blob: 3877f9c389938667c98887c316b6584cbbe4c03b [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Hal Finkel60db0582014-09-07 18:57:58 +000066#include "llvm/Analysis/AssumptionTracker.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000072#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000073#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000076#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000077#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000078#include "llvm/IR/GlobalAlias.h"
79#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000080#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000081#include "llvm/IR/Instructions.h"
82#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000083#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000084#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000085#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000086#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000087#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000088#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000089#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000090#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Hal Finkel60db0582014-09-07 18:57:58 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
David Majnemer32b8ccf2014-11-16 20:35:19 +0000678static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
679 APInt A = C1->getValue()->getValue();
680 APInt B = C2->getValue()->getValue();
681 uint32_t ABW = A.getBitWidth();
682 uint32_t BBW = B.getBitWidth();
683
684 if (ABW > BBW)
685 B = B.sext(ABW);
686 else if (ABW < BBW)
687 A = A.sext(BBW);
688
689 return APIntOps::srem(A, B);
690}
691
692static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
693 APInt A = C1->getValue()->getValue();
694 APInt B = C2->getValue()->getValue();
695 uint32_t ABW = A.getBitWidth();
696 uint32_t BBW = B.getBitWidth();
697
698 if (ABW > BBW)
699 B = B.sext(ABW);
700 else if (ABW < BBW)
701 A = A.sext(BBW);
702
703 return APIntOps::sdiv(A, B);
704}
705
David Majnemer0df1d122014-11-16 07:30:35 +0000706static const APInt urem(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000707 APInt A = C1->getValue()->getValue();
708 APInt B = C2->getValue()->getValue();
709 uint32_t ABW = A.getBitWidth();
710 uint32_t BBW = B.getBitWidth();
711
712 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000713 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000715 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000716
David Majnemer0df1d122014-11-16 07:30:35 +0000717 return APIntOps::urem(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000718}
719
David Majnemer0df1d122014-11-16 07:30:35 +0000720static const APInt udiv(const SCEVConstant *C1, const SCEVConstant *C2) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000721 APInt A = C1->getValue()->getValue();
722 APInt B = C2->getValue()->getValue();
723 uint32_t ABW = A.getBitWidth();
724 uint32_t BBW = B.getBitWidth();
725
726 if (ABW > BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000727 B = B.zext(ABW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000728 else if (ABW < BBW)
David Majnemer0df1d122014-11-16 07:30:35 +0000729 A = A.zext(BBW);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000730
David Majnemer0df1d122014-11-16 07:30:35 +0000731 return APIntOps::udiv(A, B);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000732}
733
734namespace {
735struct FindSCEVSize {
736 int Size;
737 FindSCEVSize() : Size(0) {}
738
739 bool follow(const SCEV *S) {
740 ++Size;
741 // Keep looking at all operands of S.
742 return true;
743 }
744 bool isDone() const {
745 return false;
746 }
747};
748}
749
750// Returns the size of the SCEV S.
751static inline int sizeOfSCEV(const SCEV *S) {
752 FindSCEVSize F;
753 SCEVTraversal<FindSCEVSize> ST(F);
754 ST.visitAll(S);
755 return F.Size;
756}
757
758namespace {
759
David Majnemer32b8ccf2014-11-16 20:35:19 +0000760template <typename Derived>
761struct SCEVDivision : public SCEVVisitor<Derived, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000762public:
763 // Computes the Quotient and Remainder of the division of Numerator by
764 // Denominator.
765 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
766 const SCEV *Denominator, const SCEV **Quotient,
767 const SCEV **Remainder) {
768 assert(Numerator && Denominator && "Uninitialized SCEV");
769
David Majnemer5d2670c2014-11-17 11:27:45 +0000770 Derived D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000771
772 // Check for the trivial case here to avoid having to check for it in the
773 // rest of the code.
774 if (Numerator == Denominator) {
775 *Quotient = D.One;
776 *Remainder = D.Zero;
777 return;
778 }
779
780 if (Numerator->isZero()) {
781 *Quotient = D.Zero;
782 *Remainder = D.Zero;
783 return;
784 }
785
786 // Split the Denominator when it is a product.
787 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
788 const SCEV *Q, *R;
789 *Quotient = Numerator;
790 for (const SCEV *Op : T->operands()) {
791 divide(SE, *Quotient, Op, &Q, &R);
792 *Quotient = Q;
793
794 // Bail out when the Numerator is not divisible by one of the terms of
795 // the Denominator.
796 if (!R->isZero()) {
797 *Quotient = D.Zero;
798 *Remainder = Numerator;
799 return;
800 }
801 }
802 *Remainder = D.Zero;
803 return;
804 }
805
806 D.visit(Numerator);
807 *Quotient = D.Quotient;
808 *Remainder = D.Remainder;
809 }
810
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000811 // Except in the trivial case described above, we do not know how to divide
812 // Expr by Denominator for the following functions with empty implementation.
813 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
814 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
815 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
816 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
817 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
818 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
819 void visitUnknown(const SCEVUnknown *Numerator) {}
820 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
821
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000822 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
823 const SCEV *StartQ, *StartR, *StepQ, *StepR;
824 assert(Numerator->isAffine() && "Numerator should be affine");
825 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
826 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
827 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
828 Numerator->getNoWrapFlags());
829 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
830 Numerator->getNoWrapFlags());
831 }
832
833 void visitAddExpr(const SCEVAddExpr *Numerator) {
834 SmallVector<const SCEV *, 2> Qs, Rs;
835 Type *Ty = Denominator->getType();
836
837 for (const SCEV *Op : Numerator->operands()) {
838 const SCEV *Q, *R;
839 divide(SE, Op, Denominator, &Q, &R);
840
841 // Bail out if types do not match.
842 if (Ty != Q->getType() || Ty != R->getType()) {
843 Quotient = Zero;
844 Remainder = Numerator;
845 return;
846 }
847
848 Qs.push_back(Q);
849 Rs.push_back(R);
850 }
851
852 if (Qs.size() == 1) {
853 Quotient = Qs[0];
854 Remainder = Rs[0];
855 return;
856 }
857
858 Quotient = SE.getAddExpr(Qs);
859 Remainder = SE.getAddExpr(Rs);
860 }
861
862 void visitMulExpr(const SCEVMulExpr *Numerator) {
863 SmallVector<const SCEV *, 2> Qs;
864 Type *Ty = Denominator->getType();
865
866 bool FoundDenominatorTerm = false;
867 for (const SCEV *Op : Numerator->operands()) {
868 // Bail out if types do not match.
869 if (Ty != Op->getType()) {
870 Quotient = Zero;
871 Remainder = Numerator;
872 return;
873 }
874
875 if (FoundDenominatorTerm) {
876 Qs.push_back(Op);
877 continue;
878 }
879
880 // Check whether Denominator divides one of the product operands.
881 const SCEV *Q, *R;
882 divide(SE, Op, Denominator, &Q, &R);
883 if (!R->isZero()) {
884 Qs.push_back(Op);
885 continue;
886 }
887
888 // Bail out if types do not match.
889 if (Ty != Q->getType()) {
890 Quotient = Zero;
891 Remainder = Numerator;
892 return;
893 }
894
895 FoundDenominatorTerm = true;
896 Qs.push_back(Q);
897 }
898
899 if (FoundDenominatorTerm) {
900 Remainder = Zero;
901 if (Qs.size() == 1)
902 Quotient = Qs[0];
903 else
904 Quotient = SE.getMulExpr(Qs);
905 return;
906 }
907
908 if (!isa<SCEVUnknown>(Denominator)) {
909 Quotient = Zero;
910 Remainder = Numerator;
911 return;
912 }
913
914 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
915 ValueToValueMap RewriteMap;
916 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
917 cast<SCEVConstant>(Zero)->getValue();
918 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
919
920 if (Remainder->isZero()) {
921 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
922 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
923 cast<SCEVConstant>(One)->getValue();
924 Quotient =
925 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
926 return;
927 }
928
929 // Quotient is (Numerator - Remainder) divided by Denominator.
930 const SCEV *Q, *R;
931 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
932 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
933 // This SCEV does not seem to simplify: fail the division here.
934 Quotient = Zero;
935 Remainder = Numerator;
936 return;
937 }
938 divide(SE, Diff, Denominator, &Q, &R);
939 assert(R == Zero &&
940 "(Numerator - Remainder) should evenly divide Denominator");
941 Quotient = Q;
942 }
943
944private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000945 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
946 const SCEV *Denominator)
947 : SE(S), Denominator(Denominator) {
948 Zero = SE.getConstant(Denominator->getType(), 0);
949 One = SE.getConstant(Denominator->getType(), 1);
950
951 // By default, we don't know how to divide Expr by Denominator.
952 // Providing the default here simplifies the rest of the code.
953 Quotient = Zero;
954 Remainder = Numerator;
955 }
956
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000957 ScalarEvolution &SE;
958 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000959
960 friend struct SCEVSDivision;
961 friend struct SCEVUDivision;
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000962};
David Majnemer32b8ccf2014-11-16 20:35:19 +0000963
964struct SCEVSDivision : public SCEVDivision<SCEVSDivision> {
David Majnemer5d2670c2014-11-17 11:27:45 +0000965 SCEVSDivision(ScalarEvolution &S, const SCEV *Numerator,
966 const SCEV *Denominator)
967 : SCEVDivision(S, Numerator, Denominator) {}
968
David Majnemer32b8ccf2014-11-16 20:35:19 +0000969 void visitConstant(const SCEVConstant *Numerator) {
970 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
971 Quotient = SE.getConstant(sdiv(Numerator, D));
972 Remainder = SE.getConstant(srem(Numerator, D));
973 return;
974 }
975 }
976};
977
978struct SCEVUDivision : public SCEVDivision<SCEVUDivision> {
David Majnemer5d2670c2014-11-17 11:27:45 +0000979 SCEVUDivision(ScalarEvolution &S, const SCEV *Numerator,
980 const SCEV *Denominator)
981 : SCEVDivision(S, Numerator, Denominator) {}
982
David Majnemer32b8ccf2014-11-16 20:35:19 +0000983 void visitConstant(const SCEVConstant *Numerator) {
984 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
985 Quotient = SE.getConstant(udiv(Numerator, D));
986 Remainder = SE.getConstant(urem(Numerator, D));
987 return;
988 }
989 }
990};
991
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000992}
993
Chris Lattnerd934c702004-04-02 20:23:17 +0000994//===----------------------------------------------------------------------===//
995// Simple SCEV method implementations
996//===----------------------------------------------------------------------===//
997
Eli Friedman61f67622008-08-04 23:49:06 +0000998/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000999/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +00001000static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +00001001 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +00001002 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +00001003 // Handle the simplest case efficiently.
1004 if (K == 1)
1005 return SE.getTruncateOrZeroExtend(It, ResultTy);
1006
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001007 // We are using the following formula for BC(It, K):
1008 //
1009 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1010 //
Eli Friedman61f67622008-08-04 23:49:06 +00001011 // Suppose, W is the bitwidth of the return value. We must be prepared for
1012 // overflow. Hence, we must assure that the result of our computation is
1013 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1014 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001015 //
Eli Friedman61f67622008-08-04 23:49:06 +00001016 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +00001017 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +00001018 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1019 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001020 //
Eli Friedman61f67622008-08-04 23:49:06 +00001021 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001022 //
Eli Friedman61f67622008-08-04 23:49:06 +00001023 // This formula is trivially equivalent to the previous formula. However,
1024 // this formula can be implemented much more efficiently. The trick is that
1025 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1026 // arithmetic. To do exact division in modular arithmetic, all we have
1027 // to do is multiply by the inverse. Therefore, this step can be done at
1028 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +00001029 //
Eli Friedman61f67622008-08-04 23:49:06 +00001030 // The next issue is how to safely do the division by 2^T. The way this
1031 // is done is by doing the multiplication step at a width of at least W + T
1032 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1033 // when we perform the division by 2^T (which is equivalent to a right shift
1034 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1035 // truncated out after the division by 2^T.
1036 //
1037 // In comparison to just directly using the first formula, this technique
1038 // is much more efficient; using the first formula requires W * K bits,
1039 // but this formula less than W + K bits. Also, the first formula requires
1040 // a division step, whereas this formula only requires multiplies and shifts.
1041 //
1042 // It doesn't matter whether the subtraction step is done in the calculation
1043 // width or the input iteration count's width; if the subtraction overflows,
1044 // the result must be zero anyway. We prefer here to do it in the width of
1045 // the induction variable because it helps a lot for certain cases; CodeGen
1046 // isn't smart enough to ignore the overflow, which leads to much less
1047 // efficient code if the width of the subtraction is wider than the native
1048 // register width.
1049 //
1050 // (It's possible to not widen at all by pulling out factors of 2 before
1051 // the multiplication; for example, K=2 can be calculated as
1052 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1053 // extra arithmetic, so it's not an obvious win, and it gets
1054 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001055
Eli Friedman61f67622008-08-04 23:49:06 +00001056 // Protection from insane SCEVs; this bound is conservative,
1057 // but it probably doesn't matter.
1058 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001059 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001060
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001061 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001062
Eli Friedman61f67622008-08-04 23:49:06 +00001063 // Calculate K! / 2^T and T; we divide out the factors of two before
1064 // multiplying for calculating K! / 2^T to avoid overflow.
1065 // Other overflow doesn't matter because we only care about the bottom
1066 // W bits of the result.
1067 APInt OddFactorial(W, 1);
1068 unsigned T = 1;
1069 for (unsigned i = 3; i <= K; ++i) {
1070 APInt Mult(W, i);
1071 unsigned TwoFactors = Mult.countTrailingZeros();
1072 T += TwoFactors;
1073 Mult = Mult.lshr(TwoFactors);
1074 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001075 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001076
Eli Friedman61f67622008-08-04 23:49:06 +00001077 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001078 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001079
Dan Gohman8b0a4192010-03-01 17:49:51 +00001080 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001081 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001082
1083 // Calculate the multiplicative inverse of K! / 2^T;
1084 // this multiplication factor will perform the exact division by
1085 // K! / 2^T.
1086 APInt Mod = APInt::getSignedMinValue(W+1);
1087 APInt MultiplyFactor = OddFactorial.zext(W+1);
1088 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1089 MultiplyFactor = MultiplyFactor.trunc(W);
1090
1091 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001092 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001093 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001094 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001095 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001096 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001097 Dividend = SE.getMulExpr(Dividend,
1098 SE.getTruncateOrZeroExtend(S, CalculationTy));
1099 }
1100
1101 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001102 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001103
1104 // Truncate the result, and divide by K! / 2^T.
1105
1106 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1107 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001108}
1109
Chris Lattnerd934c702004-04-02 20:23:17 +00001110/// evaluateAtIteration - Return the value of this chain of recurrences at
1111/// the specified iteration number. We can evaluate this recurrence by
1112/// multiplying each element in the chain by the binomial coefficient
1113/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1114///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001115/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001116///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001117/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001118///
Dan Gohmanaf752342009-07-07 17:06:11 +00001119const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001120 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001121 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001122 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001123 // The computation is correct in the face of overflow provided that the
1124 // multiplication is performed _after_ the evaluation of the binomial
1125 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001126 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001127 if (isa<SCEVCouldNotCompute>(Coeff))
1128 return Coeff;
1129
1130 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001131 }
1132 return Result;
1133}
1134
Chris Lattnerd934c702004-04-02 20:23:17 +00001135//===----------------------------------------------------------------------===//
1136// SCEV Expression folder implementations
1137//===----------------------------------------------------------------------===//
1138
Dan Gohmanaf752342009-07-07 17:06:11 +00001139const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001140 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001141 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001142 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001143 assert(isSCEVable(Ty) &&
1144 "This is not a conversion to a SCEVable type!");
1145 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001146
Dan Gohman3a302cb2009-07-13 20:50:19 +00001147 FoldingSetNodeID ID;
1148 ID.AddInteger(scTruncate);
1149 ID.AddPointer(Op);
1150 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001151 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001152 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1153
Dan Gohman3423e722009-06-30 20:13:32 +00001154 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001155 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001156 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001157 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001158
Dan Gohman79af8542009-04-22 16:20:48 +00001159 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001160 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001161 return getTruncateExpr(ST->getOperand(), Ty);
1162
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001163 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001164 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001165 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1166
1167 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001168 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001169 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1170
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001171 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1172 // eliminate all the truncates.
1173 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1174 SmallVector<const SCEV *, 4> Operands;
1175 bool hasTrunc = false;
1176 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1177 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1178 hasTrunc = isa<SCEVTruncateExpr>(S);
1179 Operands.push_back(S);
1180 }
1181 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001182 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001183 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001184 }
1185
Nick Lewycky5c901f32011-01-19 18:56:00 +00001186 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1187 // eliminate all the truncates.
1188 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1189 SmallVector<const SCEV *, 4> Operands;
1190 bool hasTrunc = false;
1191 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1192 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1193 hasTrunc = isa<SCEVTruncateExpr>(S);
1194 Operands.push_back(S);
1195 }
1196 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001197 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001198 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001199 }
1200
Dan Gohman5a728c92009-06-18 16:24:47 +00001201 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001202 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001203 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001204 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001205 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001206 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001207 }
1208
Dan Gohman89dd42a2010-06-25 18:47:08 +00001209 // The cast wasn't folded; create an explicit cast node. We can reuse
1210 // the existing insert position since if we get here, we won't have
1211 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001212 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1213 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001214 UniqueSCEVs.InsertNode(S, IP);
1215 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001216}
1217
Dan Gohmanaf752342009-07-07 17:06:11 +00001218const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001219 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001220 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001221 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001222 assert(isSCEVable(Ty) &&
1223 "This is not a conversion to a SCEVable type!");
1224 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001225
Dan Gohman3423e722009-06-30 20:13:32 +00001226 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001227 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1228 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001229 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001230
Dan Gohman79af8542009-04-22 16:20:48 +00001231 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001232 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001233 return getZeroExtendExpr(SZ->getOperand(), Ty);
1234
Dan Gohman74a0ba12009-07-13 20:55:53 +00001235 // Before doing any expensive analysis, check to see if we've already
1236 // computed a SCEV for this Op and Ty.
1237 FoldingSetNodeID ID;
1238 ID.AddInteger(scZeroExtend);
1239 ID.AddPointer(Op);
1240 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001241 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001242 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1243
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001244 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1245 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1246 // It's possible the bits taken off by the truncate were all zero bits. If
1247 // so, we should be able to simplify this further.
1248 const SCEV *X = ST->getOperand();
1249 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001250 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1251 unsigned NewBits = getTypeSizeInBits(Ty);
1252 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001253 CR.zextOrTrunc(NewBits)))
1254 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001255 }
1256
Dan Gohman76466372009-04-27 20:16:15 +00001257 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001258 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001259 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001260 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001261 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001262 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001263 const SCEV *Start = AR->getStart();
1264 const SCEV *Step = AR->getStepRecurrence(*this);
1265 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1266 const Loop *L = AR->getLoop();
1267
Dan Gohman62ef6a72009-07-25 01:22:26 +00001268 // If we have special knowledge that this addrec won't overflow,
1269 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001270 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001271 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1272 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001274
Dan Gohman76466372009-04-27 20:16:15 +00001275 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1276 // Note that this serves two purposes: It filters out loops that are
1277 // simply not analyzable, and it covers the case where this code is
1278 // being called from within backedge-taken count analysis, such that
1279 // attempting to ask for the backedge-taken count would likely result
1280 // in infinite recursion. In the later case, the analysis code will
1281 // cope with a conservative value, and it will take care to purge
1282 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001283 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001284 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001285 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001286 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001287
1288 // Check whether the backedge-taken count can be losslessly casted to
1289 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001290 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001291 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001292 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001293 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1294 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001295 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001296 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001297 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001298 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1299 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1300 const SCEV *WideMaxBECount =
1301 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001302 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001303 getAddExpr(WideStart,
1304 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001305 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001306 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001307 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1308 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001309 // Return the expression with the addrec on the outside.
1310 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1311 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001312 L, AR->getNoWrapFlags());
1313 }
Dan Gohman76466372009-04-27 20:16:15 +00001314 // Similar to above, only this time treat the step value as signed.
1315 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001316 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001317 getAddExpr(WideStart,
1318 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001319 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001320 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001321 // Cache knowledge of AR NW, which is propagated to this AddRec.
1322 // Negative step causes unsigned wrap, but it still can't self-wrap.
1323 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001324 // Return the expression with the addrec on the outside.
1325 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1326 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001327 L, AR->getNoWrapFlags());
1328 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001329 }
1330
1331 // If the backedge is guarded by a comparison with the pre-inc value
1332 // the addrec is safe. Also, if the entry is guarded by a comparison
1333 // with the start value and the backedge is guarded by a comparison
1334 // with the post-inc value, the addrec is safe.
1335 if (isKnownPositive(Step)) {
1336 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1337 getUnsignedRange(Step).getUnsignedMax());
1338 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001339 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001340 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001341 AR->getPostIncExpr(*this), N))) {
1342 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1343 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001344 // Return the expression with the addrec on the outside.
1345 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1346 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001347 L, AR->getNoWrapFlags());
1348 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001349 } else if (isKnownNegative(Step)) {
1350 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1351 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001352 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1353 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001354 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001355 AR->getPostIncExpr(*this), N))) {
1356 // Cache knowledge of AR NW, which is propagated to this AddRec.
1357 // Negative step causes unsigned wrap, but it still can't self-wrap.
1358 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1359 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001360 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1361 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001362 L, AR->getNoWrapFlags());
1363 }
Dan Gohman76466372009-04-27 20:16:15 +00001364 }
1365 }
1366 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001367
Dan Gohman74a0ba12009-07-13 20:55:53 +00001368 // The cast wasn't folded; create an explicit cast node.
1369 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001370 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001371 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1372 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001373 UniqueSCEVs.InsertNode(S, IP);
1374 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001375}
1376
Andrew Trick812276e2011-05-31 21:17:47 +00001377// Get the limit of a recurrence such that incrementing by Step cannot cause
1378// signed overflow as long as the value of the recurrence within the loop does
1379// not exceed this limit before incrementing.
1380static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1381 ICmpInst::Predicate *Pred,
1382 ScalarEvolution *SE) {
1383 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1384 if (SE->isKnownPositive(Step)) {
1385 *Pred = ICmpInst::ICMP_SLT;
1386 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1387 SE->getSignedRange(Step).getSignedMax());
1388 }
1389 if (SE->isKnownNegative(Step)) {
1390 *Pred = ICmpInst::ICMP_SGT;
1391 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1392 SE->getSignedRange(Step).getSignedMin());
1393 }
Craig Topper9f008862014-04-15 04:59:12 +00001394 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001395}
1396
1397// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1398// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1399// or postincrement sibling. This allows normalizing a sign extended AddRec as
1400// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1401// result, the expression "Step + sext(PreIncAR)" is congruent with
1402// "sext(PostIncAR)"
1403static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001404 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001405 ScalarEvolution *SE) {
1406 const Loop *L = AR->getLoop();
1407 const SCEV *Start = AR->getStart();
1408 const SCEV *Step = AR->getStepRecurrence(*SE);
1409
1410 // Check for a simple looking step prior to loop entry.
1411 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001412 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001413 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001414
1415 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1416 // subtraction is expensive. For this purpose, perform a quick and dirty
1417 // difference, by checking for Step in the operand list.
1418 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001419 for (const SCEV *Op : SA->operands())
1420 if (Op != Step)
1421 DiffOps.push_back(Op);
1422
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001423 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001424 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001425
1426 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1427 // same three conditions that getSignExtendedExpr checks.
1428
1429 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001430 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001431 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1432 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1433
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001434 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001435 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001436
1437 // 2. Direct overflow check on the step operation's expression.
1438 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001439 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001440 const SCEV *OperandExtendedStart =
1441 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1442 SE->getSignExtendExpr(Step, WideTy));
1443 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1444 // Cache knowledge of PreAR NSW.
1445 if (PreAR)
1446 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1447 // FIXME: this optimization needs a unit test
1448 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1449 return PreStart;
1450 }
1451
1452 // 3. Loop precondition.
1453 ICmpInst::Predicate Pred;
1454 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1455
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001456 if (OverflowLimit &&
1457 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001458 return PreStart;
1459 }
Craig Topper9f008862014-04-15 04:59:12 +00001460 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001461}
1462
1463// Get the normalized sign-extended expression for this AddRec's Start.
1464static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001465 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001466 ScalarEvolution *SE) {
1467 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1468 if (!PreStart)
1469 return SE->getSignExtendExpr(AR->getStart(), Ty);
1470
1471 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1472 SE->getSignExtendExpr(PreStart, Ty));
1473}
1474
Dan Gohmanaf752342009-07-07 17:06:11 +00001475const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001476 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001477 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001478 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001479 assert(isSCEVable(Ty) &&
1480 "This is not a conversion to a SCEVable type!");
1481 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001482
Dan Gohman3423e722009-06-30 20:13:32 +00001483 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001484 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1485 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001486 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001487
Dan Gohman79af8542009-04-22 16:20:48 +00001488 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001489 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001490 return getSignExtendExpr(SS->getOperand(), Ty);
1491
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001492 // sext(zext(x)) --> zext(x)
1493 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1494 return getZeroExtendExpr(SZ->getOperand(), Ty);
1495
Dan Gohman74a0ba12009-07-13 20:55:53 +00001496 // Before doing any expensive analysis, check to see if we've already
1497 // computed a SCEV for this Op and Ty.
1498 FoldingSetNodeID ID;
1499 ID.AddInteger(scSignExtend);
1500 ID.AddPointer(Op);
1501 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001502 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001503 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1504
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001505 // If the input value is provably positive, build a zext instead.
1506 if (isKnownNonNegative(Op))
1507 return getZeroExtendExpr(Op, Ty);
1508
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001509 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1510 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1511 // It's possible the bits taken off by the truncate were all sign bits. If
1512 // so, we should be able to simplify this further.
1513 const SCEV *X = ST->getOperand();
1514 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001515 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1516 unsigned NewBits = getTypeSizeInBits(Ty);
1517 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001518 CR.sextOrTrunc(NewBits)))
1519 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001520 }
1521
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001522 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1523 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1524 if (SA->getNumOperands() == 2) {
1525 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1526 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1527 if (SMul && SC1) {
1528 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001529 const APInt &C1 = SC1->getValue()->getValue();
1530 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001531 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001532 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001533 return getAddExpr(getSignExtendExpr(SC1, Ty),
1534 getSignExtendExpr(SMul, Ty));
1535 }
1536 }
1537 }
1538 }
Dan Gohman76466372009-04-27 20:16:15 +00001539 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001540 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001541 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001542 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001543 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001544 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001545 const SCEV *Start = AR->getStart();
1546 const SCEV *Step = AR->getStepRecurrence(*this);
1547 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1548 const Loop *L = AR->getLoop();
1549
Dan Gohman62ef6a72009-07-25 01:22:26 +00001550 // If we have special knowledge that this addrec won't overflow,
1551 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001552 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001553 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001554 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001555 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001556
Dan Gohman76466372009-04-27 20:16:15 +00001557 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1558 // Note that this serves two purposes: It filters out loops that are
1559 // simply not analyzable, and it covers the case where this code is
1560 // being called from within backedge-taken count analysis, such that
1561 // attempting to ask for the backedge-taken count would likely result
1562 // in infinite recursion. In the later case, the analysis code will
1563 // cope with a conservative value, and it will take care to purge
1564 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001565 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001566 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001567 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001568 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001569
1570 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001571 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001572 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001573 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001574 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001575 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1576 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001577 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001578 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001579 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001580 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1581 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1582 const SCEV *WideMaxBECount =
1583 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001584 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001585 getAddExpr(WideStart,
1586 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001587 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001588 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001589 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1590 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001591 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001592 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001593 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001594 L, AR->getNoWrapFlags());
1595 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001596 // Similar to above, only this time treat the step value as unsigned.
1597 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001598 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001599 getAddExpr(WideStart,
1600 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001601 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001602 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001603 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1604 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001605 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001606 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001607 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001608 L, AR->getNoWrapFlags());
1609 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001610 }
1611
1612 // If the backedge is guarded by a comparison with the pre-inc value
1613 // the addrec is safe. Also, if the entry is guarded by a comparison
1614 // with the start value and the backedge is guarded by a comparison
1615 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001616 ICmpInst::Predicate Pred;
1617 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1618 if (OverflowLimit &&
1619 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1620 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1621 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1622 OverflowLimit)))) {
1623 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1624 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1625 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1626 getSignExtendExpr(Step, Ty),
1627 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001628 }
1629 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 // If Start and Step are constants, check if we can apply this
1631 // transformation:
1632 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1633 auto SC1 = dyn_cast<SCEVConstant>(Start);
1634 auto SC2 = dyn_cast<SCEVConstant>(Step);
1635 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001636 const APInt &C1 = SC1->getValue()->getValue();
1637 const APInt &C2 = SC2->getValue()->getValue();
1638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1639 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001640 Start = getSignExtendExpr(Start, Ty);
1641 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1642 L, AR->getNoWrapFlags());
1643 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1644 }
1645 }
Dan Gohman76466372009-04-27 20:16:15 +00001646 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001647
Dan Gohman74a0ba12009-07-13 20:55:53 +00001648 // The cast wasn't folded; create an explicit cast node.
1649 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001650 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001651 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1652 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001653 UniqueSCEVs.InsertNode(S, IP);
1654 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001655}
1656
Dan Gohman8db2edc2009-06-13 15:56:47 +00001657/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1658/// unspecified bits out to the given type.
1659///
Dan Gohmanaf752342009-07-07 17:06:11 +00001660const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001661 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001662 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1663 "This is not an extending conversion!");
1664 assert(isSCEVable(Ty) &&
1665 "This is not a conversion to a SCEVable type!");
1666 Ty = getEffectiveSCEVType(Ty);
1667
1668 // Sign-extend negative constants.
1669 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1670 if (SC->getValue()->getValue().isNegative())
1671 return getSignExtendExpr(Op, Ty);
1672
1673 // Peel off a truncate cast.
1674 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001675 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001676 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1677 return getAnyExtendExpr(NewOp, Ty);
1678 return getTruncateOrNoop(NewOp, Ty);
1679 }
1680
1681 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001682 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001683 if (!isa<SCEVZeroExtendExpr>(ZExt))
1684 return ZExt;
1685
1686 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001687 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001688 if (!isa<SCEVSignExtendExpr>(SExt))
1689 return SExt;
1690
Dan Gohman51ad99d2010-01-21 02:09:26 +00001691 // Force the cast to be folded into the operands of an addrec.
1692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1693 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001694 for (const SCEV *Op : AR->operands())
1695 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001696 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001697 }
1698
Dan Gohman8db2edc2009-06-13 15:56:47 +00001699 // If the expression is obviously signed, use the sext cast value.
1700 if (isa<SCEVSMaxExpr>(Op))
1701 return SExt;
1702
1703 // Absent any other information, use the zext cast value.
1704 return ZExt;
1705}
1706
Dan Gohman038d02e2009-06-14 22:58:51 +00001707/// CollectAddOperandsWithScales - Process the given Ops list, which is
1708/// a list of operands to be added under the given scale, update the given
1709/// map. This is a helper function for getAddRecExpr. As an example of
1710/// what it does, given a sequence of operands that would form an add
1711/// expression like this:
1712///
Tobias Grosserba49e422014-03-05 10:37:17 +00001713/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001714///
1715/// where A and B are constants, update the map with these values:
1716///
1717/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1718///
1719/// and add 13 + A*B*29 to AccumulatedConstant.
1720/// This will allow getAddRecExpr to produce this:
1721///
1722/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1723///
1724/// This form often exposes folding opportunities that are hidden in
1725/// the original operand list.
1726///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001727/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001728/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1729/// the common case where no interesting opportunities are present, and
1730/// is also used as a check to avoid infinite recursion.
1731///
1732static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001733CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001734 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001735 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001736 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001737 const APInt &Scale,
1738 ScalarEvolution &SE) {
1739 bool Interesting = false;
1740
Dan Gohman45073042010-06-18 19:12:32 +00001741 // Iterate over the add operands. They are sorted, with constants first.
1742 unsigned i = 0;
1743 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1744 ++i;
1745 // Pull a buried constant out to the outside.
1746 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1747 Interesting = true;
1748 AccumulatedConstant += Scale * C->getValue()->getValue();
1749 }
1750
1751 // Next comes everything else. We're especially interested in multiplies
1752 // here, but they're in the middle, so just visit the rest with one loop.
1753 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001754 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1755 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1756 APInt NewScale =
1757 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1758 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1759 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001760 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001761 Interesting |=
1762 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001763 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001764 NewScale, SE);
1765 } else {
1766 // A multiplication of a constant with some other value. Update
1767 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001768 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1769 const SCEV *Key = SE.getMulExpr(MulOps);
1770 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001771 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001772 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001773 NewOps.push_back(Pair.first->first);
1774 } else {
1775 Pair.first->second += NewScale;
1776 // The map already had an entry for this value, which may indicate
1777 // a folding opportunity.
1778 Interesting = true;
1779 }
1780 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001781 } else {
1782 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001783 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001784 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001785 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001786 NewOps.push_back(Pair.first->first);
1787 } else {
1788 Pair.first->second += Scale;
1789 // The map already had an entry for this value, which may indicate
1790 // a folding opportunity.
1791 Interesting = true;
1792 }
1793 }
1794 }
1795
1796 return Interesting;
1797}
1798
1799namespace {
1800 struct APIntCompare {
1801 bool operator()(const APInt &LHS, const APInt &RHS) const {
1802 return LHS.ult(RHS);
1803 }
1804 };
1805}
1806
Dan Gohman4d5435d2009-05-24 23:45:28 +00001807/// getAddExpr - Get a canonical add expression, or something simpler if
1808/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001809const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001810 SCEV::NoWrapFlags Flags) {
1811 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1812 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001813 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001814 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001815#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001816 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001817 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001818 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001819 "SCEVAddExpr operand types don't match!");
1820#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001821
Andrew Trick8b55b732011-03-14 16:50:06 +00001822 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001823 // And vice-versa.
1824 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1825 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1826 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001827 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001828 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1829 E = Ops.end(); I != E; ++I)
1830 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001831 All = false;
1832 break;
1833 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001834 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001835 }
1836
Chris Lattnerd934c702004-04-02 20:23:17 +00001837 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001838 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001839
1840 // If there are any constants, fold them together.
1841 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001842 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001843 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001844 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001845 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001846 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001847 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1848 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001849 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001850 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001851 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001852 }
1853
1854 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001855 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001856 Ops.erase(Ops.begin());
1857 --Idx;
1858 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001859
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001860 if (Ops.size() == 1) return Ops[0];
1861 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001862
Dan Gohman15871f22010-08-27 21:39:59 +00001863 // Okay, check to see if the same value occurs in the operand list more than
1864 // once. If so, merge them together into an multiply expression. Since we
1865 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001866 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001867 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001868 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001869 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001870 // Scan ahead to count how many equal operands there are.
1871 unsigned Count = 2;
1872 while (i+Count != e && Ops[i+Count] == Ops[i])
1873 ++Count;
1874 // Merge the values into a multiply.
1875 const SCEV *Scale = getConstant(Ty, Count);
1876 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1877 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001878 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001879 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001880 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001881 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001882 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001883 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001884 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001885 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001886
Dan Gohman2e55cc52009-05-08 21:03:19 +00001887 // Check for truncates. If all the operands are truncated from the same
1888 // type, see if factoring out the truncate would permit the result to be
1889 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1890 // if the contents of the resulting outer trunc fold to something simple.
1891 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1892 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001893 Type *DstType = Trunc->getType();
1894 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001895 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001896 bool Ok = true;
1897 // Check all the operands to see if they can be represented in the
1898 // source type of the truncate.
1899 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1900 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1901 if (T->getOperand()->getType() != SrcType) {
1902 Ok = false;
1903 break;
1904 }
1905 LargeOps.push_back(T->getOperand());
1906 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001907 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001908 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001909 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001910 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1911 if (const SCEVTruncateExpr *T =
1912 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1913 if (T->getOperand()->getType() != SrcType) {
1914 Ok = false;
1915 break;
1916 }
1917 LargeMulOps.push_back(T->getOperand());
1918 } else if (const SCEVConstant *C =
1919 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001920 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001921 } else {
1922 Ok = false;
1923 break;
1924 }
1925 }
1926 if (Ok)
1927 LargeOps.push_back(getMulExpr(LargeMulOps));
1928 } else {
1929 Ok = false;
1930 break;
1931 }
1932 }
1933 if (Ok) {
1934 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001935 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001936 // If it folds to something simple, use it. Otherwise, don't.
1937 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1938 return getTruncateExpr(Fold, DstType);
1939 }
1940 }
1941
1942 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001943 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1944 ++Idx;
1945
1946 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001947 if (Idx < Ops.size()) {
1948 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001949 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001950 // If we have an add, expand the add operands onto the end of the operands
1951 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001952 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001953 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 DeletedAdd = true;
1955 }
1956
1957 // If we deleted at least one add, we added operands to the end of the list,
1958 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001959 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001960 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001961 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001962 }
1963
1964 // Skip over the add expression until we get to a multiply.
1965 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1966 ++Idx;
1967
Dan Gohman038d02e2009-06-14 22:58:51 +00001968 // Check to see if there are any folding opportunities present with
1969 // operands multiplied by constant values.
1970 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1971 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001972 DenseMap<const SCEV *, APInt> M;
1973 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001974 APInt AccumulatedConstant(BitWidth, 0);
1975 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001976 Ops.data(), Ops.size(),
1977 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001978 // Some interesting folding opportunity is present, so its worthwhile to
1979 // re-generate the operands list. Group the operands by constant scale,
1980 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001981 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001982 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001983 E = NewOps.end(); I != E; ++I)
1984 MulOpLists[M.find(*I)->second].push_back(*I);
1985 // Re-generate the operands list.
1986 Ops.clear();
1987 if (AccumulatedConstant != 0)
1988 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001989 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1990 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001991 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001992 Ops.push_back(getMulExpr(getConstant(I->first),
1993 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001994 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001995 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001996 if (Ops.size() == 1)
1997 return Ops[0];
1998 return getAddExpr(Ops);
1999 }
2000 }
2001
Chris Lattnerd934c702004-04-02 20:23:17 +00002002 // If we are adding something to a multiply expression, make sure the
2003 // something is not already an operand of the multiply. If so, merge it into
2004 // the multiply.
2005 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002006 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002007 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002008 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002009 if (isa<SCEVConstant>(MulOpSCEV))
2010 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002012 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002013 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002014 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 if (Mul->getNumOperands() != 2) {
2016 // If the multiply has more than two operands, we must get the
2017 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002018 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2019 Mul->op_begin()+MulOp);
2020 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002021 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002022 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002023 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002024 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002025 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 if (Ops.size() == 2) return OuterMul;
2027 if (AddOp < Idx) {
2028 Ops.erase(Ops.begin()+AddOp);
2029 Ops.erase(Ops.begin()+Idx-1);
2030 } else {
2031 Ops.erase(Ops.begin()+Idx);
2032 Ops.erase(Ops.begin()+AddOp-1);
2033 }
2034 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002035 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002036 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002037
Chris Lattnerd934c702004-04-02 20:23:17 +00002038 // Check this multiply against other multiplies being added together.
2039 for (unsigned OtherMulIdx = Idx+1;
2040 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2041 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002042 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 // If MulOp occurs in OtherMul, we can fold the two multiplies
2044 // together.
2045 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2046 OMulOp != e; ++OMulOp)
2047 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2048 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002049 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002050 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002051 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002052 Mul->op_begin()+MulOp);
2053 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002054 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002056 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002057 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002058 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002059 OtherMul->op_begin()+OMulOp);
2060 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002061 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002062 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002063 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2064 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002065 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002066 Ops.erase(Ops.begin()+Idx);
2067 Ops.erase(Ops.begin()+OtherMulIdx-1);
2068 Ops.push_back(OuterMul);
2069 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002070 }
2071 }
2072 }
2073 }
2074
2075 // If there are any add recurrences in the operands list, see if any other
2076 // added values are loop invariant. If so, we can fold them into the
2077 // recurrence.
2078 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2079 ++Idx;
2080
2081 // Scan over all recurrences, trying to fold loop invariants into them.
2082 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2083 // Scan all of the other operands to this add and add them to the vector if
2084 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002085 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002086 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002087 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002088 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002089 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002090 LIOps.push_back(Ops[i]);
2091 Ops.erase(Ops.begin()+i);
2092 --i; --e;
2093 }
2094
2095 // If we found some loop invariants, fold them into the recurrence.
2096 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002097 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002098 LIOps.push_back(AddRec->getStart());
2099
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002101 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002102 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002103
Dan Gohman16206132010-06-30 07:16:37 +00002104 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002105 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002106 // Always propagate NW.
2107 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002108 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002109
Chris Lattnerd934c702004-04-02 20:23:17 +00002110 // If all of the other operands were loop invariant, we are done.
2111 if (Ops.size() == 1) return NewRec;
2112
Nick Lewyckydb66b822011-09-06 05:08:09 +00002113 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002114 for (unsigned i = 0;; ++i)
2115 if (Ops[i] == AddRec) {
2116 Ops[i] = NewRec;
2117 break;
2118 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002119 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002120 }
2121
2122 // Okay, if there weren't any loop invariants to be folded, check to see if
2123 // there are multiple AddRec's with the same loop induction variable being
2124 // added together. If so, we can fold them.
2125 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002126 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2127 ++OtherIdx)
2128 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2129 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2130 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2131 AddRec->op_end());
2132 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2133 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002134 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002135 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002136 if (OtherAddRec->getLoop() == AddRecLoop) {
2137 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2138 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002139 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002140 AddRecOps.append(OtherAddRec->op_begin()+i,
2141 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002142 break;
2143 }
Dan Gohman028c1812010-08-29 14:53:34 +00002144 AddRecOps[i] = getAddExpr(AddRecOps[i],
2145 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002146 }
2147 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002148 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002149 // Step size has changed, so we cannot guarantee no self-wraparound.
2150 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002151 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002152 }
2153
2154 // Otherwise couldn't fold anything into this recurrence. Move onto the
2155 // next one.
2156 }
2157
2158 // Okay, it looks like we really DO need an add expr. Check to see if we
2159 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002160 FoldingSetNodeID ID;
2161 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002162 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2163 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002164 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002165 SCEVAddExpr *S =
2166 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2167 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002168 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2169 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002170 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2171 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002172 UniqueSCEVs.InsertNode(S, IP);
2173 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002174 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002175 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002176}
2177
Nick Lewycky287682e2011-10-04 06:51:26 +00002178static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2179 uint64_t k = i*j;
2180 if (j > 1 && k / j != i) Overflow = true;
2181 return k;
2182}
2183
2184/// Compute the result of "n choose k", the binomial coefficient. If an
2185/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002186/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002187static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2188 // We use the multiplicative formula:
2189 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2190 // At each iteration, we take the n-th term of the numeral and divide by the
2191 // (k-n)th term of the denominator. This division will always produce an
2192 // integral result, and helps reduce the chance of overflow in the
2193 // intermediate computations. However, we can still overflow even when the
2194 // final result would fit.
2195
2196 if (n == 0 || n == k) return 1;
2197 if (k > n) return 0;
2198
2199 if (k > n/2)
2200 k = n-k;
2201
2202 uint64_t r = 1;
2203 for (uint64_t i = 1; i <= k; ++i) {
2204 r = umul_ov(r, n-(i-1), Overflow);
2205 r /= i;
2206 }
2207 return r;
2208}
2209
Dan Gohman4d5435d2009-05-24 23:45:28 +00002210/// getMulExpr - Get a canonical multiply expression, or something simpler if
2211/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002212const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002213 SCEV::NoWrapFlags Flags) {
2214 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2215 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002217 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002218#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002219 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002220 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002221 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002222 "SCEVMulExpr operand types don't match!");
2223#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002224
Andrew Trick8b55b732011-03-14 16:50:06 +00002225 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002226 // And vice-versa.
2227 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2228 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2229 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002230 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002231 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2232 E = Ops.end(); I != E; ++I)
2233 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002234 All = false;
2235 break;
2236 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002237 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002238 }
2239
Chris Lattnerd934c702004-04-02 20:23:17 +00002240 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002241 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002242
2243 // If there are any constants, fold them together.
2244 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002245 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002246
2247 // C1*(C2+V) -> C1*C2 + C1*V
2248 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00002249 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00002250 if (Add->getNumOperands() == 2 &&
2251 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00002252 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2253 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002254
Chris Lattnerd934c702004-04-02 20:23:17 +00002255 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002256 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002257 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002258 ConstantInt *Fold = ConstantInt::get(getContext(),
2259 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002260 RHSC->getValue()->getValue());
2261 Ops[0] = getConstant(Fold);
2262 Ops.erase(Ops.begin()+1); // Erase the folded element
2263 if (Ops.size() == 1) return Ops[0];
2264 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002265 }
2266
2267 // If we are left with a constant one being multiplied, strip it off.
2268 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2269 Ops.erase(Ops.begin());
2270 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002271 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 // If we have a multiply of zero, it will always be zero.
2273 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002274 } else if (Ops[0]->isAllOnesValue()) {
2275 // If we have a mul by -1 of an add, try distributing the -1 among the
2276 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002277 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002278 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2279 SmallVector<const SCEV *, 4> NewOps;
2280 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002281 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2282 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002283 const SCEV *Mul = getMulExpr(Ops[0], *I);
2284 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2285 NewOps.push_back(Mul);
2286 }
2287 if (AnyFolded)
2288 return getAddExpr(NewOps);
2289 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002290 else if (const SCEVAddRecExpr *
2291 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2292 // Negation preserves a recurrence's no self-wrap property.
2293 SmallVector<const SCEV *, 4> Operands;
2294 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2295 E = AddRec->op_end(); I != E; ++I) {
2296 Operands.push_back(getMulExpr(Ops[0], *I));
2297 }
2298 return getAddRecExpr(Operands, AddRec->getLoop(),
2299 AddRec->getNoWrapFlags(SCEV::FlagNW));
2300 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002301 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002302 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002303
2304 if (Ops.size() == 1)
2305 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002306 }
2307
2308 // Skip over the add expression until we get to a multiply.
2309 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2310 ++Idx;
2311
Chris Lattnerd934c702004-04-02 20:23:17 +00002312 // If there are mul operands inline them all into this expression.
2313 if (Idx < Ops.size()) {
2314 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002315 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002316 // If we have an mul, expand the mul operands onto the end of the operands
2317 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002318 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002319 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002320 DeletedMul = true;
2321 }
2322
2323 // If we deleted at least one mul, we added operands to the end of the list,
2324 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002325 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002326 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002327 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002328 }
2329
2330 // If there are any add recurrences in the operands list, see if any other
2331 // added values are loop invariant. If so, we can fold them into the
2332 // recurrence.
2333 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2334 ++Idx;
2335
2336 // Scan over all recurrences, trying to fold loop invariants into them.
2337 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2338 // Scan all of the other operands to this mul and add them to the vector if
2339 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002340 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002341 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002342 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002343 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002344 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002345 LIOps.push_back(Ops[i]);
2346 Ops.erase(Ops.begin()+i);
2347 --i; --e;
2348 }
2349
2350 // If we found some loop invariants, fold them into the recurrence.
2351 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002352 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002353 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002354 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002355 const SCEV *Scale = getMulExpr(LIOps);
2356 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2357 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002358
Dan Gohman16206132010-06-30 07:16:37 +00002359 // Build the new addrec. Propagate the NUW and NSW flags if both the
2360 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002361 //
2362 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002363 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002364 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2365 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002366
2367 // If all of the other operands were loop invariant, we are done.
2368 if (Ops.size() == 1) return NewRec;
2369
Nick Lewyckydb66b822011-09-06 05:08:09 +00002370 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002371 for (unsigned i = 0;; ++i)
2372 if (Ops[i] == AddRec) {
2373 Ops[i] = NewRec;
2374 break;
2375 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002376 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002377 }
2378
2379 // Okay, if there weren't any loop invariants to be folded, check to see if
2380 // there are multiple AddRec's with the same loop induction variable being
2381 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002382
2383 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2384 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2385 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2386 // ]]],+,...up to x=2n}.
2387 // Note that the arguments to choose() are always integers with values
2388 // known at compile time, never SCEV objects.
2389 //
2390 // The implementation avoids pointless extra computations when the two
2391 // addrec's are of different length (mathematically, it's equivalent to
2392 // an infinite stream of zeros on the right).
2393 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002394 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002395 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002396 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002397 const SCEVAddRecExpr *OtherAddRec =
2398 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2399 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002400 continue;
2401
Nick Lewycky97756402014-09-01 05:17:15 +00002402 bool Overflow = false;
2403 Type *Ty = AddRec->getType();
2404 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2405 SmallVector<const SCEV*, 7> AddRecOps;
2406 for (int x = 0, xe = AddRec->getNumOperands() +
2407 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2408 const SCEV *Term = getConstant(Ty, 0);
2409 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2410 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2411 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2412 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2413 z < ze && !Overflow; ++z) {
2414 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2415 uint64_t Coeff;
2416 if (LargerThan64Bits)
2417 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2418 else
2419 Coeff = Coeff1*Coeff2;
2420 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2421 const SCEV *Term1 = AddRec->getOperand(y-z);
2422 const SCEV *Term2 = OtherAddRec->getOperand(z);
2423 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002424 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002425 }
Nick Lewycky97756402014-09-01 05:17:15 +00002426 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002427 }
Nick Lewycky97756402014-09-01 05:17:15 +00002428 if (!Overflow) {
2429 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2430 SCEV::FlagAnyWrap);
2431 if (Ops.size() == 2) return NewAddRec;
2432 Ops[Idx] = NewAddRec;
2433 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2434 OpsModified = true;
2435 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2436 if (!AddRec)
2437 break;
2438 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002439 }
Nick Lewycky97756402014-09-01 05:17:15 +00002440 if (OpsModified)
2441 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002442
2443 // Otherwise couldn't fold anything into this recurrence. Move onto the
2444 // next one.
2445 }
2446
2447 // Okay, it looks like we really DO need an mul expr. Check to see if we
2448 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002449 FoldingSetNodeID ID;
2450 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002451 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2452 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002453 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002454 SCEVMulExpr *S =
2455 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2456 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002457 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2458 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002459 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2460 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002461 UniqueSCEVs.InsertNode(S, IP);
2462 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002463 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002464 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002465}
2466
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002467/// getUDivExpr - Get a canonical unsigned division expression, or something
2468/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002469const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2470 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002471 assert(getEffectiveSCEVType(LHS->getType()) ==
2472 getEffectiveSCEVType(RHS->getType()) &&
2473 "SCEVUDivExpr operand types don't match!");
2474
Dan Gohmana30370b2009-05-04 22:02:23 +00002475 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002476 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002477 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002478 // If the denominator is zero, the result of the udiv is undefined. Don't
2479 // try to analyze it, because the resolution chosen here may differ from
2480 // the resolution chosen in other parts of the compiler.
2481 if (!RHSC->getValue()->isZero()) {
2482 // Determine if the division can be folded into the operands of
2483 // its operands.
2484 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002485 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002486 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002487 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002488 // For non-power-of-two values, effectively round the value up to the
2489 // nearest power of two.
2490 if (!RHSC->getValue()->getValue().isPowerOf2())
2491 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002492 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002493 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002494 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2495 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002496 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2497 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2498 const APInt &StepInt = Step->getValue()->getValue();
2499 const APInt &DivInt = RHSC->getValue()->getValue();
2500 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002501 getZeroExtendExpr(AR, ExtTy) ==
2502 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2503 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002504 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002505 SmallVector<const SCEV *, 4> Operands;
2506 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2507 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002508 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002509 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002510 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002511 /// Get a canonical UDivExpr for a recurrence.
2512 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2513 // We can currently only fold X%N if X is constant.
2514 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2515 if (StartC && !DivInt.urem(StepInt) &&
2516 getZeroExtendExpr(AR, ExtTy) ==
2517 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2518 getZeroExtendExpr(Step, ExtTy),
2519 AR->getLoop(), SCEV::FlagAnyWrap)) {
2520 const APInt &StartInt = StartC->getValue()->getValue();
2521 const APInt &StartRem = StartInt.urem(StepInt);
2522 if (StartRem != 0)
2523 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2524 AR->getLoop(), SCEV::FlagNW);
2525 }
2526 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002527 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2528 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2529 SmallVector<const SCEV *, 4> Operands;
2530 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2531 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2532 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2533 // Find an operand that's safely divisible.
2534 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2535 const SCEV *Op = M->getOperand(i);
2536 const SCEV *Div = getUDivExpr(Op, RHSC);
2537 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2538 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2539 M->op_end());
2540 Operands[i] = Div;
2541 return getMulExpr(Operands);
2542 }
2543 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002544 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002545 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002546 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002547 SmallVector<const SCEV *, 4> Operands;
2548 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2549 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2550 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2551 Operands.clear();
2552 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2553 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2554 if (isa<SCEVUDivExpr>(Op) ||
2555 getMulExpr(Op, RHS) != A->getOperand(i))
2556 break;
2557 Operands.push_back(Op);
2558 }
2559 if (Operands.size() == A->getNumOperands())
2560 return getAddExpr(Operands);
2561 }
2562 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002563
Dan Gohmanacd700a2010-04-22 01:35:11 +00002564 // Fold if both operands are constant.
2565 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2566 Constant *LHSCV = LHSC->getValue();
2567 Constant *RHSCV = RHSC->getValue();
2568 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2569 RHSCV)));
2570 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002571 }
2572 }
2573
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002574 FoldingSetNodeID ID;
2575 ID.AddInteger(scUDivExpr);
2576 ID.AddPointer(LHS);
2577 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002578 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002579 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002580 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2581 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002582 UniqueSCEVs.InsertNode(S, IP);
2583 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002584}
2585
Nick Lewycky31eaca52014-01-27 10:04:03 +00002586static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2587 APInt A = C1->getValue()->getValue().abs();
2588 APInt B = C2->getValue()->getValue().abs();
2589 uint32_t ABW = A.getBitWidth();
2590 uint32_t BBW = B.getBitWidth();
2591
2592 if (ABW > BBW)
2593 B = B.zext(ABW);
2594 else if (ABW < BBW)
2595 A = A.zext(BBW);
2596
2597 return APIntOps::GreatestCommonDivisor(A, B);
2598}
2599
2600/// getUDivExactExpr - Get a canonical unsigned division expression, or
2601/// something simpler if possible. There is no representation for an exact udiv
2602/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2603/// We can't do this when it's not exact because the udiv may be clearing bits.
2604const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2605 const SCEV *RHS) {
2606 // TODO: we could try to find factors in all sorts of things, but for now we
2607 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2608 // end of this file for inspiration.
2609
2610 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2611 if (!Mul)
2612 return getUDivExpr(LHS, RHS);
2613
2614 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2615 // If the mulexpr multiplies by a constant, then that constant must be the
2616 // first element of the mulexpr.
2617 if (const SCEVConstant *LHSCst =
2618 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2619 if (LHSCst == RHSCst) {
2620 SmallVector<const SCEV *, 2> Operands;
2621 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2622 return getMulExpr(Operands);
2623 }
2624
2625 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2626 // that there's a factor provided by one of the other terms. We need to
2627 // check.
2628 APInt Factor = gcd(LHSCst, RHSCst);
2629 if (!Factor.isIntN(1)) {
2630 LHSCst = cast<SCEVConstant>(
2631 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2632 RHSCst = cast<SCEVConstant>(
2633 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2634 SmallVector<const SCEV *, 2> Operands;
2635 Operands.push_back(LHSCst);
2636 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2637 LHS = getMulExpr(Operands);
2638 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002639 Mul = dyn_cast<SCEVMulExpr>(LHS);
2640 if (!Mul)
2641 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002642 }
2643 }
2644 }
2645
2646 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2647 if (Mul->getOperand(i) == RHS) {
2648 SmallVector<const SCEV *, 2> Operands;
2649 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2650 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2651 return getMulExpr(Operands);
2652 }
2653 }
2654
2655 return getUDivExpr(LHS, RHS);
2656}
Chris Lattnerd934c702004-04-02 20:23:17 +00002657
Dan Gohman4d5435d2009-05-24 23:45:28 +00002658/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2659/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002660const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2661 const Loop *L,
2662 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002663 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002664 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002665 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002666 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002667 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002668 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002669 }
2670
2671 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002672 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002673}
2674
Dan Gohman4d5435d2009-05-24 23:45:28 +00002675/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2676/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002677const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002678ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002679 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002680 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002681#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002682 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002683 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002684 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002685 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002686 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002687 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002688 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002689#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002690
Dan Gohmanbe928e32008-06-18 16:23:07 +00002691 if (Operands.back()->isZero()) {
2692 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002693 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002694 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002695
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002696 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2697 // use that information to infer NUW and NSW flags. However, computing a
2698 // BE count requires calling getAddRecExpr, so we may not yet have a
2699 // meaningful BE count at this point (and if we don't, we'd be stuck
2700 // with a SCEVCouldNotCompute as the cached BE count).
2701
Andrew Trick8b55b732011-03-14 16:50:06 +00002702 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002703 // And vice-versa.
2704 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2705 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2706 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002707 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002708 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2709 E = Operands.end(); I != E; ++I)
2710 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002711 All = false;
2712 break;
2713 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002714 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002715 }
2716
Dan Gohman223a5d22008-08-08 18:33:12 +00002717 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002718 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002719 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002720 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002721 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002722 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002723 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002724 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002725 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002726 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002727 // AddRecs require their operands be loop-invariant with respect to their
2728 // loops. Don't perform this transformation if it would break this
2729 // requirement.
2730 bool AllInvariant = true;
2731 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002732 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002733 AllInvariant = false;
2734 break;
2735 }
2736 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002737 // Create a recurrence for the outer loop with the same step size.
2738 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002739 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2740 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002741 SCEV::NoWrapFlags OuterFlags =
2742 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002743
2744 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002745 AllInvariant = true;
2746 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002747 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002748 AllInvariant = false;
2749 break;
2750 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002751 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002752 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002753 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002754 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2755 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002756 SCEV::NoWrapFlags InnerFlags =
2757 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002758 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2759 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002760 }
2761 // Reset Operands to its original state.
2762 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002763 }
2764 }
2765
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002766 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2767 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002768 FoldingSetNodeID ID;
2769 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002770 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2771 ID.AddPointer(Operands[i]);
2772 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002773 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002774 SCEVAddRecExpr *S =
2775 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2776 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002777 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2778 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002779 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2780 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002781 UniqueSCEVs.InsertNode(S, IP);
2782 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002783 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002784 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002785}
2786
Dan Gohmanabd17092009-06-24 14:49:00 +00002787const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2788 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002789 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002790 Ops.push_back(LHS);
2791 Ops.push_back(RHS);
2792 return getSMaxExpr(Ops);
2793}
2794
Dan Gohmanaf752342009-07-07 17:06:11 +00002795const SCEV *
2796ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002797 assert(!Ops.empty() && "Cannot get empty smax!");
2798 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002799#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002800 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002801 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002802 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002803 "SCEVSMaxExpr operand types don't match!");
2804#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002805
2806 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002807 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002808
2809 // If there are any constants, fold them together.
2810 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002811 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002812 ++Idx;
2813 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002814 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002815 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002816 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002817 APIntOps::smax(LHSC->getValue()->getValue(),
2818 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002819 Ops[0] = getConstant(Fold);
2820 Ops.erase(Ops.begin()+1); // Erase the folded element
2821 if (Ops.size() == 1) return Ops[0];
2822 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002823 }
2824
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002825 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002826 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2827 Ops.erase(Ops.begin());
2828 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002829 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2830 // If we have an smax with a constant maximum-int, it will always be
2831 // maximum-int.
2832 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002833 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002834
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002835 if (Ops.size() == 1) return Ops[0];
2836 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002837
2838 // Find the first SMax
2839 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2840 ++Idx;
2841
2842 // Check to see if one of the operands is an SMax. If so, expand its operands
2843 // onto our operand list, and recurse to simplify.
2844 if (Idx < Ops.size()) {
2845 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002846 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002847 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002848 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002849 DeletedSMax = true;
2850 }
2851
2852 if (DeletedSMax)
2853 return getSMaxExpr(Ops);
2854 }
2855
2856 // Okay, check to see if the same value occurs in the operand list twice. If
2857 // so, delete one. Since we sorted the list, these values are required to
2858 // be adjacent.
2859 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002860 // X smax Y smax Y --> X smax Y
2861 // X smax Y --> X, if X is always greater than Y
2862 if (Ops[i] == Ops[i+1] ||
2863 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2864 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2865 --i; --e;
2866 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002867 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2868 --i; --e;
2869 }
2870
2871 if (Ops.size() == 1) return Ops[0];
2872
2873 assert(!Ops.empty() && "Reduced smax down to nothing!");
2874
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002875 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002876 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002877 FoldingSetNodeID ID;
2878 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002879 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2880 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002881 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002883 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2884 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002885 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2886 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002887 UniqueSCEVs.InsertNode(S, IP);
2888 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002889}
2890
Dan Gohmanabd17092009-06-24 14:49:00 +00002891const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2892 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002893 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002894 Ops.push_back(LHS);
2895 Ops.push_back(RHS);
2896 return getUMaxExpr(Ops);
2897}
2898
Dan Gohmanaf752342009-07-07 17:06:11 +00002899const SCEV *
2900ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002901 assert(!Ops.empty() && "Cannot get empty umax!");
2902 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002903#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002904 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002905 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002906 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002907 "SCEVUMaxExpr operand types don't match!");
2908#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002909
2910 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002911 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002912
2913 // If there are any constants, fold them together.
2914 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002915 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002916 ++Idx;
2917 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002918 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002919 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002920 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002921 APIntOps::umax(LHSC->getValue()->getValue(),
2922 RHSC->getValue()->getValue()));
2923 Ops[0] = getConstant(Fold);
2924 Ops.erase(Ops.begin()+1); // Erase the folded element
2925 if (Ops.size() == 1) return Ops[0];
2926 LHSC = cast<SCEVConstant>(Ops[0]);
2927 }
2928
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002929 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002930 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2931 Ops.erase(Ops.begin());
2932 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002933 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2934 // If we have an umax with a constant maximum-int, it will always be
2935 // maximum-int.
2936 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002937 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002938
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002939 if (Ops.size() == 1) return Ops[0];
2940 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002941
2942 // Find the first UMax
2943 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2944 ++Idx;
2945
2946 // Check to see if one of the operands is a UMax. If so, expand its operands
2947 // onto our operand list, and recurse to simplify.
2948 if (Idx < Ops.size()) {
2949 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002950 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002951 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002952 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002953 DeletedUMax = true;
2954 }
2955
2956 if (DeletedUMax)
2957 return getUMaxExpr(Ops);
2958 }
2959
2960 // Okay, check to see if the same value occurs in the operand list twice. If
2961 // so, delete one. Since we sorted the list, these values are required to
2962 // be adjacent.
2963 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002964 // X umax Y umax Y --> X umax Y
2965 // X umax Y --> X, if X is always greater than Y
2966 if (Ops[i] == Ops[i+1] ||
2967 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2968 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2969 --i; --e;
2970 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002971 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2972 --i; --e;
2973 }
2974
2975 if (Ops.size() == 1) return Ops[0];
2976
2977 assert(!Ops.empty() && "Reduced umax down to nothing!");
2978
2979 // Okay, it looks like we really DO need a umax expr. Check to see if we
2980 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002981 FoldingSetNodeID ID;
2982 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002983 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2984 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002985 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002986 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002987 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2988 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002989 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2990 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002991 UniqueSCEVs.InsertNode(S, IP);
2992 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002993}
2994
Dan Gohmanabd17092009-06-24 14:49:00 +00002995const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2996 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002997 // ~smax(~x, ~y) == smin(x, y).
2998 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2999}
3000
Dan Gohmanabd17092009-06-24 14:49:00 +00003001const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3002 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003003 // ~umax(~x, ~y) == umin(x, y)
3004 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3005}
3006
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003007const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003008 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003009 // constant expression and then folding it back into a ConstantInt.
3010 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003011 if (DL)
3012 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00003013
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003014 Constant *C = ConstantExpr::getSizeOf(AllocTy);
3015 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003016 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003017 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00003018 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003019 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003020 return getTruncateOrZeroExtend(getSCEV(C), Ty);
3021}
3022
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003023const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3024 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003025 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003026 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003027 // constant expression and then folding it back into a ConstantInt.
3028 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003029 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003030 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003031 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003032 }
Dan Gohman11862a62010-04-12 23:03:26 +00003033
Dan Gohmancf913832010-01-28 02:15:55 +00003034 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3035 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003036 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003037 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003038
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003039 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003040 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003041}
3042
Dan Gohmanaf752342009-07-07 17:06:11 +00003043const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003044 // Don't attempt to do anything other than create a SCEVUnknown object
3045 // here. createSCEV only calls getUnknown after checking for all other
3046 // interesting possibilities, and any other code that calls getUnknown
3047 // is doing so in order to hide a value from SCEV canonicalization.
3048
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003049 FoldingSetNodeID ID;
3050 ID.AddInteger(scUnknown);
3051 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003052 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003053 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3054 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3055 "Stale SCEVUnknown in uniquing map!");
3056 return S;
3057 }
3058 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3059 FirstUnknown);
3060 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003061 UniqueSCEVs.InsertNode(S, IP);
3062 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003063}
3064
Chris Lattnerd934c702004-04-02 20:23:17 +00003065//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003066// Basic SCEV Analysis and PHI Idiom Recognition Code
3067//
3068
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003069/// isSCEVable - Test if values of the given type are analyzable within
3070/// the SCEV framework. This primarily includes integer types, and it
3071/// can optionally include pointer types if the ScalarEvolution class
3072/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003073bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003074 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003075 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003076}
3077
3078/// getTypeSizeInBits - Return the size in bits of the specified type,
3079/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003080uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003081 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3082
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003083 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003084 if (DL)
3085 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003086
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003087 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003088 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003089 return Ty->getPrimitiveSizeInBits();
3090
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003091 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003092 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003093 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003094 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003095}
3096
3097/// getEffectiveSCEVType - Return a type with the same bitwidth as
3098/// the given type and which represents how SCEV will treat the given
3099/// type, for which isSCEVable must return true. For pointer types,
3100/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003101Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003102 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3103
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003104 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003105 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003106 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003107
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003108 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003109 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003110
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003111 if (DL)
3112 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003113
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003114 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003115 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003116}
Chris Lattnerd934c702004-04-02 20:23:17 +00003117
Dan Gohmanaf752342009-07-07 17:06:11 +00003118const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003119 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003120}
3121
Shuxin Yangefc4c012013-07-08 17:33:13 +00003122namespace {
3123 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3124 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3125 // is set iff if find such SCEVUnknown.
3126 //
3127 struct FindInvalidSCEVUnknown {
3128 bool FindOne;
3129 FindInvalidSCEVUnknown() { FindOne = false; }
3130 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003131 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003132 case scConstant:
3133 return false;
3134 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003135 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003136 FindOne = true;
3137 return false;
3138 default:
3139 return true;
3140 }
3141 }
3142 bool isDone() const { return FindOne; }
3143 };
3144}
3145
3146bool ScalarEvolution::checkValidity(const SCEV *S) const {
3147 FindInvalidSCEVUnknown F;
3148 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3149 ST.visitAll(S);
3150
3151 return !F.FindOne;
3152}
3153
Chris Lattnerd934c702004-04-02 20:23:17 +00003154/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3155/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003156const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003157 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003158
Shuxin Yangefc4c012013-07-08 17:33:13 +00003159 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3160 if (I != ValueExprMap.end()) {
3161 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003162 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003163 return S;
3164 else
3165 ValueExprMap.erase(I);
3166 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003167 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003168
3169 // The process of creating a SCEV for V may have caused other SCEVs
3170 // to have been created, so it's necessary to insert the new entry
3171 // from scratch, rather than trying to remember the insert position
3172 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003173 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003174 return S;
3175}
3176
Dan Gohman0a40ad92009-04-16 03:18:22 +00003177/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3178///
Dan Gohmanaf752342009-07-07 17:06:11 +00003179const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003180 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003181 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003182 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003183
Chris Lattner229907c2011-07-18 04:54:35 +00003184 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003185 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003186 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003187 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003188}
3189
3190/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003191const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003192 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003193 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003194 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003195
Chris Lattner229907c2011-07-18 04:54:35 +00003196 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003197 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003198 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003199 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003200 return getMinusSCEV(AllOnes, V);
3201}
3202
Andrew Trick8b55b732011-03-14 16:50:06 +00003203/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003204const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003205 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003206 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3207
Dan Gohman46f00a22010-07-20 16:53:00 +00003208 // Fast path: X - X --> 0.
3209 if (LHS == RHS)
3210 return getConstant(LHS->getType(), 0);
3211
Dan Gohman0a40ad92009-04-16 03:18:22 +00003212 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00003213 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003214}
3215
3216/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3217/// input value to the specified type. If the type must be extended, it is zero
3218/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003219const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003220ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3221 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003222 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3223 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003224 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003225 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003226 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003227 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003228 return getTruncateExpr(V, Ty);
3229 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003230}
3231
3232/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3233/// input value to the specified type. If the type must be extended, it is sign
3234/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003235const SCEV *
3236ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003237 Type *Ty) {
3238 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003239 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3240 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003241 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003242 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003243 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003244 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003245 return getTruncateExpr(V, Ty);
3246 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003247}
3248
Dan Gohmane712a2f2009-05-13 03:46:30 +00003249/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3250/// input value to the specified type. If the type must be extended, it is zero
3251/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003252const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003253ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3254 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003255 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3256 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003257 "Cannot noop or zero extend with non-integer arguments!");
3258 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3259 "getNoopOrZeroExtend cannot truncate!");
3260 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3261 return V; // No conversion
3262 return getZeroExtendExpr(V, Ty);
3263}
3264
3265/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3266/// input value to the specified type. If the type must be extended, it is sign
3267/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003268const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003269ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3270 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003271 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3272 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003273 "Cannot noop or sign extend with non-integer arguments!");
3274 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3275 "getNoopOrSignExtend cannot truncate!");
3276 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3277 return V; // No conversion
3278 return getSignExtendExpr(V, Ty);
3279}
3280
Dan Gohman8db2edc2009-06-13 15:56:47 +00003281/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3282/// the input value to the specified type. If the type must be extended,
3283/// it is extended with unspecified bits. The conversion must not be
3284/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003285const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003286ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3287 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003288 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3289 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003290 "Cannot noop or any extend with non-integer arguments!");
3291 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3292 "getNoopOrAnyExtend cannot truncate!");
3293 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3294 return V; // No conversion
3295 return getAnyExtendExpr(V, Ty);
3296}
3297
Dan Gohmane712a2f2009-05-13 03:46:30 +00003298/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3299/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003300const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003301ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3302 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003303 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3304 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003305 "Cannot truncate or noop with non-integer arguments!");
3306 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3307 "getTruncateOrNoop cannot extend!");
3308 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3309 return V; // No conversion
3310 return getTruncateExpr(V, Ty);
3311}
3312
Dan Gohman96212b62009-06-22 00:31:57 +00003313/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3314/// the types using zero-extension, and then perform a umax operation
3315/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003316const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3317 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003318 const SCEV *PromotedLHS = LHS;
3319 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003320
3321 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3322 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3323 else
3324 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3325
3326 return getUMaxExpr(PromotedLHS, PromotedRHS);
3327}
3328
Dan Gohman2bc22302009-06-22 15:03:27 +00003329/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3330/// the types using zero-extension, and then perform a umin operation
3331/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003332const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3333 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003334 const SCEV *PromotedLHS = LHS;
3335 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003336
3337 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3338 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3339 else
3340 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3341
3342 return getUMinExpr(PromotedLHS, PromotedRHS);
3343}
3344
Andrew Trick87716c92011-03-17 23:51:11 +00003345/// getPointerBase - Transitively follow the chain of pointer-type operands
3346/// until reaching a SCEV that does not have a single pointer operand. This
3347/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3348/// but corner cases do exist.
3349const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3350 // A pointer operand may evaluate to a nonpointer expression, such as null.
3351 if (!V->getType()->isPointerTy())
3352 return V;
3353
3354 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3355 return getPointerBase(Cast->getOperand());
3356 }
3357 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003358 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003359 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3360 I != E; ++I) {
3361 if ((*I)->getType()->isPointerTy()) {
3362 // Cannot find the base of an expression with multiple pointer operands.
3363 if (PtrOp)
3364 return V;
3365 PtrOp = *I;
3366 }
3367 }
3368 if (!PtrOp)
3369 return V;
3370 return getPointerBase(PtrOp);
3371 }
3372 return V;
3373}
3374
Dan Gohman0b89dff2009-07-25 01:13:03 +00003375/// PushDefUseChildren - Push users of the given Instruction
3376/// onto the given Worklist.
3377static void
3378PushDefUseChildren(Instruction *I,
3379 SmallVectorImpl<Instruction *> &Worklist) {
3380 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003381 for (User *U : I->users())
3382 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003383}
3384
3385/// ForgetSymbolicValue - This looks up computed SCEV values for all
3386/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003387/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003388/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003389void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003390ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003391 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003392 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003393
Dan Gohman0b89dff2009-07-25 01:13:03 +00003394 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003395 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003396 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003397 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003398 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003399
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003400 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003401 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003402 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003403 const SCEV *Old = It->second;
3404
Dan Gohman0b89dff2009-07-25 01:13:03 +00003405 // Short-circuit the def-use traversal if the symbolic name
3406 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003407 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003408 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003409
Dan Gohman0b89dff2009-07-25 01:13:03 +00003410 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003411 // structure, it's a PHI that's in the progress of being computed
3412 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3413 // additional loop trip count information isn't going to change anything.
3414 // In the second case, createNodeForPHI will perform the necessary
3415 // updates on its own when it gets to that point. In the third, we do
3416 // want to forget the SCEVUnknown.
3417 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003418 !isa<SCEVUnknown>(Old) ||
3419 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003420 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003421 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003422 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003423 }
3424
3425 PushDefUseChildren(I, Worklist);
3426 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003427}
Chris Lattnerd934c702004-04-02 20:23:17 +00003428
3429/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3430/// a loop header, making it a potential recurrence, or it doesn't.
3431///
Dan Gohmanaf752342009-07-07 17:06:11 +00003432const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003433 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3434 if (L->getHeader() == PN->getParent()) {
3435 // The loop may have multiple entrances or multiple exits; we can analyze
3436 // this phi as an addrec if it has a unique entry value and a unique
3437 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003438 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003439 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3440 Value *V = PN->getIncomingValue(i);
3441 if (L->contains(PN->getIncomingBlock(i))) {
3442 if (!BEValueV) {
3443 BEValueV = V;
3444 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003445 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003446 break;
3447 }
3448 } else if (!StartValueV) {
3449 StartValueV = V;
3450 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003451 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003452 break;
3453 }
3454 }
3455 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003456 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003457 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003458 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003459 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003460 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003461
3462 // Using this symbolic name for the PHI, analyze the value coming around
3463 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003464 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003465
3466 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3467 // has a special value for the first iteration of the loop.
3468
3469 // If the value coming around the backedge is an add with the symbolic
3470 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003471 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003472 // If there is a single occurrence of the symbolic value, replace it
3473 // with a recurrence.
3474 unsigned FoundIndex = Add->getNumOperands();
3475 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3476 if (Add->getOperand(i) == SymbolicName)
3477 if (FoundIndex == e) {
3478 FoundIndex = i;
3479 break;
3480 }
3481
3482 if (FoundIndex != Add->getNumOperands()) {
3483 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003484 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003485 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3486 if (i != FoundIndex)
3487 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003488 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003489
3490 // This is not a valid addrec if the step amount is varying each
3491 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003492 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003493 (isa<SCEVAddRecExpr>(Accum) &&
3494 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003495 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003496
3497 // If the increment doesn't overflow, then neither the addrec nor
3498 // the post-increment will overflow.
3499 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3500 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003501 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003502 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003503 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003504 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003505 // If the increment is an inbounds GEP, then we know the address
3506 // space cannot be wrapped around. We cannot make any guarantee
3507 // about signed or unsigned overflow because pointers are
3508 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003509 // pointer. We can guarantee that no unsigned wrap occurs if the
3510 // indices form a positive value.
3511 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003512 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003513
3514 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3515 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3516 Flags = setFlags(Flags, SCEV::FlagNUW);
3517 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003518 } else if (const SubOperator *OBO =
3519 dyn_cast<SubOperator>(BEValueV)) {
3520 if (OBO->hasNoUnsignedWrap())
3521 Flags = setFlags(Flags, SCEV::FlagNUW);
3522 if (OBO->hasNoSignedWrap())
3523 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003524 }
3525
Dan Gohman6635bb22010-04-12 07:49:36 +00003526 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003527 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003528
Dan Gohman51ad99d2010-01-21 02:09:26 +00003529 // Since the no-wrap flags are on the increment, they apply to the
3530 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003531 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003532 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003533 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003534
3535 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003536 // to be symbolic. We now need to go back and purge all of the
3537 // entries for the scalars that use the symbolic expression.
3538 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003539 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003540 return PHISCEV;
3541 }
3542 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003543 } else if (const SCEVAddRecExpr *AddRec =
3544 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003545 // Otherwise, this could be a loop like this:
3546 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3547 // In this case, j = {1,+,1} and BEValue is j.
3548 // Because the other in-value of i (0) fits the evolution of BEValue
3549 // i really is an addrec evolution.
3550 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003551 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003552
3553 // If StartVal = j.start - j.stride, we can use StartVal as the
3554 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003555 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003556 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003557 // FIXME: For constant StartVal, we should be able to infer
3558 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003559 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003560 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3561 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003562
3563 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003564 // to be symbolic. We now need to go back and purge all of the
3565 // entries for the scalars that use the symbolic expression.
3566 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003567 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003568 return PHISCEV;
3569 }
3570 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003571 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003572 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003573 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003574
Dan Gohmana9c205c2010-02-25 06:57:05 +00003575 // If the PHI has a single incoming value, follow that value, unless the
3576 // PHI's incoming blocks are in a different loop, in which case doing so
3577 // risks breaking LCSSA form. Instcombine would normally zap these, but
3578 // it doesn't have DominatorTree information, so it may miss cases.
Hal Finkel60db0582014-09-07 18:57:58 +00003579 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003580 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003581 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003582
Chris Lattnerd934c702004-04-02 20:23:17 +00003583 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003584 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003585}
3586
Dan Gohmanee750d12009-05-08 20:26:55 +00003587/// createNodeForGEP - Expand GEP instructions into add and multiply
3588/// operations. This allows them to be analyzed by regular SCEV code.
3589///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003590const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003591 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003592 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003593 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003594 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003595 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003596
3597 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3598 // Add expression, because the Instruction may be guarded by control flow
3599 // and the no-overflow bits may not be valid for the expression in any
3600 // context.
3601 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3602
Dan Gohman1d2ded72010-05-03 22:09:21 +00003603 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003604 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003605 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003606 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003607 I != E; ++I) {
3608 Value *Index = *I;
3609 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003610 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003611 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003612 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003613 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003614
Dan Gohman16206132010-06-30 07:16:37 +00003615 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003616 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003617 } else {
3618 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003619 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003620 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003621 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003622 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3623
Dan Gohman16206132010-06-30 07:16:37 +00003624 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003625 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003626
3627 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003628 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003629 }
3630 }
Dan Gohman16206132010-06-30 07:16:37 +00003631
3632 // Get the SCEV for the GEP base.
3633 const SCEV *BaseS = getSCEV(Base);
3634
Dan Gohman16206132010-06-30 07:16:37 +00003635 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003636 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003637}
3638
Nick Lewycky3783b462007-11-22 07:59:40 +00003639/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3640/// guaranteed to end in (at every loop iteration). It is, at the same time,
3641/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3642/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003643uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003644ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003645 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003646 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003647
Dan Gohmana30370b2009-05-04 22:02:23 +00003648 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003649 return std::min(GetMinTrailingZeros(T->getOperand()),
3650 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003651
Dan Gohmana30370b2009-05-04 22:02:23 +00003652 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003653 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3654 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3655 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003656 }
3657
Dan Gohmana30370b2009-05-04 22:02:23 +00003658 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003659 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3660 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3661 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003662 }
3663
Dan Gohmana30370b2009-05-04 22:02:23 +00003664 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003665 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003666 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003667 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003668 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003669 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003670 }
3671
Dan Gohmana30370b2009-05-04 22:02:23 +00003672 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003673 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003674 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3675 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003676 for (unsigned i = 1, e = M->getNumOperands();
3677 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003678 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003679 BitWidth);
3680 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003681 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003682
Dan Gohmana30370b2009-05-04 22:02:23 +00003683 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003684 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003685 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003686 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003687 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003688 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003689 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003690
Dan Gohmana30370b2009-05-04 22:02:23 +00003691 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003692 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003693 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003694 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003695 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003696 return MinOpRes;
3697 }
3698
Dan Gohmana30370b2009-05-04 22:02:23 +00003699 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003700 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003701 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003702 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003703 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003704 return MinOpRes;
3705 }
3706
Dan Gohmanc702fc02009-06-19 23:29:04 +00003707 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3708 // For a SCEVUnknown, ask ValueTracking.
3709 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003710 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003711 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003712 return Zeros.countTrailingOnes();
3713 }
3714
3715 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003716 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003717}
Chris Lattnerd934c702004-04-02 20:23:17 +00003718
Sanjoy Das1f05c512014-10-10 21:22:34 +00003719/// GetRangeFromMetadata - Helper method to assign a range to V from
3720/// metadata present in the IR.
3721static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3722 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003723 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003724 ConstantRange TotalRange(
3725 cast<IntegerType>(I->getType())->getBitWidth(), false);
3726
3727 unsigned NumRanges = MD->getNumOperands() / 2;
3728 assert(NumRanges >= 1);
3729
3730 for (unsigned i = 0; i < NumRanges; ++i) {
3731 ConstantInt *Lower = cast<ConstantInt>(MD->getOperand(2*i + 0));
3732 ConstantInt *Upper = cast<ConstantInt>(MD->getOperand(2*i + 1));
3733 ConstantRange Range(Lower->getValue(), Upper->getValue());
3734 TotalRange = TotalRange.unionWith(Range);
3735 }
3736
3737 return TotalRange;
3738 }
3739 }
3740
3741 return None;
3742}
3743
Dan Gohmane65c9172009-07-13 21:35:55 +00003744/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3745///
3746ConstantRange
3747ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003748 // See if we've computed this range already.
3749 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3750 if (I != UnsignedRanges.end())
3751 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003752
3753 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003754 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003755
Dan Gohman85be4332010-01-26 19:19:05 +00003756 unsigned BitWidth = getTypeSizeInBits(S->getType());
3757 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3758
3759 // If the value has known zeros, the maximum unsigned value will have those
3760 // known zeros as well.
3761 uint32_t TZ = GetMinTrailingZeros(S);
3762 if (TZ != 0)
3763 ConservativeResult =
3764 ConstantRange(APInt::getMinValue(BitWidth),
3765 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3766
Dan Gohmane65c9172009-07-13 21:35:55 +00003767 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3768 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3769 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3770 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003771 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003772 }
3773
3774 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3775 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3776 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3777 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003778 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003779 }
3780
3781 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3782 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3783 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3784 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003785 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003786 }
3787
3788 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3789 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3790 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3791 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003792 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003793 }
3794
3795 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3796 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3797 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003798 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003799 }
3800
3801 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3802 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003803 return setUnsignedRange(ZExt,
3804 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003805 }
3806
3807 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3808 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003809 return setUnsignedRange(SExt,
3810 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003811 }
3812
3813 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3814 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003815 return setUnsignedRange(Trunc,
3816 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003817 }
3818
Dan Gohmane65c9172009-07-13 21:35:55 +00003819 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003820 // If there's no unsigned wrap, the value will never be less than its
3821 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003822 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003823 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003824 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003825 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003826 ConservativeResult.intersectWith(
3827 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003828
3829 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003830 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003831 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003832 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003833 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3834 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003835 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3836
3837 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003838 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003839
3840 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003841 ConstantRange StepRange = getSignedRange(Step);
3842 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3843 ConstantRange EndRange =
3844 StartRange.add(MaxBECountRange.multiply(StepRange));
3845
3846 // Check for overflow. This must be done with ConstantRange arithmetic
3847 // because we could be called from within the ScalarEvolution overflow
3848 // checking code.
3849 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3850 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3851 ConstantRange ExtMaxBECountRange =
3852 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3853 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3854 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3855 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003856 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003857
Dan Gohmane65c9172009-07-13 21:35:55 +00003858 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3859 EndRange.getUnsignedMin());
3860 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3861 EndRange.getUnsignedMax());
3862 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003863 return setUnsignedRange(AddRec, ConservativeResult);
3864 return setUnsignedRange(AddRec,
3865 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003866 }
3867 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003868
Dan Gohmaned756312010-11-17 20:23:08 +00003869 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003870 }
3871
3872 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003873 // Check if the IR explicitly contains !range metadata.
3874 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3875 if (MDRange.hasValue())
3876 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3877
Dan Gohmanc702fc02009-06-19 23:29:04 +00003878 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003879 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00003880 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003881 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003882 return setUnsignedRange(U, ConservativeResult);
3883 return setUnsignedRange(U,
3884 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003885 }
3886
Dan Gohmaned756312010-11-17 20:23:08 +00003887 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003888}
3889
Dan Gohmane65c9172009-07-13 21:35:55 +00003890/// getSignedRange - Determine the signed range for a particular SCEV.
3891///
3892ConstantRange
3893ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003894 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003895 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3896 if (I != SignedRanges.end())
3897 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003898
Dan Gohmane65c9172009-07-13 21:35:55 +00003899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003900 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003901
Dan Gohman51aaf022010-01-26 04:40:18 +00003902 unsigned BitWidth = getTypeSizeInBits(S->getType());
3903 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3904
3905 // If the value has known zeros, the maximum signed value will have those
3906 // known zeros as well.
3907 uint32_t TZ = GetMinTrailingZeros(S);
3908 if (TZ != 0)
3909 ConservativeResult =
3910 ConstantRange(APInt::getSignedMinValue(BitWidth),
3911 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3912
Dan Gohmane65c9172009-07-13 21:35:55 +00003913 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3914 ConstantRange X = getSignedRange(Add->getOperand(0));
3915 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3916 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003917 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003918 }
3919
Dan Gohmane65c9172009-07-13 21:35:55 +00003920 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3921 ConstantRange X = getSignedRange(Mul->getOperand(0));
3922 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3923 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003924 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003925 }
3926
Dan Gohmane65c9172009-07-13 21:35:55 +00003927 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3928 ConstantRange X = getSignedRange(SMax->getOperand(0));
3929 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3930 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003931 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003932 }
Dan Gohmand261d272009-06-24 01:05:09 +00003933
Dan Gohmane65c9172009-07-13 21:35:55 +00003934 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3935 ConstantRange X = getSignedRange(UMax->getOperand(0));
3936 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3937 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003938 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003939 }
Dan Gohmand261d272009-06-24 01:05:09 +00003940
Dan Gohmane65c9172009-07-13 21:35:55 +00003941 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3942 ConstantRange X = getSignedRange(UDiv->getLHS());
3943 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003944 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003945 }
Dan Gohmand261d272009-06-24 01:05:09 +00003946
Dan Gohmane65c9172009-07-13 21:35:55 +00003947 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3948 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003949 return setSignedRange(ZExt,
3950 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003951 }
3952
3953 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3954 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003955 return setSignedRange(SExt,
3956 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003957 }
3958
3959 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3960 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003961 return setSignedRange(Trunc,
3962 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003963 }
3964
Dan Gohmane65c9172009-07-13 21:35:55 +00003965 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003966 // If there's no signed wrap, and all the operands have the same sign or
3967 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003968 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003969 bool AllNonNeg = true;
3970 bool AllNonPos = true;
3971 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3972 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3973 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3974 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003975 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003976 ConservativeResult = ConservativeResult.intersectWith(
3977 ConstantRange(APInt(BitWidth, 0),
3978 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003979 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003980 ConservativeResult = ConservativeResult.intersectWith(
3981 ConstantRange(APInt::getSignedMinValue(BitWidth),
3982 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003983 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003984
3985 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003986 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003987 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003988 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003989 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3990 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003991 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3992
3993 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003994 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003995
3996 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003997 ConstantRange StepRange = getSignedRange(Step);
3998 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3999 ConstantRange EndRange =
4000 StartRange.add(MaxBECountRange.multiply(StepRange));
4001
4002 // Check for overflow. This must be done with ConstantRange arithmetic
4003 // because we could be called from within the ScalarEvolution overflow
4004 // checking code.
4005 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
4006 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
4007 ConstantRange ExtMaxBECountRange =
4008 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
4009 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
4010 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
4011 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00004012 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004013
Dan Gohmane65c9172009-07-13 21:35:55 +00004014 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
4015 EndRange.getSignedMin());
4016 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
4017 EndRange.getSignedMax());
4018 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00004019 return setSignedRange(AddRec, ConservativeResult);
4020 return setSignedRange(AddRec,
4021 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00004022 }
Dan Gohmand261d272009-06-24 01:05:09 +00004023 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004024
Dan Gohmaned756312010-11-17 20:23:08 +00004025 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004026 }
4027
Dan Gohmanc702fc02009-06-19 23:29:04 +00004028 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004029 // Check if the IR explicitly contains !range metadata.
4030 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4031 if (MDRange.hasValue())
4032 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4033
Dan Gohmanc702fc02009-06-19 23:29:04 +00004034 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004035 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004036 return setSignedRange(U, ConservativeResult);
Hal Finkel60db0582014-09-07 18:57:58 +00004037 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004038 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004039 return setSignedRange(U, ConservativeResult);
4040 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004041 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004042 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004043 }
4044
Dan Gohmaned756312010-11-17 20:23:08 +00004045 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004046}
4047
Chris Lattnerd934c702004-04-02 20:23:17 +00004048/// createSCEV - We know that there is no SCEV for the specified value.
4049/// Analyze the expression.
4050///
Dan Gohmanaf752342009-07-07 17:06:11 +00004051const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004052 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004053 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004054
Dan Gohman05e89732008-06-22 19:56:46 +00004055 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004056 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004057 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004058
4059 // Don't attempt to analyze instructions in blocks that aren't
4060 // reachable. Such instructions don't matter, and they aren't required
4061 // to obey basic rules for definitions dominating uses which this
4062 // analysis depends on.
4063 if (!DT->isReachableFromEntry(I->getParent()))
4064 return getUnknown(V);
4065 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004066 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004067 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4068 return getConstant(CI);
4069 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004070 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004071 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4072 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004073 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004074 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004075
Dan Gohman80ca01c2009-07-17 20:47:02 +00004076 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004077 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004078 case Instruction::Add: {
4079 // The simple thing to do would be to just call getSCEV on both operands
4080 // and call getAddExpr with the result. However if we're looking at a
4081 // bunch of things all added together, this can be quite inefficient,
4082 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4083 // Instead, gather up all the operands and make a single getAddExpr call.
4084 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004085 //
4086 // Don't apply this instruction's NSW or NUW flags to the new
4087 // expression. The instruction may be guarded by control flow that the
4088 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4089 // mapped to the same SCEV expression, and it would be incorrect to transfer
4090 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004091 SmallVector<const SCEV *, 4> AddOps;
4092 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004093 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4094 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4095 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4096 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004097 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004098 const SCEV *Op1 = getSCEV(U->getOperand(1));
4099 if (Opcode == Instruction::Sub)
4100 AddOps.push_back(getNegativeSCEV(Op1));
4101 else
4102 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004103 }
4104 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004105 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004106 }
4107 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004108 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004109 SmallVector<const SCEV *, 4> MulOps;
4110 MulOps.push_back(getSCEV(U->getOperand(1)));
4111 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004112 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004113 Op = U->getOperand(0)) {
4114 U = cast<Operator>(Op);
4115 MulOps.push_back(getSCEV(U->getOperand(1)));
4116 }
4117 MulOps.push_back(getSCEV(U->getOperand(0)));
4118 return getMulExpr(MulOps);
4119 }
Dan Gohman05e89732008-06-22 19:56:46 +00004120 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004121 return getUDivExpr(getSCEV(U->getOperand(0)),
4122 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004123 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004124 return getMinusSCEV(getSCEV(U->getOperand(0)),
4125 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004126 case Instruction::And:
4127 // For an expression like x&255 that merely masks off the high bits,
4128 // use zext(trunc(x)) as the SCEV expression.
4129 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004130 if (CI->isNullValue())
4131 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004132 if (CI->isAllOnesValue())
4133 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004134 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004135
4136 // Instcombine's ShrinkDemandedConstant may strip bits out of
4137 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004138 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004139 // knew about to reconstruct a low-bits mask value.
4140 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004141 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004142 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004143 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00004144 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4145 0, AT, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004146
Nick Lewycky31eaca52014-01-27 10:04:03 +00004147 APInt EffectiveMask =
4148 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4149 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4150 const SCEV *MulCount = getConstant(
4151 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4152 return getMulExpr(
4153 getZeroExtendExpr(
4154 getTruncateExpr(
4155 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4156 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4157 U->getType()),
4158 MulCount);
4159 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004160 }
4161 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004162
Dan Gohman05e89732008-06-22 19:56:46 +00004163 case Instruction::Or:
4164 // If the RHS of the Or is a constant, we may have something like:
4165 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4166 // optimizations will transparently handle this case.
4167 //
4168 // In order for this transformation to be safe, the LHS must be of the
4169 // form X*(2^n) and the Or constant must be less than 2^n.
4170 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004171 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004172 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004173 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004174 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4175 // Build a plain add SCEV.
4176 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4177 // If the LHS of the add was an addrec and it has no-wrap flags,
4178 // transfer the no-wrap flags, since an or won't introduce a wrap.
4179 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4180 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004181 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4182 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004183 }
4184 return S;
4185 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004186 }
Dan Gohman05e89732008-06-22 19:56:46 +00004187 break;
4188 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004189 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004190 // If the RHS of the xor is a signbit, then this is just an add.
4191 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004192 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004193 return getAddExpr(getSCEV(U->getOperand(0)),
4194 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004195
4196 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004197 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004198 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004199
4200 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4201 // This is a variant of the check for xor with -1, and it handles
4202 // the case where instcombine has trimmed non-demanded bits out
4203 // of an xor with -1.
4204 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4205 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4206 if (BO->getOpcode() == Instruction::And &&
4207 LCI->getValue() == CI->getValue())
4208 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004209 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004210 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004211 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004212 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004213 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4214
Dan Gohman8b0a4192010-03-01 17:49:51 +00004215 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004216 // mask off the high bits. Complement the operand and
4217 // re-apply the zext.
4218 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4219 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4220
4221 // If C is a single bit, it may be in the sign-bit position
4222 // before the zero-extend. In this case, represent the xor
4223 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004224 APInt Trunc = CI->getValue().trunc(Z0TySize);
4225 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004226 Trunc.isSignBit())
4227 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4228 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004229 }
Dan Gohman05e89732008-06-22 19:56:46 +00004230 }
4231 break;
4232
4233 case Instruction::Shl:
4234 // Turn shift left of a constant amount into a multiply.
4235 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004236 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004237
4238 // If the shift count is not less than the bitwidth, the result of
4239 // the shift is undefined. Don't try to analyze it, because the
4240 // resolution chosen here may differ from the resolution chosen in
4241 // other parts of the compiler.
4242 if (SA->getValue().uge(BitWidth))
4243 break;
4244
Owen Andersonedb4a702009-07-24 23:12:02 +00004245 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004246 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004247 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004248 }
4249 break;
4250
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004251 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004252 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004253 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004254 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004255
4256 // If the shift count is not less than the bitwidth, the result of
4257 // the shift is undefined. Don't try to analyze it, because the
4258 // resolution chosen here may differ from the resolution chosen in
4259 // other parts of the compiler.
4260 if (SA->getValue().uge(BitWidth))
4261 break;
4262
Owen Andersonedb4a702009-07-24 23:12:02 +00004263 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004264 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004265 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004266 }
4267 break;
4268
Dan Gohman0ec05372009-04-21 02:26:00 +00004269 case Instruction::AShr:
4270 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004272 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004273 if (L->getOpcode() == Instruction::Shl &&
4274 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004275 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4276
4277 // If the shift count is not less than the bitwidth, the result of
4278 // the shift is undefined. Don't try to analyze it, because the
4279 // resolution chosen here may differ from the resolution chosen in
4280 // other parts of the compiler.
4281 if (CI->getValue().uge(BitWidth))
4282 break;
4283
Dan Gohmandf199482009-04-25 17:05:40 +00004284 uint64_t Amt = BitWidth - CI->getZExtValue();
4285 if (Amt == BitWidth)
4286 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004287 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004288 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004289 IntegerType::get(getContext(),
4290 Amt)),
4291 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004292 }
4293 break;
4294
Dan Gohman05e89732008-06-22 19:56:46 +00004295 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004296 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004297
4298 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004299 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004300
4301 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004302 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004303
4304 case Instruction::BitCast:
4305 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004306 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004307 return getSCEV(U->getOperand(0));
4308 break;
4309
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004310 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4311 // lead to pointer expressions which cannot safely be expanded to GEPs,
4312 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4313 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004314
Dan Gohmanee750d12009-05-08 20:26:55 +00004315 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004316 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004317
Dan Gohman05e89732008-06-22 19:56:46 +00004318 case Instruction::PHI:
4319 return createNodeForPHI(cast<PHINode>(U));
4320
4321 case Instruction::Select:
4322 // This could be a smax or umax that was lowered earlier.
4323 // Try to recover it.
4324 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4325 Value *LHS = ICI->getOperand(0);
4326 Value *RHS = ICI->getOperand(1);
4327 switch (ICI->getPredicate()) {
4328 case ICmpInst::ICMP_SLT:
4329 case ICmpInst::ICMP_SLE:
4330 std::swap(LHS, RHS);
4331 // fall through
4332 case ICmpInst::ICMP_SGT:
4333 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004334 // a >s b ? a+x : b+x -> smax(a, b)+x
4335 // a >s b ? b+x : a+x -> smin(a, b)+x
4336 if (LHS->getType() == U->getType()) {
4337 const SCEV *LS = getSCEV(LHS);
4338 const SCEV *RS = getSCEV(RHS);
4339 const SCEV *LA = getSCEV(U->getOperand(1));
4340 const SCEV *RA = getSCEV(U->getOperand(2));
4341 const SCEV *LDiff = getMinusSCEV(LA, LS);
4342 const SCEV *RDiff = getMinusSCEV(RA, RS);
4343 if (LDiff == RDiff)
4344 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4345 LDiff = getMinusSCEV(LA, RS);
4346 RDiff = getMinusSCEV(RA, LS);
4347 if (LDiff == RDiff)
4348 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4349 }
Dan Gohman05e89732008-06-22 19:56:46 +00004350 break;
4351 case ICmpInst::ICMP_ULT:
4352 case ICmpInst::ICMP_ULE:
4353 std::swap(LHS, RHS);
4354 // fall through
4355 case ICmpInst::ICMP_UGT:
4356 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004357 // a >u b ? a+x : b+x -> umax(a, b)+x
4358 // a >u b ? b+x : a+x -> umin(a, b)+x
4359 if (LHS->getType() == U->getType()) {
4360 const SCEV *LS = getSCEV(LHS);
4361 const SCEV *RS = getSCEV(RHS);
4362 const SCEV *LA = getSCEV(U->getOperand(1));
4363 const SCEV *RA = getSCEV(U->getOperand(2));
4364 const SCEV *LDiff = getMinusSCEV(LA, LS);
4365 const SCEV *RDiff = getMinusSCEV(RA, RS);
4366 if (LDiff == RDiff)
4367 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4368 LDiff = getMinusSCEV(LA, RS);
4369 RDiff = getMinusSCEV(RA, LS);
4370 if (LDiff == RDiff)
4371 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4372 }
Dan Gohman05e89732008-06-22 19:56:46 +00004373 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004374 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004375 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4376 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004377 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004378 cast<ConstantInt>(RHS)->isZero()) {
4379 const SCEV *One = getConstant(LHS->getType(), 1);
4380 const SCEV *LS = getSCEV(LHS);
4381 const SCEV *LA = getSCEV(U->getOperand(1));
4382 const SCEV *RA = getSCEV(U->getOperand(2));
4383 const SCEV *LDiff = getMinusSCEV(LA, LS);
4384 const SCEV *RDiff = getMinusSCEV(RA, One);
4385 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004386 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004387 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004388 break;
4389 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004390 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4391 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004392 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004393 cast<ConstantInt>(RHS)->isZero()) {
4394 const SCEV *One = getConstant(LHS->getType(), 1);
4395 const SCEV *LS = getSCEV(LHS);
4396 const SCEV *LA = getSCEV(U->getOperand(1));
4397 const SCEV *RA = getSCEV(U->getOperand(2));
4398 const SCEV *LDiff = getMinusSCEV(LA, One);
4399 const SCEV *RDiff = getMinusSCEV(RA, LS);
4400 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004401 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004402 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004403 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004404 default:
4405 break;
4406 }
4407 }
4408
4409 default: // We cannot analyze this expression.
4410 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004411 }
4412
Dan Gohmanc8e23622009-04-21 23:15:49 +00004413 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004414}
4415
4416
4417
4418//===----------------------------------------------------------------------===//
4419// Iteration Count Computation Code
4420//
4421
Chandler Carruth6666c272014-10-11 00:12:11 +00004422unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4423 if (BasicBlock *ExitingBB = L->getExitingBlock())
4424 return getSmallConstantTripCount(L, ExitingBB);
4425
4426 // No trip count information for multiple exits.
4427 return 0;
4428}
4429
Andrew Trick2b6860f2011-08-11 23:36:16 +00004430/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004431/// normal unsigned value. Returns 0 if the trip count is unknown or not
4432/// constant. Will also return 0 if the maximum trip count is very large (>=
4433/// 2^32).
4434///
4435/// This "trip count" assumes that control exits via ExitingBlock. More
4436/// precisely, it is the number of times that control may reach ExitingBlock
4437/// before taking the branch. For loops with multiple exits, it may not be the
4438/// number times that the loop header executes because the loop may exit
4439/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004440unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4441 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004442 assert(ExitingBlock && "Must pass a non-null exiting block!");
4443 assert(L->isLoopExiting(ExitingBlock) &&
4444 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004445 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004446 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004447 if (!ExitCount)
4448 return 0;
4449
4450 ConstantInt *ExitConst = ExitCount->getValue();
4451
4452 // Guard against huge trip counts.
4453 if (ExitConst->getValue().getActiveBits() > 32)
4454 return 0;
4455
4456 // In case of integer overflow, this returns 0, which is correct.
4457 return ((unsigned)ExitConst->getZExtValue()) + 1;
4458}
4459
Chandler Carruth6666c272014-10-11 00:12:11 +00004460unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4461 if (BasicBlock *ExitingBB = L->getExitingBlock())
4462 return getSmallConstantTripMultiple(L, ExitingBB);
4463
4464 // No trip multiple information for multiple exits.
4465 return 0;
4466}
4467
Andrew Trick2b6860f2011-08-11 23:36:16 +00004468/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4469/// trip count of this loop as a normal unsigned value, if possible. This
4470/// means that the actual trip count is always a multiple of the returned
4471/// value (don't forget the trip count could very well be zero as well!).
4472///
4473/// Returns 1 if the trip count is unknown or not guaranteed to be the
4474/// multiple of a constant (which is also the case if the trip count is simply
4475/// constant, use getSmallConstantTripCount for that case), Will also return 1
4476/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004477///
4478/// As explained in the comments for getSmallConstantTripCount, this assumes
4479/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004480unsigned
4481ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4482 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004483 assert(ExitingBlock && "Must pass a non-null exiting block!");
4484 assert(L->isLoopExiting(ExitingBlock) &&
4485 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004486 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004487 if (ExitCount == getCouldNotCompute())
4488 return 1;
4489
4490 // Get the trip count from the BE count by adding 1.
4491 const SCEV *TCMul = getAddExpr(ExitCount,
4492 getConstant(ExitCount->getType(), 1));
4493 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4494 // to factor simple cases.
4495 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4496 TCMul = Mul->getOperand(0);
4497
4498 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4499 if (!MulC)
4500 return 1;
4501
4502 ConstantInt *Result = MulC->getValue();
4503
Hal Finkel30bd9342012-10-24 19:46:44 +00004504 // Guard against huge trip counts (this requires checking
4505 // for zero to handle the case where the trip count == -1 and the
4506 // addition wraps).
4507 if (!Result || Result->getValue().getActiveBits() > 32 ||
4508 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004509 return 1;
4510
4511 return (unsigned)Result->getZExtValue();
4512}
4513
Andrew Trick3ca3f982011-07-26 17:19:55 +00004514// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004515// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004516// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004517const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4518 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004519}
4520
Dan Gohman0bddac12009-02-24 18:55:53 +00004521/// getBackedgeTakenCount - If the specified loop has a predictable
4522/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4523/// object. The backedge-taken count is the number of times the loop header
4524/// will be branched to from within the loop. This is one less than the
4525/// trip count of the loop, since it doesn't count the first iteration,
4526/// when the header is branched to from outside the loop.
4527///
4528/// Note that it is not valid to call this method on a loop without a
4529/// loop-invariant backedge-taken count (see
4530/// hasLoopInvariantBackedgeTakenCount).
4531///
Dan Gohmanaf752342009-07-07 17:06:11 +00004532const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004533 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004534}
4535
4536/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4537/// return the least SCEV value that is known never to be less than the
4538/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004539const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004540 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004541}
4542
Dan Gohmandc191042009-07-08 19:23:34 +00004543/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4544/// onto the given Worklist.
4545static void
4546PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4547 BasicBlock *Header = L->getHeader();
4548
4549 // Push all Loop-header PHIs onto the Worklist stack.
4550 for (BasicBlock::iterator I = Header->begin();
4551 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4552 Worklist.push_back(PN);
4553}
4554
Dan Gohman2b8da352009-04-30 20:47:05 +00004555const ScalarEvolution::BackedgeTakenInfo &
4556ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004557 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004558 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004559 // update the value. The temporary CouldNotCompute value tells SCEV
4560 // code elsewhere that it shouldn't attempt to request a new
4561 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004562 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004563 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004564 if (!Pair.second)
4565 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004566
Andrew Trick3ca3f982011-07-26 17:19:55 +00004567 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4568 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4569 // must be cleared in this scope.
4570 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4571
4572 if (Result.getExact(this) != getCouldNotCompute()) {
4573 assert(isLoopInvariant(Result.getExact(this), L) &&
4574 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004575 "Computed backedge-taken count isn't loop invariant for loop!");
4576 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004577 }
4578 else if (Result.getMax(this) == getCouldNotCompute() &&
4579 isa<PHINode>(L->getHeader()->begin())) {
4580 // Only count loops that have phi nodes as not being computable.
4581 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004582 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004583
Chris Lattnera337f5e2011-01-09 02:16:18 +00004584 // Now that we know more about the trip count for this loop, forget any
4585 // existing SCEV values for PHI nodes in this loop since they are only
4586 // conservative estimates made without the benefit of trip count
4587 // information. This is similar to the code in forgetLoop, except that
4588 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004589 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004590 SmallVector<Instruction *, 16> Worklist;
4591 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004592
Chris Lattnera337f5e2011-01-09 02:16:18 +00004593 SmallPtrSet<Instruction *, 8> Visited;
4594 while (!Worklist.empty()) {
4595 Instruction *I = Worklist.pop_back_val();
4596 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004597
Chris Lattnera337f5e2011-01-09 02:16:18 +00004598 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004599 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004600 if (It != ValueExprMap.end()) {
4601 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004602
Chris Lattnera337f5e2011-01-09 02:16:18 +00004603 // SCEVUnknown for a PHI either means that it has an unrecognized
4604 // structure, or it's a PHI that's in the progress of being computed
4605 // by createNodeForPHI. In the former case, additional loop trip
4606 // count information isn't going to change anything. In the later
4607 // case, createNodeForPHI will perform the necessary updates on its
4608 // own when it gets to that point.
4609 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4610 forgetMemoizedResults(Old);
4611 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004612 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004613 if (PHINode *PN = dyn_cast<PHINode>(I))
4614 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004615 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004616
4617 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004618 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004619 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004620
4621 // Re-lookup the insert position, since the call to
4622 // ComputeBackedgeTakenCount above could result in a
4623 // recusive call to getBackedgeTakenInfo (on a different
4624 // loop), which would invalidate the iterator computed
4625 // earlier.
4626 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004627}
4628
Dan Gohman880c92a2009-10-31 15:04:55 +00004629/// forgetLoop - This method should be called by the client when it has
4630/// changed a loop in a way that may effect ScalarEvolution's ability to
4631/// compute a trip count, or if the loop is deleted.
4632void ScalarEvolution::forgetLoop(const Loop *L) {
4633 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004634 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4635 BackedgeTakenCounts.find(L);
4636 if (BTCPos != BackedgeTakenCounts.end()) {
4637 BTCPos->second.clear();
4638 BackedgeTakenCounts.erase(BTCPos);
4639 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004640
Dan Gohman880c92a2009-10-31 15:04:55 +00004641 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004642 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004643 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004644
Dan Gohmandc191042009-07-08 19:23:34 +00004645 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004646 while (!Worklist.empty()) {
4647 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004648 if (!Visited.insert(I)) continue;
4649
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004650 ValueExprMapType::iterator It =
4651 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004652 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004653 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004654 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004655 if (PHINode *PN = dyn_cast<PHINode>(I))
4656 ConstantEvolutionLoopExitValue.erase(PN);
4657 }
4658
4659 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004660 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004661
4662 // Forget all contained loops too, to avoid dangling entries in the
4663 // ValuesAtScopes map.
4664 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4665 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004666}
4667
Eric Christopheref6d5932010-07-29 01:25:38 +00004668/// forgetValue - This method should be called by the client when it has
4669/// changed a value in a way that may effect its value, or which may
4670/// disconnect it from a def-use chain linking it to a loop.
4671void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004672 Instruction *I = dyn_cast<Instruction>(V);
4673 if (!I) return;
4674
4675 // Drop information about expressions based on loop-header PHIs.
4676 SmallVector<Instruction *, 16> Worklist;
4677 Worklist.push_back(I);
4678
4679 SmallPtrSet<Instruction *, 8> Visited;
4680 while (!Worklist.empty()) {
4681 I = Worklist.pop_back_val();
4682 if (!Visited.insert(I)) continue;
4683
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004684 ValueExprMapType::iterator It =
4685 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004686 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004687 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004688 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004689 if (PHINode *PN = dyn_cast<PHINode>(I))
4690 ConstantEvolutionLoopExitValue.erase(PN);
4691 }
4692
4693 PushDefUseChildren(I, Worklist);
4694 }
4695}
4696
Andrew Trick3ca3f982011-07-26 17:19:55 +00004697/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004698/// exits. A computable result can only be return for loops with a single exit.
4699/// Returning the minimum taken count among all exits is incorrect because one
4700/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4701/// the limit of each loop test is never skipped. This is a valid assumption as
4702/// long as the loop exits via that test. For precise results, it is the
4703/// caller's responsibility to specify the relevant loop exit using
4704/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004705const SCEV *
4706ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4707 // If any exits were not computable, the loop is not computable.
4708 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4709
Andrew Trick90c7a102011-11-16 00:52:40 +00004710 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004711 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004712 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4713
Craig Topper9f008862014-04-15 04:59:12 +00004714 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004715 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004716 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717
4718 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4719
4720 if (!BECount)
4721 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004722 else if (BECount != ENT->ExactNotTaken)
4723 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004724 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004725 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004726 return BECount;
4727}
4728
4729/// getExact - Get the exact not taken count for this loop exit.
4730const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004731ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004732 ScalarEvolution *SE) const {
4733 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004734 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004735
Andrew Trick77c55422011-08-02 04:23:35 +00004736 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004737 return ENT->ExactNotTaken;
4738 }
4739 return SE->getCouldNotCompute();
4740}
4741
4742/// getMax - Get the max backedge taken count for the loop.
4743const SCEV *
4744ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4745 return Max ? Max : SE->getCouldNotCompute();
4746}
4747
Andrew Trick9093e152013-03-26 03:14:53 +00004748bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4749 ScalarEvolution *SE) const {
4750 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4751 return true;
4752
4753 if (!ExitNotTaken.ExitingBlock)
4754 return false;
4755
4756 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004757 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004758
4759 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4760 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4761 return true;
4762 }
4763 }
4764 return false;
4765}
4766
Andrew Trick3ca3f982011-07-26 17:19:55 +00004767/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4768/// computable exit into a persistent ExitNotTakenInfo array.
4769ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4770 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4771 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4772
4773 if (!Complete)
4774 ExitNotTaken.setIncomplete();
4775
4776 unsigned NumExits = ExitCounts.size();
4777 if (NumExits == 0) return;
4778
Andrew Trick77c55422011-08-02 04:23:35 +00004779 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004780 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4781 if (NumExits == 1) return;
4782
4783 // Handle the rare case of multiple computable exits.
4784 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4785
4786 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4787 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4788 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004789 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004790 ENT->ExactNotTaken = ExitCounts[i].second;
4791 }
4792}
4793
4794/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4795void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004796 ExitNotTaken.ExitingBlock = nullptr;
4797 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004798 delete[] ExitNotTaken.getNextExit();
4799}
4800
Dan Gohman0bddac12009-02-24 18:55:53 +00004801/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4802/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004803ScalarEvolution::BackedgeTakenInfo
4804ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004805 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004806 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004807
Andrew Trick839e30b2014-05-23 19:47:13 +00004808 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004809 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004810 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004811 const SCEV *MustExitMaxBECount = nullptr;
4812 const SCEV *MayExitMaxBECount = nullptr;
4813
4814 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4815 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004816 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004817 BasicBlock *ExitBB = ExitingBlocks[i];
4818 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4819
4820 // 1. For each exit that can be computed, add an entry to ExitCounts.
4821 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004822 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004823 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004824 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004825 CouldComputeBECount = false;
4826 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004827 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004828
Andrew Trick839e30b2014-05-23 19:47:13 +00004829 // 2. Derive the loop's MaxBECount from each exit's max number of
4830 // non-exiting iterations. Partition the loop exits into two kinds:
4831 // LoopMustExits and LoopMayExits.
4832 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004833 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4834 // is a LoopMayExit. If any computable LoopMustExit is found, then
4835 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4836 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4837 // considered greater than any computable EL.Max.
4838 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004839 DT->dominates(ExitBB, Latch)) {
4840 if (!MustExitMaxBECount)
4841 MustExitMaxBECount = EL.Max;
4842 else {
4843 MustExitMaxBECount =
4844 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004845 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004846 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4847 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4848 MayExitMaxBECount = EL.Max;
4849 else {
4850 MayExitMaxBECount =
4851 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4852 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004853 }
Dan Gohman96212b62009-06-22 00:31:57 +00004854 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004855 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4856 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004857 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004858}
4859
Andrew Trick3ca3f982011-07-26 17:19:55 +00004860/// ComputeExitLimit - Compute the number of times the backedge of the specified
4861/// loop will execute if it exits via the specified block.
4862ScalarEvolution::ExitLimit
4863ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004864
4865 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004866 // exit at this block and remember the exit block and whether all other targets
4867 // lead to the loop header.
4868 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004869 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004870 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4871 SI != SE; ++SI)
4872 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004873 if (Exit) // Multiple exit successors.
4874 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004875 Exit = *SI;
4876 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004877 MustExecuteLoopHeader = false;
4878 }
Dan Gohmance973df2009-06-24 04:48:43 +00004879
Chris Lattner18954852007-01-07 02:24:26 +00004880 // At this point, we know we have a conditional branch that determines whether
4881 // the loop is exited. However, we don't know if the branch is executed each
4882 // time through the loop. If not, then the execution count of the branch will
4883 // not be equal to the trip count of the loop.
4884 //
4885 // Currently we check for this by checking to see if the Exit branch goes to
4886 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004887 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004888 // loop header. This is common for un-rotated loops.
4889 //
4890 // If both of those tests fail, walk up the unique predecessor chain to the
4891 // header, stopping if there is an edge that doesn't exit the loop. If the
4892 // header is reached, the execution count of the branch will be equal to the
4893 // trip count of the loop.
4894 //
4895 // More extensive analysis could be done to handle more cases here.
4896 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004897 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004898 // The simple checks failed, try climbing the unique predecessor chain
4899 // up to the header.
4900 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004901 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004902 BasicBlock *Pred = BB->getUniquePredecessor();
4903 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004904 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004905 TerminatorInst *PredTerm = Pred->getTerminator();
4906 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4907 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4908 if (PredSucc == BB)
4909 continue;
4910 // If the predecessor has a successor that isn't BB and isn't
4911 // outside the loop, assume the worst.
4912 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004913 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004914 }
4915 if (Pred == L->getHeader()) {
4916 Ok = true;
4917 break;
4918 }
4919 BB = Pred;
4920 }
4921 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004922 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004923 }
4924
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004925 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004926 TerminatorInst *Term = ExitingBlock->getTerminator();
4927 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4928 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4929 // Proceed to the next level to examine the exit condition expression.
4930 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4931 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004932 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004933 }
4934
4935 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4936 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004937 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004938
4939 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004940}
4941
Andrew Trick3ca3f982011-07-26 17:19:55 +00004942/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004943/// backedge of the specified loop will execute if its exit condition
4944/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004945///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004946/// @param ControlsExit is true if ExitCond directly controls the exit
4947/// branch. In this case, we can assume that the loop exits only if the
4948/// condition is true and can infer that failing to meet the condition prior to
4949/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004950ScalarEvolution::ExitLimit
4951ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4952 Value *ExitCond,
4953 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004954 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004955 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004956 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004957 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4958 if (BO->getOpcode() == Instruction::And) {
4959 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004960 bool EitherMayExit = L->contains(TBB);
4961 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004962 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004963 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004964 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004965 const SCEV *BECount = getCouldNotCompute();
4966 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004967 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004968 // Both conditions must be true for the loop to continue executing.
4969 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004970 if (EL0.Exact == getCouldNotCompute() ||
4971 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004972 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004973 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004974 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4975 if (EL0.Max == getCouldNotCompute())
4976 MaxBECount = EL1.Max;
4977 else if (EL1.Max == getCouldNotCompute())
4978 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004979 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004980 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004981 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004982 // Both conditions must be true at the same time for the loop to exit.
4983 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004984 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004985 if (EL0.Max == EL1.Max)
4986 MaxBECount = EL0.Max;
4987 if (EL0.Exact == EL1.Exact)
4988 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004989 }
4990
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004991 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004992 }
4993 if (BO->getOpcode() == Instruction::Or) {
4994 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004995 bool EitherMayExit = L->contains(FBB);
4996 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004997 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004998 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004999 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005000 const SCEV *BECount = getCouldNotCompute();
5001 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005002 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005003 // Both conditions must be false for the loop to continue executing.
5004 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005005 if (EL0.Exact == getCouldNotCompute() ||
5006 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005007 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005008 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005009 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5010 if (EL0.Max == getCouldNotCompute())
5011 MaxBECount = EL1.Max;
5012 else if (EL1.Max == getCouldNotCompute())
5013 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005014 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005015 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005016 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005017 // Both conditions must be false at the same time for the loop to exit.
5018 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005019 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005020 if (EL0.Max == EL1.Max)
5021 MaxBECount = EL0.Max;
5022 if (EL0.Exact == EL1.Exact)
5023 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005024 }
5025
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005026 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005027 }
5028 }
5029
5030 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005031 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005032 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005033 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005034
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005035 // Check for a constant condition. These are normally stripped out by
5036 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5037 // preserve the CFG and is temporarily leaving constant conditions
5038 // in place.
5039 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5040 if (L->contains(FBB) == !CI->getZExtValue())
5041 // The backedge is always taken.
5042 return getCouldNotCompute();
5043 else
5044 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005045 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005046 }
5047
Eli Friedmanebf98b02009-05-09 12:32:42 +00005048 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005049 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005050}
5051
Andrew Trick3ca3f982011-07-26 17:19:55 +00005052/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005053/// backedge of the specified loop will execute if its exit condition
5054/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005055ScalarEvolution::ExitLimit
5056ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5057 ICmpInst *ExitCond,
5058 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005059 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005060 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005061
Reid Spencer266e42b2006-12-23 06:05:41 +00005062 // If the condition was exit on true, convert the condition to exit on false
5063 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005064 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005065 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005066 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005067 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005068
5069 // Handle common loops like: for (X = "string"; *X; ++X)
5070 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5071 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005072 ExitLimit ItCnt =
5073 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005074 if (ItCnt.hasAnyInfo())
5075 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005076 }
5077
Dan Gohmanaf752342009-07-07 17:06:11 +00005078 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5079 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005080
5081 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005082 LHS = getSCEVAtScope(LHS, L);
5083 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005084
Dan Gohmance973df2009-06-24 04:48:43 +00005085 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005086 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005087 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005088 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005089 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005090 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005091 }
5092
Dan Gohman81585c12010-05-03 16:35:17 +00005093 // Simplify the operands before analyzing them.
5094 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5095
Chris Lattnerd934c702004-04-02 20:23:17 +00005096 // If we have a comparison of a chrec against a constant, try to use value
5097 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005098 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5099 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005100 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005101 // Form the constant range.
5102 ConstantRange CompRange(
5103 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005104
Dan Gohmanaf752342009-07-07 17:06:11 +00005105 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005106 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005107 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005108
Chris Lattnerd934c702004-04-02 20:23:17 +00005109 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005110 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005111 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005112 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005113 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005114 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005115 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005116 case ICmpInst::ICMP_EQ: { // while (X == Y)
5117 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005118 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5119 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005120 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005121 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005122 case ICmpInst::ICMP_SLT:
5123 case ICmpInst::ICMP_ULT: { // while (X < Y)
5124 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005125 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005126 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005127 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005128 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005129 case ICmpInst::ICMP_SGT:
5130 case ICmpInst::ICMP_UGT: { // while (X > Y)
5131 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005132 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005133 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005134 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005135 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005136 default:
Chris Lattner09169212004-04-02 20:26:46 +00005137#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005138 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005139 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005140 dbgs() << "[unsigned] ";
5141 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005142 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005143 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005144#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005145 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005146 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005147 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005148}
5149
Benjamin Kramer5a188542014-02-11 15:44:32 +00005150ScalarEvolution::ExitLimit
5151ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5152 SwitchInst *Switch,
5153 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005154 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005155 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5156
5157 // Give up if the exit is the default dest of a switch.
5158 if (Switch->getDefaultDest() == ExitingBlock)
5159 return getCouldNotCompute();
5160
5161 assert(L->contains(Switch->getDefaultDest()) &&
5162 "Default case must not exit the loop!");
5163 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5164 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5165
5166 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005167 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005168 if (EL.hasAnyInfo())
5169 return EL;
5170
5171 return getCouldNotCompute();
5172}
5173
Chris Lattnerec901cc2004-10-12 01:49:27 +00005174static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005175EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5176 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005177 const SCEV *InVal = SE.getConstant(C);
5178 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005179 assert(isa<SCEVConstant>(Val) &&
5180 "Evaluation of SCEV at constant didn't fold correctly?");
5181 return cast<SCEVConstant>(Val)->getValue();
5182}
5183
Andrew Trick3ca3f982011-07-26 17:19:55 +00005184/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005185/// 'icmp op load X, cst', try to see if we can compute the backedge
5186/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005187ScalarEvolution::ExitLimit
5188ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5189 LoadInst *LI,
5190 Constant *RHS,
5191 const Loop *L,
5192 ICmpInst::Predicate predicate) {
5193
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005194 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005195
5196 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005197 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005198 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005199 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005200
5201 // Make sure that it is really a constant global we are gepping, with an
5202 // initializer, and make sure the first IDX is really 0.
5203 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005204 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005205 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5206 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005207 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005208
5209 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005210 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005211 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005212 unsigned VarIdxNum = 0;
5213 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5214 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5215 Indexes.push_back(CI);
5216 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005217 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005218 VarIdx = GEP->getOperand(i);
5219 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005220 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005221 }
5222
Andrew Trick7004e4b2012-03-26 22:33:59 +00005223 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5224 if (!VarIdx)
5225 return getCouldNotCompute();
5226
Chris Lattnerec901cc2004-10-12 01:49:27 +00005227 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5228 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005229 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005230 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005231
5232 // We can only recognize very limited forms of loop index expressions, in
5233 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005234 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005235 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005236 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5237 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005238 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005239
5240 unsigned MaxSteps = MaxBruteForceIterations;
5241 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005242 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005243 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005244 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005245
5246 // Form the GEP offset.
5247 Indexes[VarIdxNum] = Val;
5248
Chris Lattnere166a852012-01-24 05:49:24 +00005249 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5250 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005251 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005252
5253 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005254 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005255 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005256 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005257#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005258 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005259 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5260 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005261#endif
5262 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005263 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005264 }
5265 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005266 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005267}
5268
5269
Chris Lattnerdd730472004-04-17 22:58:41 +00005270/// CanConstantFold - Return true if we can constant fold an instruction of the
5271/// specified type, assuming that all operands were constants.
5272static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005273 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005274 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5275 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005276 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005277
Chris Lattnerdd730472004-04-17 22:58:41 +00005278 if (const CallInst *CI = dyn_cast<CallInst>(I))
5279 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005280 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005281 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005282}
5283
Andrew Trick3a86ba72011-10-05 03:25:31 +00005284/// Determine whether this instruction can constant evolve within this loop
5285/// assuming its operands can all constant evolve.
5286static bool canConstantEvolve(Instruction *I, const Loop *L) {
5287 // An instruction outside of the loop can't be derived from a loop PHI.
5288 if (!L->contains(I)) return false;
5289
5290 if (isa<PHINode>(I)) {
5291 if (L->getHeader() == I->getParent())
5292 return true;
5293 else
5294 // We don't currently keep track of the control flow needed to evaluate
5295 // PHIs, so we cannot handle PHIs inside of loops.
5296 return false;
5297 }
5298
5299 // If we won't be able to constant fold this expression even if the operands
5300 // are constants, bail early.
5301 return CanConstantFold(I);
5302}
5303
5304/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5305/// recursing through each instruction operand until reaching a loop header phi.
5306static PHINode *
5307getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005308 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005309
5310 // Otherwise, we can evaluate this instruction if all of its operands are
5311 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005312 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005313 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5314 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5315
5316 if (isa<Constant>(*OpI)) continue;
5317
5318 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005319 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005320
5321 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005322 if (!P)
5323 // If this operand is already visited, reuse the prior result.
5324 // We may have P != PHI if this is the deepest point at which the
5325 // inconsistent paths meet.
5326 P = PHIMap.lookup(OpInst);
5327 if (!P) {
5328 // Recurse and memoize the results, whether a phi is found or not.
5329 // This recursive call invalidates pointers into PHIMap.
5330 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5331 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005332 }
Craig Topper9f008862014-04-15 04:59:12 +00005333 if (!P)
5334 return nullptr; // Not evolving from PHI
5335 if (PHI && PHI != P)
5336 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005337 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005338 }
5339 // This is a expression evolving from a constant PHI!
5340 return PHI;
5341}
5342
Chris Lattnerdd730472004-04-17 22:58:41 +00005343/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5344/// in the loop that V is derived from. We allow arbitrary operations along the
5345/// way, but the operands of an operation must either be constants or a value
5346/// derived from a constant PHI. If this expression does not fit with these
5347/// constraints, return null.
5348static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005349 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005350 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005351
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005352 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005353 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005354 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005355
Andrew Trick3a86ba72011-10-05 03:25:31 +00005356 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005357 DenseMap<Instruction *, PHINode *> PHIMap;
5358 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005359}
5360
5361/// EvaluateExpression - Given an expression that passes the
5362/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5363/// in the loop has the value PHIVal. If we can't fold this expression for some
5364/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005365static Constant *EvaluateExpression(Value *V, const Loop *L,
5366 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005367 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005368 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005369 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005370 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005371 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005372 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005373
Andrew Trick3a86ba72011-10-05 03:25:31 +00005374 if (Constant *C = Vals.lookup(I)) return C;
5375
Nick Lewyckya6674c72011-10-22 19:58:20 +00005376 // An instruction inside the loop depends on a value outside the loop that we
5377 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005378 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005379
5380 // An unmapped PHI can be due to a branch or another loop inside this loop,
5381 // or due to this not being the initial iteration through a loop where we
5382 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005383 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005384
Dan Gohmanf820bd32010-06-22 13:15:46 +00005385 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005386
5387 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005388 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5389 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005390 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005391 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005392 continue;
5393 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005394 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005395 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005396 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005397 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005398 }
5399
Nick Lewyckya6674c72011-10-22 19:58:20 +00005400 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005401 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005402 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005403 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5404 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005405 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005406 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005407 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005408 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005409}
5410
5411/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5412/// in the header of its containing loop, we know the loop executes a
5413/// constant number of times, and the PHI node is just a recurrence
5414/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005415Constant *
5416ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005417 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005418 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005419 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005420 ConstantEvolutionLoopExitValue.find(PN);
5421 if (I != ConstantEvolutionLoopExitValue.end())
5422 return I->second;
5423
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005424 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005425 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005426
5427 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5428
Andrew Trick3a86ba72011-10-05 03:25:31 +00005429 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005430 BasicBlock *Header = L->getHeader();
5431 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005432
Chris Lattnerdd730472004-04-17 22:58:41 +00005433 // Since the loop is canonicalized, the PHI node must have two entries. One
5434 // entry must be a constant (coming in from outside of the loop), and the
5435 // second must be derived from the same PHI.
5436 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005437 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005438 for (BasicBlock::iterator I = Header->begin();
5439 (PHI = dyn_cast<PHINode>(I)); ++I) {
5440 Constant *StartCST =
5441 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005442 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005443 CurrentIterVals[PHI] = StartCST;
5444 }
5445 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005446 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005447
5448 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005449
5450 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005451 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005452 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005453
Dan Gohman0bddac12009-02-24 18:55:53 +00005454 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005455 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005456 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005457 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005458 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005459
Nick Lewyckya6674c72011-10-22 19:58:20 +00005460 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005461 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005462 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005463 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005464 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005465 if (!NextPHI)
5466 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005467 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005468
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005469 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5470
Nick Lewyckya6674c72011-10-22 19:58:20 +00005471 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5472 // cease to be able to evaluate one of them or if they stop evolving,
5473 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005474 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005475 for (DenseMap<Instruction *, Constant *>::const_iterator
5476 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5477 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005478 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005479 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5480 }
5481 // We use two distinct loops because EvaluateExpression may invalidate any
5482 // iterators into CurrentIterVals.
5483 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5484 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5485 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005486 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005487 if (!NextPHI) { // Not already computed.
5488 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005489 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005490 }
5491 if (NextPHI != I->second)
5492 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005493 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005494
5495 // If all entries in CurrentIterVals == NextIterVals then we can stop
5496 // iterating, the loop can't continue to change.
5497 if (StoppedEvolving)
5498 return RetVal = CurrentIterVals[PN];
5499
Andrew Trick3a86ba72011-10-05 03:25:31 +00005500 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005501 }
5502}
5503
Andrew Trick3ca3f982011-07-26 17:19:55 +00005504/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005505/// constant number of times (the condition evolves only from constants),
5506/// try to evaluate a few iterations of the loop until we get the exit
5507/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005508/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005509const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5510 Value *Cond,
5511 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005512 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005513 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005514
Dan Gohman866971e2010-06-19 14:17:24 +00005515 // If the loop is canonicalized, the PHI will have exactly two entries.
5516 // That's the only form we support here.
5517 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5518
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005519 DenseMap<Instruction *, Constant *> CurrentIterVals;
5520 BasicBlock *Header = L->getHeader();
5521 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5522
Dan Gohman866971e2010-06-19 14:17:24 +00005523 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005524 // second must be derived from the same PHI.
5525 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005526 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005527 for (BasicBlock::iterator I = Header->begin();
5528 (PHI = dyn_cast<PHINode>(I)); ++I) {
5529 Constant *StartCST =
5530 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005531 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005532 CurrentIterVals[PHI] = StartCST;
5533 }
5534 if (!CurrentIterVals.count(PN))
5535 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005536
5537 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5538 // the loop symbolically to determine when the condition gets a value of
5539 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005540
Andrew Trick90c7a102011-11-16 00:52:40 +00005541 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005542 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005543 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005544 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005545 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005546
Zhou Sheng75b871f2007-01-11 12:24:14 +00005547 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005548 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005549
Reid Spencer983e3b32007-03-01 07:25:48 +00005550 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005551 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005552 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005553 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005554
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005555 // Update all the PHI nodes for the next iteration.
5556 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005557
5558 // Create a list of which PHIs we need to compute. We want to do this before
5559 // calling EvaluateExpression on them because that may invalidate iterators
5560 // into CurrentIterVals.
5561 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005562 for (DenseMap<Instruction *, Constant *>::const_iterator
5563 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5564 PHINode *PHI = dyn_cast<PHINode>(I->first);
5565 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005566 PHIsToCompute.push_back(PHI);
5567 }
5568 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5569 E = PHIsToCompute.end(); I != E; ++I) {
5570 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005571 Constant *&NextPHI = NextIterVals[PHI];
5572 if (NextPHI) continue; // Already computed!
5573
5574 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005575 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005576 }
5577 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005578 }
5579
5580 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005581 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005582}
5583
Dan Gohman237d9e52009-09-03 15:00:26 +00005584/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005585/// at the specified scope in the program. The L value specifies a loop
5586/// nest to evaluate the expression at, where null is the top-level or a
5587/// specified loop is immediately inside of the loop.
5588///
5589/// This method can be used to compute the exit value for a variable defined
5590/// in a loop by querying what the value will hold in the parent loop.
5591///
Dan Gohman8ca08852009-05-24 23:25:42 +00005592/// In the case that a relevant loop exit value cannot be computed, the
5593/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005594const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005595 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005596 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5597 for (unsigned u = 0; u < Values.size(); u++) {
5598 if (Values[u].first == L)
5599 return Values[u].second ? Values[u].second : V;
5600 }
Craig Topper9f008862014-04-15 04:59:12 +00005601 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005602 // Otherwise compute it.
5603 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005604 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5605 for (unsigned u = Values2.size(); u > 0; u--) {
5606 if (Values2[u - 1].first == L) {
5607 Values2[u - 1].second = C;
5608 break;
5609 }
5610 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005611 return C;
5612}
5613
Nick Lewyckya6674c72011-10-22 19:58:20 +00005614/// This builds up a Constant using the ConstantExpr interface. That way, we
5615/// will return Constants for objects which aren't represented by a
5616/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5617/// Returns NULL if the SCEV isn't representable as a Constant.
5618static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005619 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005620 case scCouldNotCompute:
5621 case scAddRecExpr:
5622 break;
5623 case scConstant:
5624 return cast<SCEVConstant>(V)->getValue();
5625 case scUnknown:
5626 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5627 case scSignExtend: {
5628 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5629 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5630 return ConstantExpr::getSExt(CastOp, SS->getType());
5631 break;
5632 }
5633 case scZeroExtend: {
5634 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5635 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5636 return ConstantExpr::getZExt(CastOp, SZ->getType());
5637 break;
5638 }
5639 case scTruncate: {
5640 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5641 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5642 return ConstantExpr::getTrunc(CastOp, ST->getType());
5643 break;
5644 }
5645 case scAddExpr: {
5646 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5647 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005648 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5649 unsigned AS = PTy->getAddressSpace();
5650 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5651 C = ConstantExpr::getBitCast(C, DestPtrTy);
5652 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005653 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5654 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005655 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005656
5657 // First pointer!
5658 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005659 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005660 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005661 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005662 // The offsets have been converted to bytes. We can add bytes to an
5663 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005664 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005665 }
5666
5667 // Don't bother trying to sum two pointers. We probably can't
5668 // statically compute a load that results from it anyway.
5669 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005670 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005671
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005672 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5673 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005674 C2 = ConstantExpr::getIntegerCast(
5675 C2, Type::getInt32Ty(C->getContext()), true);
5676 C = ConstantExpr::getGetElementPtr(C, C2);
5677 } else
5678 C = ConstantExpr::getAdd(C, C2);
5679 }
5680 return C;
5681 }
5682 break;
5683 }
5684 case scMulExpr: {
5685 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5686 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5687 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005688 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005689 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5690 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005691 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005692 C = ConstantExpr::getMul(C, C2);
5693 }
5694 return C;
5695 }
5696 break;
5697 }
5698 case scUDivExpr: {
5699 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5700 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5701 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5702 if (LHS->getType() == RHS->getType())
5703 return ConstantExpr::getUDiv(LHS, RHS);
5704 break;
5705 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005706 case scSMaxExpr:
5707 case scUMaxExpr:
5708 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005709 }
Craig Topper9f008862014-04-15 04:59:12 +00005710 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005711}
5712
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005713const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005714 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005715
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005716 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005717 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005718 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005719 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005720 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005721 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5722 if (PHINode *PN = dyn_cast<PHINode>(I))
5723 if (PN->getParent() == LI->getHeader()) {
5724 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005725 // to see if the loop that contains it has a known backedge-taken
5726 // count. If so, we may be able to force computation of the exit
5727 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005728 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005729 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005730 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005731 // Okay, we know how many times the containing loop executes. If
5732 // this is a constant evolving PHI node, get the final value at
5733 // the specified iteration number.
5734 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005735 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005736 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005737 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005738 }
5739 }
5740
Reid Spencere6328ca2006-12-04 21:33:23 +00005741 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005742 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005743 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005744 // result. This is particularly useful for computing loop exit values.
5745 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005746 SmallVector<Constant *, 4> Operands;
5747 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005748 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5749 Value *Op = I->getOperand(i);
5750 if (Constant *C = dyn_cast<Constant>(Op)) {
5751 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005752 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005753 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005754
5755 // If any of the operands is non-constant and if they are
5756 // non-integer and non-pointer, don't even try to analyze them
5757 // with scev techniques.
5758 if (!isSCEVable(Op->getType()))
5759 return V;
5760
5761 const SCEV *OrigV = getSCEV(Op);
5762 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5763 MadeImprovement |= OrigV != OpV;
5764
Nick Lewyckya6674c72011-10-22 19:58:20 +00005765 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005766 if (!C) return V;
5767 if (C->getType() != Op->getType())
5768 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5769 Op->getType(),
5770 false),
5771 C, Op->getType());
5772 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005773 }
Dan Gohmance973df2009-06-24 04:48:43 +00005774
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005775 // Check to see if getSCEVAtScope actually made an improvement.
5776 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005777 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005778 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5779 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005780 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005781 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005782 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5783 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005784 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005785 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005786 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005787 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005788 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005789 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005790 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005791 }
5792 }
5793
5794 // This is some other type of SCEVUnknown, just return it.
5795 return V;
5796 }
5797
Dan Gohmana30370b2009-05-04 22:02:23 +00005798 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005799 // Avoid performing the look-up in the common case where the specified
5800 // expression has no loop-variant portions.
5801 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005802 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005803 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005804 // Okay, at least one of these operands is loop variant but might be
5805 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005806 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5807 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005808 NewOps.push_back(OpAtScope);
5809
5810 for (++i; i != e; ++i) {
5811 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005812 NewOps.push_back(OpAtScope);
5813 }
5814 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005815 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005816 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005817 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005818 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005819 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005820 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005821 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005822 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005823 }
5824 }
5825 // If we got here, all operands are loop invariant.
5826 return Comm;
5827 }
5828
Dan Gohmana30370b2009-05-04 22:02:23 +00005829 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005830 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5831 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005832 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5833 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005834 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005835 }
5836
5837 // If this is a loop recurrence for a loop that does not contain L, then we
5838 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005839 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005840 // First, attempt to evaluate each operand.
5841 // Avoid performing the look-up in the common case where the specified
5842 // expression has no loop-variant portions.
5843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5844 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5845 if (OpAtScope == AddRec->getOperand(i))
5846 continue;
5847
5848 // Okay, at least one of these operands is loop variant but might be
5849 // foldable. Build a new instance of the folded commutative expression.
5850 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5851 AddRec->op_begin()+i);
5852 NewOps.push_back(OpAtScope);
5853 for (++i; i != e; ++i)
5854 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5855
Andrew Trick759ba082011-04-27 01:21:25 +00005856 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005857 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005858 AddRec->getNoWrapFlags(SCEV::FlagNW));
5859 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005860 // The addrec may be folded to a nonrecurrence, for example, if the
5861 // induction variable is multiplied by zero after constant folding. Go
5862 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005863 if (!AddRec)
5864 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005865 break;
5866 }
5867
5868 // If the scope is outside the addrec's loop, evaluate it by using the
5869 // loop exit value of the addrec.
5870 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005871 // To evaluate this recurrence, we need to know how many times the AddRec
5872 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005873 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005874 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005875
Eli Friedman61f67622008-08-04 23:49:06 +00005876 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005877 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005878 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005879
Dan Gohman8ca08852009-05-24 23:25:42 +00005880 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005881 }
5882
Dan Gohmana30370b2009-05-04 22:02:23 +00005883 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005884 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005885 if (Op == Cast->getOperand())
5886 return Cast; // must be loop invariant
5887 return getZeroExtendExpr(Op, Cast->getType());
5888 }
5889
Dan Gohmana30370b2009-05-04 22:02:23 +00005890 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005891 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005892 if (Op == Cast->getOperand())
5893 return Cast; // must be loop invariant
5894 return getSignExtendExpr(Op, Cast->getType());
5895 }
5896
Dan Gohmana30370b2009-05-04 22:02:23 +00005897 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005898 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005899 if (Op == Cast->getOperand())
5900 return Cast; // must be loop invariant
5901 return getTruncateExpr(Op, Cast->getType());
5902 }
5903
Torok Edwinfbcc6632009-07-14 16:55:14 +00005904 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005905}
5906
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005907/// getSCEVAtScope - This is a convenience function which does
5908/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005909const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005910 return getSCEVAtScope(getSCEV(V), L);
5911}
5912
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005913/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5914/// following equation:
5915///
5916/// A * X = B (mod N)
5917///
5918/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5919/// A and B isn't important.
5920///
5921/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005922static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005923 ScalarEvolution &SE) {
5924 uint32_t BW = A.getBitWidth();
5925 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5926 assert(A != 0 && "A must be non-zero.");
5927
5928 // 1. D = gcd(A, N)
5929 //
5930 // The gcd of A and N may have only one prime factor: 2. The number of
5931 // trailing zeros in A is its multiplicity
5932 uint32_t Mult2 = A.countTrailingZeros();
5933 // D = 2^Mult2
5934
5935 // 2. Check if B is divisible by D.
5936 //
5937 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5938 // is not less than multiplicity of this prime factor for D.
5939 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005940 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005941
5942 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5943 // modulo (N / D).
5944 //
5945 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5946 // bit width during computations.
5947 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5948 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005949 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005950 APInt I = AD.multiplicativeInverse(Mod);
5951
5952 // 4. Compute the minimum unsigned root of the equation:
5953 // I * (B / D) mod (N / D)
5954 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5955
5956 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5957 // bits.
5958 return SE.getConstant(Result.trunc(BW));
5959}
Chris Lattnerd934c702004-04-02 20:23:17 +00005960
5961/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5962/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5963/// might be the same) or two SCEVCouldNotCompute objects.
5964///
Dan Gohmanaf752342009-07-07 17:06:11 +00005965static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005966SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005967 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005968 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5969 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5970 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005971
Chris Lattnerd934c702004-04-02 20:23:17 +00005972 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005973 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005974 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005975 return std::make_pair(CNC, CNC);
5976 }
5977
Reid Spencer983e3b32007-03-01 07:25:48 +00005978 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005979 const APInt &L = LC->getValue()->getValue();
5980 const APInt &M = MC->getValue()->getValue();
5981 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005982 APInt Two(BitWidth, 2);
5983 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005984
Dan Gohmance973df2009-06-24 04:48:43 +00005985 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005986 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005987 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005988 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5989 // The B coefficient is M-N/2
5990 APInt B(M);
5991 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005992
Reid Spencer983e3b32007-03-01 07:25:48 +00005993 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005994 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005995
Reid Spencer983e3b32007-03-01 07:25:48 +00005996 // Compute the B^2-4ac term.
5997 APInt SqrtTerm(B);
5998 SqrtTerm *= B;
5999 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006000
Nick Lewyckyfb780832012-08-01 09:14:36 +00006001 if (SqrtTerm.isNegative()) {
6002 // The loop is provably infinite.
6003 const SCEV *CNC = SE.getCouldNotCompute();
6004 return std::make_pair(CNC, CNC);
6005 }
6006
Reid Spencer983e3b32007-03-01 07:25:48 +00006007 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6008 // integer value or else APInt::sqrt() will assert.
6009 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006010
Dan Gohmance973df2009-06-24 04:48:43 +00006011 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006012 // The divisions must be performed as signed divisions.
6013 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006014 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006015 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006016 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006017 return std::make_pair(CNC, CNC);
6018 }
6019
Owen Anderson47db9412009-07-22 00:24:57 +00006020 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006021
6022 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006023 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006024 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006025 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006026
Dan Gohmance973df2009-06-24 04:48:43 +00006027 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006028 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006029 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006030}
6031
6032/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006033/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006034///
6035/// This is only used for loops with a "x != y" exit test. The exit condition is
6036/// now expressed as a single expression, V = x-y. So the exit test is
6037/// effectively V != 0. We know and take advantage of the fact that this
6038/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006039ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006040ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006041 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006042 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006043 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006044 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006045 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006046 }
6047
Dan Gohman48f82222009-05-04 22:30:44 +00006048 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006049 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006050 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006051
Chris Lattnerdff679f2011-01-09 22:39:48 +00006052 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6053 // the quadratic equation to solve it.
6054 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6055 std::pair<const SCEV *,const SCEV *> Roots =
6056 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006057 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6058 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006059 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006060#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006061 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006062 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006063#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006064 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006065 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006066 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6067 R1->getValue(),
6068 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006069 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006070 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006071
Chris Lattnerd934c702004-04-02 20:23:17 +00006072 // We can only use this value if the chrec ends up with an exact zero
6073 // value at this index. When solving for "X*X != 5", for example, we
6074 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006075 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006076 if (Val->isZero())
6077 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006078 }
6079 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006080 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006081 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006082
Chris Lattnerdff679f2011-01-09 22:39:48 +00006083 // Otherwise we can only handle this if it is affine.
6084 if (!AddRec->isAffine())
6085 return getCouldNotCompute();
6086
6087 // If this is an affine expression, the execution count of this branch is
6088 // the minimum unsigned root of the following equation:
6089 //
6090 // Start + Step*N = 0 (mod 2^BW)
6091 //
6092 // equivalent to:
6093 //
6094 // Step*N = -Start (mod 2^BW)
6095 //
6096 // where BW is the common bit width of Start and Step.
6097
6098 // Get the initial value for the loop.
6099 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6100 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6101
6102 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006103 //
6104 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6105 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6106 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6107 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006108 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006109 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006110 return getCouldNotCompute();
6111
Andrew Trick8b55b732011-03-14 16:50:06 +00006112 // For positive steps (counting up until unsigned overflow):
6113 // N = -Start/Step (as unsigned)
6114 // For negative steps (counting down to zero):
6115 // N = Start/-Step
6116 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006117 bool CountDown = StepC->getValue()->getValue().isNegative();
6118 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006119
6120 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006121 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6122 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006123 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6124 ConstantRange CR = getUnsignedRange(Start);
6125 const SCEV *MaxBECount;
6126 if (!CountDown && CR.getUnsignedMin().isMinValue())
6127 // When counting up, the worst starting value is 1, not 0.
6128 MaxBECount = CR.getUnsignedMax().isMinValue()
6129 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6130 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6131 else
6132 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6133 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006134 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006135 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006136
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006137 // If the step exactly divides the distance then unsigned divide computes the
6138 // backedge count.
6139 const SCEV *Q, *R;
6140 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
David Majnemer32b8ccf2014-11-16 20:35:19 +00006141 SCEVUDivision::divide(SE, Distance, Step, &Q, &R);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006142 if (R->isZero()) {
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006143 const SCEV *Exact =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006144 getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6145 return ExitLimit(Exact, Exact);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006146 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006147
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006148 // If the condition controls loop exit (the loop exits only if the expression
6149 // is true) and the addition is no-wrap we can use unsigned divide to
6150 // compute the backedge count. In this case, the step may not divide the
6151 // distance, but we don't care because if the condition is "missed" the loop
6152 // will have undefined behavior due to wrapping.
6153 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6154 const SCEV *Exact =
6155 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6156 return ExitLimit(Exact, Exact);
6157 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006158
Chris Lattnerdff679f2011-01-09 22:39:48 +00006159 // Then, try to solve the above equation provided that Start is constant.
6160 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6161 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6162 -StartC->getValue()->getValue(),
6163 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006164 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006165}
6166
6167/// HowFarToNonZero - Return the number of times a backedge checking the
6168/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006169/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006170ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006171ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006172 // Loops that look like: while (X == 0) are very strange indeed. We don't
6173 // handle them yet except for the trivial case. This could be expanded in the
6174 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006175
Chris Lattnerd934c702004-04-02 20:23:17 +00006176 // If the value is a constant, check to see if it is known to be non-zero
6177 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006178 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006179 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006180 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006181 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006182 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006183
Chris Lattnerd934c702004-04-02 20:23:17 +00006184 // We could implement others, but I really doubt anyone writes loops like
6185 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006186 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006187}
6188
Dan Gohmanf9081a22008-09-15 22:18:04 +00006189/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6190/// (which may not be an immediate predecessor) which has exactly one
6191/// successor from which BB is reachable, or null if no such block is
6192/// found.
6193///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006194std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006195ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006196 // If the block has a unique predecessor, then there is no path from the
6197 // predecessor to the block that does not go through the direct edge
6198 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006199 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006200 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006201
6202 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006203 // If the header has a unique predecessor outside the loop, it must be
6204 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006205 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006206 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006207
Dan Gohman4e3c1132010-04-15 16:19:08 +00006208 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006209}
6210
Dan Gohman450f4e02009-06-20 00:35:32 +00006211/// HasSameValue - SCEV structural equivalence is usually sufficient for
6212/// testing whether two expressions are equal, however for the purposes of
6213/// looking for a condition guarding a loop, it can be useful to be a little
6214/// more general, since a front-end may have replicated the controlling
6215/// expression.
6216///
Dan Gohmanaf752342009-07-07 17:06:11 +00006217static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006218 // Quick check to see if they are the same SCEV.
6219 if (A == B) return true;
6220
6221 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6222 // two different instructions with the same value. Check for this case.
6223 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6224 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6225 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6226 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006227 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006228 return true;
6229
6230 // Otherwise assume they may have a different value.
6231 return false;
6232}
6233
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006234/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006235/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006236///
6237bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006238 const SCEV *&LHS, const SCEV *&RHS,
6239 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006240 bool Changed = false;
6241
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006242 // If we hit the max recursion limit bail out.
6243 if (Depth >= 3)
6244 return false;
6245
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006246 // Canonicalize a constant to the right side.
6247 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6248 // Check for both operands constant.
6249 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6250 if (ConstantExpr::getICmp(Pred,
6251 LHSC->getValue(),
6252 RHSC->getValue())->isNullValue())
6253 goto trivially_false;
6254 else
6255 goto trivially_true;
6256 }
6257 // Otherwise swap the operands to put the constant on the right.
6258 std::swap(LHS, RHS);
6259 Pred = ICmpInst::getSwappedPredicate(Pred);
6260 Changed = true;
6261 }
6262
6263 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006264 // addrec's loop, put the addrec on the left. Also make a dominance check,
6265 // as both operands could be addrecs loop-invariant in each other's loop.
6266 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6267 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006268 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006269 std::swap(LHS, RHS);
6270 Pred = ICmpInst::getSwappedPredicate(Pred);
6271 Changed = true;
6272 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006273 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006274
6275 // If there's a constant operand, canonicalize comparisons with boundary
6276 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6277 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6278 const APInt &RA = RC->getValue()->getValue();
6279 switch (Pred) {
6280 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6281 case ICmpInst::ICMP_EQ:
6282 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006283 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6284 if (!RA)
6285 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6286 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006287 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6288 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006289 RHS = AE->getOperand(1);
6290 LHS = ME->getOperand(1);
6291 Changed = true;
6292 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006293 break;
6294 case ICmpInst::ICMP_UGE:
6295 if ((RA - 1).isMinValue()) {
6296 Pred = ICmpInst::ICMP_NE;
6297 RHS = getConstant(RA - 1);
6298 Changed = true;
6299 break;
6300 }
6301 if (RA.isMaxValue()) {
6302 Pred = ICmpInst::ICMP_EQ;
6303 Changed = true;
6304 break;
6305 }
6306 if (RA.isMinValue()) goto trivially_true;
6307
6308 Pred = ICmpInst::ICMP_UGT;
6309 RHS = getConstant(RA - 1);
6310 Changed = true;
6311 break;
6312 case ICmpInst::ICMP_ULE:
6313 if ((RA + 1).isMaxValue()) {
6314 Pred = ICmpInst::ICMP_NE;
6315 RHS = getConstant(RA + 1);
6316 Changed = true;
6317 break;
6318 }
6319 if (RA.isMinValue()) {
6320 Pred = ICmpInst::ICMP_EQ;
6321 Changed = true;
6322 break;
6323 }
6324 if (RA.isMaxValue()) goto trivially_true;
6325
6326 Pred = ICmpInst::ICMP_ULT;
6327 RHS = getConstant(RA + 1);
6328 Changed = true;
6329 break;
6330 case ICmpInst::ICMP_SGE:
6331 if ((RA - 1).isMinSignedValue()) {
6332 Pred = ICmpInst::ICMP_NE;
6333 RHS = getConstant(RA - 1);
6334 Changed = true;
6335 break;
6336 }
6337 if (RA.isMaxSignedValue()) {
6338 Pred = ICmpInst::ICMP_EQ;
6339 Changed = true;
6340 break;
6341 }
6342 if (RA.isMinSignedValue()) goto trivially_true;
6343
6344 Pred = ICmpInst::ICMP_SGT;
6345 RHS = getConstant(RA - 1);
6346 Changed = true;
6347 break;
6348 case ICmpInst::ICMP_SLE:
6349 if ((RA + 1).isMaxSignedValue()) {
6350 Pred = ICmpInst::ICMP_NE;
6351 RHS = getConstant(RA + 1);
6352 Changed = true;
6353 break;
6354 }
6355 if (RA.isMinSignedValue()) {
6356 Pred = ICmpInst::ICMP_EQ;
6357 Changed = true;
6358 break;
6359 }
6360 if (RA.isMaxSignedValue()) goto trivially_true;
6361
6362 Pred = ICmpInst::ICMP_SLT;
6363 RHS = getConstant(RA + 1);
6364 Changed = true;
6365 break;
6366 case ICmpInst::ICMP_UGT:
6367 if (RA.isMinValue()) {
6368 Pred = ICmpInst::ICMP_NE;
6369 Changed = true;
6370 break;
6371 }
6372 if ((RA + 1).isMaxValue()) {
6373 Pred = ICmpInst::ICMP_EQ;
6374 RHS = getConstant(RA + 1);
6375 Changed = true;
6376 break;
6377 }
6378 if (RA.isMaxValue()) goto trivially_false;
6379 break;
6380 case ICmpInst::ICMP_ULT:
6381 if (RA.isMaxValue()) {
6382 Pred = ICmpInst::ICMP_NE;
6383 Changed = true;
6384 break;
6385 }
6386 if ((RA - 1).isMinValue()) {
6387 Pred = ICmpInst::ICMP_EQ;
6388 RHS = getConstant(RA - 1);
6389 Changed = true;
6390 break;
6391 }
6392 if (RA.isMinValue()) goto trivially_false;
6393 break;
6394 case ICmpInst::ICMP_SGT:
6395 if (RA.isMinSignedValue()) {
6396 Pred = ICmpInst::ICMP_NE;
6397 Changed = true;
6398 break;
6399 }
6400 if ((RA + 1).isMaxSignedValue()) {
6401 Pred = ICmpInst::ICMP_EQ;
6402 RHS = getConstant(RA + 1);
6403 Changed = true;
6404 break;
6405 }
6406 if (RA.isMaxSignedValue()) goto trivially_false;
6407 break;
6408 case ICmpInst::ICMP_SLT:
6409 if (RA.isMaxSignedValue()) {
6410 Pred = ICmpInst::ICMP_NE;
6411 Changed = true;
6412 break;
6413 }
6414 if ((RA - 1).isMinSignedValue()) {
6415 Pred = ICmpInst::ICMP_EQ;
6416 RHS = getConstant(RA - 1);
6417 Changed = true;
6418 break;
6419 }
6420 if (RA.isMinSignedValue()) goto trivially_false;
6421 break;
6422 }
6423 }
6424
6425 // Check for obvious equality.
6426 if (HasSameValue(LHS, RHS)) {
6427 if (ICmpInst::isTrueWhenEqual(Pred))
6428 goto trivially_true;
6429 if (ICmpInst::isFalseWhenEqual(Pred))
6430 goto trivially_false;
6431 }
6432
Dan Gohman81585c12010-05-03 16:35:17 +00006433 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6434 // adding or subtracting 1 from one of the operands.
6435 switch (Pred) {
6436 case ICmpInst::ICMP_SLE:
6437 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6438 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006439 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006440 Pred = ICmpInst::ICMP_SLT;
6441 Changed = true;
6442 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006443 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006444 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006445 Pred = ICmpInst::ICMP_SLT;
6446 Changed = true;
6447 }
6448 break;
6449 case ICmpInst::ICMP_SGE:
6450 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006451 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006452 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006453 Pred = ICmpInst::ICMP_SGT;
6454 Changed = true;
6455 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6456 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006457 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006458 Pred = ICmpInst::ICMP_SGT;
6459 Changed = true;
6460 }
6461 break;
6462 case ICmpInst::ICMP_ULE:
6463 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006464 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006465 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006466 Pred = ICmpInst::ICMP_ULT;
6467 Changed = true;
6468 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006469 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006470 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006471 Pred = ICmpInst::ICMP_ULT;
6472 Changed = true;
6473 }
6474 break;
6475 case ICmpInst::ICMP_UGE:
6476 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006477 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006478 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006479 Pred = ICmpInst::ICMP_UGT;
6480 Changed = true;
6481 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006482 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006483 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006484 Pred = ICmpInst::ICMP_UGT;
6485 Changed = true;
6486 }
6487 break;
6488 default:
6489 break;
6490 }
6491
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006492 // TODO: More simplifications are possible here.
6493
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006494 // Recursively simplify until we either hit a recursion limit or nothing
6495 // changes.
6496 if (Changed)
6497 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6498
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006499 return Changed;
6500
6501trivially_true:
6502 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006503 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006504 Pred = ICmpInst::ICMP_EQ;
6505 return true;
6506
6507trivially_false:
6508 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006509 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006510 Pred = ICmpInst::ICMP_NE;
6511 return true;
6512}
6513
Dan Gohmane65c9172009-07-13 21:35:55 +00006514bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6515 return getSignedRange(S).getSignedMax().isNegative();
6516}
6517
6518bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6519 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6520}
6521
6522bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6523 return !getSignedRange(S).getSignedMin().isNegative();
6524}
6525
6526bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6527 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6528}
6529
6530bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6531 return isKnownNegative(S) || isKnownPositive(S);
6532}
6533
6534bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6535 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006536 // Canonicalize the inputs first.
6537 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6538
Dan Gohman07591692010-04-11 22:16:48 +00006539 // If LHS or RHS is an addrec, check to see if the condition is true in
6540 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006541 // If LHS and RHS are both addrec, both conditions must be true in
6542 // every iteration of the loop.
6543 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6544 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6545 bool LeftGuarded = false;
6546 bool RightGuarded = false;
6547 if (LAR) {
6548 const Loop *L = LAR->getLoop();
6549 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6550 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6551 if (!RAR) return true;
6552 LeftGuarded = true;
6553 }
6554 }
6555 if (RAR) {
6556 const Loop *L = RAR->getLoop();
6557 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6558 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6559 if (!LAR) return true;
6560 RightGuarded = true;
6561 }
6562 }
6563 if (LeftGuarded && RightGuarded)
6564 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006565
Dan Gohman07591692010-04-11 22:16:48 +00006566 // Otherwise see what can be done with known constant ranges.
6567 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6568}
6569
6570bool
6571ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6572 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006573 if (HasSameValue(LHS, RHS))
6574 return ICmpInst::isTrueWhenEqual(Pred);
6575
Dan Gohman07591692010-04-11 22:16:48 +00006576 // This code is split out from isKnownPredicate because it is called from
6577 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006578 switch (Pred) {
6579 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006580 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006581 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006582 std::swap(LHS, RHS);
6583 case ICmpInst::ICMP_SLT: {
6584 ConstantRange LHSRange = getSignedRange(LHS);
6585 ConstantRange RHSRange = getSignedRange(RHS);
6586 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6587 return true;
6588 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6589 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006590 break;
6591 }
6592 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006593 std::swap(LHS, RHS);
6594 case ICmpInst::ICMP_SLE: {
6595 ConstantRange LHSRange = getSignedRange(LHS);
6596 ConstantRange RHSRange = getSignedRange(RHS);
6597 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6598 return true;
6599 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6600 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006601 break;
6602 }
6603 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006604 std::swap(LHS, RHS);
6605 case ICmpInst::ICMP_ULT: {
6606 ConstantRange LHSRange = getUnsignedRange(LHS);
6607 ConstantRange RHSRange = getUnsignedRange(RHS);
6608 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6609 return true;
6610 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6611 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006612 break;
6613 }
6614 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006615 std::swap(LHS, RHS);
6616 case ICmpInst::ICMP_ULE: {
6617 ConstantRange LHSRange = getUnsignedRange(LHS);
6618 ConstantRange RHSRange = getUnsignedRange(RHS);
6619 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6620 return true;
6621 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6622 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006623 break;
6624 }
6625 case ICmpInst::ICMP_NE: {
6626 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6627 return true;
6628 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6629 return true;
6630
6631 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6632 if (isKnownNonZero(Diff))
6633 return true;
6634 break;
6635 }
6636 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006637 // The check at the top of the function catches the case where
6638 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006639 break;
6640 }
6641 return false;
6642}
6643
6644/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6645/// protected by a conditional between LHS and RHS. This is used to
6646/// to eliminate casts.
6647bool
6648ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6649 ICmpInst::Predicate Pred,
6650 const SCEV *LHS, const SCEV *RHS) {
6651 // Interpret a null as meaning no loop, where there is obviously no guard
6652 // (interprocedural conditions notwithstanding).
6653 if (!L) return true;
6654
Sanjoy Das1f05c512014-10-10 21:22:34 +00006655 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6656
Dan Gohmane65c9172009-07-13 21:35:55 +00006657 BasicBlock *Latch = L->getLoopLatch();
6658 if (!Latch)
6659 return false;
6660
6661 BranchInst *LoopContinuePredicate =
6662 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006663 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6664 isImpliedCond(Pred, LHS, RHS,
6665 LoopContinuePredicate->getCondition(),
6666 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6667 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006668
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006669 // Check conditions due to any @llvm.assume intrinsics.
6670 for (auto &CI : AT->assumptions(F)) {
6671 if (!DT->dominates(CI, Latch->getTerminator()))
6672 continue;
6673
6674 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6675 return true;
6676 }
6677
6678 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006679}
6680
Dan Gohmanb50349a2010-04-11 19:27:13 +00006681/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006682/// by a conditional between LHS and RHS. This is used to help avoid max
6683/// expressions in loop trip counts, and to eliminate casts.
6684bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006685ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6686 ICmpInst::Predicate Pred,
6687 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006688 // Interpret a null as meaning no loop, where there is obviously no guard
6689 // (interprocedural conditions notwithstanding).
6690 if (!L) return false;
6691
Sanjoy Das1f05c512014-10-10 21:22:34 +00006692 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6693
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006694 // Starting at the loop predecessor, climb up the predecessor chain, as long
6695 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006696 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006697 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006698 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006699 Pair.first;
6700 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006701
6702 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006703 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006704 if (!LoopEntryPredicate ||
6705 LoopEntryPredicate->isUnconditional())
6706 continue;
6707
Dan Gohmane18c2d62010-08-10 23:46:30 +00006708 if (isImpliedCond(Pred, LHS, RHS,
6709 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006710 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006711 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006712 }
6713
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006714 // Check conditions due to any @llvm.assume intrinsics.
6715 for (auto &CI : AT->assumptions(F)) {
6716 if (!DT->dominates(CI, L->getHeader()))
6717 continue;
6718
6719 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6720 return true;
6721 }
6722
Dan Gohman2a62fd92008-08-12 20:17:31 +00006723 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006724}
6725
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006726/// RAII wrapper to prevent recursive application of isImpliedCond.
6727/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6728/// currently evaluating isImpliedCond.
6729struct MarkPendingLoopPredicate {
6730 Value *Cond;
6731 DenseSet<Value*> &LoopPreds;
6732 bool Pending;
6733
6734 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6735 : Cond(C), LoopPreds(LP) {
6736 Pending = !LoopPreds.insert(Cond).second;
6737 }
6738 ~MarkPendingLoopPredicate() {
6739 if (!Pending)
6740 LoopPreds.erase(Cond);
6741 }
6742};
6743
Dan Gohman430f0cc2009-07-21 23:03:19 +00006744/// isImpliedCond - Test whether the condition described by Pred, LHS,
6745/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006746bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006747 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006748 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006749 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006750 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6751 if (Mark.Pending)
6752 return false;
6753
Dan Gohman8b0a4192010-03-01 17:49:51 +00006754 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006755 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006756 if (BO->getOpcode() == Instruction::And) {
6757 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006758 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6759 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006760 } else if (BO->getOpcode() == Instruction::Or) {
6761 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006762 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6763 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006764 }
6765 }
6766
Dan Gohmane18c2d62010-08-10 23:46:30 +00006767 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006768 if (!ICI) return false;
6769
Dan Gohmane65c9172009-07-13 21:35:55 +00006770 // Bail if the ICmp's operands' types are wider than the needed type
6771 // before attempting to call getSCEV on them. This avoids infinite
6772 // recursion, since the analysis of widening casts can require loop
6773 // exit condition information for overflow checking, which would
6774 // lead back here.
6775 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006776 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006777 return false;
6778
Andrew Trickfa594032012-11-29 18:35:13 +00006779 // Now that we found a conditional branch that dominates the loop or controls
6780 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006781 ICmpInst::Predicate FoundPred;
6782 if (Inverse)
6783 FoundPred = ICI->getInversePredicate();
6784 else
6785 FoundPred = ICI->getPredicate();
6786
6787 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6788 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006789
6790 // Balance the types. The case where FoundLHS' type is wider than
6791 // LHS' type is checked for above.
6792 if (getTypeSizeInBits(LHS->getType()) >
6793 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006794 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006795 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6796 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6797 } else {
6798 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6799 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6800 }
6801 }
6802
Dan Gohman430f0cc2009-07-21 23:03:19 +00006803 // Canonicalize the query to match the way instcombine will have
6804 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006805 if (SimplifyICmpOperands(Pred, LHS, RHS))
6806 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006807 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006808 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6809 if (FoundLHS == FoundRHS)
6810 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006811
6812 // Check to see if we can make the LHS or RHS match.
6813 if (LHS == FoundRHS || RHS == FoundLHS) {
6814 if (isa<SCEVConstant>(RHS)) {
6815 std::swap(FoundLHS, FoundRHS);
6816 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6817 } else {
6818 std::swap(LHS, RHS);
6819 Pred = ICmpInst::getSwappedPredicate(Pred);
6820 }
6821 }
6822
6823 // Check whether the found predicate is the same as the desired predicate.
6824 if (FoundPred == Pred)
6825 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6826
6827 // Check whether swapping the found predicate makes it the same as the
6828 // desired predicate.
6829 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6830 if (isa<SCEVConstant>(RHS))
6831 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6832 else
6833 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6834 RHS, LHS, FoundLHS, FoundRHS);
6835 }
6836
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006837 // Check if we can make progress by sharpening ranges.
6838 if (FoundPred == ICmpInst::ICMP_NE &&
6839 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6840
6841 const SCEVConstant *C = nullptr;
6842 const SCEV *V = nullptr;
6843
6844 if (isa<SCEVConstant>(FoundLHS)) {
6845 C = cast<SCEVConstant>(FoundLHS);
6846 V = FoundRHS;
6847 } else {
6848 C = cast<SCEVConstant>(FoundRHS);
6849 V = FoundLHS;
6850 }
6851
6852 // The guarding predicate tells us that C != V. If the known range
6853 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6854 // range we consider has to correspond to same signedness as the
6855 // predicate we're interested in folding.
6856
6857 APInt Min = ICmpInst::isSigned(Pred) ?
6858 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6859
6860 if (Min == C->getValue()->getValue()) {
6861 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6862 // This is true even if (Min + 1) wraps around -- in case of
6863 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6864
6865 APInt SharperMin = Min + 1;
6866
6867 switch (Pred) {
6868 case ICmpInst::ICMP_SGE:
6869 case ICmpInst::ICMP_UGE:
6870 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6871 // RHS, we're done.
6872 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6873 getConstant(SharperMin)))
6874 return true;
6875
6876 case ICmpInst::ICMP_SGT:
6877 case ICmpInst::ICMP_UGT:
6878 // We know from the range information that (V `Pred` Min ||
6879 // V == Min). We know from the guarding condition that !(V
6880 // == Min). This gives us
6881 //
6882 // V `Pred` Min || V == Min && !(V == Min)
6883 // => V `Pred` Min
6884 //
6885 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6886
6887 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6888 return true;
6889
6890 default:
6891 // No change
6892 break;
6893 }
6894 }
6895 }
6896
Dan Gohman430f0cc2009-07-21 23:03:19 +00006897 // Check whether the actual condition is beyond sufficient.
6898 if (FoundPred == ICmpInst::ICMP_EQ)
6899 if (ICmpInst::isTrueWhenEqual(Pred))
6900 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6901 return true;
6902 if (Pred == ICmpInst::ICMP_NE)
6903 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6904 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6905 return true;
6906
6907 // Otherwise assume the worst.
6908 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006909}
6910
Dan Gohman430f0cc2009-07-21 23:03:19 +00006911/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006912/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006913/// and FoundRHS is true.
6914bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6915 const SCEV *LHS, const SCEV *RHS,
6916 const SCEV *FoundLHS,
6917 const SCEV *FoundRHS) {
6918 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6919 FoundLHS, FoundRHS) ||
6920 // ~x < ~y --> x > y
6921 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6922 getNotSCEV(FoundRHS),
6923 getNotSCEV(FoundLHS));
6924}
6925
6926/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006927/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006928/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006929bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006930ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6931 const SCEV *LHS, const SCEV *RHS,
6932 const SCEV *FoundLHS,
6933 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006934 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006935 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6936 case ICmpInst::ICMP_EQ:
6937 case ICmpInst::ICMP_NE:
6938 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6939 return true;
6940 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006941 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006942 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006943 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6944 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006945 return true;
6946 break;
6947 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006948 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006949 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6950 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006951 return true;
6952 break;
6953 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006954 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006955 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6956 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006957 return true;
6958 break;
6959 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006960 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006961 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6962 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006963 return true;
6964 break;
6965 }
6966
6967 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006968}
6969
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006970// Verify if an linear IV with positive stride can overflow when in a
6971// less-than comparison, knowing the invariant term of the comparison, the
6972// stride and the knowledge of NSW/NUW flags on the recurrence.
6973bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6974 bool IsSigned, bool NoWrap) {
6975 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006976
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006977 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6978 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006979
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006980 if (IsSigned) {
6981 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6982 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6983 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6984 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006985
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006986 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6987 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006988 }
Dan Gohman01048422009-06-21 23:46:38 +00006989
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006990 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6991 APInt MaxValue = APInt::getMaxValue(BitWidth);
6992 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6993 .getUnsignedMax();
6994
6995 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6996 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6997}
6998
6999// Verify if an linear IV with negative stride can overflow when in a
7000// greater-than comparison, knowing the invariant term of the comparison,
7001// the stride and the knowledge of NSW/NUW flags on the recurrence.
7002bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7003 bool IsSigned, bool NoWrap) {
7004 if (NoWrap) return false;
7005
7006 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7007 const SCEV *One = getConstant(Stride->getType(), 1);
7008
7009 if (IsSigned) {
7010 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7011 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7012 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7013 .getSignedMax();
7014
7015 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7016 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7017 }
7018
7019 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7020 APInt MinValue = APInt::getMinValue(BitWidth);
7021 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7022 .getUnsignedMax();
7023
7024 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7025 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7026}
7027
7028// Compute the backedge taken count knowing the interval difference, the
7029// stride and presence of the equality in the comparison.
7030const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7031 bool Equality) {
7032 const SCEV *One = getConstant(Step->getType(), 1);
7033 Delta = Equality ? getAddExpr(Delta, Step)
7034 : getAddExpr(Delta, getMinusSCEV(Step, One));
7035 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007036}
7037
Chris Lattner587a75b2005-08-15 23:33:51 +00007038/// HowManyLessThans - Return the number of times a backedge containing the
7039/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007040/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007041///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007042/// @param ControlsExit is true when the LHS < RHS condition directly controls
7043/// the branch (loops exits only if condition is true). In this case, we can use
7044/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007045ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007046ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007047 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007048 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007049 // We handle only IV < Invariant
7050 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007051 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007052
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007053 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007054
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007055 // Avoid weird loops
7056 if (!IV || IV->getLoop() != L || !IV->isAffine())
7057 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007058
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007059 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007060 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007061
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007062 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007063
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007064 // Avoid negative or zero stride values
7065 if (!isKnownPositive(Stride))
7066 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007067
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007068 // Avoid proven overflow cases: this will ensure that the backedge taken count
7069 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7070 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7071 // behaviors like the case of C language.
7072 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7073 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007074
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007075 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7076 : ICmpInst::ICMP_ULT;
7077 const SCEV *Start = IV->getStart();
7078 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007079 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7080 const SCEV *Diff = getMinusSCEV(RHS, Start);
7081 // If we have NoWrap set, then we can assume that the increment won't
7082 // overflow, in which case if RHS - Start is a constant, we don't need to
7083 // do a max operation since we can just figure it out statically
7084 if (NoWrap && isa<SCEVConstant>(Diff)) {
7085 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7086 if (D.isNegative())
7087 End = Start;
7088 } else
7089 End = IsSigned ? getSMaxExpr(RHS, Start)
7090 : getUMaxExpr(RHS, Start);
7091 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007092
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007093 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007094
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007095 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7096 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007097
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007098 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7099 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007100
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007101 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7102 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7103 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007104
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007105 // Although End can be a MAX expression we estimate MaxEnd considering only
7106 // the case End = RHS. This is safe because in the other case (End - Start)
7107 // is zero, leading to a zero maximum backedge taken count.
7108 APInt MaxEnd =
7109 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7110 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7111
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007112 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007113 if (isa<SCEVConstant>(BECount))
7114 MaxBECount = BECount;
7115 else
7116 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7117 getConstant(MinStride), false);
7118
7119 if (isa<SCEVCouldNotCompute>(MaxBECount))
7120 MaxBECount = BECount;
7121
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007122 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007123}
7124
7125ScalarEvolution::ExitLimit
7126ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7127 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007128 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007129 // We handle only IV > Invariant
7130 if (!isLoopInvariant(RHS, L))
7131 return getCouldNotCompute();
7132
7133 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7134
7135 // Avoid weird loops
7136 if (!IV || IV->getLoop() != L || !IV->isAffine())
7137 return getCouldNotCompute();
7138
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007139 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007140 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7141
7142 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7143
7144 // Avoid negative or zero stride values
7145 if (!isKnownPositive(Stride))
7146 return getCouldNotCompute();
7147
7148 // Avoid proven overflow cases: this will ensure that the backedge taken count
7149 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7150 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7151 // behaviors like the case of C language.
7152 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7153 return getCouldNotCompute();
7154
7155 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7156 : ICmpInst::ICMP_UGT;
7157
7158 const SCEV *Start = IV->getStart();
7159 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007160 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7161 const SCEV *Diff = getMinusSCEV(RHS, Start);
7162 // If we have NoWrap set, then we can assume that the increment won't
7163 // overflow, in which case if RHS - Start is a constant, we don't need to
7164 // do a max operation since we can just figure it out statically
7165 if (NoWrap && isa<SCEVConstant>(Diff)) {
7166 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7167 if (!D.isNegative())
7168 End = Start;
7169 } else
7170 End = IsSigned ? getSMinExpr(RHS, Start)
7171 : getUMinExpr(RHS, Start);
7172 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007173
7174 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7175
7176 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7177 : getUnsignedRange(Start).getUnsignedMax();
7178
7179 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7180 : getUnsignedRange(Stride).getUnsignedMin();
7181
7182 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7183 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7184 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7185
7186 // Although End can be a MIN expression we estimate MinEnd considering only
7187 // the case End = RHS. This is safe because in the other case (Start - End)
7188 // is zero, leading to a zero maximum backedge taken count.
7189 APInt MinEnd =
7190 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7191 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7192
7193
7194 const SCEV *MaxBECount = getCouldNotCompute();
7195 if (isa<SCEVConstant>(BECount))
7196 MaxBECount = BECount;
7197 else
7198 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7199 getConstant(MinStride), false);
7200
7201 if (isa<SCEVCouldNotCompute>(MaxBECount))
7202 MaxBECount = BECount;
7203
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007204 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007205}
7206
Chris Lattnerd934c702004-04-02 20:23:17 +00007207/// getNumIterationsInRange - Return the number of iterations of this loop that
7208/// produce values in the specified constant range. Another way of looking at
7209/// this is that it returns the first iteration number where the value is not in
7210/// the condition, thus computing the exit count. If the iteration count can't
7211/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007212const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007213 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007214 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007215 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007216
7217 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007218 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007219 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007220 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007221 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007222 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007223 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007224 if (const SCEVAddRecExpr *ShiftedAddRec =
7225 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007226 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007227 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007228 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007229 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007230 }
7231
7232 // The only time we can solve this is when we have all constant indices.
7233 // Otherwise, we cannot determine the overflow conditions.
7234 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7235 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007236 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007237
7238
7239 // Okay at this point we know that all elements of the chrec are constants and
7240 // that the start element is zero.
7241
7242 // First check to see if the range contains zero. If not, the first
7243 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007244 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007245 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007246 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007247
Chris Lattnerd934c702004-04-02 20:23:17 +00007248 if (isAffine()) {
7249 // If this is an affine expression then we have this situation:
7250 // Solve {0,+,A} in Range === Ax in Range
7251
Nick Lewycky52460262007-07-16 02:08:00 +00007252 // We know that zero is in the range. If A is positive then we know that
7253 // the upper value of the range must be the first possible exit value.
7254 // If A is negative then the lower of the range is the last possible loop
7255 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007256 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007257 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7258 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007259
Nick Lewycky52460262007-07-16 02:08:00 +00007260 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007261 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007262 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007263
7264 // Evaluate at the exit value. If we really did fall out of the valid
7265 // range, then we computed our trip count, otherwise wrap around or other
7266 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007267 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007268 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007269 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007270
7271 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007272 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007273 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007274 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007275 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007276 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007277 } else if (isQuadratic()) {
7278 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7279 // quadratic equation to solve it. To do this, we must frame our problem in
7280 // terms of figuring out when zero is crossed, instead of when
7281 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007282 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007283 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007284 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7285 // getNoWrapFlags(FlagNW)
7286 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007287
7288 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007289 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007290 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007291 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7292 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007293 if (R1) {
7294 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007295 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007296 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007297 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007298 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007299 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007300
Chris Lattnerd934c702004-04-02 20:23:17 +00007301 // Make sure the root is not off by one. The returned iteration should
7302 // not be in the range, but the previous one should be. When solving
7303 // for "X*X < 5", for example, we should not return a root of 2.
7304 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007305 R1->getValue(),
7306 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007307 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007308 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007309 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007310 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007311
Dan Gohmana37eaf22007-10-22 18:31:58 +00007312 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007313 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007314 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007315 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007316 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007317
Chris Lattnerd934c702004-04-02 20:23:17 +00007318 // If R1 was not in the range, then it is a good return value. Make
7319 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007320 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007321 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007322 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007323 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007324 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007325 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007326 }
7327 }
7328 }
7329
Dan Gohman31efa302009-04-18 17:58:19 +00007330 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007331}
7332
Sebastian Pop448712b2014-05-07 18:01:20 +00007333namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007334struct FindUndefs {
7335 bool Found;
7336 FindUndefs() : Found(false) {}
7337
7338 bool follow(const SCEV *S) {
7339 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7340 if (isa<UndefValue>(C->getValue()))
7341 Found = true;
7342 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7343 if (isa<UndefValue>(C->getValue()))
7344 Found = true;
7345 }
7346
7347 // Keep looking if we haven't found it yet.
7348 return !Found;
7349 }
7350 bool isDone() const {
7351 // Stop recursion if we have found an undef.
7352 return Found;
7353 }
7354};
7355}
7356
7357// Return true when S contains at least an undef value.
7358static inline bool
7359containsUndefs(const SCEV *S) {
7360 FindUndefs F;
7361 SCEVTraversal<FindUndefs> ST(F);
7362 ST.visitAll(S);
7363
7364 return F.Found;
7365}
7366
7367namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007368// Collect all steps of SCEV expressions.
7369struct SCEVCollectStrides {
7370 ScalarEvolution &SE;
7371 SmallVectorImpl<const SCEV *> &Strides;
7372
7373 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7374 : SE(SE), Strides(S) {}
7375
7376 bool follow(const SCEV *S) {
7377 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7378 Strides.push_back(AR->getStepRecurrence(SE));
7379 return true;
7380 }
7381 bool isDone() const { return false; }
7382};
7383
7384// Collect all SCEVUnknown and SCEVMulExpr expressions.
7385struct SCEVCollectTerms {
7386 SmallVectorImpl<const SCEV *> &Terms;
7387
7388 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7389 : Terms(T) {}
7390
7391 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007392 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007393 if (!containsUndefs(S))
7394 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007395
7396 // Stop recursion: once we collected a term, do not walk its operands.
7397 return false;
7398 }
7399
7400 // Keep looking.
7401 return true;
7402 }
7403 bool isDone() const { return false; }
7404};
7405}
7406
7407/// Find parametric terms in this SCEVAddRecExpr.
7408void SCEVAddRecExpr::collectParametricTerms(
7409 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7410 SmallVector<const SCEV *, 4> Strides;
7411 SCEVCollectStrides StrideCollector(SE, Strides);
7412 visitAll(this, StrideCollector);
7413
7414 DEBUG({
7415 dbgs() << "Strides:\n";
7416 for (const SCEV *S : Strides)
7417 dbgs() << *S << "\n";
7418 });
7419
7420 for (const SCEV *S : Strides) {
7421 SCEVCollectTerms TermCollector(Terms);
7422 visitAll(S, TermCollector);
7423 }
7424
7425 DEBUG({
7426 dbgs() << "Terms:\n";
7427 for (const SCEV *T : Terms)
7428 dbgs() << *T << "\n";
7429 });
7430}
7431
Sebastian Popb1a548f2014-05-12 19:01:53 +00007432static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007433 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007434 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007435 int Last = Terms.size() - 1;
7436 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007437
Sebastian Pop448712b2014-05-07 18:01:20 +00007438 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007439 if (Last == 0) {
7440 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007441 SmallVector<const SCEV *, 2> Qs;
7442 for (const SCEV *Op : M->operands())
7443 if (!isa<SCEVConstant>(Op))
7444 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007445
Sebastian Pope30bd352014-05-27 22:41:56 +00007446 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007447 }
7448
Sebastian Pope30bd352014-05-27 22:41:56 +00007449 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007450 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007451 }
7452
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007453 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007454 // Normalize the terms before the next call to findArrayDimensionsRec.
7455 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007456 SCEVSDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007457
7458 // Bail out when GCD does not evenly divide one of the terms.
7459 if (!R->isZero())
7460 return false;
7461
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007462 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007463 }
7464
Tobias Grosser3080cf12014-05-08 07:55:34 +00007465 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007466 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7467 return isa<SCEVConstant>(E);
7468 }),
7469 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007470
Sebastian Pop448712b2014-05-07 18:01:20 +00007471 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007472 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7473 return false;
7474
Sebastian Pope30bd352014-05-27 22:41:56 +00007475 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007476 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007477}
Sebastian Popc62c6792013-11-12 22:47:20 +00007478
Sebastian Pop448712b2014-05-07 18:01:20 +00007479namespace {
7480struct FindParameter {
7481 bool FoundParameter;
7482 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007483
Sebastian Pop448712b2014-05-07 18:01:20 +00007484 bool follow(const SCEV *S) {
7485 if (isa<SCEVUnknown>(S)) {
7486 FoundParameter = true;
7487 // Stop recursion: we found a parameter.
7488 return false;
7489 }
7490 // Keep looking.
7491 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007492 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007493 bool isDone() const {
7494 // Stop recursion if we have found a parameter.
7495 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007496 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007497};
7498}
7499
Sebastian Pop448712b2014-05-07 18:01:20 +00007500// Returns true when S contains at least a SCEVUnknown parameter.
7501static inline bool
7502containsParameters(const SCEV *S) {
7503 FindParameter F;
7504 SCEVTraversal<FindParameter> ST(F);
7505 ST.visitAll(S);
7506
7507 return F.FoundParameter;
7508}
7509
7510// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7511static inline bool
7512containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7513 for (const SCEV *T : Terms)
7514 if (containsParameters(T))
7515 return true;
7516 return false;
7517}
7518
7519// Return the number of product terms in S.
7520static inline int numberOfTerms(const SCEV *S) {
7521 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7522 return Expr->getNumOperands();
7523 return 1;
7524}
7525
Sebastian Popa6e58602014-05-27 22:41:45 +00007526static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7527 if (isa<SCEVConstant>(T))
7528 return nullptr;
7529
7530 if (isa<SCEVUnknown>(T))
7531 return T;
7532
7533 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7534 SmallVector<const SCEV *, 2> Factors;
7535 for (const SCEV *Op : M->operands())
7536 if (!isa<SCEVConstant>(Op))
7537 Factors.push_back(Op);
7538
7539 return SE.getMulExpr(Factors);
7540 }
7541
7542 return T;
7543}
7544
7545/// Return the size of an element read or written by Inst.
7546const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7547 Type *Ty;
7548 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7549 Ty = Store->getValueOperand()->getType();
7550 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007551 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007552 else
7553 return nullptr;
7554
7555 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7556 return getSizeOfExpr(ETy, Ty);
7557}
7558
Sebastian Pop448712b2014-05-07 18:01:20 +00007559/// Second step of delinearization: compute the array dimensions Sizes from the
7560/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007561void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7562 SmallVectorImpl<const SCEV *> &Sizes,
7563 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007564
Sebastian Pop53524082014-05-29 19:44:05 +00007565 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007566 return;
7567
7568 // Early return when Terms do not contain parameters: we do not delinearize
7569 // non parametric SCEVs.
7570 if (!containsParameters(Terms))
7571 return;
7572
7573 DEBUG({
7574 dbgs() << "Terms:\n";
7575 for (const SCEV *T : Terms)
7576 dbgs() << *T << "\n";
7577 });
7578
7579 // Remove duplicates.
7580 std::sort(Terms.begin(), Terms.end());
7581 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7582
7583 // Put larger terms first.
7584 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7585 return numberOfTerms(LHS) > numberOfTerms(RHS);
7586 });
7587
Sebastian Popa6e58602014-05-27 22:41:45 +00007588 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7589
7590 // Divide all terms by the element size.
7591 for (const SCEV *&Term : Terms) {
7592 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007593 SCEVSDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007594 Term = Q;
7595 }
7596
7597 SmallVector<const SCEV *, 4> NewTerms;
7598
7599 // Remove constant factors.
7600 for (const SCEV *T : Terms)
7601 if (const SCEV *NewT = removeConstantFactors(SE, T))
7602 NewTerms.push_back(NewT);
7603
Sebastian Pop448712b2014-05-07 18:01:20 +00007604 DEBUG({
7605 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007606 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007607 dbgs() << *T << "\n";
7608 });
7609
Sebastian Popa6e58602014-05-27 22:41:45 +00007610 if (NewTerms.empty() ||
7611 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007612 Sizes.clear();
7613 return;
7614 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007615
Sebastian Popa6e58602014-05-27 22:41:45 +00007616 // The last element to be pushed into Sizes is the size of an element.
7617 Sizes.push_back(ElementSize);
7618
Sebastian Pop448712b2014-05-07 18:01:20 +00007619 DEBUG({
7620 dbgs() << "Sizes:\n";
7621 for (const SCEV *S : Sizes)
7622 dbgs() << *S << "\n";
7623 });
7624}
7625
7626/// Third step of delinearization: compute the access functions for the
7627/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007628void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007629 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7630 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007631
Sebastian Popb1a548f2014-05-12 19:01:53 +00007632 // Early exit in case this SCEV is not an affine multivariate function.
7633 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007634 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007635
Sebastian Pop28e6b972014-05-27 22:41:51 +00007636 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007637 int Last = Sizes.size() - 1;
7638 for (int i = Last; i >= 0; i--) {
7639 const SCEV *Q, *R;
David Majnemer32b8ccf2014-11-16 20:35:19 +00007640 SCEVSDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007641
7642 DEBUG({
7643 dbgs() << "Res: " << *Res << "\n";
7644 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7645 dbgs() << "Res divided by Sizes[i]:\n";
7646 dbgs() << "Quotient: " << *Q << "\n";
7647 dbgs() << "Remainder: " << *R << "\n";
7648 });
7649
7650 Res = Q;
7651
Sebastian Popa6e58602014-05-27 22:41:45 +00007652 // Do not record the last subscript corresponding to the size of elements in
7653 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007654 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007655
7656 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007657 if (isa<SCEVAddRecExpr>(R)) {
7658 Subscripts.clear();
7659 Sizes.clear();
7660 return;
7661 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007662
Sebastian Pop448712b2014-05-07 18:01:20 +00007663 continue;
7664 }
7665
7666 // Record the access function for the current subscript.
7667 Subscripts.push_back(R);
7668 }
7669
7670 // Also push in last position the remainder of the last division: it will be
7671 // the access function of the innermost dimension.
7672 Subscripts.push_back(Res);
7673
7674 std::reverse(Subscripts.begin(), Subscripts.end());
7675
7676 DEBUG({
7677 dbgs() << "Subscripts:\n";
7678 for (const SCEV *S : Subscripts)
7679 dbgs() << *S << "\n";
7680 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007681}
7682
Sebastian Popc62c6792013-11-12 22:47:20 +00007683/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7684/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007685/// is the offset start of the array. The SCEV->delinearize algorithm computes
7686/// the multiples of SCEV coefficients: that is a pattern matching of sub
7687/// expressions in the stride and base of a SCEV corresponding to the
7688/// computation of a GCD (greatest common divisor) of base and stride. When
7689/// SCEV->delinearize fails, it returns the SCEV unchanged.
7690///
7691/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7692///
7693/// void foo(long n, long m, long o, double A[n][m][o]) {
7694///
7695/// for (long i = 0; i < n; i++)
7696/// for (long j = 0; j < m; j++)
7697/// for (long k = 0; k < o; k++)
7698/// A[i][j][k] = 1.0;
7699/// }
7700///
7701/// the delinearization input is the following AddRec SCEV:
7702///
7703/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7704///
7705/// From this SCEV, we are able to say that the base offset of the access is %A
7706/// because it appears as an offset that does not divide any of the strides in
7707/// the loops:
7708///
7709/// CHECK: Base offset: %A
7710///
7711/// and then SCEV->delinearize determines the size of some of the dimensions of
7712/// the array as these are the multiples by which the strides are happening:
7713///
7714/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7715///
7716/// Note that the outermost dimension remains of UnknownSize because there are
7717/// no strides that would help identifying the size of the last dimension: when
7718/// the array has been statically allocated, one could compute the size of that
7719/// dimension by dividing the overall size of the array by the size of the known
7720/// dimensions: %m * %o * 8.
7721///
7722/// Finally delinearize provides the access functions for the array reference
7723/// that does correspond to A[i][j][k] of the above C testcase:
7724///
7725/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7726///
7727/// The testcases are checking the output of a function pass:
7728/// DelinearizationPass that walks through all loads and stores of a function
7729/// asking for the SCEV of the memory access with respect to all enclosing
7730/// loops, calling SCEV->delinearize on that and printing the results.
7731
Sebastian Pop28e6b972014-05-27 22:41:51 +00007732void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7733 SmallVectorImpl<const SCEV *> &Subscripts,
7734 SmallVectorImpl<const SCEV *> &Sizes,
7735 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007736 // First step: collect parametric terms.
7737 SmallVector<const SCEV *, 4> Terms;
7738 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007739
Sebastian Popb1a548f2014-05-12 19:01:53 +00007740 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007741 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007742
Sebastian Pop448712b2014-05-07 18:01:20 +00007743 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007744 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007745
Sebastian Popb1a548f2014-05-12 19:01:53 +00007746 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007747 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007748
Sebastian Pop448712b2014-05-07 18:01:20 +00007749 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007750 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007751
Sebastian Pop28e6b972014-05-27 22:41:51 +00007752 if (Subscripts.empty())
7753 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007754
Sebastian Pop448712b2014-05-07 18:01:20 +00007755 DEBUG({
7756 dbgs() << "succeeded to delinearize " << *this << "\n";
7757 dbgs() << "ArrayDecl[UnknownSize]";
7758 for (const SCEV *S : Sizes)
7759 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007760
Sebastian Pop444621a2014-05-09 22:45:02 +00007761 dbgs() << "\nArrayRef";
7762 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007763 dbgs() << "[" << *S << "]";
7764 dbgs() << "\n";
7765 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007766}
Chris Lattnerd934c702004-04-02 20:23:17 +00007767
7768//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007769// SCEVCallbackVH Class Implementation
7770//===----------------------------------------------------------------------===//
7771
Dan Gohmand33a0902009-05-19 19:22:47 +00007772void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007773 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007774 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7775 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007776 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007777 // this now dangles!
7778}
7779
Dan Gohman7a066722010-07-28 01:09:07 +00007780void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007781 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007782
Dan Gohman48f82222009-05-04 22:30:44 +00007783 // Forget all the expressions associated with users of the old value,
7784 // so that future queries will recompute the expressions using the new
7785 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007786 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007787 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007788 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007789 while (!Worklist.empty()) {
7790 User *U = Worklist.pop_back_val();
7791 // Deleting the Old value will cause this to dangle. Postpone
7792 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007793 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007794 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007795 if (!Visited.insert(U))
7796 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007797 if (PHINode *PN = dyn_cast<PHINode>(U))
7798 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007799 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007800 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007801 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007802 // Delete the Old value.
7803 if (PHINode *PN = dyn_cast<PHINode>(Old))
7804 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007805 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007806 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007807}
7808
Dan Gohmand33a0902009-05-19 19:22:47 +00007809ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007810 : CallbackVH(V), SE(se) {}
7811
7812//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007813// ScalarEvolution Class Implementation
7814//===----------------------------------------------------------------------===//
7815
Dan Gohmanc8e23622009-04-21 23:15:49 +00007816ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007817 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7818 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007819 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007820}
7821
Chris Lattnerd934c702004-04-02 20:23:17 +00007822bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007823 this->F = &F;
Hal Finkel60db0582014-09-07 18:57:58 +00007824 AT = &getAnalysis<AssumptionTracker>();
Dan Gohmanc8e23622009-04-21 23:15:49 +00007825 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007826 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007827 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007828 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007829 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007830 return false;
7831}
7832
7833void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007834 // Iterate through all the SCEVUnknown instances and call their
7835 // destructors, so that they release their references to their values.
7836 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7837 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007838 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007839
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007840 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007841
7842 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7843 // that a loop had multiple computable exits.
7844 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7845 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7846 I != E; ++I) {
7847 I->second.clear();
7848 }
7849
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007850 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7851
Dan Gohmanc8e23622009-04-21 23:15:49 +00007852 BackedgeTakenCounts.clear();
7853 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007854 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007855 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007856 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007857 UnsignedRanges.clear();
7858 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007859 UniqueSCEVs.clear();
7860 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007861}
7862
7863void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7864 AU.setPreservesAll();
Hal Finkel60db0582014-09-07 18:57:58 +00007865 AU.addRequired<AssumptionTracker>();
Chris Lattnerd934c702004-04-02 20:23:17 +00007866 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007867 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007868 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007869}
7870
Dan Gohmanc8e23622009-04-21 23:15:49 +00007871bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007872 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007873}
7874
Dan Gohmanc8e23622009-04-21 23:15:49 +00007875static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007876 const Loop *L) {
7877 // Print all inner loops first
7878 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7879 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007880
Dan Gohmanbc694912010-01-09 18:17:45 +00007881 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007882 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007883 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007884
Dan Gohmancb0efec2009-12-18 01:14:11 +00007885 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007886 L->getExitBlocks(ExitBlocks);
7887 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007888 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007889
Dan Gohman0bddac12009-02-24 18:55:53 +00007890 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7891 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007892 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007893 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007894 }
7895
Dan Gohmanbc694912010-01-09 18:17:45 +00007896 OS << "\n"
7897 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007898 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007899 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007900
7901 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7902 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7903 } else {
7904 OS << "Unpredictable max backedge-taken count. ";
7905 }
7906
7907 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007908}
7909
Dan Gohmancb0efec2009-12-18 01:14:11 +00007910void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007911 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007912 // out SCEV values of all instructions that are interesting. Doing
7913 // this potentially causes it to create new SCEV objects though,
7914 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007915 // observable from outside the class though, so casting away the
7916 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007917 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007918
Dan Gohmanbc694912010-01-09 18:17:45 +00007919 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007920 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007921 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007922 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007923 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007924 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007925 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007926 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007927 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007928
Dan Gohmanb9063a82009-06-19 17:49:54 +00007929 const Loop *L = LI->getLoopFor((*I).getParent());
7930
Dan Gohmanaf752342009-07-07 17:06:11 +00007931 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007932 if (AtUse != SV) {
7933 OS << " --> ";
7934 AtUse->print(OS);
7935 }
7936
7937 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007938 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007939 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007940 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007941 OS << "<<Unknown>>";
7942 } else {
7943 OS << *ExitValue;
7944 }
7945 }
7946
Chris Lattnerd934c702004-04-02 20:23:17 +00007947 OS << "\n";
7948 }
7949
Dan Gohmanbc694912010-01-09 18:17:45 +00007950 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007951 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007952 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007953 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7954 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007955}
Dan Gohmane20f8242009-04-21 00:47:46 +00007956
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007957ScalarEvolution::LoopDisposition
7958ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007959 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7960 for (unsigned u = 0; u < Values.size(); u++) {
7961 if (Values[u].first == L)
7962 return Values[u].second;
7963 }
7964 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007965 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007966 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7967 for (unsigned u = Values2.size(); u > 0; u--) {
7968 if (Values2[u - 1].first == L) {
7969 Values2[u - 1].second = D;
7970 break;
7971 }
7972 }
7973 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007974}
7975
7976ScalarEvolution::LoopDisposition
7977ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007978 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007979 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007980 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007981 case scTruncate:
7982 case scZeroExtend:
7983 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007984 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007985 case scAddRecExpr: {
7986 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7987
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007988 // If L is the addrec's loop, it's computable.
7989 if (AR->getLoop() == L)
7990 return LoopComputable;
7991
Dan Gohmanafd6db92010-11-17 21:23:15 +00007992 // Add recurrences are never invariant in the function-body (null loop).
7993 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007994 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007995
7996 // This recurrence is variant w.r.t. L if L contains AR's loop.
7997 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007998 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007999
8000 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8001 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008002 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008003
8004 // This recurrence is variant w.r.t. L if any of its operands
8005 // are variant.
8006 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8007 I != E; ++I)
8008 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008009 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008010
8011 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008012 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008013 }
8014 case scAddExpr:
8015 case scMulExpr:
8016 case scUMaxExpr:
8017 case scSMaxExpr: {
8018 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008019 bool HasVarying = false;
8020 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8021 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008022 LoopDisposition D = getLoopDisposition(*I, L);
8023 if (D == LoopVariant)
8024 return LoopVariant;
8025 if (D == LoopComputable)
8026 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008027 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008028 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008029 }
8030 case scUDivExpr: {
8031 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008032 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8033 if (LD == LoopVariant)
8034 return LoopVariant;
8035 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8036 if (RD == LoopVariant)
8037 return LoopVariant;
8038 return (LD == LoopInvariant && RD == LoopInvariant) ?
8039 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008040 }
8041 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008042 // All non-instruction values are loop invariant. All instructions are loop
8043 // invariant if they are not contained in the specified loop.
8044 // Instructions are never considered invariant in the function body
8045 // (null loop) because they are defined within the "loop".
8046 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8047 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8048 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008049 case scCouldNotCompute:
8050 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008051 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008052 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008053}
8054
8055bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8056 return getLoopDisposition(S, L) == LoopInvariant;
8057}
8058
8059bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8060 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008061}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008062
Dan Gohman8ea83d82010-11-18 00:34:22 +00008063ScalarEvolution::BlockDisposition
8064ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008065 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8066 for (unsigned u = 0; u < Values.size(); u++) {
8067 if (Values[u].first == BB)
8068 return Values[u].second;
8069 }
8070 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00008071 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008072 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8073 for (unsigned u = Values2.size(); u > 0; u--) {
8074 if (Values2[u - 1].first == BB) {
8075 Values2[u - 1].second = D;
8076 break;
8077 }
8078 }
8079 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008080}
8081
Dan Gohman8ea83d82010-11-18 00:34:22 +00008082ScalarEvolution::BlockDisposition
8083ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008084 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008085 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008086 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008087 case scTruncate:
8088 case scZeroExtend:
8089 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008090 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008091 case scAddRecExpr: {
8092 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008093 // to test for proper dominance too, because the instruction which
8094 // produces the addrec's value is a PHI, and a PHI effectively properly
8095 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008096 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8097 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008098 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008099 }
8100 // FALL THROUGH into SCEVNAryExpr handling.
8101 case scAddExpr:
8102 case scMulExpr:
8103 case scUMaxExpr:
8104 case scSMaxExpr: {
8105 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008106 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008107 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008108 I != E; ++I) {
8109 BlockDisposition D = getBlockDisposition(*I, BB);
8110 if (D == DoesNotDominateBlock)
8111 return DoesNotDominateBlock;
8112 if (D == DominatesBlock)
8113 Proper = false;
8114 }
8115 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008116 }
8117 case scUDivExpr: {
8118 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008119 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8120 BlockDisposition LD = getBlockDisposition(LHS, BB);
8121 if (LD == DoesNotDominateBlock)
8122 return DoesNotDominateBlock;
8123 BlockDisposition RD = getBlockDisposition(RHS, BB);
8124 if (RD == DoesNotDominateBlock)
8125 return DoesNotDominateBlock;
8126 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8127 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008128 }
8129 case scUnknown:
8130 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008131 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8132 if (I->getParent() == BB)
8133 return DominatesBlock;
8134 if (DT->properlyDominates(I->getParent(), BB))
8135 return ProperlyDominatesBlock;
8136 return DoesNotDominateBlock;
8137 }
8138 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008139 case scCouldNotCompute:
8140 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008141 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008142 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008143}
8144
8145bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8146 return getBlockDisposition(S, BB) >= DominatesBlock;
8147}
8148
8149bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8150 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008151}
Dan Gohman534749b2010-11-17 22:27:42 +00008152
Andrew Trick365e31c2012-07-13 23:33:03 +00008153namespace {
8154// Search for a SCEV expression node within an expression tree.
8155// Implements SCEVTraversal::Visitor.
8156struct SCEVSearch {
8157 const SCEV *Node;
8158 bool IsFound;
8159
8160 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8161
8162 bool follow(const SCEV *S) {
8163 IsFound |= (S == Node);
8164 return !IsFound;
8165 }
8166 bool isDone() const { return IsFound; }
8167};
8168}
8169
Dan Gohman534749b2010-11-17 22:27:42 +00008170bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008171 SCEVSearch Search(Op);
8172 visitAll(S, Search);
8173 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008174}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008175
8176void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8177 ValuesAtScopes.erase(S);
8178 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008179 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008180 UnsignedRanges.erase(S);
8181 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008182
8183 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8184 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8185 BackedgeTakenInfo &BEInfo = I->second;
8186 if (BEInfo.hasOperand(S, this)) {
8187 BEInfo.clear();
8188 BackedgeTakenCounts.erase(I++);
8189 }
8190 else
8191 ++I;
8192 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008193}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008194
8195typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008196
Alp Tokercb402912014-01-24 17:20:08 +00008197/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008198static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8199 size_t Pos = 0;
8200 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8201 Str.replace(Pos, From.size(), To.data(), To.size());
8202 Pos += To.size();
8203 }
8204}
8205
Benjamin Kramer214935e2012-10-26 17:31:32 +00008206/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8207static void
8208getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8209 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8210 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8211
8212 std::string &S = Map[L];
8213 if (S.empty()) {
8214 raw_string_ostream OS(S);
8215 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008216
8217 // false and 0 are semantically equivalent. This can happen in dead loops.
8218 replaceSubString(OS.str(), "false", "0");
8219 // Remove wrap flags, their use in SCEV is highly fragile.
8220 // FIXME: Remove this when SCEV gets smarter about them.
8221 replaceSubString(OS.str(), "<nw>", "");
8222 replaceSubString(OS.str(), "<nsw>", "");
8223 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008224 }
8225 }
8226}
8227
8228void ScalarEvolution::verifyAnalysis() const {
8229 if (!VerifySCEV)
8230 return;
8231
8232 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8233
8234 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8235 // FIXME: It would be much better to store actual values instead of strings,
8236 // but SCEV pointers will change if we drop the caches.
8237 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8238 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8239 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8240
8241 // Gather stringified backedge taken counts for all loops without using
8242 // SCEV's caches.
8243 SE.releaseMemory();
8244 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8245 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8246
8247 // Now compare whether they're the same with and without caches. This allows
8248 // verifying that no pass changed the cache.
8249 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8250 "New loops suddenly appeared!");
8251
8252 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8253 OldE = BackedgeDumpsOld.end(),
8254 NewI = BackedgeDumpsNew.begin();
8255 OldI != OldE; ++OldI, ++NewI) {
8256 assert(OldI->first == NewI->first && "Loop order changed!");
8257
8258 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8259 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008260 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008261 // means that a pass is buggy or SCEV has to learn a new pattern but is
8262 // usually not harmful.
8263 if (OldI->second != NewI->second &&
8264 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008265 NewI->second.find("undef") == std::string::npos &&
8266 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008267 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008268 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008269 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008270 << "' changed from '" << OldI->second
8271 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008272 std::abort();
8273 }
8274 }
8275
8276 // TODO: Verify more things.
8277}