blob: 135adf8f6362d5b9242ceb940baf8fac09aace38 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Ned Batchelder6faad352019-05-17 05:59:14 -040013This module provides access to the mathematical functions defined by the C
14standard.
Georg Brandl116aa622007-08-15 14:28:22 +000015
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
Raymond Hettingerb7fade42019-06-01 15:01:46 -070039.. function:: comb(n, k)
40
41 Return the number of ways to choose *k* items from *n* items without repetition
42 and without order.
43
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070044 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
45 to zero when ``k > n``.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070046
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070047 Also called the binomial coefficient because it is equivalent
48 to the coefficient of k-th term in polynomial expansion of the
49 expression ``(1 + x) ** n``.
50
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -070051 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -070052 Raises :exc:`ValueError` if either of the arguments are negative.
Raymond Hettingerb7fade42019-06-01 15:01:46 -070053
54 .. versionadded:: 3.8
55
56
Christian Heimes072c0f12008-01-03 23:01:04 +000057.. function:: copysign(x, y)
58
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050059 Return a float with the magnitude (absolute value) of *x* but the sign of
60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
61 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000062
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030063
Georg Brandl116aa622007-08-15 14:28:22 +000064.. function:: fabs(x)
65
66 Return the absolute value of *x*.
67
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030068
Georg Brandlc28e1fa2008-06-10 19:20:26 +000069.. function:: factorial(x)
70
Akshay Sharma46126712019-05-31 22:11:17 +053071 Return *x* factorial as an integer. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000072 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000073
Serhiy Storchaka231aad32019-06-17 16:57:27 +030074 .. deprecated:: 3.9
75 Accepting floats with integral values (like ``5.0``) is deprecated.
76
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030077
Georg Brandl116aa622007-08-15 14:28:22 +000078.. function:: floor(x)
79
Georg Brandl2a033732008-04-05 17:37:09 +000080 Return the floor of *x*, the largest integer less than or equal to *x*.
81 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030082 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000083
84
85.. function:: fmod(x, y)
86
87 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
88 Python expression ``x % y`` may not return the same result. The intent of the C
89 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
90 precision) equal to ``x - n*y`` for some integer *n* such that the result has
91 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
92 returns a result with the sign of *y* instead, and may not be exactly computable
93 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
94 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
95 represented exactly as a float, and rounds to the surprising ``1e100``. For
96 this reason, function :func:`fmod` is generally preferred when working with
97 floats, while Python's ``x % y`` is preferred when working with integers.
98
99
100.. function:: frexp(x)
101
102 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
103 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
104 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
105 apart" the internal representation of a float in a portable way.
106
107
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000108.. function:: fsum(iterable)
109
110 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000111 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000112
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000113 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +0000114 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000115 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
116 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000117
Raymond Hettingerf3936f82009-02-19 05:48:05 +0000118 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
119 typical case where the rounding mode is half-even. On some non-Windows
120 builds, the underlying C library uses extended precision addition and may
121 occasionally double-round an intermediate sum causing it to be off in its
122 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000123
Raymond Hettinger477be822009-02-19 06:44:30 +0000124 For further discussion and two alternative approaches, see the `ASPN cookbook
125 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100126 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000127
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000128
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300129.. function:: gcd(a, b)
130
131 Return the greatest common divisor of the integers *a* and *b*. If either
132 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
133 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
134 ``0``.
135
Benjamin Petersone960d182015-05-12 17:24:17 -0400136 .. versionadded:: 3.5
137
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300138
Tal Einatd5519ed2015-05-31 22:05:00 +0300139.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
140
141 Return ``True`` if the values *a* and *b* are close to each other and
142 ``False`` otherwise.
143
144 Whether or not two values are considered close is determined according to
145 given absolute and relative tolerances.
146
147 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
148 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
149 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
150 tolerance is ``1e-09``, which assures that the two values are the same
151 within about 9 decimal digits. *rel_tol* must be greater than zero.
152
153 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
154 zero. *abs_tol* must be at least zero.
155
156 If no errors occur, the result will be:
157 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
158
159 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
160 handled according to IEEE rules. Specifically, ``NaN`` is not considered
161 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
162 considered close to themselves.
163
164 .. versionadded:: 3.5
165
166 .. seealso::
167
168 :pep:`485` -- A function for testing approximate equality
169
170
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000171.. function:: isfinite(x)
172
173 Return ``True`` if *x* is neither an infinity nor a NaN, and
174 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
175
Mark Dickinsonc7622422010-07-11 19:47:37 +0000176 .. versionadded:: 3.2
177
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000178
Christian Heimes072c0f12008-01-03 23:01:04 +0000179.. function:: isinf(x)
180
Mark Dickinsonc7622422010-07-11 19:47:37 +0000181 Return ``True`` if *x* is a positive or negative infinity, and
182 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000183
Christian Heimes072c0f12008-01-03 23:01:04 +0000184
185.. function:: isnan(x)
186
Mark Dickinsonc7622422010-07-11 19:47:37 +0000187 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000188
Christian Heimes072c0f12008-01-03 23:01:04 +0000189
Mark Dickinson73934b92019-05-18 12:29:50 +0100190.. function:: isqrt(n)
191
192 Return the integer square root of the nonnegative integer *n*. This is the
193 floor of the exact square root of *n*, or equivalently the greatest integer
194 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
195
196 For some applications, it may be more convenient to have the least integer
197 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
198 the exact square root of *n*. For positive *n*, this can be computed using
199 ``a = 1 + isqrt(n - 1)``.
200
201 .. versionadded:: 3.8
202
203
Georg Brandl116aa622007-08-15 14:28:22 +0000204.. function:: ldexp(x, i)
205
206 Return ``x * (2**i)``. This is essentially the inverse of function
207 :func:`frexp`.
208
209
210.. function:: modf(x)
211
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000212 Return the fractional and integer parts of *x*. Both results carry the sign
213 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000214
Christian Heimes400adb02008-02-01 08:12:03 +0000215
Victor Stinner100fafc2020-01-12 02:15:42 +0100216.. function:: nextafter(x, y)
217
218 Return the next floating-point value after *x* towards *y*.
219
220 If *x* is equal to *y*, return *y*.
221
222 .. versionadded:: 3.9
223
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700224.. function:: perm(n, k=None)
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300225
226 Return the number of ways to choose *k* items from *n* items
227 without repetition and with order.
228
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700229 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
230 to zero when ``k > n``.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300231
Raymond Hettingere119b3d2019-06-08 08:58:11 -0700232 If *k* is not specified or is None, then *k* defaults to *n*
233 and the function returns ``n!``.
234
Raymond Hettinger8f4bbb52019-06-04 03:40:23 -0700235 Raises :exc:`TypeError` if either of the arguments are not integers.
Raymond Hettinger963eb0f2019-06-04 01:23:06 -0700236 Raises :exc:`ValueError` if either of the arguments are negative.
Serhiy Storchaka5ae299a2019-06-02 11:16:49 +0300237
238 .. versionadded:: 3.8
239
240
Pablo Galindobc098512019-02-07 07:04:02 +0000241.. function:: prod(iterable, *, start=1)
242
243 Calculate the product of all the elements in the input *iterable*.
244 The default *start* value for the product is ``1``.
245
246 When the iterable is empty, return the start value. This function is
247 intended specifically for use with numeric values and may reject
248 non-numeric types.
249
250 .. versionadded:: 3.8
251
252
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100253.. function:: remainder(x, y)
254
255 Return the IEEE 754-style remainder of *x* with respect to *y*. For
256 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
257 where ``n`` is the closest integer to the exact value of the quotient ``x /
258 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
259 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
260 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
261
262 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
263 *x* for any finite *x*, and ``remainder(x, 0)`` and
264 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
265 If the result of the remainder operation is zero, that zero will have
266 the same sign as *x*.
267
268 On platforms using IEEE 754 binary floating-point, the result of this
269 operation is always exactly representable: no rounding error is introduced.
270
271 .. versionadded:: 3.7
272
273
Christian Heimes400adb02008-02-01 08:12:03 +0000274.. function:: trunc(x)
275
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300276 Return the :class:`~numbers.Real` value *x* truncated to an
277 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600278 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000279
Christian Heimes400adb02008-02-01 08:12:03 +0000280
Georg Brandl116aa622007-08-15 14:28:22 +0000281Note that :func:`frexp` and :func:`modf` have a different call/return pattern
282than their C equivalents: they take a single argument and return a pair of
283values, rather than returning their second return value through an 'output
284parameter' (there is no such thing in Python).
285
286For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
287floating-point numbers of sufficiently large magnitude are exact integers.
288Python floats typically carry no more than 53 bits of precision (the same as the
289platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
290necessarily has no fractional bits.
291
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000292
293Power and logarithmic functions
294-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000295
Georg Brandl116aa622007-08-15 14:28:22 +0000296.. function:: exp(x)
297
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300298 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
299 of natural logarithms. This is usually more accurate than ``math.e ** x``
300 or ``pow(math.e, x)``.
301
Georg Brandl116aa622007-08-15 14:28:22 +0000302
Mark Dickinson664b5112009-12-16 20:23:42 +0000303.. function:: expm1(x)
304
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300305 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
306 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700307 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100308 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700309 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000310
311 >>> from math import exp, expm1
312 >>> exp(1e-5) - 1 # gives result accurate to 11 places
313 1.0000050000069649e-05
314 >>> expm1(1e-5) # result accurate to full precision
315 1.0000050000166668e-05
316
Mark Dickinson45f992a2009-12-19 11:20:49 +0000317 .. versionadded:: 3.2
318
Mark Dickinson664b5112009-12-16 20:23:42 +0000319
Georg Brandl116aa622007-08-15 14:28:22 +0000320.. function:: log(x[, base])
321
Georg Brandla6053b42009-09-01 08:11:14 +0000322 With one argument, return the natural logarithm of *x* (to base *e*).
323
324 With two arguments, return the logarithm of *x* to the given *base*,
325 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000326
Georg Brandl116aa622007-08-15 14:28:22 +0000327
Christian Heimes53876d92008-04-19 00:31:39 +0000328.. function:: log1p(x)
329
330 Return the natural logarithm of *1+x* (base *e*). The
331 result is calculated in a way which is accurate for *x* near zero.
332
Christian Heimes53876d92008-04-19 00:31:39 +0000333
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200334.. function:: log2(x)
335
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500336 Return the base-2 logarithm of *x*. This is usually more accurate than
337 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200338
339 .. versionadded:: 3.3
340
Victor Stinner9415afc2011-09-21 03:35:18 +0200341 .. seealso::
342
343 :meth:`int.bit_length` returns the number of bits necessary to represent
344 an integer in binary, excluding the sign and leading zeros.
345
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200346
Georg Brandl116aa622007-08-15 14:28:22 +0000347.. function:: log10(x)
348
Georg Brandla6053b42009-09-01 08:11:14 +0000349 Return the base-10 logarithm of *x*. This is usually more accurate
350 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000351
352
353.. function:: pow(x, y)
354
Christian Heimesa342c012008-04-20 21:01:16 +0000355 Return ``x`` raised to the power ``y``. Exceptional cases follow
356 Annex 'F' of the C99 standard as far as possible. In particular,
357 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
358 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
359 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
360 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000361
Ezio Melotti739d5492013-02-23 04:53:44 +0200362 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
363 its arguments to type :class:`float`. Use ``**`` or the built-in
364 :func:`pow` function for computing exact integer powers.
365
Georg Brandl116aa622007-08-15 14:28:22 +0000366
367.. function:: sqrt(x)
368
369 Return the square root of *x*.
370
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300371
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000372Trigonometric functions
373-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000374
Georg Brandl116aa622007-08-15 14:28:22 +0000375.. function:: acos(x)
376
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400377 Return the arc cosine of *x*, in radians. The result is between ``0`` and
378 ``pi``.
Georg Brandl116aa622007-08-15 14:28:22 +0000379
380
381.. function:: asin(x)
382
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400383 Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
384 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000385
386
387.. function:: atan(x)
388
Giovanni Cappellottodc3f99f2019-07-13 09:59:55 -0400389 Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
390 ``pi/2``.
Georg Brandl116aa622007-08-15 14:28:22 +0000391
392
393.. function:: atan2(y, x)
394
395 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
396 The vector in the plane from the origin to point ``(x, y)`` makes this angle
397 with the positive X axis. The point of :func:`atan2` is that the signs of both
398 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000399 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000400 -1)`` is ``-3*pi/4``.
401
402
403.. function:: cos(x)
404
405 Return the cosine of *x* radians.
406
407
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700408.. function:: dist(p, q)
409
410 Return the Euclidean distance between two points *p* and *q*, each
Raymond Hettinger6b5f1b42019-07-27 14:04:29 -0700411 given as a sequence (or iterable) of coordinates. The two points
412 must have the same dimension.
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700413
414 Roughly equivalent to::
415
416 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
417
418 .. versionadded:: 3.8
419
420
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700421.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000422
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700423 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
424 This is the length of the vector from the origin to the point
425 given by the coordinates.
426
427 For a two dimensional point ``(x, y)``, this is equivalent to computing
428 the hypotenuse of a right triangle using the Pythagorean theorem,
429 ``sqrt(x*x + y*y)``.
430
431 .. versionchanged:: 3.8
432 Added support for n-dimensional points. Formerly, only the two
433 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000434
435
436.. function:: sin(x)
437
438 Return the sine of *x* radians.
439
440
441.. function:: tan(x)
442
443 Return the tangent of *x* radians.
444
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300445
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000446Angular conversion
447------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000448
Georg Brandl116aa622007-08-15 14:28:22 +0000449.. function:: degrees(x)
450
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400451 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000452
453
454.. function:: radians(x)
455
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400456 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000457
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300458
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000459Hyperbolic functions
460--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000461
Georg Brandl5d941342016-02-26 19:37:12 +0100462`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700463are analogs of trigonometric functions that are based on hyperbolas
464instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000465
Christian Heimesa342c012008-04-20 21:01:16 +0000466.. function:: acosh(x)
467
468 Return the inverse hyperbolic cosine of *x*.
469
Christian Heimesa342c012008-04-20 21:01:16 +0000470
471.. function:: asinh(x)
472
473 Return the inverse hyperbolic sine of *x*.
474
Christian Heimesa342c012008-04-20 21:01:16 +0000475
476.. function:: atanh(x)
477
478 Return the inverse hyperbolic tangent of *x*.
479
Christian Heimesa342c012008-04-20 21:01:16 +0000480
Georg Brandl116aa622007-08-15 14:28:22 +0000481.. function:: cosh(x)
482
483 Return the hyperbolic cosine of *x*.
484
485
486.. function:: sinh(x)
487
488 Return the hyperbolic sine of *x*.
489
490
491.. function:: tanh(x)
492
493 Return the hyperbolic tangent of *x*.
494
Christian Heimes53876d92008-04-19 00:31:39 +0000495
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000496Special functions
497-----------------
498
Mark Dickinson45f992a2009-12-19 11:20:49 +0000499.. function:: erf(x)
500
Georg Brandl5d941342016-02-26 19:37:12 +0100501 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700502 *x*.
503
504 The :func:`erf` function can be used to compute traditional statistical
505 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100506 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700507
508 def phi(x):
509 'Cumulative distribution function for the standard normal distribution'
510 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000511
512 .. versionadded:: 3.2
513
514
515.. function:: erfc(x)
516
Raymond Hettinger1081d482011-03-31 12:04:53 -0700517 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100518 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700519 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
520 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100521 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000522
523 .. versionadded:: 3.2
524
525
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000526.. function:: gamma(x)
527
Georg Brandl5d941342016-02-26 19:37:12 +0100528 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700529 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000530
Mark Dickinson56e09662009-10-01 16:13:29 +0000531 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000532
533
Mark Dickinson05d2e082009-12-11 20:17:17 +0000534.. function:: lgamma(x)
535
536 Return the natural logarithm of the absolute value of the Gamma
537 function at *x*.
538
Mark Dickinson45f992a2009-12-19 11:20:49 +0000539 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000540
541
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000542Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000543---------
Georg Brandl116aa622007-08-15 14:28:22 +0000544
545.. data:: pi
546
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300547 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000548
549
550.. data:: e
551
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300552 The mathematical constant *e* = 2.718281..., to available precision.
553
Georg Brandl116aa622007-08-15 14:28:22 +0000554
Guido van Rossum0a891d72016-08-15 09:12:52 -0700555.. data:: tau
556
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300557 The mathematical constant *τ* = 6.283185..., to available precision.
558 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700559 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
560 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530561 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000562
Georg Brandl4770d6e2016-08-16 07:08:46 +0200563 .. versionadded:: 3.6
564
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300565
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000566.. data:: inf
567
568 A floating-point positive infinity. (For negative infinity, use
569 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
570
571 .. versionadded:: 3.5
572
573
574.. data:: nan
575
576 A floating-point "not a number" (NaN) value. Equivalent to the output of
577 ``float('nan')``.
578
579 .. versionadded:: 3.5
580
581
Georg Brandl495f7b52009-10-27 15:28:25 +0000582.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000583
584 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000585 math library functions. Behavior in exceptional cases follows Annex F of
586 the C99 standard where appropriate. The current implementation will raise
587 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
588 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
589 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000590 ``exp(1000.0)``). A NaN will not be returned from any of the functions
591 above unless one or more of the input arguments was a NaN; in that case,
592 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000593 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
594 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000595
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000596 Note that Python makes no effort to distinguish signaling NaNs from
597 quiet NaNs, and behavior for signaling NaNs remains unspecified.
598 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000599
Georg Brandl116aa622007-08-15 14:28:22 +0000600
601.. seealso::
602
603 Module :mod:`cmath`
604 Complex number versions of many of these functions.
Mark Dickinson73934b92019-05-18 12:29:50 +0100605
606.. |nbsp| unicode:: 0xA0
607 :trim: