blob: 623472cd6df081df7cf47b8afabbbad7f86ddbd6 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000033#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000034#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000037#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000038#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000039#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000040#include "llvm/IR/PassManager.h"
41#include "llvm/IR/Use.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000047#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000048#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000049#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000050#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000051#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000052#include <cassert>
53#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000079// Always verify MemorySSA if expensive checking is enabled.
80#ifdef EXPENSIVE_CHECKS
81bool llvm::VerifyMemorySSA = true;
82#else
83bool llvm::VerifyMemorySSA = false;
84#endif
85static cl::opt<bool, true>
86 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
87 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000088
George Burgess IVe1100f52016-02-02 22:46:49 +000089namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000090
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000091/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000092/// comments.
93class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
94 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095
George Burgess IVe1100f52016-02-02 22:46:49 +000096 const MemorySSA *MSSA;
97
98public:
99 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
100
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000101 void emitBasicBlockStartAnnot(const BasicBlock *BB,
102 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000103 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
104 OS << "; " << *MA << "\n";
105 }
106
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000107 void emitInstructionAnnot(const Instruction *I,
108 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000109 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
110 OS << "; " << *MA << "\n";
111 }
112};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000113
114} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000115
George Burgess IV5f308972016-07-19 01:29:15 +0000116namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000117
Daniel Berlindff31de2016-08-02 21:57:52 +0000118/// Our current alias analysis API differentiates heavily between calls and
119/// non-calls, and functions called on one usually assert on the other.
120/// This class encapsulates the distinction to simplify other code that wants
121/// "Memory affecting instructions and related data" to use as a key.
122/// For example, this class is used as a densemap key in the use optimizer.
123class MemoryLocOrCall {
124public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000125 bool IsCall = false;
126
Daniel Berlindff31de2016-08-02 21:57:52 +0000127 MemoryLocOrCall(MemoryUseOrDef *MUD)
128 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000129 MemoryLocOrCall(const MemoryUseOrDef *MUD)
130 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000131
132 MemoryLocOrCall(Instruction *Inst) {
Chandler Carruth363ac682019-01-07 05:42:51 +0000133 if (auto *C = dyn_cast<CallBase>(Inst)) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000134 IsCall = true;
Chandler Carruth363ac682019-01-07 05:42:51 +0000135 Call = C;
Daniel Berlindff31de2016-08-02 21:57:52 +0000136 } else {
137 IsCall = false;
138 // There is no such thing as a memorylocation for a fence inst, and it is
139 // unique in that regard.
140 if (!isa<FenceInst>(Inst))
141 Loc = MemoryLocation::get(Inst);
142 }
143 }
144
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000145 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000146
Chandler Carruth363ac682019-01-07 05:42:51 +0000147 const CallBase *getCall() const {
Daniel Berlindff31de2016-08-02 21:57:52 +0000148 assert(IsCall);
Chandler Carruth363ac682019-01-07 05:42:51 +0000149 return Call;
Daniel Berlindff31de2016-08-02 21:57:52 +0000150 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000151
Daniel Berlindff31de2016-08-02 21:57:52 +0000152 MemoryLocation getLoc() const {
153 assert(!IsCall);
154 return Loc;
155 }
156
157 bool operator==(const MemoryLocOrCall &Other) const {
158 if (IsCall != Other.IsCall)
159 return false;
160
George Burgess IV3588fd42018-03-29 00:54:39 +0000161 if (!IsCall)
162 return Loc == Other.Loc;
163
Chandler Carruth363ac682019-01-07 05:42:51 +0000164 if (Call->getCalledValue() != Other.Call->getCalledValue())
George Burgess IV3588fd42018-03-29 00:54:39 +0000165 return false;
166
Chandler Carruth363ac682019-01-07 05:42:51 +0000167 return Call->arg_size() == Other.Call->arg_size() &&
168 std::equal(Call->arg_begin(), Call->arg_end(),
169 Other.Call->arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000170 }
171
172private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000173 union {
Chandler Carruth363ac682019-01-07 05:42:51 +0000174 const CallBase *Call;
Daniel Berlind602e042017-01-25 20:56:19 +0000175 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000176 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000177};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000178
179} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000180
181namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000182
Daniel Berlindff31de2016-08-02 21:57:52 +0000183template <> struct DenseMapInfo<MemoryLocOrCall> {
184 static inline MemoryLocOrCall getEmptyKey() {
185 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
186 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000187
Daniel Berlindff31de2016-08-02 21:57:52 +0000188 static inline MemoryLocOrCall getTombstoneKey() {
189 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
190 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000191
Daniel Berlindff31de2016-08-02 21:57:52 +0000192 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000193 if (!MLOC.IsCall)
194 return hash_combine(
195 MLOC.IsCall,
196 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
197
198 hash_code hash =
199 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
Chandler Carruth363ac682019-01-07 05:42:51 +0000200 MLOC.getCall()->getCalledValue()));
George Burgess IV3588fd42018-03-29 00:54:39 +0000201
Chandler Carruth363ac682019-01-07 05:42:51 +0000202 for (const Value *Arg : MLOC.getCall()->args())
George Burgess IV3588fd42018-03-29 00:54:39 +0000203 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
204 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000205 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000206
Daniel Berlindff31de2016-08-02 21:57:52 +0000207 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
208 return LHS == RHS;
209 }
210};
Daniel Berlindf101192016-08-03 00:01:46 +0000211
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000212} // end namespace llvm
213
George Burgess IV82e355c2016-08-03 19:39:54 +0000214/// This does one-way checks to see if Use could theoretically be hoisted above
215/// MayClobber. This will not check the other way around.
216///
217/// This assumes that, for the purposes of MemorySSA, Use comes directly after
218/// MayClobber, with no potentially clobbering operations in between them.
219/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000220static bool areLoadsReorderable(const LoadInst *Use,
221 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000222 bool VolatileUse = Use->isVolatile();
223 bool VolatileClobber = MayClobber->isVolatile();
224 // Volatile operations may never be reordered with other volatile operations.
225 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000226 return false;
227 // Otherwise, volatile doesn't matter here. From the language reference:
228 // 'optimizers may change the order of volatile operations relative to
229 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000230
231 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
232 // is weaker, it can be moved above other loads. We just need to be sure that
233 // MayClobber isn't an acquire load, because loads can't be moved above
234 // acquire loads.
235 //
236 // Note that this explicitly *does* allow the free reordering of monotonic (or
237 // weaker) loads of the same address.
238 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
239 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
240 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000241 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000242}
243
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000244namespace {
245
246struct ClobberAlias {
247 bool IsClobber;
248 Optional<AliasResult> AR;
249};
250
251} // end anonymous namespace
252
253// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
254// ignored if IsClobber = false.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000255static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000256 const MemoryLocation &UseLoc,
257 const Instruction *UseInst,
258 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000259 Instruction *DefInst = MD->getMemoryInst();
260 assert(DefInst && "Defining instruction not actually an instruction");
Chandler Carruth363ac682019-01-07 05:42:51 +0000261 const auto *UseCall = dyn_cast<CallBase>(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000262 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000263
Daniel Berlindf101192016-08-03 00:01:46 +0000264 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
265 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000266 // markers, mostly.
267 //
268 // FIXME: We probably don't actually want MemorySSA to model these at all
269 // (including creating MemoryAccesses for them): we just end up inventing
270 // clobbers where they don't really exist at all. Please see D43269 for
271 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000272 switch (II->getIntrinsicID()) {
273 case Intrinsic::lifetime_start:
Chandler Carruth363ac682019-01-07 05:42:51 +0000274 if (UseCall)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000275 return {false, NoAlias};
276 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000277 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000278 case Intrinsic::lifetime_end:
279 case Intrinsic::invariant_start:
280 case Intrinsic::invariant_end:
281 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000282 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000283 default:
284 break;
285 }
286 }
287
Chandler Carruth363ac682019-01-07 05:42:51 +0000288 if (UseCall) {
289 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000290 AR = isMustSet(I) ? MustAlias : MayAlias;
291 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000292 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000293
Alina Sbirleaca741a82017-12-22 19:54:03 +0000294 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
295 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000296 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000297
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000298 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
299 AR = isMustSet(I) ? MustAlias : MayAlias;
300 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000301}
302
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000303static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
304 const MemoryUseOrDef *MU,
305 const MemoryLocOrCall &UseMLOC,
306 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000307 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
308 // to exist while MemoryLocOrCall is pushed through places.
309 if (UseMLOC.IsCall)
310 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
311 AA);
312 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
313 AA);
314}
315
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000316// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000317bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
318 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000319 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000320}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321
322namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000323
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000324struct UpwardsMemoryQuery {
325 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000326 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000327 // The pointer location we started the query with. This will be empty if
328 // IsCall is true.
329 MemoryLocation StartingLoc;
330 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000331 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000332 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000333 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000334 Optional<AliasResult> AR = MayAlias;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000335 bool SkipSelfAccess = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338
339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
Chandler Carruth363ac682019-01-07 05:42:51 +0000340 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000341 if (!IsCall)
342 StartingLoc = MemoryLocation::get(Inst);
343 }
344};
345
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000346} // end anonymous namespace
347
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000348static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349 AliasAnalysis &AA) {
350 Instruction *Inst = MD->getMemoryInst();
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000353 case Intrinsic::lifetime_end:
354 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355 default:
356 return false;
357 }
358 }
359 return false;
360}
361
362static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363 const Instruction *I) {
364 // If the memory can't be changed, then loads of the memory can't be
365 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000367 AA.pointsToConstantMemory(cast<LoadInst>(I)->
368 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000369}
370
George Burgess IV5f308972016-07-19 01:29:15 +0000371/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373///
374/// This is meant to be as simple and self-contained as possible. Because it
375/// uses no cache, etc., it can be relatively expensive.
376///
377/// \param Start The MemoryAccess that we want to walk from.
378/// \param ClobberAt A clobber for Start.
379/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000380/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000381/// \param Query The UpwardsMemoryQuery we used for our search.
382/// \param AA The AliasAnalysis we used for our search.
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000383/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000384static void
385checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000386 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000387 const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
388 bool AllowImpreciseClobber = false) {
George Burgess IV5f308972016-07-19 01:29:15 +0000389 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
390
391 if (MSSA.isLiveOnEntryDef(Start)) {
392 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
393 "liveOnEntry must clobber itself");
394 return;
395 }
396
George Burgess IV5f308972016-07-19 01:29:15 +0000397 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000398 DenseSet<ConstMemoryAccessPair> VisitedPhis;
399 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000400 Worklist.emplace_back(Start, StartLoc);
401 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402 // is found, complain.
403 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000404 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000405 // All we care about is that nothing from Start to ClobberAt clobbers Start.
406 // We learn nothing from revisiting nodes.
407 if (!VisitedPhis.insert(MAP).second)
408 continue;
409
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000410 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000411 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000412 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000413 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414 // since it won't let us short-circuit.
415 //
416 // Also, note that this can't be hoisted out of the `Worklist` loop,
417 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000418 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
419 if (!FoundClobber) {
420 ClobberAlias CA =
421 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
422 if (CA.IsClobber) {
423 FoundClobber = true;
424 // Not used: CA.AR;
425 }
426 }
George Burgess IV5f308972016-07-19 01:29:15 +0000427 }
428 break;
429 }
430
431 // We should never hit liveOnEntry, unless it's the clobber.
432 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
433
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000434 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000435 // If Start is a Def, skip self.
436 if (MD == Start)
437 continue;
438
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000439 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
440 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000441 "Found clobber before reaching ClobberAt!");
442 continue;
443 }
444
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000445 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
Alina Sbirlea6edcc9e2018-08-29 23:20:29 +0000446 (void)MU;
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000447 assert (MU == Start &&
448 "Can only find use in def chain if Start is a use");
449 continue;
450 }
451
George Burgess IV5f308972016-07-19 01:29:15 +0000452 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000453 Worklist.append(
454 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
455 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000456 }
457 }
458
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000459 // If the verify is done following an optimization, it's possible that
460 // ClobberAt was a conservative clobbering, that we can now infer is not a
461 // true clobbering access. Don't fail the verify if that's the case.
462 // We do have accesses that claim they're optimized, but could be optimized
463 // further. Updating all these can be expensive, so allow it for now (FIXME).
464 if (AllowImpreciseClobber)
465 return;
466
George Burgess IV5f308972016-07-19 01:29:15 +0000467 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
468 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
469 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
470 "ClobberAt never acted as a clobber");
471}
472
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000473namespace {
474
George Burgess IV5f308972016-07-19 01:29:15 +0000475/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
476/// in one class.
477class ClobberWalker {
478 /// Save a few bytes by using unsigned instead of size_t.
479 using ListIndex = unsigned;
480
481 /// Represents a span of contiguous MemoryDefs, potentially ending in a
482 /// MemoryPhi.
483 struct DefPath {
484 MemoryLocation Loc;
485 // Note that, because we always walk in reverse, Last will always dominate
486 // First. Also note that First and Last are inclusive.
487 MemoryAccess *First;
488 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000489 Optional<ListIndex> Previous;
490
491 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
492 Optional<ListIndex> Previous)
493 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
494
495 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
496 Optional<ListIndex> Previous)
497 : DefPath(Loc, Init, Init, Previous) {}
498 };
499
500 const MemorySSA &MSSA;
501 AliasAnalysis &AA;
502 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000503 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000504
505 // Phi optimization bookkeeping
506 SmallVector<DefPath, 32> Paths;
507 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000508
George Burgess IV5f308972016-07-19 01:29:15 +0000509 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000510 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000511 assert(From->getNumOperands() && "Phi with no operands?");
512
513 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000514 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
515 DomTreeNode *Node = DT.getNode(BB);
516 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000517 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
518 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000519 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000520 }
George Burgess IV5f308972016-07-19 01:29:15 +0000521 return Result;
522 }
523
524 /// Result of calling walkToPhiOrClobber.
525 struct UpwardsWalkResult {
526 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000527 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000528 MemoryAccess *Result;
529 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000530 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000531 };
532
533 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
534 /// This will update Desc.Last as it walks. It will (optionally) also stop at
535 /// StopAt.
536 ///
537 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000538 UpwardsWalkResult
Alina Sbirleaf7230202019-01-07 18:40:27 +0000539 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
540 const MemoryAccess *SkipStopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000541 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
542
543 for (MemoryAccess *Current : def_chain(Desc.Last)) {
544 Desc.Last = Current;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000545 if (Current == StopAt || Current == SkipStopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000546 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000547
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000548 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
549 if (MSSA.isLiveOnEntryDef(MD))
550 return {MD, true, MustAlias};
551 ClobberAlias CA =
552 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
553 if (CA.IsClobber)
554 return {MD, true, CA.AR};
555 }
George Burgess IV5f308972016-07-19 01:29:15 +0000556 }
557
558 assert(isa<MemoryPhi>(Desc.Last) &&
559 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000560 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000561 }
562
563 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
564 ListIndex PriorNode) {
565 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
566 upward_defs_end());
567 for (const MemoryAccessPair &P : UpwardDefs) {
568 PausedSearches.push_back(Paths.size());
569 Paths.emplace_back(P.second, P.first, PriorNode);
570 }
571 }
572
573 /// Represents a search that terminated after finding a clobber. This clobber
574 /// may or may not be present in the path of defs from LastNode..SearchStart,
575 /// since it may have been retrieved from cache.
576 struct TerminatedPath {
577 MemoryAccess *Clobber;
578 ListIndex LastNode;
579 };
580
581 /// Get an access that keeps us from optimizing to the given phi.
582 ///
583 /// PausedSearches is an array of indices into the Paths array. Its incoming
584 /// value is the indices of searches that stopped at the last phi optimization
585 /// target. It's left in an unspecified state.
586 ///
587 /// If this returns None, NewPaused is a vector of searches that terminated
588 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000589 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000590 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000591 SmallVectorImpl<ListIndex> &PausedSearches,
592 SmallVectorImpl<ListIndex> &NewPaused,
593 SmallVectorImpl<TerminatedPath> &Terminated) {
594 assert(!PausedSearches.empty() && "No searches to continue?");
595
596 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
597 // PausedSearches as our stack.
598 while (!PausedSearches.empty()) {
599 ListIndex PathIndex = PausedSearches.pop_back_val();
600 DefPath &Node = Paths[PathIndex];
601
602 // If we've already visited this path with this MemoryLocation, we don't
603 // need to do so again.
604 //
605 // NOTE: That we just drop these paths on the ground makes caching
606 // behavior sporadic. e.g. given a diamond:
607 // A
608 // B C
609 // D
610 //
611 // ...If we walk D, B, A, C, we'll only cache the result of phi
612 // optimization for A, B, and D; C will be skipped because it dies here.
613 // This arguably isn't the worst thing ever, since:
614 // - We generally query things in a top-down order, so if we got below D
615 // without needing cache entries for {C, MemLoc}, then chances are
616 // that those cache entries would end up ultimately unused.
617 // - We still cache things for A, so C only needs to walk up a bit.
618 // If this behavior becomes problematic, we can fix without a ton of extra
619 // work.
620 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
621 continue;
622
Alina Sbirleaf7230202019-01-07 18:40:27 +0000623 const MemoryAccess *SkipStopWhere = nullptr;
624 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
625 assert(isa<MemoryDef>(Query->OriginalAccess));
626 SkipStopWhere = Query->OriginalAccess;
627 }
628
629 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
630 /*SkipStopAt=*/SkipStopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000631 if (Res.IsKnownClobber) {
Alina Sbirleaf7230202019-01-07 18:40:27 +0000632 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000633 // If this wasn't a cache hit, we hit a clobber when walking. That's a
634 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000635 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000636 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000637 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000638
639 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000640 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000641 continue;
642 }
643
Alina Sbirleaf7230202019-01-07 18:40:27 +0000644 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
George Burgess IV5f308972016-07-19 01:29:15 +0000645 // We've hit our target. Save this path off for if we want to continue
Alina Sbirleaf7230202019-01-07 18:40:27 +0000646 // walking. If we are in the mode of skipping the OriginalAccess, and
647 // we've reached back to the OriginalAccess, do not save path, we've
648 // just looped back to self.
649 if (Res.Result != SkipStopWhere)
650 NewPaused.push_back(PathIndex);
George Burgess IV5f308972016-07-19 01:29:15 +0000651 continue;
652 }
653
654 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
655 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
656 }
657
658 return None;
659 }
660
661 template <typename T, typename Walker>
662 struct generic_def_path_iterator
663 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
664 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000665 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000666 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
667
668 T &operator*() const { return curNode(); }
669
670 generic_def_path_iterator &operator++() {
671 N = curNode().Previous;
672 return *this;
673 }
674
675 bool operator==(const generic_def_path_iterator &O) const {
676 if (N.hasValue() != O.N.hasValue())
677 return false;
678 return !N.hasValue() || *N == *O.N;
679 }
680
681 private:
682 T &curNode() const { return W->Paths[*N]; }
683
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000684 Walker *W = nullptr;
685 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000686 };
687
688 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
689 using const_def_path_iterator =
690 generic_def_path_iterator<const DefPath, const ClobberWalker>;
691
692 iterator_range<def_path_iterator> def_path(ListIndex From) {
693 return make_range(def_path_iterator(this, From), def_path_iterator());
694 }
695
696 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
697 return make_range(const_def_path_iterator(this, From),
698 const_def_path_iterator());
699 }
700
701 struct OptznResult {
702 /// The path that contains our result.
703 TerminatedPath PrimaryClobber;
704 /// The paths that we can legally cache back from, but that aren't
705 /// necessarily the result of the Phi optimization.
706 SmallVector<TerminatedPath, 4> OtherClobbers;
707 };
708
709 ListIndex defPathIndex(const DefPath &N) const {
710 // The assert looks nicer if we don't need to do &N
711 const DefPath *NP = &N;
712 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
713 "Out of bounds DefPath!");
714 return NP - &Paths.front();
715 }
716
717 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
718 /// that act as legal clobbers. Note that this won't return *all* clobbers.
719 ///
720 /// Phi optimization algorithm tl;dr:
721 /// - Find the earliest def/phi, A, we can optimize to
722 /// - Find if all paths from the starting memory access ultimately reach A
723 /// - If not, optimization isn't possible.
724 /// - Otherwise, walk from A to another clobber or phi, A'.
725 /// - If A' is a def, we're done.
726 /// - If A' is a phi, try to optimize it.
727 ///
728 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
729 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
730 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
731 const MemoryLocation &Loc) {
732 assert(Paths.empty() && VisitedPhis.empty() &&
733 "Reset the optimization state.");
734
735 Paths.emplace_back(Loc, Start, Phi, None);
736 // Stores how many "valid" optimization nodes we had prior to calling
737 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
738 auto PriorPathsSize = Paths.size();
739
740 SmallVector<ListIndex, 16> PausedSearches;
741 SmallVector<ListIndex, 8> NewPaused;
742 SmallVector<TerminatedPath, 4> TerminatedPaths;
743
744 addSearches(Phi, PausedSearches, 0);
745
746 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
747 // Paths.
748 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
749 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000750 auto Dom = Paths.begin();
751 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
752 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
753 Dom = I;
754 auto Last = Paths.end() - 1;
755 if (Last != Dom)
756 std::iter_swap(Last, Dom);
757 };
758
759 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000760 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000761 assert(!MSSA.isLiveOnEntryDef(Current) &&
762 "liveOnEntry wasn't treated as a clobber?");
763
Daniel Berlind0420312017-04-01 09:01:12 +0000764 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000765 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
766 // optimization for the prior phi.
767 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
768 return MSSA.dominates(P.Clobber, Target);
769 }));
770
771 // FIXME: This is broken, because the Blocker may be reported to be
772 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000773 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000774 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000775 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000776
777 // Find the node we started at. We can't search based on N->Last, since
778 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000779 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000780 return defPathIndex(N) < PriorPathsSize;
781 });
782 assert(Iter != def_path_iterator());
783
784 DefPath &CurNode = *Iter;
785 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000786
787 // Two things:
788 // A. We can't reliably cache all of NewPaused back. Consider a case
789 // where we have two paths in NewPaused; one of which can't optimize
790 // above this phi, whereas the other can. If we cache the second path
791 // back, we'll end up with suboptimal cache entries. We can handle
792 // cases like this a bit better when we either try to find all
793 // clobbers that block phi optimization, or when our cache starts
794 // supporting unfinished searches.
795 // B. We can't reliably cache TerminatedPaths back here without doing
796 // extra checks; consider a case like:
797 // T
798 // / \
799 // D C
800 // \ /
801 // S
802 // Where T is our target, C is a node with a clobber on it, D is a
803 // diamond (with a clobber *only* on the left or right node, N), and
804 // S is our start. Say we walk to D, through the node opposite N
805 // (read: ignoring the clobber), and see a cache entry in the top
806 // node of D. That cache entry gets put into TerminatedPaths. We then
807 // walk up to C (N is later in our worklist), find the clobber, and
808 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
809 // the bottom part of D to the cached clobber, ignoring the clobber
810 // in N. Again, this problem goes away if we start tracking all
811 // blockers for a given phi optimization.
812 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
813 return {Result, {}};
814 }
815
816 // If there's nothing left to search, then all paths led to valid clobbers
817 // that we got from our cache; pick the nearest to the start, and allow
818 // the rest to be cached back.
819 if (NewPaused.empty()) {
820 MoveDominatedPathToEnd(TerminatedPaths);
821 TerminatedPath Result = TerminatedPaths.pop_back_val();
822 return {Result, std::move(TerminatedPaths)};
823 }
824
825 MemoryAccess *DefChainEnd = nullptr;
826 SmallVector<TerminatedPath, 4> Clobbers;
827 for (ListIndex Paused : NewPaused) {
828 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
829 if (WR.IsKnownClobber)
830 Clobbers.push_back({WR.Result, Paused});
831 else
832 // Micro-opt: If we hit the end of the chain, save it.
833 DefChainEnd = WR.Result;
834 }
835
836 if (!TerminatedPaths.empty()) {
837 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
838 // do it now.
839 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000840 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000841 DefChainEnd = MA;
842
843 // If any of the terminated paths don't dominate the phi we'll try to
844 // optimize, we need to figure out what they are and quit.
845 const BasicBlock *ChainBB = DefChainEnd->getBlock();
846 for (const TerminatedPath &TP : TerminatedPaths) {
847 // Because we know that DefChainEnd is as "high" as we can go, we
848 // don't need local dominance checks; BB dominance is sufficient.
849 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
850 Clobbers.push_back(TP);
851 }
852 }
853
854 // If we have clobbers in the def chain, find the one closest to Current
855 // and quit.
856 if (!Clobbers.empty()) {
857 MoveDominatedPathToEnd(Clobbers);
858 TerminatedPath Result = Clobbers.pop_back_val();
859 return {Result, std::move(Clobbers)};
860 }
861
862 assert(all_of(NewPaused,
863 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
864
865 // Because liveOnEntry is a clobber, this must be a phi.
866 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
867
868 PriorPathsSize = Paths.size();
869 PausedSearches.clear();
870 for (ListIndex I : NewPaused)
871 addSearches(DefChainPhi, PausedSearches, I);
872 NewPaused.clear();
873
874 Current = DefChainPhi;
875 }
876 }
877
George Burgess IV5f308972016-07-19 01:29:15 +0000878 void verifyOptResult(const OptznResult &R) const {
879 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
880 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
881 }));
882 }
883
884 void resetPhiOptznState() {
885 Paths.clear();
886 VisitedPhis.clear();
887 }
888
889public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000890 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
891 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000892
George Burgess IV5f308972016-07-19 01:29:15 +0000893 /// Finds the nearest clobber for the given query, optimizing phis if
894 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000895 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000896 Query = &Q;
897
898 MemoryAccess *Current = Start;
899 // This walker pretends uses don't exist. If we're handed one, silently grab
900 // its def. (This has the nice side-effect of ensuring we never cache uses)
901 if (auto *MU = dyn_cast<MemoryUse>(Start))
902 Current = MU->getDefiningAccess();
903
904 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
905 // Fast path for the overly-common case (no crazy phi optimization
906 // necessary)
907 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000908 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000909 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000910 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000911 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000912 } else {
913 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
914 Current, Q.StartingLoc);
915 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000916 resetPhiOptznState();
917 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000918 }
919
George Burgess IV5f308972016-07-19 01:29:15 +0000920#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000921 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000922#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000923 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000924 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000925
926 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000927};
928
929struct RenamePassData {
930 DomTreeNode *DTN;
931 DomTreeNode::const_iterator ChildIt;
932 MemoryAccess *IncomingVal;
933
934 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
935 MemoryAccess *M)
936 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000937
George Burgess IV5f308972016-07-19 01:29:15 +0000938 void swap(RenamePassData &RHS) {
939 std::swap(DTN, RHS.DTN);
940 std::swap(ChildIt, RHS.ChildIt);
941 std::swap(IncomingVal, RHS.IncomingVal);
942 }
943};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000944
945} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000946
947namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000948
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000949class MemorySSA::ClobberWalkerBase {
950 ClobberWalker Walker;
951 MemorySSA *MSSA;
952
953public:
954 ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D)
955 : Walker(*M, *A, *D), MSSA(M) {}
956
957 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
958 const MemoryLocation &);
959 // Second argument (bool), defines whether the clobber search should skip the
960 // original queried access. If true, there will be a follow-up query searching
961 // for a clobber access past "self". Note that the Optimized access is not
962 // updated if a new clobber is found by this SkipSelf search. If this
963 // additional query becomes heavily used we may decide to cache the result.
964 // Walker instantiations will decide how to set the SkipSelf bool.
965 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
966 void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); }
967};
968
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000969/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000970/// longer does caching on its own, but the name has been retained for the
971/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000972class MemorySSA::CachingWalker final : public MemorySSAWalker {
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000973 ClobberWalkerBase *Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000974
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000975public:
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000976 CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
977 : MemorySSAWalker(M), Walker(W) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000978 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000979
George Burgess IV400ae402016-07-20 19:51:34 +0000980 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000981
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000982 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
983 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
984 const MemoryLocation &Loc) override;
985
986 void invalidateInfo(MemoryAccess *MA) override {
987 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
988 MUD->resetOptimized();
989 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000990
Geoff Berrycdf53332016-08-08 17:52:01 +0000991 void verify(const MemorySSA *MSSA) override {
992 MemorySSAWalker::verify(MSSA);
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000993 Walker->verify(MSSA);
Geoff Berrycdf53332016-08-08 17:52:01 +0000994 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000995};
George Burgess IVe1100f52016-02-02 22:46:49 +0000996
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000997} // end namespace llvm
998
Daniel Berlin78cbd282017-02-20 22:26:03 +0000999void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1000 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001001 // Pass through values to our successors
1002 for (const BasicBlock *S : successors(BB)) {
1003 auto It = PerBlockAccesses.find(S);
1004 // Rename the phi nodes in our successor block
1005 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1006 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +00001007 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001008 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +00001009 if (RenameAllUses) {
1010 int PhiIndex = Phi->getBasicBlockIndex(BB);
1011 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1012 Phi->setIncomingValue(PhiIndex, IncomingVal);
1013 } else
1014 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +00001015 }
Daniel Berlin78cbd282017-02-20 22:26:03 +00001016}
George Burgess IVe1100f52016-02-02 22:46:49 +00001017
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001018/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +00001019/// Uses the standard SSA renaming algorithm.
1020/// \returns The new incoming value.
1021MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1022 bool RenameAllUses) {
1023 auto It = PerBlockAccesses.find(BB);
1024 // Skip most processing if the list is empty.
1025 if (It != PerBlockAccesses.end()) {
1026 AccessList *Accesses = It->second.get();
1027 for (MemoryAccess &L : *Accesses) {
1028 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1029 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1030 MUD->setDefiningAccess(IncomingVal);
1031 if (isa<MemoryDef>(&L))
1032 IncomingVal = &L;
1033 } else {
1034 IncomingVal = &L;
1035 }
1036 }
1037 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001038 return IncomingVal;
1039}
1040
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001041/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +00001042///
1043/// We walk the dominator tree in preorder, renaming accesses, and then filling
1044/// in phi nodes in our successors.
1045void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +00001046 SmallPtrSetImpl<BasicBlock *> &Visited,
1047 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001048 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001049 // Skip everything if we already renamed this block and we are skipping.
1050 // Note: You can't sink this into the if, because we need it to occur
1051 // regardless of whether we skip blocks or not.
1052 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1053 if (SkipVisited && AlreadyVisited)
1054 return;
1055
1056 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1057 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001058 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001059
1060 while (!WorkStack.empty()) {
1061 DomTreeNode *Node = WorkStack.back().DTN;
1062 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1063 IncomingVal = WorkStack.back().IncomingVal;
1064
1065 if (ChildIt == Node->end()) {
1066 WorkStack.pop_back();
1067 } else {
1068 DomTreeNode *Child = *ChildIt;
1069 ++WorkStack.back().ChildIt;
1070 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001071 // Note: You can't sink this into the if, because we need it to occur
1072 // regardless of whether we skip blocks or not.
1073 AlreadyVisited = !Visited.insert(BB).second;
1074 if (SkipVisited && AlreadyVisited) {
1075 // We already visited this during our renaming, which can happen when
1076 // being asked to rename multiple blocks. Figure out the incoming val,
1077 // which is the last def.
1078 // Incoming value can only change if there is a block def, and in that
1079 // case, it's the last block def in the list.
1080 if (auto *BlockDefs = getWritableBlockDefs(BB))
1081 IncomingVal = &*BlockDefs->rbegin();
1082 } else
1083 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1084 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001085 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1086 }
1087 }
1088}
1089
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001090/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001091/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1092/// being uses of the live on entry definition.
1093void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1094 assert(!DT->isReachableFromEntry(BB) &&
1095 "Reachable block found while handling unreachable blocks");
1096
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001097 // Make sure phi nodes in our reachable successors end up with a
1098 // LiveOnEntryDef for our incoming edge, even though our block is forward
1099 // unreachable. We could just disconnect these blocks from the CFG fully,
1100 // but we do not right now.
1101 for (const BasicBlock *S : successors(BB)) {
1102 if (!DT->isReachableFromEntry(S))
1103 continue;
1104 auto It = PerBlockAccesses.find(S);
1105 // Rename the phi nodes in our successor block
1106 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1107 continue;
1108 AccessList *Accesses = It->second.get();
1109 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1110 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1111 }
1112
George Burgess IVe1100f52016-02-02 22:46:49 +00001113 auto It = PerBlockAccesses.find(BB);
1114 if (It == PerBlockAccesses.end())
1115 return;
1116
1117 auto &Accesses = It->second;
1118 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1119 auto Next = std::next(AI);
1120 // If we have a phi, just remove it. We are going to replace all
1121 // users with live on entry.
1122 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1123 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1124 else
1125 Accesses->erase(AI);
1126 AI = Next;
1127 }
1128}
1129
Geoff Berryb96d3b22016-06-01 21:30:40 +00001130MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1131 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001132 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001133 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001134}
1135
George Burgess IVe1100f52016-02-02 22:46:49 +00001136MemorySSA::~MemorySSA() {
1137 // Drop all our references
1138 for (const auto &Pair : PerBlockAccesses)
1139 for (MemoryAccess &MA : *Pair.second)
1140 MA.dropAllReferences();
1141}
1142
Daniel Berlin14300262016-06-21 18:39:20 +00001143MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001144 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1145
1146 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001147 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001148 return Res.first->second.get();
1149}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001150
Daniel Berlind602e042017-01-25 20:56:19 +00001151MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1152 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1153
1154 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001155 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001156 return Res.first->second.get();
1157}
George Burgess IVe1100f52016-02-02 22:46:49 +00001158
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001159namespace llvm {
1160
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001161/// This class is a batch walker of all MemoryUse's in the program, and points
1162/// their defining access at the thing that actually clobbers them. Because it
1163/// is a batch walker that touches everything, it does not operate like the
1164/// other walkers. This walker is basically performing a top-down SSA renaming
1165/// pass, where the version stack is used as the cache. This enables it to be
1166/// significantly more time and memory efficient than using the regular walker,
1167/// which is walking bottom-up.
1168class MemorySSA::OptimizeUses {
1169public:
1170 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1171 DominatorTree *DT)
1172 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1173 Walker = MSSA->getWalker();
1174 }
1175
1176 void optimizeUses();
1177
1178private:
1179 /// This represents where a given memorylocation is in the stack.
1180 struct MemlocStackInfo {
1181 // This essentially is keeping track of versions of the stack. Whenever
1182 // the stack changes due to pushes or pops, these versions increase.
1183 unsigned long StackEpoch;
1184 unsigned long PopEpoch;
1185 // This is the lower bound of places on the stack to check. It is equal to
1186 // the place the last stack walk ended.
1187 // Note: Correctness depends on this being initialized to 0, which densemap
1188 // does
1189 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001190 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001191 // This is where the last walk for this memory location ended.
1192 unsigned long LastKill;
1193 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001194 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001195 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001196
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001197 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1198 SmallVectorImpl<MemoryAccess *> &,
1199 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001200
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001201 MemorySSA *MSSA;
1202 MemorySSAWalker *Walker;
1203 AliasAnalysis *AA;
1204 DominatorTree *DT;
1205};
1206
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001207} // end namespace llvm
1208
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001209/// Optimize the uses in a given block This is basically the SSA renaming
1210/// algorithm, with one caveat: We are able to use a single stack for all
1211/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1212/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1213/// going to be some position in that stack of possible ones.
1214///
1215/// We track the stack positions that each MemoryLocation needs
1216/// to check, and last ended at. This is because we only want to check the
1217/// things that changed since last time. The same MemoryLocation should
1218/// get clobbered by the same store (getModRefInfo does not use invariantness or
1219/// things like this, and if they start, we can modify MemoryLocOrCall to
1220/// include relevant data)
1221void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1222 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1223 SmallVectorImpl<MemoryAccess *> &VersionStack,
1224 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1225
1226 /// If no accesses, nothing to do.
1227 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1228 if (Accesses == nullptr)
1229 return;
1230
1231 // Pop everything that doesn't dominate the current block off the stack,
1232 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001233 while (true) {
1234 assert(
1235 !VersionStack.empty() &&
1236 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001237 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1238 if (DT->dominates(BackBlock, BB))
1239 break;
1240 while (VersionStack.back()->getBlock() == BackBlock)
1241 VersionStack.pop_back();
1242 ++PopEpoch;
1243 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001244
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001245 for (MemoryAccess &MA : *Accesses) {
1246 auto *MU = dyn_cast<MemoryUse>(&MA);
1247 if (!MU) {
1248 VersionStack.push_back(&MA);
1249 ++StackEpoch;
1250 continue;
1251 }
1252
George Burgess IV024f3d22016-08-03 19:57:02 +00001253 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001254 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001255 continue;
1256 }
1257
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001258 MemoryLocOrCall UseMLOC(MU);
1259 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001260 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001261 // stack due to changing blocks. We may have to reset the lower bound or
1262 // last kill info.
1263 if (LocInfo.PopEpoch != PopEpoch) {
1264 LocInfo.PopEpoch = PopEpoch;
1265 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001266 // If the lower bound was in something that no longer dominates us, we
1267 // have to reset it.
1268 // We can't simply track stack size, because the stack may have had
1269 // pushes/pops in the meantime.
1270 // XXX: This is non-optimal, but only is slower cases with heavily
1271 // branching dominator trees. To get the optimal number of queries would
1272 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1273 // the top of that stack dominates us. This does not seem worth it ATM.
1274 // A much cheaper optimization would be to always explore the deepest
1275 // branch of the dominator tree first. This will guarantee this resets on
1276 // the smallest set of blocks.
1277 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001278 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001279 // Reset the lower bound of things to check.
1280 // TODO: Some day we should be able to reset to last kill, rather than
1281 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001282 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001283 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001284 LocInfo.LastKillValid = false;
1285 }
1286 } else if (LocInfo.StackEpoch != StackEpoch) {
1287 // If all that has changed is the StackEpoch, we only have to check the
1288 // new things on the stack, because we've checked everything before. In
1289 // this case, the lower bound of things to check remains the same.
1290 LocInfo.PopEpoch = PopEpoch;
1291 LocInfo.StackEpoch = StackEpoch;
1292 }
1293 if (!LocInfo.LastKillValid) {
1294 LocInfo.LastKill = VersionStack.size() - 1;
1295 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001296 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001297 }
1298
1299 // At this point, we should have corrected last kill and LowerBound to be
1300 // in bounds.
1301 assert(LocInfo.LowerBound < VersionStack.size() &&
1302 "Lower bound out of range");
1303 assert(LocInfo.LastKill < VersionStack.size() &&
1304 "Last kill info out of range");
1305 // In any case, the new upper bound is the top of the stack.
1306 unsigned long UpperBound = VersionStack.size() - 1;
1307
1308 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001309 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1310 << *(MU->getMemoryInst()) << ")"
1311 << " because there are "
1312 << UpperBound - LocInfo.LowerBound
1313 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001314 // Because we did not walk, LastKill is no longer valid, as this may
1315 // have been a kill.
1316 LocInfo.LastKillValid = false;
1317 continue;
1318 }
1319 bool FoundClobberResult = false;
1320 while (UpperBound > LocInfo.LowerBound) {
1321 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1322 // For phis, use the walker, see where we ended up, go there
1323 Instruction *UseInst = MU->getMemoryInst();
1324 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1325 // We are guaranteed to find it or something is wrong
1326 while (VersionStack[UpperBound] != Result) {
1327 assert(UpperBound != 0);
1328 --UpperBound;
1329 }
1330 FoundClobberResult = true;
1331 break;
1332 }
1333
1334 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001335 // If the lifetime of the pointer ends at this instruction, it's live on
1336 // entry.
1337 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1338 // Reset UpperBound to liveOnEntryDef's place in the stack
1339 UpperBound = 0;
1340 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001341 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001342 break;
1343 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001344 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1345 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001346 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001347 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001348 break;
1349 }
1350 --UpperBound;
1351 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001352
1353 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1354
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001355 // At the end of this loop, UpperBound is either a clobber, or lower bound
1356 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1357 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001358 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001359 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1360 LocInfo.AR = None;
1361 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001362 LocInfo.LastKill = UpperBound;
1363 } else {
1364 // Otherwise, we checked all the new ones, and now we know we can get to
1365 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001366 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001367 }
1368 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001369 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001370 }
1371}
1372
1373/// Optimize uses to point to their actual clobbering definitions.
1374void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001375 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001376 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001377 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1378
1379 unsigned long StackEpoch = 1;
1380 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001381 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001382 for (const auto *DomNode : depth_first(DT->getRootNode()))
1383 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1384 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001385}
1386
Daniel Berlin3d512a22016-08-22 19:14:30 +00001387void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001388 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001389 // Determine where our MemoryPhi's should go
1390 ForwardIDFCalculator IDFs(*DT);
1391 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001392 SmallVector<BasicBlock *, 32> IDFBlocks;
1393 IDFs.calculate(IDFBlocks);
1394
1395 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001396 for (auto &BB : IDFBlocks)
1397 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001398}
1399
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001400void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001401 // We create an access to represent "live on entry", for things like
1402 // arguments or users of globals, where the memory they use is defined before
1403 // the beginning of the function. We do not actually insert it into the IR.
1404 // We do not define a live on exit for the immediate uses, and thus our
1405 // semantics do *not* imply that something with no immediate uses can simply
1406 // be removed.
1407 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001408 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1409 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001410
1411 // We maintain lists of memory accesses per-block, trading memory for time. We
1412 // could just look up the memory access for every possible instruction in the
1413 // stream.
1414 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001415 // Go through each block, figure out where defs occur, and chain together all
1416 // the accesses.
1417 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001418 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001419 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001420 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001421 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001422 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001423 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001424 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001425
George Burgess IVe1100f52016-02-02 22:46:49 +00001426 if (!Accesses)
1427 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001428 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001429 if (isa<MemoryDef>(MUD)) {
1430 InsertIntoDef = true;
1431 if (!Defs)
1432 Defs = getOrCreateDefsList(&B);
1433 Defs->push_back(*MUD);
1434 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001435 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001436 if (InsertIntoDef)
1437 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001438 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001439 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001440
1441 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1442 // filled in with all blocks.
1443 SmallPtrSet<BasicBlock *, 16> Visited;
1444 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1445
George Burgess IV5f308972016-07-19 01:29:15 +00001446 CachingWalker *Walker = getWalkerImpl();
1447
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001448 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001449
George Burgess IVe1100f52016-02-02 22:46:49 +00001450 // Mark the uses in unreachable blocks as live on entry, so that they go
1451 // somewhere.
1452 for (auto &BB : F)
1453 if (!Visited.count(&BB))
1454 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001455}
George Burgess IVe1100f52016-02-02 22:46:49 +00001456
George Burgess IV5f308972016-07-19 01:29:15 +00001457MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1458
1459MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001460 if (Walker)
1461 return Walker.get();
1462
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001463 if (!WalkerBase)
1464 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1465
1466 Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get());
Geoff Berryb96d3b22016-06-01 21:30:40 +00001467 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001468}
1469
Daniel Berlind602e042017-01-25 20:56:19 +00001470// This is a helper function used by the creation routines. It places NewAccess
1471// into the access and defs lists for a given basic block, at the given
1472// insertion point.
1473void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1474 const BasicBlock *BB,
1475 InsertionPlace Point) {
1476 auto *Accesses = getOrCreateAccessList(BB);
1477 if (Point == Beginning) {
1478 // If it's a phi node, it goes first, otherwise, it goes after any phi
1479 // nodes.
1480 if (isa<MemoryPhi>(NewAccess)) {
1481 Accesses->push_front(NewAccess);
1482 auto *Defs = getOrCreateDefsList(BB);
1483 Defs->push_front(*NewAccess);
1484 } else {
1485 auto AI = find_if_not(
1486 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1487 Accesses->insert(AI, NewAccess);
1488 if (!isa<MemoryUse>(NewAccess)) {
1489 auto *Defs = getOrCreateDefsList(BB);
1490 auto DI = find_if_not(
1491 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1492 Defs->insert(DI, *NewAccess);
1493 }
1494 }
1495 } else {
1496 Accesses->push_back(NewAccess);
1497 if (!isa<MemoryUse>(NewAccess)) {
1498 auto *Defs = getOrCreateDefsList(BB);
1499 Defs->push_back(*NewAccess);
1500 }
1501 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001502 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001503}
1504
1505void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1506 AccessList::iterator InsertPt) {
1507 auto *Accesses = getWritableBlockAccesses(BB);
1508 bool WasEnd = InsertPt == Accesses->end();
1509 Accesses->insert(AccessList::iterator(InsertPt), What);
1510 if (!isa<MemoryUse>(What)) {
1511 auto *Defs = getOrCreateDefsList(BB);
1512 // If we got asked to insert at the end, we have an easy job, just shove it
1513 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001514 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001515 // the next def.
1516 if (WasEnd) {
1517 Defs->push_back(*What);
1518 } else if (isa<MemoryDef>(InsertPt)) {
1519 Defs->insert(InsertPt->getDefsIterator(), *What);
1520 } else {
1521 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1522 ++InsertPt;
1523 // Either we found a def, or we are inserting at the end
1524 if (InsertPt == Accesses->end())
1525 Defs->push_back(*What);
1526 else
1527 Defs->insert(InsertPt->getDefsIterator(), *What);
1528 }
1529 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001530 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001531}
1532
George Burgess IV5676a5d2018-08-22 22:34:38 +00001533void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1534 // Keep it in the lookup tables, remove from the lists
1535 removeFromLists(What, false);
1536
1537 // Note that moving should implicitly invalidate the optimized state of a
1538 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1539 // MemoryDef.
1540 if (auto *MD = dyn_cast<MemoryDef>(What))
1541 MD->resetOptimized();
1542 What->setBlock(BB);
1543}
1544
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001545// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001546// the right lists and have the right Block set, but will not otherwise be
1547// correct. It will not have the right defining access, and if it is a def,
1548// things below it will not properly be updated.
1549void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1550 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001551 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001552 insertIntoListsBefore(What, BB, Where);
1553}
1554
Alina Sbirlea0f533552018-07-11 22:11:46 +00001555void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001556 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001557 if (isa<MemoryPhi>(What)) {
1558 assert(Point == Beginning &&
1559 "Can only move a Phi at the beginning of the block");
1560 // Update lookup table entry
1561 ValueToMemoryAccess.erase(What->getBlock());
1562 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1563 (void)Inserted;
1564 assert(Inserted && "Cannot move a Phi to a block that already has one");
1565 }
1566
George Burgess IV5676a5d2018-08-22 22:34:38 +00001567 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001568 insertIntoListsForBlock(What, BB, Point);
1569}
1570
Daniel Berlin14300262016-06-21 18:39:20 +00001571MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1572 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001573 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001574 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001575 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001576 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001577 return Phi;
1578}
1579
1580MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
Alina Sbirlea79800992018-09-10 20:13:01 +00001581 MemoryAccess *Definition,
1582 const MemoryUseOrDef *Template) {
Daniel Berlin14300262016-06-21 18:39:20 +00001583 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
Alina Sbirlea79800992018-09-10 20:13:01 +00001584 MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
Daniel Berlin14300262016-06-21 18:39:20 +00001585 assert(
1586 NewAccess != nullptr &&
1587 "Tried to create a memory access for a non-memory touching instruction");
1588 NewAccess->setDefiningAccess(Definition);
1589 return NewAccess;
1590}
1591
Daniel Berlind952cea2017-04-07 01:28:36 +00001592// Return true if the instruction has ordering constraints.
1593// Note specifically that this only considers stores and loads
1594// because others are still considered ModRef by getModRefInfo.
1595static inline bool isOrdered(const Instruction *I) {
1596 if (auto *SI = dyn_cast<StoreInst>(I)) {
1597 if (!SI->isUnordered())
1598 return true;
1599 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1600 if (!LI->isUnordered())
1601 return true;
1602 }
1603 return false;
1604}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001605
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001606/// Helper function to create new memory accesses
Alina Sbirlea79800992018-09-10 20:13:01 +00001607MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1608 const MemoryUseOrDef *Template) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001609 // The assume intrinsic has a control dependency which we model by claiming
1610 // that it writes arbitrarily. Ignore that fake memory dependency here.
1611 // FIXME: Replace this special casing with a more accurate modelling of
1612 // assume's control dependency.
1613 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1614 if (II->getIntrinsicID() == Intrinsic::assume)
1615 return nullptr;
1616
Alina Sbirlea79800992018-09-10 20:13:01 +00001617 bool Def, Use;
1618 if (Template) {
1619 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1620 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1621#if !defined(NDEBUG)
1622 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1623 bool DefCheck, UseCheck;
1624 DefCheck = isModSet(ModRef) || isOrdered(I);
1625 UseCheck = isRefSet(ModRef);
1626 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1627#endif
1628 } else {
1629 // Find out what affect this instruction has on memory.
1630 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1631 // The isOrdered check is used to ensure that volatiles end up as defs
1632 // (atomics end up as ModRef right now anyway). Until we separate the
1633 // ordering chain from the memory chain, this enables people to see at least
1634 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1635 // will still give an answer that bypasses other volatile loads. TODO:
1636 // Separate memory aliasing and ordering into two different chains so that
1637 // we can precisely represent both "what memory will this read/write/is
1638 // clobbered by" and "what instructions can I move this past".
1639 Def = isModSet(ModRef) || isOrdered(I);
1640 Use = isRefSet(ModRef);
1641 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001642
1643 // It's possible for an instruction to not modify memory at all. During
1644 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001645 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001646 return nullptr;
1647
George Burgess IVb42b7622016-03-11 19:34:03 +00001648 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001649 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001650 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001651 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001652 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001653 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001654 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001655}
1656
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001657/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001658bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1659 const MemoryAccess *Replacee) const {
1660 if (isa<MemoryUseOrDef>(Replacee))
1661 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1662 const auto *MP = cast<MemoryPhi>(Replacee);
1663 // For a phi node, the use occurs in the predecessor block of the phi node.
1664 // Since we may occur multiple times in the phi node, we have to check each
1665 // operand to ensure Replacer dominates each operand where Replacee occurs.
1666 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001667 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001668 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1669 return false;
1670 }
1671 return true;
1672}
1673
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001674/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001675void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1676 assert(MA->use_empty() &&
1677 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001678 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001679 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001680 MUD->setDefiningAccess(nullptr);
1681 // Invalidate our walker's cache if necessary
1682 if (!isa<MemoryUse>(MA))
1683 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001684
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001685 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001686 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001687 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001688 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001689 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001690
Daniel Berlin5130cc82016-07-31 21:08:20 +00001691 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1692 if (VMA->second == MA)
1693 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001694}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001695
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001696/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001697///
1698/// Because of the way the intrusive list and use lists work, it is important to
1699/// do removal in the right order.
1700/// ShouldDelete defaults to true, and will cause the memory access to also be
1701/// deleted, not just removed.
1702void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001703 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001704 // The access list owns the reference, so we erase it from the non-owning list
1705 // first.
1706 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001707 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001708 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1709 Defs->remove(*MA);
1710 if (Defs->empty())
1711 PerBlockDefs.erase(DefsIt);
1712 }
1713
Daniel Berlin60ead052017-01-28 01:23:13 +00001714 // The erase call here will delete it. If we don't want it deleted, we call
1715 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001716 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001717 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001718 if (ShouldDelete)
1719 Accesses->erase(MA);
1720 else
1721 Accesses->remove(MA);
1722
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001723 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001724 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001725 BlockNumberingValid.erase(BB);
1726 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001727}
1728
George Burgess IVe1100f52016-02-02 22:46:49 +00001729void MemorySSA::print(raw_ostream &OS) const {
1730 MemorySSAAnnotatedWriter Writer(this);
1731 F.print(OS, &Writer);
1732}
1733
Aaron Ballman615eb472017-10-15 14:32:27 +00001734#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001735LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001736#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001737
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001738void MemorySSA::verifyMemorySSA() const {
1739 verifyDefUses(F);
1740 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001741 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001742 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001743 Walker->verify(this);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001744 verifyClobberSanity(F);
1745}
1746
1747/// Check sanity of the clobbering instruction for access MA.
1748void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1749 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1750 if (!MUD->isOptimized())
1751 return;
1752 auto *I = MUD->getMemoryInst();
1753 auto Loc = MemoryLocation::getOrNone(I);
1754 if (Loc == None)
1755 return;
1756 auto *Clobber = MUD->getOptimized();
1757 UpwardsMemoryQuery Q(I, MUD);
Alina Sbirlea65f385d2018-09-07 23:51:41 +00001758 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001759 }
1760}
1761
1762void MemorySSA::verifyClobberSanity(const Function &F) const {
1763#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1764 for (const BasicBlock &BB : F) {
1765 const AccessList *Accesses = getBlockAccesses(&BB);
1766 if (!Accesses)
1767 continue;
1768 for (const MemoryAccess &MA : *Accesses)
1769 checkClobberSanityAccess(&MA);
1770 }
1771#endif
Daniel Berlin14300262016-06-21 18:39:20 +00001772}
1773
George Burgess IV97ec6242018-06-25 05:30:36 +00001774/// Verify that all of the blocks we believe to have valid domination numbers
1775/// actually have valid domination numbers.
1776void MemorySSA::verifyDominationNumbers(const Function &F) const {
1777#ifndef NDEBUG
1778 if (BlockNumberingValid.empty())
1779 return;
1780
1781 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1782 for (const BasicBlock &BB : F) {
1783 if (!ValidBlocks.count(&BB))
1784 continue;
1785
1786 ValidBlocks.erase(&BB);
1787
1788 const AccessList *Accesses = getBlockAccesses(&BB);
1789 // It's correct to say an empty block has valid numbering.
1790 if (!Accesses)
1791 continue;
1792
1793 // Block numbering starts at 1.
1794 unsigned long LastNumber = 0;
1795 for (const MemoryAccess &MA : *Accesses) {
1796 auto ThisNumberIter = BlockNumbering.find(&MA);
1797 assert(ThisNumberIter != BlockNumbering.end() &&
1798 "MemoryAccess has no domination number in a valid block!");
1799
1800 unsigned long ThisNumber = ThisNumberIter->second;
1801 assert(ThisNumber > LastNumber &&
1802 "Domination numbers should be strictly increasing!");
1803 LastNumber = ThisNumber;
1804 }
1805 }
1806
1807 assert(ValidBlocks.empty() &&
1808 "All valid BasicBlocks should exist in F -- dangling pointers?");
1809#endif
1810}
1811
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001812/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001813/// order and existence of memory affecting instructions.
1814void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001815#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001816 // Walk all the blocks, comparing what the lookups think and what the access
1817 // lists think, as well as the order in the blocks vs the order in the access
1818 // lists.
1819 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001820 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001821 for (BasicBlock &B : F) {
1822 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001823 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001824 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001825 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001826 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001827 ActualDefs.push_back(Phi);
1828 }
1829
Daniel Berlin14300262016-06-21 18:39:20 +00001830 for (Instruction &I : B) {
1831 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001832 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1833 "We have memory affecting instructions "
1834 "in this block but they are not in the "
1835 "access list or defs list");
1836 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001837 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001838 if (isa<MemoryDef>(MA))
1839 ActualDefs.push_back(MA);
1840 }
Daniel Berlin14300262016-06-21 18:39:20 +00001841 }
1842 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001843 // accesses and an access list.
1844 // Same with defs.
1845 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001846 continue;
1847 assert(AL->size() == ActualAccesses.size() &&
1848 "We don't have the same number of accesses in the block as on the "
1849 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001850 assert((DL || ActualDefs.size() == 0) &&
1851 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001852 assert((!DL || DL->size() == ActualDefs.size()) &&
1853 "We don't have the same number of defs in the block as on the "
1854 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001855 auto ALI = AL->begin();
1856 auto AAI = ActualAccesses.begin();
1857 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1858 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1859 ++ALI;
1860 ++AAI;
1861 }
1862 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001863 if (DL) {
1864 auto DLI = DL->begin();
1865 auto ADI = ActualDefs.begin();
1866 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1867 assert(&*DLI == *ADI && "Not the same defs in the same order");
1868 ++DLI;
1869 ++ADI;
1870 }
1871 }
1872 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001873 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001874#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001875}
1876
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001877/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001878/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001879void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001880#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001881 for (BasicBlock &B : F) {
1882 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001883 if (MemoryPhi *MP = getMemoryAccess(&B))
1884 for (const Use &U : MP->uses())
1885 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001886
George Burgess IVe1100f52016-02-02 22:46:49 +00001887 for (Instruction &I : B) {
1888 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1889 if (!MD)
1890 continue;
1891
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001892 for (const Use &U : MD->uses())
1893 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001894 }
1895 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001896#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001897}
1898
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001899/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001900/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001901void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001902#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001903 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001904 if (!Def)
1905 assert(isLiveOnEntryDef(Use) &&
1906 "Null def but use not point to live on entry def");
1907 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001908 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001909 "Did not find use in def's use list");
1910#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001911}
1912
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001913/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001914/// accesses and verifying that, for each use, it appears in the
1915/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001916void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001917#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001918 for (BasicBlock &B : F) {
1919 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001920 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001921 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1922 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001923 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001924 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001925 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001926 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1927 pred_end(&B) &&
1928 "Incoming phi block not a block predecessor");
1929 }
Daniel Berlin14300262016-06-21 18:39:20 +00001930 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001931
1932 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001933 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1934 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001935 }
1936 }
1937 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001938#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001939}
1940
Daniel Berlin5c46b942016-07-19 22:49:43 +00001941/// Perform a local numbering on blocks so that instruction ordering can be
1942/// determined in constant time.
1943/// TODO: We currently just number in order. If we numbered by N, we could
1944/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1945/// log2(N) sequences of mixed before and after) without needing to invalidate
1946/// the numbering.
1947void MemorySSA::renumberBlock(const BasicBlock *B) const {
1948 // The pre-increment ensures the numbers really start at 1.
1949 unsigned long CurrentNumber = 0;
1950 const AccessList *AL = getBlockAccesses(B);
1951 assert(AL != nullptr && "Asking to renumber an empty block");
1952 for (const auto &I : *AL)
1953 BlockNumbering[&I] = ++CurrentNumber;
1954 BlockNumberingValid.insert(B);
1955}
1956
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001957/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001958/// whether \p Dominator dominates \p Dominatee.
1959/// \returns True if \p Dominator dominates \p Dominatee.
1960bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1961 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001962 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001963
Daniel Berlin19860302016-07-19 23:08:08 +00001964 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001965 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001966 // A node dominates itself.
1967 if (Dominatee == Dominator)
1968 return true;
1969
1970 // When Dominatee is defined on function entry, it is not dominated by another
1971 // memory access.
1972 if (isLiveOnEntryDef(Dominatee))
1973 return false;
1974
1975 // When Dominator is defined on function entry, it dominates the other memory
1976 // access.
1977 if (isLiveOnEntryDef(Dominator))
1978 return true;
1979
Daniel Berlin5c46b942016-07-19 22:49:43 +00001980 if (!BlockNumberingValid.count(DominatorBlock))
1981 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001982
Daniel Berlin5c46b942016-07-19 22:49:43 +00001983 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1984 // All numbers start with 1
1985 assert(DominatorNum != 0 && "Block was not numbered properly");
1986 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1987 assert(DominateeNum != 0 && "Block was not numbered properly");
1988 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001989}
1990
George Burgess IV5f308972016-07-19 01:29:15 +00001991bool MemorySSA::dominates(const MemoryAccess *Dominator,
1992 const MemoryAccess *Dominatee) const {
1993 if (Dominator == Dominatee)
1994 return true;
1995
1996 if (isLiveOnEntryDef(Dominatee))
1997 return false;
1998
1999 if (Dominator->getBlock() != Dominatee->getBlock())
2000 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2001 return locallyDominates(Dominator, Dominatee);
2002}
2003
Daniel Berlin2919b1c2016-08-05 21:46:52 +00002004bool MemorySSA::dominates(const MemoryAccess *Dominator,
2005 const Use &Dominatee) const {
2006 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2007 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2008 // The def must dominate the incoming block of the phi.
2009 if (UseBB != Dominator->getBlock())
2010 return DT->dominates(Dominator->getBlock(), UseBB);
2011 // If the UseBB and the DefBB are the same, compare locally.
2012 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2013 }
2014 // If it's not a PHI node use, the normal dominates can already handle it.
2015 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2016}
2017
George Burgess IVe1100f52016-02-02 22:46:49 +00002018const static char LiveOnEntryStr[] = "liveOnEntry";
2019
Reid Kleckner96ab8722017-05-18 17:24:10 +00002020void MemoryAccess::print(raw_ostream &OS) const {
2021 switch (getValueID()) {
2022 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2023 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2024 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2025 }
2026 llvm_unreachable("invalid value id");
2027}
2028
George Burgess IVe1100f52016-02-02 22:46:49 +00002029void MemoryDef::print(raw_ostream &OS) const {
2030 MemoryAccess *UO = getDefiningAccess();
2031
George Burgess IVaa283d82018-06-14 19:55:53 +00002032 auto printID = [&OS](MemoryAccess *A) {
2033 if (A && A->getID())
2034 OS << A->getID();
2035 else
2036 OS << LiveOnEntryStr;
2037 };
2038
George Burgess IVe1100f52016-02-02 22:46:49 +00002039 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00002040 printID(UO);
2041 OS << ")";
2042
2043 if (isOptimized()) {
2044 OS << "->";
2045 printID(getOptimized());
2046
2047 if (Optional<AliasResult> AR = getOptimizedAccessType())
2048 OS << " " << *AR;
2049 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002050}
2051
2052void MemoryPhi::print(raw_ostream &OS) const {
2053 bool First = true;
2054 OS << getID() << " = MemoryPhi(";
2055 for (const auto &Op : operands()) {
2056 BasicBlock *BB = getIncomingBlock(Op);
2057 MemoryAccess *MA = cast<MemoryAccess>(Op);
2058 if (!First)
2059 OS << ',';
2060 else
2061 First = false;
2062
2063 OS << '{';
2064 if (BB->hasName())
2065 OS << BB->getName();
2066 else
2067 BB->printAsOperand(OS, false);
2068 OS << ',';
2069 if (unsigned ID = MA->getID())
2070 OS << ID;
2071 else
2072 OS << LiveOnEntryStr;
2073 OS << '}';
2074 }
2075 OS << ')';
2076}
2077
George Burgess IVe1100f52016-02-02 22:46:49 +00002078void MemoryUse::print(raw_ostream &OS) const {
2079 MemoryAccess *UO = getDefiningAccess();
2080 OS << "MemoryUse(";
2081 if (UO && UO->getID())
2082 OS << UO->getID();
2083 else
2084 OS << LiveOnEntryStr;
2085 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002086
2087 if (Optional<AliasResult> AR = getOptimizedAccessType())
2088 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002089}
2090
2091void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002092// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002093#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002094 print(dbgs());
2095 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002096#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002097}
2098
Chad Rosier232e29e2016-07-06 21:20:47 +00002099char MemorySSAPrinterLegacyPass::ID = 0;
2100
2101MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2102 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2103}
2104
2105void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2106 AU.setPreservesAll();
2107 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002108}
2109
2110bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2111 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2112 MSSA.print(dbgs());
2113 if (VerifyMemorySSA)
2114 MSSA.verifyMemorySSA();
2115 return false;
2116}
2117
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002118AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002119
Daniel Berlin1e98c042016-09-26 17:22:54 +00002120MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2121 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002122 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2123 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002124 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002125}
2126
Geoff Berryb96d3b22016-06-01 21:30:40 +00002127PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2128 FunctionAnalysisManager &AM) {
2129 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002130 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002131
2132 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002133}
2134
Geoff Berryb96d3b22016-06-01 21:30:40 +00002135PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2136 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002137 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002138
2139 return PreservedAnalyses::all();
2140}
2141
2142char MemorySSAWrapperPass::ID = 0;
2143
2144MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2145 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2146}
2147
2148void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2149
2150void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002151 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002152 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2153 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002154}
2155
Geoff Berryb96d3b22016-06-01 21:30:40 +00002156bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2157 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2158 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2159 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002160 return false;
2161}
2162
Geoff Berryb96d3b22016-06-01 21:30:40 +00002163void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002164
Geoff Berryb96d3b22016-06-01 21:30:40 +00002165void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002166 MSSA->print(OS);
2167}
2168
George Burgess IVe1100f52016-02-02 22:46:49 +00002169MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2170
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002171/// Walk the use-def chains starting at \p StartingAccess and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002172/// the MemoryAccess that actually clobbers Loc.
2173///
2174/// \returns our clobbering memory access
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002175MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
George Burgess IV013fd732016-10-28 19:22:46 +00002176 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002177 if (isa<MemoryPhi>(StartingAccess))
2178 return StartingAccess;
2179
2180 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2181 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2182 return StartingUseOrDef;
2183
2184 Instruction *I = StartingUseOrDef->getMemoryInst();
2185
2186 // Conservatively, fences are always clobbers, so don't perform the walk if we
2187 // hit a fence.
Chandler Carruth363ac682019-01-07 05:42:51 +00002188 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002189 return StartingUseOrDef;
2190
2191 UpwardsMemoryQuery Q;
2192 Q.OriginalAccess = StartingUseOrDef;
2193 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002194 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002195 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002196
George Burgess IVe1100f52016-02-02 22:46:49 +00002197 // Unlike the other function, do not walk to the def of a def, because we are
2198 // handed something we already believe is the clobbering access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002199 // We never set SkipSelf to true in Q in this method.
George Burgess IVe1100f52016-02-02 22:46:49 +00002200 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2201 ? StartingUseOrDef->getDefiningAccess()
2202 : StartingUseOrDef;
2203
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002204 MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002205 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2206 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2207 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2208 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002209 return Clobber;
2210}
2211
2212MemoryAccess *
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002213MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA,
2214 bool SkipSelf) {
George Burgess IV400ae402016-07-20 19:51:34 +00002215 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2216 // If this is a MemoryPhi, we can't do anything.
2217 if (!StartingAccess)
2218 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002219
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002220 bool IsOptimized = false;
2221
Daniel Berlincd2deac2016-10-20 20:13:45 +00002222 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002223 // Note: Currently, we store the optimized def result in a separate field,
2224 // since we can't use the defining access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002225 if (StartingAccess->isOptimized()) {
2226 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2227 return StartingAccess->getOptimized();
2228 IsOptimized = true;
2229 }
Daniel Berlincd2deac2016-10-20 20:13:45 +00002230
George Burgess IV400ae402016-07-20 19:51:34 +00002231 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV44477c62018-03-11 04:16:12 +00002232 // We can't sanely do anything with a fence, since they conservatively clobber
2233 // all memory, and have no locations to get pointers from to try to
2234 // disambiguate.
Chandler Carruth363ac682019-01-07 05:42:51 +00002235 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002236 return StartingAccess;
2237
Alina Sbirleab4d088d2018-11-13 21:12:49 +00002238 UpwardsMemoryQuery Q(I, StartingAccess);
2239
George Burgess IV024f3d22016-08-03 19:57:02 +00002240 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2241 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002242 StartingAccess->setOptimized(LiveOnEntry);
2243 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002244 return LiveOnEntry;
2245 }
2246
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002247 MemoryAccess *OptimizedAccess;
2248 if (!IsOptimized) {
2249 // Start with the thing we already think clobbers this location
2250 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
George Burgess IVe1100f52016-02-02 22:46:49 +00002251
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002252 // At this point, DefiningAccess may be the live on entry def.
2253 // If it is, we will not get a better result.
2254 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2255 StartingAccess->setOptimized(DefiningAccess);
2256 StartingAccess->setOptimizedAccessType(None);
2257 return DefiningAccess;
2258 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002259
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002260 OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2261 StartingAccess->setOptimized(OptimizedAccess);
2262 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2263 StartingAccess->setOptimizedAccessType(None);
2264 else if (Q.AR == MustAlias)
2265 StartingAccess->setOptimizedAccessType(MustAlias);
2266 } else
2267 OptimizedAccess = StartingAccess->getOptimized();
2268
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002269 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002270 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2271 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2272 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002273
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002274 MemoryAccess *Result;
2275 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2276 isa<MemoryDef>(StartingAccess)) {
2277 assert(isa<MemoryDef>(Q.OriginalAccess));
2278 Q.SkipSelfAccess = true;
2279 Result = Walker.findClobber(OptimizedAccess, Q);
2280 } else
2281 Result = OptimizedAccess;
2282
2283 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2284 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002285
2286 return Result;
2287}
2288
George Burgess IVe1100f52016-02-02 22:46:49 +00002289MemoryAccess *
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002290MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2291 return Walker->getClobberingMemoryAccessBase(MA, false);
2292}
2293
2294MemoryAccess *
2295MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2296 const MemoryLocation &Loc) {
2297 return Walker->getClobberingMemoryAccessBase(MA, Loc);
2298}
2299
2300MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002301DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002302 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2303 return Use->getDefiningAccess();
2304 return MA;
2305}
2306
2307MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002308 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002309 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2310 return Use->getDefiningAccess();
2311 return StartingAccess;
2312}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002313
2314void MemoryPhi::deleteMe(DerivedUser *Self) {
2315 delete static_cast<MemoryPhi *>(Self);
2316}
2317
2318void MemoryDef::deleteMe(DerivedUser *Self) {
2319 delete static_cast<MemoryDef *>(Self);
2320}
2321
2322void MemoryUse::deleteMe(DerivedUser *Self) {
2323 delete static_cast<MemoryUse *>(Self);
2324}