blob: 562388e022b630cf8649422c69ce102ce4569019 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
Łukasz Langaa670fcc2013-01-18 13:31:53 +01008.. testsetup::
9
10 from math import fsum
Georg Brandl8ec7f652007-08-15 14:28:01 +000011
12This module is always available. It provides access to the mathematical
13functions defined by the C standard.
14
15These functions cannot be used with complex numbers; use the functions of the
16same name from the :mod:`cmath` module if you require support for complex
17numbers. The distinction between functions which support complex numbers and
18those which don't is made since most users do not want to learn quite as much
19mathematics as required to understand complex numbers. Receiving an exception
20instead of a complex result allows earlier detection of the unexpected complex
21number used as a parameter, so that the programmer can determine how and why it
22was generated in the first place.
23
24The following functions are provided by this module. Except when explicitly
25noted otherwise, all return values are floats.
26
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +000028Number-theoretic and representation functions
29---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000030
31.. function:: ceil(x)
32
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000033 Return the ceiling of *x* as a float, the smallest integer value greater than or
34 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000035
36
Christian Heimeseebb79c2008-01-03 22:32:26 +000037.. function:: copysign(x, y)
38
Mark Dickinson99e73f92010-04-06 19:50:03 +000039 Return *x* with the sign of *y*. On a platform that supports
40 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimeseebb79c2008-01-03 22:32:26 +000041
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000042 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000043
44
Georg Brandl8ec7f652007-08-15 14:28:01 +000045.. function:: fabs(x)
46
47 Return the absolute value of *x*.
48
Georg Brandl5da652e2008-06-18 09:28:22 +000049
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050.. function:: factorial(x)
51
Mark Dickinsonf88f7392008-06-18 09:20:17 +000052 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000053 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000054
Georg Brandl5da652e2008-06-18 09:28:22 +000055 .. versionadded:: 2.6
56
57
Georg Brandl8ec7f652007-08-15 14:28:01 +000058.. function:: floor(x)
59
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000060 Return the floor of *x* as a float, the largest integer value less than or equal
61 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000062
63
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7d854952009-02-19 05:51:41 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7d854952009-02-19 05:51:41 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson6b87f112009-11-24 14:27:02 +000093 0.9999999999999999
Raymond Hettinger7d854952009-02-19 05:51:41 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7d854952009-02-19 05:51:41 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Raymond Hettinger749e6d02009-02-19 06:55:03 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
105 <http://code.activestate.com/recipes/393090/>`_\.
106
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000107 .. versionadded:: 2.6
108
109
Christian Heimese2ca4242008-01-03 20:23:15 +0000110.. function:: isinf(x)
111
Mark Dickinson99e73f92010-04-06 19:50:03 +0000112 Check if the float *x* is positive or negative infinity.
Christian Heimese2ca4242008-01-03 20:23:15 +0000113
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000114 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000115
116
117.. function:: isnan(x)
118
Mark Dickinson99e73f92010-04-06 19:50:03 +0000119 Check if the float *x* is a NaN (not a number). For more information
120 on NaNs, see the IEEE 754 standards.
Christian Heimese2ca4242008-01-03 20:23:15 +0000121
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000122 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000123
124
Georg Brandl8ec7f652007-08-15 14:28:01 +0000125.. function:: ldexp(x, i)
126
127 Return ``x * (2**i)``. This is essentially the inverse of function
128 :func:`frexp`.
129
130
131.. function:: modf(x)
132
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000133 Return the fractional and integer parts of *x*. Both results carry the sign
Benjamin Peterson9de72982008-12-20 22:49:24 +0000134 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000135
Georg Brandl5da652e2008-06-18 09:28:22 +0000136
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000137.. function:: trunc(x)
138
Serhiy Storchakab33336f2013-10-13 23:09:00 +0300139 Return the :class:`~numbers.Real` value *x* truncated to an
140 :class:`~numbers.Integral` (usually a long integer). Uses the
141 ``__trunc__`` method.
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000142
143 .. versionadded:: 2.6
144
Georg Brandl5da652e2008-06-18 09:28:22 +0000145
Georg Brandl8ec7f652007-08-15 14:28:01 +0000146Note that :func:`frexp` and :func:`modf` have a different call/return pattern
147than their C equivalents: they take a single argument and return a pair of
148values, rather than returning their second return value through an 'output
149parameter' (there is no such thing in Python).
150
151For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
152floating-point numbers of sufficiently large magnitude are exact integers.
153Python floats typically carry no more than 53 bits of precision (the same as the
154platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
155necessarily has no fractional bits.
156
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000157
158Power and logarithmic functions
159-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160
Georg Brandl8ec7f652007-08-15 14:28:01 +0000161.. function:: exp(x)
162
163 Return ``e**x``.
164
165
Mark Dickinson9cae1782009-12-16 20:13:40 +0000166.. function:: expm1(x)
167
168 Return ``e**x - 1``. For small floats *x*, the subtraction in
169 ``exp(x) - 1`` can result in a significant loss of precision; the
170 :func:`expm1` function provides a way to compute this quantity to
171 full precision::
172
173 >>> from math import exp, expm1
174 >>> exp(1e-5) - 1 # gives result accurate to 11 places
175 1.0000050000069649e-05
176 >>> expm1(1e-5) # result accurate to full precision
177 1.0000050000166668e-05
178
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000179 .. versionadded:: 2.7
180
Mark Dickinson9cae1782009-12-16 20:13:40 +0000181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182.. function:: log(x[, base])
183
Georg Brandl018ad1c2009-09-01 07:53:37 +0000184 With one argument, return the natural logarithm of *x* (to base *e*).
185
186 With two arguments, return the logarithm of *x* to the given *base*,
187 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000188
189 .. versionchanged:: 2.3
190 *base* argument added.
191
192
Christian Heimes6f341092008-04-18 23:13:07 +0000193.. function:: log1p(x)
194
195 Return the natural logarithm of *1+x* (base *e*). The
196 result is calculated in a way which is accurate for *x* near zero.
197
198 .. versionadded:: 2.6
199
200
Georg Brandl8ec7f652007-08-15 14:28:01 +0000201.. function:: log10(x)
202
Georg Brandl018ad1c2009-09-01 07:53:37 +0000203 Return the base-10 logarithm of *x*. This is usually more accurate
204 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205
206
207.. function:: pow(x, y)
208
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000209 Return ``x`` raised to the power ``y``. Exceptional cases follow
210 Annex 'F' of the C99 standard as far as possible. In particular,
211 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
212 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
213 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
214 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000215
Ezio Melotti6a959a12013-02-23 04:53:44 +0200216 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
217 its arguments to type :class:`float`. Use ``**`` or the built-in
218 :func:`pow` function for computing exact integer powers.
219
Christian Heimes6f341092008-04-18 23:13:07 +0000220 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000221 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000222
223
224.. function:: sqrt(x)
225
226 Return the square root of *x*.
227
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000229Trigonometric functions
230-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000231
232.. function:: acos(x)
233
234 Return the arc cosine of *x*, in radians.
235
236
237.. function:: asin(x)
238
239 Return the arc sine of *x*, in radians.
240
241
242.. function:: atan(x)
243
244 Return the arc tangent of *x*, in radians.
245
246
247.. function:: atan2(y, x)
248
249 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
250 The vector in the plane from the origin to point ``(x, y)`` makes this angle
251 with the positive X axis. The point of :func:`atan2` is that the signs of both
252 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson99e73f92010-04-06 19:50:03 +0000253 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl8ec7f652007-08-15 14:28:01 +0000254 -1)`` is ``-3*pi/4``.
255
256
257.. function:: cos(x)
258
259 Return the cosine of *x* radians.
260
261
262.. function:: hypot(x, y)
263
264 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
265 from the origin to point ``(x, y)``.
266
267
268.. function:: sin(x)
269
270 Return the sine of *x* radians.
271
272
273.. function:: tan(x)
274
275 Return the tangent of *x* radians.
276
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000278Angular conversion
279------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000280
281.. function:: degrees(x)
282
283 Converts angle *x* from radians to degrees.
284
285
286.. function:: radians(x)
287
288 Converts angle *x* from degrees to radians.
289
Georg Brandl8ec7f652007-08-15 14:28:01 +0000290
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000291Hyperbolic functions
292--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000293
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000294.. function:: acosh(x)
295
296 Return the inverse hyperbolic cosine of *x*.
297
298 .. versionadded:: 2.6
299
300
301.. function:: asinh(x)
302
303 Return the inverse hyperbolic sine of *x*.
304
305 .. versionadded:: 2.6
306
307
308.. function:: atanh(x)
309
310 Return the inverse hyperbolic tangent of *x*.
311
312 .. versionadded:: 2.6
313
314
Georg Brandl8ec7f652007-08-15 14:28:01 +0000315.. function:: cosh(x)
316
317 Return the hyperbolic cosine of *x*.
318
319
320.. function:: sinh(x)
321
322 Return the hyperbolic sine of *x*.
323
324
325.. function:: tanh(x)
326
327 Return the hyperbolic tangent of *x*.
328
Christian Heimes6f341092008-04-18 23:13:07 +0000329
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000330Special functions
331-----------------
332
Mark Dickinson5ff37ae2009-12-19 11:07:23 +0000333.. function:: erf(x)
334
335 Return the error function at *x*.
336
337 .. versionadded:: 2.7
338
339
340.. function:: erfc(x)
341
342 Return the complementary error function at *x*.
343
344 .. versionadded:: 2.7
345
346
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000347.. function:: gamma(x)
348
349 Return the Gamma function at *x*.
350
351 .. versionadded:: 2.7
352
353
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000354.. function:: lgamma(x)
355
356 Return the natural logarithm of the absolute value of the Gamma
357 function at *x*.
358
359 .. versionadded:: 2.7
360
361
Benjamin Peterson4f6ec9d2008-12-20 02:51:26 +0000362Constants
363---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000364
Georg Brandl8ec7f652007-08-15 14:28:01 +0000365.. data:: pi
366
Mark Dickinson99e73f92010-04-06 19:50:03 +0000367 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000368
369
370.. data:: e
371
Mark Dickinson99e73f92010-04-06 19:50:03 +0000372 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000373
Christian Heimes6f341092008-04-18 23:13:07 +0000374
Georg Brandl6c14e582009-10-22 11:48:10 +0000375.. impl-detail::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000376
377 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson99e73f92010-04-06 19:50:03 +0000378 math library functions. Behavior in exceptional cases follows Annex F of
379 the C99 standard where appropriate. The current implementation will raise
380 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
381 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
382 and :exc:`OverflowError` for results that overflow (for example,
Mark Dickinsonad971d62010-04-06 22:18:23 +0000383 ``exp(1000.0)``). A NaN will not be returned from any of the functions
384 above unless one or more of the input arguments was a NaN; in that case,
385 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson99e73f92010-04-06 19:50:03 +0000386 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
387 ``hypot(float('nan'), float('inf'))``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000388
Mark Dickinsone07acb52010-04-06 22:10:55 +0000389 Note that Python makes no effort to distinguish signaling NaNs from
390 quiet NaNs, and behavior for signaling NaNs remains unspecified.
391 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes6f341092008-04-18 23:13:07 +0000392
Georg Brandl173b7392008-05-12 17:43:13 +0000393 .. versionchanged:: 2.6
Mark Dickinson99e73f92010-04-06 19:50:03 +0000394 Behavior in special cases now aims to follow C99 Annex F. In earlier
395 versions of Python the behavior in special cases was loosely specified.
Christian Heimes6f341092008-04-18 23:13:07 +0000396
Georg Brandl8ec7f652007-08-15 14:28:01 +0000397
398.. seealso::
399
400 Module :mod:`cmath`
401 Complex number versions of many of these functions.