blob: a050dfbe6c321d99cc2de57cb789024335736b59 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400105 The file :file:`example/example-operator-overloading.cpp` contains a
106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
206 Python -> C++ roundtrip. This is demonstrated in Example 5.
207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400213 The file :file:`example/example-callbacks.cpp` contains a complete example
214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
302after the *Name of the function* slot. This is useful when the C++ and Python
303versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
304
305The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200306
307.. code-block:: cpp
308 :emphasize-lines: 4,6,7
309
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200310 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200311 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 .def(py::init<>())
316 .def("go", &Animal::go);
317
318 py::class_<Dog>(m, "Dog", animal)
319 .def(py::init<>());
320
321 m.def("call_go", &call_go);
322
323 return m.ptr();
324 }
325
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200326Importantly, pybind11 is made aware of the trampoline trampoline helper class
327by specifying it as the *third* template argument to :class:`class_`. The
328second argument with the unique pointer is simply the default holder type used
329by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200330
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400331Note, however, that the above is sufficient for allowing python classes to
332extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
333necessary steps required to providing proper overload support for inherited
334classes.
335
Wenzel Jakob93296692015-10-13 23:21:54 +0200336The Python session below shows how to override ``Animal::go`` and invoke it via
337a virtual method call.
338
Wenzel Jakob99279f72016-06-03 11:19:29 +0200339.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200340
341 >>> from example import *
342 >>> d = Dog()
343 >>> call_go(d)
344 u'woof! woof! woof! '
345 >>> class Cat(Animal):
346 ... def go(self, n_times):
347 ... return "meow! " * n_times
348 ...
349 >>> c = Cat()
350 >>> call_go(c)
351 u'meow! meow! meow! '
352
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200353Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200354
Wenzel Jakob93296692015-10-13 23:21:54 +0200355.. seealso::
356
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400357 The file :file:`example/example-virtual-functions.cpp` contains a complete
358 example that demonstrates how to override virtual functions using pybind11
359 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200360
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400361.. _virtual_and_inheritance:
362
363Combining virtual functions and inheritance
364===========================================
365
366When combining virtual methods with inheritance, you need to be sure to provide
367an override for each method for which you want to allow overrides from derived
368python classes. For example, suppose we extend the above ``Animal``/``Dog``
369example as follows:
370
371.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200372
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400373 class Animal {
374 public:
375 virtual std::string go(int n_times) = 0;
376 virtual std::string name() { return "unknown"; }
377 };
378 class Dog : public class Animal {
379 public:
380 std::string go(int n_times) override {
381 std::string result;
382 for (int i=0; i<n_times; ++i)
383 result += bark() + " ";
384 return result;
385 }
386 virtual std::string bark() { return "woof!"; }
387 };
388
389then the trampoline class for ``Animal`` must, as described in the previous
390section, override ``go()`` and ``name()``, but in order to allow python code to
391inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
392overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
393methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
394override the ``name()`` method):
395
396.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200397
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400398 class PyAnimal : public Animal {
399 public:
400 using Animal::Animal; // Inherit constructors
401 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
402 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
403 };
404 class PyDog : public Dog {
405 public:
406 using Dog::Dog; // Inherit constructors
407 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
408 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
409 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
410 };
411
412A registered class derived from a pybind11-registered class with virtual
413methods requires a similar trampoline class, *even if* it doesn't explicitly
414declare or override any virtual methods itself:
415
416.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200417
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400418 class Husky : public Dog {};
419 class PyHusky : public Husky {
420 using Dog::Dog; // Inherit constructors
421 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
422 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
423 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
424 };
425
426There is, however, a technique that can be used to avoid this duplication
427(which can be especially helpful for a base class with several virtual
428methods). The technique involves using template trampoline classes, as
429follows:
430
431.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200432
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400433 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
434 using AnimalBase::AnimalBase; // Inherit constructors
435 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
436 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
437 };
438 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
439 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
440 // Override PyAnimal's pure virtual go() with a non-pure one:
441 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
442 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
443 };
444
445This technique has the advantage of requiring just one trampoline method to be
446declared per virtual method and pure virtual method override. It does,
447however, require the compiler to generate at least as many methods (and
448possibly more, if both pure virtual and overridden pure virtual methods are
449exposed, as above).
450
451The classes are then registered with pybind11 using:
452
453.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200454
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400455 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
456 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
457 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
458 // ... add animal, dog, husky definitions
459
460Note that ``Husky`` did not require a dedicated trampoline template class at
461all, since it neither declares any new virtual methods nor provides any pure
462virtual method implementations.
463
464With either the repeated-virtuals or templated trampoline methods in place, you
465can now create a python class that inherits from ``Dog``:
466
467.. code-block:: python
468
469 class ShihTzu(Dog):
470 def bark(self):
471 return "yip!"
472
473.. seealso::
474
475 See the file :file:`example-virtual-functions.cpp` for complete examples
476 using both the duplication and templated trampoline approaches.
477
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200478.. _macro_notes:
479
480General notes regarding convenience macros
481==========================================
482
483pybind11 provides a few convenience macros such as
484:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
485``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
486in the preprocessor (which has no concept of types), they *will* get confused
487by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
488T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
489the beginnning of the next parameter. Use a ``typedef`` to bind the template to
490another name and use it in the macro to avoid this problem.
491
492
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100493Global Interpreter Lock (GIL)
494=============================
495
496The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
497used to acquire and release the global interpreter lock in the body of a C++
498function call. In this way, long-running C++ code can be parallelized using
499multiple Python threads. Taking the previous section as an example, this could
500be realized as follows (important changes highlighted):
501
502.. code-block:: cpp
503 :emphasize-lines: 8,9,33,34
504
505 class PyAnimal : public Animal {
506 public:
507 /* Inherit the constructors */
508 using Animal::Animal;
509
510 /* Trampoline (need one for each virtual function) */
511 std::string go(int n_times) {
512 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100513 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100514
515 PYBIND11_OVERLOAD_PURE(
516 std::string, /* Return type */
517 Animal, /* Parent class */
518 go, /* Name of function */
519 n_times /* Argument(s) */
520 );
521 }
522 };
523
524 PYBIND11_PLUGIN(example) {
525 py::module m("example", "pybind11 example plugin");
526
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200527 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100528 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100529 .def(py::init<>())
530 .def("go", &Animal::go);
531
532 py::class_<Dog>(m, "Dog", animal)
533 .def(py::init<>());
534
535 m.def("call_go", [](Animal *animal) -> std::string {
536 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100537 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100538 return call_go(animal);
539 });
540
541 return m.ptr();
542 }
543
Wenzel Jakob93296692015-10-13 23:21:54 +0200544Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200545===========================
546
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200547When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200548between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
549and the Python ``list``, ``set`` and ``dict`` data structures are automatically
550enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
551out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200552
553.. note::
554
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100555 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200556
557.. seealso::
558
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400559 The file :file:`example/example-python-types.cpp` contains a complete
560 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200561
Wenzel Jakobb2825952016-04-13 23:33:00 +0200562Binding sequence data types, iterators, the slicing protocol, etc.
563==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200564
565Please refer to the supplemental example for details.
566
567.. seealso::
568
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400569 The file :file:`example/example-sequences-and-iterators.cpp` contains a
570 complete example that shows how to bind a sequence data type, including
571 length queries (``__len__``), iterators (``__iter__``), the slicing
572 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200573
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200574Return value policies
575=====================
576
Wenzel Jakob93296692015-10-13 23:21:54 +0200577Python and C++ use wildly different ways of managing the memory and lifetime of
578objects managed by them. This can lead to issues when creating bindings for
579functions that return a non-trivial type. Just by looking at the type
580information, it is not clear whether Python should take charge of the returned
581value and eventually free its resources, or if this is handled on the C++ side.
582For this reason, pybind11 provides a several `return value policy` annotations
583that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100584functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200585
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200586.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
587
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200588+--------------------------------------------------+----------------------------------------------------------------------------+
589| Return value policy | Description |
590+==================================================+============================================================================+
591| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
592| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200593| | pointer. Otherwise, it uses :enum:`return_value::move` or |
594| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200595| | See below for a description of what all of these different policies do. |
596+--------------------------------------------------+----------------------------------------------------------------------------+
597| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200598| | return value is a pointer. This is the default conversion policy for |
599| | function arguments when calling Python functions manually from C++ code |
600| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601+--------------------------------------------------+----------------------------------------------------------------------------+
602| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
603| | ownership. Python will call the destructor and delete operator when the |
604| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200605| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200606+--------------------------------------------------+----------------------------------------------------------------------------+
607| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
608| | This policy is comparably safe because the lifetimes of the two instances |
609| | are decoupled. |
610+--------------------------------------------------+----------------------------------------------------------------------------+
611| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
612| | that will be owned by Python. This policy is comparably safe because the |
613| | lifetimes of the two instances (move source and destination) are decoupled.|
614+--------------------------------------------------+----------------------------------------------------------------------------+
615| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
616| | responsible for managing the object's lifetime and deallocating it when |
617| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200618| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200619+--------------------------------------------------+----------------------------------------------------------------------------+
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400620| :enum:`return_value_policy::reference_internal` | Like :enum:`return_value_policy::reference` but additionally applies a |
Dean Moldovanaebca122016-08-16 01:26:02 +0200621| | ``keep_alive<0, 1>`` call policy (described next) that keeps the |
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400622| | ``this`` argument of the function or property from being garbage collected |
623| | as long as the return value remains referenced. See the |
624| | :class:`keep_alive` call policy (described next) for details. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200625+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200626
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200627.. warning::
628
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400629 Code with invalid return value policies might access unitialized memory or
630 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200631 non-determinism and segmentation faults, hence it is worth spending the
632 time to understand all the different options in the table above.
633
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400634One important aspect of the above policies is that they only apply to instances
635which pybind11 has *not* seen before, in which case the policy clarifies
636essential questions about the return value's lifetime and ownership. When
637pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200638memory), it will return the existing Python object wrapper rather than creating
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400639a copy.
nafur717df752016-06-28 18:07:11 +0200640
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200641.. note::
642
643 The next section on :ref:`call_policies` discusses *call policies* that can be
644 specified *in addition* to a return value policy from the list above. Call
645 policies indicate reference relationships that can involve both return values
646 and parameters of functions.
647
648.. note::
649
650 As an alternative to elaborate call policies and lifetime management logic,
651 consider using smart pointers (see the section on :ref:`smart_pointers` for
652 details). Smart pointers can tell whether an object is still referenced from
653 C++ or Python, which generally eliminates the kinds of inconsistencies that
654 can lead to crashes or undefined behavior. For functions returning smart
655 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100656
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200657.. _call_policies:
658
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100659Additional call policies
660========================
661
662In addition to the above return value policies, further `call policies` can be
663specified to indicate dependencies between parameters. There is currently just
664one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
665argument with index ``Patient`` should be kept alive at least until the
Glen Walkerf45bb582016-08-16 17:50:43 +1200666argument with index ``Nurse`` is freed by the garbage collector, as long as the
667nurse object supports weak references (pybind11 extension classes all support
668weak references). If the nurse object does not support weak references and is
669not None an appropriate exception will be thrown. Argument indices start at
670one, while zero refers to the return value. For methods, index one refers to
671the implicit ``this`` pointer, while regular arguments begin at index two.
672Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100673
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200674Consider the following example: the binding code for a list append operation
675that ties the lifetime of the newly added element to the underlying container
676might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100677
678.. code-block:: cpp
679
680 py::class_<List>(m, "List")
681 .def("append", &List::append, py::keep_alive<1, 2>());
682
683.. note::
684
685 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
686 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
687 0) policies from Boost.Python.
688
Wenzel Jakob61587162016-01-18 22:38:52 +0100689.. seealso::
690
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400691 The file :file:`example/example-keep-alive.cpp` contains a complete example
692 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100693
Wenzel Jakob93296692015-10-13 23:21:54 +0200694Implicit type conversions
695=========================
696
697Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200698that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200699could be a fixed and an arbitrary precision number type).
700
701.. code-block:: cpp
702
703 py::class_<A>(m, "A")
704 /// ... members ...
705
706 py::class_<B>(m, "B")
707 .def(py::init<A>())
708 /// ... members ...
709
710 m.def("func",
711 [](const B &) { /* .... */ }
712 );
713
714To invoke the function ``func`` using a variable ``a`` containing an ``A``
715instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
716will automatically apply an implicit type conversion, which makes it possible
717to directly write ``func(a)``.
718
719In this situation (i.e. where ``B`` has a constructor that converts from
720``A``), the following statement enables similar implicit conversions on the
721Python side:
722
723.. code-block:: cpp
724
725 py::implicitly_convertible<A, B>();
726
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200727.. note::
728
729 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
730 data type that is exposed to Python via pybind11.
731
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200732.. _static_properties:
733
734Static properties
735=================
736
737The section on :ref:`properties` discussed the creation of instance properties
738that are implemented in terms of C++ getters and setters.
739
740Static properties can also be created in a similar way to expose getters and
741setters of static class attributes. It is important to note that the implicit
742``self`` argument also exists in this case and is used to pass the Python
743``type`` subclass instance. This parameter will often not be needed by the C++
744side, and the following example illustrates how to instantiate a lambda getter
745function that ignores it:
746
747.. code-block:: cpp
748
749 py::class_<Foo>(m, "Foo")
750 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
751
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200752Unique pointers
753===============
754
755Given a class ``Example`` with Python bindings, it's possible to return
756instances wrapped in C++11 unique pointers, like so
757
758.. code-block:: cpp
759
760 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
761
762.. code-block:: cpp
763
764 m.def("create_example", &create_example);
765
766In other words, there is nothing special that needs to be done. While returning
767unique pointers in this way is allowed, it is *illegal* to use them as function
768arguments. For instance, the following function signature cannot be processed
769by pybind11.
770
771.. code-block:: cpp
772
773 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
774
775The above signature would imply that Python needs to give up ownership of an
776object that is passed to this function, which is generally not possible (for
777instance, the object might be referenced elsewhere).
778
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200779.. _smart_pointers:
780
Wenzel Jakob93296692015-10-13 23:21:54 +0200781Smart pointers
782==============
783
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200784This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200785types with internal reference counting. For the simpler C++11 unique pointers,
786refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200787
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200788The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200789template type, which denotes a special *holder* type that is used to manage
790references to the object. When wrapping a type named ``Type``, the default
791value of this template parameter is ``std::unique_ptr<Type>``, which means that
792the object is deallocated when Python's reference count goes to zero.
793
Wenzel Jakob1853b652015-10-18 15:38:50 +0200794It is possible to switch to other types of reference counting wrappers or smart
795pointers, which is useful in codebases that rely on them. For instance, the
796following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200797
798.. code-block:: cpp
799
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100800 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100801
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100802Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200803
Wenzel Jakob1853b652015-10-18 15:38:50 +0200804To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100805argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200806be declared at the top level before any binding code:
807
808.. code-block:: cpp
809
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200810 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200811
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100812.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100813
814 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
815 placeholder name that is used as a template parameter of the second
816 argument. Thus, feel free to use any identifier, but use it consistently on
817 both sides; also, don't use the name of a type that already exists in your
818 codebase.
819
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100820One potential stumbling block when using holder types is that they need to be
821applied consistently. Can you guess what's broken about the following binding
822code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100823
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100824.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100825
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100826 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100827
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100828 class Parent {
829 public:
830 Parent() : child(std::make_shared<Child>()) { }
831 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
832 private:
833 std::shared_ptr<Child> child;
834 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100835
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100836 PYBIND11_PLUGIN(example) {
837 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100838
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100839 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
840
841 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
842 .def(py::init<>())
843 .def("get_child", &Parent::get_child);
844
845 return m.ptr();
846 }
847
848The following Python code will cause undefined behavior (and likely a
849segmentation fault).
850
851.. code-block:: python
852
853 from example import Parent
854 print(Parent().get_child())
855
856The problem is that ``Parent::get_child()`` returns a pointer to an instance of
857``Child``, but the fact that this instance is already managed by
858``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
859pybind11 will create a second independent ``std::shared_ptr<...>`` that also
860claims ownership of the pointer. In the end, the object will be freed **twice**
861since these shared pointers have no way of knowing about each other.
862
863There are two ways to resolve this issue:
864
8651. For types that are managed by a smart pointer class, never use raw pointers
866 in function arguments or return values. In other words: always consistently
867 wrap pointers into their designated holder types (such as
868 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
869 should be modified as follows:
870
871.. code-block:: cpp
872
873 std::shared_ptr<Child> get_child() { return child; }
874
8752. Adjust the definition of ``Child`` by specifying
876 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
877 base class. This adds a small bit of information to ``Child`` that allows
878 pybind11 to realize that there is already an existing
879 ``std::shared_ptr<...>`` and communicate with it. In this case, the
880 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100881
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100882.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
883
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100884.. code-block:: cpp
885
886 class Child : public std::enable_shared_from_this<Child> { };
887
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200888
889Please take a look at the :ref:`macro_notes` before using this feature.
890
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100891.. seealso::
892
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400893 The file :file:`example/example-smart-ptr.cpp` contains a complete example
894 that demonstrates how to work with custom reference-counting holder types
895 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100896
Wenzel Jakob93296692015-10-13 23:21:54 +0200897.. _custom_constructors:
898
899Custom constructors
900===================
901
902The syntax for binding constructors was previously introduced, but it only
903works when a constructor with the given parameters actually exists on the C++
904side. To extend this to more general cases, let's take a look at what actually
905happens under the hood: the following statement
906
907.. code-block:: cpp
908
909 py::class_<Example>(m, "Example")
910 .def(py::init<int>());
911
912is short hand notation for
913
914.. code-block:: cpp
915
916 py::class_<Example>(m, "Example")
917 .def("__init__",
918 [](Example &instance, int arg) {
919 new (&instance) Example(arg);
920 }
921 );
922
923In other words, :func:`init` creates an anonymous function that invokes an
924in-place constructor. Memory allocation etc. is already take care of beforehand
925within pybind11.
926
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400927.. _catching_and_throwing_exceptions:
928
Wenzel Jakob93296692015-10-13 23:21:54 +0200929Catching and throwing exceptions
930================================
931
932When C++ code invoked from Python throws an ``std::exception``, it is
933automatically converted into a Python ``Exception``. pybind11 defines multiple
934special exception classes that will map to different types of Python
935exceptions:
936
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200937.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
938
Wenzel Jakob978e3762016-04-07 18:00:41 +0200939+--------------------------------------+------------------------------+
940| C++ exception type | Python exception type |
941+======================================+==============================+
942| :class:`std::exception` | ``RuntimeError`` |
943+--------------------------------------+------------------------------+
944| :class:`std::bad_alloc` | ``MemoryError`` |
945+--------------------------------------+------------------------------+
946| :class:`std::domain_error` | ``ValueError`` |
947+--------------------------------------+------------------------------+
948| :class:`std::invalid_argument` | ``ValueError`` |
949+--------------------------------------+------------------------------+
950| :class:`std::length_error` | ``ValueError`` |
951+--------------------------------------+------------------------------+
952| :class:`std::out_of_range` | ``ValueError`` |
953+--------------------------------------+------------------------------+
954| :class:`std::range_error` | ``ValueError`` |
955+--------------------------------------+------------------------------+
956| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
957| | implement custom iterators) |
958+--------------------------------------+------------------------------+
959| :class:`pybind11::index_error` | ``IndexError`` (used to |
960| | indicate out of bounds |
961| | accesses in ``__getitem__``, |
962| | ``__setitem__``, etc.) |
963+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400964| :class:`pybind11::value_error` | ``ValueError`` (used to |
965| | indicate wrong value passed |
966| | in ``container.remove(...)`` |
967+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -0400968| :class:`pybind11::key_error` | ``KeyError`` (used to |
969| | indicate out of bounds |
970| | accesses in ``__getitem__``, |
971| | ``__setitem__`` in dict-like |
972| | objects, etc.) |
973+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200974| :class:`pybind11::error_already_set` | Indicates that the Python |
975| | exception flag has already |
976| | been initialized |
977+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200978
979When a Python function invoked from C++ throws an exception, it is converted
980into a C++ exception of type :class:`error_already_set` whose string payload
981contains a textual summary.
982
983There is also a special exception :class:`cast_error` that is thrown by
984:func:`handle::call` when the input arguments cannot be converted to Python
985objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200986
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400987Registering custom exception translators
988========================================
989
990If the default exception conversion policy described
991:ref:`above <catching_and_throwing_exceptions>`
992is insufficient, pybind11 also provides support for registering custom
993exception translators.
994
995The function ``register_exception_translator(translator)`` takes a stateless
996callable (e.g. a function pointer or a lambda function without captured
997variables) with the following call signature: ``void(std::exception_ptr)``.
998
999When a C++ exception is thrown, registered exception translators are tried
1000in reverse order of registration (i.e. the last registered translator gets
1001a first shot at handling the exception).
1002
1003Inside the translator, ``std::rethrow_exception`` should be used within
1004a try block to re-throw the exception. A catch clause can then use
1005``PyErr_SetString`` to set a Python exception as demonstrated
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001006in :file:`example-custom-exceptions.cpp``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001007
1008This example also demonstrates how to create custom exception types
1009with ``py::exception``.
1010
1011The following example demonstrates this for a hypothetical exception class
1012``MyCustomException``:
1013
1014.. code-block:: cpp
1015
1016 py::register_exception_translator([](std::exception_ptr p) {
1017 try {
1018 if (p) std::rethrow_exception(p);
1019 } catch (const MyCustomException &e) {
1020 PyErr_SetString(PyExc_RuntimeError, e.what());
1021 }
1022 });
1023
1024Multiple exceptions can be handled by a single translator. If the exception is
1025not caught by the current translator, the previously registered one gets a
1026chance.
1027
1028If none of the registered exception translators is able to handle the
1029exception, it is handled by the default converter as described in the previous
1030section.
1031
1032.. note::
1033
1034 You must either call ``PyErr_SetString`` for every exception caught in a
1035 custom exception translator. Failure to do so will cause Python to crash
1036 with ``SystemError: error return without exception set``.
1037
1038 Exceptions that you do not plan to handle should simply not be caught.
1039
1040 You may also choose to explicity (re-)throw the exception to delegate it to
1041 the other existing exception translators.
1042
1043 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1044 be used as a ``py::base``.
1045
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001046.. _opaque:
1047
1048Treating STL data structures as opaque objects
1049==============================================
1050
1051pybind11 heavily relies on a template matching mechanism to convert parameters
1052and return values that are constructed from STL data types such as vectors,
1053linked lists, hash tables, etc. This even works in a recursive manner, for
1054instance to deal with lists of hash maps of pairs of elementary and custom
1055types, etc.
1056
1057However, a fundamental limitation of this approach is that internal conversions
1058between Python and C++ types involve a copy operation that prevents
1059pass-by-reference semantics. What does this mean?
1060
1061Suppose we bind the following function
1062
1063.. code-block:: cpp
1064
1065 void append_1(std::vector<int> &v) {
1066 v.push_back(1);
1067 }
1068
1069and call it from Python, the following happens:
1070
Wenzel Jakob99279f72016-06-03 11:19:29 +02001071.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001072
1073 >>> v = [5, 6]
1074 >>> append_1(v)
1075 >>> print(v)
1076 [5, 6]
1077
1078As you can see, when passing STL data structures by reference, modifications
1079are not propagated back the Python side. A similar situation arises when
1080exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1081functions:
1082
1083.. code-block:: cpp
1084
1085 /* ... definition ... */
1086
1087 class MyClass {
1088 std::vector<int> contents;
1089 };
1090
1091 /* ... binding code ... */
1092
1093 py::class_<MyClass>(m, "MyClass")
1094 .def(py::init<>)
1095 .def_readwrite("contents", &MyClass::contents);
1096
1097In this case, properties can be read and written in their entirety. However, an
1098``append`` operaton involving such a list type has no effect:
1099
Wenzel Jakob99279f72016-06-03 11:19:29 +02001100.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001101
1102 >>> m = MyClass()
1103 >>> m.contents = [5, 6]
1104 >>> print(m.contents)
1105 [5, 6]
1106 >>> m.contents.append(7)
1107 >>> print(m.contents)
1108 [5, 6]
1109
1110To deal with both of the above situations, pybind11 provides a macro named
1111``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1112machinery of types, thus rendering them *opaque*. The contents of opaque
1113objects are never inspected or extracted, hence they can be passed by
1114reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1115the declaration
1116
1117.. code-block:: cpp
1118
1119 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1120
1121before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1122macro must be specified at the top level, since instantiates a partial template
1123overload. If your binding code consists of multiple compilation units, it must
1124be present in every file preceding any usage of ``std::vector<int>``. Opaque
1125types must also have a corresponding ``class_`` declaration to associate them
1126with a name in Python, and to define a set of available operations:
1127
1128.. code-block:: cpp
1129
1130 py::class_<std::vector<int>>(m, "IntVector")
1131 .def(py::init<>())
1132 .def("clear", &std::vector<int>::clear)
1133 .def("pop_back", &std::vector<int>::pop_back)
1134 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1135 .def("__iter__", [](std::vector<int> &v) {
1136 return py::make_iterator(v.begin(), v.end());
1137 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1138 // ....
1139
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001140Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001141
1142.. seealso::
1143
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001144 The file :file:`example/example-opaque-types.cpp` contains a complete
1145 example that demonstrates how to create and expose opaque types using
1146 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001147
1148.. _eigen:
1149
1150Transparent conversion of dense and sparse Eigen data types
1151===========================================================
1152
1153Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1154its popularity and widespread adoption, pybind11 provides transparent
1155conversion support between Eigen and Scientific Python linear algebra data types.
1156
1157Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001158pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001159
11601. Static and dynamic Eigen dense vectors and matrices to instances of
1161 ``numpy.ndarray`` (and vice versa).
1162
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011632. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001164 diagonals will be converted to ``numpy.ndarray`` of the expression
1165 values.
1166
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011673. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001168 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1169 expressed value.
1170
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011714. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001172 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1173
1174This makes it possible to bind most kinds of functions that rely on these types.
1175One major caveat are functions that take Eigen matrices *by reference* and modify
1176them somehow, in which case the information won't be propagated to the caller.
1177
1178.. code-block:: cpp
1179
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001180 /* The Python bindings of these functions won't replicate
1181 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001182 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001183 v *= 2;
1184 }
1185 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1186 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001187 }
1188
1189To see why this is, refer to the section on :ref:`opaque` (although that
1190section specifically covers STL data types, the underlying issue is the same).
1191The next two sections discuss an efficient alternative for exposing the
1192underlying native Eigen types as opaque objects in a way that still integrates
1193with NumPy and SciPy.
1194
1195.. [#f1] http://eigen.tuxfamily.org
1196
1197.. seealso::
1198
1199 The file :file:`example/eigen.cpp` contains a complete example that
1200 shows how to pass Eigen sparse and dense data types in more detail.
1201
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001202Buffer protocol
1203===============
1204
1205Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001206data between plugin libraries. Types can expose a buffer view [#f2]_, which
1207provides fast direct access to the raw internal data representation. Suppose we
1208want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001209
1210.. code-block:: cpp
1211
1212 class Matrix {
1213 public:
1214 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1215 m_data = new float[rows*cols];
1216 }
1217 float *data() { return m_data; }
1218 size_t rows() const { return m_rows; }
1219 size_t cols() const { return m_cols; }
1220 private:
1221 size_t m_rows, m_cols;
1222 float *m_data;
1223 };
1224
1225The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001226making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001227completely avoid copy operations with Python expressions like
1228``np.array(matrix_instance, copy = False)``.
1229
1230.. code-block:: cpp
1231
1232 py::class_<Matrix>(m, "Matrix")
1233 .def_buffer([](Matrix &m) -> py::buffer_info {
1234 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001235 m.data(), /* Pointer to buffer */
1236 sizeof(float), /* Size of one scalar */
1237 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1238 2, /* Number of dimensions */
1239 { m.rows(), m.cols() }, /* Buffer dimensions */
1240 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001241 sizeof(float) }
1242 );
1243 });
1244
1245The snippet above binds a lambda function, which can create ``py::buffer_info``
1246description records on demand describing a given matrix. The contents of
1247``py::buffer_info`` mirror the Python buffer protocol specification.
1248
1249.. code-block:: cpp
1250
1251 struct buffer_info {
1252 void *ptr;
1253 size_t itemsize;
1254 std::string format;
1255 int ndim;
1256 std::vector<size_t> shape;
1257 std::vector<size_t> strides;
1258 };
1259
1260To create a C++ function that can take a Python buffer object as an argument,
1261simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1262in a great variety of configurations, hence some safety checks are usually
1263necessary in the function body. Below, you can see an basic example on how to
1264define a custom constructor for the Eigen double precision matrix
1265(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001266buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001267
1268.. code-block:: cpp
1269
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001270 /* Bind MatrixXd (or some other Eigen type) to Python */
1271 typedef Eigen::MatrixXd Matrix;
1272
1273 typedef Matrix::Scalar Scalar;
1274 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1275
1276 py::class_<Matrix>(m, "Matrix")
1277 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001278 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001279
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001280 /* Request a buffer descriptor from Python */
1281 py::buffer_info info = b.request();
1282
1283 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001284 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001285 throw std::runtime_error("Incompatible format: expected a double array!");
1286
1287 if (info.ndim != 2)
1288 throw std::runtime_error("Incompatible buffer dimension!");
1289
Wenzel Jakobe7628532016-05-05 10:04:44 +02001290 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001291 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1292 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001293
1294 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001295 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001296
1297 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001298 });
1299
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001300For reference, the ``def_buffer()`` call for this Eigen data type should look
1301as follows:
1302
1303.. code-block:: cpp
1304
1305 .def_buffer([](Matrix &m) -> py::buffer_info {
1306 return py::buffer_info(
1307 m.data(), /* Pointer to buffer */
1308 sizeof(Scalar), /* Size of one scalar */
1309 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001310 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001311 /* Number of dimensions */
1312 2,
1313 /* Buffer dimensions */
1314 { (size_t) m.rows(),
1315 (size_t) m.cols() },
1316 /* Strides (in bytes) for each index */
1317 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1318 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1319 );
1320 })
1321
1322For a much easier approach of binding Eigen types (although with some
1323limitations), refer to the section on :ref:`eigen`.
1324
Wenzel Jakob93296692015-10-13 23:21:54 +02001325.. seealso::
1326
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001327 The file :file:`example/example-buffers.cpp` contains a complete example
1328 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001329
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001330.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001331
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001332NumPy support
1333=============
1334
1335By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1336restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001337type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001338
1339In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001340array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001341template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001342NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001343
1344.. code-block:: cpp
1345
Wenzel Jakob93296692015-10-13 23:21:54 +02001346 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001347
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001348When it is invoked with a different type (e.g. an integer or a list of
1349integers), the binding code will attempt to cast the input into a NumPy array
1350of the requested type. Note that this feature requires the
1351:file:``pybind11/numpy.h`` header to be included.
1352
1353Data in NumPy arrays is not guaranteed to packed in a dense manner;
1354furthermore, entries can be separated by arbitrary column and row strides.
1355Sometimes, it can be useful to require a function to only accept dense arrays
1356using either the C (row-major) or Fortran (column-major) ordering. This can be
1357accomplished via a second template argument with values ``py::array::c_style``
1358or ``py::array::f_style``.
1359
1360.. code-block:: cpp
1361
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001362 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001363
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001364The ``py::array::forcecast`` argument is the default value of the second
1365template paramenter, and it ensures that non-conforming arguments are converted
1366into an array satisfying the specified requirements instead of trying the next
1367function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001368
Ivan Smirnov223afe32016-07-02 15:33:04 +01001369NumPy structured types
1370======================
1371
1372In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001373to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001374macro which expects the type followed by field names:
1375
1376.. code-block:: cpp
1377
1378 struct A {
1379 int x;
1380 double y;
1381 };
1382
1383 struct B {
1384 int z;
1385 A a;
1386 };
1387
Ivan Smirnov5412a052016-07-02 16:18:42 +01001388 PYBIND11_NUMPY_DTYPE(A, x, y);
1389 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001390
1391 /* now both A and B can be used as template arguments to py::array_t */
1392
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001393Vectorizing functions
1394=====================
1395
1396Suppose we want to bind a function with the following signature to Python so
1397that it can process arbitrary NumPy array arguments (vectors, matrices, general
1398N-D arrays) in addition to its normal arguments:
1399
1400.. code-block:: cpp
1401
1402 double my_func(int x, float y, double z);
1403
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001404After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001405
1406.. code-block:: cpp
1407
1408 m.def("vectorized_func", py::vectorize(my_func));
1409
1410Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001411each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001412solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1413entirely on the C++ side and can be crunched down into a tight, optimized loop
1414by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001415``numpy.dtype.float64``.
1416
Wenzel Jakob99279f72016-06-03 11:19:29 +02001417.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001418
1419 >>> x = np.array([[1, 3],[5, 7]])
1420 >>> y = np.array([[2, 4],[6, 8]])
1421 >>> z = 3
1422 >>> result = vectorized_func(x, y, z)
1423
1424The scalar argument ``z`` is transparently replicated 4 times. The input
1425arrays ``x`` and ``y`` are automatically converted into the right types (they
1426are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1427``numpy.dtype.float32``, respectively)
1428
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001429Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001430because it makes little sense to wrap it in a NumPy array. For instance,
1431suppose the function signature was
1432
1433.. code-block:: cpp
1434
1435 double my_func(int x, float y, my_custom_type *z);
1436
1437This can be done with a stateful Lambda closure:
1438
1439.. code-block:: cpp
1440
1441 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1442 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001443 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001444 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1445 return py::vectorize(stateful_closure)(x, y);
1446 }
1447 );
1448
Wenzel Jakob61587162016-01-18 22:38:52 +01001449In cases where the computation is too complicated to be reduced to
1450``vectorize``, it will be necessary to create and access the buffer contents
1451manually. The following snippet contains a complete example that shows how this
1452works (the code is somewhat contrived, since it could have been done more
1453simply using ``vectorize``).
1454
1455.. code-block:: cpp
1456
1457 #include <pybind11/pybind11.h>
1458 #include <pybind11/numpy.h>
1459
1460 namespace py = pybind11;
1461
1462 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1463 auto buf1 = input1.request(), buf2 = input2.request();
1464
1465 if (buf1.ndim != 1 || buf2.ndim != 1)
1466 throw std::runtime_error("Number of dimensions must be one");
1467
Ivan Smirnovb6518592016-08-13 13:28:56 +01001468 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001469 throw std::runtime_error("Input shapes must match");
1470
Ivan Smirnovb6518592016-08-13 13:28:56 +01001471 /* No pointer is passed, so NumPy will allocate the buffer */
1472 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001473
1474 auto buf3 = result.request();
1475
1476 double *ptr1 = (double *) buf1.ptr,
1477 *ptr2 = (double *) buf2.ptr,
1478 *ptr3 = (double *) buf3.ptr;
1479
1480 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1481 ptr3[idx] = ptr1[idx] + ptr2[idx];
1482
1483 return result;
1484 }
1485
1486 PYBIND11_PLUGIN(test) {
1487 py::module m("test");
1488 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1489 return m.ptr();
1490 }
1491
Wenzel Jakob93296692015-10-13 23:21:54 +02001492.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001493
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001494 The file :file:`example/example-numpy-vectorize.cpp` contains a complete
1495 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001496
Wenzel Jakob93296692015-10-13 23:21:54 +02001497Functions taking Python objects as arguments
1498============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001499
Wenzel Jakob93296692015-10-13 23:21:54 +02001500pybind11 exposes all major Python types using thin C++ wrapper classes. These
1501wrapper classes can also be used as parameters of functions in bindings, which
1502makes it possible to directly work with native Python types on the C++ side.
1503For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001504
Wenzel Jakob93296692015-10-13 23:21:54 +02001505.. code-block:: cpp
1506
1507 void print_dict(py::dict dict) {
1508 /* Easily interact with Python types */
1509 for (auto item : dict)
1510 std::cout << "key=" << item.first << ", "
1511 << "value=" << item.second << std::endl;
1512 }
1513
1514Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001515:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001516:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1517:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1518:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001519
Wenzel Jakob436b7312015-10-20 01:04:30 +02001520In this kind of mixed code, it is often necessary to convert arbitrary C++
1521types to Python, which can be done using :func:`cast`:
1522
1523.. code-block:: cpp
1524
1525 MyClass *cls = ..;
1526 py::object obj = py::cast(cls);
1527
1528The reverse direction uses the following syntax:
1529
1530.. code-block:: cpp
1531
1532 py::object obj = ...;
1533 MyClass *cls = obj.cast<MyClass *>();
1534
1535When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001536It is also possible to call python functions via ``operator()``.
1537
1538.. code-block:: cpp
1539
1540 py::function f = <...>;
1541 py::object result_py = f(1234, "hello", some_instance);
1542 MyClass &result = result_py.cast<MyClass>();
1543
1544The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1545supply arbitrary argument and keyword lists, although these cannot be mixed
1546with other parameters.
1547
1548.. code-block:: cpp
1549
1550 py::function f = <...>;
1551 py::tuple args = py::make_tuple(1234);
1552 py::dict kwargs;
1553 kwargs["y"] = py::cast(5678);
1554 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001555
Wenzel Jakob93296692015-10-13 23:21:54 +02001556.. seealso::
1557
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001558 The file :file:`example/example-python-types.cpp` contains a complete
1559 example that demonstrates passing native Python types in more detail. The
1560 file :file:`example/example-arg-keywords-and-defaults.cpp` discusses usage
1561 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001562
1563Default arguments revisited
1564===========================
1565
1566The section on :ref:`default_args` previously discussed basic usage of default
1567arguments using pybind11. One noteworthy aspect of their implementation is that
1568default arguments are converted to Python objects right at declaration time.
1569Consider the following example:
1570
1571.. code-block:: cpp
1572
1573 py::class_<MyClass>("MyClass")
1574 .def("myFunction", py::arg("arg") = SomeType(123));
1575
1576In this case, pybind11 must already be set up to deal with values of the type
1577``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1578exception will be thrown.
1579
1580Another aspect worth highlighting is that the "preview" of the default argument
1581in the function signature is generated using the object's ``__repr__`` method.
1582If not available, the signature may not be very helpful, e.g.:
1583
Wenzel Jakob99279f72016-06-03 11:19:29 +02001584.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001585
1586 FUNCTIONS
1587 ...
1588 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001589 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001590 ...
1591
1592The first way of addressing this is by defining ``SomeType.__repr__``.
1593Alternatively, it is possible to specify the human-readable preview of the
1594default argument manually using the ``arg_t`` notation:
1595
1596.. code-block:: cpp
1597
1598 py::class_<MyClass>("MyClass")
1599 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1600
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001601Sometimes it may be necessary to pass a null pointer value as a default
1602argument. In this case, remember to cast it to the underlying type in question,
1603like so:
1604
1605.. code-block:: cpp
1606
1607 py::class_<MyClass>("MyClass")
1608 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1609
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001610Binding functions that accept arbitrary numbers of arguments and keywords arguments
1611===================================================================================
1612
1613Python provides a useful mechanism to define functions that accept arbitrary
1614numbers of arguments and keyword arguments:
1615
1616.. code-block:: cpp
1617
1618 def generic(*args, **kwargs):
1619 # .. do something with args and kwargs
1620
1621Such functions can also be created using pybind11:
1622
1623.. code-block:: cpp
1624
1625 void generic(py::args args, py::kwargs kwargs) {
1626 /// .. do something with args
1627 if (kwargs)
1628 /// .. do something with kwargs
1629 }
1630
1631 /// Binding code
1632 m.def("generic", &generic);
1633
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001634(See ``example/example-arg-keywords-and-defaults.cpp``). The class ``py::args``
1635derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1636that the ``kwargs`` argument is invalid if no keyword arguments were actually
1637provided. Please refer to the other examples for details on how to iterate
1638over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001639
Wenzel Jakob3764e282016-08-01 23:34:48 +02001640.. warning::
1641
1642 Unlike Python, pybind11 does not allow combining normal parameters with the
1643 ``args`` / ``kwargs`` special parameters.
1644
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001645Partitioning code over multiple extension modules
1646=================================================
1647
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001648It's straightforward to split binding code over multiple extension modules,
1649while referencing types that are declared elsewhere. Everything "just" works
1650without any special precautions. One exception to this rule occurs when
1651extending a type declared in another extension module. Recall the basic example
1652from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001653
1654.. code-block:: cpp
1655
1656 py::class_<Pet> pet(m, "Pet");
1657 pet.def(py::init<const std::string &>())
1658 .def_readwrite("name", &Pet::name);
1659
1660 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1661 .def(py::init<const std::string &>())
1662 .def("bark", &Dog::bark);
1663
1664Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1665whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1666course that the variable ``pet`` is not available anymore though it is needed
1667to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1668However, it can be acquired as follows:
1669
1670.. code-block:: cpp
1671
1672 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1673
1674 py::class_<Dog>(m, "Dog", pet)
1675 .def(py::init<const std::string &>())
1676 .def("bark", &Dog::bark);
1677
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001678Alternatively, we can rely on the ``base`` tag, which performs an automated
1679lookup of the corresponding Python type. However, this also requires invoking
1680the ``import`` function once to ensure that the pybind11 binding code of the
1681module ``basic`` has been executed.
1682
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001683.. code-block:: cpp
1684
1685 py::module::import("basic");
1686
1687 py::class_<Dog>(m, "Dog", py::base<Pet>())
1688 .def(py::init<const std::string &>())
1689 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001690
Wenzel Jakob978e3762016-04-07 18:00:41 +02001691Naturally, both methods will fail when there are cyclic dependencies.
1692
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001693Note that compiling code which has its default symbol visibility set to
1694*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1695ability to access types defined in another extension module. Workarounds
1696include changing the global symbol visibility (not recommended, because it will
1697lead unnecessarily large binaries) or manually exporting types that are
1698accessed by multiple extension modules:
1699
1700.. code-block:: cpp
1701
1702 #ifdef _WIN32
1703 # define EXPORT_TYPE __declspec(dllexport)
1704 #else
1705 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1706 #endif
1707
1708 class EXPORT_TYPE Dog : public Animal {
1709 ...
1710 };
1711
1712
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001713Pickling support
1714================
1715
1716Python's ``pickle`` module provides a powerful facility to serialize and
1717de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001718unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001719Suppose the class in question has the following signature:
1720
1721.. code-block:: cpp
1722
1723 class Pickleable {
1724 public:
1725 Pickleable(const std::string &value) : m_value(value) { }
1726 const std::string &value() const { return m_value; }
1727
1728 void setExtra(int extra) { m_extra = extra; }
1729 int extra() const { return m_extra; }
1730 private:
1731 std::string m_value;
1732 int m_extra = 0;
1733 };
1734
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001735The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001736looks as follows:
1737
1738.. code-block:: cpp
1739
1740 py::class_<Pickleable>(m, "Pickleable")
1741 .def(py::init<std::string>())
1742 .def("value", &Pickleable::value)
1743 .def("extra", &Pickleable::extra)
1744 .def("setExtra", &Pickleable::setExtra)
1745 .def("__getstate__", [](const Pickleable &p) {
1746 /* Return a tuple that fully encodes the state of the object */
1747 return py::make_tuple(p.value(), p.extra());
1748 })
1749 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1750 if (t.size() != 2)
1751 throw std::runtime_error("Invalid state!");
1752
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001753 /* Invoke the in-place constructor. Note that this is needed even
1754 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001755 new (&p) Pickleable(t[0].cast<std::string>());
1756
1757 /* Assign any additional state */
1758 p.setExtra(t[1].cast<int>());
1759 });
1760
1761An instance can now be pickled as follows:
1762
1763.. code-block:: python
1764
1765 try:
1766 import cPickle as pickle # Use cPickle on Python 2.7
1767 except ImportError:
1768 import pickle
1769
1770 p = Pickleable("test_value")
1771 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001772 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001773
Wenzel Jakob81e09752016-04-30 23:13:03 +02001774Note that only the cPickle module is supported on Python 2.7. The second
1775argument to ``dumps`` is also crucial: it selects the pickle protocol version
17762, since the older version 1 is not supported. Newer versions are also fine—for
1777instance, specify ``-1`` to always use the latest available version. Beware:
1778failure to follow these instructions will cause important pybind11 memory
1779allocation routines to be skipped during unpickling, which will likely lead to
1780memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001781
1782.. seealso::
1783
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001784 The file :file:`example/example-pickling.cpp` contains a complete example
1785 that demonstrates how to pickle and unpickle types using pybind11 in more
1786 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001787
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001788.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001789
1790Generating documentation using Sphinx
1791=====================================
1792
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001793Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001794strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001795documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001796simple example repository which uses this approach.
1797
1798There are two potential gotchas when using this approach: first, make sure that
1799the resulting strings do not contain any :kbd:`TAB` characters, which break the
1800docstring parsing routines. You may want to use C++11 raw string literals,
1801which are convenient for multi-line comments. Conveniently, any excess
1802indentation will be automatically be removed by Sphinx. However, for this to
1803work, it is important that all lines are indented consistently, i.e.:
1804
1805.. code-block:: cpp
1806
1807 // ok
1808 m.def("foo", &foo, R"mydelimiter(
1809 The foo function
1810
1811 Parameters
1812 ----------
1813 )mydelimiter");
1814
1815 // *not ok*
1816 m.def("foo", &foo, R"mydelimiter(The foo function
1817
1818 Parameters
1819 ----------
1820 )mydelimiter");
1821
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001822.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001823.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001824
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001825Evaluating Python expressions from strings and files
1826====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001827
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001828pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1829Python expressions and statements. The following example illustrates how they
1830can be used.
1831
1832Both functions accept a template parameter that describes how the argument
1833should be interpreted. Possible choices include ``eval_expr`` (isolated
1834expression), ``eval_single_statement`` (a single statement, return value is
1835always ``none``), and ``eval_statements`` (sequence of statements, return value
1836is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001837
1838.. code-block:: cpp
1839
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001840 // At beginning of file
1841 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001842
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001843 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001844
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001845 // Evaluate in scope of main module
1846 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001847
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001848 // Evaluate an isolated expression
1849 int result = py::eval("my_variable + 10", scope).cast<int>();
1850
1851 // Evaluate a sequence of statements
1852 py::eval<py::eval_statements>(
1853 "print('Hello')\n"
1854 "print('world!');",
1855 scope);
1856
1857 // Evaluate the statements in an separate Python file on disk
1858 py::eval_file("script.py", scope);