blob: 04dde6e06864bad19a2e4e3f8f67af0fe7415042 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400105 The file :file:`example/example-operator-overloading.cpp` contains a
106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
206 Python -> C++ roundtrip. This is demonstrated in Example 5.
207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400213 The file :file:`example/example-callbacks.cpp` contains a complete example
214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument
302after the *Name of the function* slot. This is useful when the C++ and Python
303versions of the function have different names, e.g. ``operator()`` vs ``__call__``.
304
305The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200306
307.. code-block:: cpp
308 :emphasize-lines: 4,6,7
309
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200310 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200311 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200312
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200313 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 .def(py::init<>())
316 .def("go", &Animal::go);
317
318 py::class_<Dog>(m, "Dog", animal)
319 .def(py::init<>());
320
321 m.def("call_go", &call_go);
322
323 return m.ptr();
324 }
325
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200326Importantly, pybind11 is made aware of the trampoline trampoline helper class
327by specifying it as the *third* template argument to :class:`class_`. The
328second argument with the unique pointer is simply the default holder type used
329by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200330
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400331Note, however, that the above is sufficient for allowing python classes to
332extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
333necessary steps required to providing proper overload support for inherited
334classes.
335
Wenzel Jakob93296692015-10-13 23:21:54 +0200336The Python session below shows how to override ``Animal::go`` and invoke it via
337a virtual method call.
338
Wenzel Jakob99279f72016-06-03 11:19:29 +0200339.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200340
341 >>> from example import *
342 >>> d = Dog()
343 >>> call_go(d)
344 u'woof! woof! woof! '
345 >>> class Cat(Animal):
346 ... def go(self, n_times):
347 ... return "meow! " * n_times
348 ...
349 >>> c = Cat()
350 >>> call_go(c)
351 u'meow! meow! meow! '
352
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200353Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200354
Wenzel Jakob93296692015-10-13 23:21:54 +0200355.. seealso::
356
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400357 The file :file:`example/example-virtual-functions.cpp` contains a complete
358 example that demonstrates how to override virtual functions using pybind11
359 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200360
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400361.. _virtual_and_inheritance:
362
363Combining virtual functions and inheritance
364===========================================
365
366When combining virtual methods with inheritance, you need to be sure to provide
367an override for each method for which you want to allow overrides from derived
368python classes. For example, suppose we extend the above ``Animal``/``Dog``
369example as follows:
370
371.. code-block:: cpp
372 class Animal {
373 public:
374 virtual std::string go(int n_times) = 0;
375 virtual std::string name() { return "unknown"; }
376 };
377 class Dog : public class Animal {
378 public:
379 std::string go(int n_times) override {
380 std::string result;
381 for (int i=0; i<n_times; ++i)
382 result += bark() + " ";
383 return result;
384 }
385 virtual std::string bark() { return "woof!"; }
386 };
387
388then the trampoline class for ``Animal`` must, as described in the previous
389section, override ``go()`` and ``name()``, but in order to allow python code to
390inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
391overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
392methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
393override the ``name()`` method):
394
395.. code-block:: cpp
396 class PyAnimal : public Animal {
397 public:
398 using Animal::Animal; // Inherit constructors
399 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
400 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
401 };
402 class PyDog : public Dog {
403 public:
404 using Dog::Dog; // Inherit constructors
405 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
406 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
407 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
408 };
409
410A registered class derived from a pybind11-registered class with virtual
411methods requires a similar trampoline class, *even if* it doesn't explicitly
412declare or override any virtual methods itself:
413
414.. code-block:: cpp
415 class Husky : public Dog {};
416 class PyHusky : public Husky {
417 using Dog::Dog; // Inherit constructors
418 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
419 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
420 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
421 };
422
423There is, however, a technique that can be used to avoid this duplication
424(which can be especially helpful for a base class with several virtual
425methods). The technique involves using template trampoline classes, as
426follows:
427
428.. code-block:: cpp
429 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
430 using AnimalBase::AnimalBase; // Inherit constructors
431 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
432 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
433 };
434 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
435 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
436 // Override PyAnimal's pure virtual go() with a non-pure one:
437 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
438 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
439 };
440
441This technique has the advantage of requiring just one trampoline method to be
442declared per virtual method and pure virtual method override. It does,
443however, require the compiler to generate at least as many methods (and
444possibly more, if both pure virtual and overridden pure virtual methods are
445exposed, as above).
446
447The classes are then registered with pybind11 using:
448
449.. code-block:: cpp
450 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
451 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
452 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
453 // ... add animal, dog, husky definitions
454
455Note that ``Husky`` did not require a dedicated trampoline template class at
456all, since it neither declares any new virtual methods nor provides any pure
457virtual method implementations.
458
459With either the repeated-virtuals or templated trampoline methods in place, you
460can now create a python class that inherits from ``Dog``:
461
462.. code-block:: python
463
464 class ShihTzu(Dog):
465 def bark(self):
466 return "yip!"
467
468.. seealso::
469
470 See the file :file:`example-virtual-functions.cpp` for complete examples
471 using both the duplication and templated trampoline approaches.
472
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200473.. _macro_notes:
474
475General notes regarding convenience macros
476==========================================
477
478pybind11 provides a few convenience macros such as
479:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
480``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
481in the preprocessor (which has no concept of types), they *will* get confused
482by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
483T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
484the beginnning of the next parameter. Use a ``typedef`` to bind the template to
485another name and use it in the macro to avoid this problem.
486
487
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100488Global Interpreter Lock (GIL)
489=============================
490
491The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
492used to acquire and release the global interpreter lock in the body of a C++
493function call. In this way, long-running C++ code can be parallelized using
494multiple Python threads. Taking the previous section as an example, this could
495be realized as follows (important changes highlighted):
496
497.. code-block:: cpp
498 :emphasize-lines: 8,9,33,34
499
500 class PyAnimal : public Animal {
501 public:
502 /* Inherit the constructors */
503 using Animal::Animal;
504
505 /* Trampoline (need one for each virtual function) */
506 std::string go(int n_times) {
507 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100508 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100509
510 PYBIND11_OVERLOAD_PURE(
511 std::string, /* Return type */
512 Animal, /* Parent class */
513 go, /* Name of function */
514 n_times /* Argument(s) */
515 );
516 }
517 };
518
519 PYBIND11_PLUGIN(example) {
520 py::module m("example", "pybind11 example plugin");
521
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200522 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100523 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100524 .def(py::init<>())
525 .def("go", &Animal::go);
526
527 py::class_<Dog>(m, "Dog", animal)
528 .def(py::init<>());
529
530 m.def("call_go", [](Animal *animal) -> std::string {
531 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100532 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100533 return call_go(animal);
534 });
535
536 return m.ptr();
537 }
538
Wenzel Jakob93296692015-10-13 23:21:54 +0200539Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200540===========================
541
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200542When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200543between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
544and the Python ``list``, ``set`` and ``dict`` data structures are automatically
545enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
546out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200547
548.. note::
549
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100550 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200551
552.. seealso::
553
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400554 The file :file:`example/example-python-types.cpp` contains a complete
555 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200556
Wenzel Jakobb2825952016-04-13 23:33:00 +0200557Binding sequence data types, iterators, the slicing protocol, etc.
558==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200559
560Please refer to the supplemental example for details.
561
562.. seealso::
563
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400564 The file :file:`example/example-sequences-and-iterators.cpp` contains a
565 complete example that shows how to bind a sequence data type, including
566 length queries (``__len__``), iterators (``__iter__``), the slicing
567 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200568
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200569Return value policies
570=====================
571
Wenzel Jakob93296692015-10-13 23:21:54 +0200572Python and C++ use wildly different ways of managing the memory and lifetime of
573objects managed by them. This can lead to issues when creating bindings for
574functions that return a non-trivial type. Just by looking at the type
575information, it is not clear whether Python should take charge of the returned
576value and eventually free its resources, or if this is handled on the C++ side.
577For this reason, pybind11 provides a several `return value policy` annotations
578that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100579functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200580
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200581.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
582
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200583+--------------------------------------------------+----------------------------------------------------------------------------+
584| Return value policy | Description |
585+==================================================+============================================================================+
586| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
587| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200588| | pointer. Otherwise, it uses :enum:`return_value::move` or |
589| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200590| | See below for a description of what all of these different policies do. |
591+--------------------------------------------------+----------------------------------------------------------------------------+
592| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200593| | return value is a pointer. This is the default conversion policy for |
594| | function arguments when calling Python functions manually from C++ code |
595| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200596+--------------------------------------------------+----------------------------------------------------------------------------+
597| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
598| | ownership. Python will call the destructor and delete operator when the |
599| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200600| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200601+--------------------------------------------------+----------------------------------------------------------------------------+
602| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
603| | This policy is comparably safe because the lifetimes of the two instances |
604| | are decoupled. |
605+--------------------------------------------------+----------------------------------------------------------------------------+
606| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
607| | that will be owned by Python. This policy is comparably safe because the |
608| | lifetimes of the two instances (move source and destination) are decoupled.|
609+--------------------------------------------------+----------------------------------------------------------------------------+
610| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
611| | responsible for managing the object's lifetime and deallocating it when |
612| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200613| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200614+--------------------------------------------------+----------------------------------------------------------------------------+
Jason Rhinelanderf2ecd892016-08-10 12:08:04 -0400615| :enum:`return_value_policy::reference_internal` | Like :enum:`return_value_policy::reference` but additionally applies a |
616| | :class:`keep_alive<0,1>()` call policy (described next) that keeps the |
617| | ``this`` argument of the function or property from being garbage collected |
618| | as long as the return value remains referenced. See the |
619| | :class:`keep_alive` call policy (described next) for details. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200620+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200621
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200622.. warning::
623
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400624 Code with invalid return value policies might access unitialized memory or
625 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200626 non-determinism and segmentation faults, hence it is worth spending the
627 time to understand all the different options in the table above.
628
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400629One important aspect of the above policies is that they only apply to instances
630which pybind11 has *not* seen before, in which case the policy clarifies
631essential questions about the return value's lifetime and ownership. When
632pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200633memory), it will return the existing Python object wrapper rather than creating
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400634a copy.
nafur717df752016-06-28 18:07:11 +0200635
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200636.. note::
637
638 The next section on :ref:`call_policies` discusses *call policies* that can be
639 specified *in addition* to a return value policy from the list above. Call
640 policies indicate reference relationships that can involve both return values
641 and parameters of functions.
642
643.. note::
644
645 As an alternative to elaborate call policies and lifetime management logic,
646 consider using smart pointers (see the section on :ref:`smart_pointers` for
647 details). Smart pointers can tell whether an object is still referenced from
648 C++ or Python, which generally eliminates the kinds of inconsistencies that
649 can lead to crashes or undefined behavior. For functions returning smart
650 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100651
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200652.. _call_policies:
653
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100654Additional call policies
655========================
656
657In addition to the above return value policies, further `call policies` can be
658specified to indicate dependencies between parameters. There is currently just
659one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
660argument with index ``Patient`` should be kept alive at least until the
661argument with index ``Nurse`` is freed by the garbage collector; argument
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200662indices start at one, while zero refers to the return value. For methods, index
663one refers to the implicit ``this`` pointer, while regular arguments begin at
664index two. Arbitrarily many call policies can be specified.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100665
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200666Consider the following example: the binding code for a list append operation
667that ties the lifetime of the newly added element to the underlying container
668might be declared as follows:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100669
670.. code-block:: cpp
671
672 py::class_<List>(m, "List")
673 .def("append", &List::append, py::keep_alive<1, 2>());
674
675.. note::
676
677 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
678 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
679 0) policies from Boost.Python.
680
Wenzel Jakob61587162016-01-18 22:38:52 +0100681.. seealso::
682
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400683 The file :file:`example/example-keep-alive.cpp` contains a complete example
684 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100685
Wenzel Jakob93296692015-10-13 23:21:54 +0200686Implicit type conversions
687=========================
688
689Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200690that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200691could be a fixed and an arbitrary precision number type).
692
693.. code-block:: cpp
694
695 py::class_<A>(m, "A")
696 /// ... members ...
697
698 py::class_<B>(m, "B")
699 .def(py::init<A>())
700 /// ... members ...
701
702 m.def("func",
703 [](const B &) { /* .... */ }
704 );
705
706To invoke the function ``func`` using a variable ``a`` containing an ``A``
707instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
708will automatically apply an implicit type conversion, which makes it possible
709to directly write ``func(a)``.
710
711In this situation (i.e. where ``B`` has a constructor that converts from
712``A``), the following statement enables similar implicit conversions on the
713Python side:
714
715.. code-block:: cpp
716
717 py::implicitly_convertible<A, B>();
718
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200719.. note::
720
721 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
722 data type that is exposed to Python via pybind11.
723
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200724.. _static_properties:
725
726Static properties
727=================
728
729The section on :ref:`properties` discussed the creation of instance properties
730that are implemented in terms of C++ getters and setters.
731
732Static properties can also be created in a similar way to expose getters and
733setters of static class attributes. It is important to note that the implicit
734``self`` argument also exists in this case and is used to pass the Python
735``type`` subclass instance. This parameter will often not be needed by the C++
736side, and the following example illustrates how to instantiate a lambda getter
737function that ignores it:
738
739.. code-block:: cpp
740
741 py::class_<Foo>(m, "Foo")
742 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
743
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200744Unique pointers
745===============
746
747Given a class ``Example`` with Python bindings, it's possible to return
748instances wrapped in C++11 unique pointers, like so
749
750.. code-block:: cpp
751
752 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
753
754.. code-block:: cpp
755
756 m.def("create_example", &create_example);
757
758In other words, there is nothing special that needs to be done. While returning
759unique pointers in this way is allowed, it is *illegal* to use them as function
760arguments. For instance, the following function signature cannot be processed
761by pybind11.
762
763.. code-block:: cpp
764
765 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
766
767The above signature would imply that Python needs to give up ownership of an
768object that is passed to this function, which is generally not possible (for
769instance, the object might be referenced elsewhere).
770
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200771.. _smart_pointers:
772
Wenzel Jakob93296692015-10-13 23:21:54 +0200773Smart pointers
774==============
775
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200776This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200777types with internal reference counting. For the simpler C++11 unique pointers,
778refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200779
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200780The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200781template type, which denotes a special *holder* type that is used to manage
782references to the object. When wrapping a type named ``Type``, the default
783value of this template parameter is ``std::unique_ptr<Type>``, which means that
784the object is deallocated when Python's reference count goes to zero.
785
Wenzel Jakob1853b652015-10-18 15:38:50 +0200786It is possible to switch to other types of reference counting wrappers or smart
787pointers, which is useful in codebases that rely on them. For instance, the
788following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200789
790.. code-block:: cpp
791
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100792 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100793
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100794Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200795
Wenzel Jakob1853b652015-10-18 15:38:50 +0200796To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100797argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200798be declared at the top level before any binding code:
799
800.. code-block:: cpp
801
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200802 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200803
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100804.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100805
806 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
807 placeholder name that is used as a template parameter of the second
808 argument. Thus, feel free to use any identifier, but use it consistently on
809 both sides; also, don't use the name of a type that already exists in your
810 codebase.
811
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100812One potential stumbling block when using holder types is that they need to be
813applied consistently. Can you guess what's broken about the following binding
814code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100815
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100816.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100817
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100818 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100819
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100820 class Parent {
821 public:
822 Parent() : child(std::make_shared<Child>()) { }
823 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
824 private:
825 std::shared_ptr<Child> child;
826 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100827
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100828 PYBIND11_PLUGIN(example) {
829 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100830
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100831 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
832
833 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
834 .def(py::init<>())
835 .def("get_child", &Parent::get_child);
836
837 return m.ptr();
838 }
839
840The following Python code will cause undefined behavior (and likely a
841segmentation fault).
842
843.. code-block:: python
844
845 from example import Parent
846 print(Parent().get_child())
847
848The problem is that ``Parent::get_child()`` returns a pointer to an instance of
849``Child``, but the fact that this instance is already managed by
850``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
851pybind11 will create a second independent ``std::shared_ptr<...>`` that also
852claims ownership of the pointer. In the end, the object will be freed **twice**
853since these shared pointers have no way of knowing about each other.
854
855There are two ways to resolve this issue:
856
8571. For types that are managed by a smart pointer class, never use raw pointers
858 in function arguments or return values. In other words: always consistently
859 wrap pointers into their designated holder types (such as
860 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
861 should be modified as follows:
862
863.. code-block:: cpp
864
865 std::shared_ptr<Child> get_child() { return child; }
866
8672. Adjust the definition of ``Child`` by specifying
868 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
869 base class. This adds a small bit of information to ``Child`` that allows
870 pybind11 to realize that there is already an existing
871 ``std::shared_ptr<...>`` and communicate with it. In this case, the
872 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100873
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100874.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
875
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100876.. code-block:: cpp
877
878 class Child : public std::enable_shared_from_this<Child> { };
879
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200880
881Please take a look at the :ref:`macro_notes` before using this feature.
882
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100883.. seealso::
884
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400885 The file :file:`example/example-smart-ptr.cpp` contains a complete example
886 that demonstrates how to work with custom reference-counting holder types
887 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100888
Wenzel Jakob93296692015-10-13 23:21:54 +0200889.. _custom_constructors:
890
891Custom constructors
892===================
893
894The syntax for binding constructors was previously introduced, but it only
895works when a constructor with the given parameters actually exists on the C++
896side. To extend this to more general cases, let's take a look at what actually
897happens under the hood: the following statement
898
899.. code-block:: cpp
900
901 py::class_<Example>(m, "Example")
902 .def(py::init<int>());
903
904is short hand notation for
905
906.. code-block:: cpp
907
908 py::class_<Example>(m, "Example")
909 .def("__init__",
910 [](Example &instance, int arg) {
911 new (&instance) Example(arg);
912 }
913 );
914
915In other words, :func:`init` creates an anonymous function that invokes an
916in-place constructor. Memory allocation etc. is already take care of beforehand
917within pybind11.
918
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400919.. _catching_and_throwing_exceptions:
920
Wenzel Jakob93296692015-10-13 23:21:54 +0200921Catching and throwing exceptions
922================================
923
924When C++ code invoked from Python throws an ``std::exception``, it is
925automatically converted into a Python ``Exception``. pybind11 defines multiple
926special exception classes that will map to different types of Python
927exceptions:
928
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200929.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
930
Wenzel Jakob978e3762016-04-07 18:00:41 +0200931+--------------------------------------+------------------------------+
932| C++ exception type | Python exception type |
933+======================================+==============================+
934| :class:`std::exception` | ``RuntimeError`` |
935+--------------------------------------+------------------------------+
936| :class:`std::bad_alloc` | ``MemoryError`` |
937+--------------------------------------+------------------------------+
938| :class:`std::domain_error` | ``ValueError`` |
939+--------------------------------------+------------------------------+
940| :class:`std::invalid_argument` | ``ValueError`` |
941+--------------------------------------+------------------------------+
942| :class:`std::length_error` | ``ValueError`` |
943+--------------------------------------+------------------------------+
944| :class:`std::out_of_range` | ``ValueError`` |
945+--------------------------------------+------------------------------+
946| :class:`std::range_error` | ``ValueError`` |
947+--------------------------------------+------------------------------+
948| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
949| | implement custom iterators) |
950+--------------------------------------+------------------------------+
951| :class:`pybind11::index_error` | ``IndexError`` (used to |
952| | indicate out of bounds |
953| | accesses in ``__getitem__``, |
954| | ``__setitem__``, etc.) |
955+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -0400956| :class:`pybind11::value_error` | ``ValueError`` (used to |
957| | indicate wrong value passed |
958| | in ``container.remove(...)`` |
959+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -0400960| :class:`pybind11::key_error` | ``KeyError`` (used to |
961| | indicate out of bounds |
962| | accesses in ``__getitem__``, |
963| | ``__setitem__`` in dict-like |
964| | objects, etc.) |
965+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +0200966| :class:`pybind11::error_already_set` | Indicates that the Python |
967| | exception flag has already |
968| | been initialized |
969+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200970
971When a Python function invoked from C++ throws an exception, it is converted
972into a C++ exception of type :class:`error_already_set` whose string payload
973contains a textual summary.
974
975There is also a special exception :class:`cast_error` that is thrown by
976:func:`handle::call` when the input arguments cannot be converted to Python
977objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200978
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400979Registering custom exception translators
980========================================
981
982If the default exception conversion policy described
983:ref:`above <catching_and_throwing_exceptions>`
984is insufficient, pybind11 also provides support for registering custom
985exception translators.
986
987The function ``register_exception_translator(translator)`` takes a stateless
988callable (e.g. a function pointer or a lambda function without captured
989variables) with the following call signature: ``void(std::exception_ptr)``.
990
991When a C++ exception is thrown, registered exception translators are tried
992in reverse order of registration (i.e. the last registered translator gets
993a first shot at handling the exception).
994
995Inside the translator, ``std::rethrow_exception`` should be used within
996a try block to re-throw the exception. A catch clause can then use
997``PyErr_SetString`` to set a Python exception as demonstrated
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400998in :file:`example-custom-exceptions.cpp``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400999
1000This example also demonstrates how to create custom exception types
1001with ``py::exception``.
1002
1003The following example demonstrates this for a hypothetical exception class
1004``MyCustomException``:
1005
1006.. code-block:: cpp
1007
1008 py::register_exception_translator([](std::exception_ptr p) {
1009 try {
1010 if (p) std::rethrow_exception(p);
1011 } catch (const MyCustomException &e) {
1012 PyErr_SetString(PyExc_RuntimeError, e.what());
1013 }
1014 });
1015
1016Multiple exceptions can be handled by a single translator. If the exception is
1017not caught by the current translator, the previously registered one gets a
1018chance.
1019
1020If none of the registered exception translators is able to handle the
1021exception, it is handled by the default converter as described in the previous
1022section.
1023
1024.. note::
1025
1026 You must either call ``PyErr_SetString`` for every exception caught in a
1027 custom exception translator. Failure to do so will cause Python to crash
1028 with ``SystemError: error return without exception set``.
1029
1030 Exceptions that you do not plan to handle should simply not be caught.
1031
1032 You may also choose to explicity (re-)throw the exception to delegate it to
1033 the other existing exception translators.
1034
1035 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1036 be used as a ``py::base``.
1037
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001038.. _opaque:
1039
1040Treating STL data structures as opaque objects
1041==============================================
1042
1043pybind11 heavily relies on a template matching mechanism to convert parameters
1044and return values that are constructed from STL data types such as vectors,
1045linked lists, hash tables, etc. This even works in a recursive manner, for
1046instance to deal with lists of hash maps of pairs of elementary and custom
1047types, etc.
1048
1049However, a fundamental limitation of this approach is that internal conversions
1050between Python and C++ types involve a copy operation that prevents
1051pass-by-reference semantics. What does this mean?
1052
1053Suppose we bind the following function
1054
1055.. code-block:: cpp
1056
1057 void append_1(std::vector<int> &v) {
1058 v.push_back(1);
1059 }
1060
1061and call it from Python, the following happens:
1062
Wenzel Jakob99279f72016-06-03 11:19:29 +02001063.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001064
1065 >>> v = [5, 6]
1066 >>> append_1(v)
1067 >>> print(v)
1068 [5, 6]
1069
1070As you can see, when passing STL data structures by reference, modifications
1071are not propagated back the Python side. A similar situation arises when
1072exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1073functions:
1074
1075.. code-block:: cpp
1076
1077 /* ... definition ... */
1078
1079 class MyClass {
1080 std::vector<int> contents;
1081 };
1082
1083 /* ... binding code ... */
1084
1085 py::class_<MyClass>(m, "MyClass")
1086 .def(py::init<>)
1087 .def_readwrite("contents", &MyClass::contents);
1088
1089In this case, properties can be read and written in their entirety. However, an
1090``append`` operaton involving such a list type has no effect:
1091
Wenzel Jakob99279f72016-06-03 11:19:29 +02001092.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001093
1094 >>> m = MyClass()
1095 >>> m.contents = [5, 6]
1096 >>> print(m.contents)
1097 [5, 6]
1098 >>> m.contents.append(7)
1099 >>> print(m.contents)
1100 [5, 6]
1101
1102To deal with both of the above situations, pybind11 provides a macro named
1103``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1104machinery of types, thus rendering them *opaque*. The contents of opaque
1105objects are never inspected or extracted, hence they can be passed by
1106reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1107the declaration
1108
1109.. code-block:: cpp
1110
1111 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1112
1113before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1114macro must be specified at the top level, since instantiates a partial template
1115overload. If your binding code consists of multiple compilation units, it must
1116be present in every file preceding any usage of ``std::vector<int>``. Opaque
1117types must also have a corresponding ``class_`` declaration to associate them
1118with a name in Python, and to define a set of available operations:
1119
1120.. code-block:: cpp
1121
1122 py::class_<std::vector<int>>(m, "IntVector")
1123 .def(py::init<>())
1124 .def("clear", &std::vector<int>::clear)
1125 .def("pop_back", &std::vector<int>::pop_back)
1126 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1127 .def("__iter__", [](std::vector<int> &v) {
1128 return py::make_iterator(v.begin(), v.end());
1129 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1130 // ....
1131
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001132Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001133
1134.. seealso::
1135
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001136 The file :file:`example/example-opaque-types.cpp` contains a complete
1137 example that demonstrates how to create and expose opaque types using
1138 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001139
1140.. _eigen:
1141
1142Transparent conversion of dense and sparse Eigen data types
1143===========================================================
1144
1145Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1146its popularity and widespread adoption, pybind11 provides transparent
1147conversion support between Eigen and Scientific Python linear algebra data types.
1148
1149Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001150pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001151
11521. Static and dynamic Eigen dense vectors and matrices to instances of
1153 ``numpy.ndarray`` (and vice versa).
1154
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011552. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001156 diagonals will be converted to ``numpy.ndarray`` of the expression
1157 values.
1158
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011593. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001160 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1161 expressed value.
1162
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040011634. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001164 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1165
1166This makes it possible to bind most kinds of functions that rely on these types.
1167One major caveat are functions that take Eigen matrices *by reference* and modify
1168them somehow, in which case the information won't be propagated to the caller.
1169
1170.. code-block:: cpp
1171
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001172 /* The Python bindings of these functions won't replicate
1173 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001174 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001175 v *= 2;
1176 }
1177 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1178 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001179 }
1180
1181To see why this is, refer to the section on :ref:`opaque` (although that
1182section specifically covers STL data types, the underlying issue is the same).
1183The next two sections discuss an efficient alternative for exposing the
1184underlying native Eigen types as opaque objects in a way that still integrates
1185with NumPy and SciPy.
1186
1187.. [#f1] http://eigen.tuxfamily.org
1188
1189.. seealso::
1190
1191 The file :file:`example/eigen.cpp` contains a complete example that
1192 shows how to pass Eigen sparse and dense data types in more detail.
1193
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001194Buffer protocol
1195===============
1196
1197Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001198data between plugin libraries. Types can expose a buffer view [#f2]_, which
1199provides fast direct access to the raw internal data representation. Suppose we
1200want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001201
1202.. code-block:: cpp
1203
1204 class Matrix {
1205 public:
1206 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1207 m_data = new float[rows*cols];
1208 }
1209 float *data() { return m_data; }
1210 size_t rows() const { return m_rows; }
1211 size_t cols() const { return m_cols; }
1212 private:
1213 size_t m_rows, m_cols;
1214 float *m_data;
1215 };
1216
1217The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001218making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001219completely avoid copy operations with Python expressions like
1220``np.array(matrix_instance, copy = False)``.
1221
1222.. code-block:: cpp
1223
1224 py::class_<Matrix>(m, "Matrix")
1225 .def_buffer([](Matrix &m) -> py::buffer_info {
1226 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001227 m.data(), /* Pointer to buffer */
1228 sizeof(float), /* Size of one scalar */
1229 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1230 2, /* Number of dimensions */
1231 { m.rows(), m.cols() }, /* Buffer dimensions */
1232 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001233 sizeof(float) }
1234 );
1235 });
1236
1237The snippet above binds a lambda function, which can create ``py::buffer_info``
1238description records on demand describing a given matrix. The contents of
1239``py::buffer_info`` mirror the Python buffer protocol specification.
1240
1241.. code-block:: cpp
1242
1243 struct buffer_info {
1244 void *ptr;
1245 size_t itemsize;
1246 std::string format;
1247 int ndim;
1248 std::vector<size_t> shape;
1249 std::vector<size_t> strides;
1250 };
1251
1252To create a C++ function that can take a Python buffer object as an argument,
1253simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1254in a great variety of configurations, hence some safety checks are usually
1255necessary in the function body. Below, you can see an basic example on how to
1256define a custom constructor for the Eigen double precision matrix
1257(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001258buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001259
1260.. code-block:: cpp
1261
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001262 /* Bind MatrixXd (or some other Eigen type) to Python */
1263 typedef Eigen::MatrixXd Matrix;
1264
1265 typedef Matrix::Scalar Scalar;
1266 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1267
1268 py::class_<Matrix>(m, "Matrix")
1269 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001270 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001271
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001272 /* Request a buffer descriptor from Python */
1273 py::buffer_info info = b.request();
1274
1275 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001276 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001277 throw std::runtime_error("Incompatible format: expected a double array!");
1278
1279 if (info.ndim != 2)
1280 throw std::runtime_error("Incompatible buffer dimension!");
1281
Wenzel Jakobe7628532016-05-05 10:04:44 +02001282 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001283 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1284 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001285
1286 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001287 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001288
1289 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001290 });
1291
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001292For reference, the ``def_buffer()`` call for this Eigen data type should look
1293as follows:
1294
1295.. code-block:: cpp
1296
1297 .def_buffer([](Matrix &m) -> py::buffer_info {
1298 return py::buffer_info(
1299 m.data(), /* Pointer to buffer */
1300 sizeof(Scalar), /* Size of one scalar */
1301 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001302 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001303 /* Number of dimensions */
1304 2,
1305 /* Buffer dimensions */
1306 { (size_t) m.rows(),
1307 (size_t) m.cols() },
1308 /* Strides (in bytes) for each index */
1309 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1310 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1311 );
1312 })
1313
1314For a much easier approach of binding Eigen types (although with some
1315limitations), refer to the section on :ref:`eigen`.
1316
Wenzel Jakob93296692015-10-13 23:21:54 +02001317.. seealso::
1318
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001319 The file :file:`example/example-buffers.cpp` contains a complete example
1320 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001321
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001322.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001323
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001324NumPy support
1325=============
1326
1327By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1328restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001329type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001330
1331In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001332array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001333template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001334NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001335
1336.. code-block:: cpp
1337
Wenzel Jakob93296692015-10-13 23:21:54 +02001338 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001339
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001340When it is invoked with a different type (e.g. an integer or a list of
1341integers), the binding code will attempt to cast the input into a NumPy array
1342of the requested type. Note that this feature requires the
1343:file:``pybind11/numpy.h`` header to be included.
1344
1345Data in NumPy arrays is not guaranteed to packed in a dense manner;
1346furthermore, entries can be separated by arbitrary column and row strides.
1347Sometimes, it can be useful to require a function to only accept dense arrays
1348using either the C (row-major) or Fortran (column-major) ordering. This can be
1349accomplished via a second template argument with values ``py::array::c_style``
1350or ``py::array::f_style``.
1351
1352.. code-block:: cpp
1353
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001354 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001355
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001356The ``py::array::forcecast`` argument is the default value of the second
1357template paramenter, and it ensures that non-conforming arguments are converted
1358into an array satisfying the specified requirements instead of trying the next
1359function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001360
Ivan Smirnov223afe32016-07-02 15:33:04 +01001361NumPy structured types
1362======================
1363
1364In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001365to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001366macro which expects the type followed by field names:
1367
1368.. code-block:: cpp
1369
1370 struct A {
1371 int x;
1372 double y;
1373 };
1374
1375 struct B {
1376 int z;
1377 A a;
1378 };
1379
Ivan Smirnov5412a052016-07-02 16:18:42 +01001380 PYBIND11_NUMPY_DTYPE(A, x, y);
1381 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001382
1383 /* now both A and B can be used as template arguments to py::array_t */
1384
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001385Vectorizing functions
1386=====================
1387
1388Suppose we want to bind a function with the following signature to Python so
1389that it can process arbitrary NumPy array arguments (vectors, matrices, general
1390N-D arrays) in addition to its normal arguments:
1391
1392.. code-block:: cpp
1393
1394 double my_func(int x, float y, double z);
1395
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001396After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001397
1398.. code-block:: cpp
1399
1400 m.def("vectorized_func", py::vectorize(my_func));
1401
1402Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001403each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001404solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1405entirely on the C++ side and can be crunched down into a tight, optimized loop
1406by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001407``numpy.dtype.float64``.
1408
Wenzel Jakob99279f72016-06-03 11:19:29 +02001409.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001410
1411 >>> x = np.array([[1, 3],[5, 7]])
1412 >>> y = np.array([[2, 4],[6, 8]])
1413 >>> z = 3
1414 >>> result = vectorized_func(x, y, z)
1415
1416The scalar argument ``z`` is transparently replicated 4 times. The input
1417arrays ``x`` and ``y`` are automatically converted into the right types (they
1418are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1419``numpy.dtype.float32``, respectively)
1420
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001421Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001422because it makes little sense to wrap it in a NumPy array. For instance,
1423suppose the function signature was
1424
1425.. code-block:: cpp
1426
1427 double my_func(int x, float y, my_custom_type *z);
1428
1429This can be done with a stateful Lambda closure:
1430
1431.. code-block:: cpp
1432
1433 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1434 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001435 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001436 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1437 return py::vectorize(stateful_closure)(x, y);
1438 }
1439 );
1440
Wenzel Jakob61587162016-01-18 22:38:52 +01001441In cases where the computation is too complicated to be reduced to
1442``vectorize``, it will be necessary to create and access the buffer contents
1443manually. The following snippet contains a complete example that shows how this
1444works (the code is somewhat contrived, since it could have been done more
1445simply using ``vectorize``).
1446
1447.. code-block:: cpp
1448
1449 #include <pybind11/pybind11.h>
1450 #include <pybind11/numpy.h>
1451
1452 namespace py = pybind11;
1453
1454 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1455 auto buf1 = input1.request(), buf2 = input2.request();
1456
1457 if (buf1.ndim != 1 || buf2.ndim != 1)
1458 throw std::runtime_error("Number of dimensions must be one");
1459
Ivan Smirnovb6518592016-08-13 13:28:56 +01001460 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001461 throw std::runtime_error("Input shapes must match");
1462
Ivan Smirnovb6518592016-08-13 13:28:56 +01001463 /* No pointer is passed, so NumPy will allocate the buffer */
1464 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001465
1466 auto buf3 = result.request();
1467
1468 double *ptr1 = (double *) buf1.ptr,
1469 *ptr2 = (double *) buf2.ptr,
1470 *ptr3 = (double *) buf3.ptr;
1471
1472 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1473 ptr3[idx] = ptr1[idx] + ptr2[idx];
1474
1475 return result;
1476 }
1477
1478 PYBIND11_PLUGIN(test) {
1479 py::module m("test");
1480 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1481 return m.ptr();
1482 }
1483
Wenzel Jakob93296692015-10-13 23:21:54 +02001484.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001485
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001486 The file :file:`example/example-numpy-vectorize.cpp` contains a complete
1487 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001488
Wenzel Jakob93296692015-10-13 23:21:54 +02001489Functions taking Python objects as arguments
1490============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001491
Wenzel Jakob93296692015-10-13 23:21:54 +02001492pybind11 exposes all major Python types using thin C++ wrapper classes. These
1493wrapper classes can also be used as parameters of functions in bindings, which
1494makes it possible to directly work with native Python types on the C++ side.
1495For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001496
Wenzel Jakob93296692015-10-13 23:21:54 +02001497.. code-block:: cpp
1498
1499 void print_dict(py::dict dict) {
1500 /* Easily interact with Python types */
1501 for (auto item : dict)
1502 std::cout << "key=" << item.first << ", "
1503 << "value=" << item.second << std::endl;
1504 }
1505
1506Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001507:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001508:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1509:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1510:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001511
Wenzel Jakob436b7312015-10-20 01:04:30 +02001512In this kind of mixed code, it is often necessary to convert arbitrary C++
1513types to Python, which can be done using :func:`cast`:
1514
1515.. code-block:: cpp
1516
1517 MyClass *cls = ..;
1518 py::object obj = py::cast(cls);
1519
1520The reverse direction uses the following syntax:
1521
1522.. code-block:: cpp
1523
1524 py::object obj = ...;
1525 MyClass *cls = obj.cast<MyClass *>();
1526
1527When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001528It is also possible to call python functions via ``operator()``.
1529
1530.. code-block:: cpp
1531
1532 py::function f = <...>;
1533 py::object result_py = f(1234, "hello", some_instance);
1534 MyClass &result = result_py.cast<MyClass>();
1535
1536The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1537supply arbitrary argument and keyword lists, although these cannot be mixed
1538with other parameters.
1539
1540.. code-block:: cpp
1541
1542 py::function f = <...>;
1543 py::tuple args = py::make_tuple(1234);
1544 py::dict kwargs;
1545 kwargs["y"] = py::cast(5678);
1546 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001547
Wenzel Jakob93296692015-10-13 23:21:54 +02001548.. seealso::
1549
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001550 The file :file:`example/example-python-types.cpp` contains a complete
1551 example that demonstrates passing native Python types in more detail. The
1552 file :file:`example/example-arg-keywords-and-defaults.cpp` discusses usage
1553 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001554
1555Default arguments revisited
1556===========================
1557
1558The section on :ref:`default_args` previously discussed basic usage of default
1559arguments using pybind11. One noteworthy aspect of their implementation is that
1560default arguments are converted to Python objects right at declaration time.
1561Consider the following example:
1562
1563.. code-block:: cpp
1564
1565 py::class_<MyClass>("MyClass")
1566 .def("myFunction", py::arg("arg") = SomeType(123));
1567
1568In this case, pybind11 must already be set up to deal with values of the type
1569``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1570exception will be thrown.
1571
1572Another aspect worth highlighting is that the "preview" of the default argument
1573in the function signature is generated using the object's ``__repr__`` method.
1574If not available, the signature may not be very helpful, e.g.:
1575
Wenzel Jakob99279f72016-06-03 11:19:29 +02001576.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001577
1578 FUNCTIONS
1579 ...
1580 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001581 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001582 ...
1583
1584The first way of addressing this is by defining ``SomeType.__repr__``.
1585Alternatively, it is possible to specify the human-readable preview of the
1586default argument manually using the ``arg_t`` notation:
1587
1588.. code-block:: cpp
1589
1590 py::class_<MyClass>("MyClass")
1591 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1592
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001593Sometimes it may be necessary to pass a null pointer value as a default
1594argument. In this case, remember to cast it to the underlying type in question,
1595like so:
1596
1597.. code-block:: cpp
1598
1599 py::class_<MyClass>("MyClass")
1600 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1601
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001602Binding functions that accept arbitrary numbers of arguments and keywords arguments
1603===================================================================================
1604
1605Python provides a useful mechanism to define functions that accept arbitrary
1606numbers of arguments and keyword arguments:
1607
1608.. code-block:: cpp
1609
1610 def generic(*args, **kwargs):
1611 # .. do something with args and kwargs
1612
1613Such functions can also be created using pybind11:
1614
1615.. code-block:: cpp
1616
1617 void generic(py::args args, py::kwargs kwargs) {
1618 /// .. do something with args
1619 if (kwargs)
1620 /// .. do something with kwargs
1621 }
1622
1623 /// Binding code
1624 m.def("generic", &generic);
1625
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001626(See ``example/example-arg-keywords-and-defaults.cpp``). The class ``py::args``
1627derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1628that the ``kwargs`` argument is invalid if no keyword arguments were actually
1629provided. Please refer to the other examples for details on how to iterate
1630over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001631
Wenzel Jakob3764e282016-08-01 23:34:48 +02001632.. warning::
1633
1634 Unlike Python, pybind11 does not allow combining normal parameters with the
1635 ``args`` / ``kwargs`` special parameters.
1636
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001637Partitioning code over multiple extension modules
1638=================================================
1639
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001640It's straightforward to split binding code over multiple extension modules,
1641while referencing types that are declared elsewhere. Everything "just" works
1642without any special precautions. One exception to this rule occurs when
1643extending a type declared in another extension module. Recall the basic example
1644from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001645
1646.. code-block:: cpp
1647
1648 py::class_<Pet> pet(m, "Pet");
1649 pet.def(py::init<const std::string &>())
1650 .def_readwrite("name", &Pet::name);
1651
1652 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1653 .def(py::init<const std::string &>())
1654 .def("bark", &Dog::bark);
1655
1656Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1657whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1658course that the variable ``pet`` is not available anymore though it is needed
1659to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1660However, it can be acquired as follows:
1661
1662.. code-block:: cpp
1663
1664 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1665
1666 py::class_<Dog>(m, "Dog", pet)
1667 .def(py::init<const std::string &>())
1668 .def("bark", &Dog::bark);
1669
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001670Alternatively, we can rely on the ``base`` tag, which performs an automated
1671lookup of the corresponding Python type. However, this also requires invoking
1672the ``import`` function once to ensure that the pybind11 binding code of the
1673module ``basic`` has been executed.
1674
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001675.. code-block:: cpp
1676
1677 py::module::import("basic");
1678
1679 py::class_<Dog>(m, "Dog", py::base<Pet>())
1680 .def(py::init<const std::string &>())
1681 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001682
Wenzel Jakob978e3762016-04-07 18:00:41 +02001683Naturally, both methods will fail when there are cyclic dependencies.
1684
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001685Note that compiling code which has its default symbol visibility set to
1686*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1687ability to access types defined in another extension module. Workarounds
1688include changing the global symbol visibility (not recommended, because it will
1689lead unnecessarily large binaries) or manually exporting types that are
1690accessed by multiple extension modules:
1691
1692.. code-block:: cpp
1693
1694 #ifdef _WIN32
1695 # define EXPORT_TYPE __declspec(dllexport)
1696 #else
1697 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1698 #endif
1699
1700 class EXPORT_TYPE Dog : public Animal {
1701 ...
1702 };
1703
1704
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001705Pickling support
1706================
1707
1708Python's ``pickle`` module provides a powerful facility to serialize and
1709de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001710unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001711Suppose the class in question has the following signature:
1712
1713.. code-block:: cpp
1714
1715 class Pickleable {
1716 public:
1717 Pickleable(const std::string &value) : m_value(value) { }
1718 const std::string &value() const { return m_value; }
1719
1720 void setExtra(int extra) { m_extra = extra; }
1721 int extra() const { return m_extra; }
1722 private:
1723 std::string m_value;
1724 int m_extra = 0;
1725 };
1726
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001727The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001728looks as follows:
1729
1730.. code-block:: cpp
1731
1732 py::class_<Pickleable>(m, "Pickleable")
1733 .def(py::init<std::string>())
1734 .def("value", &Pickleable::value)
1735 .def("extra", &Pickleable::extra)
1736 .def("setExtra", &Pickleable::setExtra)
1737 .def("__getstate__", [](const Pickleable &p) {
1738 /* Return a tuple that fully encodes the state of the object */
1739 return py::make_tuple(p.value(), p.extra());
1740 })
1741 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1742 if (t.size() != 2)
1743 throw std::runtime_error("Invalid state!");
1744
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001745 /* Invoke the in-place constructor. Note that this is needed even
1746 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001747 new (&p) Pickleable(t[0].cast<std::string>());
1748
1749 /* Assign any additional state */
1750 p.setExtra(t[1].cast<int>());
1751 });
1752
1753An instance can now be pickled as follows:
1754
1755.. code-block:: python
1756
1757 try:
1758 import cPickle as pickle # Use cPickle on Python 2.7
1759 except ImportError:
1760 import pickle
1761
1762 p = Pickleable("test_value")
1763 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001764 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001765
Wenzel Jakob81e09752016-04-30 23:13:03 +02001766Note that only the cPickle module is supported on Python 2.7. The second
1767argument to ``dumps`` is also crucial: it selects the pickle protocol version
17682, since the older version 1 is not supported. Newer versions are also fine—for
1769instance, specify ``-1`` to always use the latest available version. Beware:
1770failure to follow these instructions will cause important pybind11 memory
1771allocation routines to be skipped during unpickling, which will likely lead to
1772memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001773
1774.. seealso::
1775
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001776 The file :file:`example/example-pickling.cpp` contains a complete example
1777 that demonstrates how to pickle and unpickle types using pybind11 in more
1778 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001779
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001780.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001781
1782Generating documentation using Sphinx
1783=====================================
1784
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001785Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001786strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001787documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001788simple example repository which uses this approach.
1789
1790There are two potential gotchas when using this approach: first, make sure that
1791the resulting strings do not contain any :kbd:`TAB` characters, which break the
1792docstring parsing routines. You may want to use C++11 raw string literals,
1793which are convenient for multi-line comments. Conveniently, any excess
1794indentation will be automatically be removed by Sphinx. However, for this to
1795work, it is important that all lines are indented consistently, i.e.:
1796
1797.. code-block:: cpp
1798
1799 // ok
1800 m.def("foo", &foo, R"mydelimiter(
1801 The foo function
1802
1803 Parameters
1804 ----------
1805 )mydelimiter");
1806
1807 // *not ok*
1808 m.def("foo", &foo, R"mydelimiter(The foo function
1809
1810 Parameters
1811 ----------
1812 )mydelimiter");
1813
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001814.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001815.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001816
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001817Evaluating Python expressions from strings and files
1818====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001819
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001820pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1821Python expressions and statements. The following example illustrates how they
1822can be used.
1823
1824Both functions accept a template parameter that describes how the argument
1825should be interpreted. Possible choices include ``eval_expr`` (isolated
1826expression), ``eval_single_statement`` (a single statement, return value is
1827always ``none``), and ``eval_statements`` (sequence of statements, return value
1828is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001829
1830.. code-block:: cpp
1831
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001832 // At beginning of file
1833 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001834
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001835 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001836
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001837 // Evaluate in scope of main module
1838 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001839
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001840 // Evaluate an isolated expression
1841 int result = py::eval("my_variable + 10", scope).cast<int>();
1842
1843 // Evaluate a sequence of statements
1844 py::eval<py::eval_statements>(
1845 "print('Hello')\n"
1846 "print('world!');",
1847 scope);
1848
1849 // Evaluate the statements in an separate Python file on disk
1850 py::eval_file("script.py", scope);