blob: e72068273a8b6428bd27261e88772ab22e0e8513 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000080// Always verify MemorySSA if expensive checking is enabled.
81#ifdef EXPENSIVE_CHECKS
82bool llvm::VerifyMemorySSA = true;
83#else
84bool llvm::VerifyMemorySSA = false;
85#endif
86static cl::opt<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000089
George Burgess IVe1100f52016-02-02 22:46:49 +000090namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000091
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000092/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000093/// comments.
94class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
95 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096
George Burgess IVe1100f52016-02-02 22:46:49 +000097 const MemorySSA *MSSA;
98
99public:
100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitBasicBlockStartAnnot(const BasicBlock *BB,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105 OS << "; " << *MA << "\n";
106 }
107
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108 void emitInstructionAnnot(const Instruction *I,
109 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111 OS << "; " << *MA << "\n";
112 }
113};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000114
115} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000116
George Burgess IV5f308972016-07-19 01:29:15 +0000117namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000118
Daniel Berlindff31de2016-08-02 21:57:52 +0000119/// Our current alias analysis API differentiates heavily between calls and
120/// non-calls, and functions called on one usually assert on the other.
121/// This class encapsulates the distinction to simplify other code that wants
122/// "Memory affecting instructions and related data" to use as a key.
123/// For example, this class is used as a densemap key in the use optimizer.
124class MemoryLocOrCall {
125public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000126 bool IsCall = false;
127
128 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000129 MemoryLocOrCall(MemoryUseOrDef *MUD)
130 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000131 MemoryLocOrCall(const MemoryUseOrDef *MUD)
132 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000133
134 MemoryLocOrCall(Instruction *Inst) {
135 if (ImmutableCallSite(Inst)) {
136 IsCall = true;
137 CS = ImmutableCallSite(Inst);
138 } else {
139 IsCall = false;
140 // There is no such thing as a memorylocation for a fence inst, and it is
141 // unique in that regard.
142 if (!isa<FenceInst>(Inst))
143 Loc = MemoryLocation::get(Inst);
144 }
145 }
146
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000148
Daniel Berlindff31de2016-08-02 21:57:52 +0000149 ImmutableCallSite getCS() const {
150 assert(IsCall);
151 return CS;
152 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000153
Daniel Berlindff31de2016-08-02 21:57:52 +0000154 MemoryLocation getLoc() const {
155 assert(!IsCall);
156 return Loc;
157 }
158
159 bool operator==(const MemoryLocOrCall &Other) const {
160 if (IsCall != Other.IsCall)
161 return false;
162
George Burgess IV3588fd42018-03-29 00:54:39 +0000163 if (!IsCall)
164 return Loc == Other.Loc;
165
166 if (CS.getCalledValue() != Other.CS.getCalledValue())
167 return false;
168
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000169 return CS.arg_size() == Other.CS.arg_size() &&
170 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000171 }
172
173private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000174 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000175 ImmutableCallSite CS;
176 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000177 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000178};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000179
180} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000181
182namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000183
Daniel Berlindff31de2016-08-02 21:57:52 +0000184template <> struct DenseMapInfo<MemoryLocOrCall> {
185 static inline MemoryLocOrCall getEmptyKey() {
186 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000188
Daniel Berlindff31de2016-08-02 21:57:52 +0000189 static inline MemoryLocOrCall getTombstoneKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000192
Daniel Berlindff31de2016-08-02 21:57:52 +0000193 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000194 if (!MLOC.IsCall)
195 return hash_combine(
196 MLOC.IsCall,
197 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
198
199 hash_code hash =
200 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
201 MLOC.getCS().getCalledValue()));
202
203 for (const Value *Arg : MLOC.getCS().args())
204 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
205 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000206 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207
Daniel Berlindff31de2016-08-02 21:57:52 +0000208 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
209 return LHS == RHS;
210 }
211};
Daniel Berlindf101192016-08-03 00:01:46 +0000212
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000213} // end namespace llvm
214
George Burgess IV82e355c2016-08-03 19:39:54 +0000215/// This does one-way checks to see if Use could theoretically be hoisted above
216/// MayClobber. This will not check the other way around.
217///
218/// This assumes that, for the purposes of MemorySSA, Use comes directly after
219/// MayClobber, with no potentially clobbering operations in between them.
220/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221static bool areLoadsReorderable(const LoadInst *Use,
222 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000223 bool VolatileUse = Use->isVolatile();
224 bool VolatileClobber = MayClobber->isVolatile();
225 // Volatile operations may never be reordered with other volatile operations.
226 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000227 return false;
228 // Otherwise, volatile doesn't matter here. From the language reference:
229 // 'optimizers may change the order of volatile operations relative to
230 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000231
232 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
233 // is weaker, it can be moved above other loads. We just need to be sure that
234 // MayClobber isn't an acquire load, because loads can't be moved above
235 // acquire loads.
236 //
237 // Note that this explicitly *does* allow the free reordering of monotonic (or
238 // weaker) loads of the same address.
239 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
240 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
241 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000242 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000243}
244
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000245namespace {
246
247struct ClobberAlias {
248 bool IsClobber;
249 Optional<AliasResult> AR;
250};
251
252} // end anonymous namespace
253
254// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
255// ignored if IsClobber = false.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000256static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000257 const MemoryLocation &UseLoc,
258 const Instruction *UseInst,
259 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000260 Instruction *DefInst = MD->getMemoryInst();
261 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000262 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000263 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000264
Daniel Berlindf101192016-08-03 00:01:46 +0000265 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
266 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000267 // markers, mostly.
268 //
269 // FIXME: We probably don't actually want MemorySSA to model these at all
270 // (including creating MemoryAccesses for them): we just end up inventing
271 // clobbers where they don't really exist at all. Please see D43269 for
272 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000273 switch (II->getIntrinsicID()) {
274 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000275 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000276 return {false, NoAlias};
277 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000278 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000279 case Intrinsic::lifetime_end:
280 case Intrinsic::invariant_start:
281 case Intrinsic::invariant_end:
282 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000283 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000284 default:
285 break;
286 }
287 }
288
Hans Wennborg70e22d12017-11-21 18:00:01 +0000289 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000290 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000291 AR = isMustSet(I) ? MustAlias : MayAlias;
292 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000293 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000294
Alina Sbirleaca741a82017-12-22 19:54:03 +0000295 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
296 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000297 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000298
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000299 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000302}
303
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000304static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
305 const MemoryUseOrDef *MU,
306 const MemoryLocOrCall &UseMLOC,
307 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000308 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
309 // to exist while MemoryLocOrCall is pushed through places.
310 if (UseMLOC.IsCall)
311 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
312 AA);
313 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
314 AA);
315}
316
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000317// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000318bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
319 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000320 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000321}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322
323namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000324
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000325struct UpwardsMemoryQuery {
326 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000327 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000328 // The pointer location we started the query with. This will be empty if
329 // IsCall is true.
330 MemoryLocation StartingLoc;
331 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000332 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000333 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000335 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000336
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338
339 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
340 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
341 if (!IsCall)
342 StartingLoc = MemoryLocation::get(Inst);
343 }
344};
345
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000346} // end anonymous namespace
347
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000348static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
349 AliasAnalysis &AA) {
350 Instruction *Inst = MD->getMemoryInst();
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000353 case Intrinsic::lifetime_end:
354 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
355 default:
356 return false;
357 }
358 }
359 return false;
360}
361
362static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
363 const Instruction *I) {
364 // If the memory can't be changed, then loads of the memory can't be
365 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000367 AA.pointsToConstantMemory(cast<LoadInst>(I)->
368 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000369}
370
George Burgess IV5f308972016-07-19 01:29:15 +0000371/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
372/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373///
374/// This is meant to be as simple and self-contained as possible. Because it
375/// uses no cache, etc., it can be relatively expensive.
376///
377/// \param Start The MemoryAccess that we want to walk from.
378/// \param ClobberAt A clobber for Start.
379/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000380/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000381/// \param Query The UpwardsMemoryQuery we used for our search.
382/// \param AA The AliasAnalysis we used for our search.
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000383/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000384static void
385checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000386 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000387 const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
388 bool AllowImpreciseClobber = false) {
George Burgess IV5f308972016-07-19 01:29:15 +0000389 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
390
391 if (MSSA.isLiveOnEntryDef(Start)) {
392 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
393 "liveOnEntry must clobber itself");
394 return;
395 }
396
George Burgess IV5f308972016-07-19 01:29:15 +0000397 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000398 DenseSet<ConstMemoryAccessPair> VisitedPhis;
399 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000400 Worklist.emplace_back(Start, StartLoc);
401 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402 // is found, complain.
403 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000404 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000405 // All we care about is that nothing from Start to ClobberAt clobbers Start.
406 // We learn nothing from revisiting nodes.
407 if (!VisitedPhis.insert(MAP).second)
408 continue;
409
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000410 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000411 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000412 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000413 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414 // since it won't let us short-circuit.
415 //
416 // Also, note that this can't be hoisted out of the `Worklist` loop,
417 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000418 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
419 if (!FoundClobber) {
420 ClobberAlias CA =
421 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
422 if (CA.IsClobber) {
423 FoundClobber = true;
424 // Not used: CA.AR;
425 }
426 }
George Burgess IV5f308972016-07-19 01:29:15 +0000427 }
428 break;
429 }
430
431 // We should never hit liveOnEntry, unless it's the clobber.
432 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
433
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000434 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000435 // If Start is a Def, skip self.
436 if (MD == Start)
437 continue;
438
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000439 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
440 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000441 "Found clobber before reaching ClobberAt!");
442 continue;
443 }
444
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000445 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
Alina Sbirlea6edcc9e2018-08-29 23:20:29 +0000446 (void)MU;
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000447 assert (MU == Start &&
448 "Can only find use in def chain if Start is a use");
449 continue;
450 }
451
George Burgess IV5f308972016-07-19 01:29:15 +0000452 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000453 Worklist.append(
454 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
455 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000456 }
457 }
458
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000459 // If the verify is done following an optimization, it's possible that
460 // ClobberAt was a conservative clobbering, that we can now infer is not a
461 // true clobbering access. Don't fail the verify if that's the case.
462 // We do have accesses that claim they're optimized, but could be optimized
463 // further. Updating all these can be expensive, so allow it for now (FIXME).
464 if (AllowImpreciseClobber)
465 return;
466
George Burgess IV5f308972016-07-19 01:29:15 +0000467 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
468 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
469 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
470 "ClobberAt never acted as a clobber");
471}
472
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000473namespace {
474
George Burgess IV5f308972016-07-19 01:29:15 +0000475/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
476/// in one class.
477class ClobberWalker {
478 /// Save a few bytes by using unsigned instead of size_t.
479 using ListIndex = unsigned;
480
481 /// Represents a span of contiguous MemoryDefs, potentially ending in a
482 /// MemoryPhi.
483 struct DefPath {
484 MemoryLocation Loc;
485 // Note that, because we always walk in reverse, Last will always dominate
486 // First. Also note that First and Last are inclusive.
487 MemoryAccess *First;
488 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000489 Optional<ListIndex> Previous;
490
491 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
492 Optional<ListIndex> Previous)
493 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
494
495 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
496 Optional<ListIndex> Previous)
497 : DefPath(Loc, Init, Init, Previous) {}
498 };
499
500 const MemorySSA &MSSA;
501 AliasAnalysis &AA;
502 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000503 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000504
505 // Phi optimization bookkeeping
506 SmallVector<DefPath, 32> Paths;
507 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000508
George Burgess IV5f308972016-07-19 01:29:15 +0000509 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000510 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000511 assert(From->getNumOperands() && "Phi with no operands?");
512
513 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000514 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
515 DomTreeNode *Node = DT.getNode(BB);
516 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000517 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
518 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000519 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000520 }
George Burgess IV5f308972016-07-19 01:29:15 +0000521 return Result;
522 }
523
524 /// Result of calling walkToPhiOrClobber.
525 struct UpwardsWalkResult {
526 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000527 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000528 MemoryAccess *Result;
529 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000530 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000531 };
532
533 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
534 /// This will update Desc.Last as it walks. It will (optionally) also stop at
535 /// StopAt.
536 ///
537 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000538 UpwardsWalkResult
539 walkToPhiOrClobber(DefPath &Desc,
540 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000541 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
542
543 for (MemoryAccess *Current : def_chain(Desc.Last)) {
544 Desc.Last = Current;
545 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000546 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000547
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000548 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
549 if (MSSA.isLiveOnEntryDef(MD))
550 return {MD, true, MustAlias};
551 ClobberAlias CA =
552 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
553 if (CA.IsClobber)
554 return {MD, true, CA.AR};
555 }
George Burgess IV5f308972016-07-19 01:29:15 +0000556 }
557
558 assert(isa<MemoryPhi>(Desc.Last) &&
559 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000560 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000561 }
562
563 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
564 ListIndex PriorNode) {
565 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
566 upward_defs_end());
567 for (const MemoryAccessPair &P : UpwardDefs) {
568 PausedSearches.push_back(Paths.size());
569 Paths.emplace_back(P.second, P.first, PriorNode);
570 }
571 }
572
573 /// Represents a search that terminated after finding a clobber. This clobber
574 /// may or may not be present in the path of defs from LastNode..SearchStart,
575 /// since it may have been retrieved from cache.
576 struct TerminatedPath {
577 MemoryAccess *Clobber;
578 ListIndex LastNode;
579 };
580
581 /// Get an access that keeps us from optimizing to the given phi.
582 ///
583 /// PausedSearches is an array of indices into the Paths array. Its incoming
584 /// value is the indices of searches that stopped at the last phi optimization
585 /// target. It's left in an unspecified state.
586 ///
587 /// If this returns None, NewPaused is a vector of searches that terminated
588 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000589 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000590 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000591 SmallVectorImpl<ListIndex> &PausedSearches,
592 SmallVectorImpl<ListIndex> &NewPaused,
593 SmallVectorImpl<TerminatedPath> &Terminated) {
594 assert(!PausedSearches.empty() && "No searches to continue?");
595
596 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
597 // PausedSearches as our stack.
598 while (!PausedSearches.empty()) {
599 ListIndex PathIndex = PausedSearches.pop_back_val();
600 DefPath &Node = Paths[PathIndex];
601
602 // If we've already visited this path with this MemoryLocation, we don't
603 // need to do so again.
604 //
605 // NOTE: That we just drop these paths on the ground makes caching
606 // behavior sporadic. e.g. given a diamond:
607 // A
608 // B C
609 // D
610 //
611 // ...If we walk D, B, A, C, we'll only cache the result of phi
612 // optimization for A, B, and D; C will be skipped because it dies here.
613 // This arguably isn't the worst thing ever, since:
614 // - We generally query things in a top-down order, so if we got below D
615 // without needing cache entries for {C, MemLoc}, then chances are
616 // that those cache entries would end up ultimately unused.
617 // - We still cache things for A, so C only needs to walk up a bit.
618 // If this behavior becomes problematic, we can fix without a ton of extra
619 // work.
620 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
621 continue;
622
623 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
624 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000625 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000626 // If this wasn't a cache hit, we hit a clobber when walking. That's a
627 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000628 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000629 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000630 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000631
632 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000633 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000634 continue;
635 }
636
637 if (Res.Result == StopWhere) {
638 // We've hit our target. Save this path off for if we want to continue
639 // walking.
640 NewPaused.push_back(PathIndex);
641 continue;
642 }
643
644 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
645 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
646 }
647
648 return None;
649 }
650
651 template <typename T, typename Walker>
652 struct generic_def_path_iterator
653 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
654 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000655 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000656 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
657
658 T &operator*() const { return curNode(); }
659
660 generic_def_path_iterator &operator++() {
661 N = curNode().Previous;
662 return *this;
663 }
664
665 bool operator==(const generic_def_path_iterator &O) const {
666 if (N.hasValue() != O.N.hasValue())
667 return false;
668 return !N.hasValue() || *N == *O.N;
669 }
670
671 private:
672 T &curNode() const { return W->Paths[*N]; }
673
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000674 Walker *W = nullptr;
675 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000676 };
677
678 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
679 using const_def_path_iterator =
680 generic_def_path_iterator<const DefPath, const ClobberWalker>;
681
682 iterator_range<def_path_iterator> def_path(ListIndex From) {
683 return make_range(def_path_iterator(this, From), def_path_iterator());
684 }
685
686 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
687 return make_range(const_def_path_iterator(this, From),
688 const_def_path_iterator());
689 }
690
691 struct OptznResult {
692 /// The path that contains our result.
693 TerminatedPath PrimaryClobber;
694 /// The paths that we can legally cache back from, but that aren't
695 /// necessarily the result of the Phi optimization.
696 SmallVector<TerminatedPath, 4> OtherClobbers;
697 };
698
699 ListIndex defPathIndex(const DefPath &N) const {
700 // The assert looks nicer if we don't need to do &N
701 const DefPath *NP = &N;
702 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
703 "Out of bounds DefPath!");
704 return NP - &Paths.front();
705 }
706
707 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
708 /// that act as legal clobbers. Note that this won't return *all* clobbers.
709 ///
710 /// Phi optimization algorithm tl;dr:
711 /// - Find the earliest def/phi, A, we can optimize to
712 /// - Find if all paths from the starting memory access ultimately reach A
713 /// - If not, optimization isn't possible.
714 /// - Otherwise, walk from A to another clobber or phi, A'.
715 /// - If A' is a def, we're done.
716 /// - If A' is a phi, try to optimize it.
717 ///
718 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
719 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
720 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
721 const MemoryLocation &Loc) {
722 assert(Paths.empty() && VisitedPhis.empty() &&
723 "Reset the optimization state.");
724
725 Paths.emplace_back(Loc, Start, Phi, None);
726 // Stores how many "valid" optimization nodes we had prior to calling
727 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
728 auto PriorPathsSize = Paths.size();
729
730 SmallVector<ListIndex, 16> PausedSearches;
731 SmallVector<ListIndex, 8> NewPaused;
732 SmallVector<TerminatedPath, 4> TerminatedPaths;
733
734 addSearches(Phi, PausedSearches, 0);
735
736 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
737 // Paths.
738 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
739 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000740 auto Dom = Paths.begin();
741 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
742 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
743 Dom = I;
744 auto Last = Paths.end() - 1;
745 if (Last != Dom)
746 std::iter_swap(Last, Dom);
747 };
748
749 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000750 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000751 assert(!MSSA.isLiveOnEntryDef(Current) &&
752 "liveOnEntry wasn't treated as a clobber?");
753
Daniel Berlind0420312017-04-01 09:01:12 +0000754 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000755 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
756 // optimization for the prior phi.
757 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
758 return MSSA.dominates(P.Clobber, Target);
759 }));
760
761 // FIXME: This is broken, because the Blocker may be reported to be
762 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000763 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000764 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000765 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000766
767 // Find the node we started at. We can't search based on N->Last, since
768 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000769 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000770 return defPathIndex(N) < PriorPathsSize;
771 });
772 assert(Iter != def_path_iterator());
773
774 DefPath &CurNode = *Iter;
775 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000776
777 // Two things:
778 // A. We can't reliably cache all of NewPaused back. Consider a case
779 // where we have two paths in NewPaused; one of which can't optimize
780 // above this phi, whereas the other can. If we cache the second path
781 // back, we'll end up with suboptimal cache entries. We can handle
782 // cases like this a bit better when we either try to find all
783 // clobbers that block phi optimization, or when our cache starts
784 // supporting unfinished searches.
785 // B. We can't reliably cache TerminatedPaths back here without doing
786 // extra checks; consider a case like:
787 // T
788 // / \
789 // D C
790 // \ /
791 // S
792 // Where T is our target, C is a node with a clobber on it, D is a
793 // diamond (with a clobber *only* on the left or right node, N), and
794 // S is our start. Say we walk to D, through the node opposite N
795 // (read: ignoring the clobber), and see a cache entry in the top
796 // node of D. That cache entry gets put into TerminatedPaths. We then
797 // walk up to C (N is later in our worklist), find the clobber, and
798 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
799 // the bottom part of D to the cached clobber, ignoring the clobber
800 // in N. Again, this problem goes away if we start tracking all
801 // blockers for a given phi optimization.
802 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
803 return {Result, {}};
804 }
805
806 // If there's nothing left to search, then all paths led to valid clobbers
807 // that we got from our cache; pick the nearest to the start, and allow
808 // the rest to be cached back.
809 if (NewPaused.empty()) {
810 MoveDominatedPathToEnd(TerminatedPaths);
811 TerminatedPath Result = TerminatedPaths.pop_back_val();
812 return {Result, std::move(TerminatedPaths)};
813 }
814
815 MemoryAccess *DefChainEnd = nullptr;
816 SmallVector<TerminatedPath, 4> Clobbers;
817 for (ListIndex Paused : NewPaused) {
818 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
819 if (WR.IsKnownClobber)
820 Clobbers.push_back({WR.Result, Paused});
821 else
822 // Micro-opt: If we hit the end of the chain, save it.
823 DefChainEnd = WR.Result;
824 }
825
826 if (!TerminatedPaths.empty()) {
827 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
828 // do it now.
829 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000830 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000831 DefChainEnd = MA;
832
833 // If any of the terminated paths don't dominate the phi we'll try to
834 // optimize, we need to figure out what they are and quit.
835 const BasicBlock *ChainBB = DefChainEnd->getBlock();
836 for (const TerminatedPath &TP : TerminatedPaths) {
837 // Because we know that DefChainEnd is as "high" as we can go, we
838 // don't need local dominance checks; BB dominance is sufficient.
839 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
840 Clobbers.push_back(TP);
841 }
842 }
843
844 // If we have clobbers in the def chain, find the one closest to Current
845 // and quit.
846 if (!Clobbers.empty()) {
847 MoveDominatedPathToEnd(Clobbers);
848 TerminatedPath Result = Clobbers.pop_back_val();
849 return {Result, std::move(Clobbers)};
850 }
851
852 assert(all_of(NewPaused,
853 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
854
855 // Because liveOnEntry is a clobber, this must be a phi.
856 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
857
858 PriorPathsSize = Paths.size();
859 PausedSearches.clear();
860 for (ListIndex I : NewPaused)
861 addSearches(DefChainPhi, PausedSearches, I);
862 NewPaused.clear();
863
864 Current = DefChainPhi;
865 }
866 }
867
George Burgess IV5f308972016-07-19 01:29:15 +0000868 void verifyOptResult(const OptznResult &R) const {
869 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
870 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
871 }));
872 }
873
874 void resetPhiOptznState() {
875 Paths.clear();
876 VisitedPhis.clear();
877 }
878
879public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000880 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
881 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000882
George Burgess IV5f308972016-07-19 01:29:15 +0000883 /// Finds the nearest clobber for the given query, optimizing phis if
884 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000885 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000886 Query = &Q;
887
888 MemoryAccess *Current = Start;
889 // This walker pretends uses don't exist. If we're handed one, silently grab
890 // its def. (This has the nice side-effect of ensuring we never cache uses)
891 if (auto *MU = dyn_cast<MemoryUse>(Start))
892 Current = MU->getDefiningAccess();
893
894 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
895 // Fast path for the overly-common case (no crazy phi optimization
896 // necessary)
897 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000898 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000899 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000900 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000901 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000902 } else {
903 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
904 Current, Q.StartingLoc);
905 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000906 resetPhiOptznState();
907 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000908 }
909
George Burgess IV5f308972016-07-19 01:29:15 +0000910#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000911 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000912#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000913 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000914 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000915
916 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000917};
918
919struct RenamePassData {
920 DomTreeNode *DTN;
921 DomTreeNode::const_iterator ChildIt;
922 MemoryAccess *IncomingVal;
923
924 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
925 MemoryAccess *M)
926 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000927
George Burgess IV5f308972016-07-19 01:29:15 +0000928 void swap(RenamePassData &RHS) {
929 std::swap(DTN, RHS.DTN);
930 std::swap(ChildIt, RHS.ChildIt);
931 std::swap(IncomingVal, RHS.IncomingVal);
932 }
933};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000934
935} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000936
937namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000938
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000939/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000940/// longer does caching on its own, but the name has been retained for the
941/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000942class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000943 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000944
945 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000946
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000947public:
948 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000949 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000950
George Burgess IV400ae402016-07-20 19:51:34 +0000951 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000952
George Burgess IV400ae402016-07-20 19:51:34 +0000953 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000954 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000955 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000956 void invalidateInfo(MemoryAccess *) override;
957
Geoff Berrycdf53332016-08-08 17:52:01 +0000958 void verify(const MemorySSA *MSSA) override {
959 MemorySSAWalker::verify(MSSA);
960 Walker.verify(MSSA);
961 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000962};
George Burgess IVe1100f52016-02-02 22:46:49 +0000963
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000964} // end namespace llvm
965
Daniel Berlin78cbd282017-02-20 22:26:03 +0000966void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
967 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000968 // Pass through values to our successors
969 for (const BasicBlock *S : successors(BB)) {
970 auto It = PerBlockAccesses.find(S);
971 // Rename the phi nodes in our successor block
972 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
973 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000974 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000975 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000976 if (RenameAllUses) {
977 int PhiIndex = Phi->getBasicBlockIndex(BB);
978 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
979 Phi->setIncomingValue(PhiIndex, IncomingVal);
980 } else
981 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000982 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000983}
George Burgess IVe1100f52016-02-02 22:46:49 +0000984
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000985/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000986/// Uses the standard SSA renaming algorithm.
987/// \returns The new incoming value.
988MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
989 bool RenameAllUses) {
990 auto It = PerBlockAccesses.find(BB);
991 // Skip most processing if the list is empty.
992 if (It != PerBlockAccesses.end()) {
993 AccessList *Accesses = It->second.get();
994 for (MemoryAccess &L : *Accesses) {
995 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
996 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
997 MUD->setDefiningAccess(IncomingVal);
998 if (isa<MemoryDef>(&L))
999 IncomingVal = &L;
1000 } else {
1001 IncomingVal = &L;
1002 }
1003 }
1004 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001005 return IncomingVal;
1006}
1007
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001008/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +00001009///
1010/// We walk the dominator tree in preorder, renaming accesses, and then filling
1011/// in phi nodes in our successors.
1012void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +00001013 SmallPtrSetImpl<BasicBlock *> &Visited,
1014 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001015 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001016 // Skip everything if we already renamed this block and we are skipping.
1017 // Note: You can't sink this into the if, because we need it to occur
1018 // regardless of whether we skip blocks or not.
1019 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1020 if (SkipVisited && AlreadyVisited)
1021 return;
1022
1023 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1024 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001025 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001026
1027 while (!WorkStack.empty()) {
1028 DomTreeNode *Node = WorkStack.back().DTN;
1029 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1030 IncomingVal = WorkStack.back().IncomingVal;
1031
1032 if (ChildIt == Node->end()) {
1033 WorkStack.pop_back();
1034 } else {
1035 DomTreeNode *Child = *ChildIt;
1036 ++WorkStack.back().ChildIt;
1037 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001038 // Note: You can't sink this into the if, because we need it to occur
1039 // regardless of whether we skip blocks or not.
1040 AlreadyVisited = !Visited.insert(BB).second;
1041 if (SkipVisited && AlreadyVisited) {
1042 // We already visited this during our renaming, which can happen when
1043 // being asked to rename multiple blocks. Figure out the incoming val,
1044 // which is the last def.
1045 // Incoming value can only change if there is a block def, and in that
1046 // case, it's the last block def in the list.
1047 if (auto *BlockDefs = getWritableBlockDefs(BB))
1048 IncomingVal = &*BlockDefs->rbegin();
1049 } else
1050 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1051 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001052 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1053 }
1054 }
1055}
1056
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001057/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001058/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1059/// being uses of the live on entry definition.
1060void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1061 assert(!DT->isReachableFromEntry(BB) &&
1062 "Reachable block found while handling unreachable blocks");
1063
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001064 // Make sure phi nodes in our reachable successors end up with a
1065 // LiveOnEntryDef for our incoming edge, even though our block is forward
1066 // unreachable. We could just disconnect these blocks from the CFG fully,
1067 // but we do not right now.
1068 for (const BasicBlock *S : successors(BB)) {
1069 if (!DT->isReachableFromEntry(S))
1070 continue;
1071 auto It = PerBlockAccesses.find(S);
1072 // Rename the phi nodes in our successor block
1073 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1074 continue;
1075 AccessList *Accesses = It->second.get();
1076 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1077 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1078 }
1079
George Burgess IVe1100f52016-02-02 22:46:49 +00001080 auto It = PerBlockAccesses.find(BB);
1081 if (It == PerBlockAccesses.end())
1082 return;
1083
1084 auto &Accesses = It->second;
1085 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1086 auto Next = std::next(AI);
1087 // If we have a phi, just remove it. We are going to replace all
1088 // users with live on entry.
1089 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1090 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1091 else
1092 Accesses->erase(AI);
1093 AI = Next;
1094 }
1095}
1096
Geoff Berryb96d3b22016-06-01 21:30:40 +00001097MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1098 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001099 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001100 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001101}
1102
George Burgess IVe1100f52016-02-02 22:46:49 +00001103MemorySSA::~MemorySSA() {
1104 // Drop all our references
1105 for (const auto &Pair : PerBlockAccesses)
1106 for (MemoryAccess &MA : *Pair.second)
1107 MA.dropAllReferences();
1108}
1109
Daniel Berlin14300262016-06-21 18:39:20 +00001110MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001111 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1112
1113 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001114 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001115 return Res.first->second.get();
1116}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001117
Daniel Berlind602e042017-01-25 20:56:19 +00001118MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1119 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1120
1121 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001122 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001123 return Res.first->second.get();
1124}
George Burgess IVe1100f52016-02-02 22:46:49 +00001125
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001126namespace llvm {
1127
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001128/// This class is a batch walker of all MemoryUse's in the program, and points
1129/// their defining access at the thing that actually clobbers them. Because it
1130/// is a batch walker that touches everything, it does not operate like the
1131/// other walkers. This walker is basically performing a top-down SSA renaming
1132/// pass, where the version stack is used as the cache. This enables it to be
1133/// significantly more time and memory efficient than using the regular walker,
1134/// which is walking bottom-up.
1135class MemorySSA::OptimizeUses {
1136public:
1137 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1138 DominatorTree *DT)
1139 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1140 Walker = MSSA->getWalker();
1141 }
1142
1143 void optimizeUses();
1144
1145private:
1146 /// This represents where a given memorylocation is in the stack.
1147 struct MemlocStackInfo {
1148 // This essentially is keeping track of versions of the stack. Whenever
1149 // the stack changes due to pushes or pops, these versions increase.
1150 unsigned long StackEpoch;
1151 unsigned long PopEpoch;
1152 // This is the lower bound of places on the stack to check. It is equal to
1153 // the place the last stack walk ended.
1154 // Note: Correctness depends on this being initialized to 0, which densemap
1155 // does
1156 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001157 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001158 // This is where the last walk for this memory location ended.
1159 unsigned long LastKill;
1160 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001161 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001162 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001163
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001164 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1165 SmallVectorImpl<MemoryAccess *> &,
1166 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001167
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001168 MemorySSA *MSSA;
1169 MemorySSAWalker *Walker;
1170 AliasAnalysis *AA;
1171 DominatorTree *DT;
1172};
1173
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001174} // end namespace llvm
1175
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001176/// Optimize the uses in a given block This is basically the SSA renaming
1177/// algorithm, with one caveat: We are able to use a single stack for all
1178/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1179/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1180/// going to be some position in that stack of possible ones.
1181///
1182/// We track the stack positions that each MemoryLocation needs
1183/// to check, and last ended at. This is because we only want to check the
1184/// things that changed since last time. The same MemoryLocation should
1185/// get clobbered by the same store (getModRefInfo does not use invariantness or
1186/// things like this, and if they start, we can modify MemoryLocOrCall to
1187/// include relevant data)
1188void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1189 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1190 SmallVectorImpl<MemoryAccess *> &VersionStack,
1191 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1192
1193 /// If no accesses, nothing to do.
1194 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1195 if (Accesses == nullptr)
1196 return;
1197
1198 // Pop everything that doesn't dominate the current block off the stack,
1199 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001200 while (true) {
1201 assert(
1202 !VersionStack.empty() &&
1203 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001204 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1205 if (DT->dominates(BackBlock, BB))
1206 break;
1207 while (VersionStack.back()->getBlock() == BackBlock)
1208 VersionStack.pop_back();
1209 ++PopEpoch;
1210 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001211
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001212 for (MemoryAccess &MA : *Accesses) {
1213 auto *MU = dyn_cast<MemoryUse>(&MA);
1214 if (!MU) {
1215 VersionStack.push_back(&MA);
1216 ++StackEpoch;
1217 continue;
1218 }
1219
George Burgess IV024f3d22016-08-03 19:57:02 +00001220 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001221 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001222 continue;
1223 }
1224
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001225 MemoryLocOrCall UseMLOC(MU);
1226 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001227 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001228 // stack due to changing blocks. We may have to reset the lower bound or
1229 // last kill info.
1230 if (LocInfo.PopEpoch != PopEpoch) {
1231 LocInfo.PopEpoch = PopEpoch;
1232 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001233 // If the lower bound was in something that no longer dominates us, we
1234 // have to reset it.
1235 // We can't simply track stack size, because the stack may have had
1236 // pushes/pops in the meantime.
1237 // XXX: This is non-optimal, but only is slower cases with heavily
1238 // branching dominator trees. To get the optimal number of queries would
1239 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1240 // the top of that stack dominates us. This does not seem worth it ATM.
1241 // A much cheaper optimization would be to always explore the deepest
1242 // branch of the dominator tree first. This will guarantee this resets on
1243 // the smallest set of blocks.
1244 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001245 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001246 // Reset the lower bound of things to check.
1247 // TODO: Some day we should be able to reset to last kill, rather than
1248 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001249 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001250 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001251 LocInfo.LastKillValid = false;
1252 }
1253 } else if (LocInfo.StackEpoch != StackEpoch) {
1254 // If all that has changed is the StackEpoch, we only have to check the
1255 // new things on the stack, because we've checked everything before. In
1256 // this case, the lower bound of things to check remains the same.
1257 LocInfo.PopEpoch = PopEpoch;
1258 LocInfo.StackEpoch = StackEpoch;
1259 }
1260 if (!LocInfo.LastKillValid) {
1261 LocInfo.LastKill = VersionStack.size() - 1;
1262 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001263 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001264 }
1265
1266 // At this point, we should have corrected last kill and LowerBound to be
1267 // in bounds.
1268 assert(LocInfo.LowerBound < VersionStack.size() &&
1269 "Lower bound out of range");
1270 assert(LocInfo.LastKill < VersionStack.size() &&
1271 "Last kill info out of range");
1272 // In any case, the new upper bound is the top of the stack.
1273 unsigned long UpperBound = VersionStack.size() - 1;
1274
1275 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001276 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1277 << *(MU->getMemoryInst()) << ")"
1278 << " because there are "
1279 << UpperBound - LocInfo.LowerBound
1280 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001281 // Because we did not walk, LastKill is no longer valid, as this may
1282 // have been a kill.
1283 LocInfo.LastKillValid = false;
1284 continue;
1285 }
1286 bool FoundClobberResult = false;
1287 while (UpperBound > LocInfo.LowerBound) {
1288 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1289 // For phis, use the walker, see where we ended up, go there
1290 Instruction *UseInst = MU->getMemoryInst();
1291 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1292 // We are guaranteed to find it or something is wrong
1293 while (VersionStack[UpperBound] != Result) {
1294 assert(UpperBound != 0);
1295 --UpperBound;
1296 }
1297 FoundClobberResult = true;
1298 break;
1299 }
1300
1301 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001302 // If the lifetime of the pointer ends at this instruction, it's live on
1303 // entry.
1304 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1305 // Reset UpperBound to liveOnEntryDef's place in the stack
1306 UpperBound = 0;
1307 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001308 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001309 break;
1310 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001311 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1312 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001313 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001314 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001315 break;
1316 }
1317 --UpperBound;
1318 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001319
1320 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1321
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001322 // At the end of this loop, UpperBound is either a clobber, or lower bound
1323 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1324 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001325 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001326 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1327 LocInfo.AR = None;
1328 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001329 LocInfo.LastKill = UpperBound;
1330 } else {
1331 // Otherwise, we checked all the new ones, and now we know we can get to
1332 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001333 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001334 }
1335 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001336 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001337 }
1338}
1339
1340/// Optimize uses to point to their actual clobbering definitions.
1341void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001342 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001343 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001344 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1345
1346 unsigned long StackEpoch = 1;
1347 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001348 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001349 for (const auto *DomNode : depth_first(DT->getRootNode()))
1350 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1351 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001352}
1353
Daniel Berlin3d512a22016-08-22 19:14:30 +00001354void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001355 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001356 // Determine where our MemoryPhi's should go
1357 ForwardIDFCalculator IDFs(*DT);
1358 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001359 SmallVector<BasicBlock *, 32> IDFBlocks;
1360 IDFs.calculate(IDFBlocks);
1361
1362 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001363 for (auto &BB : IDFBlocks)
1364 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001365}
1366
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001367void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001368 // We create an access to represent "live on entry", for things like
1369 // arguments or users of globals, where the memory they use is defined before
1370 // the beginning of the function. We do not actually insert it into the IR.
1371 // We do not define a live on exit for the immediate uses, and thus our
1372 // semantics do *not* imply that something with no immediate uses can simply
1373 // be removed.
1374 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001375 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1376 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001377
1378 // We maintain lists of memory accesses per-block, trading memory for time. We
1379 // could just look up the memory access for every possible instruction in the
1380 // stream.
1381 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001382 // Go through each block, figure out where defs occur, and chain together all
1383 // the accesses.
1384 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001385 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001386 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001387 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001388 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001389 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001390 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001391 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001392
George Burgess IVe1100f52016-02-02 22:46:49 +00001393 if (!Accesses)
1394 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001395 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001396 if (isa<MemoryDef>(MUD)) {
1397 InsertIntoDef = true;
1398 if (!Defs)
1399 Defs = getOrCreateDefsList(&B);
1400 Defs->push_back(*MUD);
1401 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001402 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001403 if (InsertIntoDef)
1404 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001405 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001406 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001407
1408 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1409 // filled in with all blocks.
1410 SmallPtrSet<BasicBlock *, 16> Visited;
1411 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1412
George Burgess IV5f308972016-07-19 01:29:15 +00001413 CachingWalker *Walker = getWalkerImpl();
1414
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001415 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001416
George Burgess IVe1100f52016-02-02 22:46:49 +00001417 // Mark the uses in unreachable blocks as live on entry, so that they go
1418 // somewhere.
1419 for (auto &BB : F)
1420 if (!Visited.count(&BB))
1421 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001422}
George Burgess IVe1100f52016-02-02 22:46:49 +00001423
George Burgess IV5f308972016-07-19 01:29:15 +00001424MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1425
1426MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001427 if (Walker)
1428 return Walker.get();
1429
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001430 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001431 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001432}
1433
Daniel Berlind602e042017-01-25 20:56:19 +00001434// This is a helper function used by the creation routines. It places NewAccess
1435// into the access and defs lists for a given basic block, at the given
1436// insertion point.
1437void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1438 const BasicBlock *BB,
1439 InsertionPlace Point) {
1440 auto *Accesses = getOrCreateAccessList(BB);
1441 if (Point == Beginning) {
1442 // If it's a phi node, it goes first, otherwise, it goes after any phi
1443 // nodes.
1444 if (isa<MemoryPhi>(NewAccess)) {
1445 Accesses->push_front(NewAccess);
1446 auto *Defs = getOrCreateDefsList(BB);
1447 Defs->push_front(*NewAccess);
1448 } else {
1449 auto AI = find_if_not(
1450 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1451 Accesses->insert(AI, NewAccess);
1452 if (!isa<MemoryUse>(NewAccess)) {
1453 auto *Defs = getOrCreateDefsList(BB);
1454 auto DI = find_if_not(
1455 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1456 Defs->insert(DI, *NewAccess);
1457 }
1458 }
1459 } else {
1460 Accesses->push_back(NewAccess);
1461 if (!isa<MemoryUse>(NewAccess)) {
1462 auto *Defs = getOrCreateDefsList(BB);
1463 Defs->push_back(*NewAccess);
1464 }
1465 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001466 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001467}
1468
1469void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1470 AccessList::iterator InsertPt) {
1471 auto *Accesses = getWritableBlockAccesses(BB);
1472 bool WasEnd = InsertPt == Accesses->end();
1473 Accesses->insert(AccessList::iterator(InsertPt), What);
1474 if (!isa<MemoryUse>(What)) {
1475 auto *Defs = getOrCreateDefsList(BB);
1476 // If we got asked to insert at the end, we have an easy job, just shove it
1477 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001478 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001479 // the next def.
1480 if (WasEnd) {
1481 Defs->push_back(*What);
1482 } else if (isa<MemoryDef>(InsertPt)) {
1483 Defs->insert(InsertPt->getDefsIterator(), *What);
1484 } else {
1485 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1486 ++InsertPt;
1487 // Either we found a def, or we are inserting at the end
1488 if (InsertPt == Accesses->end())
1489 Defs->push_back(*What);
1490 else
1491 Defs->insert(InsertPt->getDefsIterator(), *What);
1492 }
1493 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001494 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001495}
1496
George Burgess IV5676a5d2018-08-22 22:34:38 +00001497void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1498 // Keep it in the lookup tables, remove from the lists
1499 removeFromLists(What, false);
1500
1501 // Note that moving should implicitly invalidate the optimized state of a
1502 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1503 // MemoryDef.
1504 if (auto *MD = dyn_cast<MemoryDef>(What))
1505 MD->resetOptimized();
1506 What->setBlock(BB);
1507}
1508
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001509// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001510// the right lists and have the right Block set, but will not otherwise be
1511// correct. It will not have the right defining access, and if it is a def,
1512// things below it will not properly be updated.
1513void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1514 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001515 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001516 insertIntoListsBefore(What, BB, Where);
1517}
1518
Alina Sbirlea0f533552018-07-11 22:11:46 +00001519void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001520 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001521 if (isa<MemoryPhi>(What)) {
1522 assert(Point == Beginning &&
1523 "Can only move a Phi at the beginning of the block");
1524 // Update lookup table entry
1525 ValueToMemoryAccess.erase(What->getBlock());
1526 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1527 (void)Inserted;
1528 assert(Inserted && "Cannot move a Phi to a block that already has one");
1529 }
1530
George Burgess IV5676a5d2018-08-22 22:34:38 +00001531 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001532 insertIntoListsForBlock(What, BB, Point);
1533}
1534
Daniel Berlin14300262016-06-21 18:39:20 +00001535MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1536 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001537 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001538 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001539 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001540 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001541 return Phi;
1542}
1543
1544MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
Alina Sbirlea79800992018-09-10 20:13:01 +00001545 MemoryAccess *Definition,
1546 const MemoryUseOrDef *Template) {
Daniel Berlin14300262016-06-21 18:39:20 +00001547 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
Alina Sbirlea79800992018-09-10 20:13:01 +00001548 MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
Daniel Berlin14300262016-06-21 18:39:20 +00001549 assert(
1550 NewAccess != nullptr &&
1551 "Tried to create a memory access for a non-memory touching instruction");
1552 NewAccess->setDefiningAccess(Definition);
1553 return NewAccess;
1554}
1555
Daniel Berlind952cea2017-04-07 01:28:36 +00001556// Return true if the instruction has ordering constraints.
1557// Note specifically that this only considers stores and loads
1558// because others are still considered ModRef by getModRefInfo.
1559static inline bool isOrdered(const Instruction *I) {
1560 if (auto *SI = dyn_cast<StoreInst>(I)) {
1561 if (!SI->isUnordered())
1562 return true;
1563 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1564 if (!LI->isUnordered())
1565 return true;
1566 }
1567 return false;
1568}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001569
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001570/// Helper function to create new memory accesses
Alina Sbirlea79800992018-09-10 20:13:01 +00001571MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1572 const MemoryUseOrDef *Template) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001573 // The assume intrinsic has a control dependency which we model by claiming
1574 // that it writes arbitrarily. Ignore that fake memory dependency here.
1575 // FIXME: Replace this special casing with a more accurate modelling of
1576 // assume's control dependency.
1577 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1578 if (II->getIntrinsicID() == Intrinsic::assume)
1579 return nullptr;
1580
Alina Sbirlea79800992018-09-10 20:13:01 +00001581 bool Def, Use;
1582 if (Template) {
1583 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1584 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1585#if !defined(NDEBUG)
1586 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1587 bool DefCheck, UseCheck;
1588 DefCheck = isModSet(ModRef) || isOrdered(I);
1589 UseCheck = isRefSet(ModRef);
1590 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1591#endif
1592 } else {
1593 // Find out what affect this instruction has on memory.
1594 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1595 // The isOrdered check is used to ensure that volatiles end up as defs
1596 // (atomics end up as ModRef right now anyway). Until we separate the
1597 // ordering chain from the memory chain, this enables people to see at least
1598 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1599 // will still give an answer that bypasses other volatile loads. TODO:
1600 // Separate memory aliasing and ordering into two different chains so that
1601 // we can precisely represent both "what memory will this read/write/is
1602 // clobbered by" and "what instructions can I move this past".
1603 Def = isModSet(ModRef) || isOrdered(I);
1604 Use = isRefSet(ModRef);
1605 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001606
1607 // It's possible for an instruction to not modify memory at all. During
1608 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001609 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001610 return nullptr;
1611
George Burgess IVb42b7622016-03-11 19:34:03 +00001612 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001613 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001614 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001615 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001616 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001617 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001618 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001619}
1620
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001621/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001622bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1623 const MemoryAccess *Replacee) const {
1624 if (isa<MemoryUseOrDef>(Replacee))
1625 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1626 const auto *MP = cast<MemoryPhi>(Replacee);
1627 // For a phi node, the use occurs in the predecessor block of the phi node.
1628 // Since we may occur multiple times in the phi node, we have to check each
1629 // operand to ensure Replacer dominates each operand where Replacee occurs.
1630 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001631 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001632 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1633 return false;
1634 }
1635 return true;
1636}
1637
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001638/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001639void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1640 assert(MA->use_empty() &&
1641 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001642 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001643 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001644 MUD->setDefiningAccess(nullptr);
1645 // Invalidate our walker's cache if necessary
1646 if (!isa<MemoryUse>(MA))
1647 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001648
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001649 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001650 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001651 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001652 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001653 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001654
Daniel Berlin5130cc82016-07-31 21:08:20 +00001655 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1656 if (VMA->second == MA)
1657 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001658}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001659
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001660/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001661///
1662/// Because of the way the intrusive list and use lists work, it is important to
1663/// do removal in the right order.
1664/// ShouldDelete defaults to true, and will cause the memory access to also be
1665/// deleted, not just removed.
1666void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001667 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001668 // The access list owns the reference, so we erase it from the non-owning list
1669 // first.
1670 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001671 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001672 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1673 Defs->remove(*MA);
1674 if (Defs->empty())
1675 PerBlockDefs.erase(DefsIt);
1676 }
1677
Daniel Berlin60ead052017-01-28 01:23:13 +00001678 // The erase call here will delete it. If we don't want it deleted, we call
1679 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001680 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001681 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001682 if (ShouldDelete)
1683 Accesses->erase(MA);
1684 else
1685 Accesses->remove(MA);
1686
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001687 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001688 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001689 BlockNumberingValid.erase(BB);
1690 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001691}
1692
George Burgess IVe1100f52016-02-02 22:46:49 +00001693void MemorySSA::print(raw_ostream &OS) const {
1694 MemorySSAAnnotatedWriter Writer(this);
1695 F.print(OS, &Writer);
1696}
1697
Aaron Ballman615eb472017-10-15 14:32:27 +00001698#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001699LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001700#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001701
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001702void MemorySSA::verifyMemorySSA() const {
1703 verifyDefUses(F);
1704 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001705 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001706 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001707 Walker->verify(this);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001708 verifyClobberSanity(F);
1709}
1710
1711/// Check sanity of the clobbering instruction for access MA.
1712void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const {
1713 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1714 if (!MUD->isOptimized())
1715 return;
1716 auto *I = MUD->getMemoryInst();
1717 auto Loc = MemoryLocation::getOrNone(I);
1718 if (Loc == None)
1719 return;
1720 auto *Clobber = MUD->getOptimized();
1721 UpwardsMemoryQuery Q(I, MUD);
Alina Sbirlea65f385d2018-09-07 23:51:41 +00001722 checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true);
Alina Sbirleaf5403d82018-08-29 18:26:04 +00001723 }
1724}
1725
1726void MemorySSA::verifyClobberSanity(const Function &F) const {
1727#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1728 for (const BasicBlock &BB : F) {
1729 const AccessList *Accesses = getBlockAccesses(&BB);
1730 if (!Accesses)
1731 continue;
1732 for (const MemoryAccess &MA : *Accesses)
1733 checkClobberSanityAccess(&MA);
1734 }
1735#endif
Daniel Berlin14300262016-06-21 18:39:20 +00001736}
1737
George Burgess IV97ec6242018-06-25 05:30:36 +00001738/// Verify that all of the blocks we believe to have valid domination numbers
1739/// actually have valid domination numbers.
1740void MemorySSA::verifyDominationNumbers(const Function &F) const {
1741#ifndef NDEBUG
1742 if (BlockNumberingValid.empty())
1743 return;
1744
1745 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1746 for (const BasicBlock &BB : F) {
1747 if (!ValidBlocks.count(&BB))
1748 continue;
1749
1750 ValidBlocks.erase(&BB);
1751
1752 const AccessList *Accesses = getBlockAccesses(&BB);
1753 // It's correct to say an empty block has valid numbering.
1754 if (!Accesses)
1755 continue;
1756
1757 // Block numbering starts at 1.
1758 unsigned long LastNumber = 0;
1759 for (const MemoryAccess &MA : *Accesses) {
1760 auto ThisNumberIter = BlockNumbering.find(&MA);
1761 assert(ThisNumberIter != BlockNumbering.end() &&
1762 "MemoryAccess has no domination number in a valid block!");
1763
1764 unsigned long ThisNumber = ThisNumberIter->second;
1765 assert(ThisNumber > LastNumber &&
1766 "Domination numbers should be strictly increasing!");
1767 LastNumber = ThisNumber;
1768 }
1769 }
1770
1771 assert(ValidBlocks.empty() &&
1772 "All valid BasicBlocks should exist in F -- dangling pointers?");
1773#endif
1774}
1775
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001776/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001777/// order and existence of memory affecting instructions.
1778void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001779#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001780 // Walk all the blocks, comparing what the lookups think and what the access
1781 // lists think, as well as the order in the blocks vs the order in the access
1782 // lists.
1783 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001784 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001785 for (BasicBlock &B : F) {
1786 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001787 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001788 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001789 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001790 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001791 ActualDefs.push_back(Phi);
1792 }
1793
Daniel Berlin14300262016-06-21 18:39:20 +00001794 for (Instruction &I : B) {
1795 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001796 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1797 "We have memory affecting instructions "
1798 "in this block but they are not in the "
1799 "access list or defs list");
1800 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001801 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001802 if (isa<MemoryDef>(MA))
1803 ActualDefs.push_back(MA);
1804 }
Daniel Berlin14300262016-06-21 18:39:20 +00001805 }
1806 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001807 // accesses and an access list.
1808 // Same with defs.
1809 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001810 continue;
1811 assert(AL->size() == ActualAccesses.size() &&
1812 "We don't have the same number of accesses in the block as on the "
1813 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001814 assert((DL || ActualDefs.size() == 0) &&
1815 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001816 assert((!DL || DL->size() == ActualDefs.size()) &&
1817 "We don't have the same number of defs in the block as on the "
1818 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001819 auto ALI = AL->begin();
1820 auto AAI = ActualAccesses.begin();
1821 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1822 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1823 ++ALI;
1824 ++AAI;
1825 }
1826 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001827 if (DL) {
1828 auto DLI = DL->begin();
1829 auto ADI = ActualDefs.begin();
1830 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1831 assert(&*DLI == *ADI && "Not the same defs in the same order");
1832 ++DLI;
1833 ++ADI;
1834 }
1835 }
1836 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001837 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001838#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001839}
1840
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001841/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001842/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001843void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001844#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001845 for (BasicBlock &B : F) {
1846 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001847 if (MemoryPhi *MP = getMemoryAccess(&B))
1848 for (const Use &U : MP->uses())
1849 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001850
George Burgess IVe1100f52016-02-02 22:46:49 +00001851 for (Instruction &I : B) {
1852 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1853 if (!MD)
1854 continue;
1855
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001856 for (const Use &U : MD->uses())
1857 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001858 }
1859 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001860#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001861}
1862
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001863/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001864/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001865void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001866#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001867 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001868 if (!Def)
1869 assert(isLiveOnEntryDef(Use) &&
1870 "Null def but use not point to live on entry def");
1871 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001872 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001873 "Did not find use in def's use list");
1874#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001875}
1876
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001877/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001878/// accesses and verifying that, for each use, it appears in the
1879/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001880void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001881#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001882 for (BasicBlock &B : F) {
1883 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001884 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001885 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1886 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001887 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001888 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001889 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001890 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1891 pred_end(&B) &&
1892 "Incoming phi block not a block predecessor");
1893 }
Daniel Berlin14300262016-06-21 18:39:20 +00001894 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001895
1896 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001897 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1898 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001899 }
1900 }
1901 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00001902#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001903}
1904
Daniel Berlin5c46b942016-07-19 22:49:43 +00001905/// Perform a local numbering on blocks so that instruction ordering can be
1906/// determined in constant time.
1907/// TODO: We currently just number in order. If we numbered by N, we could
1908/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1909/// log2(N) sequences of mixed before and after) without needing to invalidate
1910/// the numbering.
1911void MemorySSA::renumberBlock(const BasicBlock *B) const {
1912 // The pre-increment ensures the numbers really start at 1.
1913 unsigned long CurrentNumber = 0;
1914 const AccessList *AL = getBlockAccesses(B);
1915 assert(AL != nullptr && "Asking to renumber an empty block");
1916 for (const auto &I : *AL)
1917 BlockNumbering[&I] = ++CurrentNumber;
1918 BlockNumberingValid.insert(B);
1919}
1920
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001921/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001922/// whether \p Dominator dominates \p Dominatee.
1923/// \returns True if \p Dominator dominates \p Dominatee.
1924bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1925 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001926 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001927
Daniel Berlin19860302016-07-19 23:08:08 +00001928 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001929 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001930 // A node dominates itself.
1931 if (Dominatee == Dominator)
1932 return true;
1933
1934 // When Dominatee is defined on function entry, it is not dominated by another
1935 // memory access.
1936 if (isLiveOnEntryDef(Dominatee))
1937 return false;
1938
1939 // When Dominator is defined on function entry, it dominates the other memory
1940 // access.
1941 if (isLiveOnEntryDef(Dominator))
1942 return true;
1943
Daniel Berlin5c46b942016-07-19 22:49:43 +00001944 if (!BlockNumberingValid.count(DominatorBlock))
1945 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001946
Daniel Berlin5c46b942016-07-19 22:49:43 +00001947 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1948 // All numbers start with 1
1949 assert(DominatorNum != 0 && "Block was not numbered properly");
1950 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1951 assert(DominateeNum != 0 && "Block was not numbered properly");
1952 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001953}
1954
George Burgess IV5f308972016-07-19 01:29:15 +00001955bool MemorySSA::dominates(const MemoryAccess *Dominator,
1956 const MemoryAccess *Dominatee) const {
1957 if (Dominator == Dominatee)
1958 return true;
1959
1960 if (isLiveOnEntryDef(Dominatee))
1961 return false;
1962
1963 if (Dominator->getBlock() != Dominatee->getBlock())
1964 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1965 return locallyDominates(Dominator, Dominatee);
1966}
1967
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001968bool MemorySSA::dominates(const MemoryAccess *Dominator,
1969 const Use &Dominatee) const {
1970 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1971 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1972 // The def must dominate the incoming block of the phi.
1973 if (UseBB != Dominator->getBlock())
1974 return DT->dominates(Dominator->getBlock(), UseBB);
1975 // If the UseBB and the DefBB are the same, compare locally.
1976 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1977 }
1978 // If it's not a PHI node use, the normal dominates can already handle it.
1979 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1980}
1981
George Burgess IVe1100f52016-02-02 22:46:49 +00001982const static char LiveOnEntryStr[] = "liveOnEntry";
1983
Reid Kleckner96ab8722017-05-18 17:24:10 +00001984void MemoryAccess::print(raw_ostream &OS) const {
1985 switch (getValueID()) {
1986 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1987 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1988 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1989 }
1990 llvm_unreachable("invalid value id");
1991}
1992
George Burgess IVe1100f52016-02-02 22:46:49 +00001993void MemoryDef::print(raw_ostream &OS) const {
1994 MemoryAccess *UO = getDefiningAccess();
1995
George Burgess IVaa283d82018-06-14 19:55:53 +00001996 auto printID = [&OS](MemoryAccess *A) {
1997 if (A && A->getID())
1998 OS << A->getID();
1999 else
2000 OS << LiveOnEntryStr;
2001 };
2002
George Burgess IVe1100f52016-02-02 22:46:49 +00002003 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00002004 printID(UO);
2005 OS << ")";
2006
2007 if (isOptimized()) {
2008 OS << "->";
2009 printID(getOptimized());
2010
2011 if (Optional<AliasResult> AR = getOptimizedAccessType())
2012 OS << " " << *AR;
2013 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002014}
2015
2016void MemoryPhi::print(raw_ostream &OS) const {
2017 bool First = true;
2018 OS << getID() << " = MemoryPhi(";
2019 for (const auto &Op : operands()) {
2020 BasicBlock *BB = getIncomingBlock(Op);
2021 MemoryAccess *MA = cast<MemoryAccess>(Op);
2022 if (!First)
2023 OS << ',';
2024 else
2025 First = false;
2026
2027 OS << '{';
2028 if (BB->hasName())
2029 OS << BB->getName();
2030 else
2031 BB->printAsOperand(OS, false);
2032 OS << ',';
2033 if (unsigned ID = MA->getID())
2034 OS << ID;
2035 else
2036 OS << LiveOnEntryStr;
2037 OS << '}';
2038 }
2039 OS << ')';
2040}
2041
George Burgess IVe1100f52016-02-02 22:46:49 +00002042void MemoryUse::print(raw_ostream &OS) const {
2043 MemoryAccess *UO = getDefiningAccess();
2044 OS << "MemoryUse(";
2045 if (UO && UO->getID())
2046 OS << UO->getID();
2047 else
2048 OS << LiveOnEntryStr;
2049 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002050
2051 if (Optional<AliasResult> AR = getOptimizedAccessType())
2052 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002053}
2054
2055void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002056// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002057#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002058 print(dbgs());
2059 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002060#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002061}
2062
Chad Rosier232e29e2016-07-06 21:20:47 +00002063char MemorySSAPrinterLegacyPass::ID = 0;
2064
2065MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2066 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2067}
2068
2069void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2070 AU.setPreservesAll();
2071 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002072}
2073
2074bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2075 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2076 MSSA.print(dbgs());
2077 if (VerifyMemorySSA)
2078 MSSA.verifyMemorySSA();
2079 return false;
2080}
2081
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002082AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002083
Daniel Berlin1e98c042016-09-26 17:22:54 +00002084MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2085 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002086 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2087 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002088 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002089}
2090
Geoff Berryb96d3b22016-06-01 21:30:40 +00002091PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2092 FunctionAnalysisManager &AM) {
2093 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002094 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002095
2096 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002097}
2098
Geoff Berryb96d3b22016-06-01 21:30:40 +00002099PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2100 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002101 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002102
2103 return PreservedAnalyses::all();
2104}
2105
2106char MemorySSAWrapperPass::ID = 0;
2107
2108MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2109 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2110}
2111
2112void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2113
2114void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002115 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002116 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2117 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002118}
2119
Geoff Berryb96d3b22016-06-01 21:30:40 +00002120bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2121 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2122 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2123 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002124 return false;
2125}
2126
Geoff Berryb96d3b22016-06-01 21:30:40 +00002127void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002128
Geoff Berryb96d3b22016-06-01 21:30:40 +00002129void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002130 MSSA->print(OS);
2131}
2132
George Burgess IVe1100f52016-02-02 22:46:49 +00002133MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2134
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002135MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2136 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002137 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002138
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002139void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002140 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2141 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002142}
2143
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002144/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002145/// the MemoryAccess that actually clobbers Loc.
2146///
2147/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002148MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2149 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002150 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002151}
2152
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002153MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002154 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002155 if (isa<MemoryPhi>(StartingAccess))
2156 return StartingAccess;
2157
2158 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2159 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2160 return StartingUseOrDef;
2161
2162 Instruction *I = StartingUseOrDef->getMemoryInst();
2163
2164 // Conservatively, fences are always clobbers, so don't perform the walk if we
2165 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002166 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002167 return StartingUseOrDef;
2168
2169 UpwardsMemoryQuery Q;
2170 Q.OriginalAccess = StartingUseOrDef;
2171 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002172 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002173 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002174
George Burgess IVe1100f52016-02-02 22:46:49 +00002175 // Unlike the other function, do not walk to the def of a def, because we are
2176 // handed something we already believe is the clobbering access.
2177 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2178 ? StartingUseOrDef->getDefiningAccess()
2179 : StartingUseOrDef;
2180
2181 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002182 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2183 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2184 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2185 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002186 return Clobber;
2187}
2188
2189MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002190MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2191 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2192 // If this is a MemoryPhi, we can't do anything.
2193 if (!StartingAccess)
2194 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002195
Daniel Berlincd2deac2016-10-20 20:13:45 +00002196 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002197 // Note: Currently, we store the optimized def result in a separate field,
2198 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002199 if (StartingAccess->isOptimized())
2200 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002201
George Burgess IV400ae402016-07-20 19:51:34 +00002202 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002203 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002204 // We can't sanely do anything with a fence, since they conservatively clobber
2205 // all memory, and have no locations to get pointers from to try to
2206 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002207 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002208 return StartingAccess;
2209
George Burgess IV024f3d22016-08-03 19:57:02 +00002210 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2211 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002212 StartingAccess->setOptimized(LiveOnEntry);
2213 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002214 return LiveOnEntry;
2215 }
2216
George Burgess IVe1100f52016-02-02 22:46:49 +00002217 // Start with the thing we already think clobbers this location
2218 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2219
2220 // At this point, DefiningAccess may be the live on entry def.
2221 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002222 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002223 StartingAccess->setOptimized(DefiningAccess);
2224 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002225 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002226 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002227
2228 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002229 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2230 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2231 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2232 LLVM_DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002233
George Burgess IV44477c62018-03-11 04:16:12 +00002234 StartingAccess->setOptimized(Result);
2235 if (MSSA->isLiveOnEntryDef(Result))
2236 StartingAccess->setOptimizedAccessType(None);
2237 else if (Q.AR == MustAlias)
2238 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002239
2240 return Result;
2241}
2242
George Burgess IVe1100f52016-02-02 22:46:49 +00002243MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002244DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002245 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2246 return Use->getDefiningAccess();
2247 return MA;
2248}
2249
2250MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002251 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002252 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2253 return Use->getDefiningAccess();
2254 return StartingAccess;
2255}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002256
2257void MemoryPhi::deleteMe(DerivedUser *Self) {
2258 delete static_cast<MemoryPhi *>(Self);
2259}
2260
2261void MemoryDef::deleteMe(DerivedUser *Self) {
2262 delete static_cast<MemoryDef *>(Self);
2263}
2264
2265void MemoryUse::deleteMe(DerivedUser *Self) {
2266 delete static_cast<MemoryUse *>(Self);
2267}