blob: 697ae8770616d823eb272c84a830e43afd40f265 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedy4ba76b62012-01-13 23:41:31 -050038 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Mark Dickinson6b87f112009-11-24 14:27:02 +000039 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl8ec7f652007-08-15 14:28:01 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Mark Dickinson03335172010-11-07 11:29:03 +000060 >>> from decimal import *
Georg Brandl8ec7f652007-08-15 14:28:01 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000063 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000085trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
101:const:`Overflow`, and :const:`Underflow`.
102
103For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000112 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000113
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000114 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000115 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000116
Georg Brandlb19be572007-12-29 10:57:00 +0000117.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000118
119
120.. _decimal-tutorial:
121
122Quick-start Tutorial
123--------------------
124
125The usual start to using decimals is importing the module, viewing the current
126context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000127precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000128
129 >>> from decimal import *
130 >>> getcontext()
131 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000132 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
133 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000134
135 >>> getcontext().prec = 7 # Set a new precision
136
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000137Decimal instances can be constructed from integers, strings, floats, or tuples.
138Construction from an integer or a float performs an exact conversion of the
139value of that integer or float. Decimal numbers include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +0000140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000148 >>> Decimal(3.14)
149 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000152 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000153 Decimal('1.41421356237')
154 >>> Decimal(2) ** Decimal('0.5')
155 Decimal('1.414213562373095048801688724')
156 >>> Decimal('NaN')
157 Decimal('NaN')
158 >>> Decimal('-Infinity')
159 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160
161The significance of a new Decimal is determined solely by the number of digits
162input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000163operations.
164
165.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000166
167 >>> getcontext().prec = 6
168 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000173 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000174 >>> getcontext().rounding = ROUND_UP
175 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000176 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000177
178Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000179floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000180
Georg Brandl838b4b02008-03-22 13:07:06 +0000181.. doctest::
182 :options: +NORMALIZE_WHITESPACE
183
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
185 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000187 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000189 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000190 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
191 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000193 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000194 >>> a,b,c = data[:3]
195 >>> str(a)
196 '1.34'
197 >>> float(a)
Mark Dickinson6b87f112009-11-24 14:27:02 +0000198 1.34
Georg Brandl8ec7f652007-08-15 14:28:01 +0000199 >>> round(a, 1) # round() first converts to binary floating point
200 1.3
201 >>> int(a)
202 1
203 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000208 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000209
Georg Brandl9f662322008-03-22 11:47:10 +0000210And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000212 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000215 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000216 Decimal('2.718281828459045235360287471')
217 >>> Decimal('10').ln()
218 Decimal('2.302585092994045684017991455')
219 >>> Decimal('10').log10()
220 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000221
Georg Brandl8ec7f652007-08-15 14:28:01 +0000222The :meth:`quantize` method rounds a number to a fixed exponent. This method is
223useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000224places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000225
226 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000229 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000230
231As shown above, the :func:`getcontext` function accesses the current context and
232allows the settings to be changed. This approach meets the needs of most
233applications.
234
235For more advanced work, it may be useful to create alternate contexts using the
236Context() constructor. To make an alternate active, use the :func:`setcontext`
237function.
238
239In accordance with the standard, the :mod:`Decimal` module provides two ready to
240use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
241former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000242enabled:
243
244.. doctest:: newcontext
245 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000246
247 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
248 >>> setcontext(myothercontext)
249 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000250 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000251
252 >>> ExtendedContext
253 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
254 capitals=1, flags=[], traps=[])
255 >>> setcontext(ExtendedContext)
256 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000259 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000260
261 >>> setcontext(BasicContext)
262 >>> Decimal(42) / Decimal(0)
263 Traceback (most recent call last):
264 File "<pyshell#143>", line 1, in -toplevel-
265 Decimal(42) / Decimal(0)
266 DivisionByZero: x / 0
267
268Contexts also have signal flags for monitoring exceptional conditions
269encountered during computations. The flags remain set until explicitly cleared,
270so it is best to clear the flags before each set of monitored computations by
271using the :meth:`clear_flags` method. ::
272
273 >>> setcontext(ExtendedContext)
274 >>> getcontext().clear_flags()
275 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000276 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000277 >>> getcontext()
278 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000279 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000280
281The *flags* entry shows that the rational approximation to :const:`Pi` was
282rounded (digits beyond the context precision were thrown away) and that the
283result is inexact (some of the discarded digits were non-zero).
284
285Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000286context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000287
Georg Brandl9f662322008-03-22 11:47:10 +0000288.. doctest:: newcontext
289
290 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000292 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000293 >>> getcontext().traps[DivisionByZero] = 1
294 >>> Decimal(1) / Decimal(0)
295 Traceback (most recent call last):
296 File "<pyshell#112>", line 1, in -toplevel-
297 Decimal(1) / Decimal(0)
298 DivisionByZero: x / 0
299
300Most programs adjust the current context only once, at the beginning of the
301program. And, in many applications, data is converted to :class:`Decimal` with
302a single cast inside a loop. With context set and decimals created, the bulk of
303the program manipulates the data no differently than with other Python numeric
304types.
305
Georg Brandlb19be572007-12-29 10:57:00 +0000306.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000307
308
309.. _decimal-decimal:
310
311Decimal objects
312---------------
313
314
315.. class:: Decimal([value [, context]])
316
Georg Brandlb19be572007-12-29 10:57:00 +0000317 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000318
Raymond Hettingered171ab2010-04-02 18:39:24 +0000319 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000320 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000321 string, it should conform to the decimal numeric string syntax after leading
322 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324 sign ::= '+' | '-'
325 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
326 indicator ::= 'e' | 'E'
327 digits ::= digit [digit]...
328 decimal-part ::= digits '.' [digits] | ['.'] digits
329 exponent-part ::= indicator [sign] digits
330 infinity ::= 'Infinity' | 'Inf'
331 nan ::= 'NaN' [digits] | 'sNaN' [digits]
332 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000333 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000334
Mark Dickinson4326ad82009-08-02 10:59:36 +0000335 If *value* is a unicode string then other Unicode decimal digits
336 are also permitted where ``digit`` appears above. These include
337 decimal digits from various other alphabets (for example,
338 Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
339 ``u'\uff10'`` through ``u'\uff19'``.
340
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 If *value* is a :class:`tuple`, it should have three components, a sign
342 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
343 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000344 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000345
Raymond Hettingered171ab2010-04-02 18:39:24 +0000346 If *value* is a :class:`float`, the binary floating point value is losslessly
347 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000348 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
349 converts to
350 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettingered171ab2010-04-02 18:39:24 +0000351
Georg Brandl8ec7f652007-08-15 14:28:01 +0000352 The *context* precision does not affect how many digits are stored. That is
353 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000354 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000355 only three.
356
357 The purpose of the *context* argument is determining what to do if *value* is a
358 malformed string. If the context traps :const:`InvalidOperation`, an exception
359 is raised; otherwise, the constructor returns a new Decimal with the value of
360 :const:`NaN`.
361
362 Once constructed, :class:`Decimal` objects are immutable.
363
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000364 .. versionchanged:: 2.6
365 leading and trailing whitespace characters are permitted when
366 creating a Decimal instance from a string.
367
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000368 .. versionchanged:: 2.7
Ezio Melotti6f65d2d2010-04-04 23:21:53 +0000369 The argument to the constructor is now permitted to be a :class:`float` instance.
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000370
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000371 Decimal floating point objects share many properties with the other built-in
372 numeric types such as :class:`float` and :class:`int`. All of the usual math
373 operations and special methods apply. Likewise, decimal objects can be
374 copied, pickled, printed, used as dictionary keys, used as set elements,
375 compared, sorted, and coerced to another type (such as :class:`float` or
376 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000377
Mark Dickinson99d80962010-04-02 08:53:22 +0000378 Decimal objects cannot generally be combined with floats in
379 arithmetic operations: an attempt to add a :class:`Decimal` to a
380 :class:`float`, for example, will raise a :exc:`TypeError`.
381 There's one exception to this rule: it's possible to use Python's
382 comparison operators to compare a :class:`float` instance ``x``
383 with a :class:`Decimal` instance ``y``. Without this exception,
384 comparisons between :class:`Decimal` and :class:`float` instances
385 would follow the general rules for comparing objects of different
386 types described in the :ref:`expressions` section of the reference
387 manual, leading to confusing results.
388
389 .. versionchanged:: 2.7
390 A comparison between a :class:`float` instance ``x`` and a
391 :class:`Decimal` instance ``y`` now returns a result based on
392 the values of ``x`` and ``y``. In earlier versions ``x < y``
393 returned the same (arbitrary) result for any :class:`Decimal`
394 instance ``x`` and any :class:`float` instance ``y``.
395
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000396 In addition to the standard numeric properties, decimal floating point
397 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000398
399
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000400 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 Return the adjusted exponent after shifting out the coefficient's
403 rightmost digits until only the lead digit remains:
404 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
405 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000406
407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 Return a :term:`named tuple` representation of the number:
411 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000412
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000413 .. versionchanged:: 2.6
414 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000415
416
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000417 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000418
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000419 Return the canonical encoding of the argument. Currently, the encoding of
420 a :class:`Decimal` instance is always canonical, so this operation returns
421 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000422
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000423 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000424
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000425 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000426
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000427 Compare the values of two Decimal instances. This operation behaves in
428 the same way as the usual comparison method :meth:`__cmp__`, except that
429 :meth:`compare` returns a Decimal instance rather than an integer, and if
430 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 a or b is a NaN ==> Decimal('NaN')
433 a < b ==> Decimal('-1')
434 a == b ==> Decimal('0')
435 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000439 This operation is identical to the :meth:`compare` method, except that all
440 NaNs signal. That is, if neither operand is a signaling NaN then any
441 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000442
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000443 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000444
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000445 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000446
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000447 Compare two operands using their abstract representation rather than their
448 numerical value. Similar to the :meth:`compare` method, but the result
449 gives a total ordering on :class:`Decimal` instances. Two
450 :class:`Decimal` instances with the same numeric value but different
451 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000452
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000453 >>> Decimal('12.0').compare_total(Decimal('12'))
454 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Quiet and signaling NaNs are also included in the total ordering. The
457 result of this function is ``Decimal('0')`` if both operands have the same
458 representation, ``Decimal('-1')`` if the first operand is lower in the
459 total order than the second, and ``Decimal('1')`` if the first operand is
460 higher in the total order than the second operand. See the specification
461 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000464
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000465 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000466
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000467 Compare two operands using their abstract representation rather than their
468 value as in :meth:`compare_total`, but ignoring the sign of each operand.
469 ``x.compare_total_mag(y)`` is equivalent to
470 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000474 .. method:: conjugate()
475
476 Just returns self, this method is only to comply with the Decimal
477 Specification.
478
479 .. versionadded:: 2.6
480
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000481 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000482
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000483 Return the absolute value of the argument. This operation is unaffected
484 by the context and is quiet: no flags are changed and no rounding is
485 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000487 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000488
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000489 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000490
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000491 Return the negation of the argument. This operation is unaffected by the
492 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000493
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000494 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000495
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000496 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000497
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000498 Return a copy of the first operand with the sign set to be the same as the
499 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000500
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000501 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
502 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000503
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000504 This operation is unaffected by the context and is quiet: no flags are
505 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000506
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000507 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000508
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000509 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000510
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000511 Return the value of the (natural) exponential function ``e**x`` at the
512 given number. The result is correctly rounded using the
513 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(1).exp()
516 Decimal('2.718281828459045235360287471')
517 >>> Decimal(321).exp()
518 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000522 .. method:: from_float(f)
523
524 Classmethod that converts a float to a decimal number, exactly.
525
526 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
527 Since 0.1 is not exactly representable in binary floating point, the
528 value is stored as the nearest representable value which is
529 `0x1.999999999999ap-4`. That equivalent value in decimal is
530 `0.1000000000000000055511151231257827021181583404541015625`.
531
Mark Dickinsonb1affc52010-04-04 22:09:21 +0000532 .. note:: From Python 2.7 onwards, a :class:`Decimal` instance
533 can also be constructed directly from a :class:`float`.
534
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000535 .. doctest::
536
537 >>> Decimal.from_float(0.1)
538 Decimal('0.1000000000000000055511151231257827021181583404541015625')
539 >>> Decimal.from_float(float('nan'))
540 Decimal('NaN')
541 >>> Decimal.from_float(float('inf'))
542 Decimal('Infinity')
543 >>> Decimal.from_float(float('-inf'))
544 Decimal('-Infinity')
545
546 .. versionadded:: 2.7
547
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000548 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000549
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000550 Fused multiply-add. Return self*other+third with no rounding of the
551 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000552
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000553 >>> Decimal(2).fma(3, 5)
554 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000555
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000556 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000557
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000558 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000559
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000560 Return :const:`True` if the argument is canonical and :const:`False`
561 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
562 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 Return :const:`True` if the argument is a finite number, and
569 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 Return :const:`True` if the argument is either positive or negative
576 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 Return :const:`True` if the argument is a (quiet or signaling) NaN and
583 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000584
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000585 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000586
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000587 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000588
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000589 Return :const:`True` if the argument is a *normal* finite non-zero
590 number with an adjusted exponent greater than or equal to *Emin*.
591 Return :const:`False` if the argument is zero, subnormal, infinite or a
592 NaN. Note, the term *normal* is used here in a different sense with
593 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000598
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000599 Return :const:`True` if the argument is a quiet NaN, and
600 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000605
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000606 Return :const:`True` if the argument has a negative sign and
607 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000612
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000613 Return :const:`True` if the argument is a signaling NaN and :const:`False`
614 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000615
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000616 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000617
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000618 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000619
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000620 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000621 otherwise. A number is subnormal is if it is nonzero, finite, and has an
622 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000623
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000624 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000625
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000626 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000627
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000628 Return :const:`True` if the argument is a (positive or negative) zero and
629 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000630
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000631 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000635 Return the natural (base e) logarithm of the operand. The result is
636 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000637
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000638 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000639
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000640 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000641
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000642 Return the base ten logarithm of the operand. The result is correctly
643 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000646
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000647 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 For a nonzero number, return the adjusted exponent of its operand as a
650 :class:`Decimal` instance. If the operand is a zero then
651 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
652 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
653 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000654
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000655 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000656
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000657 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000658
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000659 :meth:`logical_and` is a logical operation which takes two *logical
660 operands* (see :ref:`logical_operands_label`). The result is the
661 digit-wise ``and`` of the two operands.
662
663 .. versionadded:: 2.6
664
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000665 .. method:: logical_invert([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000666
Georg Brandl3d5c87a2009-06-30 16:15:43 +0000667 :meth:`logical_invert` is a logical operation. The
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000668 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000669
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000670 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000673
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000674 :meth:`logical_or` is a logical operation which takes two *logical
675 operands* (see :ref:`logical_operands_label`). The result is the
676 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000677
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000678 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000679
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000680 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000681
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000682 :meth:`logical_xor` is a logical operation which takes two *logical
683 operands* (see :ref:`logical_operands_label`). The result is the
684 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000685
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000686 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000687
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000688 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000689
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000690 Like ``max(self, other)`` except that the context rounding rule is applied
691 before returning and that :const:`NaN` values are either signaled or
692 ignored (depending on the context and whether they are signaling or
693 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000696
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000697 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000698 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000699
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000700 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000703
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000704 Like ``min(self, other)`` except that the context rounding rule is applied
705 before returning and that :const:`NaN` values are either signaled or
706 ignored (depending on the context and whether they are signaling or
707 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000708
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000709 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000710
Georg Brandl9fa61bb2009-07-26 14:19:57 +0000711 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000712 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000713
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000714 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000715
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000716 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 Return the largest number representable in the given context (or in the
719 current thread's context if no context is given) that is smaller than the
720 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000721
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000722 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000723
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000724 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000725
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000726 Return the smallest number representable in the given context (or in the
727 current thread's context if no context is given) that is larger than the
728 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000729
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000730 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000731
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000732 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000733
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000734 If the two operands are unequal, return the number closest to the first
735 operand in the direction of the second operand. If both operands are
736 numerically equal, return a copy of the first operand with the sign set to
737 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000740
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000741 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000742
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000743 Normalize the number by stripping the rightmost trailing zeros and
744 converting any result equal to :const:`Decimal('0')` to
Senthil Kumaran6f18b982011-07-04 12:50:02 -0700745 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000746 of an equivalence class. For example, ``Decimal('32.100')`` and
747 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
748 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000749
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000750 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000751
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000752 Return a string describing the *class* of the operand. The returned value
753 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000754
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000755 * ``"-Infinity"``, indicating that the operand is negative infinity.
756 * ``"-Normal"``, indicating that the operand is a negative normal number.
757 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
758 * ``"-Zero"``, indicating that the operand is a negative zero.
759 * ``"+Zero"``, indicating that the operand is a positive zero.
760 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
761 * ``"+Normal"``, indicating that the operand is a positive normal number.
762 * ``"+Infinity"``, indicating that the operand is positive infinity.
763 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
764 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000765
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000769
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000770 Return a value equal to the first operand after rounding and having the
771 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000772
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000773 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
774 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000775
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000776 Unlike other operations, if the length of the coefficient after the
777 quantize operation would be greater than precision, then an
778 :const:`InvalidOperation` is signaled. This guarantees that, unless there
779 is an error condition, the quantized exponent is always equal to that of
780 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000781
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000782 Also unlike other operations, quantize never signals Underflow, even if
783 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000784
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000785 If the exponent of the second operand is larger than that of the first
786 then rounding may be necessary. In this case, the rounding mode is
787 determined by the ``rounding`` argument if given, else by the given
788 ``context`` argument; if neither argument is given the rounding mode of
789 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000790
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000791 If *watchexp* is set (default), then an error is returned whenever the
792 resulting exponent is greater than :attr:`Emax` or less than
793 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000796
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000797 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
798 class does all its arithmetic. Included for compatibility with the
799 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000802
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000803 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000804
Mark Dickinson89e8f542012-10-31 19:44:09 +0000805 Return the remainder from dividing *self* by *other*. This differs from
806 ``self % other`` in that the sign of the remainder is chosen so as to
807 minimize its absolute value. More precisely, the return value is
808 ``self - n * other`` where ``n`` is the integer nearest to the exact
809 value of ``self / other``, and if two integers are equally near then the
810 even one is chosen.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000811
Mark Dickinson89e8f542012-10-31 19:44:09 +0000812 If the result is zero then its sign will be the sign of *self*.
813
814 >>> Decimal(18).remainder_near(Decimal(10))
815 Decimal('-2')
816 >>> Decimal(25).remainder_near(Decimal(10))
817 Decimal('5')
818 >>> Decimal(35).remainder_near(Decimal(10))
819 Decimal('-5')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000820
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000821 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000822
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000823 Return the result of rotating the digits of the first operand by an amount
824 specified by the second operand. The second operand must be an integer in
825 the range -precision through precision. The absolute value of the second
826 operand gives the number of places to rotate. If the second operand is
827 positive then rotation is to the left; otherwise rotation is to the right.
828 The coefficient of the first operand is padded on the left with zeros to
829 length precision if necessary. The sign and exponent of the first operand
830 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000831
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000832 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000833
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000834 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000835
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000836 Test whether self and other have the same exponent or whether both are
837 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000838
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000839 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000840
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000841 Return the first operand with exponent adjusted by the second.
842 Equivalently, return the first operand multiplied by ``10**other``. The
843 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000844
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000845 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000846
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000847 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000848
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000849 Return the result of shifting the digits of the first operand by an amount
850 specified by the second operand. The second operand must be an integer in
851 the range -precision through precision. The absolute value of the second
852 operand gives the number of places to shift. If the second operand is
853 positive then the shift is to the left; otherwise the shift is to the
854 right. Digits shifted into the coefficient are zeros. The sign and
855 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000856
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000857 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000858
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000859 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000860
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000861 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000862
863
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000864 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000865
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000866 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000867
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000868 Engineering notation has an exponent which is a multiple of 3, so there
869 are up to 3 digits left of the decimal place. For example, converts
870 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000871
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000872 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000873
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000874 Identical to the :meth:`to_integral_value` method. The ``to_integral``
875 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000876
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000877 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000878
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000879 Round to the nearest integer, signaling :const:`Inexact` or
880 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
881 determined by the ``rounding`` parameter if given, else by the given
882 ``context``. If neither parameter is given then the rounding mode of the
883 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000884
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000885 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000886
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000887 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000888
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000889 Round to the nearest integer without signaling :const:`Inexact` or
890 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
891 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000892
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000893 .. versionchanged:: 2.6
894 renamed from ``to_integral`` to ``to_integral_value``. The old name
895 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000896
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000897.. _logical_operands_label:
898
899Logical operands
900^^^^^^^^^^^^^^^^
901
902The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
903and :meth:`logical_xor` methods expect their arguments to be *logical
904operands*. A *logical operand* is a :class:`Decimal` instance whose
905exponent and sign are both zero, and whose digits are all either
906:const:`0` or :const:`1`.
907
Georg Brandlb19be572007-12-29 10:57:00 +0000908.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000909
910
911.. _decimal-context:
912
913Context objects
914---------------
915
916Contexts are environments for arithmetic operations. They govern precision, set
917rules for rounding, determine which signals are treated as exceptions, and limit
918the range for exponents.
919
920Each thread has its own current context which is accessed or changed using the
921:func:`getcontext` and :func:`setcontext` functions:
922
923
924.. function:: getcontext()
925
926 Return the current context for the active thread.
927
928
929.. function:: setcontext(c)
930
931 Set the current context for the active thread to *c*.
932
933Beginning with Python 2.5, you can also use the :keyword:`with` statement and
934the :func:`localcontext` function to temporarily change the active context.
935
936
937.. function:: localcontext([c])
938
939 Return a context manager that will set the current context for the active thread
940 to a copy of *c* on entry to the with-statement and restore the previous context
941 when exiting the with-statement. If no context is specified, a copy of the
942 current context is used.
943
944 .. versionadded:: 2.5
945
946 For example, the following code sets the current decimal precision to 42 places,
947 performs a calculation, and then automatically restores the previous context::
948
Georg Brandl8ec7f652007-08-15 14:28:01 +0000949 from decimal import localcontext
950
951 with localcontext() as ctx:
952 ctx.prec = 42 # Perform a high precision calculation
953 s = calculate_something()
954 s = +s # Round the final result back to the default precision
955
Raymond Hettinger56f5c382012-05-11 12:50:11 -0700956 with localcontext(BasicContext): # temporarily use the BasicContext
957 print Decimal(1) / Decimal(7)
958 print Decimal(355) / Decimal(113)
959
Georg Brandl8ec7f652007-08-15 14:28:01 +0000960New contexts can also be created using the :class:`Context` constructor
961described below. In addition, the module provides three pre-made contexts:
962
963
964.. class:: BasicContext
965
966 This is a standard context defined by the General Decimal Arithmetic
967 Specification. Precision is set to nine. Rounding is set to
968 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
969 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
970 :const:`Subnormal`.
971
972 Because many of the traps are enabled, this context is useful for debugging.
973
974
975.. class:: ExtendedContext
976
977 This is a standard context defined by the General Decimal Arithmetic
978 Specification. Precision is set to nine. Rounding is set to
979 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
980 exceptions are not raised during computations).
981
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000982 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000983 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
984 raising exceptions. This allows an application to complete a run in the
985 presence of conditions that would otherwise halt the program.
986
987
988.. class:: DefaultContext
989
990 This context is used by the :class:`Context` constructor as a prototype for new
991 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Krah3d08d882010-05-29 12:54:35 +0000992 default for new contexts created by the :class:`Context` constructor.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000993
994 This context is most useful in multi-threaded environments. Changing one of the
995 fields before threads are started has the effect of setting system-wide
996 defaults. Changing the fields after threads have started is not recommended as
997 it would require thread synchronization to prevent race conditions.
998
999 In single threaded environments, it is preferable to not use this context at
1000 all. Instead, simply create contexts explicitly as described below.
1001
1002 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
1003 for Overflow, InvalidOperation, and DivisionByZero.
1004
1005In addition to the three supplied contexts, new contexts can be created with the
1006:class:`Context` constructor.
1007
1008
1009.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
1010
1011 Creates a new context. If a field is not specified or is :const:`None`, the
1012 default values are copied from the :const:`DefaultContext`. If the *flags*
1013 field is not specified or is :const:`None`, all flags are cleared.
1014
1015 The *prec* field is a positive integer that sets the precision for arithmetic
1016 operations in the context.
1017
1018 The *rounding* option is one of:
1019
1020 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
1021 * :const:`ROUND_DOWN` (towards zero),
1022 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
1023 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
1024 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
1025 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
1026 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001027 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001028 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001029
1030 The *traps* and *flags* fields list any signals to be set. Generally, new
1031 contexts should only set traps and leave the flags clear.
1032
1033 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
1034 for exponents.
1035
1036 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1037 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1038 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1039
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001040 .. versionchanged:: 2.6
1041 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001042
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001043 The :class:`Context` class defines several general purpose methods as well as
1044 a large number of methods for doing arithmetic directly in a given context.
1045 In addition, for each of the :class:`Decimal` methods described above (with
1046 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson6d8effb2010-02-18 14:27:02 +00001047 a corresponding :class:`Context` method. For example, for a :class:`Context`
1048 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1049 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
1050 Python integer (an instance of :class:`int` or :class:`long`) anywhere that a
1051 Decimal instance is accepted.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001052
1053
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001054 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001055
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001056 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001057
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001058 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001059
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001060 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001061
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001062 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001063
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001064 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001065
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001066 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001067
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001068 Creates a new Decimal instance from *num* but using *self* as
1069 context. Unlike the :class:`Decimal` constructor, the context precision,
1070 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001071
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001072 This is useful because constants are often given to a greater precision
1073 than is needed by the application. Another benefit is that rounding
1074 immediately eliminates unintended effects from digits beyond the current
1075 precision. In the following example, using unrounded inputs means that
1076 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001077
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001078 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001079
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001080 >>> getcontext().prec = 3
1081 >>> Decimal('3.4445') + Decimal('1.0023')
1082 Decimal('4.45')
1083 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1084 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001085
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001086 This method implements the to-number operation of the IBM specification.
1087 If the argument is a string, no leading or trailing whitespace is
1088 permitted.
1089
Georg Brandlaa5bb322009-01-03 19:44:48 +00001090 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001091
1092 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001093 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001094 the context precision, rounding method, flags, and traps are applied to
1095 the conversion.
1096
1097 .. doctest::
1098
Georg Brandlaa5bb322009-01-03 19:44:48 +00001099 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1100 >>> context.create_decimal_from_float(math.pi)
1101 Decimal('3.1415')
1102 >>> context = Context(prec=5, traps=[Inexact])
1103 >>> context.create_decimal_from_float(math.pi)
1104 Traceback (most recent call last):
1105 ...
1106 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001107
1108 .. versionadded:: 2.7
1109
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001110 .. method:: Etiny()
1111
1112 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1113 value for subnormal results. When underflow occurs, the exponent is set
1114 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001115
1116
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001117 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001118
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001119 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001120
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001121 The usual approach to working with decimals is to create :class:`Decimal`
1122 instances and then apply arithmetic operations which take place within the
1123 current context for the active thread. An alternative approach is to use
1124 context methods for calculating within a specific context. The methods are
1125 similar to those for the :class:`Decimal` class and are only briefly
1126 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001127
1128
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001129 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001130
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001131 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001132
1133
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001134 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001135
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001136 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001137
1138
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001139 .. method:: canonical(x)
1140
1141 Returns the same Decimal object *x*.
1142
1143
1144 .. method:: compare(x, y)
1145
1146 Compares *x* and *y* numerically.
1147
1148
1149 .. method:: compare_signal(x, y)
1150
1151 Compares the values of the two operands numerically.
1152
1153
1154 .. method:: compare_total(x, y)
1155
1156 Compares two operands using their abstract representation.
1157
1158
1159 .. method:: compare_total_mag(x, y)
1160
1161 Compares two operands using their abstract representation, ignoring sign.
1162
1163
1164 .. method:: copy_abs(x)
1165
1166 Returns a copy of *x* with the sign set to 0.
1167
1168
1169 .. method:: copy_negate(x)
1170
1171 Returns a copy of *x* with the sign inverted.
1172
1173
1174 .. method:: copy_sign(x, y)
1175
1176 Copies the sign from *y* to *x*.
1177
1178
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001179 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001180
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001181 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001182
1183
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001184 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001185
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001186 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001187
1188
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001189 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001190
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001191 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001192
1193
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001194 .. method:: exp(x)
1195
1196 Returns `e ** x`.
1197
1198
1199 .. method:: fma(x, y, z)
1200
1201 Returns *x* multiplied by *y*, plus *z*.
1202
1203
1204 .. method:: is_canonical(x)
1205
1206 Returns True if *x* is canonical; otherwise returns False.
1207
1208
1209 .. method:: is_finite(x)
1210
1211 Returns True if *x* is finite; otherwise returns False.
1212
1213
1214 .. method:: is_infinite(x)
1215
1216 Returns True if *x* is infinite; otherwise returns False.
1217
1218
1219 .. method:: is_nan(x)
1220
1221 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1222
1223
1224 .. method:: is_normal(x)
1225
1226 Returns True if *x* is a normal number; otherwise returns False.
1227
1228
1229 .. method:: is_qnan(x)
1230
1231 Returns True if *x* is a quiet NaN; otherwise returns False.
1232
1233
1234 .. method:: is_signed(x)
1235
1236 Returns True if *x* is negative; otherwise returns False.
1237
1238
1239 .. method:: is_snan(x)
1240
1241 Returns True if *x* is a signaling NaN; otherwise returns False.
1242
1243
1244 .. method:: is_subnormal(x)
1245
1246 Returns True if *x* is subnormal; otherwise returns False.
1247
1248
1249 .. method:: is_zero(x)
1250
1251 Returns True if *x* is a zero; otherwise returns False.
1252
1253
1254 .. method:: ln(x)
1255
1256 Returns the natural (base e) logarithm of *x*.
1257
1258
1259 .. method:: log10(x)
1260
1261 Returns the base 10 logarithm of *x*.
1262
1263
1264 .. method:: logb(x)
1265
1266 Returns the exponent of the magnitude of the operand's MSD.
1267
1268
1269 .. method:: logical_and(x, y)
1270
Georg Brandle92818f2009-01-03 20:47:01 +00001271 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001272
1273
1274 .. method:: logical_invert(x)
1275
1276 Invert all the digits in *x*.
1277
1278
1279 .. method:: logical_or(x, y)
1280
Georg Brandle92818f2009-01-03 20:47:01 +00001281 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001282
1283
1284 .. method:: logical_xor(x, y)
1285
Georg Brandle92818f2009-01-03 20:47:01 +00001286 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001287
1288
1289 .. method:: max(x, y)
1290
1291 Compares two values numerically and returns the maximum.
1292
1293
1294 .. method:: max_mag(x, y)
1295
1296 Compares the values numerically with their sign ignored.
1297
1298
1299 .. method:: min(x, y)
1300
1301 Compares two values numerically and returns the minimum.
1302
1303
1304 .. method:: min_mag(x, y)
1305
1306 Compares the values numerically with their sign ignored.
1307
1308
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001309 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001310
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001311 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001312
1313
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001314 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001315
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001316 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001317
1318
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001319 .. method:: next_minus(x)
1320
1321 Returns the largest representable number smaller than *x*.
1322
1323
1324 .. method:: next_plus(x)
1325
1326 Returns the smallest representable number larger than *x*.
1327
1328
1329 .. method:: next_toward(x, y)
1330
1331 Returns the number closest to *x*, in direction towards *y*.
1332
1333
1334 .. method:: normalize(x)
1335
1336 Reduces *x* to its simplest form.
1337
1338
1339 .. method:: number_class(x)
1340
1341 Returns an indication of the class of *x*.
1342
1343
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001344 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001345
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001346 Plus corresponds to the unary prefix plus operator in Python. This
1347 operation applies the context precision and rounding, so it is *not* an
1348 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001349
1350
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001351 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001352
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001353 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001354
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001355 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1356 must be integral. The result will be inexact unless ``y`` is integral and
1357 the result is finite and can be expressed exactly in 'precision' digits.
1358 The result should always be correctly rounded, using the rounding mode of
1359 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001360
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001361 With three arguments, compute ``(x**y) % modulo``. For the three argument
1362 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001363
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001364 - all three arguments must be integral
1365 - ``y`` must be nonnegative
1366 - at least one of ``x`` or ``y`` must be nonzero
1367 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001368
Mark Dickinsonf5be4e62010-02-22 15:40:28 +00001369 The value resulting from ``Context.power(x, y, modulo)`` is
1370 equal to the value that would be obtained by computing ``(x**y)
1371 % modulo`` with unbounded precision, but is computed more
1372 efficiently. The exponent of the result is zero, regardless of
1373 the exponents of ``x``, ``y`` and ``modulo``. The result is
1374 always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001375
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001376 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001377 ``y`` may now be nonintegral in ``x**y``.
1378 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001379
1380
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001381 .. method:: quantize(x, y)
1382
1383 Returns a value equal to *x* (rounded), having the exponent of *y*.
1384
1385
1386 .. method:: radix()
1387
1388 Just returns 10, as this is Decimal, :)
1389
1390
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001391 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001392
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001393 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001394
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001395 The sign of the result, if non-zero, is the same as that of the original
1396 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001397
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001398 .. method:: remainder_near(x, y)
1399
Georg Brandle92818f2009-01-03 20:47:01 +00001400 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1401 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001402
1403
1404 .. method:: rotate(x, y)
1405
1406 Returns a rotated copy of *x*, *y* times.
1407
1408
1409 .. method:: same_quantum(x, y)
1410
1411 Returns True if the two operands have the same exponent.
1412
1413
1414 .. method:: scaleb (x, y)
1415
1416 Returns the first operand after adding the second value its exp.
1417
1418
1419 .. method:: shift(x, y)
1420
1421 Returns a shifted copy of *x*, *y* times.
1422
1423
1424 .. method:: sqrt(x)
1425
1426 Square root of a non-negative number to context precision.
1427
1428
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001429 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001430
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001431 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001432
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001433
1434 .. method:: to_eng_string(x)
1435
1436 Converts a number to a string, using scientific notation.
1437
1438
1439 .. method:: to_integral_exact(x)
1440
1441 Rounds to an integer.
1442
1443
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001444 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001445
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001446 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001447
Georg Brandlb19be572007-12-29 10:57:00 +00001448.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001449
1450
1451.. _decimal-signals:
1452
1453Signals
1454-------
1455
1456Signals represent conditions that arise during computation. Each corresponds to
1457one context flag and one context trap enabler.
1458
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001459The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001460computation, flags may be checked for informational purposes (for instance, to
1461determine whether a computation was exact). After checking the flags, be sure to
1462clear all flags before starting the next computation.
1463
1464If the context's trap enabler is set for the signal, then the condition causes a
1465Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1466is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1467condition.
1468
1469
1470.. class:: Clamped
1471
1472 Altered an exponent to fit representation constraints.
1473
1474 Typically, clamping occurs when an exponent falls outside the context's
1475 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001476 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001477
1478
1479.. class:: DecimalException
1480
1481 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1482
1483
1484.. class:: DivisionByZero
1485
1486 Signals the division of a non-infinite number by zero.
1487
1488 Can occur with division, modulo division, or when raising a number to a negative
1489 power. If this signal is not trapped, returns :const:`Infinity` or
1490 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1491
1492
1493.. class:: Inexact
1494
1495 Indicates that rounding occurred and the result is not exact.
1496
1497 Signals when non-zero digits were discarded during rounding. The rounded result
1498 is returned. The signal flag or trap is used to detect when results are
1499 inexact.
1500
1501
1502.. class:: InvalidOperation
1503
1504 An invalid operation was performed.
1505
1506 Indicates that an operation was requested that does not make sense. If not
1507 trapped, returns :const:`NaN`. Possible causes include::
1508
1509 Infinity - Infinity
1510 0 * Infinity
1511 Infinity / Infinity
1512 x % 0
1513 Infinity % x
1514 x._rescale( non-integer )
1515 sqrt(-x) and x > 0
1516 0 ** 0
1517 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001518 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001519
1520
1521.. class:: Overflow
1522
1523 Numerical overflow.
1524
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001525 Indicates the exponent is larger than :attr:`Emax` after rounding has
1526 occurred. If not trapped, the result depends on the rounding mode, either
1527 pulling inward to the largest representable finite number or rounding outward
1528 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1529 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001530
1531
1532.. class:: Rounded
1533
1534 Rounding occurred though possibly no information was lost.
1535
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001536 Signaled whenever rounding discards digits; even if those digits are zero
1537 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1538 the result unchanged. This signal is used to detect loss of significant
1539 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001540
1541
1542.. class:: Subnormal
1543
1544 Exponent was lower than :attr:`Emin` prior to rounding.
1545
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001546 Occurs when an operation result is subnormal (the exponent is too small). If
1547 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001548
1549
1550.. class:: Underflow
1551
1552 Numerical underflow with result rounded to zero.
1553
1554 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1555 and :class:`Subnormal` are also signaled.
1556
1557The following table summarizes the hierarchy of signals::
1558
1559 exceptions.ArithmeticError(exceptions.StandardError)
1560 DecimalException
1561 Clamped
1562 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1563 Inexact
1564 Overflow(Inexact, Rounded)
1565 Underflow(Inexact, Rounded, Subnormal)
1566 InvalidOperation
1567 Rounded
1568 Subnormal
1569
Georg Brandlb19be572007-12-29 10:57:00 +00001570.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001571
1572
1573.. _decimal-notes:
1574
1575Floating Point Notes
1576--------------------
1577
1578
1579Mitigating round-off error with increased precision
1580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1581
1582The use of decimal floating point eliminates decimal representation error
1583(making it possible to represent :const:`0.1` exactly); however, some operations
1584can still incur round-off error when non-zero digits exceed the fixed precision.
1585
1586The effects of round-off error can be amplified by the addition or subtraction
1587of nearly offsetting quantities resulting in loss of significance. Knuth
1588provides two instructive examples where rounded floating point arithmetic with
1589insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001590properties of addition:
1591
1592.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001593
1594 # Examples from Seminumerical Algorithms, Section 4.2.2.
1595 >>> from decimal import Decimal, getcontext
1596 >>> getcontext().prec = 8
1597
1598 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1599 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001600 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001601 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001602 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001603
1604 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1605 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001606 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001607 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001608 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001609
1610The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001611expanding the precision sufficiently to avoid loss of significance:
1612
1613.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001614
1615 >>> getcontext().prec = 20
1616 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1617 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001618 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001619 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001620 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001621 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001622 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1623 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001624 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001625 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001626 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001627
1628
1629Special values
1630^^^^^^^^^^^^^^
1631
1632The number system for the :mod:`decimal` module provides special values
1633including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001634and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001635
1636Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1637they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1638not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1639can result from rounding beyond the limits of the largest representable number.
1640
1641The infinities are signed (affine) and can be used in arithmetic operations
1642where they get treated as very large, indeterminate numbers. For instance,
1643adding a constant to infinity gives another infinite result.
1644
1645Some operations are indeterminate and return :const:`NaN`, or if the
1646:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1647``0/0`` returns :const:`NaN` which means "not a number". This variety of
1648:const:`NaN` is quiet and, once created, will flow through other computations
1649always resulting in another :const:`NaN`. This behavior can be useful for a
1650series of computations that occasionally have missing inputs --- it allows the
1651calculation to proceed while flagging specific results as invalid.
1652
1653A variant is :const:`sNaN` which signals rather than remaining quiet after every
1654operation. This is a useful return value when an invalid result needs to
1655interrupt a calculation for special handling.
1656
Mark Dickinson2fc92632008-02-06 22:10:50 +00001657The behavior of Python's comparison operators can be a little surprising where a
1658:const:`NaN` is involved. A test for equality where one of the operands is a
1659quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1660``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001661:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001662``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1663if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001664not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001665specify the behavior of direct comparisons; these rules for comparisons
1666involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1667section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001668and :meth:`compare-signal` methods instead.
1669
Georg Brandl8ec7f652007-08-15 14:28:01 +00001670The signed zeros can result from calculations that underflow. They keep the sign
1671that would have resulted if the calculation had been carried out to greater
1672precision. Since their magnitude is zero, both positive and negative zeros are
1673treated as equal and their sign is informational.
1674
1675In addition to the two signed zeros which are distinct yet equal, there are
1676various representations of zero with differing precisions yet equivalent in
1677value. This takes a bit of getting used to. For an eye accustomed to
1678normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001679the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001680
1681 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001682 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001683
Georg Brandlb19be572007-12-29 10:57:00 +00001684.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001685
1686
1687.. _decimal-threads:
1688
1689Working with threads
1690--------------------
1691
1692The :func:`getcontext` function accesses a different :class:`Context` object for
1693each thread. Having separate thread contexts means that threads may make
1694changes (such as ``getcontext.prec=10``) without interfering with other threads.
1695
1696Likewise, the :func:`setcontext` function automatically assigns its target to
1697the current thread.
1698
1699If :func:`setcontext` has not been called before :func:`getcontext`, then
1700:func:`getcontext` will automatically create a new context for use in the
1701current thread.
1702
1703The new context is copied from a prototype context called *DefaultContext*. To
1704control the defaults so that each thread will use the same values throughout the
1705application, directly modify the *DefaultContext* object. This should be done
1706*before* any threads are started so that there won't be a race condition between
1707threads calling :func:`getcontext`. For example::
1708
1709 # Set applicationwide defaults for all threads about to be launched
1710 DefaultContext.prec = 12
1711 DefaultContext.rounding = ROUND_DOWN
1712 DefaultContext.traps = ExtendedContext.traps.copy()
1713 DefaultContext.traps[InvalidOperation] = 1
1714 setcontext(DefaultContext)
1715
1716 # Afterwards, the threads can be started
1717 t1.start()
1718 t2.start()
1719 t3.start()
1720 . . .
1721
Georg Brandlb19be572007-12-29 10:57:00 +00001722.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001723
1724
1725.. _decimal-recipes:
1726
1727Recipes
1728-------
1729
1730Here are a few recipes that serve as utility functions and that demonstrate ways
1731to work with the :class:`Decimal` class::
1732
1733 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1734 pos='', neg='-', trailneg=''):
1735 """Convert Decimal to a money formatted string.
1736
1737 places: required number of places after the decimal point
1738 curr: optional currency symbol before the sign (may be blank)
1739 sep: optional grouping separator (comma, period, space, or blank)
1740 dp: decimal point indicator (comma or period)
1741 only specify as blank when places is zero
1742 pos: optional sign for positive numbers: '+', space or blank
1743 neg: optional sign for negative numbers: '-', '(', space or blank
1744 trailneg:optional trailing minus indicator: '-', ')', space or blank
1745
1746 >>> d = Decimal('-1234567.8901')
1747 >>> moneyfmt(d, curr='$')
1748 '-$1,234,567.89'
1749 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1750 '1.234.568-'
1751 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1752 '($1,234,567.89)'
1753 >>> moneyfmt(Decimal(123456789), sep=' ')
1754 '123 456 789.00'
1755 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001756 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001757
1758 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001759 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001760 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001761 result = []
1762 digits = map(str, digits)
1763 build, next = result.append, digits.pop
1764 if sign:
1765 build(trailneg)
1766 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001767 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001768 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001769 if not digits:
1770 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001771 i = 0
1772 while digits:
1773 build(next())
1774 i += 1
1775 if i == 3 and digits:
1776 i = 0
1777 build(sep)
1778 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001779 build(neg if sign else pos)
1780 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001781
1782 def pi():
1783 """Compute Pi to the current precision.
1784
1785 >>> print pi()
1786 3.141592653589793238462643383
1787
1788 """
1789 getcontext().prec += 2 # extra digits for intermediate steps
1790 three = Decimal(3) # substitute "three=3.0" for regular floats
1791 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1792 while s != lasts:
1793 lasts = s
1794 n, na = n+na, na+8
1795 d, da = d+da, da+32
1796 t = (t * n) / d
1797 s += t
1798 getcontext().prec -= 2
1799 return +s # unary plus applies the new precision
1800
1801 def exp(x):
1802 """Return e raised to the power of x. Result type matches input type.
1803
1804 >>> print exp(Decimal(1))
1805 2.718281828459045235360287471
1806 >>> print exp(Decimal(2))
1807 7.389056098930650227230427461
1808 >>> print exp(2.0)
1809 7.38905609893
1810 >>> print exp(2+0j)
1811 (7.38905609893+0j)
1812
1813 """
1814 getcontext().prec += 2
1815 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1816 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001817 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001818 i += 1
1819 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001820 num *= x
1821 s += num / fact
1822 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001823 return +s
1824
1825 def cos(x):
1826 """Return the cosine of x as measured in radians.
1827
1828 >>> print cos(Decimal('0.5'))
1829 0.8775825618903727161162815826
1830 >>> print cos(0.5)
1831 0.87758256189
1832 >>> print cos(0.5+0j)
1833 (0.87758256189+0j)
1834
1835 """
1836 getcontext().prec += 2
1837 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1838 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001839 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001840 i += 2
1841 fact *= i * (i-1)
1842 num *= x * x
1843 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001844 s += num / fact * sign
1845 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001846 return +s
1847
1848 def sin(x):
1849 """Return the sine of x as measured in radians.
1850
1851 >>> print sin(Decimal('0.5'))
1852 0.4794255386042030002732879352
1853 >>> print sin(0.5)
1854 0.479425538604
1855 >>> print sin(0.5+0j)
1856 (0.479425538604+0j)
1857
1858 """
1859 getcontext().prec += 2
1860 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1861 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001862 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001863 i += 2
1864 fact *= i * (i-1)
1865 num *= x * x
1866 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001867 s += num / fact * sign
1868 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001869 return +s
1870
1871
Georg Brandlb19be572007-12-29 10:57:00 +00001872.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001873
1874
1875.. _decimal-faq:
1876
1877Decimal FAQ
1878-----------
1879
1880Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1881minimize typing when using the interactive interpreter?
1882
Georg Brandl9f662322008-03-22 11:47:10 +00001883A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001884
1885 >>> D = decimal.Decimal
1886 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001887 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001888
1889Q. In a fixed-point application with two decimal places, some inputs have many
1890places and need to be rounded. Others are not supposed to have excess digits
1891and need to be validated. What methods should be used?
1892
1893A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001894the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001895
1896 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1897
1898 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001899 >>> Decimal('3.214').quantize(TWOPLACES)
1900 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001901
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001902 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001903 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1904 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001905
Raymond Hettingerabe32372008-02-14 02:41:22 +00001906 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001907 Traceback (most recent call last):
1908 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001909 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001910
1911Q. Once I have valid two place inputs, how do I maintain that invariant
1912throughout an application?
1913
Raymond Hettinger46314812008-02-14 10:46:57 +00001914A. Some operations like addition, subtraction, and multiplication by an integer
1915will automatically preserve fixed point. Others operations, like division and
1916non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001917be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001918
1919 >>> a = Decimal('102.72') # Initial fixed-point values
1920 >>> b = Decimal('3.17')
1921 >>> a + b # Addition preserves fixed-point
1922 Decimal('105.89')
1923 >>> a - b
1924 Decimal('99.55')
1925 >>> a * 42 # So does integer multiplication
1926 Decimal('4314.24')
1927 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1928 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001929 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001930 Decimal('0.03')
1931
1932In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001933to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001934
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001935 >>> def mul(x, y, fp=TWOPLACES):
1936 ... return (x * y).quantize(fp)
1937 >>> def div(x, y, fp=TWOPLACES):
1938 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001939
Raymond Hettinger46314812008-02-14 10:46:57 +00001940 >>> mul(a, b) # Automatically preserve fixed-point
1941 Decimal('325.62')
1942 >>> div(b, a)
1943 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001944
1945Q. There are many ways to express the same value. The numbers :const:`200`,
1946:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1947various precisions. Is there a way to transform them to a single recognizable
1948canonical value?
1949
1950A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001951representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001952
1953 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1954 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001955 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001956
1957Q. Some decimal values always print with exponential notation. Is there a way
1958to get a non-exponential representation?
1959
1960A. For some values, exponential notation is the only way to express the number
1961of significant places in the coefficient. For example, expressing
1962:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1963original's two-place significance.
1964
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001965If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001966remove the exponent and trailing zeros, losing significance, but keeping the
1967value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001968
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001969 def remove_exponent(d):
1970 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001971
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001972 >>> remove_exponent(Decimal('5E+3'))
1973 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001974
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001975 '''
1976 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001977
Raymond Hettingered171ab2010-04-02 18:39:24 +00001978Q. Is there a way to convert a regular float to a :class:`Decimal`?
Georg Brandl9f662322008-03-22 11:47:10 +00001979
Mark Dickinsonb1affc52010-04-04 22:09:21 +00001980A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettingered171ab2010-04-02 18:39:24 +00001981Decimal though an exact conversion may take more precision than intuition would
1982suggest:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001983
Raymond Hettingered171ab2010-04-02 18:39:24 +00001984.. doctest::
Georg Brandl8ec7f652007-08-15 14:28:01 +00001985
Raymond Hettingered171ab2010-04-02 18:39:24 +00001986 >>> Decimal(math.pi)
1987 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001988
1989Q. Within a complex calculation, how can I make sure that I haven't gotten a
1990spurious result because of insufficient precision or rounding anomalies.
1991
1992A. The decimal module makes it easy to test results. A best practice is to
1993re-run calculations using greater precision and with various rounding modes.
1994Widely differing results indicate insufficient precision, rounding mode issues,
1995ill-conditioned inputs, or a numerically unstable algorithm.
1996
1997Q. I noticed that context precision is applied to the results of operations but
1998not to the inputs. Is there anything to watch out for when mixing values of
1999different precisions?
2000
2001A. Yes. The principle is that all values are considered to be exact and so is
2002the arithmetic on those values. Only the results are rounded. The advantage
2003for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00002004results can look odd if you forget that the inputs haven't been rounded:
2005
2006.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002007
2008 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00002009 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002010 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00002011 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002012 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002013
2014The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00002015using the unary plus operation:
2016
2017.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00002018
2019 >>> getcontext().prec = 3
2020 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00002021 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002022
2023Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00002024:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00002025
2026 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00002027 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00002028