X86::PCMPGTBrr, X86::PCMPGTBrm },
575 { X86::PCMPGTDrr, X86::PCMPGTDrm },
576 { X86::PCMPGTWrr, X86::PCMPGTWrm },
577 { X86::PINSRWrri, X86::PINSRWrmi },
578 { X86::PMADDWDrr, X86::PMADDWDrm },
579 { X86::PMAXSWrr, X86::PMAXSWrm },
580 { X86::PMAXUBrr, X86::PMAXUBrm },
581 { X86::PMINSWrr, X86::PMINSWrm },
582 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000583 { X86::PMULDQrr, X86::PMULDQrm },
584 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000585 { X86::PMULHUWrr, X86::PMULHUWrm },
586 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000587 { X86::PMULLDrr, X86::PMULLDrm },
588 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000589 { X86::PMULLWrr, X86::PMULLWrm },
590 { X86::PMULUDQrr, X86::PMULUDQrm },
591 { X86::PORrr, X86::PORrm },
592 { X86::PSADBWrr, X86::PSADBWrm },
593 { X86::PSLLDrr, X86::PSLLDrm },
594 { X86::PSLLQrr, X86::PSLLQrm },
595 { X86::PSLLWrr, X86::PSLLWrm },
596 { X86::PSRADrr, X86::PSRADrm },
597 { X86::PSRAWrr, X86::PSRAWrm },
598 { X86::PSRLDrr, X86::PSRLDrm },
599 { X86::PSRLQrr, X86::PSRLQrm },
600 { X86::PSRLWrr, X86::PSRLWrm },
601 { X86::PSUBBrr, X86::PSUBBrm },
602 { X86::PSUBDrr, X86::PSUBDrm },
603 { X86::PSUBSBrr, X86::PSUBSBrm },
604 { X86::PSUBSWrr, X86::PSUBSWrm },
605 { X86::PSUBWrr, X86::PSUBWrm },
606 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
607 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
608 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
609 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
610 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
611 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
612 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
613 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
614 { X86::PXORrr, X86::PXORrm },
615 { X86::SBB32rr, X86::SBB32rm },
616 { X86::SBB64rr, X86::SBB64rm },
617 { X86::SHUFPDrri, X86::SHUFPDrmi },
618 { X86::SHUFPSrri, X86::SHUFPSrmi },
619 { X86::SUB16rr, X86::SUB16rm },
620 { X86::SUB32rr, X86::SUB32rm },
621 { X86::SUB64rr, X86::SUB64rm },
622 { X86::SUB8rr, X86::SUB8rm },
623 { X86::SUBPDrr, X86::SUBPDrm },
624 { X86::SUBPSrr, X86::SUBPSrm },
625 { X86::SUBSDrr, X86::SUBSDrm },
626 { X86::SUBSSrr, X86::SUBSSrm },
627 // FIXME: TEST*rr -> swapped operand of TEST*mr.
628 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
629 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
630 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
631 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
632 { X86::XOR16rr, X86::XOR16rm },
633 { X86::XOR32rr, X86::XOR32rm },
634 { X86::XOR64rr, X86::XOR64rm },
635 { X86::XOR8rr, X86::XOR8rm },
636 { X86::XORPDrr, X86::XORPDrm },
637 { X86::XORPSrr, X86::XORPSrm }
638 };
639
640 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
641 unsigned RegOp = OpTbl2[i][0];
642 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000643 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
644 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000645 assert(false && "Duplicated entries?");
646 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
647 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000648 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000649 AmbEntries.push_back(MemOp);
650 }
651
652 // Remove ambiguous entries.
653 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654}
655
656bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
657 unsigned& sourceReg,
658 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000659 switch (MI.getOpcode()) {
660 default:
661 return false;
662 case X86::MOV8rr:
663 case X86::MOV16rr:
664 case X86::MOV32rr:
665 case X86::MOV64rr:
666 case X86::MOV16to16_:
667 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000668 case X86::MOVSSrr:
669 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000670
671 // FP Stack register class copies
672 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
673 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
674 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
675
Chris Lattnerff195282008-03-11 19:28:17 +0000676 case X86::FsMOVAPSrr:
677 case X86::FsMOVAPDrr:
678 case X86::MOVAPSrr:
679 case X86::MOVAPDrr:
680 case X86::MOVSS2PSrr:
681 case X86::MOVSD2PDrr:
682 case X86::MOVPS2SSrr:
683 case X86::MOVPD2SDrr:
684 case X86::MMX_MOVD64rr:
685 case X86::MMX_MOVQ64rr:
686 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000687 MI.getOperand(0).isReg() &&
688 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000689 "invalid register-register move instruction");
690 sourceReg = MI.getOperand(1).getReg();
691 destReg = MI.getOperand(0).getReg();
692 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694}
695
Dan Gohman90feee22008-11-18 19:49:32 +0000696unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697 int &FrameIndex) const {
698 switch (MI->getOpcode()) {
699 default: break;
700 case X86::MOV8rm:
701 case X86::MOV16rm:
702 case X86::MOV16_rm:
703 case X86::MOV32rm:
704 case X86::MOV32_rm:
705 case X86::MOV64rm:
706 case X86::LD_Fp64m:
707 case X86::MOVSSrm:
708 case X86::MOVSDrm:
709 case X86::MOVAPSrm:
710 case X86::MOVAPDrm:
711 case X86::MMX_MOVD64rm:
712 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000713 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
714 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000715 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000717 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000718 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 return MI->getOperand(0).getReg();
720 }
721 break;
722 }
723 return 0;
724}
725
Dan Gohman90feee22008-11-18 19:49:32 +0000726unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727 int &FrameIndex) const {
728 switch (MI->getOpcode()) {
729 default: break;
730 case X86::MOV8mr:
731 case X86::MOV16mr:
732 case X86::MOV16_mr:
733 case X86::MOV32mr:
734 case X86::MOV32_mr:
735 case X86::MOV64mr:
736 case X86::ST_FpP64m:
737 case X86::MOVSSmr:
738 case X86::MOVSDmr:
739 case X86::MOVAPSmr:
740 case X86::MOVAPDmr:
741 case X86::MMX_MOVD64mr:
742 case X86::MMX_MOVQ64mr:
743 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000744 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
745 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000746 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000748 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000749 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000750 return MI->getOperand(4).getReg();
751 }
752 break;
753 }
754 return 0;
755}
756
757
Evan Chengb819a512008-03-27 01:45:11 +0000758/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
759/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000760static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000761 bool isPICBase = false;
762 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
763 E = MRI.def_end(); I != E; ++I) {
764 MachineInstr *DefMI = I.getOperand().getParent();
765 if (DefMI->getOpcode() != X86::MOVPC32r)
766 return false;
767 assert(!isPICBase && "More than one PIC base?");
768 isPICBase = true;
769 }
770 return isPICBase;
771}
Evan Chenge9caab52008-03-31 07:54:19 +0000772
773/// isGVStub - Return true if the GV requires an extra load to get the
774/// real address.
775static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
776 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
777}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000778
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000779bool
780X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781 switch (MI->getOpcode()) {
782 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000783 case X86::MOV8rm:
784 case X86::MOV16rm:
785 case X86::MOV16_rm:
786 case X86::MOV32rm:
787 case X86::MOV32_rm:
788 case X86::MOV64rm:
789 case X86::LD_Fp64m:
790 case X86::MOVSSrm:
791 case X86::MOVSDrm:
792 case X86::MOVAPSrm:
793 case X86::MOVAPDrm:
794 case X86::MMX_MOVD64rm:
795 case X86::MMX_MOVQ64rm: {
796 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000797 if (MI->getOperand(1).isReg() &&
798 MI->getOperand(2).isImm() &&
799 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
800 (MI->getOperand(4).isCPI() ||
801 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000802 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000803 unsigned BaseReg = MI->getOperand(1).getReg();
804 if (BaseReg == 0)
805 return true;
806 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000807 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000808 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000809 const MachineFunction &MF = *MI->getParent()->getParent();
810 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000811 bool isPICBase = false;
812 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
813 E = MRI.def_end(); I != E; ++I) {
814 MachineInstr *DefMI = I.getOperand().getParent();
815 if (DefMI->getOpcode() != X86::MOVPC32r)
816 return false;
817 assert(!isPICBase && "More than one PIC base?");
818 isPICBase = true;
819 }
820 return isPICBase;
821 }
822 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000823 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000824
825 case X86::LEA32r:
826 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000827 if (MI->getOperand(2).isImm() &&
828 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
829 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000830 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000831 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000832 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000833 unsigned BaseReg = MI->getOperand(1).getReg();
834 if (BaseReg == 0)
835 return true;
836 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000837 const MachineFunction &MF = *MI->getParent()->getParent();
838 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000839 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000840 }
841 return false;
842 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000844
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000845 // All other instructions marked M_REMATERIALIZABLE are always trivially
846 // rematerializable.
847 return true;
848}
849
Evan Chengc564ded2008-06-24 07:10:51 +0000850/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
851/// would clobber the EFLAGS condition register. Note the result may be
852/// conservative. If it cannot definitely determine the safety after visiting
853/// two instructions it assumes it's not safe.
854static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
855 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000856 // It's always safe to clobber EFLAGS at the end of a block.
857 if (I == MBB.end())
858 return true;
859
Evan Chengc564ded2008-06-24 07:10:51 +0000860 // For compile time consideration, if we are not able to determine the
861 // safety after visiting 2 instructions, we will assume it's not safe.
862 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000863 bool SeenDef = false;
864 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
865 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000866 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000867 continue;
868 if (MO.getReg() == X86::EFLAGS) {
869 if (MO.isUse())
870 return false;
871 SeenDef = true;
872 }
873 }
874
875 if (SeenDef)
876 // This instruction defines EFLAGS, no need to look any further.
877 return true;
878 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000879
880 // If we make it to the end of the block, it's safe to clobber EFLAGS.
881 if (I == MBB.end())
882 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000883 }
884
885 // Conservative answer.
886 return false;
887}
888
Evan Cheng7d73efc2008-03-31 20:40:39 +0000889void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
890 MachineBasicBlock::iterator I,
891 unsigned DestReg,
892 const MachineInstr *Orig) const {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000893 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000894 ? Orig->getOperand(0).getSubReg() : 0;
895 bool ChangeSubIdx = SubIdx != 0;
896 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
897 DestReg = RI.getSubReg(DestReg, SubIdx);
898 SubIdx = 0;
899 }
900
Evan Cheng7d73efc2008-03-31 20:40:39 +0000901 // MOV32r0 etc. are implemented with xor which clobbers condition code.
902 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000903 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000904 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000905 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000906 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000908 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000909 case X86::MOV64r0: {
910 if (!isSafeToClobberEFLAGS(MBB, I)) {
911 unsigned Opc = 0;
912 switch (Orig->getOpcode()) {
913 default: break;
914 case X86::MOV8r0: Opc = X86::MOV8ri; break;
915 case X86::MOV16r0: Opc = X86::MOV16ri; break;
916 case X86::MOV32r0: Opc = X86::MOV32ri; break;
917 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
918 }
919 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
920 Emitted = true;
921 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000922 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000923 }
924 }
925
926 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000927 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 MI->getOperand(0).setReg(DestReg);
929 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000930 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000931
932 if (ChangeSubIdx) {
933 MachineInstr *NewMI = prior(I);
934 NewMI->getOperand(0).setSubReg(SubIdx);
935 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000936}
937
Chris Lattnerea3a1812008-01-10 23:08:24 +0000938/// isInvariantLoad - Return true if the specified instruction (which is marked
939/// mayLoad) is loading from a location whose value is invariant across the
940/// function. For example, loading a value from the constant pool or from
941/// from the argument area of a function if it does not change. This should
942/// only return true of *all* loads the instruction does are invariant (if it
943/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000944bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000945 // This code cares about loads from three cases: constant pool entries,
946 // invariant argument slots, and global stubs. In order to handle these cases
947 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000948 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000949 // none of these three cases is ever used as anything other than a load base
950 // and X86 doesn't have any instructions that load from multiple places.
951
952 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
953 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000954 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000955 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000956 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000957
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000958 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000959 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000960
961 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000962 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000963 const MachineFrameInfo &MFI =
964 *MI->getParent()->getParent()->getFrameInfo();
965 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000966 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
967 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000968 }
Chris Lattner0875b572008-01-12 00:35:08 +0000969
Chris Lattnerea3a1812008-01-10 23:08:24 +0000970 // All other instances of these instructions are presumed to have other
971 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000972 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000973}
974
Evan Chengfa1a4952007-10-05 08:04:01 +0000975/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
976/// is not marked dead.
977static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000978 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
979 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000980 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000981 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
982 return true;
983 }
984 }
985 return false;
986}
987
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988/// convertToThreeAddress - This method must be implemented by targets that
989/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
990/// may be able to convert a two-address instruction into a true
991/// three-address instruction on demand. This allows the X86 target (for
992/// example) to convert ADD and SHL instructions into LEA instructions if they
993/// would require register copies due to two-addressness.
994///
995/// This method returns a null pointer if the transformation cannot be
996/// performed, otherwise it returns the new instruction.
997///
998MachineInstr *
999X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1000 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001001 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001002 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001003 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 // All instructions input are two-addr instructions. Get the known operands.
1005 unsigned Dest = MI->getOperand(0).getReg();
1006 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001007 bool isDead = MI->getOperand(0).isDead();
1008 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009
1010 MachineInstr *NewMI = NULL;
1011 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1012 // we have better subtarget support, enable the 16-bit LEA generation here.
1013 bool DisableLEA16 = true;
1014
Evan Cheng6b96ed32007-10-05 20:34:26 +00001015 unsigned MIOpc = MI->getOpcode();
1016 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001017 case X86::SHUFPSrri: {
1018 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1019 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1020
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 unsigned B = MI->getOperand(1).getReg();
1022 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001024 unsigned A = MI->getOperand(0).getReg();
1025 unsigned M = MI->getOperand(3).getImm();
Dan Gohman221a4372008-07-07 23:14:23 +00001026 NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001027 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 break;
1029 }
1030 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001031 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1033 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034 unsigned ShAmt = MI->getOperand(2).getImm();
1035 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001036
Dan Gohman221a4372008-07-07 23:14:23 +00001037 NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001038 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 break;
1040 }
1041 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001042 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1044 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 unsigned ShAmt = MI->getOperand(2).getImm();
1046 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001047
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001048 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1049 X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001050 NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001051 .addReg(0).addImm(1 << ShAmt)
1052 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 break;
1054 }
1055 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001056 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001057 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1058 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001059 unsigned ShAmt = MI->getOperand(2).getImm();
1060 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001061
Christopher Lamb380c6272007-08-10 21:18:25 +00001062 if (DisableLEA16) {
1063 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001064 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001065 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1066 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001067 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1068 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001069
Christopher Lamb8d226a22008-03-11 10:27:36 +00001070 // Build and insert into an implicit UNDEF value. This is OK because
1071 // well be shifting and then extracting the lower 16-bits.
Dan Gohman221a4372008-07-07 23:14:23 +00001072 BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1073 MachineInstr *InsMI = BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001074 .addReg(leaInReg).addReg(Src, false, false, isKill)
1075 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001076
Dan Gohman221a4372008-07-07 23:14:23 +00001077 NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001078 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001079
Dan Gohman221a4372008-07-07 23:14:23 +00001080 MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001081 .addReg(Dest, true, false, false, isDead)
1082 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Owen Andersonc6959722008-07-02 23:41:07 +00001083 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001084 // Update live variables
1085 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1086 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1087 if (isKill)
1088 LV->replaceKillInstruction(Src, MI, InsMI);
1089 if (isDead)
1090 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001091 }
Evan Chenge52c1912008-07-03 09:09:37 +00001092 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001093 } else {
Dan Gohman221a4372008-07-07 23:14:23 +00001094 NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001095 .addReg(0).addImm(1 << ShAmt)
1096 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001097 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 break;
1099 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001100 default: {
1101 // The following opcodes also sets the condition code register(s). Only
1102 // convert them to equivalent lea if the condition code register def's
1103 // are dead!
1104 if (hasLiveCondCodeDef(MI))
1105 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001106
Evan Chenga28a9562007-10-09 07:14:53 +00001107 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001108 switch (MIOpc) {
1109 default: return 0;
1110 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001111 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001112 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001113 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1114 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001115 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001116 .addReg(Dest, true, false, false, isDead),
1117 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001118 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001119 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001120 case X86::INC16r:
1121 case X86::INC64_16r:
1122 if (DisableLEA16) return 0;
1123 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001124 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001125 .addReg(Dest, true, false, false, isDead),
1126 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001127 break;
1128 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001129 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001130 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001131 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1132 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Dan Gohman221a4372008-07-07 23:14:23 +00001133 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001134 .addReg(Dest, true, false, false, isDead),
1135 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001136 break;
1137 }
1138 case X86::DEC16r:
1139 case X86::DEC64_16r:
1140 if (DisableLEA16) return 0;
1141 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Dan Gohman221a4372008-07-07 23:14:23 +00001142 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001143 .addReg(Dest, true, false, false, isDead),
1144 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 break;
1146 case X86::ADD64rr:
1147 case X86::ADD32rr: {
1148 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001149 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1150 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001151 unsigned Src2 = MI->getOperand(2).getReg();
1152 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001153 NewMI = addRegReg(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001154 .addReg(Dest, true, false, false, isDead),
1155 Src, isKill, Src2, isKill2);
1156 if (LV && isKill2)
1157 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001158 break;
1159 }
Evan Chenge52c1912008-07-03 09:09:37 +00001160 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001161 if (DisableLEA16) return 0;
1162 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001163 unsigned Src2 = MI->getOperand(2).getReg();
1164 bool isKill2 = MI->getOperand(2).isKill();
Dan Gohman221a4372008-07-07 23:14:23 +00001165 NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001166 .addReg(Dest, true, false, false, isDead),
1167 Src, isKill, Src2, isKill2);
1168 if (LV && isKill2)
1169 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001170 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001171 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001172 case X86::ADD64ri32:
1173 case X86::ADD64ri8:
1174 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001175 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001176 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001177 .addReg(Dest, true, false, false, isDead),
1178 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001179 break;
1180 case X86::ADD32ri:
1181 case X86::ADD32ri8:
1182 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001183 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001184 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Dan Gohman221a4372008-07-07 23:14:23 +00001185 NewMI = addRegOffset(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001186 .addReg(Dest, true, false, false, isDead),
1187 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001188 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001189 break;
1190 case X86::ADD16ri:
1191 case X86::ADD16ri8:
1192 if (DisableLEA16) return 0;
1193 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001194 if (MI->getOperand(2).isImm())
Dan Gohman221a4372008-07-07 23:14:23 +00001195 NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001196 .addReg(Dest, true, false, false, isDead),
1197 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001198 break;
1199 case X86::SHL16ri:
1200 if (DisableLEA16) return 0;
1201 case X86::SHL32ri:
1202 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001203 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001204 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001205 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1207 X86AddressMode AM;
1208 AM.Scale = 1 << ShAmt;
1209 AM.IndexReg = Src;
1210 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001211 : (MIOpc == X86::SHL32ri
1212 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Dan Gohman221a4372008-07-07 23:14:23 +00001213 NewMI = addFullAddress(BuildMI(MF, get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001214 .addReg(Dest, true, false, false, isDead), AM);
1215 if (isKill)
1216 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 }
1218 break;
1219 }
1220 }
1221 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 }
1223
Evan Chengc3cb24d2008-02-07 08:29:53 +00001224 if (!NewMI) return 0;
1225
Evan Chenge52c1912008-07-03 09:09:37 +00001226 if (LV) { // Update live variables
1227 if (isKill)
1228 LV->replaceKillInstruction(Src, MI, NewMI);
1229 if (isDead)
1230 LV->replaceKillInstruction(Dest, MI, NewMI);
1231 }
1232
Evan Cheng6b96ed32007-10-05 20:34:26 +00001233 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 return NewMI;
1235}
1236
1237/// commuteInstruction - We have a few instructions that must be hacked on to
1238/// commute them.
1239///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001240MachineInstr *
1241X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 switch (MI->getOpcode()) {
1243 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1244 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1245 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001246 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1247 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1248 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 unsigned Opc;
1250 unsigned Size;
1251 switch (MI->getOpcode()) {
1252 default: assert(0 && "Unreachable!");
1253 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1254 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1255 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1256 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001257 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1258 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001260 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001261 if (NewMI) {
1262 MachineFunction &MF = *MI->getParent()->getParent();
1263 MI = MF.CloneMachineInstr(MI);
1264 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001265 }
Dan Gohman921581d2008-10-17 01:23:35 +00001266 MI->setDesc(get(Opc));
1267 MI->getOperand(3).setImm(Size-Amt);
1268 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 }
Evan Cheng926658c2007-10-05 23:13:21 +00001270 case X86::CMOVB16rr:
1271 case X86::CMOVB32rr:
1272 case X86::CMOVB64rr:
1273 case X86::CMOVAE16rr:
1274 case X86::CMOVAE32rr:
1275 case X86::CMOVAE64rr:
1276 case X86::CMOVE16rr:
1277 case X86::CMOVE32rr:
1278 case X86::CMOVE64rr:
1279 case X86::CMOVNE16rr:
1280 case X86::CMOVNE32rr:
1281 case X86::CMOVNE64rr:
1282 case X86::CMOVBE16rr:
1283 case X86::CMOVBE32rr:
1284 case X86::CMOVBE64rr:
1285 case X86::CMOVA16rr:
1286 case X86::CMOVA32rr:
1287 case X86::CMOVA64rr:
1288 case X86::CMOVL16rr:
1289 case X86::CMOVL32rr:
1290 case X86::CMOVL64rr:
1291 case X86::CMOVGE16rr:
1292 case X86::CMOVGE32rr:
1293 case X86::CMOVGE64rr:
1294 case X86::CMOVLE16rr:
1295 case X86::CMOVLE32rr:
1296 case X86::CMOVLE64rr:
1297 case X86::CMOVG16rr:
1298 case X86::CMOVG32rr:
1299 case X86::CMOVG64rr:
1300 case X86::CMOVS16rr:
1301 case X86::CMOVS32rr:
1302 case X86::CMOVS64rr:
1303 case X86::CMOVNS16rr:
1304 case X86::CMOVNS32rr:
1305 case X86::CMOVNS64rr:
1306 case X86::CMOVP16rr:
1307 case X86::CMOVP32rr:
1308 case X86::CMOVP64rr:
1309 case X86::CMOVNP16rr:
1310 case X86::CMOVNP32rr:
1311 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001312 unsigned Opc = 0;
1313 switch (MI->getOpcode()) {
1314 default: break;
1315 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1316 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1317 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1318 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1319 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1320 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1321 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1322 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1323 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1324 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1325 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1326 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1327 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1328 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1329 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1330 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1331 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1332 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1333 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1334 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1335 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1336 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1337 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1338 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1339 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1340 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1341 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1342 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1343 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1344 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1345 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1346 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1347 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1348 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1349 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1350 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1351 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1352 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1353 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1354 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1355 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1356 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1357 }
Dan Gohman921581d2008-10-17 01:23:35 +00001358 if (NewMI) {
1359 MachineFunction &MF = *MI->getParent()->getParent();
1360 MI = MF.CloneMachineInstr(MI);
1361 NewMI = false;
1362 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001363 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001364 // Fallthrough intended.
1365 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001366 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001367 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 }
1369}
1370
1371static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1372 switch (BrOpc) {
1373 default: return X86::COND_INVALID;
1374 case X86::JE: return X86::COND_E;
1375 case X86::JNE: return X86::COND_NE;
1376 case X86::JL: return X86::COND_L;
1377 case X86::JLE: return X86::COND_LE;
1378 case X86::JG: return X86::COND_G;
1379 case X86::JGE: return X86::COND_GE;
1380 case X86::JB: return X86::COND_B;
1381 case X86::JBE: return X86::COND_BE;
1382 case X86::JA: return X86::COND_A;
1383 case X86::JAE: return X86::COND_AE;
1384 case X86::JS: return X86::COND_S;
1385 case X86::JNS: return X86::COND_NS;
1386 case X86::JP: return X86::COND_P;
1387 case X86::JNP: return X86::COND_NP;
1388 case X86::JO: return X86::COND_O;
1389 case X86::JNO: return X86::COND_NO;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001390 case X86::JC: return X86::COND_C;
1391 case X86::JNC: return X86::COND_NC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 }
1393}
1394
1395unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1396 switch (CC) {
1397 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001398 case X86::COND_E: return X86::JE;
1399 case X86::COND_NE: return X86::JNE;
1400 case X86::COND_L: return X86::JL;
1401 case X86::COND_LE: return X86::JLE;
1402 case X86::COND_G: return X86::JG;
1403 case X86::COND_GE: return X86::JGE;
1404 case X86::COND_B: return X86::JB;
1405 case X86::COND_BE: return X86::JBE;
1406 case X86::COND_A: return X86::JA;
1407 case X86::COND_AE: return X86::JAE;
1408 case X86::COND_S: return X86::JS;
1409 case X86::COND_NS: return X86::JNS;
1410 case X86::COND_P: return X86::JP;
1411 case X86::COND_NP: return X86::JNP;
1412 case X86::COND_O: return X86::JO;
1413 case X86::COND_NO: return X86::JNO;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001414 case X86::COND_C: return X86::JC;
1415 case X86::COND_NC: return X86::JNC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001416 }
1417}
1418
1419/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1420/// e.g. turning COND_E to COND_NE.
1421X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1422 switch (CC) {
1423 default: assert(0 && "Illegal condition code!");
1424 case X86::COND_E: return X86::COND_NE;
1425 case X86::COND_NE: return X86::COND_E;
1426 case X86::COND_L: return X86::COND_GE;
1427 case X86::COND_LE: return X86::COND_G;
1428 case X86::COND_G: return X86::COND_LE;
1429 case X86::COND_GE: return X86::COND_L;
1430 case X86::COND_B: return X86::COND_AE;
1431 case X86::COND_BE: return X86::COND_A;
1432 case X86::COND_A: return X86::COND_BE;
1433 case X86::COND_AE: return X86::COND_B;
1434 case X86::COND_S: return X86::COND_NS;
1435 case X86::COND_NS: return X86::COND_S;
1436 case X86::COND_P: return X86::COND_NP;
1437 case X86::COND_NP: return X86::COND_P;
1438 case X86::COND_O: return X86::COND_NO;
1439 case X86::COND_NO: return X86::COND_O;
Bill Wendlingd06b4202008-11-26 22:37:40 +00001440 case X86::COND_C: return X86::COND_NC;
1441 case X86::COND_NC: return X86::COND_C;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001442 }
1443}
1444
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001445bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001446 const TargetInstrDesc &TID = MI->getDesc();
1447 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001448
1449 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001450 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001451 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001452 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001453 return true;
1454 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001455}
1456
Evan Cheng12515792007-07-26 17:32:14 +00001457// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1458static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1459 const X86InstrInfo &TII) {
1460 if (MI->getOpcode() == X86::FP_REG_KILL)
1461 return false;
1462 return TII.isUnpredicatedTerminator(MI);
1463}
1464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001465bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1466 MachineBasicBlock *&TBB,
1467 MachineBasicBlock *&FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001468 SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001469 // Start from the bottom of the block and work up, examining the
1470 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001471 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001472 while (I != MBB.begin()) {
1473 --I;
1474 // Working from the bottom, when we see a non-terminator
1475 // instruction, we're done.
1476 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1477 break;
1478 // A terminator that isn't a branch can't easily be handled
1479 // by this analysis.
1480 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001481 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001482 // Handle unconditional branches.
1483 if (I->getOpcode() == X86::JMP) {
1484 // If the block has any instructions after a JMP, delete them.
1485 while (next(I) != MBB.end())
1486 next(I)->eraseFromParent();
1487 Cond.clear();
1488 FBB = 0;
1489 // Delete the JMP if it's equivalent to a fall-through.
1490 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1491 TBB = 0;
1492 I->eraseFromParent();
1493 I = MBB.end();
1494 continue;
1495 }
1496 // TBB is used to indicate the unconditinal destination.
1497 TBB = I->getOperand(0).getMBB();
1498 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001499 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001500 // Handle conditional branches.
1501 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 if (BranchCode == X86::COND_INVALID)
1503 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001504 // Working from the bottom, handle the first conditional branch.
1505 if (Cond.empty()) {
1506 FBB = TBB;
1507 TBB = I->getOperand(0).getMBB();
1508 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1509 continue;
1510 }
1511 // Handle subsequent conditional branches. Only handle the case
1512 // where all conditional branches branch to the same destination
1513 // and their condition opcodes fit one of the special
1514 // multi-branch idioms.
1515 assert(Cond.size() == 1);
1516 assert(TBB);
1517 // Only handle the case where all conditional branches branch to
1518 // the same destination.
1519 if (TBB != I->getOperand(0).getMBB())
1520 return true;
1521 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1522 // If the conditions are the same, we can leave them alone.
1523 if (OldBranchCode == BranchCode)
1524 continue;
1525 // If they differ, see if they fit one of the known patterns.
1526 // Theoretically we could handle more patterns here, but
1527 // we shouldn't expect to see them if instruction selection
1528 // has done a reasonable job.
1529 if ((OldBranchCode == X86::COND_NP &&
1530 BranchCode == X86::COND_E) ||
1531 (OldBranchCode == X86::COND_E &&
1532 BranchCode == X86::COND_NP))
1533 BranchCode = X86::COND_NP_OR_E;
1534 else if ((OldBranchCode == X86::COND_P &&
1535 BranchCode == X86::COND_NE) ||
1536 (OldBranchCode == X86::COND_NE &&
1537 BranchCode == X86::COND_P))
1538 BranchCode = X86::COND_NE_OR_P;
1539 else
1540 return true;
1541 // Update the MachineOperand.
1542 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001543 }
1544
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001545 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001546}
1547
1548unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1549 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001550 unsigned Count = 0;
1551
1552 while (I != MBB.begin()) {
1553 --I;
1554 if (I->getOpcode() != X86::JMP &&
1555 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1556 break;
1557 // Remove the branch.
1558 I->eraseFromParent();
1559 I = MBB.end();
1560 ++Count;
1561 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001563 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001564}
1565
Owen Anderson81875432008-01-01 21:11:32 +00001566static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001567 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001568 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001569 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001570 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001571 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001572 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001573 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001574 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001575 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001576 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001577 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001578 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001579 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001580 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001581 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001582 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1583 else
1584 assert(0 && "Unknown operand for X86InstrAddOperand!");
1585
1586 return MIB;
1587}
1588
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589unsigned
1590X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1591 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001592 const SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001593 // Shouldn't be a fall through.
1594 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1595 assert((Cond.size() == 1 || Cond.size() == 0) &&
1596 "X86 branch conditions have one component!");
1597
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001598 if (Cond.empty()) {
1599 // Unconditional branch?
1600 assert(!FBB && "Unconditional branch with multiple successors!");
1601 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602 return 1;
1603 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001604
1605 // Conditional branch.
1606 unsigned Count = 0;
1607 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1608 switch (CC) {
1609 case X86::COND_NP_OR_E:
1610 // Synthesize NP_OR_E with two branches.
1611 BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1612 ++Count;
1613 BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1614 ++Count;
1615 break;
1616 case X86::COND_NE_OR_P:
1617 // Synthesize NE_OR_P with two branches.
1618 BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1619 ++Count;
1620 BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1621 ++Count;
1622 break;
1623 default: {
1624 unsigned Opc = GetCondBranchFromCond(CC);
1625 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1626 ++Count;
1627 }
1628 }
1629 if (FBB) {
1630 // Two-way Conditional branch. Insert the second branch.
1631 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1632 ++Count;
1633 }
1634 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001635}
1636
Owen Anderson9fa72d92008-08-26 18:03:31 +00001637bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001638 MachineBasicBlock::iterator MI,
1639 unsigned DestReg, unsigned SrcReg,
1640 const TargetRegisterClass *DestRC,
1641 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001642 if (DestRC == SrcRC) {
1643 unsigned Opc;
1644 if (DestRC == &X86::GR64RegClass) {
1645 Opc = X86::MOV64rr;
1646 } else if (DestRC == &X86::GR32RegClass) {
1647 Opc = X86::MOV32rr;
1648 } else if (DestRC == &X86::GR16RegClass) {
1649 Opc = X86::MOV16rr;
1650 } else if (DestRC == &X86::GR8RegClass) {
1651 Opc = X86::MOV8rr;
1652 } else if (DestRC == &X86::GR32_RegClass) {
1653 Opc = X86::MOV32_rr;
1654 } else if (DestRC == &X86::GR16_RegClass) {
1655 Opc = X86::MOV16_rr;
1656 } else if (DestRC == &X86::RFP32RegClass) {
1657 Opc = X86::MOV_Fp3232;
1658 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1659 Opc = X86::MOV_Fp6464;
1660 } else if (DestRC == &X86::RFP80RegClass) {
1661 Opc = X86::MOV_Fp8080;
1662 } else if (DestRC == &X86::FR32RegClass) {
1663 Opc = X86::FsMOVAPSrr;
1664 } else if (DestRC == &X86::FR64RegClass) {
1665 Opc = X86::FsMOVAPDrr;
1666 } else if (DestRC == &X86::VR128RegClass) {
1667 Opc = X86::MOVAPSrr;
1668 } else if (DestRC == &X86::VR64RegClass) {
1669 Opc = X86::MMX_MOVQ64rr;
1670 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001671 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001672 }
Chris Lattner59707122008-03-09 07:58:04 +00001673 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001674 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001675 }
Chris Lattner59707122008-03-09 07:58:04 +00001676
1677 // Moving EFLAGS to / from another register requires a push and a pop.
1678 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001679 if (SrcReg != X86::EFLAGS)
1680 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001681 if (DestRC == &X86::GR64RegClass) {
1682 BuildMI(MBB, MI, get(X86::PUSHFQ));
1683 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001684 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001685 } else if (DestRC == &X86::GR32RegClass) {
1686 BuildMI(MBB, MI, get(X86::PUSHFD));
1687 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001688 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001689 }
1690 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001691 if (DestReg != X86::EFLAGS)
1692 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001693 if (SrcRC == &X86::GR64RegClass) {
1694 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1695 BuildMI(MBB, MI, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001696 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001697 } else if (SrcRC == &X86::GR32RegClass) {
1698 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1699 BuildMI(MBB, MI, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001700 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001701 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001702 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001703
Chris Lattner0d128722008-03-09 09:15:31 +00001704 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001705 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001706 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001707 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1708 // Can only copy from ST(0)/ST(1) right now
1709 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001710 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001711 unsigned Opc;
1712 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001713 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001714 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001715 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001716 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001717 if (DestRC != &X86::RFP80RegClass)
1718 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001719 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001720 }
1721 BuildMI(MBB, MI, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001722 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001723 }
Chris Lattner0d128722008-03-09 09:15:31 +00001724
1725 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1726 if (DestRC == &X86::RSTRegClass) {
1727 // Copying to ST(0). FIXME: handle ST(1) also
Owen Anderson9fa72d92008-08-26 18:03:31 +00001728 if (DestReg != X86::ST0)
1729 // Can only copy to TOS right now
1730 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001731 unsigned Opc;
1732 if (SrcRC == &X86::RFP32RegClass)
1733 Opc = X86::FpSET_ST0_32;
1734 else if (SrcRC == &X86::RFP64RegClass)
1735 Opc = X86::FpSET_ST0_64;
1736 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001737 if (SrcRC != &X86::RFP80RegClass)
1738 return false;
Chris Lattner0d128722008-03-09 09:15:31 +00001739 Opc = X86::FpSET_ST0_80;
1740 }
1741 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001742 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001743 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001744
Owen Anderson9fa72d92008-08-26 18:03:31 +00001745 // Not yet supported!
1746 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001747}
1748
Owen Anderson81875432008-01-01 21:11:32 +00001749static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001750 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001751 unsigned Opc = 0;
1752 if (RC == &X86::GR64RegClass) {
1753 Opc = X86::MOV64mr;
1754 } else if (RC == &X86::GR32RegClass) {
1755 Opc = X86::MOV32mr;
1756 } else if (RC == &X86::GR16RegClass) {
1757 Opc = X86::MOV16mr;
1758 } else if (RC == &X86::GR8RegClass) {
1759 Opc = X86::MOV8mr;
1760 } else if (RC == &X86::GR32_RegClass) {
1761 Opc = X86::MOV32_mr;
1762 } else if (RC == &X86::GR16_RegClass) {
1763 Opc = X86::MOV16_mr;
1764 } else if (RC == &X86::RFP80RegClass) {
1765 Opc = X86::ST_FpP80m; // pops
1766 } else if (RC == &X86::RFP64RegClass) {
1767 Opc = X86::ST_Fp64m;
1768 } else if (RC == &X86::RFP32RegClass) {
1769 Opc = X86::ST_Fp32m;
1770 } else if (RC == &X86::FR32RegClass) {
1771 Opc = X86::MOVSSmr;
1772 } else if (RC == &X86::FR64RegClass) {
1773 Opc = X86::MOVSDmr;
1774 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001775 // If stack is realigned we can use aligned stores.
1776 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001777 } else if (RC == &X86::VR64RegClass) {
1778 Opc = X86::MMX_MOVQ64mr;
1779 } else {
1780 assert(0 && "Unknown regclass");
1781 abort();
1782 }
1783
1784 return Opc;
1785}
1786
1787void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1788 MachineBasicBlock::iterator MI,
1789 unsigned SrcReg, bool isKill, int FrameIdx,
1790 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001791 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001792 bool isAligned = (RI.getStackAlignment() >= 16) ||
1793 RI.needsStackRealignment(MF);
1794 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001795 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1796 .addReg(SrcReg, false, false, isKill);
1797}
1798
1799void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1800 bool isKill,
1801 SmallVectorImpl<MachineOperand> &Addr,
1802 const TargetRegisterClass *RC,
1803 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001804 bool isAligned = (RI.getStackAlignment() >= 16) ||
1805 RI.needsStackRealignment(MF);
1806 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001807 MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001808 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1809 MIB = X86InstrAddOperand(MIB, Addr[i]);
1810 MIB.addReg(SrcReg, false, false, isKill);
1811 NewMIs.push_back(MIB);
1812}
1813
1814static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001815 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001816 unsigned Opc = 0;
1817 if (RC == &X86::GR64RegClass) {
1818 Opc = X86::MOV64rm;
1819 } else if (RC == &X86::GR32RegClass) {
1820 Opc = X86::MOV32rm;
1821 } else if (RC == &X86::GR16RegClass) {
1822 Opc = X86::MOV16rm;
1823 } else if (RC == &X86::GR8RegClass) {
1824 Opc = X86::MOV8rm;
1825 } else if (RC == &X86::GR32_RegClass) {
1826 Opc = X86::MOV32_rm;
1827 } else if (RC == &X86::GR16_RegClass) {
1828 Opc = X86::MOV16_rm;
1829 } else if (RC == &X86::RFP80RegClass) {
1830 Opc = X86::LD_Fp80m;
1831 } else if (RC == &X86::RFP64RegClass) {
1832 Opc = X86::LD_Fp64m;
1833 } else if (RC == &X86::RFP32RegClass) {
1834 Opc = X86::LD_Fp32m;
1835 } else if (RC == &X86::FR32RegClass) {
1836 Opc = X86::MOVSSrm;
1837 } else if (RC == &X86::FR64RegClass) {
1838 Opc = X86::MOVSDrm;
1839 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001840 // If stack is realigned we can use aligned loads.
1841 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001842 } else if (RC == &X86::VR64RegClass) {
1843 Opc = X86::MMX_MOVQ64rm;
1844 } else {
1845 assert(0 && "Unknown regclass");
1846 abort();
1847 }
1848
1849 return Opc;
1850}
1851
1852void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001853 MachineBasicBlock::iterator MI,
1854 unsigned DestReg, int FrameIdx,
1855 const TargetRegisterClass *RC) const{
1856 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001857 bool isAligned = (RI.getStackAlignment() >= 16) ||
1858 RI.needsStackRealignment(MF);
1859 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Owen Anderson81875432008-01-01 21:11:32 +00001860 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1861}
1862
1863void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001864 SmallVectorImpl<MachineOperand> &Addr,
1865 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001866 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001867 bool isAligned = (RI.getStackAlignment() >= 16) ||
1868 RI.needsStackRealignment(MF);
1869 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dan Gohman221a4372008-07-07 23:14:23 +00001870 MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001871 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1872 MIB = X86InstrAddOperand(MIB, Addr[i]);
1873 NewMIs.push_back(MIB);
1874}
1875
Owen Anderson6690c7f2008-01-04 23:57:37 +00001876bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001877 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001878 const std::vector<CalleeSavedInfo> &CSI) const {
1879 if (CSI.empty())
1880 return false;
1881
Evan Chengc275cf62008-09-26 19:14:21 +00001882 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001883 unsigned SlotSize = is64Bit ? 8 : 4;
1884
1885 MachineFunction &MF = *MBB.getParent();
1886 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1887 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1888
Owen Anderson6690c7f2008-01-04 23:57:37 +00001889 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1890 for (unsigned i = CSI.size(); i != 0; --i) {
1891 unsigned Reg = CSI[i-1].getReg();
1892 // Add the callee-saved register as live-in. It's killed at the spill.
1893 MBB.addLiveIn(Reg);
Dan Gohman4df0e362008-11-26 06:39:12 +00001894 BuildMI(MBB, MI, get(Opc))
1895 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001896 }
1897 return true;
1898}
1899
1900bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001901 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001902 const std::vector<CalleeSavedInfo> &CSI) const {
1903 if (CSI.empty())
1904 return false;
1905
1906 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1907
1908 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1909 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1910 unsigned Reg = CSI[i].getReg();
1911 BuildMI(MBB, MI, get(Opc), Reg);
1912 }
1913 return true;
1914}
1915
Dan Gohman221a4372008-07-07 23:14:23 +00001916static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001917 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001918 MachineInstr *MI, const TargetInstrInfo &TII) {
1919 // Create the base instruction with the memory operand as the first part.
Dan Gohman221a4372008-07-07 23:14:23 +00001920 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001921 MachineInstrBuilder MIB(NewMI);
1922 unsigned NumAddrOps = MOs.size();
1923 for (unsigned i = 0; i != NumAddrOps; ++i)
1924 MIB = X86InstrAddOperand(MIB, MOs[i]);
1925 if (NumAddrOps < 4) // FrameIndex only
1926 MIB.addImm(1).addReg(0).addImm(0);
1927
1928 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001929 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001930 for (unsigned i = 0; i != NumOps; ++i) {
1931 MachineOperand &MO = MI->getOperand(i+2);
1932 MIB = X86InstrAddOperand(MIB, MO);
1933 }
1934 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1935 MachineOperand &MO = MI->getOperand(i);
1936 MIB = X86InstrAddOperand(MIB, MO);
1937 }
1938 return MIB;
1939}
1940
Dan Gohman221a4372008-07-07 23:14:23 +00001941static MachineInstr *FuseInst(MachineFunction &MF,
1942 unsigned Opcode, unsigned OpNo,
Dan Gohman46b948e2008-10-16 01:49:15 +00001943 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001944 MachineInstr *MI, const TargetInstrInfo &TII) {
Dan Gohman221a4372008-07-07 23:14:23 +00001945 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001946 MachineInstrBuilder MIB(NewMI);
1947
1948 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1949 MachineOperand &MO = MI->getOperand(i);
1950 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001951 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00001952 unsigned NumAddrOps = MOs.size();
1953 for (unsigned i = 0; i != NumAddrOps; ++i)
1954 MIB = X86InstrAddOperand(MIB, MOs[i]);
1955 if (NumAddrOps < 4) // FrameIndex only
1956 MIB.addImm(1).addReg(0).addImm(0);
1957 } else {
1958 MIB = X86InstrAddOperand(MIB, MO);
1959 }
1960 }
1961 return MIB;
1962}
1963
1964static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman46b948e2008-10-16 01:49:15 +00001965 const SmallVector<MachineOperand,4> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001966 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00001967 MachineFunction &MF = *MI->getParent()->getParent();
1968 MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001969
1970 unsigned NumAddrOps = MOs.size();
1971 for (unsigned i = 0; i != NumAddrOps; ++i)
1972 MIB = X86InstrAddOperand(MIB, MOs[i]);
1973 if (NumAddrOps < 4) // FrameIndex only
1974 MIB.addImm(1).addReg(0).addImm(0);
1975 return MIB.addImm(0);
1976}
1977
1978MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00001979X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
1980 MachineInstr *MI, unsigned i,
1981 const SmallVector<MachineOperand,4> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00001982 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1983 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001984 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001985 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001986 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001987
1988 MachineInstr *NewMI = NULL;
1989 // Folding a memory location into the two-address part of a two-address
1990 // instruction is different than folding it other places. It requires
1991 // replacing the *two* registers with the memory location.
1992 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001993 MI->getOperand(0).isReg() &&
1994 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00001995 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1996 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1997 isTwoAddrFold = true;
1998 } else if (i == 0) { // If operand 0
1999 if (MI->getOpcode() == X86::MOV16r0)
2000 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2001 else if (MI->getOpcode() == X86::MOV32r0)
2002 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2003 else if (MI->getOpcode() == X86::MOV64r0)
2004 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2005 else if (MI->getOpcode() == X86::MOV8r0)
2006 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002007 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002009
2010 OpcodeTablePtr = &RegOp2MemOpTable0;
2011 } else if (i == 1) {
2012 OpcodeTablePtr = &RegOp2MemOpTable1;
2013 } else if (i == 2) {
2014 OpcodeTablePtr = &RegOp2MemOpTable2;
2015 }
2016
2017 // If table selected...
2018 if (OpcodeTablePtr) {
2019 // Find the Opcode to fuse
2020 DenseMap<unsigned*, unsigned>::iterator I =
2021 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2022 if (I != OpcodeTablePtr->end()) {
2023 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002024 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002025 else
Dan Gohman221a4372008-07-07 23:14:23 +00002026 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002027 return NewMI;
2028 }
2029 }
2030
2031 // No fusion
2032 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002033 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002034 return NULL;
2035}
2036
2037
Dan Gohmanedc83d62008-12-03 18:43:12 +00002038MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2039 MachineInstr *MI,
2040 const SmallVectorImpl<unsigned> &Ops,
2041 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002042 // Check switch flag
2043 if (NoFusing) return NULL;
2044
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002045 const MachineFrameInfo *MFI = MF.getFrameInfo();
2046 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2047 // FIXME: Move alignment requirement into tables?
2048 if (Alignment < 16) {
2049 switch (MI->getOpcode()) {
2050 default: break;
2051 // Not always safe to fold movsd into these instructions since their load
2052 // folding variants expects the address to be 16 byte aligned.
2053 case X86::FsANDNPDrr:
2054 case X86::FsANDNPSrr:
2055 case X86::FsANDPDrr:
2056 case X86::FsANDPSrr:
2057 case X86::FsORPDrr:
2058 case X86::FsORPSrr:
2059 case X86::FsXORPDrr:
2060 case X86::FsXORPSrr:
2061 return NULL;
2062 }
2063 }
2064
Owen Anderson9a184ef2008-01-07 01:35:02 +00002065 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2066 unsigned NewOpc = 0;
2067 switch (MI->getOpcode()) {
2068 default: return NULL;
2069 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2070 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2071 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2072 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2073 }
2074 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002075 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002076 MI->getOperand(1).ChangeToImmediate(0);
2077 } else if (Ops.size() != 1)
2078 return NULL;
2079
2080 SmallVector<MachineOperand,4> MOs;
2081 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002082 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002083}
2084
Dan Gohmanedc83d62008-12-03 18:43:12 +00002085MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2086 MachineInstr *MI,
2087 const SmallVectorImpl<unsigned> &Ops,
2088 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002089 // Check switch flag
2090 if (NoFusing) return NULL;
2091
Dan Gohmand0e8c752008-07-12 00:10:52 +00002092 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002093 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002094 if (LoadMI->hasOneMemOperand())
2095 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002096
2097 // FIXME: Move alignment requirement into tables?
2098 if (Alignment < 16) {
2099 switch (MI->getOpcode()) {
2100 default: break;
2101 // Not always safe to fold movsd into these instructions since their load
2102 // folding variants expects the address to be 16 byte aligned.
2103 case X86::FsANDNPDrr:
2104 case X86::FsANDNPSrr:
2105 case X86::FsANDPDrr:
2106 case X86::FsANDPSrr:
2107 case X86::FsORPDrr:
2108 case X86::FsORPSrr:
2109 case X86::FsXORPDrr:
2110 case X86::FsXORPSrr:
2111 return NULL;
2112 }
2113 }
2114
Owen Anderson9a184ef2008-01-07 01:35:02 +00002115 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2116 unsigned NewOpc = 0;
2117 switch (MI->getOpcode()) {
2118 default: return NULL;
2119 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2120 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2121 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2122 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2123 }
2124 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002125 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002126 MI->getOperand(1).ChangeToImmediate(0);
2127 } else if (Ops.size() != 1)
2128 return NULL;
2129
2130 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002131 if (LoadMI->getOpcode() == X86::V_SET0 ||
2132 LoadMI->getOpcode() == X86::V_SETALLONES) {
2133 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2134 // Create a constant-pool entry and operands to load from it.
2135
2136 // x86-32 PIC requires a PIC base register for constant pools.
2137 unsigned PICBase = 0;
2138 if (TM.getRelocationModel() == Reloc::PIC_ &&
2139 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002140 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2141 // This doesn't work for several reasons.
2142 // 1. GlobalBaseReg may have been spilled.
2143 // 2. It may not be live at MI.
2144 // 3. If this is used during register allocation / spilling, the spiller
2145 // must know not to spill GlobalBaseReg (which is a temporary nasty hack).
2146 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002147
2148 // Create a v4i32 constant-pool entry.
2149 MachineConstantPool &MCP = *MF.getConstantPool();
2150 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2151 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2152 ConstantVector::getNullValue(Ty) :
2153 ConstantVector::getAllOnesValue(Ty);
2154 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2155
2156 // Create operands to load from the constant pool entry.
2157 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2158 MOs.push_back(MachineOperand::CreateImm(1));
2159 MOs.push_back(MachineOperand::CreateReg(0, false));
2160 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2161 } else {
2162 // Folding a normal load. Just copy the load's address operands.
2163 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2164 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2165 MOs.push_back(LoadMI->getOperand(i));
2166 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002167 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002168}
2169
2170
Dan Gohman46b948e2008-10-16 01:49:15 +00002171bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2172 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002173 // Check switch flag
2174 if (NoFusing) return 0;
2175
2176 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2177 switch (MI->getOpcode()) {
2178 default: return false;
2179 case X86::TEST8rr:
2180 case X86::TEST16rr:
2181 case X86::TEST32rr:
2182 case X86::TEST64rr:
2183 return true;
2184 }
2185 }
2186
2187 if (Ops.size() != 1)
2188 return false;
2189
2190 unsigned OpNum = Ops[0];
2191 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002192 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002193 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002194 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002195
2196 // Folding a memory location into the two-address part of a two-address
2197 // instruction is different than folding it other places. It requires
2198 // replacing the *two* registers with the memory location.
2199 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2200 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2201 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2202 } else if (OpNum == 0) { // If operand 0
2203 switch (Opc) {
2204 case X86::MOV16r0:
2205 case X86::MOV32r0:
2206 case X86::MOV64r0:
2207 case X86::MOV8r0:
2208 return true;
2209 default: break;
2210 }
2211 OpcodeTablePtr = &RegOp2MemOpTable0;
2212 } else if (OpNum == 1) {
2213 OpcodeTablePtr = &RegOp2MemOpTable1;
2214 } else if (OpNum == 2) {
2215 OpcodeTablePtr = &RegOp2MemOpTable2;
2216 }
2217
2218 if (OpcodeTablePtr) {
2219 // Find the Opcode to fuse
2220 DenseMap<unsigned*, unsigned>::iterator I =
2221 OpcodeTablePtr->find((unsigned*)Opc);
2222 if (I != OpcodeTablePtr->end())
2223 return true;
2224 }
2225 return false;
2226}
2227
2228bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2229 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2230 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2231 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2232 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2233 if (I == MemOp2RegOpTable.end())
2234 return false;
2235 unsigned Opc = I->second.first;
2236 unsigned Index = I->second.second & 0xf;
2237 bool FoldedLoad = I->second.second & (1 << 4);
2238 bool FoldedStore = I->second.second & (1 << 5);
2239 if (UnfoldLoad && !FoldedLoad)
2240 return false;
2241 UnfoldLoad &= FoldedLoad;
2242 if (UnfoldStore && !FoldedStore)
2243 return false;
2244 UnfoldStore &= FoldedStore;
2245
Chris Lattner5b930372008-01-07 07:27:27 +00002246 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002247 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002248 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002249 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2250 SmallVector<MachineOperand,4> AddrOps;
2251 SmallVector<MachineOperand,2> BeforeOps;
2252 SmallVector<MachineOperand,2> AfterOps;
2253 SmallVector<MachineOperand,4> ImpOps;
2254 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2255 MachineOperand &Op = MI->getOperand(i);
2256 if (i >= Index && i < Index+4)
2257 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002258 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002259 ImpOps.push_back(Op);
2260 else if (i < Index)
2261 BeforeOps.push_back(Op);
2262 else if (i > Index)
2263 AfterOps.push_back(Op);
2264 }
2265
2266 // Emit the load instruction.
2267 if (UnfoldLoad) {
2268 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2269 if (UnfoldStore) {
2270 // Address operands cannot be marked isKill.
2271 for (unsigned i = 1; i != 5; ++i) {
2272 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002273 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002274 MO.setIsKill(false);
2275 }
2276 }
2277 }
2278
2279 // Emit the data processing instruction.
Dan Gohman221a4372008-07-07 23:14:23 +00002280 MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002281 MachineInstrBuilder MIB(DataMI);
2282
2283 if (FoldedStore)
2284 MIB.addReg(Reg, true);
2285 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2286 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2287 if (FoldedLoad)
2288 MIB.addReg(Reg);
2289 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2290 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2291 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2292 MachineOperand &MO = ImpOps[i];
2293 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2294 }
2295 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2296 unsigned NewOpc = 0;
2297 switch (DataMI->getOpcode()) {
2298 default: break;
2299 case X86::CMP64ri32:
2300 case X86::CMP32ri:
2301 case X86::CMP16ri:
2302 case X86::CMP8ri: {
2303 MachineOperand &MO0 = DataMI->getOperand(0);
2304 MachineOperand &MO1 = DataMI->getOperand(1);
2305 if (MO1.getImm() == 0) {
2306 switch (DataMI->getOpcode()) {
2307 default: break;
2308 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2309 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2310 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2311 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2312 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002313 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002314 MO1.ChangeToRegister(MO0.getReg(), false);
2315 }
2316 }
2317 }
2318 NewMIs.push_back(DataMI);
2319
2320 // Emit the store instruction.
2321 if (UnfoldStore) {
2322 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002323 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002324 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2325 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2326 }
2327
2328 return true;
2329}
2330
2331bool
2332X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2333 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002334 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002335 return false;
2336
2337 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002338 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002339 if (I == MemOp2RegOpTable.end())
2340 return false;
2341 unsigned Opc = I->second.first;
2342 unsigned Index = I->second.second & 0xf;
2343 bool FoldedLoad = I->second.second & (1 << 4);
2344 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002345 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002346 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002347 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002348 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002349 std::vector<SDValue> AddrOps;
2350 std::vector<SDValue> BeforeOps;
2351 std::vector<SDValue> AfterOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002352 unsigned NumOps = N->getNumOperands();
2353 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002354 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002355 if (i >= Index && i < Index+4)
2356 AddrOps.push_back(Op);
2357 else if (i < Index)
2358 BeforeOps.push_back(Op);
2359 else if (i > Index)
2360 AfterOps.push_back(Op);
2361 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002362 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002363 AddrOps.push_back(Chain);
2364
2365 // Emit the load instruction.
2366 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002367 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002368 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002369 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002370 bool isAligned = (RI.getStackAlignment() >= 16) ||
2371 RI.needsStackRealignment(MF);
2372 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002373 VT, MVT::Other,
2374 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002375 NewNodes.push_back(Load);
2376 }
2377
2378 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002379 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002380 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002381 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002382 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002383 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002384 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2385 VTs.push_back(*DstRC->vt_begin());
2386 }
2387 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002388 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002389 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002390 VTs.push_back(VT);
2391 }
2392 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002393 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002394 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2395 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2396 NewNodes.push_back(NewNode);
2397
2398 // Emit the store instruction.
2399 if (FoldedStore) {
2400 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002401 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002402 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002403 bool isAligned = (RI.getStackAlignment() >= 16) ||
2404 RI.needsStackRealignment(MF);
2405 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2406 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002407 NewNodes.push_back(Store);
2408 }
2409
2410 return true;
2411}
2412
2413unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2414 bool UnfoldLoad, bool UnfoldStore) const {
2415 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2416 MemOp2RegOpTable.find((unsigned*)Opc);
2417 if (I == MemOp2RegOpTable.end())
2418 return 0;
2419 bool FoldedLoad = I->second.second & (1 << 4);
2420 bool FoldedStore = I->second.second & (1 << 5);
2421 if (UnfoldLoad && !FoldedLoad)
2422 return 0;
2423 if (UnfoldStore && !FoldedStore)
2424 return 0;
2425 return I->second.first;
2426}
2427
Dan Gohman46b948e2008-10-16 01:49:15 +00002428bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002429 if (MBB.empty()) return false;
2430
2431 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002432 case X86::TCRETURNri:
2433 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002434 case X86::RET: // Return.
2435 case X86::RETI:
2436 case X86::TAILJMPd:
2437 case X86::TAILJMPr:
2438 case X86::TAILJMPm:
2439 case X86::JMP: // Uncond branch.
2440 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002441 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002442 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002443 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002444 return true;
2445 default: return false;
2446 }
2447}
2448
2449bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002450ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002452 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002453 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2454 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002455 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002456 return false;
2457}
2458
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002459bool X86InstrInfo::
2460IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2461 // FIXME: Ignore bariers of x87 stack registers for now. We can't
2462 // allow any loads of these registers before FpGet_ST0_80.
2463 return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2464 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2465}
2466
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002467const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2468 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2469 if (Subtarget->is64Bit())
2470 return &X86::GR64RegClass;
2471 else
2472 return &X86::GR32RegClass;
2473}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002474
2475unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2476 switch (Desc->TSFlags & X86II::ImmMask) {
2477 case X86II::Imm8: return 1;
2478 case X86II::Imm16: return 2;
2479 case X86II::Imm32: return 4;
2480 case X86II::Imm64: return 8;
2481 default: assert(0 && "Immediate size not set!");
2482 return 0;
2483 }
2484}
2485
2486/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2487/// e.g. r8, xmm8, etc.
2488bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002489 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002490 switch (MO.getReg()) {
2491 default: break;
2492 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2493 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2494 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2495 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2496 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2497 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2498 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2499 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2500 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2501 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2502 return true;
2503 }
2504 return false;
2505}
2506
2507
2508/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2509/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2510/// size, and 3) use of X86-64 extended registers.
2511unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2512 unsigned REX = 0;
2513 const TargetInstrDesc &Desc = MI.getDesc();
2514
2515 // Pseudo instructions do not need REX prefix byte.
2516 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2517 return 0;
2518 if (Desc.TSFlags & X86II::REX_W)
2519 REX |= 1 << 3;
2520
2521 unsigned NumOps = Desc.getNumOperands();
2522 if (NumOps) {
2523 bool isTwoAddr = NumOps > 1 &&
2524 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2525
2526 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2527 unsigned i = isTwoAddr ? 1 : 0;
2528 for (unsigned e = NumOps; i != e; ++i) {
2529 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002530 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002531 unsigned Reg = MO.getReg();
2532 if (isX86_64NonExtLowByteReg(Reg))
2533 REX |= 0x40;
2534 }
2535 }
2536
2537 switch (Desc.TSFlags & X86II::FormMask) {
2538 case X86II::MRMInitReg:
2539 if (isX86_64ExtendedReg(MI.getOperand(0)))
2540 REX |= (1 << 0) | (1 << 2);
2541 break;
2542 case X86II::MRMSrcReg: {
2543 if (isX86_64ExtendedReg(MI.getOperand(0)))
2544 REX |= 1 << 2;
2545 i = isTwoAddr ? 2 : 1;
2546 for (unsigned e = NumOps; i != e; ++i) {
2547 const MachineOperand& MO = MI.getOperand(i);
2548 if (isX86_64ExtendedReg(MO))
2549 REX |= 1 << 0;
2550 }
2551 break;
2552 }
2553 case X86II::MRMSrcMem: {
2554 if (isX86_64ExtendedReg(MI.getOperand(0)))
2555 REX |= 1 << 2;
2556 unsigned Bit = 0;
2557 i = isTwoAddr ? 2 : 1;
2558 for (; i != NumOps; ++i) {
2559 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002560 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002561 if (isX86_64ExtendedReg(MO))
2562 REX |= 1 << Bit;
2563 Bit++;
2564 }
2565 }
2566 break;
2567 }
2568 case X86II::MRM0m: case X86II::MRM1m:
2569 case X86II::MRM2m: case X86II::MRM3m:
2570 case X86II::MRM4m: case X86II::MRM5m:
2571 case X86II::MRM6m: case X86II::MRM7m:
2572 case X86II::MRMDestMem: {
2573 unsigned e = isTwoAddr ? 5 : 4;
2574 i = isTwoAddr ? 1 : 0;
2575 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2576 REX |= 1 << 2;
2577 unsigned Bit = 0;
2578 for (; i != e; ++i) {
2579 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002580 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002581 if (isX86_64ExtendedReg(MO))
2582 REX |= 1 << Bit;
2583 Bit++;
2584 }
2585 }
2586 break;
2587 }
2588 default: {
2589 if (isX86_64ExtendedReg(MI.getOperand(0)))
2590 REX |= 1 << 0;
2591 i = isTwoAddr ? 2 : 1;
2592 for (unsigned e = NumOps; i != e; ++i) {
2593 const MachineOperand& MO = MI.getOperand(i);
2594 if (isX86_64ExtendedReg(MO))
2595 REX |= 1 << 2;
2596 }
2597 break;
2598 }
2599 }
2600 }
2601 return REX;
2602}
2603
2604/// sizePCRelativeBlockAddress - This method returns the size of a PC
2605/// relative block address instruction
2606///
2607static unsigned sizePCRelativeBlockAddress() {
2608 return 4;
2609}
2610
2611/// sizeGlobalAddress - Give the size of the emission of this global address
2612///
2613static unsigned sizeGlobalAddress(bool dword) {
2614 return dword ? 8 : 4;
2615}
2616
2617/// sizeConstPoolAddress - Give the size of the emission of this constant
2618/// pool address
2619///
2620static unsigned sizeConstPoolAddress(bool dword) {
2621 return dword ? 8 : 4;
2622}
2623
2624/// sizeExternalSymbolAddress - Give the size of the emission of this external
2625/// symbol
2626///
2627static unsigned sizeExternalSymbolAddress(bool dword) {
2628 return dword ? 8 : 4;
2629}
2630
2631/// sizeJumpTableAddress - Give the size of the emission of this jump
2632/// table address
2633///
2634static unsigned sizeJumpTableAddress(bool dword) {
2635 return dword ? 8 : 4;
2636}
2637
2638static unsigned sizeConstant(unsigned Size) {
2639 return Size;
2640}
2641
2642static unsigned sizeRegModRMByte(){
2643 return 1;
2644}
2645
2646static unsigned sizeSIBByte(){
2647 return 1;
2648}
2649
2650static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2651 unsigned FinalSize = 0;
2652 // If this is a simple integer displacement that doesn't require a relocation.
2653 if (!RelocOp) {
2654 FinalSize += sizeConstant(4);
2655 return FinalSize;
2656 }
2657
2658 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002659 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002660 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002661 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002662 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002663 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002664 FinalSize += sizeJumpTableAddress(false);
2665 } else {
2666 assert(0 && "Unknown value to relocate!");
2667 }
2668 return FinalSize;
2669}
2670
2671static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2672 bool IsPIC, bool Is64BitMode) {
2673 const MachineOperand &Op3 = MI.getOperand(Op+3);
2674 int DispVal = 0;
2675 const MachineOperand *DispForReloc = 0;
2676 unsigned FinalSize = 0;
2677
2678 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002679 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002680 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002681 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002682 if (Is64BitMode || IsPIC) {
2683 DispForReloc = &Op3;
2684 } else {
2685 DispVal = 1;
2686 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002687 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002688 if (Is64BitMode || IsPIC) {
2689 DispForReloc = &Op3;
2690 } else {
2691 DispVal = 1;
2692 }
2693 } else {
2694 DispVal = 1;
2695 }
2696
2697 const MachineOperand &Base = MI.getOperand(Op);
2698 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2699
2700 unsigned BaseReg = Base.getReg();
2701
2702 // Is a SIB byte needed?
2703 if (IndexReg.getReg() == 0 &&
2704 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2705 if (BaseReg == 0) { // Just a displacement?
2706 // Emit special case [disp32] encoding
2707 ++FinalSize;
2708 FinalSize += getDisplacementFieldSize(DispForReloc);
2709 } else {
2710 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2711 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2712 // Emit simple indirect register encoding... [EAX] f.e.
2713 ++FinalSize;
2714 // Be pessimistic and assume it's a disp32, not a disp8
2715 } else {
2716 // Emit the most general non-SIB encoding: [REG+disp32]
2717 ++FinalSize;
2718 FinalSize += getDisplacementFieldSize(DispForReloc);
2719 }
2720 }
2721
2722 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2723 assert(IndexReg.getReg() != X86::ESP &&
2724 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2725
2726 bool ForceDisp32 = false;
2727 if (BaseReg == 0 || DispForReloc) {
2728 // Emit the normal disp32 encoding.
2729 ++FinalSize;
2730 ForceDisp32 = true;
2731 } else {
2732 ++FinalSize;
2733 }
2734
2735 FinalSize += sizeSIBByte();
2736
2737 // Do we need to output a displacement?
2738 if (DispVal != 0 || ForceDisp32) {
2739 FinalSize += getDisplacementFieldSize(DispForReloc);
2740 }
2741 }
2742 return FinalSize;
2743}
2744
2745
2746static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2747 const TargetInstrDesc *Desc,
2748 bool IsPIC, bool Is64BitMode) {
2749
2750 unsigned Opcode = Desc->Opcode;
2751 unsigned FinalSize = 0;
2752
2753 // Emit the lock opcode prefix as needed.
2754 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2755
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002756 // Emit segment overrid opcode prefix as needed.
2757 switch (Desc->TSFlags & X86II::SegOvrMask) {
2758 case X86II::FS:
2759 case X86II::GS:
2760 ++FinalSize;
2761 break;
2762 default: assert(0 && "Invalid segment!");
2763 case 0: break; // No segment override!
2764 }
2765
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002766 // Emit the repeat opcode prefix as needed.
2767 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2768
2769 // Emit the operand size opcode prefix as needed.
2770 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2771
2772 // Emit the address size opcode prefix as needed.
2773 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2774
2775 bool Need0FPrefix = false;
2776 switch (Desc->TSFlags & X86II::Op0Mask) {
2777 case X86II::TB: // Two-byte opcode prefix
2778 case X86II::T8: // 0F 38
2779 case X86II::TA: // 0F 3A
2780 Need0FPrefix = true;
2781 break;
2782 case X86II::REP: break; // already handled.
2783 case X86II::XS: // F3 0F
2784 ++FinalSize;
2785 Need0FPrefix = true;
2786 break;
2787 case X86II::XD: // F2 0F
2788 ++FinalSize;
2789 Need0FPrefix = true;
2790 break;
2791 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2792 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2793 ++FinalSize;
2794 break; // Two-byte opcode prefix
2795 default: assert(0 && "Invalid prefix!");
2796 case 0: break; // No prefix!
2797 }
2798
2799 if (Is64BitMode) {
2800 // REX prefix
2801 unsigned REX = X86InstrInfo::determineREX(MI);
2802 if (REX)
2803 ++FinalSize;
2804 }
2805
2806 // 0x0F escape code must be emitted just before the opcode.
2807 if (Need0FPrefix)
2808 ++FinalSize;
2809
2810 switch (Desc->TSFlags & X86II::Op0Mask) {
2811 case X86II::T8: // 0F 38
2812 ++FinalSize;
2813 break;
2814 case X86II::TA: // 0F 3A
2815 ++FinalSize;
2816 break;
2817 }
2818
2819 // If this is a two-address instruction, skip one of the register operands.
2820 unsigned NumOps = Desc->getNumOperands();
2821 unsigned CurOp = 0;
2822 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2823 CurOp++;
2824
2825 switch (Desc->TSFlags & X86II::FormMask) {
2826 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2827 case X86II::Pseudo:
2828 // Remember the current PC offset, this is the PIC relocation
2829 // base address.
2830 switch (Opcode) {
2831 default:
2832 break;
2833 case TargetInstrInfo::INLINEASM: {
2834 const MachineFunction *MF = MI.getParent()->getParent();
2835 const char *AsmStr = MI.getOperand(0).getSymbolName();
2836 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2837 FinalSize += AI->getInlineAsmLength(AsmStr);
2838 break;
2839 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002840 case TargetInstrInfo::DBG_LABEL:
2841 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002842 break;
2843 case TargetInstrInfo::IMPLICIT_DEF:
2844 case TargetInstrInfo::DECLARE:
2845 case X86::DWARF_LOC:
2846 case X86::FP_REG_KILL:
2847 break;
2848 case X86::MOVPC32r: {
2849 // This emits the "call" portion of this pseudo instruction.
2850 ++FinalSize;
2851 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2852 break;
2853 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002854 case X86::TLS_tp:
2855 case X86::TLS_gs_ri:
2856 FinalSize += 2;
2857 FinalSize += sizeGlobalAddress(false);
2858 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002859 }
2860 CurOp = NumOps;
2861 break;
2862 case X86II::RawFrm:
2863 ++FinalSize;
2864
2865 if (CurOp != NumOps) {
2866 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002867 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002868 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002869 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002870 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002871 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002872 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002873 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002874 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2875 } else {
2876 assert(0 && "Unknown RawFrm operand!");
2877 }
2878 }
2879 break;
2880
2881 case X86II::AddRegFrm:
2882 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002883 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002884
2885 if (CurOp != NumOps) {
2886 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2887 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002888 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002889 FinalSize += sizeConstant(Size);
2890 else {
2891 bool dword = false;
2892 if (Opcode == X86::MOV64ri)
2893 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002894 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002895 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002896 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002897 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002898 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002899 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002900 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002901 FinalSize += sizeJumpTableAddress(dword);
2902 }
2903 }
2904 break;
2905
2906 case X86II::MRMDestReg: {
2907 ++FinalSize;
2908 FinalSize += sizeRegModRMByte();
2909 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002910 if (CurOp != NumOps) {
2911 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002912 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002913 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002914 break;
2915 }
2916 case X86II::MRMDestMem: {
2917 ++FinalSize;
2918 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2919 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002920 if (CurOp != NumOps) {
2921 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002922 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002923 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002924 break;
2925 }
2926
2927 case X86II::MRMSrcReg:
2928 ++FinalSize;
2929 FinalSize += sizeRegModRMByte();
2930 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002931 if (CurOp != NumOps) {
2932 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002933 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002934 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002935 break;
2936
2937 case X86II::MRMSrcMem: {
2938
2939 ++FinalSize;
2940 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2941 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002942 if (CurOp != NumOps) {
2943 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002944 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002945 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002946 break;
2947 }
2948
2949 case X86II::MRM0r: case X86II::MRM1r:
2950 case X86II::MRM2r: case X86II::MRM3r:
2951 case X86II::MRM4r: case X86II::MRM5r:
2952 case X86II::MRM6r: case X86II::MRM7r:
2953 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002954 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002955 FinalSize += sizeRegModRMByte();
2956
2957 if (CurOp != NumOps) {
2958 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2959 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002960 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002961 FinalSize += sizeConstant(Size);
2962 else {
2963 bool dword = false;
2964 if (Opcode == X86::MOV64ri32)
2965 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002966 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002967 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002968 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002969 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002970 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002971 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002972 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002973 FinalSize += sizeJumpTableAddress(dword);
2974 }
2975 }
2976 break;
2977
2978 case X86II::MRM0m: case X86II::MRM1m:
2979 case X86II::MRM2m: case X86II::MRM3m:
2980 case X86II::MRM4m: case X86II::MRM5m:
2981 case X86II::MRM6m: case X86II::MRM7m: {
2982
2983 ++FinalSize;
2984 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2985 CurOp += 4;
2986
2987 if (CurOp != NumOps) {
2988 const MachineOperand &MO = MI.getOperand(CurOp++);
2989 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002990 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002991 FinalSize += sizeConstant(Size);
2992 else {
2993 bool dword = false;
2994 if (Opcode == X86::MOV64mi32)
2995 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002996 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002997 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002998 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002999 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003000 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003001 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003002 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003003 FinalSize += sizeJumpTableAddress(dword);
3004 }
3005 }
3006 break;
3007 }
3008
3009 case X86II::MRMInitReg:
3010 ++FinalSize;
3011 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3012 FinalSize += sizeRegModRMByte();
3013 ++CurOp;
3014 break;
3015 }
3016
3017 if (!Desc->isVariadic() && CurOp != NumOps) {
3018 cerr << "Cannot determine size: ";
3019 MI.dump();
3020 cerr << '\n';
3021 abort();
3022 }
3023
3024
3025 return FinalSize;
3026}
3027
3028
3029unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3030 const TargetInstrDesc &Desc = MI->getDesc();
3031 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003032 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003033 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3034 if (Desc.getOpcode() == X86::MOVPC32r) {
3035 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3036 }
3037 return Size;
3038}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003039
Dan Gohman882ab732008-09-30 00:58:23 +00003040/// getGlobalBaseReg - Return a virtual register initialized with the
3041/// the global base register value. Output instructions required to
3042/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003043///
Dan Gohman882ab732008-09-30 00:58:23 +00003044unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3045 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3046 "X86-64 PIC uses RIP relative addressing");
3047
3048 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3049 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3050 if (GlobalBaseReg != 0)
3051 return GlobalBaseReg;
3052
Dan Gohmanb60482f2008-09-23 18:22:58 +00003053 // Insert the set of GlobalBaseReg into the first MBB of the function
3054 MachineBasicBlock &FirstMBB = MF->front();
3055 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3056 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3057 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3058
3059 const TargetInstrInfo *TII = TM.getInstrInfo();
3060 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3061 // only used in JIT code emission as displacement to pc.
3062 BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3063
3064 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3065 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3066 if (TM.getRelocationModel() == Reloc::PIC_ &&
3067 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003068 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003069 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3070 BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3071 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003072 } else {
3073 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003074 }
3075
Dan Gohman882ab732008-09-30 00:58:23 +00003076 X86FI->setGlobalBaseReg(GlobalBaseReg);
3077 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003078}