blob: dfecacfcb7842e5de34848e30803ac629659a354 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// The LoopPredication pass tries to convert loop variant range checks to loop
10// invariant by widening checks across loop iterations. For example, it will
11// convert
12//
13// for (i = 0; i < n; i++) {
14// guard(i < len);
15// ...
16// }
17//
18// to
19//
20// for (i = 0; i < n; i++) {
21// guard(n - 1 < len);
22// ...
23// }
24//
25// After this transformation the condition of the guard is loop invariant, so
26// loop-unswitch can later unswitch the loop by this condition which basically
27// predicates the loop by the widened condition:
28//
29// if (n - 1 < len)
30// for (i = 0; i < n; i++) {
31// ...
32// }
33// else
34// deoptimize
35//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000036// It's tempting to rely on SCEV here, but it has proven to be problematic.
37// Generally the facts SCEV provides about the increment step of add
38// recurrences are true if the backedge of the loop is taken, which implicitly
39// assumes that the guard doesn't fail. Using these facts to optimize the
40// guard results in a circular logic where the guard is optimized under the
41// assumption that it never fails.
42//
43// For example, in the loop below the induction variable will be marked as nuw
44// basing on the guard. Basing on nuw the guard predicate will be considered
45// monotonic. Given a monotonic condition it's tempting to replace the induction
46// variable in the condition with its value on the last iteration. But this
47// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48//
49// for (int i = b; i != e; i++)
50// guard(i u< len)
51//
52// One of the ways to reason about this problem is to use an inductive proof
53// approach. Given the loop:
54//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000055// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000056// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000057// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000058// I.INC = I + Step
59// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000060// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000061// }
62//
63// where B(x) and G(x) are predicates that map integers to booleans, we want a
64// loop invariant expression M such the following program has the same semantics
65// as the above:
66//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000067// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000068// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000069// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000070// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000071// guard(G(0) && M);
72// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000073// }
74//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000075// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000076//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077// Informal proof that the transformation above is correct:
78//
79// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000080// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000081//
82// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000083// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000084// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000085//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000086// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000087// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000088//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000089// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000090// iteration:
91//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000092// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000093// G(I) is true because the backedge is guarded by this condition.
94//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000095// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000096//
97// Note that we can use anything stronger than M, i.e. any condition which
98// implies M.
99//
Anna Thomas7b360432017-12-04 15:11:48 +0000100// When S = 1 (i.e. forward iterating loop), the transformation is supported
101// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000102// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000103// B(X) = latchStart + X <pred> latchLimit,
104// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000105// * The guard condition is of the form
106// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000107//
Anna Thomas7b360432017-12-04 15:11:48 +0000108// For the ult latch comparison case M is:
109// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000111//
Anna Thomas7b360432017-12-04 15:11:48 +0000112// The only way the antecedent can be true and the consequent can be false is
113// if
114// X == guardLimit - 1 - guardStart
115// (and guardLimit is non-zero, but we won't use this latter fact).
116// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117// latchStart + guardLimit - 1 - guardStart u< latchLimit
118// and its negation is
119// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000120//
Anna Thomas7b360432017-12-04 15:11:48 +0000121// In other words, if
122// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123// then:
124// (the ranges below are written in ConstantRange notation, where [A, B) is the
125// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000126//
Anna Thomas7b360432017-12-04 15:11:48 +0000127// forall X . guardStart + X u< guardLimit &&
128// latchStart + X u< latchLimit =>
129// guardStart + X + 1 u< guardLimit
130// == forall X . guardStart + X u< guardLimit &&
131// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132// guardStart + X + 1 u< guardLimit
133// == forall X . (guardStart + X) in [0, guardLimit) &&
134// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135// (guardStart + X + 1) in [0, guardLimit)
136// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137// X in [-latchStart, guardLimit - 1 - guardStart) =>
138// X in [-guardStart - 1, guardLimit - guardStart - 1)
139// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000140//
Anna Thomas7b360432017-12-04 15:11:48 +0000141// So the widened condition is:
142// guardStart u< guardLimit &&
143// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144// Similarly for ule condition the widened condition is:
145// guardStart u< guardLimit &&
146// latchStart + guardLimit - 1 - guardStart u> latchLimit
147// For slt condition the widened condition is:
148// guardStart u< guardLimit &&
149// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150// For sle condition the widened condition is:
151// guardStart u< guardLimit &&
152// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000153//
Anna Thomas7b360432017-12-04 15:11:48 +0000154// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155// when:
156// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000157// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000158// * The guard condition is of the form
159// G(X) = X - 1 u< guardLimit
160//
161// For the ugt latch comparison case M is:
162// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163//
164// The only way the antecedent can be true and the consequent can be false is if
165// X == 1.
166// If X == 1 then the second half of the antecedent is
167// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168//
169// So the widened condition is:
170// guardStart u< guardLimit && latchLimit u>= 1.
171// Similarly for sgt condition the widened condition is:
172// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000173// For uge condition the widened condition is:
174// guardStart u< guardLimit && latchLimit u> 1.
175// For sge condition the widened condition is:
176// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177//===----------------------------------------------------------------------===//
178
179#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000180#include "llvm/ADT/Statistic.h"
Philip Reames92a71772019-04-18 16:33:17 +0000181#include "llvm/Analysis/AliasAnalysis.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000183#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000184#include "llvm/Analysis/LoopInfo.h"
185#include "llvm/Analysis/LoopPass.h"
186#include "llvm/Analysis/ScalarEvolution.h"
187#include "llvm/Analysis/ScalarEvolutionExpander.h"
188#include "llvm/Analysis/ScalarEvolutionExpressions.h"
189#include "llvm/IR/Function.h"
190#include "llvm/IR/GlobalValue.h"
191#include "llvm/IR/IntrinsicInst.h"
192#include "llvm/IR/Module.h"
193#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000194#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000195#include "llvm/Support/Debug.h"
196#include "llvm/Transforms/Scalar.h"
Philip Reamesd109e2a2019-04-01 16:05:15 +0000197#include "llvm/Transforms/Utils/Local.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000198#include "llvm/Transforms/Utils/LoopUtils.h"
199
200#define DEBUG_TYPE "loop-predication"
201
Fedor Sergeevc297e842018-10-17 09:02:54 +0000202STATISTIC(TotalConsidered, "Number of guards considered");
203STATISTIC(TotalWidened, "Number of checks widened");
204
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000205using namespace llvm;
206
Anna Thomas1d02b132017-11-02 21:21:02 +0000207static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208 cl::Hidden, cl::init(true));
209
Anna Thomas7b360432017-12-04 15:11:48 +0000210static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000212
213static cl::opt<bool>
214 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215 cl::Hidden, cl::init(false));
216
217// This is the scale factor for the latch probability. We use this during
218// profitability analysis to find other exiting blocks that have a much higher
219// probability of exiting the loop instead of loop exiting via latch.
220// This value should be greater than 1 for a sane profitability check.
221static cl::opt<float> LatchExitProbabilityScale(
222 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223 cl::desc("scale factor for the latch probability. Value should be greater "
224 "than 1. Lower values are ignored"));
225
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000226static cl::opt<bool> PredicateWidenableBranchGuards(
227 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228 cl::desc("Whether or not we should predicate guards "
229 "expressed as widenable branches to deoptimize blocks"),
230 cl::init(true));
231
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000232namespace {
Philip Reames099eca82019-06-01 00:31:58 +0000233/// Represents an induction variable check:
234/// icmp Pred, <induction variable>, <loop invariant limit>
235struct LoopICmp {
236 ICmpInst::Predicate Pred;
237 const SCEVAddRecExpr *IV;
238 const SCEV *Limit;
239 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240 const SCEV *Limit)
241 : Pred(Pred), IV(IV), Limit(Limit) {}
242 LoopICmp() {}
243 void dump() {
244 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245 << ", Limit = " << *Limit << "\n";
246 }
247};
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000248
Philip Reames099eca82019-06-01 00:31:58 +0000249class LoopPredication {
Philip Reames92a71772019-04-18 16:33:17 +0000250 AliasAnalysis *AA;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000251 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000252 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000253
254 Loop *L;
255 const DataLayout *DL;
256 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000257 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000258
Anna Thomas68797212017-11-03 14:25:39 +0000259 bool isSupportedStep(const SCEV* Step);
Philip Reames19afdf72019-06-01 03:09:28 +0000260 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000261 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000262
Philip Reamesfbe64a22019-04-15 15:53:25 +0000263 /// Return an insertion point suitable for inserting a safe to speculate
264 /// instruction whose only user will be 'User' which has operands 'Ops'. A
265 /// trivial result would be the at the User itself, but we try to return a
266 /// loop invariant location if possible.
267 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
Philip Reamese46d77d2019-04-15 18:15:08 +0000268 /// Same as above, *except* that this uses the SCEV definition of invariant
269 /// which is that an expression *can be made* invariant via SCEVExpander.
270 /// Thus, this version is only suitable for finding an insert point to be be
271 /// passed to SCEVExpander!
272 Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
Philip Reamesfbe64a22019-04-15 15:53:25 +0000273
Philip Reames92a71772019-04-18 16:33:17 +0000274 /// Return true if the value is known to produce a single fixed value across
275 /// all iterations on which it executes. Note that this does not imply
276 /// speculation safety. That must be established seperately.
277 bool isLoopInvariantValue(const SCEV* S);
278
Philip Reamese46d77d2019-04-15 18:15:08 +0000279 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
Philip Reames3d4e1082019-03-29 23:06:57 +0000280 ICmpInst::Predicate Pred, const SCEV *LHS,
281 const SCEV *RHS);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000282
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000283 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000284 Instruction *Guard);
Anna Thomas68797212017-11-03 14:25:39 +0000285 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286 LoopICmp RangeCheck,
287 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000288 Instruction *Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000289 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290 LoopICmp RangeCheck,
291 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000292 Instruction *Guard);
Max Kazantsevca450872019-01-22 10:13:36 +0000293 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
Philip Reamese46d77d2019-04-15 18:15:08 +0000294 SCEVExpander &Expander, Instruction *Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000295 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000296 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
Anna Thomas9b1176b2018-03-22 16:03:59 +0000297 // If the loop always exits through another block in the loop, we should not
298 // predicate based on the latch check. For example, the latch check can be a
299 // very coarse grained check and there can be more fine grained exit checks
300 // within the loop. We identify such unprofitable loops through BPI.
301 bool isLoopProfitableToPredicate();
302
Anna Thomas1d02b132017-11-02 21:21:02 +0000303 // When the IV type is wider than the range operand type, we can still do loop
304 // predication, by generating SCEVs for the range and latch that are of the
305 // same type. We achieve this by generating a SCEV truncate expression for the
306 // latch IV. This is done iff truncation of the IV is a safe operation,
307 // without loss of information.
308 // Another way to achieve this is by generating a wider type SCEV for the
309 // range check operand, however, this needs a more involved check that
310 // operands do not overflow. This can lead to loss of information when the
311 // range operand is of the form: add i32 %offset, %iv. We need to prove that
312 // sext(x + y) is same as sext(x) + sext(y).
313 // This function returns true if we can safely represent the IV type in
314 // the RangeCheckType without loss of information.
315 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
316 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
317 // so.
318 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000319
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000320public:
Philip Reames92a71772019-04-18 16:33:17 +0000321 LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
322 BranchProbabilityInfo *BPI)
323 : AA(AA), SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000324 bool runOnLoop(Loop *L);
325};
326
327class LoopPredicationLegacyPass : public LoopPass {
328public:
329 static char ID;
330 LoopPredicationLegacyPass() : LoopPass(ID) {
331 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
332 }
333
334 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000335 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000336 getLoopAnalysisUsage(AU);
337 }
338
339 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
340 if (skipLoop(L))
341 return false;
342 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000343 BranchProbabilityInfo &BPI =
344 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
Philip Reames92a71772019-04-18 16:33:17 +0000345 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
346 LoopPredication LP(AA, SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000347 return LP.runOnLoop(L);
348 }
349};
350
351char LoopPredicationLegacyPass::ID = 0;
352} // end namespace llvm
353
354INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
355 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000356INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000357INITIALIZE_PASS_DEPENDENCY(LoopPass)
358INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
359 "Loop predication", false, false)
360
361Pass *llvm::createLoopPredicationPass() {
362 return new LoopPredicationLegacyPass();
363}
364
365PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
366 LoopStandardAnalysisResults &AR,
367 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000368 const auto &FAM =
369 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
370 Function *F = L.getHeader()->getParent();
371 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
Philip Reames92a71772019-04-18 16:33:17 +0000372 LoopPredication LP(&AR.AA, &AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000373 if (!LP.runOnLoop(&L))
374 return PreservedAnalyses::all();
375
376 return getLoopPassPreservedAnalyses();
377}
378
Philip Reames099eca82019-06-01 00:31:58 +0000379Optional<LoopICmp>
Philip Reames19afdf72019-06-01 03:09:28 +0000380LoopPredication::parseLoopICmp(ICmpInst *ICI) {
381 auto Pred = ICI->getPredicate();
382 auto *LHS = ICI->getOperand(0);
383 auto *RHS = ICI->getOperand(1);
384
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000385 const SCEV *LHSS = SE->getSCEV(LHS);
386 if (isa<SCEVCouldNotCompute>(LHSS))
387 return None;
388 const SCEV *RHSS = SE->getSCEV(RHS);
389 if (isa<SCEVCouldNotCompute>(RHSS))
390 return None;
391
392 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
393 if (SE->isLoopInvariant(LHSS, L)) {
394 std::swap(LHS, RHS);
395 std::swap(LHSS, RHSS);
396 Pred = ICmpInst::getSwappedPredicate(Pred);
397 }
398
399 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
400 if (!AR || AR->getLoop() != L)
401 return None;
402
403 return LoopICmp(Pred, AR, RHSS);
404}
405
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000406Value *LoopPredication::expandCheck(SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000407 Instruction *Guard,
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000408 ICmpInst::Predicate Pred, const SCEV *LHS,
Philip Reames3d4e1082019-03-29 23:06:57 +0000409 const SCEV *RHS) {
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000410 Type *Ty = LHS->getType();
411 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000412
Philip Reamese46d77d2019-04-15 18:15:08 +0000413 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
414 IRBuilder<> Builder(Guard);
415 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
416 return Builder.getTrue();
417 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
418 LHS, RHS))
419 return Builder.getFalse();
420 }
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000421
Philip Reamese46d77d2019-04-15 18:15:08 +0000422 Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
423 Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
424 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000425 return Builder.CreateICmp(Pred, LHSV, RHSV);
426}
427
Philip Reames099eca82019-06-01 00:31:58 +0000428Optional<LoopICmp>
Anna Thomas1d02b132017-11-02 21:21:02 +0000429LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
430
431 auto *LatchType = LatchCheck.IV->getType();
432 if (RangeCheckType == LatchType)
433 return LatchCheck;
434 // For now, bail out if latch type is narrower than range type.
435 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
436 return None;
437 if (!isSafeToTruncateWideIVType(RangeCheckType))
438 return None;
439 // We can now safely identify the truncated version of the IV and limit for
440 // RangeCheckType.
441 LoopICmp NewLatchCheck;
442 NewLatchCheck.Pred = LatchCheck.Pred;
443 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
444 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
445 if (!NewLatchCheck.IV)
446 return None;
447 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000448 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
449 << "can be represented as range check type:"
450 << *RangeCheckType << "\n");
451 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
452 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000453 return NewLatchCheck;
454}
455
Anna Thomas68797212017-11-03 14:25:39 +0000456bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000457 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000458}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000459
Philip Reamesfbe64a22019-04-15 15:53:25 +0000460Instruction *LoopPredication::findInsertPt(Instruction *Use,
461 ArrayRef<Value*> Ops) {
462 for (Value *Op : Ops)
463 if (!L->isLoopInvariant(Op))
464 return Use;
465 return Preheader->getTerminator();
466}
467
Philip Reamese46d77d2019-04-15 18:15:08 +0000468Instruction *LoopPredication::findInsertPt(Instruction *Use,
469 ArrayRef<const SCEV*> Ops) {
Philip Reames92a71772019-04-18 16:33:17 +0000470 // Subtlety: SCEV considers things to be invariant if the value produced is
471 // the same across iterations. This is not the same as being able to
472 // evaluate outside the loop, which is what we actually need here.
Philip Reamese46d77d2019-04-15 18:15:08 +0000473 for (const SCEV *Op : Ops)
Philip Reames92a71772019-04-18 16:33:17 +0000474 if (!SE->isLoopInvariant(Op, L) ||
475 !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
Philip Reamese46d77d2019-04-15 18:15:08 +0000476 return Use;
477 return Preheader->getTerminator();
478}
479
Philip Reames92a71772019-04-18 16:33:17 +0000480bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
481 // Handling expressions which produce invariant results, but *haven't* yet
482 // been removed from the loop serves two important purposes.
483 // 1) Most importantly, it resolves a pass ordering cycle which would
484 // otherwise need us to iteration licm, loop-predication, and either
485 // loop-unswitch or loop-peeling to make progress on examples with lots of
486 // predicable range checks in a row. (Since, in the general case, we can't
487 // hoist the length checks until the dominating checks have been discharged
488 // as we can't prove doing so is safe.)
489 // 2) As a nice side effect, this exposes the value of peeling or unswitching
490 // much more obviously in the IR. Otherwise, the cost modeling for other
491 // transforms would end up needing to duplicate all of this logic to model a
492 // check which becomes predictable based on a modeled peel or unswitch.
493 //
494 // The cost of doing so in the worst case is an extra fill from the stack in
495 // the loop to materialize the loop invariant test value instead of checking
496 // against the original IV which is presumable in a register inside the loop.
497 // Such cases are presumably rare, and hint at missing oppurtunities for
498 // other passes.
Philip Reamese46d77d2019-04-15 18:15:08 +0000499
Philip Reames92a71772019-04-18 16:33:17 +0000500 if (SE->isLoopInvariant(S, L))
501 // Note: This the SCEV variant, so the original Value* may be within the
502 // loop even though SCEV has proven it is loop invariant.
503 return true;
504
505 // Handle a particular important case which SCEV doesn't yet know about which
506 // shows up in range checks on arrays with immutable lengths.
507 // TODO: This should be sunk inside SCEV.
508 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
509 if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
Philip Reamesadf288c2019-04-18 17:01:19 +0000510 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
Philip Reames92a71772019-04-18 16:33:17 +0000511 if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
512 LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
513 return true;
514 return false;
Anna Thomas68797212017-11-03 14:25:39 +0000515}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000516
Anna Thomas68797212017-11-03 14:25:39 +0000517Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000518 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000519 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas68797212017-11-03 14:25:39 +0000520 auto *Ty = RangeCheck.IV->getType();
521 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000522 // guardStart u< guardLimit &&
523 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000524 // where <pred> depends on the latch condition predicate. See the file
525 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000526 // guardLimit - guardStart + latchStart - 1
527 const SCEV *GuardStart = RangeCheck.IV->getStart();
528 const SCEV *GuardLimit = RangeCheck.Limit;
529 const SCEV *LatchStart = LatchCheck.IV->getStart();
530 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000531 // Subtlety: We need all the values to be *invariant* across all iterations,
532 // but we only need to check expansion safety for those which *aren't*
533 // already guaranteed to dominate the guard.
534 if (!isLoopInvariantValue(GuardStart) ||
535 !isLoopInvariantValue(GuardLimit) ||
536 !isLoopInvariantValue(LatchStart) ||
537 !isLoopInvariantValue(LatchLimit)) {
538 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
539 return None;
540 }
541 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
542 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
543 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
544 return None;
545 }
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000546
547 // guardLimit - guardStart + latchStart - 1
548 const SCEV *RHS =
549 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
550 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000551 auto LimitCheckPred =
552 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000553
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000554 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
555 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
556 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Philip Reames3d4e1082019-03-29 23:06:57 +0000557
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000558 auto *LimitCheck =
Philip Reamese46d77d2019-04-15 18:15:08 +0000559 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
560 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
Philip Reames3d4e1082019-03-29 23:06:57 +0000561 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000562 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000563 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000564}
Anna Thomas7b360432017-12-04 15:11:48 +0000565
566Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
Philip Reames099eca82019-06-01 00:31:58 +0000567 LoopICmp LatchCheck, LoopICmp RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000568 SCEVExpander &Expander, Instruction *Guard) {
Anna Thomas7b360432017-12-04 15:11:48 +0000569 auto *Ty = RangeCheck.IV->getType();
570 const SCEV *GuardStart = RangeCheck.IV->getStart();
571 const SCEV *GuardLimit = RangeCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000572 const SCEV *LatchStart = LatchCheck.IV->getStart();
Anna Thomas7b360432017-12-04 15:11:48 +0000573 const SCEV *LatchLimit = LatchCheck.Limit;
Philip Reames92a71772019-04-18 16:33:17 +0000574 // Subtlety: We need all the values to be *invariant* across all iterations,
575 // but we only need to check expansion safety for those which *aren't*
576 // already guaranteed to dominate the guard.
577 if (!isLoopInvariantValue(GuardStart) ||
578 !isLoopInvariantValue(GuardLimit) ||
579 !isLoopInvariantValue(LatchStart) ||
580 !isLoopInvariantValue(LatchLimit)) {
581 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
582 return None;
583 }
584 if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
585 !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000586 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000587 return None;
588 }
589 // The decrement of the latch check IV should be the same as the
590 // rangeCheckIV.
591 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
592 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000593 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
594 << *PostDecLatchCheckIV
595 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000596 return None;
597 }
598
599 // Generate the widened condition for CountDownLoop:
600 // guardStart u< guardLimit &&
601 // latchLimit <pred> 1.
602 // See the header comment for reasoning of the checks.
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000603 auto LimitCheckPred =
604 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Philip Reamese46d77d2019-04-15 18:15:08 +0000605 auto *FirstIterationCheck = expandCheck(Expander, Guard,
606 ICmpInst::ICMP_ULT,
Philip Reames3d4e1082019-03-29 23:06:57 +0000607 GuardStart, GuardLimit);
Philip Reamese46d77d2019-04-15 18:15:08 +0000608 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
Philip Reames3d4e1082019-03-29 23:06:57 +0000609 SE->getOne(Ty));
Philip Reamese46d77d2019-04-15 18:15:08 +0000610 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
Anna Thomas7b360432017-12-04 15:11:48 +0000611 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
612}
613
Philip Reames099eca82019-06-01 00:31:58 +0000614static void normalizePredicate(ScalarEvolution *SE, Loop *L,
615 LoopICmp& RC) {
616 // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form.
617 // Normalize back to the ULT/SLT form for ease of handling.
618 if (RC.Pred == ICmpInst::ICMP_NE &&
619 RC.IV->getStepRecurrence(*SE)->isOne() &&
620 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
621 RC.Pred = ICmpInst::ICMP_ULT;
622}
623
624
Anna Thomas68797212017-11-03 14:25:39 +0000625/// If ICI can be widened to a loop invariant condition emits the loop
626/// invariant condition in the loop preheader and return it, otherwise
627/// returns None.
628Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
629 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000630 Instruction *Guard) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000631 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
632 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000633
634 // parseLoopStructure guarantees that the latch condition is:
635 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
636 // We are looking for the range checks of the form:
637 // i u< guardLimit
638 auto RangeCheck = parseLoopICmp(ICI);
639 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000640 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000641 return None;
642 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000643 LLVM_DEBUG(dbgs() << "Guard check:\n");
644 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000645 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000646 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
647 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000648 return None;
649 }
650 auto *RangeCheckIV = RangeCheck->IV;
651 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000652 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000653 return None;
654 }
655 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
656 // We cannot just compare with latch IV step because the latch and range IVs
657 // may have different types.
658 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000659 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000660 return None;
661 }
662 auto *Ty = RangeCheckIV->getType();
663 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
664 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000665 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
666 "corresponding to range type: "
667 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000668 return None;
669 }
670
671 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000672 // At this point, the range and latch step should have the same type, but need
673 // not have the same value (we support both 1 and -1 steps).
674 assert(Step->getType() ==
675 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
676 "Range and latch steps should be of same type!");
677 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000678 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000679 return None;
680 }
Anna Thomas68797212017-11-03 14:25:39 +0000681
Anna Thomas7b360432017-12-04 15:11:48 +0000682 if (Step->isOne())
683 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000684 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000685 else {
686 assert(Step->isAllOnesValue() && "Step should be -1!");
687 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
Philip Reamese46d77d2019-04-15 18:15:08 +0000688 Expander, Guard);
Anna Thomas7b360432017-12-04 15:11:48 +0000689 }
Anna Thomas68797212017-11-03 14:25:39 +0000690}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000691
Max Kazantsevca450872019-01-22 10:13:36 +0000692unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
693 Value *Condition,
694 SCEVExpander &Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000695 Instruction *Guard) {
Max Kazantsevca450872019-01-22 10:13:36 +0000696 unsigned NumWidened = 0;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000697 // The guard condition is expected to be in form of:
698 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000699 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000700 // widened across loop iterations. Widening these conditions remember the
701 // resulting list of subconditions in Checks vector.
Max Kazantsevca450872019-01-22 10:13:36 +0000702 SmallVector<Value *, 4> Worklist(1, Condition);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000703 SmallPtrSet<Value *, 4> Visited;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000704 Value *WideableCond = nullptr;
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000705 do {
706 Value *Condition = Worklist.pop_back_val();
707 if (!Visited.insert(Condition).second)
708 continue;
709
710 Value *LHS, *RHS;
711 using namespace llvm::PatternMatch;
712 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
713 Worklist.push_back(LHS);
714 Worklist.push_back(RHS);
715 continue;
716 }
717
Philip Reamesadb3ece2019-04-02 02:42:57 +0000718 if (match(Condition,
719 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
720 // Pick any, we don't care which
721 WideableCond = Condition;
722 continue;
723 }
724
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000725 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
Philip Reames3d4e1082019-03-29 23:06:57 +0000726 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000727 Guard)) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000728 Checks.push_back(NewRangeCheck.getValue());
729 NumWidened++;
730 continue;
731 }
732 }
733
734 // Save the condition as is if we can't widen it
735 Checks.push_back(Condition);
Max Kazantsevca450872019-01-22 10:13:36 +0000736 } while (!Worklist.empty());
Philip Reamesadb3ece2019-04-02 02:42:57 +0000737 // At the moment, our matching logic for wideable conditions implicitly
738 // assumes we preserve the form: (br (and Cond, WC())). FIXME
739 // Note that if there were multiple calls to wideable condition in the
740 // traversal, we only need to keep one, and which one is arbitrary.
741 if (WideableCond)
742 Checks.push_back(WideableCond);
Max Kazantsevca450872019-01-22 10:13:36 +0000743 return NumWidened;
744}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000745
Max Kazantsevca450872019-01-22 10:13:36 +0000746bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
747 SCEVExpander &Expander) {
748 LLVM_DEBUG(dbgs() << "Processing guard:\n");
749 LLVM_DEBUG(Guard->dump());
750
751 TotalConsidered++;
752 SmallVector<Value *, 4> Checks;
Max Kazantsevca450872019-01-22 10:13:36 +0000753 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
Philip Reamese46d77d2019-04-15 18:15:08 +0000754 Guard);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000755 if (NumWidened == 0)
756 return false;
757
Fedor Sergeevc297e842018-10-17 09:02:54 +0000758 TotalWidened += NumWidened;
759
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000760 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000761 IRBuilder<> Builder(findInsertPt(Guard, Checks));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000762 Value *LastCheck = nullptr;
763 for (auto *Check : Checks)
764 if (!LastCheck)
765 LastCheck = Check;
766 else
767 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000768 auto *OldCond = Guard->getOperand(0);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000769 Guard->setOperand(0, LastCheck);
Philip Reamesd109e2a2019-04-01 16:05:15 +0000770 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000771
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000772 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000773 return true;
774}
775
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000776bool LoopPredication::widenWidenableBranchGuardConditions(
Philip Reamesf6086782019-04-01 22:39:54 +0000777 BranchInst *BI, SCEVExpander &Expander) {
778 assert(isGuardAsWidenableBranch(BI) && "Must be!");
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000779 LLVM_DEBUG(dbgs() << "Processing guard:\n");
Philip Reamesf6086782019-04-01 22:39:54 +0000780 LLVM_DEBUG(BI->dump());
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000781
782 TotalConsidered++;
783 SmallVector<Value *, 4> Checks;
Philip Reamesadb3ece2019-04-02 02:42:57 +0000784 unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
Philip Reamese46d77d2019-04-15 18:15:08 +0000785 Expander, BI);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000786 if (NumWidened == 0)
787 return false;
788
789 TotalWidened += NumWidened;
790
791 // Emit the new guard condition
Philip Reamese46d77d2019-04-15 18:15:08 +0000792 IRBuilder<> Builder(findInsertPt(BI, Checks));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000793 Value *LastCheck = nullptr;
794 for (auto *Check : Checks)
795 if (!LastCheck)
796 LastCheck = Check;
797 else
798 LastCheck = Builder.CreateAnd(LastCheck, Check);
Philip Reamesadb3ece2019-04-02 02:42:57 +0000799 auto *OldCond = BI->getCondition();
800 BI->setCondition(LastCheck);
Philip Reamesf6086782019-04-01 22:39:54 +0000801 assert(isGuardAsWidenableBranch(BI) &&
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000802 "Stopped being a guard after transform?");
Philip Reamesd109e2a2019-04-01 16:05:15 +0000803 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000804
805 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
806 return true;
807}
808
Philip Reames099eca82019-06-01 00:31:58 +0000809Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000810 using namespace PatternMatch;
811
812 BasicBlock *LoopLatch = L->getLoopLatch();
813 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000814 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000815 return None;
816 }
817
Philip Reames19afdf72019-06-01 03:09:28 +0000818 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
819 if (!BI) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000820 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000821 return None;
822 }
Philip Reames19afdf72019-06-01 03:09:28 +0000823 BasicBlock *TrueDest = BI->getSuccessor(0);
824 BasicBlock *FalseDest = BI->getSuccessor(1);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000825 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
826 "One of the latch's destinations must be the header");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000827
Philip Reames19afdf72019-06-01 03:09:28 +0000828 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
829 if (!ICI || !BI->isConditional()) {
830 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
831 return None;
832 }
833 auto Result = parseLoopICmp(ICI);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000834 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000835 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000836 return None;
837 }
838
Philip Reames19afdf72019-06-01 03:09:28 +0000839 if (TrueDest != L->getHeader())
840 Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
841
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000842 // Check affine first, so if it's not we don't try to compute the step
843 // recurrence.
844 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000845 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000846 return None;
847 }
848
849 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000850 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000851 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000852 return None;
853 }
854
Anna Thomas68797212017-11-03 14:25:39 +0000855 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000856 if (Step->isOne()) {
857 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
858 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
859 } else {
860 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000861 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
862 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000863 }
Anna Thomas68797212017-11-03 14:25:39 +0000864 };
865
Philip Reames099eca82019-06-01 00:31:58 +0000866 normalizePredicate(SE, L, *Result);
Anna Thomas68797212017-11-03 14:25:39 +0000867 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000868 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
869 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000870 return None;
871 }
Philip Reames19afdf72019-06-01 03:09:28 +0000872
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000873 return Result;
874}
875
Anna Thomas1d02b132017-11-02 21:21:02 +0000876// Returns true if its safe to truncate the IV to RangeCheckType.
877bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
878 if (!EnableIVTruncation)
879 return false;
880 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
881 DL->getTypeSizeInBits(RangeCheckType) &&
882 "Expected latch check IV type to be larger than range check operand "
883 "type!");
884 // The start and end values of the IV should be known. This is to guarantee
885 // that truncating the wide type will not lose information.
886 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
887 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
888 if (!Limit || !Start)
889 return false;
890 // This check makes sure that the IV does not change sign during loop
891 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
892 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
893 // IV wraps around, and the truncation of the IV would lose the range of
894 // iterations between 2^32 and 2^64.
895 bool Increasing;
896 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
897 return false;
898 // The active bits should be less than the bits in the RangeCheckType. This
899 // guarantees that truncating the latch check to RangeCheckType is a safe
900 // operation.
901 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
902 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
903 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
904}
905
Anna Thomas9b1176b2018-03-22 16:03:59 +0000906bool LoopPredication::isLoopProfitableToPredicate() {
907 if (SkipProfitabilityChecks || !BPI)
908 return true;
909
910 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
911 L->getExitEdges(ExitEdges);
912 // If there is only one exiting edge in the loop, it is always profitable to
913 // predicate the loop.
914 if (ExitEdges.size() == 1)
915 return true;
916
917 // Calculate the exiting probabilities of all exiting edges from the loop,
918 // starting with the LatchExitProbability.
919 // Heuristic for profitability: If any of the exiting blocks' probability of
920 // exiting the loop is larger than exiting through the latch block, it's not
921 // profitable to predicate the loop.
922 auto *LatchBlock = L->getLoopLatch();
923 assert(LatchBlock && "Should have a single latch at this point!");
924 auto *LatchTerm = LatchBlock->getTerminator();
925 assert(LatchTerm->getNumSuccessors() == 2 &&
926 "expected to be an exiting block with 2 succs!");
927 unsigned LatchBrExitIdx =
928 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
929 BranchProbability LatchExitProbability =
930 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
931
932 // Protect against degenerate inputs provided by the user. Providing a value
933 // less than one, can invert the definition of profitable loop predication.
934 float ScaleFactor = LatchExitProbabilityScale;
935 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000936 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000937 dbgs()
938 << "Ignored user setting for loop-predication-latch-probability-scale: "
939 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000940 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000941 ScaleFactor = 1.0;
942 }
943 const auto LatchProbabilityThreshold =
944 LatchExitProbability * ScaleFactor;
945
946 for (const auto &ExitEdge : ExitEdges) {
947 BranchProbability ExitingBlockProbability =
948 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
949 // Some exiting edge has higher probability than the latch exiting edge.
950 // No longer profitable to predicate.
951 if (ExitingBlockProbability > LatchProbabilityThreshold)
952 return false;
953 }
954 // Using BPI, we have concluded that the most probable way to exit from the
955 // loop is through the latch (or there's no profile information and all
956 // exits are equally likely).
957 return true;
958}
959
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000960bool LoopPredication::runOnLoop(Loop *Loop) {
961 L = Loop;
962
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000963 LLVM_DEBUG(dbgs() << "Analyzing ");
964 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000965
966 Module *M = L->getHeader()->getModule();
967
968 // There is nothing to do if the module doesn't use guards
969 auto *GuardDecl =
970 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
Max Kazantsevfeb475f2019-01-22 11:49:06 +0000971 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
972 auto *WCDecl = M->getFunction(
973 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
974 bool HasWidenableConditions =
975 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
976 if (!HasIntrinsicGuards && !HasWidenableConditions)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000977 return false;
978
979 DL = &M->getDataLayout();
980
981 Preheader = L->getLoopPreheader();
982 if (!Preheader)
983 return false;
984
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000985 auto LatchCheckOpt = parseLoopLatchICmp();
986 if (!LatchCheckOpt)
987 return false;
988 LatchCheck = *LatchCheckOpt;
989
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000990 LLVM_DEBUG(dbgs() << "Latch check:\n");
991 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000992
Anna Thomas9b1176b2018-03-22 16:03:59 +0000993 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000994 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000995 return false;
996 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000997 // Collect all the guards into a vector and process later, so as not
998 // to invalidate the instruction iterator.
999 SmallVector<IntrinsicInst *, 4> Guards;
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001000 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1001 for (const auto BB : L->blocks()) {
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001002 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +00001003 if (isGuard(&I))
1004 Guards.push_back(cast<IntrinsicInst>(&I));
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001005 if (PredicateWidenableBranchGuards &&
1006 isGuardAsWidenableBranch(BB->getTerminator()))
1007 GuardsAsWidenableBranches.push_back(
1008 cast<BranchInst>(BB->getTerminator()));
1009 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001010
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001011 if (Guards.empty() && GuardsAsWidenableBranches.empty())
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +00001012 return false;
1013
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001014 SCEVExpander Expander(*SE, *DL, "loop-predication");
1015
1016 bool Changed = false;
1017 for (auto *Guard : Guards)
1018 Changed |= widenGuardConditions(Guard, Expander);
Max Kazantsevfeb475f2019-01-22 11:49:06 +00001019 for (auto *Guard : GuardsAsWidenableBranches)
1020 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001021
1022 return Changed;
1023}