blob: 792542eab2553f005ecea9a04a4b2406737d3b20 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000066#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000072#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000076#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000077#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000078#include "llvm/IR/GlobalAlias.h"
79#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000080#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000081#include "llvm/IR/Instructions.h"
82#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000083#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000084#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000085#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000086#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000087#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000088#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000089#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000090#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
David Majnemer32b8ccf2014-11-16 20:35:19 +0000678static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
679 APInt A = C1->getValue()->getValue();
680 APInt B = C2->getValue()->getValue();
681 uint32_t ABW = A.getBitWidth();
682 uint32_t BBW = B.getBitWidth();
683
684 if (ABW > BBW)
685 B = B.sext(ABW);
686 else if (ABW < BBW)
687 A = A.sext(BBW);
688
689 return APIntOps::srem(A, B);
690}
691
692static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
693 APInt A = C1->getValue()->getValue();
694 APInt B = C2->getValue()->getValue();
695 uint32_t ABW = A.getBitWidth();
696 uint32_t BBW = B.getBitWidth();
697
698 if (ABW > BBW)
699 B = B.sext(ABW);
700 else if (ABW < BBW)
701 A = A.sext(BBW);
702
703 return APIntOps::sdiv(A, B);
704}
705
David Majnemer0df1d122014-11-16 07:30:35 +0000706static const APInt urem(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707 APInt A = C1->getValue()->getValue();
708 APInt B = C2->getValue()->getValue();
709 uint32_t ABW = A.getBitWidth();
710 uint32_t BBW = B.getBitWidth();
711
712 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000713 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000715 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000716
David Majnemer0df1d122014-11-16 07:30:35 +0000717 return APIntOps::urem(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000718}
719
David Majnemer0df1d122014-11-16 07:30:35 +0000720static const APInt udiv(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000721 APInt A = C1->getValue()->getValue();
722 APInt B = C2->getValue()->getValue();
723 uint32_t ABW = A.getBitWidth();
724 uint32_t BBW = B.getBitWidth();
725
726 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000727 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000728 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000729 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000730
David Majnemer0df1d122014-11-16 07:30:35 +0000731 return APIntOps::udiv(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000732}
733
734namespace {
735struct FindSCEVSize {
736 int Size;
737 FindSCEVSize() : Size(0) {}
738
739 bool follow(const SCEV *S) {
740 ++Size;
741 // Keep looking at all operands of S.
742 return true;
743 }
744 bool isDone() const {
745 return false;
746 }
747};
748}
749
750// Returns the size of the SCEV S.
751static inline int sizeOfSCEV(const SCEV *S) {
752 FindSCEVSize F;
753 SCEVTraversal<FindSCEVSize> ST(F);
754 ST.visitAll(S);
755 return F.Size;
756}
757
758namespace {
759
David Majnemer32b8ccf2014-11-16 20:35:19 +0000760template <typename Derived>
761struct SCEVDivision : public SCEVVisitor<Derived, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000762public:
763 // Computes the Quotient and Remainder of the division of Numerator by
764 // Denominator.
765 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
766 const SCEV *Denominator, const SCEV **Quotient,
767 const SCEV **Remainder) {
768 assert(Numerator && Denominator && "Uninitialized SCEV");
769
David Majnemer5d2670c2014-11-17 11:27:45 +0000770 Derived D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000771
772 // Check for the trivial case here to avoid having to check for it in the
773 // rest of the code.
774 if (Numerator == Denominator) {
775 *Quotient = D.One;
776 *Remainder = D.Zero;
777 return;
778 }
779
780 if (Numerator->isZero()) {
781 *Quotient = D.Zero;
782 *Remainder = D.Zero;
783 return;
784 }
785
786 // Split the Denominator when it is a product.
787 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
788 const SCEV *Q, *R;
789 *Quotient = Numerator;
790 for (const SCEV *Op : T->operands()) {
791 divide(SE, *Quotient, Op, &Q, &R);
792 *Quotient = Q;
793
794 // Bail out when the Numerator is not divisible by one of the terms of
795 // the Denominator.
796 if (!R->isZero()) {
797 *Quotient = D.Zero;
798 *Remainder = Numerator;
799 return;
800 }
801 }
802 *Remainder = D.Zero;
803 return;
804 }
805
806 D.visit(Numerator);
807 *Quotient = D.Quotient;
808 *Remainder = D.Remainder;
809 }
810
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000811 // Except in the trivial case described above, we do not know how to divide
812 // Expr by Denominator for the following functions with empty implementation.
813 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
814 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
815 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
816 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
817 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
818 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
819 void visitUnknown(const SCEVUnknown *Numerator) {}
820 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
821
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000822 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
823 const SCEV *StartQ, *StartR, *StepQ, *StepR;
824 assert(Numerator->isAffine() && "Numerator should be affine");
825 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
826 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
827 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
828 Numerator->getNoWrapFlags());
829 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
830 Numerator->getNoWrapFlags());
831 }
832
833 void visitAddExpr(const SCEVAddExpr *Numerator) {
834 SmallVector<const SCEV *, 2> Qs, Rs;
835 Type *Ty = Denominator->getType();
836
837 for (const SCEV *Op : Numerator->operands()) {
838 const SCEV *Q, *R;
839 divide(SE, Op, Denominator, &Q, &R);
840
841 // Bail out if types do not match.
842 if (Ty != Q->getType() || Ty != R->getType()) {
843 Quotient = Zero;
844 Remainder = Numerator;
845 return;
846 }
847
848 Qs.push_back(Q);
849 Rs.push_back(R);
850 }
851
852 if (Qs.size() == 1) {
853 Quotient = Qs[0];
854 Remainder = Rs[0];
855 return;
856 }
857
858 Quotient = SE.getAddExpr(Qs);
859 Remainder = SE.getAddExpr(Rs);
860 }
861
862 void visitMulExpr(const SCEVMulExpr *Numerator) {
863 SmallVector<const SCEV *, 2> Qs;
864 Type *Ty = Denominator->getType();
865
866 bool FoundDenominatorTerm = false;
867 for (const SCEV *Op : Numerator->operands()) {
868 // Bail out if types do not match.
869 if (Ty != Op->getType()) {
870 Quotient = Zero;
871 Remainder = Numerator;
872 return;
873 }
874
875 if (FoundDenominatorTerm) {
876 Qs.push_back(Op);
877 continue;
878 }
879
880 // Check whether Denominator divides one of the product operands.
881 const SCEV *Q, *R;
882 divide(SE, Op, Denominator, &Q, &R);
883 if (!R->isZero()) {
884 Qs.push_back(Op);
885 continue;
886 }
887
888 // Bail out if types do not match.
889 if (Ty != Q->getType()) {
890 Quotient = Zero;
891 Remainder = Numerator;
892 return;
893 }
894
895 FoundDenominatorTerm = true;
896 Qs.push_back(Q);
897 }
898
899 if (FoundDenominatorTerm) {
900 Remainder = Zero;
901 if (Qs.size() == 1)
902 Quotient = Qs[0];
903 else
904 Quotient = SE.getMulExpr(Qs);
905 return;
906 }
907
908 if (!isa<SCEVUnknown>(Denominator)) {
909 Quotient = Zero;
910 Remainder = Numerator;
911 return;
912 }
913
914 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
915 ValueToValueMap RewriteMap;
916 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
917 cast<SCEVConstant>(Zero)->getValue();
918 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
919
920 if (Remainder->isZero()) {
921 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
922 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
923 cast<SCEVConstant>(One)->getValue();
924 Quotient =
925 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
926 return;
927 }
928
929 // Quotient is (Numerator - Remainder) divided by Denominator.
930 const SCEV *Q, *R;
931 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
932 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
933 // This SCEV does not seem to simplify: fail the division here.
934 Quotient = Zero;
935 Remainder = Numerator;
936 return;
937 }
938 divide(SE, Diff, Denominator, &Q, &R);
939 assert(R == Zero &&
940 "(Numerator - Remainder) should evenly divide Denominator");
941 Quotient = Q;
942 }
943
944private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000945 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
946 const SCEV *Denominator)
947 : SE(S), Denominator(Denominator) {
948 Zero = SE.getConstant(Denominator->getType(), 0);
949 One = SE.getConstant(Denominator->getType(), 1);
950
951 // By default, we don't know how to divide Expr by Denominator.
952 // Providing the default here simplifies the rest of the code.
953 Quotient = Zero;
954 Remainder = Numerator;
955 }
956
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000957 ScalarEvolution &SE;
958 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000959
960 friend struct SCEVSDivision;
961 friend struct SCEVUDivision;
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000962};
David Majnemer32b8ccf2014-11-16 20:35:19 +0000963
964struct SCEVSDivision : public SCEVDivision<SCEVSDivision> {
David Majnemer5d2670c2014-11-17 11:27:45 +0000965 SCEVSDivision(ScalarEvolution &S, const SCEV *Numerator,
966 const SCEV *Denominator)
967 : SCEVDivision(S, Numerator, Denominator) {}
968
David Majnemer32b8ccf2014-11-16 20:35:19 +0000969 void visitConstant(const SCEVConstant *Numerator) {
970 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
971 Quotient = SE.getConstant(sdiv(Numerator, D));
972 Remainder = SE.getConstant(srem(Numerator, D));
973 return;
974 }
975 }
976};
977
978struct SCEVUDivision : public SCEVDivision<SCEVUDivision> {
David Majnemer5d2670c2014-11-17 11:27:45 +0000979 SCEVUDivision(ScalarEvolution &S, const SCEV *Numerator,
980 const SCEV *Denominator)
981 : SCEVDivision(S, Numerator, Denominator) {}
982
David Majnemer32b8ccf2014-11-16 20:35:19 +0000983 void visitConstant(const SCEVConstant *Numerator) {
984 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
985 Quotient = SE.getConstant(udiv(Numerator, D));
986 Remainder = SE.getConstant(urem(Numerator, D));
987 return;
988 }
989 }
990};
991
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000992}
993
Chris Lattnerd934c702004-04-02 20:23:17 +0000994//===----------------------------------------------------------------------===//
995// Simple SCEV method implementations
996//===----------------------------------------------------------------------===//
997
Eli Friedman61f67622008-08-04 23:49:06 +0000998/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000999/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +00001000static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +00001001 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +00001002 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +00001003 // Handle the simplest case efficiently.
1004 if (K == 1)
1005 return SE.getTruncateOrZeroExtend(It, ResultTy);
1006
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001007 // We are using the following formula for BC(It, K):
1008 //
1009 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1010 //
Eli Friedman61f67622008-08-04 23:49:06 +00001011 // Suppose, W is the bitwidth of the return value. We must be prepared for
1012 // overflow. Hence, we must assure that the result of our computation is
1013 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1014 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001015 //
Eli Friedman61f67622008-08-04 23:49:06 +00001016 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +00001017 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +00001018 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1019 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001020 //
Eli Friedman61f67622008-08-04 23:49:06 +00001021 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001022 //
Eli Friedman61f67622008-08-04 23:49:06 +00001023 // This formula is trivially equivalent to the previous formula. However,
1024 // this formula can be implemented much more efficiently. The trick is that
1025 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1026 // arithmetic. To do exact division in modular arithmetic, all we have
1027 // to do is multiply by the inverse. Therefore, this step can be done at
1028 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +00001029 //
Eli Friedman61f67622008-08-04 23:49:06 +00001030 // The next issue is how to safely do the division by 2^T. The way this
1031 // is done is by doing the multiplication step at a width of at least W + T
1032 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1033 // when we perform the division by 2^T (which is equivalent to a right shift
1034 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1035 // truncated out after the division by 2^T.
1036 //
1037 // In comparison to just directly using the first formula, this technique
1038 // is much more efficient; using the first formula requires W * K bits,
1039 // but this formula less than W + K bits. Also, the first formula requires
1040 // a division step, whereas this formula only requires multiplies and shifts.
1041 //
1042 // It doesn't matter whether the subtraction step is done in the calculation
1043 // width or the input iteration count's width; if the subtraction overflows,
1044 // the result must be zero anyway. We prefer here to do it in the width of
1045 // the induction variable because it helps a lot for certain cases; CodeGen
1046 // isn't smart enough to ignore the overflow, which leads to much less
1047 // efficient code if the width of the subtraction is wider than the native
1048 // register width.
1049 //
1050 // (It's possible to not widen at all by pulling out factors of 2 before
1051 // the multiplication; for example, K=2 can be calculated as
1052 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1053 // extra arithmetic, so it's not an obvious win, and it gets
1054 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001055
Eli Friedman61f67622008-08-04 23:49:06 +00001056 // Protection from insane SCEVs; this bound is conservative,
1057 // but it probably doesn't matter.
1058 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001059 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001060
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001061 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001062
Eli Friedman61f67622008-08-04 23:49:06 +00001063 // Calculate K! / 2^T and T; we divide out the factors of two before
1064 // multiplying for calculating K! / 2^T to avoid overflow.
1065 // Other overflow doesn't matter because we only care about the bottom
1066 // W bits of the result.
1067 APInt OddFactorial(W, 1);
1068 unsigned T = 1;
1069 for (unsigned i = 3; i <= K; ++i) {
1070 APInt Mult(W, i);
1071 unsigned TwoFactors = Mult.countTrailingZeros();
1072 T += TwoFactors;
1073 Mult = Mult.lshr(TwoFactors);
1074 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001075 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001076
Eli Friedman61f67622008-08-04 23:49:06 +00001077 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001078 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001079
Dan Gohman8b0a4192010-03-01 17:49:51 +00001080 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001081 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001082
1083 // Calculate the multiplicative inverse of K! / 2^T;
1084 // this multiplication factor will perform the exact division by
1085 // K! / 2^T.
1086 APInt Mod = APInt::getSignedMinValue(W+1);
1087 APInt MultiplyFactor = OddFactorial.zext(W+1);
1088 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1089 MultiplyFactor = MultiplyFactor.trunc(W);
1090
1091 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001092 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001093 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001094 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001095 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001096 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001097 Dividend = SE.getMulExpr(Dividend,
1098 SE.getTruncateOrZeroExtend(S, CalculationTy));
1099 }
1100
1101 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001102 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001103
1104 // Truncate the result, and divide by K! / 2^T.
1105
1106 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1107 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001108}
1109
Chris Lattnerd934c702004-04-02 20:23:17 +00001110/// evaluateAtIteration - Return the value of this chain of recurrences at
1111/// the specified iteration number. We can evaluate this recurrence by
1112/// multiplying each element in the chain by the binomial coefficient
1113/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1114///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001115/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001116///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001117/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001118///
Dan Gohmanaf752342009-07-07 17:06:11 +00001119const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001120 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001121 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001122 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001123 // The computation is correct in the face of overflow provided that the
1124 // multiplication is performed _after_ the evaluation of the binomial
1125 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001126 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001127 if (isa<SCEVCouldNotCompute>(Coeff))
1128 return Coeff;
1129
1130 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001131 }
1132 return Result;
1133}
1134
Chris Lattnerd934c702004-04-02 20:23:17 +00001135//===----------------------------------------------------------------------===//
1136// SCEV Expression folder implementations
1137//===----------------------------------------------------------------------===//
1138
Dan Gohmanaf752342009-07-07 17:06:11 +00001139const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001140 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001141 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001142 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001143 assert(isSCEVable(Ty) &&
1144 "This is not a conversion to a SCEVable type!");
1145 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001146
Dan Gohman3a302cb2009-07-13 20:50:19 +00001147 FoldingSetNodeID ID;
1148 ID.AddInteger(scTruncate);
1149 ID.AddPointer(Op);
1150 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001151 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001152 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1153
Dan Gohman3423e722009-06-30 20:13:32 +00001154 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001155 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001156 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001157 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001158
Dan Gohman79af8542009-04-22 16:20:48 +00001159 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001160 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001161 return getTruncateExpr(ST->getOperand(), Ty);
1162
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001163 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001164 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001165 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1166
1167 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001168 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001169 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1170
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001171 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1172 // eliminate all the truncates.
1173 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1174 SmallVector<const SCEV *, 4> Operands;
1175 bool hasTrunc = false;
1176 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1177 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1178 hasTrunc = isa<SCEVTruncateExpr>(S);
1179 Operands.push_back(S);
1180 }
1181 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001182 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001183 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001184 }
1185
Nick Lewycky5c901f32011-01-19 18:56:00 +00001186 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1187 // eliminate all the truncates.
1188 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1189 SmallVector<const SCEV *, 4> Operands;
1190 bool hasTrunc = false;
1191 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1192 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1193 hasTrunc = isa<SCEVTruncateExpr>(S);
1194 Operands.push_back(S);
1195 }
1196 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001197 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001198 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001199 }
1200
Dan Gohman5a728c92009-06-18 16:24:47 +00001201 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001202 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001203 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001204 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001205 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001206 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001207 }
1208
Dan Gohman89dd42a2010-06-25 18:47:08 +00001209 // The cast wasn't folded; create an explicit cast node. We can reuse
1210 // the existing insert position since if we get here, we won't have
1211 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001212 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1213 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001214 UniqueSCEVs.InsertNode(S, IP);
1215 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001216}
1217
Dan Gohmanaf752342009-07-07 17:06:11 +00001218const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001219 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001220 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001221 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001222 assert(isSCEVable(Ty) &&
1223 "This is not a conversion to a SCEVable type!");
1224 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001225
Dan Gohman3423e722009-06-30 20:13:32 +00001226 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001227 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1228 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001229 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001230
Dan Gohman79af8542009-04-22 16:20:48 +00001231 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001232 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001233 return getZeroExtendExpr(SZ->getOperand(), Ty);
1234
Dan Gohman74a0ba12009-07-13 20:55:53 +00001235 // Before doing any expensive analysis, check to see if we've already
1236 // computed a SCEV for this Op and Ty.
1237 FoldingSetNodeID ID;
1238 ID.AddInteger(scZeroExtend);
1239 ID.AddPointer(Op);
1240 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001241 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001242 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1243
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001244 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1245 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1246 // It's possible the bits taken off by the truncate were all zero bits. If
1247 // so, we should be able to simplify this further.
1248 const SCEV *X = ST->getOperand();
1249 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001250 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1251 unsigned NewBits = getTypeSizeInBits(Ty);
1252 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001253 CR.zextOrTrunc(NewBits)))
1254 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001255 }
1256
Dan Gohman76466372009-04-27 20:16:15 +00001257 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001258 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001259 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001260 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001261 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001262 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001263 const SCEV *Start = AR->getStart();
1264 const SCEV *Step = AR->getStepRecurrence(*this);
1265 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1266 const Loop *L = AR->getLoop();
1267
Dan Gohman62ef6a72009-07-25 01:22:26 +00001268 // If we have special knowledge that this addrec won't overflow,
1269 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001270 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001271 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1272 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001274
Dan Gohman76466372009-04-27 20:16:15 +00001275 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1276 // Note that this serves two purposes: It filters out loops that are
1277 // simply not analyzable, and it covers the case where this code is
1278 // being called from within backedge-taken count analysis, such that
1279 // attempting to ask for the backedge-taken count would likely result
1280 // in infinite recursion. In the later case, the analysis code will
1281 // cope with a conservative value, and it will take care to purge
1282 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001283 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001284 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001285 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001286 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001287
1288 // Check whether the backedge-taken count can be losslessly casted to
1289 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001290 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001291 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001292 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001293 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1294 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001295 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001296 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001297 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001298 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1299 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1300 const SCEV *WideMaxBECount =
1301 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001302 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001303 getAddExpr(WideStart,
1304 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001305 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001306 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001307 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1308 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001309 // Return the expression with the addrec on the outside.
1310 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1311 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001312 L, AR->getNoWrapFlags());
1313 }
Dan Gohman76466372009-04-27 20:16:15 +00001314 // Similar to above, only this time treat the step value as signed.
1315 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001316 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001317 getAddExpr(WideStart,
1318 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001319 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001320 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001321 // Cache knowledge of AR NW, which is propagated to this AddRec.
1322 // Negative step causes unsigned wrap, but it still can't self-wrap.
1323 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001324 // Return the expression with the addrec on the outside.
1325 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1326 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001327 L, AR->getNoWrapFlags());
1328 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001329 }
1330
1331 // If the backedge is guarded by a comparison with the pre-inc value
1332 // the addrec is safe. Also, if the entry is guarded by a comparison
1333 // with the start value and the backedge is guarded by a comparison
1334 // with the post-inc value, the addrec is safe.
1335 if (isKnownPositive(Step)) {
1336 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1337 getUnsignedRange(Step).getUnsignedMax());
1338 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001339 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001340 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001341 AR->getPostIncExpr(*this), N))) {
1342 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1343 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001344 // Return the expression with the addrec on the outside.
1345 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1346 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001347 L, AR->getNoWrapFlags());
1348 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001349 } else if (isKnownNegative(Step)) {
1350 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1351 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001352 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1353 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001354 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001355 AR->getPostIncExpr(*this), N))) {
1356 // Cache knowledge of AR NW, which is propagated to this AddRec.
1357 // Negative step causes unsigned wrap, but it still can't self-wrap.
1358 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1359 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001360 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1361 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001362 L, AR->getNoWrapFlags());
1363 }
Dan Gohman76466372009-04-27 20:16:15 +00001364 }
1365 }
1366 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001367
Dan Gohman74a0ba12009-07-13 20:55:53 +00001368 // The cast wasn't folded; create an explicit cast node.
1369 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001370 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001371 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1372 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001373 UniqueSCEVs.InsertNode(S, IP);
1374 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001375}
1376
Andrew Trick812276e2011-05-31 21:17:47 +00001377// Get the limit of a recurrence such that incrementing by Step cannot cause
1378// signed overflow as long as the value of the recurrence within the loop does
1379// not exceed this limit before incrementing.
1380static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1381 ICmpInst::Predicate *Pred,
1382 ScalarEvolution *SE) {
1383 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1384 if (SE->isKnownPositive(Step)) {
1385 *Pred = ICmpInst::ICMP_SLT;
1386 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1387 SE->getSignedRange(Step).getSignedMax());
1388 }
1389 if (SE->isKnownNegative(Step)) {
1390 *Pred = ICmpInst::ICMP_SGT;
1391 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1392 SE->getSignedRange(Step).getSignedMin());
1393 }
Craig Topper9f008862014-04-15 04:59:12 +00001394 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001395}
1396
1397// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1398// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1399// or postincrement sibling. This allows normalizing a sign extended AddRec as
1400// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1401// result, the expression "Step + sext(PreIncAR)" is congruent with
1402// "sext(PostIncAR)"
1403static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001404 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001405 ScalarEvolution *SE) {
1406 const Loop *L = AR->getLoop();
1407 const SCEV *Start = AR->getStart();
1408 const SCEV *Step = AR->getStepRecurrence(*SE);
1409
1410 // Check for a simple looking step prior to loop entry.
1411 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001412 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001413 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001414
1415 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1416 // subtraction is expensive. For this purpose, perform a quick and dirty
1417 // difference, by checking for Step in the operand list.
1418 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001419 for (const SCEV *Op : SA->operands())
1420 if (Op != Step)
1421 DiffOps.push_back(Op);
1422
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001423 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001424 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001425
1426 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1427 // same three conditions that getSignExtendedExpr checks.
1428
1429 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001430 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001431 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1432 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1433
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001434 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001435 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001436
1437 // 2. Direct overflow check on the step operation's expression.
1438 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001439 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001440 const SCEV *OperandExtendedStart =
1441 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1442 SE->getSignExtendExpr(Step, WideTy));
1443 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1444 // Cache knowledge of PreAR NSW.
1445 if (PreAR)
1446 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1447 // FIXME: this optimization needs a unit test
1448 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1449 return PreStart;
1450 }
1451
1452 // 3. Loop precondition.
1453 ICmpInst::Predicate Pred;
1454 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1455
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001456 if (OverflowLimit &&
1457 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001458 return PreStart;
1459 }
Craig Topper9f008862014-04-15 04:59:12 +00001460 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001461}
1462
1463// Get the normalized sign-extended expression for this AddRec's Start.
1464static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001465 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001466 ScalarEvolution *SE) {
1467 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1468 if (!PreStart)
1469 return SE->getSignExtendExpr(AR->getStart(), Ty);
1470
1471 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1472 SE->getSignExtendExpr(PreStart, Ty));
1473}
1474
Dan Gohmanaf752342009-07-07 17:06:11 +00001475const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001476 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001477 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001478 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001479 assert(isSCEVable(Ty) &&
1480 "This is not a conversion to a SCEVable type!");
1481 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001482
Dan Gohman3423e722009-06-30 20:13:32 +00001483 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001484 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1485 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001486 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001487
Dan Gohman79af8542009-04-22 16:20:48 +00001488 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001489 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001490 return getSignExtendExpr(SS->getOperand(), Ty);
1491
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001492 // sext(zext(x)) --> zext(x)
1493 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1494 return getZeroExtendExpr(SZ->getOperand(), Ty);
1495
Dan Gohman74a0ba12009-07-13 20:55:53 +00001496 // Before doing any expensive analysis, check to see if we've already
1497 // computed a SCEV for this Op and Ty.
1498 FoldingSetNodeID ID;
1499 ID.AddInteger(scSignExtend);
1500 ID.AddPointer(Op);
1501 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001502 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001503 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1504
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001505 // If the input value is provably positive, build a zext instead.
1506 if (isKnownNonNegative(Op))
1507 return getZeroExtendExpr(Op, Ty);
1508
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001509 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1510 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1511 // It's possible the bits taken off by the truncate were all sign bits. If
1512 // so, we should be able to simplify this further.
1513 const SCEV *X = ST->getOperand();
1514 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001515 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1516 unsigned NewBits = getTypeSizeInBits(Ty);
1517 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001518 CR.sextOrTrunc(NewBits)))
1519 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001520 }
1521
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001522 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1523 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1524 if (SA->getNumOperands() == 2) {
1525 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1526 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1527 if (SMul && SC1) {
1528 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001529 const APInt &C1 = SC1->getValue()->getValue();
1530 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001531 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001532 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001533 return getAddExpr(getSignExtendExpr(SC1, Ty),
1534 getSignExtendExpr(SMul, Ty));
1535 }
1536 }
1537 }
1538 }
Dan Gohman76466372009-04-27 20:16:15 +00001539 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001540 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001541 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001542 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001543 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001544 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001545 const SCEV *Start = AR->getStart();
1546 const SCEV *Step = AR->getStepRecurrence(*this);
1547 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1548 const Loop *L = AR->getLoop();
1549
Dan Gohman62ef6a72009-07-25 01:22:26 +00001550 // If we have special knowledge that this addrec won't overflow,
1551 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001552 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001553 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001554 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001555 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001556
Dan Gohman76466372009-04-27 20:16:15 +00001557 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1558 // Note that this serves two purposes: It filters out loops that are
1559 // simply not analyzable, and it covers the case where this code is
1560 // being called from within backedge-taken count analysis, such that
1561 // attempting to ask for the backedge-taken count would likely result
1562 // in infinite recursion. In the later case, the analysis code will
1563 // cope with a conservative value, and it will take care to purge
1564 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001565 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001566 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001567 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001568 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001569
1570 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001571 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001572 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001573 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001574 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001575 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1576 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001577 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001578 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001579 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001580 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1581 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1582 const SCEV *WideMaxBECount =
1583 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001584 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001585 getAddExpr(WideStart,
1586 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001587 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001588 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001589 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1590 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001591 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001592 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001593 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001594 L, AR->getNoWrapFlags());
1595 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001596 // Similar to above, only this time treat the step value as unsigned.
1597 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001598 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001599 getAddExpr(WideStart,
1600 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001601 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001602 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001603 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1604 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001605 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001606 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001607 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001608 L, AR->getNoWrapFlags());
1609 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001610 }
1611
1612 // If the backedge is guarded by a comparison with the pre-inc value
1613 // the addrec is safe. Also, if the entry is guarded by a comparison
1614 // with the start value and the backedge is guarded by a comparison
1615 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001616 ICmpInst::Predicate Pred;
1617 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1618 if (OverflowLimit &&
1619 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1620 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1621 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1622 OverflowLimit)))) {
1623 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1624 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1625 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1626 getSignExtendExpr(Step, Ty),
1627 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001628 }
1629 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 // If Start and Step are constants, check if we can apply this
1631 // transformation:
1632 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1633 auto SC1 = dyn_cast<SCEVConstant>(Start);
1634 auto SC2 = dyn_cast<SCEVConstant>(Step);
1635 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001636 const APInt &C1 = SC1->getValue()->getValue();
1637 const APInt &C2 = SC2->getValue()->getValue();
1638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1639 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001640 Start = getSignExtendExpr(Start, Ty);
1641 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1642 L, AR->getNoWrapFlags());
1643 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1644 }
1645 }
Dan Gohman76466372009-04-27 20:16:15 +00001646 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001647
Dan Gohman74a0ba12009-07-13 20:55:53 +00001648 // The cast wasn't folded; create an explicit cast node.
1649 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001650 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001651 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1652 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001653 UniqueSCEVs.InsertNode(S, IP);
1654 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001655}
1656
Dan Gohman8db2edc2009-06-13 15:56:47 +00001657/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1658/// unspecified bits out to the given type.
1659///
Dan Gohmanaf752342009-07-07 17:06:11 +00001660const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001661 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001662 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1663 "This is not an extending conversion!");
1664 assert(isSCEVable(Ty) &&
1665 "This is not a conversion to a SCEVable type!");
1666 Ty = getEffectiveSCEVType(Ty);
1667
1668 // Sign-extend negative constants.
1669 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1670 if (SC->getValue()->getValue().isNegative())
1671 return getSignExtendExpr(Op, Ty);
1672
1673 // Peel off a truncate cast.
1674 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001675 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001676 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1677 return getAnyExtendExpr(NewOp, Ty);
1678 return getTruncateOrNoop(NewOp, Ty);
1679 }
1680
1681 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001682 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001683 if (!isa<SCEVZeroExtendExpr>(ZExt))
1684 return ZExt;
1685
1686 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001687 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001688 if (!isa<SCEVSignExtendExpr>(SExt))
1689 return SExt;
1690
Dan Gohman51ad99d2010-01-21 02:09:26 +00001691 // Force the cast to be folded into the operands of an addrec.
1692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1693 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001694 for (const SCEV *Op : AR->operands())
1695 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001696 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001697 }
1698
Dan Gohman8db2edc2009-06-13 15:56:47 +00001699 // If the expression is obviously signed, use the sext cast value.
1700 if (isa<SCEVSMaxExpr>(Op))
1701 return SExt;
1702
1703 // Absent any other information, use the zext cast value.
1704 return ZExt;
1705}
1706
Dan Gohman038d02e2009-06-14 22:58:51 +00001707/// CollectAddOperandsWithScales - Process the given Ops list, which is
1708/// a list of operands to be added under the given scale, update the given
1709/// map. This is a helper function for getAddRecExpr. As an example of
1710/// what it does, given a sequence of operands that would form an add
1711/// expression like this:
1712///
Tobias Grosserba49e422014-03-05 10:37:17 +00001713/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001714///
1715/// where A and B are constants, update the map with these values:
1716///
1717/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1718///
1719/// and add 13 + A*B*29 to AccumulatedConstant.
1720/// This will allow getAddRecExpr to produce this:
1721///
1722/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1723///
1724/// This form often exposes folding opportunities that are hidden in
1725/// the original operand list.
1726///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001727/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001728/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1729/// the common case where no interesting opportunities are present, and
1730/// is also used as a check to avoid infinite recursion.
1731///
1732static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001733CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001734 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001735 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001736 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001737 const APInt &Scale,
1738 ScalarEvolution &SE) {
1739 bool Interesting = false;
1740
Dan Gohman45073042010-06-18 19:12:32 +00001741 // Iterate over the add operands. They are sorted, with constants first.
1742 unsigned i = 0;
1743 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1744 ++i;
1745 // Pull a buried constant out to the outside.
1746 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1747 Interesting = true;
1748 AccumulatedConstant += Scale * C->getValue()->getValue();
1749 }
1750
1751 // Next comes everything else. We're especially interested in multiplies
1752 // here, but they're in the middle, so just visit the rest with one loop.
1753 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001754 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1755 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1756 APInt NewScale =
1757 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1758 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1759 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001760 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001761 Interesting |=
1762 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001763 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001764 NewScale, SE);
1765 } else {
1766 // A multiplication of a constant with some other value. Update
1767 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001768 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1769 const SCEV *Key = SE.getMulExpr(MulOps);
1770 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001771 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001772 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001773 NewOps.push_back(Pair.first->first);
1774 } else {
1775 Pair.first->second += NewScale;
1776 // The map already had an entry for this value, which may indicate
1777 // a folding opportunity.
1778 Interesting = true;
1779 }
1780 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001781 } else {
1782 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001783 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001784 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001785 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001786 NewOps.push_back(Pair.first->first);
1787 } else {
1788 Pair.first->second += Scale;
1789 // The map already had an entry for this value, which may indicate
1790 // a folding opportunity.
1791 Interesting = true;
1792 }
1793 }
1794 }
1795
1796 return Interesting;
1797}
1798
1799namespace {
1800 struct APIntCompare {
1801 bool operator()(const APInt &LHS, const APInt &RHS) const {
1802 return LHS.ult(RHS);
1803 }
1804 };
1805}
1806
Dan Gohman4d5435d2009-05-24 23:45:28 +00001807/// getAddExpr - Get a canonical add expression, or something simpler if
1808/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001809const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001810 SCEV::NoWrapFlags Flags) {
1811 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1812 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001813 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001814 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001815#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001816 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001817 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001818 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001819 "SCEVAddExpr operand types don't match!");
1820#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001821
Andrew Trick8b55b732011-03-14 16:50:06 +00001822 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001823 // And vice-versa.
1824 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1825 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1826 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001827 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001828 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1829 E = Ops.end(); I != E; ++I)
1830 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001831 All = false;
1832 break;
1833 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001834 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001835 }
1836
Chris Lattnerd934c702004-04-02 20:23:17 +00001837 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001838 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001839
1840 // If there are any constants, fold them together.
1841 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001842 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001843 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001844 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001845 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001846 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001847 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1848 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001849 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001850 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001851 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001852 }
1853
1854 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001855 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001856 Ops.erase(Ops.begin());
1857 --Idx;
1858 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001859
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001860 if (Ops.size() == 1) return Ops[0];
1861 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001862
Dan Gohman15871f22010-08-27 21:39:59 +00001863 // Okay, check to see if the same value occurs in the operand list more than
1864 // once. If so, merge them together into an multiply expression. Since we
1865 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001866 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001867 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001868 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001869 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001870 // Scan ahead to count how many equal operands there are.
1871 unsigned Count = 2;
1872 while (i+Count != e && Ops[i+Count] == Ops[i])
1873 ++Count;
1874 // Merge the values into a multiply.
1875 const SCEV *Scale = getConstant(Ty, Count);
1876 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1877 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001878 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001879 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001880 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001881 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001882 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001883 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001884 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001885 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001886
Dan Gohman2e55cc52009-05-08 21:03:19 +00001887 // Check for truncates. If all the operands are truncated from the same
1888 // type, see if factoring out the truncate would permit the result to be
1889 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1890 // if the contents of the resulting outer trunc fold to something simple.
1891 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1892 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001893 Type *DstType = Trunc->getType();
1894 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001895 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001896 bool Ok = true;
1897 // Check all the operands to see if they can be represented in the
1898 // source type of the truncate.
1899 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1900 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1901 if (T->getOperand()->getType() != SrcType) {
1902 Ok = false;
1903 break;
1904 }
1905 LargeOps.push_back(T->getOperand());
1906 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001907 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001908 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001909 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001910 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1911 if (const SCEVTruncateExpr *T =
1912 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1913 if (T->getOperand()->getType() != SrcType) {
1914 Ok = false;
1915 break;
1916 }
1917 LargeMulOps.push_back(T->getOperand());
1918 } else if (const SCEVConstant *C =
1919 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001920 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001921 } else {
1922 Ok = false;
1923 break;
1924 }
1925 }
1926 if (Ok)
1927 LargeOps.push_back(getMulExpr(LargeMulOps));
1928 } else {
1929 Ok = false;
1930 break;
1931 }
1932 }
1933 if (Ok) {
1934 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001935 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001936 // If it folds to something simple, use it. Otherwise, don't.
1937 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1938 return getTruncateExpr(Fold, DstType);
1939 }
1940 }
1941
1942 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001943 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1944 ++Idx;
1945
1946 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001947 if (Idx < Ops.size()) {
1948 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001949 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001950 // If we have an add, expand the add operands onto the end of the operands
1951 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001952 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001953 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 DeletedAdd = true;
1955 }
1956
1957 // If we deleted at least one add, we added operands to the end of the list,
1958 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001959 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001960 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001961 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001962 }
1963
1964 // Skip over the add expression until we get to a multiply.
1965 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1966 ++Idx;
1967
Dan Gohman038d02e2009-06-14 22:58:51 +00001968 // Check to see if there are any folding opportunities present with
1969 // operands multiplied by constant values.
1970 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1971 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001972 DenseMap<const SCEV *, APInt> M;
1973 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001974 APInt AccumulatedConstant(BitWidth, 0);
1975 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001976 Ops.data(), Ops.size(),
1977 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001978 // Some interesting folding opportunity is present, so its worthwhile to
1979 // re-generate the operands list. Group the operands by constant scale,
1980 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001981 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001982 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001983 E = NewOps.end(); I != E; ++I)
1984 MulOpLists[M.find(*I)->second].push_back(*I);
1985 // Re-generate the operands list.
1986 Ops.clear();
1987 if (AccumulatedConstant != 0)
1988 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001989 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1990 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001991 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001992 Ops.push_back(getMulExpr(getConstant(I->first),
1993 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001994 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001995 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001996 if (Ops.size() == 1)
1997 return Ops[0];
1998 return getAddExpr(Ops);
1999 }
2000 }
2001
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 // If we are adding something to a multiply expression, make sure the
2003 // something is not already an operand of the multiply. If so, merge it into
2004 // the multiply.
2005 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002006 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002007 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002008 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002009 if (isa<SCEVConstant>(MulOpSCEV))
2010 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002012 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002013 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002014 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 if (Mul->getNumOperands() != 2) {
2016 // If the multiply has more than two operands, we must get the
2017 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002018 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2019 Mul->op_begin()+MulOp);
2020 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002021 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002022 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002023 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002024 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002025 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 if (Ops.size() == 2) return OuterMul;
2027 if (AddOp < Idx) {
2028 Ops.erase(Ops.begin()+AddOp);
2029 Ops.erase(Ops.begin()+Idx-1);
2030 } else {
2031 Ops.erase(Ops.begin()+Idx);
2032 Ops.erase(Ops.begin()+AddOp-1);
2033 }
2034 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002035 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002036 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002037
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 // Check this multiply against other multiplies being added together.
2039 for (unsigned OtherMulIdx = Idx+1;
2040 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2041 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002042 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 // If MulOp occurs in OtherMul, we can fold the two multiplies
2044 // together.
2045 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2046 OMulOp != e; ++OMulOp)
2047 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2048 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002049 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002050 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002051 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002052 Mul->op_begin()+MulOp);
2053 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002054 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002056 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002057 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002058 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002059 OtherMul->op_begin()+OMulOp);
2060 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002061 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002062 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002063 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2064 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002065 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002066 Ops.erase(Ops.begin()+Idx);
2067 Ops.erase(Ops.begin()+OtherMulIdx-1);
2068 Ops.push_back(OuterMul);
2069 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002070 }
2071 }
2072 }
2073 }
2074
2075 // If there are any add recurrences in the operands list, see if any other
2076 // added values are loop invariant. If so, we can fold them into the
2077 // recurrence.
2078 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2079 ++Idx;
2080
2081 // Scan over all recurrences, trying to fold loop invariants into them.
2082 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2083 // Scan all of the other operands to this add and add them to the vector if
2084 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002085 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002086 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002087 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002088 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002089 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002090 LIOps.push_back(Ops[i]);
2091 Ops.erase(Ops.begin()+i);
2092 --i; --e;
2093 }
2094
2095 // If we found some loop invariants, fold them into the recurrence.
2096 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002097 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002098 LIOps.push_back(AddRec->getStart());
2099
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002101 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002102 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002103
Dan Gohman16206132010-06-30 07:16:37 +00002104 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002105 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002106 // Always propagate NW.
2107 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002108 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002109
Chris Lattnerd934c702004-04-02 20:23:17 +00002110 // If all of the other operands were loop invariant, we are done.
2111 if (Ops.size() == 1) return NewRec;
2112
Nick Lewyckydb66b822011-09-06 05:08:09 +00002113 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002114 for (unsigned i = 0;; ++i)
2115 if (Ops[i] == AddRec) {
2116 Ops[i] = NewRec;
2117 break;
2118 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002119 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002120 }
2121
2122 // Okay, if there weren't any loop invariants to be folded, check to see if
2123 // there are multiple AddRec's with the same loop induction variable being
2124 // added together. If so, we can fold them.
2125 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002126 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2127 ++OtherIdx)
2128 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2129 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2130 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2131 AddRec->op_end());
2132 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2133 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002134 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002135 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002136 if (OtherAddRec->getLoop() == AddRecLoop) {
2137 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2138 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002139 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002140 AddRecOps.append(OtherAddRec->op_begin()+i,
2141 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002142 break;
2143 }
Dan Gohman028c1812010-08-29 14:53:34 +00002144 AddRecOps[i] = getAddExpr(AddRecOps[i],
2145 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002146 }
2147 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002148 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002149 // Step size has changed, so we cannot guarantee no self-wraparound.
2150 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002151 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002152 }
2153
2154 // Otherwise couldn't fold anything into this recurrence. Move onto the
2155 // next one.
2156 }
2157
2158 // Okay, it looks like we really DO need an add expr. Check to see if we
2159 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002160 FoldingSetNodeID ID;
2161 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002162 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2163 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002164 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002165 SCEVAddExpr *S =
2166 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2167 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002168 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2169 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002170 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2171 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002172 UniqueSCEVs.InsertNode(S, IP);
2173 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002174 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002175 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002176}
2177
Nick Lewycky287682e2011-10-04 06:51:26 +00002178static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2179 uint64_t k = i*j;
2180 if (j > 1 && k / j != i) Overflow = true;
2181 return k;
2182}
2183
2184/// Compute the result of "n choose k", the binomial coefficient. If an
2185/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002186/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002187static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2188 // We use the multiplicative formula:
2189 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2190 // At each iteration, we take the n-th term of the numeral and divide by the
2191 // (k-n)th term of the denominator. This division will always produce an
2192 // integral result, and helps reduce the chance of overflow in the
2193 // intermediate computations. However, we can still overflow even when the
2194 // final result would fit.
2195
2196 if (n == 0 || n == k) return 1;
2197 if (k > n) return 0;
2198
2199 if (k > n/2)
2200 k = n-k;
2201
2202 uint64_t r = 1;
2203 for (uint64_t i = 1; i <= k; ++i) {
2204 r = umul_ov(r, n-(i-1), Overflow);
2205 r /= i;
2206 }
2207 return r;
2208}
2209
Nick Lewycky05044c22014-12-06 00:45:50 +00002210/// Determine if any of the operands in this SCEV are a constant or if
2211/// any of the add or multiply expressions in this SCEV contain a constant.
2212static bool containsConstantSomewhere(const SCEV *StartExpr) {
2213 SmallVector<const SCEV *, 4> Ops;
2214 Ops.push_back(StartExpr);
2215 while (!Ops.empty()) {
2216 const SCEV *CurrentExpr = Ops.pop_back_val();
2217 if (isa<SCEVConstant>(*CurrentExpr))
2218 return true;
2219
2220 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2221 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2222 for (const SCEV *Operand : CurrentNAry->operands())
2223 Ops.push_back(Operand);
2224 }
2225 }
2226 return false;
2227}
2228
Dan Gohman4d5435d2009-05-24 23:45:28 +00002229/// getMulExpr - Get a canonical multiply expression, or something simpler if
2230/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002231const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002232 SCEV::NoWrapFlags Flags) {
2233 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2234 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002235 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002236 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002237#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002238 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002239 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002240 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002241 "SCEVMulExpr operand types don't match!");
2242#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002243
Andrew Trick8b55b732011-03-14 16:50:06 +00002244 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002245 // And vice-versa.
2246 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2247 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2248 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002249 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002250 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2251 E = Ops.end(); I != E; ++I)
2252 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002253 All = false;
2254 break;
2255 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002256 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002257 }
2258
Chris Lattnerd934c702004-04-02 20:23:17 +00002259 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002260 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002261
2262 // If there are any constants, fold them together.
2263 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002264 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002265
2266 // C1*(C2+V) -> C1*C2 + C1*V
2267 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002268 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2269 // If any of Add's ops are Adds or Muls with a constant,
2270 // apply this transformation as well.
2271 if (Add->getNumOperands() == 2)
2272 if (containsConstantSomewhere(Add))
2273 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2274 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002275
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002277 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002278 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002279 ConstantInt *Fold = ConstantInt::get(getContext(),
2280 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002281 RHSC->getValue()->getValue());
2282 Ops[0] = getConstant(Fold);
2283 Ops.erase(Ops.begin()+1); // Erase the folded element
2284 if (Ops.size() == 1) return Ops[0];
2285 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002286 }
2287
2288 // If we are left with a constant one being multiplied, strip it off.
2289 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2290 Ops.erase(Ops.begin());
2291 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002292 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002293 // If we have a multiply of zero, it will always be zero.
2294 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002295 } else if (Ops[0]->isAllOnesValue()) {
2296 // If we have a mul by -1 of an add, try distributing the -1 among the
2297 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002298 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002299 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2300 SmallVector<const SCEV *, 4> NewOps;
2301 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002302 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2303 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002304 const SCEV *Mul = getMulExpr(Ops[0], *I);
2305 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2306 NewOps.push_back(Mul);
2307 }
2308 if (AnyFolded)
2309 return getAddExpr(NewOps);
2310 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002311 else if (const SCEVAddRecExpr *
2312 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2313 // Negation preserves a recurrence's no self-wrap property.
2314 SmallVector<const SCEV *, 4> Operands;
2315 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2316 E = AddRec->op_end(); I != E; ++I) {
2317 Operands.push_back(getMulExpr(Ops[0], *I));
2318 }
2319 return getAddRecExpr(Operands, AddRec->getLoop(),
2320 AddRec->getNoWrapFlags(SCEV::FlagNW));
2321 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002322 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002323 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002324
2325 if (Ops.size() == 1)
2326 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002327 }
2328
2329 // Skip over the add expression until we get to a multiply.
2330 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2331 ++Idx;
2332
Chris Lattnerd934c702004-04-02 20:23:17 +00002333 // If there are mul operands inline them all into this expression.
2334 if (Idx < Ops.size()) {
2335 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002336 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002337 // If we have an mul, expand the mul operands onto the end of the operands
2338 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002339 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002340 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002341 DeletedMul = true;
2342 }
2343
2344 // If we deleted at least one mul, we added operands to the end of the list,
2345 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002346 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002347 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002348 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002349 }
2350
2351 // If there are any add recurrences in the operands list, see if any other
2352 // added values are loop invariant. If so, we can fold them into the
2353 // recurrence.
2354 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2355 ++Idx;
2356
2357 // Scan over all recurrences, trying to fold loop invariants into them.
2358 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2359 // Scan all of the other operands to this mul and add them to the vector if
2360 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002361 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002362 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002363 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002364 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002365 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002366 LIOps.push_back(Ops[i]);
2367 Ops.erase(Ops.begin()+i);
2368 --i; --e;
2369 }
2370
2371 // If we found some loop invariants, fold them into the recurrence.
2372 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002373 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002374 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002375 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002376 const SCEV *Scale = getMulExpr(LIOps);
2377 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2378 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
Dan Gohman16206132010-06-30 07:16:37 +00002380 // Build the new addrec. Propagate the NUW and NSW flags if both the
2381 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002382 //
2383 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002384 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002385 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2386 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002387
2388 // If all of the other operands were loop invariant, we are done.
2389 if (Ops.size() == 1) return NewRec;
2390
Nick Lewyckydb66b822011-09-06 05:08:09 +00002391 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002392 for (unsigned i = 0;; ++i)
2393 if (Ops[i] == AddRec) {
2394 Ops[i] = NewRec;
2395 break;
2396 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002397 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002398 }
2399
2400 // Okay, if there weren't any loop invariants to be folded, check to see if
2401 // there are multiple AddRec's with the same loop induction variable being
2402 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002403
2404 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2405 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2406 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2407 // ]]],+,...up to x=2n}.
2408 // Note that the arguments to choose() are always integers with values
2409 // known at compile time, never SCEV objects.
2410 //
2411 // The implementation avoids pointless extra computations when the two
2412 // addrec's are of different length (mathematically, it's equivalent to
2413 // an infinite stream of zeros on the right).
2414 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002415 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002416 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002417 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002418 const SCEVAddRecExpr *OtherAddRec =
2419 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2420 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002421 continue;
2422
Nick Lewycky97756402014-09-01 05:17:15 +00002423 bool Overflow = false;
2424 Type *Ty = AddRec->getType();
2425 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2426 SmallVector<const SCEV*, 7> AddRecOps;
2427 for (int x = 0, xe = AddRec->getNumOperands() +
2428 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2429 const SCEV *Term = getConstant(Ty, 0);
2430 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2431 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2432 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2433 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2434 z < ze && !Overflow; ++z) {
2435 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2436 uint64_t Coeff;
2437 if (LargerThan64Bits)
2438 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2439 else
2440 Coeff = Coeff1*Coeff2;
2441 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2442 const SCEV *Term1 = AddRec->getOperand(y-z);
2443 const SCEV *Term2 = OtherAddRec->getOperand(z);
2444 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002445 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002446 }
Nick Lewycky97756402014-09-01 05:17:15 +00002447 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002448 }
Nick Lewycky97756402014-09-01 05:17:15 +00002449 if (!Overflow) {
2450 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2451 SCEV::FlagAnyWrap);
2452 if (Ops.size() == 2) return NewAddRec;
2453 Ops[Idx] = NewAddRec;
2454 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2455 OpsModified = true;
2456 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2457 if (!AddRec)
2458 break;
2459 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002460 }
Nick Lewycky97756402014-09-01 05:17:15 +00002461 if (OpsModified)
2462 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002463
2464 // Otherwise couldn't fold anything into this recurrence. Move onto the
2465 // next one.
2466 }
2467
2468 // Okay, it looks like we really DO need an mul expr. Check to see if we
2469 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002470 FoldingSetNodeID ID;
2471 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002472 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2473 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002474 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002475 SCEVMulExpr *S =
2476 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2477 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002478 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2479 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002480 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2481 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002482 UniqueSCEVs.InsertNode(S, IP);
2483 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002484 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002485 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002486}
2487
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002488/// getUDivExpr - Get a canonical unsigned division expression, or something
2489/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002490const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2491 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002492 assert(getEffectiveSCEVType(LHS->getType()) ==
2493 getEffectiveSCEVType(RHS->getType()) &&
2494 "SCEVUDivExpr operand types don't match!");
2495
Dan Gohmana30370b2009-05-04 22:02:23 +00002496 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002497 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002498 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002499 // If the denominator is zero, the result of the udiv is undefined. Don't
2500 // try to analyze it, because the resolution chosen here may differ from
2501 // the resolution chosen in other parts of the compiler.
2502 if (!RHSC->getValue()->isZero()) {
2503 // Determine if the division can be folded into the operands of
2504 // its operands.
2505 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002506 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002507 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002508 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002509 // For non-power-of-two values, effectively round the value up to the
2510 // nearest power of two.
2511 if (!RHSC->getValue()->getValue().isPowerOf2())
2512 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002513 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002514 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002515 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2516 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002517 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2518 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2519 const APInt &StepInt = Step->getValue()->getValue();
2520 const APInt &DivInt = RHSC->getValue()->getValue();
2521 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002522 getZeroExtendExpr(AR, ExtTy) ==
2523 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2524 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002525 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002526 SmallVector<const SCEV *, 4> Operands;
2527 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2528 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002529 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002530 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002531 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002532 /// Get a canonical UDivExpr for a recurrence.
2533 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2534 // We can currently only fold X%N if X is constant.
2535 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2536 if (StartC && !DivInt.urem(StepInt) &&
2537 getZeroExtendExpr(AR, ExtTy) ==
2538 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2539 getZeroExtendExpr(Step, ExtTy),
2540 AR->getLoop(), SCEV::FlagAnyWrap)) {
2541 const APInt &StartInt = StartC->getValue()->getValue();
2542 const APInt &StartRem = StartInt.urem(StepInt);
2543 if (StartRem != 0)
2544 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2545 AR->getLoop(), SCEV::FlagNW);
2546 }
2547 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002548 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2549 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2550 SmallVector<const SCEV *, 4> Operands;
2551 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2552 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2553 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2554 // Find an operand that's safely divisible.
2555 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2556 const SCEV *Op = M->getOperand(i);
2557 const SCEV *Div = getUDivExpr(Op, RHSC);
2558 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2559 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2560 M->op_end());
2561 Operands[i] = Div;
2562 return getMulExpr(Operands);
2563 }
2564 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002565 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002566 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002567 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002568 SmallVector<const SCEV *, 4> Operands;
2569 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2570 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2571 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2572 Operands.clear();
2573 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2574 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2575 if (isa<SCEVUDivExpr>(Op) ||
2576 getMulExpr(Op, RHS) != A->getOperand(i))
2577 break;
2578 Operands.push_back(Op);
2579 }
2580 if (Operands.size() == A->getNumOperands())
2581 return getAddExpr(Operands);
2582 }
2583 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002584
Dan Gohmanacd700a2010-04-22 01:35:11 +00002585 // Fold if both operands are constant.
2586 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2587 Constant *LHSCV = LHSC->getValue();
2588 Constant *RHSCV = RHSC->getValue();
2589 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2590 RHSCV)));
2591 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002592 }
2593 }
2594
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002595 FoldingSetNodeID ID;
2596 ID.AddInteger(scUDivExpr);
2597 ID.AddPointer(LHS);
2598 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002599 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002600 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002601 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2602 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002603 UniqueSCEVs.InsertNode(S, IP);
2604 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002605}
2606
Nick Lewycky31eaca52014-01-27 10:04:03 +00002607static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2608 APInt A = C1->getValue()->getValue().abs();
2609 APInt B = C2->getValue()->getValue().abs();
2610 uint32_t ABW = A.getBitWidth();
2611 uint32_t BBW = B.getBitWidth();
2612
2613 if (ABW > BBW)
2614 B = B.zext(ABW);
2615 else if (ABW < BBW)
2616 A = A.zext(BBW);
2617
2618 return APIntOps::GreatestCommonDivisor(A, B);
2619}
2620
2621/// getUDivExactExpr - Get a canonical unsigned division expression, or
2622/// something simpler if possible. There is no representation for an exact udiv
2623/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2624/// We can't do this when it's not exact because the udiv may be clearing bits.
2625const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2626 const SCEV *RHS) {
2627 // TODO: we could try to find factors in all sorts of things, but for now we
2628 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2629 // end of this file for inspiration.
2630
2631 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2632 if (!Mul)
2633 return getUDivExpr(LHS, RHS);
2634
2635 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2636 // If the mulexpr multiplies by a constant, then that constant must be the
2637 // first element of the mulexpr.
2638 if (const SCEVConstant *LHSCst =
2639 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2640 if (LHSCst == RHSCst) {
2641 SmallVector<const SCEV *, 2> Operands;
2642 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2643 return getMulExpr(Operands);
2644 }
2645
2646 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2647 // that there's a factor provided by one of the other terms. We need to
2648 // check.
2649 APInt Factor = gcd(LHSCst, RHSCst);
2650 if (!Factor.isIntN(1)) {
2651 LHSCst = cast<SCEVConstant>(
2652 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2653 RHSCst = cast<SCEVConstant>(
2654 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2655 SmallVector<const SCEV *, 2> Operands;
2656 Operands.push_back(LHSCst);
2657 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2658 LHS = getMulExpr(Operands);
2659 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002660 Mul = dyn_cast<SCEVMulExpr>(LHS);
2661 if (!Mul)
2662 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002663 }
2664 }
2665 }
2666
2667 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2668 if (Mul->getOperand(i) == RHS) {
2669 SmallVector<const SCEV *, 2> Operands;
2670 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2671 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2672 return getMulExpr(Operands);
2673 }
2674 }
2675
2676 return getUDivExpr(LHS, RHS);
2677}
Chris Lattnerd934c702004-04-02 20:23:17 +00002678
Dan Gohman4d5435d2009-05-24 23:45:28 +00002679/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2680/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002681const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2682 const Loop *L,
2683 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002684 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002685 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002686 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002687 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002688 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002689 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002690 }
2691
2692 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002693 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002694}
2695
Dan Gohman4d5435d2009-05-24 23:45:28 +00002696/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2697/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002698const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002699ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002700 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002701 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002702#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002703 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002704 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002705 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002706 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002707 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002708 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002709 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002710#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002711
Dan Gohmanbe928e32008-06-18 16:23:07 +00002712 if (Operands.back()->isZero()) {
2713 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002714 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002715 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002716
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002717 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2718 // use that information to infer NUW and NSW flags. However, computing a
2719 // BE count requires calling getAddRecExpr, so we may not yet have a
2720 // meaningful BE count at this point (and if we don't, we'd be stuck
2721 // with a SCEVCouldNotCompute as the cached BE count).
2722
Andrew Trick8b55b732011-03-14 16:50:06 +00002723 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002724 // And vice-versa.
2725 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2726 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2727 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002728 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002729 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2730 E = Operands.end(); I != E; ++I)
2731 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002732 All = false;
2733 break;
2734 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002735 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002736 }
2737
Dan Gohman223a5d22008-08-08 18:33:12 +00002738 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002739 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002740 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002741 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002742 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002743 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002744 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002745 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002746 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002747 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002748 // AddRecs require their operands be loop-invariant with respect to their
2749 // loops. Don't perform this transformation if it would break this
2750 // requirement.
2751 bool AllInvariant = true;
2752 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002753 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002754 AllInvariant = false;
2755 break;
2756 }
2757 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002758 // Create a recurrence for the outer loop with the same step size.
2759 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002760 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2761 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002762 SCEV::NoWrapFlags OuterFlags =
2763 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002764
2765 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002766 AllInvariant = true;
2767 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002768 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002769 AllInvariant = false;
2770 break;
2771 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002772 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002773 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002774 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002775 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2776 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002777 SCEV::NoWrapFlags InnerFlags =
2778 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002779 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2780 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002781 }
2782 // Reset Operands to its original state.
2783 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002784 }
2785 }
2786
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002787 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2788 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002789 FoldingSetNodeID ID;
2790 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002791 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2792 ID.AddPointer(Operands[i]);
2793 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002794 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002795 SCEVAddRecExpr *S =
2796 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2797 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002798 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2799 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002800 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2801 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002802 UniqueSCEVs.InsertNode(S, IP);
2803 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002804 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002805 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002806}
2807
Dan Gohmanabd17092009-06-24 14:49:00 +00002808const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2809 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002810 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002811 Ops.push_back(LHS);
2812 Ops.push_back(RHS);
2813 return getSMaxExpr(Ops);
2814}
2815
Dan Gohmanaf752342009-07-07 17:06:11 +00002816const SCEV *
2817ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002818 assert(!Ops.empty() && "Cannot get empty smax!");
2819 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002820#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002821 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002822 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002823 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002824 "SCEVSMaxExpr operand types don't match!");
2825#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002826
2827 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002828 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002829
2830 // If there are any constants, fold them together.
2831 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002832 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002833 ++Idx;
2834 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002835 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002836 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002837 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002838 APIntOps::smax(LHSC->getValue()->getValue(),
2839 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002840 Ops[0] = getConstant(Fold);
2841 Ops.erase(Ops.begin()+1); // Erase the folded element
2842 if (Ops.size() == 1) return Ops[0];
2843 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002844 }
2845
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002846 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002847 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2848 Ops.erase(Ops.begin());
2849 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002850 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2851 // If we have an smax with a constant maximum-int, it will always be
2852 // maximum-int.
2853 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002854 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002855
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002856 if (Ops.size() == 1) return Ops[0];
2857 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002858
2859 // Find the first SMax
2860 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2861 ++Idx;
2862
2863 // Check to see if one of the operands is an SMax. If so, expand its operands
2864 // onto our operand list, and recurse to simplify.
2865 if (Idx < Ops.size()) {
2866 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002867 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002868 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002869 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002870 DeletedSMax = true;
2871 }
2872
2873 if (DeletedSMax)
2874 return getSMaxExpr(Ops);
2875 }
2876
2877 // Okay, check to see if the same value occurs in the operand list twice. If
2878 // so, delete one. Since we sorted the list, these values are required to
2879 // be adjacent.
2880 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002881 // X smax Y smax Y --> X smax Y
2882 // X smax Y --> X, if X is always greater than Y
2883 if (Ops[i] == Ops[i+1] ||
2884 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2885 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2886 --i; --e;
2887 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002888 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2889 --i; --e;
2890 }
2891
2892 if (Ops.size() == 1) return Ops[0];
2893
2894 assert(!Ops.empty() && "Reduced smax down to nothing!");
2895
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002896 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002897 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002898 FoldingSetNodeID ID;
2899 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002900 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2901 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002902 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002903 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002904 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2905 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002906 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2907 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002908 UniqueSCEVs.InsertNode(S, IP);
2909 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002910}
2911
Dan Gohmanabd17092009-06-24 14:49:00 +00002912const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2913 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002914 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002915 Ops.push_back(LHS);
2916 Ops.push_back(RHS);
2917 return getUMaxExpr(Ops);
2918}
2919
Dan Gohmanaf752342009-07-07 17:06:11 +00002920const SCEV *
2921ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002922 assert(!Ops.empty() && "Cannot get empty umax!");
2923 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002924#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002925 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002926 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002927 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002928 "SCEVUMaxExpr operand types don't match!");
2929#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002930
2931 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002932 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002933
2934 // If there are any constants, fold them together.
2935 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002937 ++Idx;
2938 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002940 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002941 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002942 APIntOps::umax(LHSC->getValue()->getValue(),
2943 RHSC->getValue()->getValue()));
2944 Ops[0] = getConstant(Fold);
2945 Ops.erase(Ops.begin()+1); // Erase the folded element
2946 if (Ops.size() == 1) return Ops[0];
2947 LHSC = cast<SCEVConstant>(Ops[0]);
2948 }
2949
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002950 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002951 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2952 Ops.erase(Ops.begin());
2953 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2955 // If we have an umax with a constant maximum-int, it will always be
2956 // maximum-int.
2957 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002958 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002959
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002960 if (Ops.size() == 1) return Ops[0];
2961 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002962
2963 // Find the first UMax
2964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2965 ++Idx;
2966
2967 // Check to see if one of the operands is a UMax. If so, expand its operands
2968 // onto our operand list, and recurse to simplify.
2969 if (Idx < Ops.size()) {
2970 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002971 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002972 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002973 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002974 DeletedUMax = true;
2975 }
2976
2977 if (DeletedUMax)
2978 return getUMaxExpr(Ops);
2979 }
2980
2981 // Okay, check to see if the same value occurs in the operand list twice. If
2982 // so, delete one. Since we sorted the list, these values are required to
2983 // be adjacent.
2984 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002985 // X umax Y umax Y --> X umax Y
2986 // X umax Y --> X, if X is always greater than Y
2987 if (Ops[i] == Ops[i+1] ||
2988 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2989 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2990 --i; --e;
2991 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002992 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2993 --i; --e;
2994 }
2995
2996 if (Ops.size() == 1) return Ops[0];
2997
2998 assert(!Ops.empty() && "Reduced umax down to nothing!");
2999
3000 // Okay, it looks like we really DO need a umax expr. Check to see if we
3001 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003002 FoldingSetNodeID ID;
3003 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003004 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3005 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003006 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003007 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003008 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3009 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003010 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3011 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003012 UniqueSCEVs.InsertNode(S, IP);
3013 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003014}
3015
Dan Gohmanabd17092009-06-24 14:49:00 +00003016const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3017 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003018 // ~smax(~x, ~y) == smin(x, y).
3019 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3020}
3021
Dan Gohmanabd17092009-06-24 14:49:00 +00003022const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3023 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003024 // ~umax(~x, ~y) == umin(x, y)
3025 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3026}
3027
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003028const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003029 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003030 // constant expression and then folding it back into a ConstantInt.
3031 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003032 if (DL)
3033 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00003034
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003035 Constant *C = ConstantExpr::getSizeOf(AllocTy);
3036 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003037 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003038 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00003039 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003040 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003041 return getTruncateOrZeroExtend(getSCEV(C), Ty);
3042}
3043
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003044const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3045 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003046 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003047 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003048 // constant expression and then folding it back into a ConstantInt.
3049 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003050 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003051 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003052 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003053 }
Dan Gohman11862a62010-04-12 23:03:26 +00003054
Dan Gohmancf913832010-01-28 02:15:55 +00003055 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3056 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003057 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003058 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003059
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003060 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003061 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003062}
3063
Dan Gohmanaf752342009-07-07 17:06:11 +00003064const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003065 // Don't attempt to do anything other than create a SCEVUnknown object
3066 // here. createSCEV only calls getUnknown after checking for all other
3067 // interesting possibilities, and any other code that calls getUnknown
3068 // is doing so in order to hide a value from SCEV canonicalization.
3069
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003070 FoldingSetNodeID ID;
3071 ID.AddInteger(scUnknown);
3072 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003073 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003074 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3075 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3076 "Stale SCEVUnknown in uniquing map!");
3077 return S;
3078 }
3079 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3080 FirstUnknown);
3081 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003082 UniqueSCEVs.InsertNode(S, IP);
3083 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003084}
3085
Chris Lattnerd934c702004-04-02 20:23:17 +00003086//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003087// Basic SCEV Analysis and PHI Idiom Recognition Code
3088//
3089
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003090/// isSCEVable - Test if values of the given type are analyzable within
3091/// the SCEV framework. This primarily includes integer types, and it
3092/// can optionally include pointer types if the ScalarEvolution class
3093/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003094bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003095 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003096 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003097}
3098
3099/// getTypeSizeInBits - Return the size in bits of the specified type,
3100/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003101uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003102 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3103
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003104 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003105 if (DL)
3106 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003107
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003108 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003109 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003110 return Ty->getPrimitiveSizeInBits();
3111
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003112 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003113 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003114 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003115 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003116}
3117
3118/// getEffectiveSCEVType - Return a type with the same bitwidth as
3119/// the given type and which represents how SCEV will treat the given
3120/// type, for which isSCEVable must return true. For pointer types,
3121/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003122Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003123 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3124
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003125 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003126 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003127 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003128
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003129 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003130 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003131
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003132 if (DL)
3133 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003134
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003135 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003136 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003137}
Chris Lattnerd934c702004-04-02 20:23:17 +00003138
Dan Gohmanaf752342009-07-07 17:06:11 +00003139const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003140 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003141}
3142
Shuxin Yangefc4c012013-07-08 17:33:13 +00003143namespace {
3144 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3145 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3146 // is set iff if find such SCEVUnknown.
3147 //
3148 struct FindInvalidSCEVUnknown {
3149 bool FindOne;
3150 FindInvalidSCEVUnknown() { FindOne = false; }
3151 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003152 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003153 case scConstant:
3154 return false;
3155 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003156 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003157 FindOne = true;
3158 return false;
3159 default:
3160 return true;
3161 }
3162 }
3163 bool isDone() const { return FindOne; }
3164 };
3165}
3166
3167bool ScalarEvolution::checkValidity(const SCEV *S) const {
3168 FindInvalidSCEVUnknown F;
3169 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3170 ST.visitAll(S);
3171
3172 return !F.FindOne;
3173}
3174
Chris Lattnerd934c702004-04-02 20:23:17 +00003175/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3176/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003177const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003178 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003179
Shuxin Yangefc4c012013-07-08 17:33:13 +00003180 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3181 if (I != ValueExprMap.end()) {
3182 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003183 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003184 return S;
3185 else
3186 ValueExprMap.erase(I);
3187 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003188 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003189
3190 // The process of creating a SCEV for V may have caused other SCEVs
3191 // to have been created, so it's necessary to insert the new entry
3192 // from scratch, rather than trying to remember the insert position
3193 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003194 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003195 return S;
3196}
3197
Dan Gohman0a40ad92009-04-16 03:18:22 +00003198/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3199///
Dan Gohmanaf752342009-07-07 17:06:11 +00003200const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003201 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003202 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003203 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003204
Chris Lattner229907c2011-07-18 04:54:35 +00003205 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003206 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003207 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003208 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003209}
3210
3211/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003212const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003213 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003214 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003215 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003216
Chris Lattner229907c2011-07-18 04:54:35 +00003217 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003218 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003219 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003220 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003221 return getMinusSCEV(AllOnes, V);
3222}
3223
Andrew Trick8b55b732011-03-14 16:50:06 +00003224/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003225const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003226 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003227 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3228
Dan Gohman46f00a22010-07-20 16:53:00 +00003229 // Fast path: X - X --> 0.
3230 if (LHS == RHS)
3231 return getConstant(LHS->getType(), 0);
3232
Dan Gohman0a40ad92009-04-16 03:18:22 +00003233 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003234 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003235}
3236
3237/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3238/// input value to the specified type. If the type must be extended, it is zero
3239/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003240const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003241ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3242 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003243 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3244 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003245 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003246 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003247 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003248 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003249 return getTruncateExpr(V, Ty);
3250 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003251}
3252
3253/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3254/// input value to the specified type. If the type must be extended, it is sign
3255/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003256const SCEV *
3257ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003258 Type *Ty) {
3259 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003260 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3261 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003262 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003263 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003264 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003265 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003266 return getTruncateExpr(V, Ty);
3267 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003268}
3269
Dan Gohmane712a2f2009-05-13 03:46:30 +00003270/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3271/// input value to the specified type. If the type must be extended, it is zero
3272/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003273const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003274ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3275 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003276 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3277 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003278 "Cannot noop or zero extend with non-integer arguments!");
3279 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3280 "getNoopOrZeroExtend cannot truncate!");
3281 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3282 return V; // No conversion
3283 return getZeroExtendExpr(V, Ty);
3284}
3285
3286/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3287/// input value to the specified type. If the type must be extended, it is sign
3288/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003289const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003290ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3291 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003292 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3293 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003294 "Cannot noop or sign extend with non-integer arguments!");
3295 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3296 "getNoopOrSignExtend cannot truncate!");
3297 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3298 return V; // No conversion
3299 return getSignExtendExpr(V, Ty);
3300}
3301
Dan Gohman8db2edc2009-06-13 15:56:47 +00003302/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3303/// the input value to the specified type. If the type must be extended,
3304/// it is extended with unspecified bits. The conversion must not be
3305/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003306const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003307ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3308 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003309 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003311 "Cannot noop or any extend with non-integer arguments!");
3312 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3313 "getNoopOrAnyExtend cannot truncate!");
3314 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3315 return V; // No conversion
3316 return getAnyExtendExpr(V, Ty);
3317}
3318
Dan Gohmane712a2f2009-05-13 03:46:30 +00003319/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3320/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003321const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003322ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3323 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003324 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3325 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003326 "Cannot truncate or noop with non-integer arguments!");
3327 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3328 "getTruncateOrNoop cannot extend!");
3329 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3330 return V; // No conversion
3331 return getTruncateExpr(V, Ty);
3332}
3333
Dan Gohman96212b62009-06-22 00:31:57 +00003334/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3335/// the types using zero-extension, and then perform a umax operation
3336/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003337const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3338 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003339 const SCEV *PromotedLHS = LHS;
3340 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003341
3342 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3343 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3344 else
3345 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3346
3347 return getUMaxExpr(PromotedLHS, PromotedRHS);
3348}
3349
Dan Gohman2bc22302009-06-22 15:03:27 +00003350/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3351/// the types using zero-extension, and then perform a umin operation
3352/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003353const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3354 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003355 const SCEV *PromotedLHS = LHS;
3356 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003357
3358 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3359 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3360 else
3361 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3362
3363 return getUMinExpr(PromotedLHS, PromotedRHS);
3364}
3365
Andrew Trick87716c92011-03-17 23:51:11 +00003366/// getPointerBase - Transitively follow the chain of pointer-type operands
3367/// until reaching a SCEV that does not have a single pointer operand. This
3368/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3369/// but corner cases do exist.
3370const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3371 // A pointer operand may evaluate to a nonpointer expression, such as null.
3372 if (!V->getType()->isPointerTy())
3373 return V;
3374
3375 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3376 return getPointerBase(Cast->getOperand());
3377 }
3378 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003379 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003380 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3381 I != E; ++I) {
3382 if ((*I)->getType()->isPointerTy()) {
3383 // Cannot find the base of an expression with multiple pointer operands.
3384 if (PtrOp)
3385 return V;
3386 PtrOp = *I;
3387 }
3388 }
3389 if (!PtrOp)
3390 return V;
3391 return getPointerBase(PtrOp);
3392 }
3393 return V;
3394}
3395
Dan Gohman0b89dff2009-07-25 01:13:03 +00003396/// PushDefUseChildren - Push users of the given Instruction
3397/// onto the given Worklist.
3398static void
3399PushDefUseChildren(Instruction *I,
3400 SmallVectorImpl<Instruction *> &Worklist) {
3401 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003402 for (User *U : I->users())
3403 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003404}
3405
3406/// ForgetSymbolicValue - This looks up computed SCEV values for all
3407/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003408/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003409/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003410void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003411ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003412 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003413 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003414
Dan Gohman0b89dff2009-07-25 01:13:03 +00003415 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003416 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003417 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003418 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003419 if (!Visited.insert(I).second)
3420 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003421
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003422 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003423 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003424 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003425 const SCEV *Old = It->second;
3426
Dan Gohman0b89dff2009-07-25 01:13:03 +00003427 // Short-circuit the def-use traversal if the symbolic name
3428 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003429 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003430 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003431
Dan Gohman0b89dff2009-07-25 01:13:03 +00003432 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003433 // structure, it's a PHI that's in the progress of being computed
3434 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3435 // additional loop trip count information isn't going to change anything.
3436 // In the second case, createNodeForPHI will perform the necessary
3437 // updates on its own when it gets to that point. In the third, we do
3438 // want to forget the SCEVUnknown.
3439 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003440 !isa<SCEVUnknown>(Old) ||
3441 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003442 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003443 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003444 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003445 }
3446
3447 PushDefUseChildren(I, Worklist);
3448 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003449}
Chris Lattnerd934c702004-04-02 20:23:17 +00003450
3451/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3452/// a loop header, making it a potential recurrence, or it doesn't.
3453///
Dan Gohmanaf752342009-07-07 17:06:11 +00003454const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003455 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3456 if (L->getHeader() == PN->getParent()) {
3457 // The loop may have multiple entrances or multiple exits; we can analyze
3458 // this phi as an addrec if it has a unique entry value and a unique
3459 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003460 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003461 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3462 Value *V = PN->getIncomingValue(i);
3463 if (L->contains(PN->getIncomingBlock(i))) {
3464 if (!BEValueV) {
3465 BEValueV = V;
3466 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003467 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003468 break;
3469 }
3470 } else if (!StartValueV) {
3471 StartValueV = V;
3472 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003473 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003474 break;
3475 }
3476 }
3477 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003478 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003479 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003480 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003481 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003482 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003483
3484 // Using this symbolic name for the PHI, analyze the value coming around
3485 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003486 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003487
3488 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3489 // has a special value for the first iteration of the loop.
3490
3491 // If the value coming around the backedge is an add with the symbolic
3492 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003493 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003494 // If there is a single occurrence of the symbolic value, replace it
3495 // with a recurrence.
3496 unsigned FoundIndex = Add->getNumOperands();
3497 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3498 if (Add->getOperand(i) == SymbolicName)
3499 if (FoundIndex == e) {
3500 FoundIndex = i;
3501 break;
3502 }
3503
3504 if (FoundIndex != Add->getNumOperands()) {
3505 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003506 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003507 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3508 if (i != FoundIndex)
3509 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003510 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003511
3512 // This is not a valid addrec if the step amount is varying each
3513 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003514 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003515 (isa<SCEVAddRecExpr>(Accum) &&
3516 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003517 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003518
3519 // If the increment doesn't overflow, then neither the addrec nor
3520 // the post-increment will overflow.
3521 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3522 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003523 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003524 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003525 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003526 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003527 // If the increment is an inbounds GEP, then we know the address
3528 // space cannot be wrapped around. We cannot make any guarantee
3529 // about signed or unsigned overflow because pointers are
3530 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003531 // pointer. We can guarantee that no unsigned wrap occurs if the
3532 // indices form a positive value.
3533 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003534 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003535
3536 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3537 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3538 Flags = setFlags(Flags, SCEV::FlagNUW);
3539 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003540 } else if (const SubOperator *OBO =
3541 dyn_cast<SubOperator>(BEValueV)) {
3542 if (OBO->hasNoUnsignedWrap())
3543 Flags = setFlags(Flags, SCEV::FlagNUW);
3544 if (OBO->hasNoSignedWrap())
3545 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003546 }
3547
Dan Gohman6635bb22010-04-12 07:49:36 +00003548 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003549 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003550
Dan Gohman51ad99d2010-01-21 02:09:26 +00003551 // Since the no-wrap flags are on the increment, they apply to the
3552 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003553 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003554 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003555 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003556
3557 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558 // to be symbolic. We now need to go back and purge all of the
3559 // entries for the scalars that use the symbolic expression.
3560 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003561 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003562 return PHISCEV;
3563 }
3564 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003565 } else if (const SCEVAddRecExpr *AddRec =
3566 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003567 // Otherwise, this could be a loop like this:
3568 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3569 // In this case, j = {1,+,1} and BEValue is j.
3570 // Because the other in-value of i (0) fits the evolution of BEValue
3571 // i really is an addrec evolution.
3572 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003573 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003574
3575 // If StartVal = j.start - j.stride, we can use StartVal as the
3576 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003577 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003578 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003579 // FIXME: For constant StartVal, we should be able to infer
3580 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003581 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003582 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3583 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003584
3585 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003586 // to be symbolic. We now need to go back and purge all of the
3587 // entries for the scalars that use the symbolic expression.
3588 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003589 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003590 return PHISCEV;
3591 }
3592 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003593 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003594 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003595 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003596
Dan Gohmana9c205c2010-02-25 06:57:05 +00003597 // If the PHI has a single incoming value, follow that value, unless the
3598 // PHI's incoming blocks are in a different loop, in which case doing so
3599 // risks breaking LCSSA form. Instcombine would normally zap these, but
3600 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003601 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003602 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003603 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003604
Chris Lattnerd934c702004-04-02 20:23:17 +00003605 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003606 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003607}
3608
Dan Gohmanee750d12009-05-08 20:26:55 +00003609/// createNodeForGEP - Expand GEP instructions into add and multiply
3610/// operations. This allows them to be analyzed by regular SCEV code.
3611///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003612const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003613 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003614 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003615 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003616 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003617 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003618
3619 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3620 // Add expression, because the Instruction may be guarded by control flow
3621 // and the no-overflow bits may not be valid for the expression in any
3622 // context.
3623 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3624
Dan Gohman1d2ded72010-05-03 22:09:21 +00003625 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003626 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003627 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003628 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003629 I != E; ++I) {
3630 Value *Index = *I;
3631 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003632 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003633 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003634 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003635 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003636
Dan Gohman16206132010-06-30 07:16:37 +00003637 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003638 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003639 } else {
3640 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003641 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003642 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003643 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003644 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3645
Dan Gohman16206132010-06-30 07:16:37 +00003646 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003647 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003648
3649 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003650 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003651 }
3652 }
Dan Gohman16206132010-06-30 07:16:37 +00003653
3654 // Get the SCEV for the GEP base.
3655 const SCEV *BaseS = getSCEV(Base);
3656
Dan Gohman16206132010-06-30 07:16:37 +00003657 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003658 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003659}
3660
Nick Lewycky3783b462007-11-22 07:59:40 +00003661/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3662/// guaranteed to end in (at every loop iteration). It is, at the same time,
3663/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3664/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003665uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003666ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003667 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003668 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003669
Dan Gohmana30370b2009-05-04 22:02:23 +00003670 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003671 return std::min(GetMinTrailingZeros(T->getOperand()),
3672 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003673
Dan Gohmana30370b2009-05-04 22:02:23 +00003674 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003675 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3676 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3677 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003678 }
3679
Dan Gohmana30370b2009-05-04 22:02:23 +00003680 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003681 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3682 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3683 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003684 }
3685
Dan Gohmana30370b2009-05-04 22:02:23 +00003686 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003687 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003688 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003689 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003690 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003691 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003692 }
3693
Dan Gohmana30370b2009-05-04 22:02:23 +00003694 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003695 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003696 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3697 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003698 for (unsigned i = 1, e = M->getNumOperands();
3699 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003700 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003701 BitWidth);
3702 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003703 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003704
Dan Gohmana30370b2009-05-04 22:02:23 +00003705 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003706 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003707 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003708 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003709 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003710 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003711 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003712
Dan Gohmana30370b2009-05-04 22:02:23 +00003713 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003714 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003715 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003716 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003717 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003718 return MinOpRes;
3719 }
3720
Dan Gohmana30370b2009-05-04 22:02:23 +00003721 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003722 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003723 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003724 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003725 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003726 return MinOpRes;
3727 }
3728
Dan Gohmanc702fc02009-06-19 23:29:04 +00003729 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3730 // For a SCEVUnknown, ask ValueTracking.
3731 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003732 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003733 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003734 return Zeros.countTrailingOnes();
3735 }
3736
3737 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003738 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003739}
Chris Lattnerd934c702004-04-02 20:23:17 +00003740
Sanjoy Das1f05c512014-10-10 21:22:34 +00003741/// GetRangeFromMetadata - Helper method to assign a range to V from
3742/// metadata present in the IR.
3743static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3744 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003745 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003746 ConstantRange TotalRange(
3747 cast<IntegerType>(I->getType())->getBitWidth(), false);
3748
3749 unsigned NumRanges = MD->getNumOperands() / 2;
3750 assert(NumRanges >= 1);
3751
3752 for (unsigned i = 0; i < NumRanges; ++i) {
3753 ConstantInt *Lower = cast<ConstantInt>(MD->getOperand(2*i + 0));
3754 ConstantInt *Upper = cast<ConstantInt>(MD->getOperand(2*i + 1));
3755 ConstantRange Range(Lower->getValue(), Upper->getValue());
3756 TotalRange = TotalRange.unionWith(Range);
3757 }
3758
3759 return TotalRange;
3760 }
3761 }
3762
3763 return None;
3764}
3765
Dan Gohmane65c9172009-07-13 21:35:55 +00003766/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3767///
3768ConstantRange
3769ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003770 // See if we've computed this range already.
3771 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3772 if (I != UnsignedRanges.end())
3773 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003774
3775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003776 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003777
Dan Gohman85be4332010-01-26 19:19:05 +00003778 unsigned BitWidth = getTypeSizeInBits(S->getType());
3779 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3780
3781 // If the value has known zeros, the maximum unsigned value will have those
3782 // known zeros as well.
3783 uint32_t TZ = GetMinTrailingZeros(S);
3784 if (TZ != 0)
3785 ConservativeResult =
3786 ConstantRange(APInt::getMinValue(BitWidth),
3787 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3788
Dan Gohmane65c9172009-07-13 21:35:55 +00003789 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3790 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3791 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3792 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003793 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003794 }
3795
3796 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3797 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3798 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3799 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003800 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003801 }
3802
3803 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3804 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3805 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3806 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003807 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003808 }
3809
3810 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3811 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3812 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3813 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003814 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003815 }
3816
3817 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3818 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3819 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003820 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003821 }
3822
3823 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3824 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003825 return setUnsignedRange(ZExt,
3826 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003827 }
3828
3829 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3830 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003831 return setUnsignedRange(SExt,
3832 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003833 }
3834
3835 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3836 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003837 return setUnsignedRange(Trunc,
3838 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003839 }
3840
Dan Gohmane65c9172009-07-13 21:35:55 +00003841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003842 // If there's no unsigned wrap, the value will never be less than its
3843 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003844 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003845 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003846 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003847 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003848 ConservativeResult.intersectWith(
3849 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003850
3851 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003852 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003853 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003854 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003855 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3856 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003857 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3858
3859 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003860 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003861
3862 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003863 ConstantRange StepRange = getSignedRange(Step);
3864 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3865 ConstantRange EndRange =
3866 StartRange.add(MaxBECountRange.multiply(StepRange));
3867
3868 // Check for overflow. This must be done with ConstantRange arithmetic
3869 // because we could be called from within the ScalarEvolution overflow
3870 // checking code.
3871 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3872 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3873 ConstantRange ExtMaxBECountRange =
3874 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3875 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3876 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3877 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003878 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003879
Dan Gohmane65c9172009-07-13 21:35:55 +00003880 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3881 EndRange.getUnsignedMin());
3882 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3883 EndRange.getUnsignedMax());
3884 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003885 return setUnsignedRange(AddRec, ConservativeResult);
3886 return setUnsignedRange(AddRec,
3887 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003888 }
3889 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003890
Dan Gohmaned756312010-11-17 20:23:08 +00003891 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003892 }
3893
3894 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003895 // Check if the IR explicitly contains !range metadata.
3896 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3897 if (MDRange.hasValue())
3898 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3899
Dan Gohmanc702fc02009-06-19 23:29:04 +00003900 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003901 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003902 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003903 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003904 return setUnsignedRange(U, ConservativeResult);
3905 return setUnsignedRange(U,
3906 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003907 }
3908
Dan Gohmaned756312010-11-17 20:23:08 +00003909 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003910}
3911
Dan Gohmane65c9172009-07-13 21:35:55 +00003912/// getSignedRange - Determine the signed range for a particular SCEV.
3913///
3914ConstantRange
3915ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003916 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003917 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3918 if (I != SignedRanges.end())
3919 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003920
Dan Gohmane65c9172009-07-13 21:35:55 +00003921 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003922 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003923
Dan Gohman51aaf022010-01-26 04:40:18 +00003924 unsigned BitWidth = getTypeSizeInBits(S->getType());
3925 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3926
3927 // If the value has known zeros, the maximum signed value will have those
3928 // known zeros as well.
3929 uint32_t TZ = GetMinTrailingZeros(S);
3930 if (TZ != 0)
3931 ConservativeResult =
3932 ConstantRange(APInt::getSignedMinValue(BitWidth),
3933 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3934
Dan Gohmane65c9172009-07-13 21:35:55 +00003935 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3936 ConstantRange X = getSignedRange(Add->getOperand(0));
3937 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3938 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003939 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003940 }
3941
Dan Gohmane65c9172009-07-13 21:35:55 +00003942 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3943 ConstantRange X = getSignedRange(Mul->getOperand(0));
3944 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3945 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003946 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003947 }
3948
Dan Gohmane65c9172009-07-13 21:35:55 +00003949 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3950 ConstantRange X = getSignedRange(SMax->getOperand(0));
3951 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3952 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003953 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003954 }
Dan Gohmand261d272009-06-24 01:05:09 +00003955
Dan Gohmane65c9172009-07-13 21:35:55 +00003956 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3957 ConstantRange X = getSignedRange(UMax->getOperand(0));
3958 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3959 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003960 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003961 }
Dan Gohmand261d272009-06-24 01:05:09 +00003962
Dan Gohmane65c9172009-07-13 21:35:55 +00003963 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3964 ConstantRange X = getSignedRange(UDiv->getLHS());
3965 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003966 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003967 }
Dan Gohmand261d272009-06-24 01:05:09 +00003968
Dan Gohmane65c9172009-07-13 21:35:55 +00003969 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3970 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003971 return setSignedRange(ZExt,
3972 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003973 }
3974
3975 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3976 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003977 return setSignedRange(SExt,
3978 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003979 }
3980
3981 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3982 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003983 return setSignedRange(Trunc,
3984 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003985 }
3986
Dan Gohmane65c9172009-07-13 21:35:55 +00003987 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003988 // If there's no signed wrap, and all the operands have the same sign or
3989 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003990 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003991 bool AllNonNeg = true;
3992 bool AllNonPos = true;
3993 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3994 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3995 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3996 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003997 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003998 ConservativeResult = ConservativeResult.intersectWith(
3999 ConstantRange(APInt(BitWidth, 0),
4000 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004001 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004002 ConservativeResult = ConservativeResult.intersectWith(
4003 ConstantRange(APInt::getSignedMinValue(BitWidth),
4004 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004005 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004006
4007 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004008 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004009 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004010 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004011 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4012 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004013 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4014
4015 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004016 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00004017
4018 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004019 ConstantRange StepRange = getSignedRange(Step);
4020 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4021 ConstantRange EndRange =
4022 StartRange.add(MaxBECountRange.multiply(StepRange));
4023
4024 // Check for overflow. This must be done with ConstantRange arithmetic
4025 // because we could be called from within the ScalarEvolution overflow
4026 // checking code.
4027 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
4028 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
4029 ConstantRange ExtMaxBECountRange =
4030 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
4031 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
4032 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
4033 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00004034 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004035
Dan Gohmane65c9172009-07-13 21:35:55 +00004036 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
4037 EndRange.getSignedMin());
4038 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
4039 EndRange.getSignedMax());
4040 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00004041 return setSignedRange(AddRec, ConservativeResult);
4042 return setSignedRange(AddRec,
4043 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00004044 }
Dan Gohmand261d272009-06-24 01:05:09 +00004045 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004046
Dan Gohmaned756312010-11-17 20:23:08 +00004047 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004048 }
4049
Dan Gohmanc702fc02009-06-19 23:29:04 +00004050 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004051 // Check if the IR explicitly contains !range metadata.
4052 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4053 if (MDRange.hasValue())
4054 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4055
Dan Gohmanc702fc02009-06-19 23:29:04 +00004056 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004057 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004058 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00004059 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004060 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004061 return setSignedRange(U, ConservativeResult);
4062 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004063 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004064 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004065 }
4066
Dan Gohmaned756312010-11-17 20:23:08 +00004067 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004068}
4069
Chris Lattnerd934c702004-04-02 20:23:17 +00004070/// createSCEV - We know that there is no SCEV for the specified value.
4071/// Analyze the expression.
4072///
Dan Gohmanaf752342009-07-07 17:06:11 +00004073const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004074 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004075 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004076
Dan Gohman05e89732008-06-22 19:56:46 +00004077 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004078 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004079 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004080
4081 // Don't attempt to analyze instructions in blocks that aren't
4082 // reachable. Such instructions don't matter, and they aren't required
4083 // to obey basic rules for definitions dominating uses which this
4084 // analysis depends on.
4085 if (!DT->isReachableFromEntry(I->getParent()))
4086 return getUnknown(V);
4087 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004088 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004089 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4090 return getConstant(CI);
4091 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004092 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004093 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4094 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004095 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004096 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004097
Dan Gohman80ca01c2009-07-17 20:47:02 +00004098 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004099 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004100 case Instruction::Add: {
4101 // The simple thing to do would be to just call getSCEV on both operands
4102 // and call getAddExpr with the result. However if we're looking at a
4103 // bunch of things all added together, this can be quite inefficient,
4104 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4105 // Instead, gather up all the operands and make a single getAddExpr call.
4106 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004107 //
4108 // Don't apply this instruction's NSW or NUW flags to the new
4109 // expression. The instruction may be guarded by control flow that the
4110 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4111 // mapped to the same SCEV expression, and it would be incorrect to transfer
4112 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004113 SmallVector<const SCEV *, 4> AddOps;
4114 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004115 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4116 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4117 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4118 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004119 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004120 const SCEV *Op1 = getSCEV(U->getOperand(1));
4121 if (Opcode == Instruction::Sub)
4122 AddOps.push_back(getNegativeSCEV(Op1));
4123 else
4124 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004125 }
4126 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004127 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004128 }
4129 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004130 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004131 SmallVector<const SCEV *, 4> MulOps;
4132 MulOps.push_back(getSCEV(U->getOperand(1)));
4133 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004134 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004135 Op = U->getOperand(0)) {
4136 U = cast<Operator>(Op);
4137 MulOps.push_back(getSCEV(U->getOperand(1)));
4138 }
4139 MulOps.push_back(getSCEV(U->getOperand(0)));
4140 return getMulExpr(MulOps);
4141 }
Dan Gohman05e89732008-06-22 19:56:46 +00004142 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004143 return getUDivExpr(getSCEV(U->getOperand(0)),
4144 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004145 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004146 return getMinusSCEV(getSCEV(U->getOperand(0)),
4147 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004148 case Instruction::And:
4149 // For an expression like x&255 that merely masks off the high bits,
4150 // use zext(trunc(x)) as the SCEV expression.
4151 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004152 if (CI->isNullValue())
4153 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004154 if (CI->isAllOnesValue())
4155 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004156 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004157
4158 // Instcombine's ShrinkDemandedConstant may strip bits out of
4159 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004160 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004161 // knew about to reconstruct a low-bits mask value.
4162 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004163 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004164 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004165 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00004166 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4167 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004168
Nick Lewycky31eaca52014-01-27 10:04:03 +00004169 APInt EffectiveMask =
4170 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4171 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4172 const SCEV *MulCount = getConstant(
4173 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4174 return getMulExpr(
4175 getZeroExtendExpr(
4176 getTruncateExpr(
4177 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4178 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4179 U->getType()),
4180 MulCount);
4181 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004182 }
4183 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004184
Dan Gohman05e89732008-06-22 19:56:46 +00004185 case Instruction::Or:
4186 // If the RHS of the Or is a constant, we may have something like:
4187 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4188 // optimizations will transparently handle this case.
4189 //
4190 // In order for this transformation to be safe, the LHS must be of the
4191 // form X*(2^n) and the Or constant must be less than 2^n.
4192 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004193 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004194 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004195 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004196 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4197 // Build a plain add SCEV.
4198 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4199 // If the LHS of the add was an addrec and it has no-wrap flags,
4200 // transfer the no-wrap flags, since an or won't introduce a wrap.
4201 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4202 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004203 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4204 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004205 }
4206 return S;
4207 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004208 }
Dan Gohman05e89732008-06-22 19:56:46 +00004209 break;
4210 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004211 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004212 // If the RHS of the xor is a signbit, then this is just an add.
4213 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004214 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004215 return getAddExpr(getSCEV(U->getOperand(0)),
4216 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004217
4218 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004219 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004220 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004221
4222 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4223 // This is a variant of the check for xor with -1, and it handles
4224 // the case where instcombine has trimmed non-demanded bits out
4225 // of an xor with -1.
4226 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4227 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4228 if (BO->getOpcode() == Instruction::And &&
4229 LCI->getValue() == CI->getValue())
4230 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004231 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004232 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004233 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004234 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004235 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4236
Dan Gohman8b0a4192010-03-01 17:49:51 +00004237 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004238 // mask off the high bits. Complement the operand and
4239 // re-apply the zext.
4240 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4241 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4242
4243 // If C is a single bit, it may be in the sign-bit position
4244 // before the zero-extend. In this case, represent the xor
4245 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004246 APInt Trunc = CI->getValue().trunc(Z0TySize);
4247 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004248 Trunc.isSignBit())
4249 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4250 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004251 }
Dan Gohman05e89732008-06-22 19:56:46 +00004252 }
4253 break;
4254
4255 case Instruction::Shl:
4256 // Turn shift left of a constant amount into a multiply.
4257 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004258 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004259
4260 // If the shift count is not less than the bitwidth, the result of
4261 // the shift is undefined. Don't try to analyze it, because the
4262 // resolution chosen here may differ from the resolution chosen in
4263 // other parts of the compiler.
4264 if (SA->getValue().uge(BitWidth))
4265 break;
4266
Owen Andersonedb4a702009-07-24 23:12:02 +00004267 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004268 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004269 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004270 }
4271 break;
4272
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004273 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004274 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004275 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004276 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004277
4278 // If the shift count is not less than the bitwidth, the result of
4279 // the shift is undefined. Don't try to analyze it, because the
4280 // resolution chosen here may differ from the resolution chosen in
4281 // other parts of the compiler.
4282 if (SA->getValue().uge(BitWidth))
4283 break;
4284
Owen Andersonedb4a702009-07-24 23:12:02 +00004285 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004286 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004287 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004288 }
4289 break;
4290
Dan Gohman0ec05372009-04-21 02:26:00 +00004291 case Instruction::AShr:
4292 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4293 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004294 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004295 if (L->getOpcode() == Instruction::Shl &&
4296 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004297 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4298
4299 // If the shift count is not less than the bitwidth, the result of
4300 // the shift is undefined. Don't try to analyze it, because the
4301 // resolution chosen here may differ from the resolution chosen in
4302 // other parts of the compiler.
4303 if (CI->getValue().uge(BitWidth))
4304 break;
4305
Dan Gohmandf199482009-04-25 17:05:40 +00004306 uint64_t Amt = BitWidth - CI->getZExtValue();
4307 if (Amt == BitWidth)
4308 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004309 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004310 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004311 IntegerType::get(getContext(),
4312 Amt)),
4313 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004314 }
4315 break;
4316
Dan Gohman05e89732008-06-22 19:56:46 +00004317 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004318 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004319
4320 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004321 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004322
4323 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004324 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004325
4326 case Instruction::BitCast:
4327 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004328 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004329 return getSCEV(U->getOperand(0));
4330 break;
4331
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004332 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4333 // lead to pointer expressions which cannot safely be expanded to GEPs,
4334 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4335 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004336
Dan Gohmanee750d12009-05-08 20:26:55 +00004337 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004338 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004339
Dan Gohman05e89732008-06-22 19:56:46 +00004340 case Instruction::PHI:
4341 return createNodeForPHI(cast<PHINode>(U));
4342
4343 case Instruction::Select:
4344 // This could be a smax or umax that was lowered earlier.
4345 // Try to recover it.
4346 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4347 Value *LHS = ICI->getOperand(0);
4348 Value *RHS = ICI->getOperand(1);
4349 switch (ICI->getPredicate()) {
4350 case ICmpInst::ICMP_SLT:
4351 case ICmpInst::ICMP_SLE:
4352 std::swap(LHS, RHS);
4353 // fall through
4354 case ICmpInst::ICMP_SGT:
4355 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004356 // a >s b ? a+x : b+x -> smax(a, b)+x
4357 // a >s b ? b+x : a+x -> smin(a, b)+x
4358 if (LHS->getType() == U->getType()) {
4359 const SCEV *LS = getSCEV(LHS);
4360 const SCEV *RS = getSCEV(RHS);
4361 const SCEV *LA = getSCEV(U->getOperand(1));
4362 const SCEV *RA = getSCEV(U->getOperand(2));
4363 const SCEV *LDiff = getMinusSCEV(LA, LS);
4364 const SCEV *RDiff = getMinusSCEV(RA, RS);
4365 if (LDiff == RDiff)
4366 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4367 LDiff = getMinusSCEV(LA, RS);
4368 RDiff = getMinusSCEV(RA, LS);
4369 if (LDiff == RDiff)
4370 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4371 }
Dan Gohman05e89732008-06-22 19:56:46 +00004372 break;
4373 case ICmpInst::ICMP_ULT:
4374 case ICmpInst::ICMP_ULE:
4375 std::swap(LHS, RHS);
4376 // fall through
4377 case ICmpInst::ICMP_UGT:
4378 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004379 // a >u b ? a+x : b+x -> umax(a, b)+x
4380 // a >u b ? b+x : a+x -> umin(a, b)+x
4381 if (LHS->getType() == U->getType()) {
4382 const SCEV *LS = getSCEV(LHS);
4383 const SCEV *RS = getSCEV(RHS);
4384 const SCEV *LA = getSCEV(U->getOperand(1));
4385 const SCEV *RA = getSCEV(U->getOperand(2));
4386 const SCEV *LDiff = getMinusSCEV(LA, LS);
4387 const SCEV *RDiff = getMinusSCEV(RA, RS);
4388 if (LDiff == RDiff)
4389 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4390 LDiff = getMinusSCEV(LA, RS);
4391 RDiff = getMinusSCEV(RA, LS);
4392 if (LDiff == RDiff)
4393 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4394 }
Dan Gohman05e89732008-06-22 19:56:46 +00004395 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004396 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004397 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4398 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004399 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004400 cast<ConstantInt>(RHS)->isZero()) {
4401 const SCEV *One = getConstant(LHS->getType(), 1);
4402 const SCEV *LS = getSCEV(LHS);
4403 const SCEV *LA = getSCEV(U->getOperand(1));
4404 const SCEV *RA = getSCEV(U->getOperand(2));
4405 const SCEV *LDiff = getMinusSCEV(LA, LS);
4406 const SCEV *RDiff = getMinusSCEV(RA, One);
4407 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004408 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004409 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004410 break;
4411 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004412 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4413 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004414 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004415 cast<ConstantInt>(RHS)->isZero()) {
4416 const SCEV *One = getConstant(LHS->getType(), 1);
4417 const SCEV *LS = getSCEV(LHS);
4418 const SCEV *LA = getSCEV(U->getOperand(1));
4419 const SCEV *RA = getSCEV(U->getOperand(2));
4420 const SCEV *LDiff = getMinusSCEV(LA, One);
4421 const SCEV *RDiff = getMinusSCEV(RA, LS);
4422 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004423 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004424 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004425 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004426 default:
4427 break;
4428 }
4429 }
4430
4431 default: // We cannot analyze this expression.
4432 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004433 }
4434
Dan Gohmanc8e23622009-04-21 23:15:49 +00004435 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004436}
4437
4438
4439
4440//===----------------------------------------------------------------------===//
4441// Iteration Count Computation Code
4442//
4443
Chandler Carruth6666c272014-10-11 00:12:11 +00004444unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4445 if (BasicBlock *ExitingBB = L->getExitingBlock())
4446 return getSmallConstantTripCount(L, ExitingBB);
4447
4448 // No trip count information for multiple exits.
4449 return 0;
4450}
4451
Andrew Trick2b6860f2011-08-11 23:36:16 +00004452/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004453/// normal unsigned value. Returns 0 if the trip count is unknown or not
4454/// constant. Will also return 0 if the maximum trip count is very large (>=
4455/// 2^32).
4456///
4457/// This "trip count" assumes that control exits via ExitingBlock. More
4458/// precisely, it is the number of times that control may reach ExitingBlock
4459/// before taking the branch. For loops with multiple exits, it may not be the
4460/// number times that the loop header executes because the loop may exit
4461/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004462unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4463 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004464 assert(ExitingBlock && "Must pass a non-null exiting block!");
4465 assert(L->isLoopExiting(ExitingBlock) &&
4466 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004467 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004468 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004469 if (!ExitCount)
4470 return 0;
4471
4472 ConstantInt *ExitConst = ExitCount->getValue();
4473
4474 // Guard against huge trip counts.
4475 if (ExitConst->getValue().getActiveBits() > 32)
4476 return 0;
4477
4478 // In case of integer overflow, this returns 0, which is correct.
4479 return ((unsigned)ExitConst->getZExtValue()) + 1;
4480}
4481
Chandler Carruth6666c272014-10-11 00:12:11 +00004482unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4483 if (BasicBlock *ExitingBB = L->getExitingBlock())
4484 return getSmallConstantTripMultiple(L, ExitingBB);
4485
4486 // No trip multiple information for multiple exits.
4487 return 0;
4488}
4489
Andrew Trick2b6860f2011-08-11 23:36:16 +00004490/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4491/// trip count of this loop as a normal unsigned value, if possible. This
4492/// means that the actual trip count is always a multiple of the returned
4493/// value (don't forget the trip count could very well be zero as well!).
4494///
4495/// Returns 1 if the trip count is unknown or not guaranteed to be the
4496/// multiple of a constant (which is also the case if the trip count is simply
4497/// constant, use getSmallConstantTripCount for that case), Will also return 1
4498/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004499///
4500/// As explained in the comments for getSmallConstantTripCount, this assumes
4501/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004502unsigned
4503ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4504 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004505 assert(ExitingBlock && "Must pass a non-null exiting block!");
4506 assert(L->isLoopExiting(ExitingBlock) &&
4507 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004508 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004509 if (ExitCount == getCouldNotCompute())
4510 return 1;
4511
4512 // Get the trip count from the BE count by adding 1.
4513 const SCEV *TCMul = getAddExpr(ExitCount,
4514 getConstant(ExitCount->getType(), 1));
4515 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4516 // to factor simple cases.
4517 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4518 TCMul = Mul->getOperand(0);
4519
4520 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4521 if (!MulC)
4522 return 1;
4523
4524 ConstantInt *Result = MulC->getValue();
4525
Hal Finkel30bd9342012-10-24 19:46:44 +00004526 // Guard against huge trip counts (this requires checking
4527 // for zero to handle the case where the trip count == -1 and the
4528 // addition wraps).
4529 if (!Result || Result->getValue().getActiveBits() > 32 ||
4530 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004531 return 1;
4532
4533 return (unsigned)Result->getZExtValue();
4534}
4535
Andrew Trick3ca3f982011-07-26 17:19:55 +00004536// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004537// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004538// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004539const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4540 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004541}
4542
Dan Gohman0bddac12009-02-24 18:55:53 +00004543/// getBackedgeTakenCount - If the specified loop has a predictable
4544/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4545/// object. The backedge-taken count is the number of times the loop header
4546/// will be branched to from within the loop. This is one less than the
4547/// trip count of the loop, since it doesn't count the first iteration,
4548/// when the header is branched to from outside the loop.
4549///
4550/// Note that it is not valid to call this method on a loop without a
4551/// loop-invariant backedge-taken count (see
4552/// hasLoopInvariantBackedgeTakenCount).
4553///
Dan Gohmanaf752342009-07-07 17:06:11 +00004554const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004555 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004556}
4557
4558/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4559/// return the least SCEV value that is known never to be less than the
4560/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004561const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004562 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004563}
4564
Dan Gohmandc191042009-07-08 19:23:34 +00004565/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4566/// onto the given Worklist.
4567static void
4568PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4569 BasicBlock *Header = L->getHeader();
4570
4571 // Push all Loop-header PHIs onto the Worklist stack.
4572 for (BasicBlock::iterator I = Header->begin();
4573 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4574 Worklist.push_back(PN);
4575}
4576
Dan Gohman2b8da352009-04-30 20:47:05 +00004577const ScalarEvolution::BackedgeTakenInfo &
4578ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004579 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004580 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004581 // update the value. The temporary CouldNotCompute value tells SCEV
4582 // code elsewhere that it shouldn't attempt to request a new
4583 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004584 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004585 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004586 if (!Pair.second)
4587 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004588
Andrew Trick3ca3f982011-07-26 17:19:55 +00004589 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4590 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4591 // must be cleared in this scope.
4592 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4593
4594 if (Result.getExact(this) != getCouldNotCompute()) {
4595 assert(isLoopInvariant(Result.getExact(this), L) &&
4596 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004597 "Computed backedge-taken count isn't loop invariant for loop!");
4598 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004599 }
4600 else if (Result.getMax(this) == getCouldNotCompute() &&
4601 isa<PHINode>(L->getHeader()->begin())) {
4602 // Only count loops that have phi nodes as not being computable.
4603 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004604 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004605
Chris Lattnera337f5e2011-01-09 02:16:18 +00004606 // Now that we know more about the trip count for this loop, forget any
4607 // existing SCEV values for PHI nodes in this loop since they are only
4608 // conservative estimates made without the benefit of trip count
4609 // information. This is similar to the code in forgetLoop, except that
4610 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004611 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004612 SmallVector<Instruction *, 16> Worklist;
4613 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004614
Chris Lattnera337f5e2011-01-09 02:16:18 +00004615 SmallPtrSet<Instruction *, 8> Visited;
4616 while (!Worklist.empty()) {
4617 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004618 if (!Visited.insert(I).second)
4619 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004620
Chris Lattnera337f5e2011-01-09 02:16:18 +00004621 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004622 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004623 if (It != ValueExprMap.end()) {
4624 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004625
Chris Lattnera337f5e2011-01-09 02:16:18 +00004626 // SCEVUnknown for a PHI either means that it has an unrecognized
4627 // structure, or it's a PHI that's in the progress of being computed
4628 // by createNodeForPHI. In the former case, additional loop trip
4629 // count information isn't going to change anything. In the later
4630 // case, createNodeForPHI will perform the necessary updates on its
4631 // own when it gets to that point.
4632 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4633 forgetMemoizedResults(Old);
4634 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004635 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004636 if (PHINode *PN = dyn_cast<PHINode>(I))
4637 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004638 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004639
4640 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004641 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004642 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004643
4644 // Re-lookup the insert position, since the call to
4645 // ComputeBackedgeTakenCount above could result in a
4646 // recusive call to getBackedgeTakenInfo (on a different
4647 // loop), which would invalidate the iterator computed
4648 // earlier.
4649 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004650}
4651
Dan Gohman880c92a2009-10-31 15:04:55 +00004652/// forgetLoop - This method should be called by the client when it has
4653/// changed a loop in a way that may effect ScalarEvolution's ability to
4654/// compute a trip count, or if the loop is deleted.
4655void ScalarEvolution::forgetLoop(const Loop *L) {
4656 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004657 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4658 BackedgeTakenCounts.find(L);
4659 if (BTCPos != BackedgeTakenCounts.end()) {
4660 BTCPos->second.clear();
4661 BackedgeTakenCounts.erase(BTCPos);
4662 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004663
Dan Gohman880c92a2009-10-31 15:04:55 +00004664 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004665 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004666 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004667
Dan Gohmandc191042009-07-08 19:23:34 +00004668 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004669 while (!Worklist.empty()) {
4670 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004671 if (!Visited.insert(I).second)
4672 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004673
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004674 ValueExprMapType::iterator It =
4675 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004676 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004677 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004678 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004679 if (PHINode *PN = dyn_cast<PHINode>(I))
4680 ConstantEvolutionLoopExitValue.erase(PN);
4681 }
4682
4683 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004684 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004685
4686 // Forget all contained loops too, to avoid dangling entries in the
4687 // ValuesAtScopes map.
4688 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4689 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004690}
4691
Eric Christopheref6d5932010-07-29 01:25:38 +00004692/// forgetValue - This method should be called by the client when it has
4693/// changed a value in a way that may effect its value, or which may
4694/// disconnect it from a def-use chain linking it to a loop.
4695void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004696 Instruction *I = dyn_cast<Instruction>(V);
4697 if (!I) return;
4698
4699 // Drop information about expressions based on loop-header PHIs.
4700 SmallVector<Instruction *, 16> Worklist;
4701 Worklist.push_back(I);
4702
4703 SmallPtrSet<Instruction *, 8> Visited;
4704 while (!Worklist.empty()) {
4705 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004706 if (!Visited.insert(I).second)
4707 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004708
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004709 ValueExprMapType::iterator It =
4710 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004711 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004712 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004713 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004714 if (PHINode *PN = dyn_cast<PHINode>(I))
4715 ConstantEvolutionLoopExitValue.erase(PN);
4716 }
4717
4718 PushDefUseChildren(I, Worklist);
4719 }
4720}
4721
Andrew Trick3ca3f982011-07-26 17:19:55 +00004722/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004723/// exits. A computable result can only be return for loops with a single exit.
4724/// Returning the minimum taken count among all exits is incorrect because one
4725/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4726/// the limit of each loop test is never skipped. This is a valid assumption as
4727/// long as the loop exits via that test. For precise results, it is the
4728/// caller's responsibility to specify the relevant loop exit using
4729/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004730const SCEV *
4731ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4732 // If any exits were not computable, the loop is not computable.
4733 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4734
Andrew Trick90c7a102011-11-16 00:52:40 +00004735 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004736 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004737 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4738
Craig Topper9f008862014-04-15 04:59:12 +00004739 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004740 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004741 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004742
4743 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4744
4745 if (!BECount)
4746 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004747 else if (BECount != ENT->ExactNotTaken)
4748 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004749 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004750 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004751 return BECount;
4752}
4753
4754/// getExact - Get the exact not taken count for this loop exit.
4755const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004756ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004757 ScalarEvolution *SE) const {
4758 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004759 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004760
Andrew Trick77c55422011-08-02 04:23:35 +00004761 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004762 return ENT->ExactNotTaken;
4763 }
4764 return SE->getCouldNotCompute();
4765}
4766
4767/// getMax - Get the max backedge taken count for the loop.
4768const SCEV *
4769ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4770 return Max ? Max : SE->getCouldNotCompute();
4771}
4772
Andrew Trick9093e152013-03-26 03:14:53 +00004773bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4774 ScalarEvolution *SE) const {
4775 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4776 return true;
4777
4778 if (!ExitNotTaken.ExitingBlock)
4779 return false;
4780
4781 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004782 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004783
4784 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4785 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4786 return true;
4787 }
4788 }
4789 return false;
4790}
4791
Andrew Trick3ca3f982011-07-26 17:19:55 +00004792/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4793/// computable exit into a persistent ExitNotTakenInfo array.
4794ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4795 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4796 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4797
4798 if (!Complete)
4799 ExitNotTaken.setIncomplete();
4800
4801 unsigned NumExits = ExitCounts.size();
4802 if (NumExits == 0) return;
4803
Andrew Trick77c55422011-08-02 04:23:35 +00004804 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004805 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4806 if (NumExits == 1) return;
4807
4808 // Handle the rare case of multiple computable exits.
4809 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4810
4811 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4812 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4813 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004814 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004815 ENT->ExactNotTaken = ExitCounts[i].second;
4816 }
4817}
4818
4819/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4820void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004821 ExitNotTaken.ExitingBlock = nullptr;
4822 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004823 delete[] ExitNotTaken.getNextExit();
4824}
4825
Dan Gohman0bddac12009-02-24 18:55:53 +00004826/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4827/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004828ScalarEvolution::BackedgeTakenInfo
4829ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004830 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004831 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004832
Andrew Trick839e30b2014-05-23 19:47:13 +00004833 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004834 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004835 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004836 const SCEV *MustExitMaxBECount = nullptr;
4837 const SCEV *MayExitMaxBECount = nullptr;
4838
4839 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4840 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004841 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004842 BasicBlock *ExitBB = ExitingBlocks[i];
4843 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4844
4845 // 1. For each exit that can be computed, add an entry to ExitCounts.
4846 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004847 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004848 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004849 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004850 CouldComputeBECount = false;
4851 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004852 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004853
Andrew Trick839e30b2014-05-23 19:47:13 +00004854 // 2. Derive the loop's MaxBECount from each exit's max number of
4855 // non-exiting iterations. Partition the loop exits into two kinds:
4856 // LoopMustExits and LoopMayExits.
4857 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004858 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4859 // is a LoopMayExit. If any computable LoopMustExit is found, then
4860 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4861 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4862 // considered greater than any computable EL.Max.
4863 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004864 DT->dominates(ExitBB, Latch)) {
4865 if (!MustExitMaxBECount)
4866 MustExitMaxBECount = EL.Max;
4867 else {
4868 MustExitMaxBECount =
4869 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004870 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004871 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4872 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4873 MayExitMaxBECount = EL.Max;
4874 else {
4875 MayExitMaxBECount =
4876 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4877 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004878 }
Dan Gohman96212b62009-06-22 00:31:57 +00004879 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004880 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4881 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004882 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004883}
4884
Andrew Trick3ca3f982011-07-26 17:19:55 +00004885/// ComputeExitLimit - Compute the number of times the backedge of the specified
4886/// loop will execute if it exits via the specified block.
4887ScalarEvolution::ExitLimit
4888ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004889
4890 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004891 // exit at this block and remember the exit block and whether all other targets
4892 // lead to the loop header.
4893 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004894 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004895 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4896 SI != SE; ++SI)
4897 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004898 if (Exit) // Multiple exit successors.
4899 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004900 Exit = *SI;
4901 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004902 MustExecuteLoopHeader = false;
4903 }
Dan Gohmance973df2009-06-24 04:48:43 +00004904
Chris Lattner18954852007-01-07 02:24:26 +00004905 // At this point, we know we have a conditional branch that determines whether
4906 // the loop is exited. However, we don't know if the branch is executed each
4907 // time through the loop. If not, then the execution count of the branch will
4908 // not be equal to the trip count of the loop.
4909 //
4910 // Currently we check for this by checking to see if the Exit branch goes to
4911 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004912 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004913 // loop header. This is common for un-rotated loops.
4914 //
4915 // If both of those tests fail, walk up the unique predecessor chain to the
4916 // header, stopping if there is an edge that doesn't exit the loop. If the
4917 // header is reached, the execution count of the branch will be equal to the
4918 // trip count of the loop.
4919 //
4920 // More extensive analysis could be done to handle more cases here.
4921 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004922 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004923 // The simple checks failed, try climbing the unique predecessor chain
4924 // up to the header.
4925 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004926 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004927 BasicBlock *Pred = BB->getUniquePredecessor();
4928 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004929 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004930 TerminatorInst *PredTerm = Pred->getTerminator();
4931 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4932 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4933 if (PredSucc == BB)
4934 continue;
4935 // If the predecessor has a successor that isn't BB and isn't
4936 // outside the loop, assume the worst.
4937 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004938 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004939 }
4940 if (Pred == L->getHeader()) {
4941 Ok = true;
4942 break;
4943 }
4944 BB = Pred;
4945 }
4946 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004947 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004948 }
4949
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004950 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004951 TerminatorInst *Term = ExitingBlock->getTerminator();
4952 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4953 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4954 // Proceed to the next level to examine the exit condition expression.
4955 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4956 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004957 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004958 }
4959
4960 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4961 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004962 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004963
4964 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004965}
4966
Andrew Trick3ca3f982011-07-26 17:19:55 +00004967/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004968/// backedge of the specified loop will execute if its exit condition
4969/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004970///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004971/// @param ControlsExit is true if ExitCond directly controls the exit
4972/// branch. In this case, we can assume that the loop exits only if the
4973/// condition is true and can infer that failing to meet the condition prior to
4974/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004975ScalarEvolution::ExitLimit
4976ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4977 Value *ExitCond,
4978 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004979 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004980 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004981 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004982 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4983 if (BO->getOpcode() == Instruction::And) {
4984 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004985 bool EitherMayExit = L->contains(TBB);
4986 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004987 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004988 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004989 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004990 const SCEV *BECount = getCouldNotCompute();
4991 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004992 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004993 // Both conditions must be true for the loop to continue executing.
4994 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004995 if (EL0.Exact == getCouldNotCompute() ||
4996 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004997 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004998 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004999 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5000 if (EL0.Max == getCouldNotCompute())
5001 MaxBECount = EL1.Max;
5002 else if (EL1.Max == getCouldNotCompute())
5003 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005004 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005005 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005006 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005007 // Both conditions must be true at the same time for the loop to exit.
5008 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005009 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005010 if (EL0.Max == EL1.Max)
5011 MaxBECount = EL0.Max;
5012 if (EL0.Exact == EL1.Exact)
5013 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005014 }
5015
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005016 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005017 }
5018 if (BO->getOpcode() == Instruction::Or) {
5019 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005020 bool EitherMayExit = L->contains(FBB);
5021 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005022 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005023 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005024 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005025 const SCEV *BECount = getCouldNotCompute();
5026 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005027 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005028 // Both conditions must be false for the loop to continue executing.
5029 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005030 if (EL0.Exact == getCouldNotCompute() ||
5031 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005032 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005033 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005034 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5035 if (EL0.Max == getCouldNotCompute())
5036 MaxBECount = EL1.Max;
5037 else if (EL1.Max == getCouldNotCompute())
5038 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005039 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005040 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005041 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005042 // Both conditions must be false at the same time for the loop to exit.
5043 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005044 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005045 if (EL0.Max == EL1.Max)
5046 MaxBECount = EL0.Max;
5047 if (EL0.Exact == EL1.Exact)
5048 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005049 }
5050
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005051 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005052 }
5053 }
5054
5055 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005056 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005057 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005058 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005059
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005060 // Check for a constant condition. These are normally stripped out by
5061 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5062 // preserve the CFG and is temporarily leaving constant conditions
5063 // in place.
5064 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5065 if (L->contains(FBB) == !CI->getZExtValue())
5066 // The backedge is always taken.
5067 return getCouldNotCompute();
5068 else
5069 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005070 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005071 }
5072
Eli Friedmanebf98b02009-05-09 12:32:42 +00005073 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005074 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005075}
5076
Andrew Trick3ca3f982011-07-26 17:19:55 +00005077/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005078/// backedge of the specified loop will execute if its exit condition
5079/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005080ScalarEvolution::ExitLimit
5081ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5082 ICmpInst *ExitCond,
5083 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005084 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005085 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005086
Reid Spencer266e42b2006-12-23 06:05:41 +00005087 // If the condition was exit on true, convert the condition to exit on false
5088 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005089 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005090 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005091 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005092 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005093
5094 // Handle common loops like: for (X = "string"; *X; ++X)
5095 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5096 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005097 ExitLimit ItCnt =
5098 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005099 if (ItCnt.hasAnyInfo())
5100 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005101 }
5102
Dan Gohmanaf752342009-07-07 17:06:11 +00005103 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5104 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005105
5106 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005107 LHS = getSCEVAtScope(LHS, L);
5108 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005109
Dan Gohmance973df2009-06-24 04:48:43 +00005110 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005111 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005112 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005113 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005114 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005115 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005116 }
5117
Dan Gohman81585c12010-05-03 16:35:17 +00005118 // Simplify the operands before analyzing them.
5119 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5120
Chris Lattnerd934c702004-04-02 20:23:17 +00005121 // If we have a comparison of a chrec against a constant, try to use value
5122 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005123 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5124 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005125 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005126 // Form the constant range.
5127 ConstantRange CompRange(
5128 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005129
Dan Gohmanaf752342009-07-07 17:06:11 +00005130 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005131 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005132 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005133
Chris Lattnerd934c702004-04-02 20:23:17 +00005134 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005135 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005136 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005137 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005138 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005139 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005140 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005141 case ICmpInst::ICMP_EQ: { // while (X == Y)
5142 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005143 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5144 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005145 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005146 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005147 case ICmpInst::ICMP_SLT:
5148 case ICmpInst::ICMP_ULT: { // while (X < Y)
5149 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005150 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005151 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005152 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005153 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005154 case ICmpInst::ICMP_SGT:
5155 case ICmpInst::ICMP_UGT: { // while (X > Y)
5156 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005157 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005158 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005159 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005160 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005161 default:
Chris Lattner09169212004-04-02 20:26:46 +00005162#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005163 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005164 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005165 dbgs() << "[unsigned] ";
5166 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005167 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005168 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005169#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005170 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005171 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005172 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005173}
5174
Benjamin Kramer5a188542014-02-11 15:44:32 +00005175ScalarEvolution::ExitLimit
5176ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5177 SwitchInst *Switch,
5178 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005179 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005180 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5181
5182 // Give up if the exit is the default dest of a switch.
5183 if (Switch->getDefaultDest() == ExitingBlock)
5184 return getCouldNotCompute();
5185
5186 assert(L->contains(Switch->getDefaultDest()) &&
5187 "Default case must not exit the loop!");
5188 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5189 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5190
5191 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005192 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005193 if (EL.hasAnyInfo())
5194 return EL;
5195
5196 return getCouldNotCompute();
5197}
5198
Chris Lattnerec901cc2004-10-12 01:49:27 +00005199static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005200EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5201 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005202 const SCEV *InVal = SE.getConstant(C);
5203 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005204 assert(isa<SCEVConstant>(Val) &&
5205 "Evaluation of SCEV at constant didn't fold correctly?");
5206 return cast<SCEVConstant>(Val)->getValue();
5207}
5208
Andrew Trick3ca3f982011-07-26 17:19:55 +00005209/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005210/// 'icmp op load X, cst', try to see if we can compute the backedge
5211/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005212ScalarEvolution::ExitLimit
5213ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5214 LoadInst *LI,
5215 Constant *RHS,
5216 const Loop *L,
5217 ICmpInst::Predicate predicate) {
5218
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005219 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005220
5221 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005222 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005223 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005224 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005225
5226 // Make sure that it is really a constant global we are gepping, with an
5227 // initializer, and make sure the first IDX is really 0.
5228 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005229 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005230 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5231 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005232 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005233
5234 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005235 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005236 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005237 unsigned VarIdxNum = 0;
5238 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5239 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5240 Indexes.push_back(CI);
5241 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005242 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005243 VarIdx = GEP->getOperand(i);
5244 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005245 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005246 }
5247
Andrew Trick7004e4b2012-03-26 22:33:59 +00005248 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5249 if (!VarIdx)
5250 return getCouldNotCompute();
5251
Chris Lattnerec901cc2004-10-12 01:49:27 +00005252 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5253 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005254 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005255 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005256
5257 // We can only recognize very limited forms of loop index expressions, in
5258 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005259 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005260 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005261 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5262 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005263 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005264
5265 unsigned MaxSteps = MaxBruteForceIterations;
5266 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005267 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005268 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005269 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005270
5271 // Form the GEP offset.
5272 Indexes[VarIdxNum] = Val;
5273
Chris Lattnere166a852012-01-24 05:49:24 +00005274 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5275 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005276 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005277
5278 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005279 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005280 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005281 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005282#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005283 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005284 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5285 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005286#endif
5287 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005288 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005289 }
5290 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005291 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005292}
5293
5294
Chris Lattnerdd730472004-04-17 22:58:41 +00005295/// CanConstantFold - Return true if we can constant fold an instruction of the
5296/// specified type, assuming that all operands were constants.
5297static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005298 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005299 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5300 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005301 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005302
Chris Lattnerdd730472004-04-17 22:58:41 +00005303 if (const CallInst *CI = dyn_cast<CallInst>(I))
5304 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005305 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005306 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005307}
5308
Andrew Trick3a86ba72011-10-05 03:25:31 +00005309/// Determine whether this instruction can constant evolve within this loop
5310/// assuming its operands can all constant evolve.
5311static bool canConstantEvolve(Instruction *I, const Loop *L) {
5312 // An instruction outside of the loop can't be derived from a loop PHI.
5313 if (!L->contains(I)) return false;
5314
5315 if (isa<PHINode>(I)) {
5316 if (L->getHeader() == I->getParent())
5317 return true;
5318 else
5319 // We don't currently keep track of the control flow needed to evaluate
5320 // PHIs, so we cannot handle PHIs inside of loops.
5321 return false;
5322 }
5323
5324 // If we won't be able to constant fold this expression even if the operands
5325 // are constants, bail early.
5326 return CanConstantFold(I);
5327}
5328
5329/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5330/// recursing through each instruction operand until reaching a loop header phi.
5331static PHINode *
5332getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005333 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005334
5335 // Otherwise, we can evaluate this instruction if all of its operands are
5336 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005337 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005338 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5339 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5340
5341 if (isa<Constant>(*OpI)) continue;
5342
5343 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005344 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005345
5346 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005347 if (!P)
5348 // If this operand is already visited, reuse the prior result.
5349 // We may have P != PHI if this is the deepest point at which the
5350 // inconsistent paths meet.
5351 P = PHIMap.lookup(OpInst);
5352 if (!P) {
5353 // Recurse and memoize the results, whether a phi is found or not.
5354 // This recursive call invalidates pointers into PHIMap.
5355 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5356 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005357 }
Craig Topper9f008862014-04-15 04:59:12 +00005358 if (!P)
5359 return nullptr; // Not evolving from PHI
5360 if (PHI && PHI != P)
5361 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005362 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005363 }
5364 // This is a expression evolving from a constant PHI!
5365 return PHI;
5366}
5367
Chris Lattnerdd730472004-04-17 22:58:41 +00005368/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5369/// in the loop that V is derived from. We allow arbitrary operations along the
5370/// way, but the operands of an operation must either be constants or a value
5371/// derived from a constant PHI. If this expression does not fit with these
5372/// constraints, return null.
5373static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005374 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005375 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005376
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005377 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005378 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005379 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005380
Andrew Trick3a86ba72011-10-05 03:25:31 +00005381 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005382 DenseMap<Instruction *, PHINode *> PHIMap;
5383 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005384}
5385
5386/// EvaluateExpression - Given an expression that passes the
5387/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5388/// in the loop has the value PHIVal. If we can't fold this expression for some
5389/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005390static Constant *EvaluateExpression(Value *V, const Loop *L,
5391 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005392 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005393 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005394 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005395 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005396 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005397 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005398
Andrew Trick3a86ba72011-10-05 03:25:31 +00005399 if (Constant *C = Vals.lookup(I)) return C;
5400
Nick Lewyckya6674c72011-10-22 19:58:20 +00005401 // An instruction inside the loop depends on a value outside the loop that we
5402 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005403 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005404
5405 // An unmapped PHI can be due to a branch or another loop inside this loop,
5406 // or due to this not being the initial iteration through a loop where we
5407 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005408 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005409
Dan Gohmanf820bd32010-06-22 13:15:46 +00005410 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005411
5412 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005413 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5414 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005415 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005416 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005417 continue;
5418 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005419 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005420 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005421 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005422 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005423 }
5424
Nick Lewyckya6674c72011-10-22 19:58:20 +00005425 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005426 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005427 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005428 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5429 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005430 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005431 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005432 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005433 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005434}
5435
5436/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5437/// in the header of its containing loop, we know the loop executes a
5438/// constant number of times, and the PHI node is just a recurrence
5439/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005440Constant *
5441ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005442 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005443 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005444 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005445 ConstantEvolutionLoopExitValue.find(PN);
5446 if (I != ConstantEvolutionLoopExitValue.end())
5447 return I->second;
5448
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005449 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005450 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005451
5452 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5453
Andrew Trick3a86ba72011-10-05 03:25:31 +00005454 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005455 BasicBlock *Header = L->getHeader();
5456 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005457
Chris Lattnerdd730472004-04-17 22:58:41 +00005458 // Since the loop is canonicalized, the PHI node must have two entries. One
5459 // entry must be a constant (coming in from outside of the loop), and the
5460 // second must be derived from the same PHI.
5461 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005462 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005463 for (BasicBlock::iterator I = Header->begin();
5464 (PHI = dyn_cast<PHINode>(I)); ++I) {
5465 Constant *StartCST =
5466 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005467 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005468 CurrentIterVals[PHI] = StartCST;
5469 }
5470 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005471 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005472
5473 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005474
5475 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005476 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005477 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005478
Dan Gohman0bddac12009-02-24 18:55:53 +00005479 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005480 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005481 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005482 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005483 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005484
Nick Lewyckya6674c72011-10-22 19:58:20 +00005485 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005486 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005487 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005488 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005489 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005490 if (!NextPHI)
5491 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005492 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005493
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005494 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5495
Nick Lewyckya6674c72011-10-22 19:58:20 +00005496 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5497 // cease to be able to evaluate one of them or if they stop evolving,
5498 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005499 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005500 for (DenseMap<Instruction *, Constant *>::const_iterator
5501 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5502 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005503 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005504 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5505 }
5506 // We use two distinct loops because EvaluateExpression may invalidate any
5507 // iterators into CurrentIterVals.
5508 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5509 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5510 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005511 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005512 if (!NextPHI) { // Not already computed.
5513 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005514 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005515 }
5516 if (NextPHI != I->second)
5517 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005518 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005519
5520 // If all entries in CurrentIterVals == NextIterVals then we can stop
5521 // iterating, the loop can't continue to change.
5522 if (StoppedEvolving)
5523 return RetVal = CurrentIterVals[PN];
5524
Andrew Trick3a86ba72011-10-05 03:25:31 +00005525 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005526 }
5527}
5528
Andrew Trick3ca3f982011-07-26 17:19:55 +00005529/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005530/// constant number of times (the condition evolves only from constants),
5531/// try to evaluate a few iterations of the loop until we get the exit
5532/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005533/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005534const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5535 Value *Cond,
5536 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005537 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005538 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005539
Dan Gohman866971e2010-06-19 14:17:24 +00005540 // If the loop is canonicalized, the PHI will have exactly two entries.
5541 // That's the only form we support here.
5542 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5543
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005544 DenseMap<Instruction *, Constant *> CurrentIterVals;
5545 BasicBlock *Header = L->getHeader();
5546 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5547
Dan Gohman866971e2010-06-19 14:17:24 +00005548 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005549 // second must be derived from the same PHI.
5550 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005551 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005552 for (BasicBlock::iterator I = Header->begin();
5553 (PHI = dyn_cast<PHINode>(I)); ++I) {
5554 Constant *StartCST =
5555 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005556 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005557 CurrentIterVals[PHI] = StartCST;
5558 }
5559 if (!CurrentIterVals.count(PN))
5560 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005561
5562 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5563 // the loop symbolically to determine when the condition gets a value of
5564 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005565
Andrew Trick90c7a102011-11-16 00:52:40 +00005566 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005567 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005568 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005569 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005570 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005571
Zhou Sheng75b871f2007-01-11 12:24:14 +00005572 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005573 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005574
Reid Spencer983e3b32007-03-01 07:25:48 +00005575 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005576 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005577 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005578 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005579
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005580 // Update all the PHI nodes for the next iteration.
5581 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005582
5583 // Create a list of which PHIs we need to compute. We want to do this before
5584 // calling EvaluateExpression on them because that may invalidate iterators
5585 // into CurrentIterVals.
5586 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005587 for (DenseMap<Instruction *, Constant *>::const_iterator
5588 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5589 PHINode *PHI = dyn_cast<PHINode>(I->first);
5590 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005591 PHIsToCompute.push_back(PHI);
5592 }
5593 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5594 E = PHIsToCompute.end(); I != E; ++I) {
5595 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005596 Constant *&NextPHI = NextIterVals[PHI];
5597 if (NextPHI) continue; // Already computed!
5598
5599 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005600 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005601 }
5602 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005603 }
5604
5605 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005606 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005607}
5608
Dan Gohman237d9e52009-09-03 15:00:26 +00005609/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005610/// at the specified scope in the program. The L value specifies a loop
5611/// nest to evaluate the expression at, where null is the top-level or a
5612/// specified loop is immediately inside of the loop.
5613///
5614/// This method can be used to compute the exit value for a variable defined
5615/// in a loop by querying what the value will hold in the parent loop.
5616///
Dan Gohman8ca08852009-05-24 23:25:42 +00005617/// In the case that a relevant loop exit value cannot be computed, the
5618/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005619const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005620 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005621 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5622 for (unsigned u = 0; u < Values.size(); u++) {
5623 if (Values[u].first == L)
5624 return Values[u].second ? Values[u].second : V;
5625 }
Craig Topper9f008862014-04-15 04:59:12 +00005626 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005627 // Otherwise compute it.
5628 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005629 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5630 for (unsigned u = Values2.size(); u > 0; u--) {
5631 if (Values2[u - 1].first == L) {
5632 Values2[u - 1].second = C;
5633 break;
5634 }
5635 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005636 return C;
5637}
5638
Nick Lewyckya6674c72011-10-22 19:58:20 +00005639/// This builds up a Constant using the ConstantExpr interface. That way, we
5640/// will return Constants for objects which aren't represented by a
5641/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5642/// Returns NULL if the SCEV isn't representable as a Constant.
5643static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005644 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005645 case scCouldNotCompute:
5646 case scAddRecExpr:
5647 break;
5648 case scConstant:
5649 return cast<SCEVConstant>(V)->getValue();
5650 case scUnknown:
5651 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5652 case scSignExtend: {
5653 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5654 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5655 return ConstantExpr::getSExt(CastOp, SS->getType());
5656 break;
5657 }
5658 case scZeroExtend: {
5659 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5660 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5661 return ConstantExpr::getZExt(CastOp, SZ->getType());
5662 break;
5663 }
5664 case scTruncate: {
5665 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5666 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5667 return ConstantExpr::getTrunc(CastOp, ST->getType());
5668 break;
5669 }
5670 case scAddExpr: {
5671 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5672 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005673 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5674 unsigned AS = PTy->getAddressSpace();
5675 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5676 C = ConstantExpr::getBitCast(C, DestPtrTy);
5677 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005678 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5679 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005680 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005681
5682 // First pointer!
5683 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005684 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005685 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005686 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005687 // The offsets have been converted to bytes. We can add bytes to an
5688 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005689 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005690 }
5691
5692 // Don't bother trying to sum two pointers. We probably can't
5693 // statically compute a load that results from it anyway.
5694 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005695 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005696
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005697 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5698 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005699 C2 = ConstantExpr::getIntegerCast(
5700 C2, Type::getInt32Ty(C->getContext()), true);
5701 C = ConstantExpr::getGetElementPtr(C, C2);
5702 } else
5703 C = ConstantExpr::getAdd(C, C2);
5704 }
5705 return C;
5706 }
5707 break;
5708 }
5709 case scMulExpr: {
5710 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5711 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5712 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005713 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005714 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5715 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005716 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005717 C = ConstantExpr::getMul(C, C2);
5718 }
5719 return C;
5720 }
5721 break;
5722 }
5723 case scUDivExpr: {
5724 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5725 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5726 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5727 if (LHS->getType() == RHS->getType())
5728 return ConstantExpr::getUDiv(LHS, RHS);
5729 break;
5730 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005731 case scSMaxExpr:
5732 case scUMaxExpr:
5733 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005734 }
Craig Topper9f008862014-04-15 04:59:12 +00005735 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005736}
5737
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005738const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005739 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005740
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005741 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005742 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005743 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005744 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005745 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005746 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5747 if (PHINode *PN = dyn_cast<PHINode>(I))
5748 if (PN->getParent() == LI->getHeader()) {
5749 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005750 // to see if the loop that contains it has a known backedge-taken
5751 // count. If so, we may be able to force computation of the exit
5752 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005753 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005754 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005755 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005756 // Okay, we know how many times the containing loop executes. If
5757 // this is a constant evolving PHI node, get the final value at
5758 // the specified iteration number.
5759 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005760 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005761 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005762 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005763 }
5764 }
5765
Reid Spencere6328ca2006-12-04 21:33:23 +00005766 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005767 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005768 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005769 // result. This is particularly useful for computing loop exit values.
5770 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005771 SmallVector<Constant *, 4> Operands;
5772 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005773 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5774 Value *Op = I->getOperand(i);
5775 if (Constant *C = dyn_cast<Constant>(Op)) {
5776 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005777 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005778 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005779
5780 // If any of the operands is non-constant and if they are
5781 // non-integer and non-pointer, don't even try to analyze them
5782 // with scev techniques.
5783 if (!isSCEVable(Op->getType()))
5784 return V;
5785
5786 const SCEV *OrigV = getSCEV(Op);
5787 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5788 MadeImprovement |= OrigV != OpV;
5789
Nick Lewyckya6674c72011-10-22 19:58:20 +00005790 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005791 if (!C) return V;
5792 if (C->getType() != Op->getType())
5793 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5794 Op->getType(),
5795 false),
5796 C, Op->getType());
5797 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005798 }
Dan Gohmance973df2009-06-24 04:48:43 +00005799
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005800 // Check to see if getSCEVAtScope actually made an improvement.
5801 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005802 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005803 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5804 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005805 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005806 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005807 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5808 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005809 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005810 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005811 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005812 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005813 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005814 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005815 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005816 }
5817 }
5818
5819 // This is some other type of SCEVUnknown, just return it.
5820 return V;
5821 }
5822
Dan Gohmana30370b2009-05-04 22:02:23 +00005823 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005824 // Avoid performing the look-up in the common case where the specified
5825 // expression has no loop-variant portions.
5826 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005827 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005828 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005829 // Okay, at least one of these operands is loop variant but might be
5830 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005831 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5832 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005833 NewOps.push_back(OpAtScope);
5834
5835 for (++i; i != e; ++i) {
5836 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005837 NewOps.push_back(OpAtScope);
5838 }
5839 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005840 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005841 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005842 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005843 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005844 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005845 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005846 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005847 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005848 }
5849 }
5850 // If we got here, all operands are loop invariant.
5851 return Comm;
5852 }
5853
Dan Gohmana30370b2009-05-04 22:02:23 +00005854 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005855 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5856 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005857 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5858 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005859 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005860 }
5861
5862 // If this is a loop recurrence for a loop that does not contain L, then we
5863 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005864 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005865 // First, attempt to evaluate each operand.
5866 // Avoid performing the look-up in the common case where the specified
5867 // expression has no loop-variant portions.
5868 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5869 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5870 if (OpAtScope == AddRec->getOperand(i))
5871 continue;
5872
5873 // Okay, at least one of these operands is loop variant but might be
5874 // foldable. Build a new instance of the folded commutative expression.
5875 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5876 AddRec->op_begin()+i);
5877 NewOps.push_back(OpAtScope);
5878 for (++i; i != e; ++i)
5879 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5880
Andrew Trick759ba082011-04-27 01:21:25 +00005881 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005882 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005883 AddRec->getNoWrapFlags(SCEV::FlagNW));
5884 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005885 // The addrec may be folded to a nonrecurrence, for example, if the
5886 // induction variable is multiplied by zero after constant folding. Go
5887 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005888 if (!AddRec)
5889 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005890 break;
5891 }
5892
5893 // If the scope is outside the addrec's loop, evaluate it by using the
5894 // loop exit value of the addrec.
5895 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005896 // To evaluate this recurrence, we need to know how many times the AddRec
5897 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005898 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005899 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005900
Eli Friedman61f67622008-08-04 23:49:06 +00005901 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005902 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005903 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005904
Dan Gohman8ca08852009-05-24 23:25:42 +00005905 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005906 }
5907
Dan Gohmana30370b2009-05-04 22:02:23 +00005908 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005909 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005910 if (Op == Cast->getOperand())
5911 return Cast; // must be loop invariant
5912 return getZeroExtendExpr(Op, Cast->getType());
5913 }
5914
Dan Gohmana30370b2009-05-04 22:02:23 +00005915 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005916 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005917 if (Op == Cast->getOperand())
5918 return Cast; // must be loop invariant
5919 return getSignExtendExpr(Op, Cast->getType());
5920 }
5921
Dan Gohmana30370b2009-05-04 22:02:23 +00005922 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005923 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005924 if (Op == Cast->getOperand())
5925 return Cast; // must be loop invariant
5926 return getTruncateExpr(Op, Cast->getType());
5927 }
5928
Torok Edwinfbcc6632009-07-14 16:55:14 +00005929 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005930}
5931
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005932/// getSCEVAtScope - This is a convenience function which does
5933/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005934const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005935 return getSCEVAtScope(getSCEV(V), L);
5936}
5937
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005938/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5939/// following equation:
5940///
5941/// A * X = B (mod N)
5942///
5943/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5944/// A and B isn't important.
5945///
5946/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005947static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005948 ScalarEvolution &SE) {
5949 uint32_t BW = A.getBitWidth();
5950 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5951 assert(A != 0 && "A must be non-zero.");
5952
5953 // 1. D = gcd(A, N)
5954 //
5955 // The gcd of A and N may have only one prime factor: 2. The number of
5956 // trailing zeros in A is its multiplicity
5957 uint32_t Mult2 = A.countTrailingZeros();
5958 // D = 2^Mult2
5959
5960 // 2. Check if B is divisible by D.
5961 //
5962 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5963 // is not less than multiplicity of this prime factor for D.
5964 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005965 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005966
5967 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5968 // modulo (N / D).
5969 //
5970 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5971 // bit width during computations.
5972 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5973 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005974 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005975 APInt I = AD.multiplicativeInverse(Mod);
5976
5977 // 4. Compute the minimum unsigned root of the equation:
5978 // I * (B / D) mod (N / D)
5979 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5980
5981 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5982 // bits.
5983 return SE.getConstant(Result.trunc(BW));
5984}
Chris Lattnerd934c702004-04-02 20:23:17 +00005985
5986/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5987/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5988/// might be the same) or two SCEVCouldNotCompute objects.
5989///
Dan Gohmanaf752342009-07-07 17:06:11 +00005990static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005991SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005992 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005993 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5994 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5995 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005996
Chris Lattnerd934c702004-04-02 20:23:17 +00005997 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005998 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005999 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006000 return std::make_pair(CNC, CNC);
6001 }
6002
Reid Spencer983e3b32007-03-01 07:25:48 +00006003 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006004 const APInt &L = LC->getValue()->getValue();
6005 const APInt &M = MC->getValue()->getValue();
6006 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006007 APInt Two(BitWidth, 2);
6008 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006009
Dan Gohmance973df2009-06-24 04:48:43 +00006010 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006011 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006012 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006013 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6014 // The B coefficient is M-N/2
6015 APInt B(M);
6016 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006017
Reid Spencer983e3b32007-03-01 07:25:48 +00006018 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006019 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006020
Reid Spencer983e3b32007-03-01 07:25:48 +00006021 // Compute the B^2-4ac term.
6022 APInt SqrtTerm(B);
6023 SqrtTerm *= B;
6024 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006025
Nick Lewyckyfb780832012-08-01 09:14:36 +00006026 if (SqrtTerm.isNegative()) {
6027 // The loop is provably infinite.
6028 const SCEV *CNC = SE.getCouldNotCompute();
6029 return std::make_pair(CNC, CNC);
6030 }
6031
Reid Spencer983e3b32007-03-01 07:25:48 +00006032 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6033 // integer value or else APInt::sqrt() will assert.
6034 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006035
Dan Gohmance973df2009-06-24 04:48:43 +00006036 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006037 // The divisions must be performed as signed divisions.
6038 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006039 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006040 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006041 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006042 return std::make_pair(CNC, CNC);
6043 }
6044
Owen Anderson47db9412009-07-22 00:24:57 +00006045 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006046
6047 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006048 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006049 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006050 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006051
Dan Gohmance973df2009-06-24 04:48:43 +00006052 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006053 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006054 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006055}
6056
6057/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006058/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006059///
6060/// This is only used for loops with a "x != y" exit test. The exit condition is
6061/// now expressed as a single expression, V = x-y. So the exit test is
6062/// effectively V != 0. We know and take advantage of the fact that this
6063/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006064ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006065ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006066 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006067 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006068 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006069 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006070 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006071 }
6072
Dan Gohman48f82222009-05-04 22:30:44 +00006073 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006074 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006075 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006076
Chris Lattnerdff679f2011-01-09 22:39:48 +00006077 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6078 // the quadratic equation to solve it.
6079 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6080 std::pair<const SCEV *,const SCEV *> Roots =
6081 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006082 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6083 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006084 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006085#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006086 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006087 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006088#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006089 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006090 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006091 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6092 R1->getValue(),
6093 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006094 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006095 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006096
Chris Lattnerd934c702004-04-02 20:23:17 +00006097 // We can only use this value if the chrec ends up with an exact zero
6098 // value at this index. When solving for "X*X != 5", for example, we
6099 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006100 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006101 if (Val->isZero())
6102 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006103 }
6104 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006105 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006106 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006107
Chris Lattnerdff679f2011-01-09 22:39:48 +00006108 // Otherwise we can only handle this if it is affine.
6109 if (!AddRec->isAffine())
6110 return getCouldNotCompute();
6111
6112 // If this is an affine expression, the execution count of this branch is
6113 // the minimum unsigned root of the following equation:
6114 //
6115 // Start + Step*N = 0 (mod 2^BW)
6116 //
6117 // equivalent to:
6118 //
6119 // Step*N = -Start (mod 2^BW)
6120 //
6121 // where BW is the common bit width of Start and Step.
6122
6123 // Get the initial value for the loop.
6124 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6125 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6126
6127 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006128 //
6129 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6130 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6131 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6132 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006133 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006134 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006135 return getCouldNotCompute();
6136
Andrew Trick8b55b732011-03-14 16:50:06 +00006137 // For positive steps (counting up until unsigned overflow):
6138 // N = -Start/Step (as unsigned)
6139 // For negative steps (counting down to zero):
6140 // N = Start/-Step
6141 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006142 bool CountDown = StepC->getValue()->getValue().isNegative();
6143 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006144
6145 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006146 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6147 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006148 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6149 ConstantRange CR = getUnsignedRange(Start);
6150 const SCEV *MaxBECount;
6151 if (!CountDown && CR.getUnsignedMin().isMinValue())
6152 // When counting up, the worst starting value is 1, not 0.
6153 MaxBECount = CR.getUnsignedMax().isMinValue()
6154 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6155 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6156 else
6157 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6158 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006159 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006160 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006161
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006162 // If the step exactly divides the distance then unsigned divide computes the
6163 // backedge count.
6164 const SCEV *Q, *R;
6165 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
David Majnemer32b8ccf2014-11-16 20:35:19 +00006166 SCEVUDivision::divide(SE, Distance, Step, &Q, &R);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006167 if (R->isZero()) {
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006168 const SCEV *Exact =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006169 getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6170 return ExitLimit(Exact, Exact);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006171 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006172
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006173 // If the condition controls loop exit (the loop exits only if the expression
6174 // is true) and the addition is no-wrap we can use unsigned divide to
6175 // compute the backedge count. In this case, the step may not divide the
6176 // distance, but we don't care because if the condition is "missed" the loop
6177 // will have undefined behavior due to wrapping.
6178 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6179 const SCEV *Exact =
6180 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6181 return ExitLimit(Exact, Exact);
6182 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006183
Chris Lattnerdff679f2011-01-09 22:39:48 +00006184 // Then, try to solve the above equation provided that Start is constant.
6185 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6186 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6187 -StartC->getValue()->getValue(),
6188 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006189 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006190}
6191
6192/// HowFarToNonZero - Return the number of times a backedge checking the
6193/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006194/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006195ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006196ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006197 // Loops that look like: while (X == 0) are very strange indeed. We don't
6198 // handle them yet except for the trivial case. This could be expanded in the
6199 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006200
Chris Lattnerd934c702004-04-02 20:23:17 +00006201 // If the value is a constant, check to see if it is known to be non-zero
6202 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006203 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006204 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006205 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006206 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006207 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006208
Chris Lattnerd934c702004-04-02 20:23:17 +00006209 // We could implement others, but I really doubt anyone writes loops like
6210 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006211 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006212}
6213
Dan Gohmanf9081a22008-09-15 22:18:04 +00006214/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6215/// (which may not be an immediate predecessor) which has exactly one
6216/// successor from which BB is reachable, or null if no such block is
6217/// found.
6218///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006219std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006220ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006221 // If the block has a unique predecessor, then there is no path from the
6222 // predecessor to the block that does not go through the direct edge
6223 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006224 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006225 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006226
6227 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006228 // If the header has a unique predecessor outside the loop, it must be
6229 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006230 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006231 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006232
Dan Gohman4e3c1132010-04-15 16:19:08 +00006233 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006234}
6235
Dan Gohman450f4e02009-06-20 00:35:32 +00006236/// HasSameValue - SCEV structural equivalence is usually sufficient for
6237/// testing whether two expressions are equal, however for the purposes of
6238/// looking for a condition guarding a loop, it can be useful to be a little
6239/// more general, since a front-end may have replicated the controlling
6240/// expression.
6241///
Dan Gohmanaf752342009-07-07 17:06:11 +00006242static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006243 // Quick check to see if they are the same SCEV.
6244 if (A == B) return true;
6245
6246 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6247 // two different instructions with the same value. Check for this case.
6248 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6249 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6250 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6251 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006252 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006253 return true;
6254
6255 // Otherwise assume they may have a different value.
6256 return false;
6257}
6258
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006259/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006260/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006261///
6262bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006263 const SCEV *&LHS, const SCEV *&RHS,
6264 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006265 bool Changed = false;
6266
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006267 // If we hit the max recursion limit bail out.
6268 if (Depth >= 3)
6269 return false;
6270
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006271 // Canonicalize a constant to the right side.
6272 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6273 // Check for both operands constant.
6274 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6275 if (ConstantExpr::getICmp(Pred,
6276 LHSC->getValue(),
6277 RHSC->getValue())->isNullValue())
6278 goto trivially_false;
6279 else
6280 goto trivially_true;
6281 }
6282 // Otherwise swap the operands to put the constant on the right.
6283 std::swap(LHS, RHS);
6284 Pred = ICmpInst::getSwappedPredicate(Pred);
6285 Changed = true;
6286 }
6287
6288 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006289 // addrec's loop, put the addrec on the left. Also make a dominance check,
6290 // as both operands could be addrecs loop-invariant in each other's loop.
6291 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6292 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006293 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006294 std::swap(LHS, RHS);
6295 Pred = ICmpInst::getSwappedPredicate(Pred);
6296 Changed = true;
6297 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006298 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006299
6300 // If there's a constant operand, canonicalize comparisons with boundary
6301 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6302 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6303 const APInt &RA = RC->getValue()->getValue();
6304 switch (Pred) {
6305 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6306 case ICmpInst::ICMP_EQ:
6307 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006308 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6309 if (!RA)
6310 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6311 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006312 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6313 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006314 RHS = AE->getOperand(1);
6315 LHS = ME->getOperand(1);
6316 Changed = true;
6317 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006318 break;
6319 case ICmpInst::ICMP_UGE:
6320 if ((RA - 1).isMinValue()) {
6321 Pred = ICmpInst::ICMP_NE;
6322 RHS = getConstant(RA - 1);
6323 Changed = true;
6324 break;
6325 }
6326 if (RA.isMaxValue()) {
6327 Pred = ICmpInst::ICMP_EQ;
6328 Changed = true;
6329 break;
6330 }
6331 if (RA.isMinValue()) goto trivially_true;
6332
6333 Pred = ICmpInst::ICMP_UGT;
6334 RHS = getConstant(RA - 1);
6335 Changed = true;
6336 break;
6337 case ICmpInst::ICMP_ULE:
6338 if ((RA + 1).isMaxValue()) {
6339 Pred = ICmpInst::ICMP_NE;
6340 RHS = getConstant(RA + 1);
6341 Changed = true;
6342 break;
6343 }
6344 if (RA.isMinValue()) {
6345 Pred = ICmpInst::ICMP_EQ;
6346 Changed = true;
6347 break;
6348 }
6349 if (RA.isMaxValue()) goto trivially_true;
6350
6351 Pred = ICmpInst::ICMP_ULT;
6352 RHS = getConstant(RA + 1);
6353 Changed = true;
6354 break;
6355 case ICmpInst::ICMP_SGE:
6356 if ((RA - 1).isMinSignedValue()) {
6357 Pred = ICmpInst::ICMP_NE;
6358 RHS = getConstant(RA - 1);
6359 Changed = true;
6360 break;
6361 }
6362 if (RA.isMaxSignedValue()) {
6363 Pred = ICmpInst::ICMP_EQ;
6364 Changed = true;
6365 break;
6366 }
6367 if (RA.isMinSignedValue()) goto trivially_true;
6368
6369 Pred = ICmpInst::ICMP_SGT;
6370 RHS = getConstant(RA - 1);
6371 Changed = true;
6372 break;
6373 case ICmpInst::ICMP_SLE:
6374 if ((RA + 1).isMaxSignedValue()) {
6375 Pred = ICmpInst::ICMP_NE;
6376 RHS = getConstant(RA + 1);
6377 Changed = true;
6378 break;
6379 }
6380 if (RA.isMinSignedValue()) {
6381 Pred = ICmpInst::ICMP_EQ;
6382 Changed = true;
6383 break;
6384 }
6385 if (RA.isMaxSignedValue()) goto trivially_true;
6386
6387 Pred = ICmpInst::ICMP_SLT;
6388 RHS = getConstant(RA + 1);
6389 Changed = true;
6390 break;
6391 case ICmpInst::ICMP_UGT:
6392 if (RA.isMinValue()) {
6393 Pred = ICmpInst::ICMP_NE;
6394 Changed = true;
6395 break;
6396 }
6397 if ((RA + 1).isMaxValue()) {
6398 Pred = ICmpInst::ICMP_EQ;
6399 RHS = getConstant(RA + 1);
6400 Changed = true;
6401 break;
6402 }
6403 if (RA.isMaxValue()) goto trivially_false;
6404 break;
6405 case ICmpInst::ICMP_ULT:
6406 if (RA.isMaxValue()) {
6407 Pred = ICmpInst::ICMP_NE;
6408 Changed = true;
6409 break;
6410 }
6411 if ((RA - 1).isMinValue()) {
6412 Pred = ICmpInst::ICMP_EQ;
6413 RHS = getConstant(RA - 1);
6414 Changed = true;
6415 break;
6416 }
6417 if (RA.isMinValue()) goto trivially_false;
6418 break;
6419 case ICmpInst::ICMP_SGT:
6420 if (RA.isMinSignedValue()) {
6421 Pred = ICmpInst::ICMP_NE;
6422 Changed = true;
6423 break;
6424 }
6425 if ((RA + 1).isMaxSignedValue()) {
6426 Pred = ICmpInst::ICMP_EQ;
6427 RHS = getConstant(RA + 1);
6428 Changed = true;
6429 break;
6430 }
6431 if (RA.isMaxSignedValue()) goto trivially_false;
6432 break;
6433 case ICmpInst::ICMP_SLT:
6434 if (RA.isMaxSignedValue()) {
6435 Pred = ICmpInst::ICMP_NE;
6436 Changed = true;
6437 break;
6438 }
6439 if ((RA - 1).isMinSignedValue()) {
6440 Pred = ICmpInst::ICMP_EQ;
6441 RHS = getConstant(RA - 1);
6442 Changed = true;
6443 break;
6444 }
6445 if (RA.isMinSignedValue()) goto trivially_false;
6446 break;
6447 }
6448 }
6449
6450 // Check for obvious equality.
6451 if (HasSameValue(LHS, RHS)) {
6452 if (ICmpInst::isTrueWhenEqual(Pred))
6453 goto trivially_true;
6454 if (ICmpInst::isFalseWhenEqual(Pred))
6455 goto trivially_false;
6456 }
6457
Dan Gohman81585c12010-05-03 16:35:17 +00006458 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6459 // adding or subtracting 1 from one of the operands.
6460 switch (Pred) {
6461 case ICmpInst::ICMP_SLE:
6462 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6463 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006464 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006465 Pred = ICmpInst::ICMP_SLT;
6466 Changed = true;
6467 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006468 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006469 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006470 Pred = ICmpInst::ICMP_SLT;
6471 Changed = true;
6472 }
6473 break;
6474 case ICmpInst::ICMP_SGE:
6475 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006476 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006477 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006478 Pred = ICmpInst::ICMP_SGT;
6479 Changed = true;
6480 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6481 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006482 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006483 Pred = ICmpInst::ICMP_SGT;
6484 Changed = true;
6485 }
6486 break;
6487 case ICmpInst::ICMP_ULE:
6488 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006489 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006490 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006491 Pred = ICmpInst::ICMP_ULT;
6492 Changed = true;
6493 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006494 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006495 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006496 Pred = ICmpInst::ICMP_ULT;
6497 Changed = true;
6498 }
6499 break;
6500 case ICmpInst::ICMP_UGE:
6501 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006502 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006503 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006504 Pred = ICmpInst::ICMP_UGT;
6505 Changed = true;
6506 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006507 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006508 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006509 Pred = ICmpInst::ICMP_UGT;
6510 Changed = true;
6511 }
6512 break;
6513 default:
6514 break;
6515 }
6516
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006517 // TODO: More simplifications are possible here.
6518
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006519 // Recursively simplify until we either hit a recursion limit or nothing
6520 // changes.
6521 if (Changed)
6522 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6523
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006524 return Changed;
6525
6526trivially_true:
6527 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006528 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006529 Pred = ICmpInst::ICMP_EQ;
6530 return true;
6531
6532trivially_false:
6533 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006534 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006535 Pred = ICmpInst::ICMP_NE;
6536 return true;
6537}
6538
Dan Gohmane65c9172009-07-13 21:35:55 +00006539bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6540 return getSignedRange(S).getSignedMax().isNegative();
6541}
6542
6543bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6544 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6545}
6546
6547bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6548 return !getSignedRange(S).getSignedMin().isNegative();
6549}
6550
6551bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6552 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6553}
6554
6555bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6556 return isKnownNegative(S) || isKnownPositive(S);
6557}
6558
6559bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6560 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006561 // Canonicalize the inputs first.
6562 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6563
Dan Gohman07591692010-04-11 22:16:48 +00006564 // If LHS or RHS is an addrec, check to see if the condition is true in
6565 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006566 // If LHS and RHS are both addrec, both conditions must be true in
6567 // every iteration of the loop.
6568 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6569 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6570 bool LeftGuarded = false;
6571 bool RightGuarded = false;
6572 if (LAR) {
6573 const Loop *L = LAR->getLoop();
6574 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6575 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6576 if (!RAR) return true;
6577 LeftGuarded = true;
6578 }
6579 }
6580 if (RAR) {
6581 const Loop *L = RAR->getLoop();
6582 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6583 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6584 if (!LAR) return true;
6585 RightGuarded = true;
6586 }
6587 }
6588 if (LeftGuarded && RightGuarded)
6589 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006590
Dan Gohman07591692010-04-11 22:16:48 +00006591 // Otherwise see what can be done with known constant ranges.
6592 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6593}
6594
6595bool
6596ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6597 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006598 if (HasSameValue(LHS, RHS))
6599 return ICmpInst::isTrueWhenEqual(Pred);
6600
Dan Gohman07591692010-04-11 22:16:48 +00006601 // This code is split out from isKnownPredicate because it is called from
6602 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006603 switch (Pred) {
6604 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006605 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006606 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006607 std::swap(LHS, RHS);
6608 case ICmpInst::ICMP_SLT: {
6609 ConstantRange LHSRange = getSignedRange(LHS);
6610 ConstantRange RHSRange = getSignedRange(RHS);
6611 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6612 return true;
6613 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6614 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006615 break;
6616 }
6617 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006618 std::swap(LHS, RHS);
6619 case ICmpInst::ICMP_SLE: {
6620 ConstantRange LHSRange = getSignedRange(LHS);
6621 ConstantRange RHSRange = getSignedRange(RHS);
6622 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6623 return true;
6624 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6625 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006626 break;
6627 }
6628 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006629 std::swap(LHS, RHS);
6630 case ICmpInst::ICMP_ULT: {
6631 ConstantRange LHSRange = getUnsignedRange(LHS);
6632 ConstantRange RHSRange = getUnsignedRange(RHS);
6633 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6634 return true;
6635 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6636 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006637 break;
6638 }
6639 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006640 std::swap(LHS, RHS);
6641 case ICmpInst::ICMP_ULE: {
6642 ConstantRange LHSRange = getUnsignedRange(LHS);
6643 ConstantRange RHSRange = getUnsignedRange(RHS);
6644 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6645 return true;
6646 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6647 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006648 break;
6649 }
6650 case ICmpInst::ICMP_NE: {
6651 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6652 return true;
6653 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6654 return true;
6655
6656 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6657 if (isKnownNonZero(Diff))
6658 return true;
6659 break;
6660 }
6661 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006662 // The check at the top of the function catches the case where
6663 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006664 break;
6665 }
6666 return false;
6667}
6668
6669/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6670/// protected by a conditional between LHS and RHS. This is used to
6671/// to eliminate casts.
6672bool
6673ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6674 ICmpInst::Predicate Pred,
6675 const SCEV *LHS, const SCEV *RHS) {
6676 // Interpret a null as meaning no loop, where there is obviously no guard
6677 // (interprocedural conditions notwithstanding).
6678 if (!L) return true;
6679
Sanjoy Das1f05c512014-10-10 21:22:34 +00006680 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6681
Dan Gohmane65c9172009-07-13 21:35:55 +00006682 BasicBlock *Latch = L->getLoopLatch();
6683 if (!Latch)
6684 return false;
6685
6686 BranchInst *LoopContinuePredicate =
6687 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006688 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6689 isImpliedCond(Pred, LHS, RHS,
6690 LoopContinuePredicate->getCondition(),
6691 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6692 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006693
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006694 // Check conditions due to any @llvm.assume intrinsics.
6695 for (auto &CI : AT->assumptions(F)) {
6696 if (!DT->dominates(CI, Latch->getTerminator()))
6697 continue;
6698
6699 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6700 return true;
6701 }
6702
6703 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006704}
6705
Dan Gohmanb50349a2010-04-11 19:27:13 +00006706/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006707/// by a conditional between LHS and RHS. This is used to help avoid max
6708/// expressions in loop trip counts, and to eliminate casts.
6709bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006710ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6711 ICmpInst::Predicate Pred,
6712 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006713 // Interpret a null as meaning no loop, where there is obviously no guard
6714 // (interprocedural conditions notwithstanding).
6715 if (!L) return false;
6716
Sanjoy Das1f05c512014-10-10 21:22:34 +00006717 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6718
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006719 // Starting at the loop predecessor, climb up the predecessor chain, as long
6720 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006721 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006722 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006723 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006724 Pair.first;
6725 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006726
6727 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006728 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006729 if (!LoopEntryPredicate ||
6730 LoopEntryPredicate->isUnconditional())
6731 continue;
6732
Dan Gohmane18c2d62010-08-10 23:46:30 +00006733 if (isImpliedCond(Pred, LHS, RHS,
6734 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006735 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006736 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006737 }
6738
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006739 // Check conditions due to any @llvm.assume intrinsics.
6740 for (auto &CI : AT->assumptions(F)) {
6741 if (!DT->dominates(CI, L->getHeader()))
6742 continue;
6743
6744 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6745 return true;
6746 }
6747
Dan Gohman2a62fd92008-08-12 20:17:31 +00006748 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006749}
6750
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006751/// RAII wrapper to prevent recursive application of isImpliedCond.
6752/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6753/// currently evaluating isImpliedCond.
6754struct MarkPendingLoopPredicate {
6755 Value *Cond;
6756 DenseSet<Value*> &LoopPreds;
6757 bool Pending;
6758
6759 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6760 : Cond(C), LoopPreds(LP) {
6761 Pending = !LoopPreds.insert(Cond).second;
6762 }
6763 ~MarkPendingLoopPredicate() {
6764 if (!Pending)
6765 LoopPreds.erase(Cond);
6766 }
6767};
6768
Dan Gohman430f0cc2009-07-21 23:03:19 +00006769/// isImpliedCond - Test whether the condition described by Pred, LHS,
6770/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006771bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006772 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006773 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006774 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006775 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6776 if (Mark.Pending)
6777 return false;
6778
Dan Gohman8b0a4192010-03-01 17:49:51 +00006779 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006780 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006781 if (BO->getOpcode() == Instruction::And) {
6782 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006783 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6784 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006785 } else if (BO->getOpcode() == Instruction::Or) {
6786 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006787 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6788 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006789 }
6790 }
6791
Dan Gohmane18c2d62010-08-10 23:46:30 +00006792 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006793 if (!ICI) return false;
6794
Dan Gohmane65c9172009-07-13 21:35:55 +00006795 // Bail if the ICmp's operands' types are wider than the needed type
6796 // before attempting to call getSCEV on them. This avoids infinite
6797 // recursion, since the analysis of widening casts can require loop
6798 // exit condition information for overflow checking, which would
6799 // lead back here.
6800 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006801 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006802 return false;
6803
Andrew Trickfa594032012-11-29 18:35:13 +00006804 // Now that we found a conditional branch that dominates the loop or controls
6805 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006806 ICmpInst::Predicate FoundPred;
6807 if (Inverse)
6808 FoundPred = ICI->getInversePredicate();
6809 else
6810 FoundPred = ICI->getPredicate();
6811
6812 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6813 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006814
6815 // Balance the types. The case where FoundLHS' type is wider than
6816 // LHS' type is checked for above.
6817 if (getTypeSizeInBits(LHS->getType()) >
6818 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006819 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006820 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6821 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6822 } else {
6823 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6824 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6825 }
6826 }
6827
Dan Gohman430f0cc2009-07-21 23:03:19 +00006828 // Canonicalize the query to match the way instcombine will have
6829 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006830 if (SimplifyICmpOperands(Pred, LHS, RHS))
6831 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006832 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006833 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6834 if (FoundLHS == FoundRHS)
6835 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006836
6837 // Check to see if we can make the LHS or RHS match.
6838 if (LHS == FoundRHS || RHS == FoundLHS) {
6839 if (isa<SCEVConstant>(RHS)) {
6840 std::swap(FoundLHS, FoundRHS);
6841 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6842 } else {
6843 std::swap(LHS, RHS);
6844 Pred = ICmpInst::getSwappedPredicate(Pred);
6845 }
6846 }
6847
6848 // Check whether the found predicate is the same as the desired predicate.
6849 if (FoundPred == Pred)
6850 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6851
6852 // Check whether swapping the found predicate makes it the same as the
6853 // desired predicate.
6854 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6855 if (isa<SCEVConstant>(RHS))
6856 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6857 else
6858 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6859 RHS, LHS, FoundLHS, FoundRHS);
6860 }
6861
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006862 // Check if we can make progress by sharpening ranges.
6863 if (FoundPred == ICmpInst::ICMP_NE &&
6864 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6865
6866 const SCEVConstant *C = nullptr;
6867 const SCEV *V = nullptr;
6868
6869 if (isa<SCEVConstant>(FoundLHS)) {
6870 C = cast<SCEVConstant>(FoundLHS);
6871 V = FoundRHS;
6872 } else {
6873 C = cast<SCEVConstant>(FoundRHS);
6874 V = FoundLHS;
6875 }
6876
6877 // The guarding predicate tells us that C != V. If the known range
6878 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6879 // range we consider has to correspond to same signedness as the
6880 // predicate we're interested in folding.
6881
6882 APInt Min = ICmpInst::isSigned(Pred) ?
6883 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6884
6885 if (Min == C->getValue()->getValue()) {
6886 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6887 // This is true even if (Min + 1) wraps around -- in case of
6888 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6889
6890 APInt SharperMin = Min + 1;
6891
6892 switch (Pred) {
6893 case ICmpInst::ICMP_SGE:
6894 case ICmpInst::ICMP_UGE:
6895 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6896 // RHS, we're done.
6897 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6898 getConstant(SharperMin)))
6899 return true;
6900
6901 case ICmpInst::ICMP_SGT:
6902 case ICmpInst::ICMP_UGT:
6903 // We know from the range information that (V `Pred` Min ||
6904 // V == Min). We know from the guarding condition that !(V
6905 // == Min). This gives us
6906 //
6907 // V `Pred` Min || V == Min && !(V == Min)
6908 // => V `Pred` Min
6909 //
6910 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6911
6912 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6913 return true;
6914
6915 default:
6916 // No change
6917 break;
6918 }
6919 }
6920 }
6921
Dan Gohman430f0cc2009-07-21 23:03:19 +00006922 // Check whether the actual condition is beyond sufficient.
6923 if (FoundPred == ICmpInst::ICMP_EQ)
6924 if (ICmpInst::isTrueWhenEqual(Pred))
6925 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6926 return true;
6927 if (Pred == ICmpInst::ICMP_NE)
6928 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6929 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6930 return true;
6931
6932 // Otherwise assume the worst.
6933 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006934}
6935
Dan Gohman430f0cc2009-07-21 23:03:19 +00006936/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006937/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006938/// and FoundRHS is true.
6939bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6940 const SCEV *LHS, const SCEV *RHS,
6941 const SCEV *FoundLHS,
6942 const SCEV *FoundRHS) {
6943 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6944 FoundLHS, FoundRHS) ||
6945 // ~x < ~y --> x > y
6946 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6947 getNotSCEV(FoundRHS),
6948 getNotSCEV(FoundLHS));
6949}
6950
6951/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006952/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006953/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006954bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006955ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6956 const SCEV *LHS, const SCEV *RHS,
6957 const SCEV *FoundLHS,
6958 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006959 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006960 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6961 case ICmpInst::ICMP_EQ:
6962 case ICmpInst::ICMP_NE:
6963 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6964 return true;
6965 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006966 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006967 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006968 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6969 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006970 return true;
6971 break;
6972 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006973 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006974 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6975 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006976 return true;
6977 break;
6978 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006979 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006980 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6981 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006982 return true;
6983 break;
6984 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006985 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006986 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6987 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006988 return true;
6989 break;
6990 }
6991
6992 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006993}
6994
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006995// Verify if an linear IV with positive stride can overflow when in a
6996// less-than comparison, knowing the invariant term of the comparison, the
6997// stride and the knowledge of NSW/NUW flags on the recurrence.
6998bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6999 bool IsSigned, bool NoWrap) {
7000 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007001
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007002 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7003 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007004
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007005 if (IsSigned) {
7006 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7007 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7008 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7009 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007010
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007011 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7012 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007013 }
Dan Gohman01048422009-06-21 23:46:38 +00007014
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007015 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7016 APInt MaxValue = APInt::getMaxValue(BitWidth);
7017 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7018 .getUnsignedMax();
7019
7020 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7021 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7022}
7023
7024// Verify if an linear IV with negative stride can overflow when in a
7025// greater-than comparison, knowing the invariant term of the comparison,
7026// the stride and the knowledge of NSW/NUW flags on the recurrence.
7027bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7028 bool IsSigned, bool NoWrap) {
7029 if (NoWrap) return false;
7030
7031 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7032 const SCEV *One = getConstant(Stride->getType(), 1);
7033
7034 if (IsSigned) {
7035 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7036 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7037 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7038 .getSignedMax();
7039
7040 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7041 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7042 }
7043
7044 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7045 APInt MinValue = APInt::getMinValue(BitWidth);
7046 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7047 .getUnsignedMax();
7048
7049 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7050 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7051}
7052
7053// Compute the backedge taken count knowing the interval difference, the
7054// stride and presence of the equality in the comparison.
7055const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7056 bool Equality) {
7057 const SCEV *One = getConstant(Step->getType(), 1);
7058 Delta = Equality ? getAddExpr(Delta, Step)
7059 : getAddExpr(Delta, getMinusSCEV(Step, One));
7060 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007061}
7062
Chris Lattner587a75b2005-08-15 23:33:51 +00007063/// HowManyLessThans - Return the number of times a backedge containing the
7064/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007065/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007066///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007067/// @param ControlsExit is true when the LHS < RHS condition directly controls
7068/// the branch (loops exits only if condition is true). In this case, we can use
7069/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007070ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007071ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007072 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007073 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007074 // We handle only IV < Invariant
7075 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007076 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007077
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007078 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007079
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007080 // Avoid weird loops
7081 if (!IV || IV->getLoop() != L || !IV->isAffine())
7082 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007083
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007084 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007085 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007086
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007087 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007088
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007089 // Avoid negative or zero stride values
7090 if (!isKnownPositive(Stride))
7091 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007092
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007093 // Avoid proven overflow cases: this will ensure that the backedge taken count
7094 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7095 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7096 // behaviors like the case of C language.
7097 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7098 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007099
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007100 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7101 : ICmpInst::ICMP_ULT;
7102 const SCEV *Start = IV->getStart();
7103 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007104 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7105 const SCEV *Diff = getMinusSCEV(RHS, Start);
7106 // If we have NoWrap set, then we can assume that the increment won't
7107 // overflow, in which case if RHS - Start is a constant, we don't need to
7108 // do a max operation since we can just figure it out statically
7109 if (NoWrap && isa<SCEVConstant>(Diff)) {
7110 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7111 if (D.isNegative())
7112 End = Start;
7113 } else
7114 End = IsSigned ? getSMaxExpr(RHS, Start)
7115 : getUMaxExpr(RHS, Start);
7116 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007117
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007118 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007119
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007120 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7121 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007122
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007123 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7124 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007125
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007126 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7127 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7128 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007129
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007130 // Although End can be a MAX expression we estimate MaxEnd considering only
7131 // the case End = RHS. This is safe because in the other case (End - Start)
7132 // is zero, leading to a zero maximum backedge taken count.
7133 APInt MaxEnd =
7134 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7135 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7136
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007137 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007138 if (isa<SCEVConstant>(BECount))
7139 MaxBECount = BECount;
7140 else
7141 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7142 getConstant(MinStride), false);
7143
7144 if (isa<SCEVCouldNotCompute>(MaxBECount))
7145 MaxBECount = BECount;
7146
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007147 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007148}
7149
7150ScalarEvolution::ExitLimit
7151ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7152 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007153 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007154 // We handle only IV > Invariant
7155 if (!isLoopInvariant(RHS, L))
7156 return getCouldNotCompute();
7157
7158 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7159
7160 // Avoid weird loops
7161 if (!IV || IV->getLoop() != L || !IV->isAffine())
7162 return getCouldNotCompute();
7163
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007164 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007165 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7166
7167 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7168
7169 // Avoid negative or zero stride values
7170 if (!isKnownPositive(Stride))
7171 return getCouldNotCompute();
7172
7173 // Avoid proven overflow cases: this will ensure that the backedge taken count
7174 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7175 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7176 // behaviors like the case of C language.
7177 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7178 return getCouldNotCompute();
7179
7180 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7181 : ICmpInst::ICMP_UGT;
7182
7183 const SCEV *Start = IV->getStart();
7184 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007185 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7186 const SCEV *Diff = getMinusSCEV(RHS, Start);
7187 // If we have NoWrap set, then we can assume that the increment won't
7188 // overflow, in which case if RHS - Start is a constant, we don't need to
7189 // do a max operation since we can just figure it out statically
7190 if (NoWrap && isa<SCEVConstant>(Diff)) {
7191 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7192 if (!D.isNegative())
7193 End = Start;
7194 } else
7195 End = IsSigned ? getSMinExpr(RHS, Start)
7196 : getUMinExpr(RHS, Start);
7197 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007198
7199 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7200
7201 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7202 : getUnsignedRange(Start).getUnsignedMax();
7203
7204 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7205 : getUnsignedRange(Stride).getUnsignedMin();
7206
7207 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7208 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7209 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7210
7211 // Although End can be a MIN expression we estimate MinEnd considering only
7212 // the case End = RHS. This is safe because in the other case (Start - End)
7213 // is zero, leading to a zero maximum backedge taken count.
7214 APInt MinEnd =
7215 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7216 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7217
7218
7219 const SCEV *MaxBECount = getCouldNotCompute();
7220 if (isa<SCEVConstant>(BECount))
7221 MaxBECount = BECount;
7222 else
7223 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7224 getConstant(MinStride), false);
7225
7226 if (isa<SCEVCouldNotCompute>(MaxBECount))
7227 MaxBECount = BECount;
7228
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007229 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007230}
7231
Chris Lattnerd934c702004-04-02 20:23:17 +00007232/// getNumIterationsInRange - Return the number of iterations of this loop that
7233/// produce values in the specified constant range. Another way of looking at
7234/// this is that it returns the first iteration number where the value is not in
7235/// the condition, thus computing the exit count. If the iteration count can't
7236/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007237const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007238 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007239 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007240 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007241
7242 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007243 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007244 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007245 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007246 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007247 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007248 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007249 if (const SCEVAddRecExpr *ShiftedAddRec =
7250 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007251 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007252 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007253 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007254 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007255 }
7256
7257 // The only time we can solve this is when we have all constant indices.
7258 // Otherwise, we cannot determine the overflow conditions.
7259 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7260 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007261 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007262
7263
7264 // Okay at this point we know that all elements of the chrec are constants and
7265 // that the start element is zero.
7266
7267 // First check to see if the range contains zero. If not, the first
7268 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007269 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007270 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007271 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007272
Chris Lattnerd934c702004-04-02 20:23:17 +00007273 if (isAffine()) {
7274 // If this is an affine expression then we have this situation:
7275 // Solve {0,+,A} in Range === Ax in Range
7276
Nick Lewycky52460262007-07-16 02:08:00 +00007277 // We know that zero is in the range. If A is positive then we know that
7278 // the upper value of the range must be the first possible exit value.
7279 // If A is negative then the lower of the range is the last possible loop
7280 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007281 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007282 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7283 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007284
Nick Lewycky52460262007-07-16 02:08:00 +00007285 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007286 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007287 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007288
7289 // Evaluate at the exit value. If we really did fall out of the valid
7290 // range, then we computed our trip count, otherwise wrap around or other
7291 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007292 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007293 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007294 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007295
7296 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007297 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007298 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007299 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007300 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007301 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007302 } else if (isQuadratic()) {
7303 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7304 // quadratic equation to solve it. To do this, we must frame our problem in
7305 // terms of figuring out when zero is crossed, instead of when
7306 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007307 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007308 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007309 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7310 // getNoWrapFlags(FlagNW)
7311 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007312
7313 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007314 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007315 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007316 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7317 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007318 if (R1) {
7319 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007320 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007321 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007322 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007323 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007324 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007325
Chris Lattnerd934c702004-04-02 20:23:17 +00007326 // Make sure the root is not off by one. The returned iteration should
7327 // not be in the range, but the previous one should be. When solving
7328 // for "X*X < 5", for example, we should not return a root of 2.
7329 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007330 R1->getValue(),
7331 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007332 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007333 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007334 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007335 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007336
Dan Gohmana37eaf22007-10-22 18:31:58 +00007337 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007338 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007339 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007340 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007341 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007342
Chris Lattnerd934c702004-04-02 20:23:17 +00007343 // If R1 was not in the range, then it is a good return value. Make
7344 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007345 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007346 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007347 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007348 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007349 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007350 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007351 }
7352 }
7353 }
7354
Dan Gohman31efa302009-04-18 17:58:19 +00007355 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007356}
7357
Sebastian Pop448712b2014-05-07 18:01:20 +00007358namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007359struct FindUndefs {
7360 bool Found;
7361 FindUndefs() : Found(false) {}
7362
7363 bool follow(const SCEV *S) {
7364 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7365 if (isa<UndefValue>(C->getValue()))
7366 Found = true;
7367 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7368 if (isa<UndefValue>(C->getValue()))
7369 Found = true;
7370 }
7371
7372 // Keep looking if we haven't found it yet.
7373 return !Found;
7374 }
7375 bool isDone() const {
7376 // Stop recursion if we have found an undef.
7377 return Found;
7378 }
7379};
7380}
7381
7382// Return true when S contains at least an undef value.
7383static inline bool
7384containsUndefs(const SCEV *S) {
7385 FindUndefs F;
7386 SCEVTraversal<FindUndefs> ST(F);
7387 ST.visitAll(S);
7388
7389 return F.Found;
7390}
7391
7392namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007393// Collect all steps of SCEV expressions.
7394struct SCEVCollectStrides {
7395 ScalarEvolution &SE;
7396 SmallVectorImpl<const SCEV *> &Strides;
7397
7398 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7399 : SE(SE), Strides(S) {}
7400
7401 bool follow(const SCEV *S) {
7402 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7403 Strides.push_back(AR->getStepRecurrence(SE));
7404 return true;
7405 }
7406 bool isDone() const { return false; }
7407};
7408
7409// Collect all SCEVUnknown and SCEVMulExpr expressions.
7410struct SCEVCollectTerms {
7411 SmallVectorImpl<const SCEV *> &Terms;
7412
7413 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7414 : Terms(T) {}
7415
7416 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007417 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007418 if (!containsUndefs(S))
7419 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007420
7421 // Stop recursion: once we collected a term, do not walk its operands.
7422 return false;
7423 }
7424
7425 // Keep looking.
7426 return true;
7427 }
7428 bool isDone() const { return false; }
7429};
7430}
7431
7432/// Find parametric terms in this SCEVAddRecExpr.
7433void SCEVAddRecExpr::collectParametricTerms(
7434 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7435 SmallVector<const SCEV *, 4> Strides;
7436 SCEVCollectStrides StrideCollector(SE, Strides);
7437 visitAll(this, StrideCollector);
7438
7439 DEBUG({
7440 dbgs() << "Strides:\n";
7441 for (const SCEV *S : Strides)
7442 dbgs() << *S << "\n";
7443 });
7444
7445 for (const SCEV *S : Strides) {
7446 SCEVCollectTerms TermCollector(Terms);
7447 visitAll(S, TermCollector);
7448 }
7449
7450 DEBUG({
7451 dbgs() << "Terms:\n";
7452 for (const SCEV *T : Terms)
7453 dbgs() << *T << "\n";
7454 });
7455}
7456
Sebastian Popb1a548f2014-05-12 19:01:53 +00007457static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007458 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007459 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007460 int Last = Terms.size() - 1;
7461 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007462
Sebastian Pop448712b2014-05-07 18:01:20 +00007463 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007464 if (Last == 0) {
7465 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007466 SmallVector<const SCEV *, 2> Qs;
7467 for (const SCEV *Op : M->operands())
7468 if (!isa<SCEVConstant>(Op))
7469 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007470
Sebastian Pope30bd352014-05-27 22:41:56 +00007471 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007472 }
7473
Sebastian Pope30bd352014-05-27 22:41:56 +00007474 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007475 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007476 }
7477
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007478 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007479 // Normalize the terms before the next call to findArrayDimensionsRec.
7480 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007481 SCEVSDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007482
7483 // Bail out when GCD does not evenly divide one of the terms.
7484 if (!R->isZero())
7485 return false;
7486
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007487 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007488 }
7489
Tobias Grosser3080cf12014-05-08 07:55:34 +00007490 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007491 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7492 return isa<SCEVConstant>(E);
7493 }),
7494 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007495
Sebastian Pop448712b2014-05-07 18:01:20 +00007496 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007497 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7498 return false;
7499
Sebastian Pope30bd352014-05-27 22:41:56 +00007500 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007501 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007502}
Sebastian Popc62c6792013-11-12 22:47:20 +00007503
Sebastian Pop448712b2014-05-07 18:01:20 +00007504namespace {
7505struct FindParameter {
7506 bool FoundParameter;
7507 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007508
Sebastian Pop448712b2014-05-07 18:01:20 +00007509 bool follow(const SCEV *S) {
7510 if (isa<SCEVUnknown>(S)) {
7511 FoundParameter = true;
7512 // Stop recursion: we found a parameter.
7513 return false;
7514 }
7515 // Keep looking.
7516 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007517 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007518 bool isDone() const {
7519 // Stop recursion if we have found a parameter.
7520 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007521 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007522};
7523}
7524
Sebastian Pop448712b2014-05-07 18:01:20 +00007525// Returns true when S contains at least a SCEVUnknown parameter.
7526static inline bool
7527containsParameters(const SCEV *S) {
7528 FindParameter F;
7529 SCEVTraversal<FindParameter> ST(F);
7530 ST.visitAll(S);
7531
7532 return F.FoundParameter;
7533}
7534
7535// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7536static inline bool
7537containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7538 for (const SCEV *T : Terms)
7539 if (containsParameters(T))
7540 return true;
7541 return false;
7542}
7543
7544// Return the number of product terms in S.
7545static inline int numberOfTerms(const SCEV *S) {
7546 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7547 return Expr->getNumOperands();
7548 return 1;
7549}
7550
Sebastian Popa6e58602014-05-27 22:41:45 +00007551static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7552 if (isa<SCEVConstant>(T))
7553 return nullptr;
7554
7555 if (isa<SCEVUnknown>(T))
7556 return T;
7557
7558 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7559 SmallVector<const SCEV *, 2> Factors;
7560 for (const SCEV *Op : M->operands())
7561 if (!isa<SCEVConstant>(Op))
7562 Factors.push_back(Op);
7563
7564 return SE.getMulExpr(Factors);
7565 }
7566
7567 return T;
7568}
7569
7570/// Return the size of an element read or written by Inst.
7571const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7572 Type *Ty;
7573 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7574 Ty = Store->getValueOperand()->getType();
7575 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007576 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007577 else
7578 return nullptr;
7579
7580 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7581 return getSizeOfExpr(ETy, Ty);
7582}
7583
Sebastian Pop448712b2014-05-07 18:01:20 +00007584/// Second step of delinearization: compute the array dimensions Sizes from the
7585/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007586void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7587 SmallVectorImpl<const SCEV *> &Sizes,
7588 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007589
Sebastian Pop53524082014-05-29 19:44:05 +00007590 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007591 return;
7592
7593 // Early return when Terms do not contain parameters: we do not delinearize
7594 // non parametric SCEVs.
7595 if (!containsParameters(Terms))
7596 return;
7597
7598 DEBUG({
7599 dbgs() << "Terms:\n";
7600 for (const SCEV *T : Terms)
7601 dbgs() << *T << "\n";
7602 });
7603
7604 // Remove duplicates.
7605 std::sort(Terms.begin(), Terms.end());
7606 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7607
7608 // Put larger terms first.
7609 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7610 return numberOfTerms(LHS) > numberOfTerms(RHS);
7611 });
7612
Sebastian Popa6e58602014-05-27 22:41:45 +00007613 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7614
7615 // Divide all terms by the element size.
7616 for (const SCEV *&Term : Terms) {
7617 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007618 SCEVSDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007619 Term = Q;
7620 }
7621
7622 SmallVector<const SCEV *, 4> NewTerms;
7623
7624 // Remove constant factors.
7625 for (const SCEV *T : Terms)
7626 if (const SCEV *NewT = removeConstantFactors(SE, T))
7627 NewTerms.push_back(NewT);
7628
Sebastian Pop448712b2014-05-07 18:01:20 +00007629 DEBUG({
7630 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007631 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007632 dbgs() << *T << "\n";
7633 });
7634
Sebastian Popa6e58602014-05-27 22:41:45 +00007635 if (NewTerms.empty() ||
7636 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007637 Sizes.clear();
7638 return;
7639 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007640
Sebastian Popa6e58602014-05-27 22:41:45 +00007641 // The last element to be pushed into Sizes is the size of an element.
7642 Sizes.push_back(ElementSize);
7643
Sebastian Pop448712b2014-05-07 18:01:20 +00007644 DEBUG({
7645 dbgs() << "Sizes:\n";
7646 for (const SCEV *S : Sizes)
7647 dbgs() << *S << "\n";
7648 });
7649}
7650
7651/// Third step of delinearization: compute the access functions for the
7652/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007653void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007654 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7655 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007656
Sebastian Popb1a548f2014-05-12 19:01:53 +00007657 // Early exit in case this SCEV is not an affine multivariate function.
7658 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007659 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007660
Sebastian Pop28e6b972014-05-27 22:41:51 +00007661 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007662 int Last = Sizes.size() - 1;
7663 for (int i = Last; i >= 0; i--) {
7664 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007665 SCEVSDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007666
7667 DEBUG({
7668 dbgs() << "Res: " << *Res << "\n";
7669 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7670 dbgs() << "Res divided by Sizes[i]:\n";
7671 dbgs() << "Quotient: " << *Q << "\n";
7672 dbgs() << "Remainder: " << *R << "\n";
7673 });
7674
7675 Res = Q;
7676
Sebastian Popa6e58602014-05-27 22:41:45 +00007677 // Do not record the last subscript corresponding to the size of elements in
7678 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007679 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007680
7681 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007682 if (isa<SCEVAddRecExpr>(R)) {
7683 Subscripts.clear();
7684 Sizes.clear();
7685 return;
7686 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007687
Sebastian Pop448712b2014-05-07 18:01:20 +00007688 continue;
7689 }
7690
7691 // Record the access function for the current subscript.
7692 Subscripts.push_back(R);
7693 }
7694
7695 // Also push in last position the remainder of the last division: it will be
7696 // the access function of the innermost dimension.
7697 Subscripts.push_back(Res);
7698
7699 std::reverse(Subscripts.begin(), Subscripts.end());
7700
7701 DEBUG({
7702 dbgs() << "Subscripts:\n";
7703 for (const SCEV *S : Subscripts)
7704 dbgs() << *S << "\n";
7705 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007706}
7707
Sebastian Popc62c6792013-11-12 22:47:20 +00007708/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7709/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007710/// is the offset start of the array. The SCEV->delinearize algorithm computes
7711/// the multiples of SCEV coefficients: that is a pattern matching of sub
7712/// expressions in the stride and base of a SCEV corresponding to the
7713/// computation of a GCD (greatest common divisor) of base and stride. When
7714/// SCEV->delinearize fails, it returns the SCEV unchanged.
7715///
7716/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7717///
7718/// void foo(long n, long m, long o, double A[n][m][o]) {
7719///
7720/// for (long i = 0; i < n; i++)
7721/// for (long j = 0; j < m; j++)
7722/// for (long k = 0; k < o; k++)
7723/// A[i][j][k] = 1.0;
7724/// }
7725///
7726/// the delinearization input is the following AddRec SCEV:
7727///
7728/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7729///
7730/// From this SCEV, we are able to say that the base offset of the access is %A
7731/// because it appears as an offset that does not divide any of the strides in
7732/// the loops:
7733///
7734/// CHECK: Base offset: %A
7735///
7736/// and then SCEV->delinearize determines the size of some of the dimensions of
7737/// the array as these are the multiples by which the strides are happening:
7738///
7739/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7740///
7741/// Note that the outermost dimension remains of UnknownSize because there are
7742/// no strides that would help identifying the size of the last dimension: when
7743/// the array has been statically allocated, one could compute the size of that
7744/// dimension by dividing the overall size of the array by the size of the known
7745/// dimensions: %m * %o * 8.
7746///
7747/// Finally delinearize provides the access functions for the array reference
7748/// that does correspond to A[i][j][k] of the above C testcase:
7749///
7750/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7751///
7752/// The testcases are checking the output of a function pass:
7753/// DelinearizationPass that walks through all loads and stores of a function
7754/// asking for the SCEV of the memory access with respect to all enclosing
7755/// loops, calling SCEV->delinearize on that and printing the results.
7756
Sebastian Pop28e6b972014-05-27 22:41:51 +00007757void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7758 SmallVectorImpl<const SCEV *> &Subscripts,
7759 SmallVectorImpl<const SCEV *> &Sizes,
7760 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007761 // First step: collect parametric terms.
7762 SmallVector<const SCEV *, 4> Terms;
7763 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007764
Sebastian Popb1a548f2014-05-12 19:01:53 +00007765 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007766 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007767
Sebastian Pop448712b2014-05-07 18:01:20 +00007768 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007769 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007770
Sebastian Popb1a548f2014-05-12 19:01:53 +00007771 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007772 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007773
Sebastian Pop448712b2014-05-07 18:01:20 +00007774 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007775 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007776
Sebastian Pop28e6b972014-05-27 22:41:51 +00007777 if (Subscripts.empty())
7778 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007779
Sebastian Pop448712b2014-05-07 18:01:20 +00007780 DEBUG({
7781 dbgs() << "succeeded to delinearize " << *this << "\n";
7782 dbgs() << "ArrayDecl[UnknownSize]";
7783 for (const SCEV *S : Sizes)
7784 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007785
Sebastian Pop444621a2014-05-09 22:45:02 +00007786 dbgs() << "\nArrayRef";
7787 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007788 dbgs() << "[" << *S << "]";
7789 dbgs() << "\n";
7790 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007791}
Chris Lattnerd934c702004-04-02 20:23:17 +00007792
7793//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007794// SCEVCallbackVH Class Implementation
7795//===----------------------------------------------------------------------===//
7796
Dan Gohmand33a0902009-05-19 19:22:47 +00007797void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007798 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007799 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7800 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007801 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007802 // this now dangles!
7803}
7804
Dan Gohman7a066722010-07-28 01:09:07 +00007805void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007806 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007807
Dan Gohman48f82222009-05-04 22:30:44 +00007808 // Forget all the expressions associated with users of the old value,
7809 // so that future queries will recompute the expressions using the new
7810 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007811 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007812 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007813 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007814 while (!Worklist.empty()) {
7815 User *U = Worklist.pop_back_val();
7816 // Deleting the Old value will cause this to dangle. Postpone
7817 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007818 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007819 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007820 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007821 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007822 if (PHINode *PN = dyn_cast<PHINode>(U))
7823 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007824 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007825 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007826 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007827 // Delete the Old value.
7828 if (PHINode *PN = dyn_cast<PHINode>(Old))
7829 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007830 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007831 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007832}
7833
Dan Gohmand33a0902009-05-19 19:22:47 +00007834ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007835 : CallbackVH(V), SE(se) {}
7836
7837//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007838// ScalarEvolution Class Implementation
7839//===----------------------------------------------------------------------===//
7840
Dan Gohmanc8e23622009-04-21 23:15:49 +00007841ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007842 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7843 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007844 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007845}
7846
Chris Lattnerd934c702004-04-02 20:23:17 +00007847bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007848 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007849 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007850 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007851 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007852 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007853 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007854 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007855 return false;
7856}
7857
7858void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007859 // Iterate through all the SCEVUnknown instances and call their
7860 // destructors, so that they release their references to their values.
7861 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7862 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007863 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007864
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007865 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007866
7867 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7868 // that a loop had multiple computable exits.
7869 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7870 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7871 I != E; ++I) {
7872 I->second.clear();
7873 }
7874
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007875 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7876
Dan Gohmanc8e23622009-04-21 23:15:49 +00007877 BackedgeTakenCounts.clear();
7878 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007879 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007880 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007881 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007882 UnsignedRanges.clear();
7883 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007884 UniqueSCEVs.clear();
7885 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007886}
7887
7888void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7889 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007890 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007891 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007892 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007893 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007894}
7895
Dan Gohmanc8e23622009-04-21 23:15:49 +00007896bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007897 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007898}
7899
Dan Gohmanc8e23622009-04-21 23:15:49 +00007900static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007901 const Loop *L) {
7902 // Print all inner loops first
7903 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7904 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007905
Dan Gohmanbc694912010-01-09 18:17:45 +00007906 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007907 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007908 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007909
Dan Gohmancb0efec2009-12-18 01:14:11 +00007910 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007911 L->getExitBlocks(ExitBlocks);
7912 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007913 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007914
Dan Gohman0bddac12009-02-24 18:55:53 +00007915 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7916 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007917 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007918 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007919 }
7920
Dan Gohmanbc694912010-01-09 18:17:45 +00007921 OS << "\n"
7922 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007923 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007924 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007925
7926 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7927 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7928 } else {
7929 OS << "Unpredictable max backedge-taken count. ";
7930 }
7931
7932 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007933}
7934
Dan Gohmancb0efec2009-12-18 01:14:11 +00007935void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007936 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007937 // out SCEV values of all instructions that are interesting. Doing
7938 // this potentially causes it to create new SCEV objects though,
7939 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007940 // observable from outside the class though, so casting away the
7941 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007942 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007943
Dan Gohmanbc694912010-01-09 18:17:45 +00007944 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007945 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007946 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007947 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007948 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007949 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007950 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007951 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007952 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007953
Dan Gohmanb9063a82009-06-19 17:49:54 +00007954 const Loop *L = LI->getLoopFor((*I).getParent());
7955
Dan Gohmanaf752342009-07-07 17:06:11 +00007956 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007957 if (AtUse != SV) {
7958 OS << " --> ";
7959 AtUse->print(OS);
7960 }
7961
7962 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007963 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007964 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007965 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007966 OS << "<<Unknown>>";
7967 } else {
7968 OS << *ExitValue;
7969 }
7970 }
7971
Chris Lattnerd934c702004-04-02 20:23:17 +00007972 OS << "\n";
7973 }
7974
Dan Gohmanbc694912010-01-09 18:17:45 +00007975 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007976 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007977 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007978 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7979 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007980}
Dan Gohmane20f8242009-04-21 00:47:46 +00007981
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007982ScalarEvolution::LoopDisposition
7983ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007984 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7985 for (unsigned u = 0; u < Values.size(); u++) {
7986 if (Values[u].first == L)
7987 return Values[u].second;
7988 }
7989 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007990 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007991 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7992 for (unsigned u = Values2.size(); u > 0; u--) {
7993 if (Values2[u - 1].first == L) {
7994 Values2[u - 1].second = D;
7995 break;
7996 }
7997 }
7998 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007999}
8000
8001ScalarEvolution::LoopDisposition
8002ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008003 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008004 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008005 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008006 case scTruncate:
8007 case scZeroExtend:
8008 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008009 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008010 case scAddRecExpr: {
8011 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8012
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008013 // If L is the addrec's loop, it's computable.
8014 if (AR->getLoop() == L)
8015 return LoopComputable;
8016
Dan Gohmanafd6db92010-11-17 21:23:15 +00008017 // Add recurrences are never invariant in the function-body (null loop).
8018 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008019 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008020
8021 // This recurrence is variant w.r.t. L if L contains AR's loop.
8022 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008023 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008024
8025 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8026 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008027 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008028
8029 // This recurrence is variant w.r.t. L if any of its operands
8030 // are variant.
8031 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8032 I != E; ++I)
8033 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008034 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008035
8036 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008037 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008038 }
8039 case scAddExpr:
8040 case scMulExpr:
8041 case scUMaxExpr:
8042 case scSMaxExpr: {
8043 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008044 bool HasVarying = false;
8045 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8046 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008047 LoopDisposition D = getLoopDisposition(*I, L);
8048 if (D == LoopVariant)
8049 return LoopVariant;
8050 if (D == LoopComputable)
8051 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008052 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008053 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008054 }
8055 case scUDivExpr: {
8056 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008057 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8058 if (LD == LoopVariant)
8059 return LoopVariant;
8060 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8061 if (RD == LoopVariant)
8062 return LoopVariant;
8063 return (LD == LoopInvariant && RD == LoopInvariant) ?
8064 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008065 }
8066 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008067 // All non-instruction values are loop invariant. All instructions are loop
8068 // invariant if they are not contained in the specified loop.
8069 // Instructions are never considered invariant in the function body
8070 // (null loop) because they are defined within the "loop".
8071 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8072 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8073 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008074 case scCouldNotCompute:
8075 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008076 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008077 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008078}
8079
8080bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8081 return getLoopDisposition(S, L) == LoopInvariant;
8082}
8083
8084bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8085 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008086}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008087
Dan Gohman8ea83d82010-11-18 00:34:22 +00008088ScalarEvolution::BlockDisposition
8089ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008090 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8091 for (unsigned u = 0; u < Values.size(); u++) {
8092 if (Values[u].first == BB)
8093 return Values[u].second;
8094 }
8095 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00008096 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008097 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8098 for (unsigned u = Values2.size(); u > 0; u--) {
8099 if (Values2[u - 1].first == BB) {
8100 Values2[u - 1].second = D;
8101 break;
8102 }
8103 }
8104 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008105}
8106
Dan Gohman8ea83d82010-11-18 00:34:22 +00008107ScalarEvolution::BlockDisposition
8108ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008109 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008110 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008111 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008112 case scTruncate:
8113 case scZeroExtend:
8114 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008115 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008116 case scAddRecExpr: {
8117 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008118 // to test for proper dominance too, because the instruction which
8119 // produces the addrec's value is a PHI, and a PHI effectively properly
8120 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008121 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8122 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008123 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008124 }
8125 // FALL THROUGH into SCEVNAryExpr handling.
8126 case scAddExpr:
8127 case scMulExpr:
8128 case scUMaxExpr:
8129 case scSMaxExpr: {
8130 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008131 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008132 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008133 I != E; ++I) {
8134 BlockDisposition D = getBlockDisposition(*I, BB);
8135 if (D == DoesNotDominateBlock)
8136 return DoesNotDominateBlock;
8137 if (D == DominatesBlock)
8138 Proper = false;
8139 }
8140 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008141 }
8142 case scUDivExpr: {
8143 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008144 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8145 BlockDisposition LD = getBlockDisposition(LHS, BB);
8146 if (LD == DoesNotDominateBlock)
8147 return DoesNotDominateBlock;
8148 BlockDisposition RD = getBlockDisposition(RHS, BB);
8149 if (RD == DoesNotDominateBlock)
8150 return DoesNotDominateBlock;
8151 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8152 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008153 }
8154 case scUnknown:
8155 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008156 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8157 if (I->getParent() == BB)
8158 return DominatesBlock;
8159 if (DT->properlyDominates(I->getParent(), BB))
8160 return ProperlyDominatesBlock;
8161 return DoesNotDominateBlock;
8162 }
8163 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008164 case scCouldNotCompute:
8165 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008166 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008167 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008168}
8169
8170bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8171 return getBlockDisposition(S, BB) >= DominatesBlock;
8172}
8173
8174bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8175 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008176}
Dan Gohman534749b2010-11-17 22:27:42 +00008177
Andrew Trick365e31c2012-07-13 23:33:03 +00008178namespace {
8179// Search for a SCEV expression node within an expression tree.
8180// Implements SCEVTraversal::Visitor.
8181struct SCEVSearch {
8182 const SCEV *Node;
8183 bool IsFound;
8184
8185 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8186
8187 bool follow(const SCEV *S) {
8188 IsFound |= (S == Node);
8189 return !IsFound;
8190 }
8191 bool isDone() const { return IsFound; }
8192};
8193}
8194
Dan Gohman534749b2010-11-17 22:27:42 +00008195bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008196 SCEVSearch Search(Op);
8197 visitAll(S, Search);
8198 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008199}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008200
8201void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8202 ValuesAtScopes.erase(S);
8203 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008204 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008205 UnsignedRanges.erase(S);
8206 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008207
8208 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8209 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8210 BackedgeTakenInfo &BEInfo = I->second;
8211 if (BEInfo.hasOperand(S, this)) {
8212 BEInfo.clear();
8213 BackedgeTakenCounts.erase(I++);
8214 }
8215 else
8216 ++I;
8217 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008218}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008219
8220typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008221
Alp Tokercb402912014-01-24 17:20:08 +00008222/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008223static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8224 size_t Pos = 0;
8225 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8226 Str.replace(Pos, From.size(), To.data(), To.size());
8227 Pos += To.size();
8228 }
8229}
8230
Benjamin Kramer214935e2012-10-26 17:31:32 +00008231/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8232static void
8233getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8234 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8235 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8236
8237 std::string &S = Map[L];
8238 if (S.empty()) {
8239 raw_string_ostream OS(S);
8240 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008241
8242 // false and 0 are semantically equivalent. This can happen in dead loops.
8243 replaceSubString(OS.str(), "false", "0");
8244 // Remove wrap flags, their use in SCEV is highly fragile.
8245 // FIXME: Remove this when SCEV gets smarter about them.
8246 replaceSubString(OS.str(), "<nw>", "");
8247 replaceSubString(OS.str(), "<nsw>", "");
8248 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008249 }
8250 }
8251}
8252
8253void ScalarEvolution::verifyAnalysis() const {
8254 if (!VerifySCEV)
8255 return;
8256
8257 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8258
8259 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8260 // FIXME: It would be much better to store actual values instead of strings,
8261 // but SCEV pointers will change if we drop the caches.
8262 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8263 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8264 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8265
8266 // Gather stringified backedge taken counts for all loops without using
8267 // SCEV's caches.
8268 SE.releaseMemory();
8269 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8270 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8271
8272 // Now compare whether they're the same with and without caches. This allows
8273 // verifying that no pass changed the cache.
8274 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8275 "New loops suddenly appeared!");
8276
8277 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8278 OldE = BackedgeDumpsOld.end(),
8279 NewI = BackedgeDumpsNew.begin();
8280 OldI != OldE; ++OldI, ++NewI) {
8281 assert(OldI->first == NewI->first && "Loop order changed!");
8282
8283 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8284 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008285 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008286 // means that a pass is buggy or SCEV has to learn a new pattern but is
8287 // usually not harmful.
8288 if (OldI->second != NewI->second &&
8289 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008290 NewI->second.find("undef") == std::string::npos &&
8291 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008292 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008293 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008294 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008295 << "' changed from '" << OldI->second
8296 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008297 std::abort();
8298 }
8299 }
8300
8301 // TODO: Verify more things.
8302}