blob: c7c86bcb88f251f486b80ffff8e6571fa12874b6 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000022#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000026#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000027#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000035#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000036#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000037#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000038#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000039#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000040using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000041using namespace llvm::PatternMatch;
42
43const unsigned MaxDepth = 6;
44
Philip Reames1c292272015-03-10 22:43:20 +000045/// Enable an experimental feature to leverage information about dominating
46/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000047/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000048/// run into compile time problems when testing, scale them back and report
49/// your findings.
50static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
51 cl::Hidden, cl::init(false));
52
53// This is expensive, so we only do it for the top level query value.
54// (TODO: evaluate cost vs profit, consider higher thresholds)
55static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
56 cl::Hidden, cl::init(1));
57
58/// How many dominating blocks should be scanned looking for dominating
59/// conditions?
60static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
61 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000062 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000063
64// Controls the number of uses of the value searched for possible
65// dominating comparisons.
66static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000067 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000068
69// If true, don't consider only compares whose only use is a branch.
70static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
71 cl::Hidden, cl::init(false));
72
Sanjay Patelaee84212014-11-04 16:27:42 +000073/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
74/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000075static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000076 if (unsigned BitWidth = Ty->getScalarSizeInBits())
77 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000078
Mehdi Aminia28d91d2015-03-10 02:37:25 +000079 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000080}
Chris Lattner965c7692008-06-02 01:18:21 +000081
Hal Finkel60db0582014-09-07 18:57:58 +000082// Many of these functions have internal versions that take an assumption
83// exclusion set. This is because of the potential for mutual recursion to
84// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
85// classic case of this is assume(x = y), which will attempt to determine
86// bits in x from bits in y, which will attempt to determine bits in y from
87// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
88// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
89// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
90typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
91
Benjamin Kramercfd8d902014-09-12 08:56:53 +000092namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000093// Simplifying using an assume can only be done in a particular control-flow
94// context (the context instruction provides that context). If an assume and
95// the context instruction are not in the same block then the DT helps in
96// figuring out if we can use it.
97struct Query {
98 ExclInvsSet ExclInvs;
Matthias Braunfeb81bc2016-01-15 22:22:04 +000099 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +0000100 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000101 const Instruction *CxtI;
102 const DominatorTree *DT;
103
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000104 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
105 const DominatorTree *DT)
106 : DL(DL), AC(AC), CxtI(CxtI), DT(DT) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000107
108 Query(const Query &Q, const Value *NewExcl)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000109 : ExclInvs(Q.ExclInvs), DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000110 ExclInvs.insert(NewExcl);
111 }
112};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000113} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000114
Sanjay Patel547e9752014-11-04 16:09:50 +0000115// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000116// the preferred context instruction (if any).
117static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
118 // If we've been provided with a context instruction, then use that (provided
119 // it has been inserted).
120 if (CxtI && CxtI->getParent())
121 return CxtI;
122
123 // If the value is really an already-inserted instruction, then use that.
124 CxtI = dyn_cast<Instruction>(V);
125 if (CxtI && CxtI->getParent())
126 return CxtI;
127
128 return nullptr;
129}
130
131static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000132 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000133
134void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000135 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000136 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000137 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000138 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
139 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000140}
141
Jingyue Wuca321902015-05-14 23:53:19 +0000142bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
143 AssumptionCache *AC, const Instruction *CxtI,
144 const DominatorTree *DT) {
145 assert(LHS->getType() == RHS->getType() &&
146 "LHS and RHS should have the same type");
147 assert(LHS->getType()->isIntOrIntVectorTy() &&
148 "LHS and RHS should be integers");
149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
155}
156
Hal Finkel60db0582014-09-07 18:57:58 +0000157static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000158 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000159
160void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000164 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
165 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000166}
167
168static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000169 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000170
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000172 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const Instruction *CxtI,
174 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000176 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000177}
178
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000179static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000180
181bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
182 AssumptionCache *AC, const Instruction *CxtI,
183 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000184 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000185}
186
Jingyue Wu10fcea52015-08-20 18:27:04 +0000187bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
188 AssumptionCache *AC, const Instruction *CxtI,
189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
192 return NonNegative;
193}
194
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000195static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000196
197bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
198 AssumptionCache *AC, const Instruction *CxtI,
199 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000200 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
201 safeCxtI(V1, safeCxtI(V2, CxtI)),
202 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000203}
204
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000205static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
206 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000207
208bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
209 unsigned Depth, AssumptionCache *AC,
210 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::MaskedValueIsZero(V, Mask, Depth,
212 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000213}
214
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000215static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000216
217unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
218 unsigned Depth, AssumptionCache *AC,
219 const Instruction *CxtI,
220 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000221 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000222}
223
Jay Foada0653a32014-05-14 21:14:37 +0000224static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
225 APInt &KnownZero, APInt &KnownOne,
226 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000228 if (!Add) {
229 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
230 // We know that the top bits of C-X are clear if X contains less bits
231 // than C (i.e. no wrap-around can happen). For example, 20-X is
232 // positive if we can prove that X is >= 0 and < 16.
233 if (!CLHS->getValue().isNegative()) {
234 unsigned BitWidth = KnownZero.getBitWidth();
235 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
236 // NLZ can't be BitWidth with no sign bit
237 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000239
240 // If all of the MaskV bits are known to be zero, then we know the
241 // output top bits are zero, because we now know that the output is
242 // from [0-C].
243 if ((KnownZero2 & MaskV) == MaskV) {
244 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
245 // Top bits known zero.
246 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
247 }
248 }
249 }
250 }
251
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000252 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000253
David Majnemer97ddca32014-08-22 00:40:43 +0000254 // If an initial sequence of bits in the result is not needed, the
255 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000256 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000257 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
258 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259
David Majnemer97ddca32014-08-22 00:40:43 +0000260 // Carry in a 1 for a subtract, rather than a 0.
261 APInt CarryIn(BitWidth, 0);
262 if (!Add) {
263 // Sum = LHS + ~RHS + 1
264 std::swap(KnownZero2, KnownOne2);
265 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000266 }
267
David Majnemer97ddca32014-08-22 00:40:43 +0000268 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
269 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
270
271 // Compute known bits of the carry.
272 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
273 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
274
275 // Compute set of known bits (where all three relevant bits are known).
276 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
277 APInt RHSKnown = KnownZero2 | KnownOne2;
278 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
279 APInt Known = LHSKnown & RHSKnown & CarryKnown;
280
281 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
282 "known bits of sum differ");
283
284 // Compute known bits of the result.
285 KnownZero = ~PossibleSumOne & Known;
286 KnownOne = PossibleSumOne & Known;
287
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000288 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000289 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000291 // Adding two non-negative numbers, or subtracting a negative number from
292 // a non-negative one, can't wrap into negative.
293 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
294 KnownZero |= APInt::getSignBit(BitWidth);
295 // Adding two negative numbers, or subtracting a non-negative number from
296 // a negative one, can't wrap into non-negative.
297 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
298 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 }
300 }
301}
302
Jay Foada0653a32014-05-14 21:14:37 +0000303static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
304 APInt &KnownZero, APInt &KnownOne,
305 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000306 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000307 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000308 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
309 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000310
311 bool isKnownNegative = false;
312 bool isKnownNonNegative = false;
313 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000314 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000315 if (Op0 == Op1) {
316 // The product of a number with itself is non-negative.
317 isKnownNonNegative = true;
318 } else {
319 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
320 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
321 bool isKnownNegativeOp1 = KnownOne.isNegative();
322 bool isKnownNegativeOp0 = KnownOne2.isNegative();
323 // The product of two numbers with the same sign is non-negative.
324 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
325 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
326 // The product of a negative number and a non-negative number is either
327 // negative or zero.
328 if (!isKnownNonNegative)
329 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000331 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000333 }
334 }
335
336 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000337 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000338 // More trickiness is possible, but this is sufficient for the
339 // interesting case of alignment computation.
340 KnownOne.clearAllBits();
341 unsigned TrailZ = KnownZero.countTrailingOnes() +
342 KnownZero2.countTrailingOnes();
343 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
344 KnownZero2.countLeadingOnes(),
345 BitWidth) - BitWidth;
346
347 TrailZ = std::min(TrailZ, BitWidth);
348 LeadZ = std::min(LeadZ, BitWidth);
349 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
350 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351
352 // Only make use of no-wrap flags if we failed to compute the sign bit
353 // directly. This matters if the multiplication always overflows, in
354 // which case we prefer to follow the result of the direct computation,
355 // though as the program is invoking undefined behaviour we can choose
356 // whatever we like here.
357 if (isKnownNonNegative && !KnownOne.isNegative())
358 KnownZero.setBit(BitWidth - 1);
359 else if (isKnownNegative && !KnownZero.isNegative())
360 KnownOne.setBit(BitWidth - 1);
361}
362
Jingyue Wu37fcb592014-06-19 16:50:16 +0000363void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000364 APInt &KnownZero,
365 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000366 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000367 unsigned NumRanges = Ranges.getNumOperands() / 2;
368 assert(NumRanges >= 1);
369
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000370 KnownZero.setAllBits();
371 KnownOne.setAllBits();
372
Rafael Espindola53190532012-03-30 15:52:11 +0000373 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000374 ConstantInt *Lower =
375 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
376 ConstantInt *Upper =
377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000378 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000379
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000380 // The first CommonPrefixBits of all values in Range are equal.
381 unsigned CommonPrefixBits =
382 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
383
384 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
385 KnownOne &= Range.getUnsignedMax() & Mask;
386 KnownZero &= ~Range.getUnsignedMax() & Mask;
387 }
Rafael Espindola53190532012-03-30 15:52:11 +0000388}
Jay Foad5a29c362014-05-15 12:12:55 +0000389
Hal Finkel60db0582014-09-07 18:57:58 +0000390static bool isEphemeralValueOf(Instruction *I, const Value *E) {
391 SmallVector<const Value *, 16> WorkSet(1, I);
392 SmallPtrSet<const Value *, 32> Visited;
393 SmallPtrSet<const Value *, 16> EphValues;
394
Hal Finkelf2199b22015-10-23 20:37:08 +0000395 // The instruction defining an assumption's condition itself is always
396 // considered ephemeral to that assumption (even if it has other
397 // non-ephemeral users). See r246696's test case for an example.
398 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
399 return true;
400
Hal Finkel60db0582014-09-07 18:57:58 +0000401 while (!WorkSet.empty()) {
402 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000403 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000404 continue;
405
406 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000407 if (std::all_of(V->user_begin(), V->user_end(),
408 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000409 if (V == E)
410 return true;
411
412 EphValues.insert(V);
413 if (const User *U = dyn_cast<User>(V))
414 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
415 J != JE; ++J) {
416 if (isSafeToSpeculativelyExecute(*J))
417 WorkSet.push_back(*J);
418 }
419 }
420 }
421
422 return false;
423}
424
425// Is this an intrinsic that cannot be speculated but also cannot trap?
426static bool isAssumeLikeIntrinsic(const Instruction *I) {
427 if (const CallInst *CI = dyn_cast<CallInst>(I))
428 if (Function *F = CI->getCalledFunction())
429 switch (F->getIntrinsicID()) {
430 default: break;
431 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
432 case Intrinsic::assume:
433 case Intrinsic::dbg_declare:
434 case Intrinsic::dbg_value:
435 case Intrinsic::invariant_start:
436 case Intrinsic::invariant_end:
437 case Intrinsic::lifetime_start:
438 case Intrinsic::lifetime_end:
439 case Intrinsic::objectsize:
440 case Intrinsic::ptr_annotation:
441 case Intrinsic::var_annotation:
442 return true;
443 }
444
445 return false;
446}
447
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000448static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
449 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000450 Instruction *Inv = cast<Instruction>(V);
451
452 // There are two restrictions on the use of an assume:
453 // 1. The assume must dominate the context (or the control flow must
454 // reach the assume whenever it reaches the context).
455 // 2. The context must not be in the assume's set of ephemeral values
456 // (otherwise we will use the assume to prove that the condition
457 // feeding the assume is trivially true, thus causing the removal of
458 // the assume).
459
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000460 if (DT) {
461 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000462 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000463 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000464 // The context comes first, but they're both in the same block. Make sure
465 // there is nothing in between that might interrupt the control flow.
466 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000467 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000468 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000469 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000470 return false;
471
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000472 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000473 }
474
475 return false;
476 }
477
478 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000479 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000480 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000481 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000482 // Search forward from the assume until we reach the context (or the end
483 // of the block); the common case is that the assume will come first.
484 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
485 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000486 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000487 return true;
488
489 // The context must come first...
490 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000491 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000492 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000494 return false;
495
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000496 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000497 }
498
499 return false;
500}
501
502bool llvm::isValidAssumeForContext(const Instruction *I,
503 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000504 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000505 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000506}
507
508template<typename LHS, typename RHS>
509inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
510 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
511m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
512 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
513}
514
515template<typename LHS, typename RHS>
516inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
517 BinaryOp_match<RHS, LHS, Instruction::And>>
518m_c_And(const LHS &L, const RHS &R) {
519 return m_CombineOr(m_And(L, R), m_And(R, L));
520}
521
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000522template<typename LHS, typename RHS>
523inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
524 BinaryOp_match<RHS, LHS, Instruction::Or>>
525m_c_Or(const LHS &L, const RHS &R) {
526 return m_CombineOr(m_Or(L, R), m_Or(R, L));
527}
528
529template<typename LHS, typename RHS>
530inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
531 BinaryOp_match<RHS, LHS, Instruction::Xor>>
532m_c_Xor(const LHS &L, const RHS &R) {
533 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
534}
535
Philip Reames1c292272015-03-10 22:43:20 +0000536/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
537/// true (at the context instruction.) This is mostly a utility function for
538/// the prototype dominating conditions reasoning below.
539static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
540 APInt &KnownZero,
541 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000542 unsigned Depth, const Query &Q) {
543 Value *LHS = Cmp->getOperand(0);
544 Value *RHS = Cmp->getOperand(1);
545 // TODO: We could potentially be more aggressive here. This would be worth
546 // evaluating. If we can, explore commoning this code with the assume
547 // handling logic.
548 if (LHS != V && RHS != V)
549 return;
550
551 const unsigned BitWidth = KnownZero.getBitWidth();
552
553 switch (Cmp->getPredicate()) {
554 default:
555 // We know nothing from this condition
556 break;
557 // TODO: implement unsigned bound from below (known one bits)
558 // TODO: common condition check implementations with assumes
559 // TODO: implement other patterns from assume (e.g. V & B == A)
560 case ICmpInst::ICMP_SGT:
561 if (LHS == V) {
562 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000563 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000564 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
565 // We know that the sign bit is zero.
566 KnownZero |= APInt::getSignBit(BitWidth);
567 }
568 }
569 break;
570 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000571 {
572 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
573 if (LHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000575 else if (RHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000577 else
578 llvm_unreachable("missing use?");
579 KnownZero |= KnownZeroTemp;
580 KnownOne |= KnownOneTemp;
581 }
Philip Reames1c292272015-03-10 22:43:20 +0000582 break;
583 case ICmpInst::ICMP_ULE:
584 if (LHS == V) {
585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000587 // The known zero bits carry over
588 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
589 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
590 }
591 break;
592 case ICmpInst::ICMP_ULT:
593 if (LHS == V) {
594 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000595 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000596 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
597 // power of 2, then one more).
598 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000599 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
Philip Reames1c292272015-03-10 22:43:20 +0000600 SignBits++;
601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602 }
603 break;
604 };
605}
606
607/// Compute known bits in 'V' from conditions which are known to be true along
608/// all paths leading to the context instruction. In particular, look for
609/// cases where one branch of an interesting condition dominates the context
610/// instruction. This does not do general dataflow.
611/// NOTE: This code is EXPERIMENTAL and currently off by default.
612static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
613 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000614 unsigned Depth,
615 const Query &Q) {
616 // Need both the dominator tree and the query location to do anything useful
617 if (!Q.DT || !Q.CxtI)
618 return;
619 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000620 // The context instruction might be in a statically unreachable block. If
621 // so, asking dominator queries may yield suprising results. (e.g. the block
622 // may not have a dom tree node)
623 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
624 return;
Philip Reames1c292272015-03-10 22:43:20 +0000625
626 // Avoid useless work
627 if (auto VI = dyn_cast<Instruction>(V))
628 if (VI->getParent() == Cxt->getParent())
629 return;
630
631 // Note: We currently implement two options. It's not clear which of these
632 // will survive long term, we need data for that.
633 // Option 1 - Try walking the dominator tree looking for conditions which
634 // might apply. This works well for local conditions (loop guards, etc..),
635 // but not as well for things far from the context instruction (presuming a
636 // low max blocks explored). If we can set an high enough limit, this would
637 // be all we need.
638 // Option 2 - We restrict out search to those conditions which are uses of
639 // the value we're interested in. This is independent of dom structure,
640 // but is slightly less powerful without looking through lots of use chains.
641 // It does handle conditions far from the context instruction (e.g. early
642 // function exits on entry) really well though.
643
644 // Option 1 - Search the dom tree
645 unsigned NumBlocksExplored = 0;
646 BasicBlock *Current = Cxt->getParent();
647 while (true) {
648 // Stop searching if we've gone too far up the chain
649 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
650 break;
651 NumBlocksExplored++;
652
653 if (!Q.DT->getNode(Current)->getIDom())
654 break;
655 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
656 if (!Current)
657 // found function entry
658 break;
659
660 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
661 if (!BI || BI->isUnconditional())
662 continue;
663 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
664 if (!Cmp)
665 continue;
666
667 // We're looking for conditions that are guaranteed to hold at the context
668 // instruction. Finding a condition where one path dominates the context
669 // isn't enough because both the true and false cases could merge before
670 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000671 // to ensure that the taken *edge* dominates the context instruction. We
672 // know that the edge must be reachable since we started from a reachable
673 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000674 BasicBlock *BB0 = BI->getSuccessor(0);
675 BasicBlockEdge Edge(BI->getParent(), BB0);
676 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
677 continue;
678
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000680 }
681
682 // Option 2 - Search the other uses of V
683 unsigned NumUsesExplored = 0;
684 for (auto U : V->users()) {
685 // Avoid massive lists
686 if (NumUsesExplored >= DomConditionsMaxUses)
687 break;
688 NumUsesExplored++;
689 // Consider only compare instructions uniquely controlling a branch
690 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
691 if (!Cmp)
692 continue;
693
694 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
695 continue;
696
697 for (auto *CmpU : Cmp->users()) {
698 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
699 if (!BI || BI->isUnconditional())
700 continue;
701 // We're looking for conditions that are guaranteed to hold at the
702 // context instruction. Finding a condition where one path dominates
703 // the context isn't enough because both the true and false cases could
704 // merge before the context instruction we're actually interested in.
705 // Instead, we need to ensure that the taken *edge* dominates the context
706 // instruction.
707 BasicBlock *BB0 = BI->getSuccessor(0);
708 BasicBlockEdge Edge(BI->getParent(), BB0);
709 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
710 continue;
711
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000713 }
714 }
715}
716
Hal Finkel60db0582014-09-07 18:57:58 +0000717static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000718 APInt &KnownOne, unsigned Depth,
719 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000720 // Use of assumptions is context-sensitive. If we don't have a context, we
721 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000722 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000723 return;
724
725 unsigned BitWidth = KnownZero.getBitWidth();
726
Chandler Carruth66b31302015-01-04 12:03:27 +0000727 for (auto &AssumeVH : Q.AC->assumptions()) {
728 if (!AssumeVH)
729 continue;
730 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000731 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000732 "Got assumption for the wrong function!");
Hal Finkel60db0582014-09-07 18:57:58 +0000733 if (Q.ExclInvs.count(I))
734 continue;
735
Philip Reames00d3b272014-11-24 23:44:28 +0000736 // Warning: This loop can end up being somewhat performance sensetive.
737 // We're running this loop for once for each value queried resulting in a
738 // runtime of ~O(#assumes * #values).
739
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000740 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000741 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000742
Philip Reames00d3b272014-11-24 23:44:28 +0000743 Value *Arg = I->getArgOperand(0);
744
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000746 assert(BitWidth == 1 && "assume operand is not i1?");
747 KnownZero.clearAllBits();
748 KnownOne.setAllBits();
749 return;
750 }
751
David Majnemer9b609752014-12-12 23:59:29 +0000752 // The remaining tests are all recursive, so bail out if we hit the limit.
753 if (Depth == MaxDepth)
754 continue;
755
Hal Finkel60db0582014-09-07 18:57:58 +0000756 Value *A, *B;
757 auto m_V = m_CombineOr(m_Specific(V),
758 m_CombineOr(m_PtrToInt(m_Specific(V)),
759 m_BitCast(m_Specific(V))));
760
761 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000763 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000764 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000765 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000766 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000767 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000768 KnownZero |= RHSKnownZero;
769 KnownOne |= RHSKnownOne;
770 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000771 } else if (match(Arg,
772 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 Pred == ICmpInst::ICMP_EQ &&
774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000775 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000776 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000777 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000778 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000779
780 // For those bits in the mask that are known to be one, we can propagate
781 // known bits from the RHS to V.
782 KnownZero |= RHSKnownZero & MaskKnownOne;
783 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000785 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
786 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000787 Pred == ICmpInst::ICMP_EQ &&
788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000789 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000790 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000791 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000792 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000793
794 // For those bits in the mask that are known to be one, we can propagate
795 // inverted known bits from the RHS to V.
796 KnownZero |= RHSKnownOne & MaskKnownOne;
797 KnownOne |= RHSKnownZero & MaskKnownOne;
798 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000799 } else if (match(Arg,
800 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 Pred == ICmpInst::ICMP_EQ &&
802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000803 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000804 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000805 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000806 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000807
808 // For those bits in B that are known to be zero, we can propagate known
809 // bits from the RHS to V.
810 KnownZero |= RHSKnownZero & BKnownZero;
811 KnownOne |= RHSKnownOne & BKnownZero;
812 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000813 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
814 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 Pred == ICmpInst::ICMP_EQ &&
816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000818 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000819 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000820 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000821
822 // For those bits in B that are known to be zero, we can propagate
823 // inverted known bits from the RHS to V.
824 KnownZero |= RHSKnownOne & BKnownZero;
825 KnownOne |= RHSKnownZero & BKnownZero;
826 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000827 } else if (match(Arg,
828 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000829 Pred == ICmpInst::ICMP_EQ &&
830 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000831 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000832 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000833 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000834 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000835
836 // For those bits in B that are known to be zero, we can propagate known
837 // bits from the RHS to V. For those bits in B that are known to be one,
838 // we can propagate inverted known bits from the RHS to V.
839 KnownZero |= RHSKnownZero & BKnownZero;
840 KnownOne |= RHSKnownOne & BKnownZero;
841 KnownZero |= RHSKnownOne & BKnownOne;
842 KnownOne |= RHSKnownZero & BKnownOne;
843 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000844 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
845 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000846 Pred == ICmpInst::ICMP_EQ &&
847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000848 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000850 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000851 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000852
853 // For those bits in B that are known to be zero, we can propagate
854 // inverted known bits from the RHS to V. For those bits in B that are
855 // known to be one, we can propagate known bits from the RHS to V.
856 KnownZero |= RHSKnownOne & BKnownZero;
857 KnownOne |= RHSKnownZero & BKnownZero;
858 KnownZero |= RHSKnownZero & BKnownOne;
859 KnownOne |= RHSKnownOne & BKnownOne;
860 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000861 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
862 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000863 Pred == ICmpInst::ICMP_EQ &&
864 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000865 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000866 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000867 // For those bits in RHS that are known, we can propagate them to known
868 // bits in V shifted to the right by C.
869 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
870 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
871 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000872 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
873 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000874 Pred == ICmpInst::ICMP_EQ &&
875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000876 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000877 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000878 // For those bits in RHS that are known, we can propagate them inverted
879 // to known bits in V shifted to the right by C.
880 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
881 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
882 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000883 } else if (match(Arg,
884 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000885 m_AShr(m_V, m_ConstantInt(C))),
886 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000887 Pred == ICmpInst::ICMP_EQ &&
888 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000889 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000890 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000891 // For those bits in RHS that are known, we can propagate them to known
892 // bits in V shifted to the right by C.
893 KnownZero |= RHSKnownZero << C->getZExtValue();
894 KnownOne |= RHSKnownOne << C->getZExtValue();
895 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000896 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000897 m_LShr(m_V, m_ConstantInt(C)),
898 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000899 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000900 Pred == ICmpInst::ICMP_EQ &&
901 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000904 // For those bits in RHS that are known, we can propagate them inverted
905 // to known bits in V shifted to the right by C.
906 KnownZero |= RHSKnownOne << C->getZExtValue();
907 KnownOne |= RHSKnownZero << C->getZExtValue();
908 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000910 Pred == ICmpInst::ICMP_SGE &&
911 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000912 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000913 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000914
915 if (RHSKnownZero.isNegative()) {
916 // We know that the sign bit is zero.
917 KnownZero |= APInt::getSignBit(BitWidth);
918 }
919 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000920 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000921 Pred == ICmpInst::ICMP_SGT &&
922 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000923 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000924 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000925
926 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
927 // We know that the sign bit is zero.
928 KnownZero |= APInt::getSignBit(BitWidth);
929 }
930 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000931 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 Pred == ICmpInst::ICMP_SLE &&
933 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000934 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000935 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000936
937 if (RHSKnownOne.isNegative()) {
938 // We know that the sign bit is one.
939 KnownOne |= APInt::getSignBit(BitWidth);
940 }
941 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000943 Pred == ICmpInst::ICMP_SLT &&
944 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000945 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000946 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000947
948 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
949 // We know that the sign bit is one.
950 KnownOne |= APInt::getSignBit(BitWidth);
951 }
952 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000953 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 Pred == ICmpInst::ICMP_ULE &&
955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000956 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000957 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000958
959 // Whatever high bits in c are zero are known to be zero.
960 KnownZero |=
961 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
962 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000963 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000964 Pred == ICmpInst::ICMP_ULT &&
965 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000966 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000967 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000968
969 // Whatever high bits in c are zero are known to be zero (if c is a power
970 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000971 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000972 KnownZero |=
973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
974 else
975 KnownZero |=
976 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000977 }
978 }
979}
980
Hal Finkelf2199b22015-10-23 20:37:08 +0000981// Compute known bits from a shift operator, including those with a
982// non-constant shift amount. KnownZero and KnownOne are the outputs of this
983// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
984// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
985// functors that, given the known-zero or known-one bits respectively, and a
986// shift amount, compute the implied known-zero or known-one bits of the shift
987// operator's result respectively for that shift amount. The results from calling
988// KZF and KOF are conservatively combined for all permitted shift amounts.
989template <typename KZFunctor, typename KOFunctor>
990static void computeKnownBitsFromShiftOperator(Operator *I,
991 APInt &KnownZero, APInt &KnownOne,
992 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000993 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000994 unsigned BitWidth = KnownZero.getBitWidth();
995
996 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
997 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
998
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001000 KnownZero = KZF(KnownZero, ShiftAmt);
1001 KnownOne = KOF(KnownOne, ShiftAmt);
1002 return;
1003 }
1004
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001005 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001006
1007 // Note: We cannot use KnownZero.getLimitedValue() here, because if
1008 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1009 // limit value (which implies all bits are known).
1010 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1011 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1012
1013 // It would be more-clearly correct to use the two temporaries for this
1014 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1015 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1016
James Molloy493e57d2015-10-26 14:10:46 +00001017 // If we know the shifter operand is nonzero, we can sometimes infer more
1018 // known bits. However this is expensive to compute, so be lazy about it and
1019 // only compute it when absolutely necessary.
1020 Optional<bool> ShifterOperandIsNonZero;
1021
Hal Finkelf2199b22015-10-23 20:37:08 +00001022 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +00001023 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1024 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001025 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001026 if (!*ShifterOperandIsNonZero)
1027 return;
1028 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001029
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001030 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001031
1032 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1033 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1034 // Combine the shifted known input bits only for those shift amounts
1035 // compatible with its known constraints.
1036 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1037 continue;
1038 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1039 continue;
James Molloy493e57d2015-10-26 14:10:46 +00001040 // If we know the shifter is nonzero, we may be able to infer more known
1041 // bits. This check is sunk down as far as possible to avoid the expensive
1042 // call to isKnownNonZero if the cheaper checks above fail.
1043 if (ShiftAmt == 0) {
1044 if (!ShifterOperandIsNonZero.hasValue())
1045 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001046 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001047 if (*ShifterOperandIsNonZero)
1048 continue;
1049 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001050
1051 KnownZero &= KZF(KnownZero2, ShiftAmt);
1052 KnownOne &= KOF(KnownOne2, ShiftAmt);
1053 }
1054
1055 // If there are no compatible shift amounts, then we've proven that the shift
1056 // amount must be >= the BitWidth, and the result is undefined. We could
1057 // return anything we'd like, but we need to make sure the sets of known bits
1058 // stay disjoint (it should be better for some other code to actually
1059 // propagate the undef than to pick a value here using known bits).
1060 if ((KnownZero & KnownOne) != 0)
1061 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1062}
1063
Jingyue Wu12b0c282015-06-15 05:46:29 +00001064static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001065 APInt &KnownOne, unsigned Depth,
1066 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001067 unsigned BitWidth = KnownZero.getBitWidth();
1068
Chris Lattner965c7692008-06-02 01:18:21 +00001069 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001070 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001071 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +00001072 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001073 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001074 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 case Instruction::And: {
1077 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001078 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1079 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001080
Chris Lattner965c7692008-06-02 01:18:21 +00001081 // Output known-1 bits are only known if set in both the LHS & RHS.
1082 KnownOne &= KnownOne2;
1083 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1084 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +00001085
1086 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1087 // here we handle the more general case of adding any odd number by
1088 // matching the form add(x, add(x, y)) where y is odd.
1089 // TODO: This could be generalized to clearing any bit set in y where the
1090 // following bit is known to be unset in y.
1091 Value *Y = nullptr;
1092 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1093 m_Value(Y))) ||
1094 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1095 m_Value(Y)))) {
1096 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001097 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +00001098 if (KnownOne3.countTrailingOnes() > 0)
1099 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1100 }
Jay Foad5a29c362014-05-15 12:12:55 +00001101 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001102 }
1103 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001104 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1105 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001106
Chris Lattner965c7692008-06-02 01:18:21 +00001107 // Output known-0 bits are only known if clear in both the LHS & RHS.
1108 KnownZero &= KnownZero2;
1109 // Output known-1 are known to be set if set in either the LHS | RHS.
1110 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +00001111 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001112 }
1113 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001114 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1115 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001116
Chris Lattner965c7692008-06-02 01:18:21 +00001117 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1118 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1119 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1120 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1121 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001122 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001123 }
1124 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001125 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001126 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001127 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001128 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001129 }
1130 case Instruction::UDiv: {
1131 // For the purposes of computing leading zeros we can conservatively
1132 // treat a udiv as a logical right shift by the power of 2 known to
1133 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001134 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 unsigned LeadZ = KnownZero2.countLeadingOnes();
1136
Jay Foad25a5e4c2010-12-01 08:53:58 +00001137 KnownOne2.clearAllBits();
1138 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001139 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001140 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1141 if (RHSUnknownLeadingOnes != BitWidth)
1142 LeadZ = std::min(BitWidth,
1143 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1144
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001145 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001146 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001147 }
James Molloyc5eded52016-01-14 15:49:32 +00001148 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001149 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1150 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001151
1152 // Only known if known in both the LHS and RHS.
1153 KnownOne &= KnownOne2;
1154 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001155 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001156 case Instruction::FPTrunc:
1157 case Instruction::FPExt:
1158 case Instruction::FPToUI:
1159 case Instruction::FPToSI:
1160 case Instruction::SIToFP:
1161 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001162 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001163 case Instruction::PtrToInt:
1164 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001165 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001166 // FALL THROUGH and handle them the same as zext/trunc.
1167 case Instruction::ZExt:
1168 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001169 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001170
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001171 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001172 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1173 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001174 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001175
1176 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001177 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1178 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001179 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001180 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1181 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001182 // Any top bits are known to be zero.
1183 if (BitWidth > SrcBitWidth)
1184 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001185 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001186 }
1187 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001188 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001189 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1190 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001191 // TODO: For now, not handling conversions like:
1192 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001193 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001195 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001196 }
1197 break;
1198 }
1199 case Instruction::SExt: {
1200 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001201 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001202
Jay Foad583abbc2010-12-07 08:25:19 +00001203 KnownZero = KnownZero.trunc(SrcBitWidth);
1204 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001205 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001206 KnownZero = KnownZero.zext(BitWidth);
1207 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001208
1209 // If the sign bit of the input is known set or clear, then we know the
1210 // top bits of the result.
1211 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1212 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1213 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1214 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001215 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001216 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001217 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001218 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001219 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1220 return (KnownZero << ShiftAmt) |
1221 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1222 };
1223
1224 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1225 return KnownOne << ShiftAmt;
1226 };
1227
1228 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001229 KnownZero2, KnownOne2, Depth, Q, KZF,
1230 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001231 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001232 }
1233 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001234 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001235 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1236 return APIntOps::lshr(KnownZero, ShiftAmt) |
1237 // High bits known zero.
1238 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1239 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001240
Hal Finkelf2199b22015-10-23 20:37:08 +00001241 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1242 return APIntOps::lshr(KnownOne, ShiftAmt);
1243 };
1244
1245 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001246 KnownZero2, KnownOne2, Depth, Q, KZF,
1247 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001249 }
1250 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001251 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001252 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1253 return APIntOps::ashr(KnownZero, ShiftAmt);
1254 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001255
Hal Finkelf2199b22015-10-23 20:37:08 +00001256 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1257 return APIntOps::ashr(KnownOne, ShiftAmt);
1258 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001259
Hal Finkelf2199b22015-10-23 20:37:08 +00001260 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001261 KnownZero2, KnownOne2, Depth, Q, KZF,
1262 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001264 }
Chris Lattner965c7692008-06-02 01:18:21 +00001265 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001266 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001267 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001268 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1269 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001270 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001271 }
Chris Lattner965c7692008-06-02 01:18:21 +00001272 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001273 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001274 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001275 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1276 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001277 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001278 }
1279 case Instruction::SRem:
1280 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001281 APInt RA = Rem->getValue().abs();
1282 if (RA.isPowerOf2()) {
1283 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001284 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001285 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001286
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001287 // The low bits of the first operand are unchanged by the srem.
1288 KnownZero = KnownZero2 & LowBits;
1289 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001290
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001291 // If the first operand is non-negative or has all low bits zero, then
1292 // the upper bits are all zero.
1293 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1294 KnownZero |= ~LowBits;
1295
1296 // If the first operand is negative and not all low bits are zero, then
1297 // the upper bits are all one.
1298 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1299 KnownOne |= ~LowBits;
1300
Craig Topper1bef2c82012-12-22 19:15:35 +00001301 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001302 }
1303 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001304
1305 // The sign bit is the LHS's sign bit, except when the result of the
1306 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001307 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001308 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001309 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1310 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001311 // If it's known zero, our sign bit is also zero.
1312 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001313 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001314 }
1315
Chris Lattner965c7692008-06-02 01:18:21 +00001316 break;
1317 case Instruction::URem: {
1318 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1319 APInt RA = Rem->getValue();
1320 if (RA.isPowerOf2()) {
1321 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001322 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001323 KnownZero |= ~LowBits;
1324 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001325 break;
1326 }
1327 }
1328
1329 // Since the result is less than or equal to either operand, any leading
1330 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001331 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1332 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001333
Chris Lattner4612ae12009-01-20 18:22:57 +00001334 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001335 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001336 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001337 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001338 break;
1339 }
1340
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001341 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001342 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001343 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001344 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001345 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001346
Chris Lattner965c7692008-06-02 01:18:21 +00001347 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001348 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001349 break;
1350 }
1351 case Instruction::GetElementPtr: {
1352 // Analyze all of the subscripts of this getelementptr instruction
1353 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001354 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001355 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1356 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001357 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1358
1359 gep_type_iterator GTI = gep_type_begin(I);
1360 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1361 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001362 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001363 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001364
1365 // Handle case when index is vector zeroinitializer
1366 Constant *CIndex = cast<Constant>(Index);
1367 if (CIndex->isZeroValue())
1368 continue;
1369
1370 if (CIndex->getType()->isVectorTy())
1371 Index = CIndex->getSplatValue();
1372
Chris Lattner965c7692008-06-02 01:18:21 +00001373 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001374 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001375 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001376 TrailZ = std::min<unsigned>(TrailZ,
1377 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001378 } else {
1379 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001380 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001381 if (!IndexedTy->isSized()) {
1382 TrailZ = 0;
1383 break;
1384 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001385 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001386 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001387 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001388 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001389 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001390 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001391 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001392 }
1393 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001394
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001395 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001396 break;
1397 }
1398 case Instruction::PHI: {
1399 PHINode *P = cast<PHINode>(I);
1400 // Handle the case of a simple two-predecessor recurrence PHI.
1401 // There's a lot more that could theoretically be done here, but
1402 // this is sufficient to catch some interesting cases.
1403 if (P->getNumIncomingValues() == 2) {
1404 for (unsigned i = 0; i != 2; ++i) {
1405 Value *L = P->getIncomingValue(i);
1406 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001407 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001408 if (!LU)
1409 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001410 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001411 // Check for operations that have the property that if
1412 // both their operands have low zero bits, the result
1413 // will have low zero bits.
1414 if (Opcode == Instruction::Add ||
1415 Opcode == Instruction::Sub ||
1416 Opcode == Instruction::And ||
1417 Opcode == Instruction::Or ||
1418 Opcode == Instruction::Mul) {
1419 Value *LL = LU->getOperand(0);
1420 Value *LR = LU->getOperand(1);
1421 // Find a recurrence.
1422 if (LL == I)
1423 L = LR;
1424 else if (LR == I)
1425 L = LL;
1426 else
1427 break;
1428 // Ok, we have a PHI of the form L op= R. Check for low
1429 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001430 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001431
1432 // We need to take the minimum number of known bits
1433 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001434 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001435
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001436 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001437 std::min(KnownZero2.countTrailingOnes(),
1438 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001439 break;
1440 }
1441 }
1442 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001443
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001444 // Unreachable blocks may have zero-operand PHI nodes.
1445 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001446 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001447
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001448 // Otherwise take the unions of the known bit sets of the operands,
1449 // taking conservative care to avoid excessive recursion.
1450 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001451 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001452 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001453 break;
1454
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001455 KnownZero = APInt::getAllOnesValue(BitWidth);
1456 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001457 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001458 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001459 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001460
1461 KnownZero2 = APInt(BitWidth, 0);
1462 KnownOne2 = APInt(BitWidth, 0);
1463 // Recurse, but cap the recursion to one level, because we don't
1464 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001465 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001466 KnownZero &= KnownZero2;
1467 KnownOne &= KnownOne2;
1468 // If all bits have been ruled out, there's no need to check
1469 // more operands.
1470 if (!KnownZero && !KnownOne)
1471 break;
1472 }
1473 }
Chris Lattner965c7692008-06-02 01:18:21 +00001474 break;
1475 }
1476 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001477 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001478 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001479 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001480 // If a range metadata is attached to this IntrinsicInst, intersect the
1481 // explicit range specified by the metadata and the implicit range of
1482 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001483 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1484 switch (II->getIntrinsicID()) {
1485 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001486 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001487 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001488 KnownZero |= KnownZero2.byteSwap();
1489 KnownOne |= KnownOne2.byteSwap();
1490 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001491 case Intrinsic::ctlz:
1492 case Intrinsic::cttz: {
1493 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001494 // If this call is undefined for 0, the result will be less than 2^n.
1495 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1496 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001497 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001498 break;
1499 }
1500 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001501 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001502 // We can bound the space the count needs. Also, bits known to be zero
1503 // can't contribute to the population.
1504 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1505 unsigned LeadingZeros =
1506 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001507 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001508 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1509 KnownOne &= ~KnownZero;
1510 // TODO: we could bound KnownOne using the lower bound on the number
1511 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001512 break;
1513 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001514 case Intrinsic::fabs: {
1515 Type *Ty = II->getType();
1516 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1517 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1518 break;
1519 }
Chad Rosierb3628842011-05-26 23:13:19 +00001520 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001521 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001522 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001523 }
1524 }
1525 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001526 case Instruction::ExtractValue:
1527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1528 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1529 if (EVI->getNumIndices() != 1) break;
1530 if (EVI->getIndices()[0] == 0) {
1531 switch (II->getIntrinsicID()) {
1532 default: break;
1533 case Intrinsic::uadd_with_overflow:
1534 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001535 computeKnownBitsAddSub(true, II->getArgOperand(0),
1536 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001537 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001538 break;
1539 case Intrinsic::usub_with_overflow:
1540 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001541 computeKnownBitsAddSub(false, II->getArgOperand(0),
1542 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001543 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001544 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001545 case Intrinsic::umul_with_overflow:
1546 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001547 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001548 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1549 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001550 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001551 }
1552 }
1553 }
Chris Lattner965c7692008-06-02 01:18:21 +00001554 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001555}
1556
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001557static unsigned getAlignment(const Value *V, const DataLayout &DL) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001558 unsigned Align = 0;
1559 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1560 Align = GO->getAlignment();
1561 if (Align == 0) {
1562 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
Manuel Jacob5f6eaac2016-01-16 20:30:46 +00001563 Type *ObjectType = GVar->getValueType();
Artur Pilipenko029d8532015-09-30 11:55:45 +00001564 if (ObjectType->isSized()) {
1565 // If the object is defined in the current Module, we'll be giving
1566 // it the preferred alignment. Otherwise, we have to assume that it
1567 // may only have the minimum ABI alignment.
1568 if (GVar->isStrongDefinitionForLinker())
1569 Align = DL.getPreferredAlignment(GVar);
1570 else
1571 Align = DL.getABITypeAlignment(ObjectType);
1572 }
1573 }
1574 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001575 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Artur Pilipenko029d8532015-09-30 11:55:45 +00001576 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1577
1578 if (!Align && A->hasStructRetAttr()) {
1579 // An sret parameter has at least the ABI alignment of the return type.
1580 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1581 if (EltTy->isSized())
1582 Align = DL.getABITypeAlignment(EltTy);
1583 }
Artur Pilipenkod94903c2015-10-07 16:01:18 +00001584 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1585 Align = AI->getAlignment();
1586 else if (auto CS = ImmutableCallSite(V))
1587 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1588 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1589 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1591 Align = CI->getLimitedValue();
1592 }
1593
Artur Pilipenko029d8532015-09-30 11:55:45 +00001594 return Align;
1595}
1596
Jingyue Wu12b0c282015-06-15 05:46:29 +00001597/// Determine which bits of V are known to be either zero or one and return
1598/// them in the KnownZero/KnownOne bit sets.
1599///
1600/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1601/// we cannot optimize based on the assumption that it is zero without changing
1602/// it to be an explicit zero. If we don't change it to zero, other code could
1603/// optimized based on the contradictory assumption that it is non-zero.
1604/// Because instcombine aggressively folds operations with undef args anyway,
1605/// this won't lose us code quality.
1606///
1607/// This function is defined on values with integer type, values with pointer
1608/// type, and vectors of integers. In the case
1609/// where V is a vector, known zero, and known one values are the
1610/// same width as the vector element, and the bit is set only if it is true
1611/// for all of the elements in the vector.
1612void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001613 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001614 assert(V && "No Value?");
1615 assert(Depth <= MaxDepth && "Limit Search Depth");
1616 unsigned BitWidth = KnownZero.getBitWidth();
1617
1618 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001619 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001620 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001621 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001622 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001623 (!V->getType()->isIntOrIntVectorTy() ||
1624 V->getType()->getScalarSizeInBits() == BitWidth) &&
1625 KnownZero.getBitWidth() == BitWidth &&
1626 KnownOne.getBitWidth() == BitWidth &&
1627 "V, KnownOne and KnownZero should have same BitWidth");
1628
1629 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1630 // We know all of the bits for a constant!
1631 KnownOne = CI->getValue();
1632 KnownZero = ~KnownOne;
1633 return;
1634 }
1635 // Null and aggregate-zero are all-zeros.
1636 if (isa<ConstantPointerNull>(V) ||
1637 isa<ConstantAggregateZero>(V)) {
1638 KnownOne.clearAllBits();
1639 KnownZero = APInt::getAllOnesValue(BitWidth);
1640 return;
1641 }
1642 // Handle a constant vector by taking the intersection of the known bits of
1643 // each element. There is no real need to handle ConstantVector here, because
1644 // we don't handle undef in any particularly useful way.
1645 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1646 // We know that CDS must be a vector of integers. Take the intersection of
1647 // each element.
1648 KnownZero.setAllBits(); KnownOne.setAllBits();
1649 APInt Elt(KnownZero.getBitWidth(), 0);
1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651 Elt = CDS->getElementAsInteger(i);
1652 KnownZero &= ~Elt;
1653 KnownOne &= Elt;
1654 }
1655 return;
1656 }
1657
Jingyue Wu12b0c282015-06-15 05:46:29 +00001658 // Start out not knowing anything.
1659 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1660
1661 // Limit search depth.
1662 // All recursive calls that increase depth must come after this.
1663 if (Depth == MaxDepth)
1664 return;
1665
1666 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1667 // the bits of its aliasee.
1668 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1669 if (!GA->mayBeOverridden())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001670 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001671 return;
1672 }
1673
1674 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001675 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001676
Artur Pilipenko029d8532015-09-30 11:55:45 +00001677 // Aligned pointers have trailing zeros - refine KnownZero set
1678 if (V->getType()->isPointerTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001679 unsigned Align = getAlignment(V, Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001680 if (Align)
1681 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1682 }
1683
Jingyue Wu12b0c282015-06-15 05:46:29 +00001684 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1685 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1686 // computeKnownBitsFromOperator.
1687
1688 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001689 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001690
1691 // Check whether there's a dominating condition which implies something about
1692 // this value at the given context.
1693 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001694 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001695
1696 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001697}
1698
Sanjay Patelaee84212014-11-04 16:27:42 +00001699/// Determine whether the sign bit is known to be zero or one.
1700/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001701void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001702 unsigned Depth, const Query &Q) {
1703 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001704 if (!BitWidth) {
1705 KnownZero = false;
1706 KnownOne = false;
1707 return;
1708 }
1709 APInt ZeroBits(BitWidth, 0);
1710 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001712 KnownOne = OneBits[BitWidth - 1];
1713 KnownZero = ZeroBits[BitWidth - 1];
1714}
1715
Sanjay Patelaee84212014-11-04 16:27:42 +00001716/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001717/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001718/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001719/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001720bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001721 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001722 if (Constant *C = dyn_cast<Constant>(V)) {
1723 if (C->isNullValue())
1724 return OrZero;
1725 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1726 return CI->getValue().isPowerOf2();
1727 // TODO: Handle vector constants.
1728 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001729
1730 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1731 // it is shifted off the end then the result is undefined.
1732 if (match(V, m_Shl(m_One(), m_Value())))
1733 return true;
1734
1735 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1736 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001737 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001738 return true;
1739
1740 // The remaining tests are all recursive, so bail out if we hit the limit.
1741 if (Depth++ == MaxDepth)
1742 return false;
1743
Craig Topper9f008862014-04-15 04:59:12 +00001744 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001745 // A shift left or a logical shift right of a power of two is a power of two
1746 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001747 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001748 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001749 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001750
Duncan Sandsd3951082011-01-25 09:38:29 +00001751 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001752 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001753
1754 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1756 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001757
Duncan Sandsba286d72011-10-26 20:55:21 +00001758 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1759 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001760 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1761 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001762 return true;
1763 // X & (-X) is always a power of two or zero.
1764 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1765 return true;
1766 return false;
1767 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001768
David Majnemerb7d54092013-07-30 21:01:36 +00001769 // Adding a power-of-two or zero to the same power-of-two or zero yields
1770 // either the original power-of-two, a larger power-of-two or zero.
1771 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1773 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1774 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1775 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001776 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001777 return true;
1778 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1779 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001780 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001781 return true;
1782
1783 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1784 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001785 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001786
1787 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001788 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001789 // If i8 V is a power of two or zero:
1790 // ZeroBits: 1 1 1 0 1 1 1 1
1791 // ~ZeroBits: 0 0 0 1 0 0 0 0
1792 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1793 // If OrZero isn't set, we cannot give back a zero result.
1794 // Make sure either the LHS or RHS has a bit set.
1795 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1796 return true;
1797 }
1798 }
David Majnemerbeab5672013-05-18 19:30:37 +00001799
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001800 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001801 // is a power of two only if the first operand is a power of two and not
1802 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001803 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1804 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001805 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001806 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001807 }
1808
Duncan Sandsd3951082011-01-25 09:38:29 +00001809 return false;
1810}
1811
Chandler Carruth80d3e562012-12-07 02:08:58 +00001812/// \brief Test whether a GEP's result is known to be non-null.
1813///
1814/// Uses properties inherent in a GEP to try to determine whether it is known
1815/// to be non-null.
1816///
1817/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001818static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1819 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001820 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1821 return false;
1822
1823 // FIXME: Support vector-GEPs.
1824 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1825
1826 // If the base pointer is non-null, we cannot walk to a null address with an
1827 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001828 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001829 return true;
1830
Chandler Carruth80d3e562012-12-07 02:08:58 +00001831 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1832 // If so, then the GEP cannot produce a null pointer, as doing so would
1833 // inherently violate the inbounds contract within address space zero.
1834 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1835 GTI != GTE; ++GTI) {
1836 // Struct types are easy -- they must always be indexed by a constant.
1837 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1838 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1839 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001841 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1842 if (ElementOffset > 0)
1843 return true;
1844 continue;
1845 }
1846
1847 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001848 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001849 continue;
1850
1851 // Fast path the constant operand case both for efficiency and so we don't
1852 // increment Depth when just zipping down an all-constant GEP.
1853 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1854 if (!OpC->isZero())
1855 return true;
1856 continue;
1857 }
1858
1859 // We post-increment Depth here because while isKnownNonZero increments it
1860 // as well, when we pop back up that increment won't persist. We don't want
1861 // to recurse 10k times just because we have 10k GEP operands. We don't
1862 // bail completely out because we want to handle constant GEPs regardless
1863 // of depth.
1864 if (Depth++ >= MaxDepth)
1865 continue;
1866
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001867 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001868 return true;
1869 }
1870
1871 return false;
1872}
1873
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001874/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1875/// ensure that the value it's attached to is never Value? 'RangeType' is
1876/// is the type of the value described by the range.
1877static bool rangeMetadataExcludesValue(MDNode* Ranges,
1878 const APInt& Value) {
1879 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1880 assert(NumRanges >= 1);
1881 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001882 ConstantInt *Lower =
1883 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1884 ConstantInt *Upper =
1885 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001886 ConstantRange Range(Lower->getValue(), Upper->getValue());
1887 if (Range.contains(Value))
1888 return false;
1889 }
1890 return true;
1891}
1892
Sanjay Patelaee84212014-11-04 16:27:42 +00001893/// Return true if the given value is known to be non-zero when defined.
1894/// For vectors return true if every element is known to be non-zero when
1895/// defined. Supports values with integer or pointer type and vectors of
1896/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001897bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001898 if (Constant *C = dyn_cast<Constant>(V)) {
1899 if (C->isNullValue())
1900 return false;
1901 if (isa<ConstantInt>(C))
1902 // Must be non-zero due to null test above.
1903 return true;
1904 // TODO: Handle vectors
1905 return false;
1906 }
1907
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001908 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001909 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001910 // If the possible ranges don't contain zero, then the value is
1911 // definitely non-zero.
1912 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1913 const APInt ZeroValue(Ty->getBitWidth(), 0);
1914 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1915 return true;
1916 }
1917 }
1918 }
1919
Duncan Sandsd3951082011-01-25 09:38:29 +00001920 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001921 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001922 return false;
1923
Chandler Carruth80d3e562012-12-07 02:08:58 +00001924 // Check for pointer simplifications.
1925 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001926 if (isKnownNonNull(V))
1927 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001928 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001929 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001930 return true;
1931 }
1932
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001933 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001934
1935 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001936 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001937 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001938 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001939
1940 // ext X != 0 if X != 0.
1941 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001942 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001943
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001944 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001945 // if the lowest bit is shifted off the end.
1946 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001947 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001948 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001949 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001950 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001951
Duncan Sandsd3951082011-01-25 09:38:29 +00001952 APInt KnownZero(BitWidth, 0);
1953 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001954 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001955 if (KnownOne[0])
1956 return true;
1957 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001958 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001959 // defined if the sign bit is shifted off the end.
1960 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001961 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001962 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001963 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001964 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001965
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001967 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001968 if (XKnownNegative)
1969 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001970
1971 // If the shifter operand is a constant, and all of the bits shifted
1972 // out are known to be zero, and X is known non-zero then at least one
1973 // non-zero bit must remain.
1974 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1975 APInt KnownZero(BitWidth, 0);
1976 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001977 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001978
1979 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1980 // Is there a known one in the portion not shifted out?
1981 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1982 return true;
1983 // Are all the bits to be shifted out known zero?
1984 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001985 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001986 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001987 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001988 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001989 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001990 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001991 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001992 // X + Y.
1993 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1994 bool XKnownNonNegative, XKnownNegative;
1995 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001996 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1997 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001998
1999 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002000 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00002001 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002002 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00002003 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00002004
2005 // If X and Y are both negative (as signed values) then their sum is not
2006 // zero unless both X and Y equal INT_MIN.
2007 if (BitWidth && XKnownNegative && YKnownNegative) {
2008 APInt KnownZero(BitWidth, 0);
2009 APInt KnownOne(BitWidth, 0);
2010 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2011 // The sign bit of X is set. If some other bit is set then X is not equal
2012 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002013 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002014 if ((KnownOne & Mask) != 0)
2015 return true;
2016 // The sign bit of Y is set. If some other bit is set then Y is not equal
2017 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002018 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002019 if ((KnownOne & Mask) != 0)
2020 return true;
2021 }
2022
2023 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00002024 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002026 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00002027 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002028 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002029 return true;
2030 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002031 // X * Y.
2032 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2033 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2034 // If X and Y are non-zero then so is X * Y as long as the multiplication
2035 // does not overflow.
2036 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002038 return true;
2039 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002040 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2041 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002042 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2043 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002044 return true;
2045 }
James Molloy897048b2015-09-29 14:08:45 +00002046 // PHI
2047 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2048 // Try and detect a recurrence that monotonically increases from a
2049 // starting value, as these are common as induction variables.
2050 if (PN->getNumIncomingValues() == 2) {
2051 Value *Start = PN->getIncomingValue(0);
2052 Value *Induction = PN->getIncomingValue(1);
2053 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2054 std::swap(Start, Induction);
2055 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2056 if (!C->isZero() && !C->isNegative()) {
2057 ConstantInt *X;
2058 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2059 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2060 !X->isNegative())
2061 return true;
2062 }
2063 }
2064 }
2065 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002066
2067 if (!BitWidth) return false;
2068 APInt KnownZero(BitWidth, 0);
2069 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002070 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002071 return KnownOne != 0;
2072}
2073
James Molloy1d88d6f2015-10-22 13:18:42 +00002074/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002075static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002076 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2077 if (!BO || BO->getOpcode() != Instruction::Add)
2078 return false;
2079 Value *Op = nullptr;
2080 if (V2 == BO->getOperand(0))
2081 Op = BO->getOperand(1);
2082 else if (V2 == BO->getOperand(1))
2083 Op = BO->getOperand(0);
2084 else
2085 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002086 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002087}
2088
2089/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002091 if (V1->getType()->isVectorTy() || V1 == V2)
2092 return false;
2093 if (V1->getType() != V2->getType())
2094 // We can't look through casts yet.
2095 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002096 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002097 return true;
2098
2099 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2100 // Are any known bits in V1 contradictory to known bits in V2? If V1
2101 // has a known zero where V2 has a known one, they must not be equal.
2102 auto BitWidth = Ty->getBitWidth();
2103 APInt KnownZero1(BitWidth, 0);
2104 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002106 APInt KnownZero2(BitWidth, 0);
2107 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002108 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002109
2110 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2111 if (OppositeBits.getBoolValue())
2112 return true;
2113 }
2114 return false;
2115}
2116
Sanjay Patelaee84212014-11-04 16:27:42 +00002117/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2118/// simplify operations downstream. Mask is known to be zero for bits that V
2119/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002120///
2121/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002122/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002123/// where V is a vector, the mask, known zero, and known one values are the
2124/// same width as the vector element, and the bit is set only if it is true
2125/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002126bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2127 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002128 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002129 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002130 return (KnownZero & Mask) == Mask;
2131}
2132
2133
2134
Sanjay Patelaee84212014-11-04 16:27:42 +00002135/// Return the number of times the sign bit of the register is replicated into
2136/// the other bits. We know that at least 1 bit is always equal to the sign bit
2137/// (itself), but other cases can give us information. For example, immediately
2138/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2139/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00002140///
2141/// 'Op' must have a scalar integer type.
2142///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002143unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2144 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002145 unsigned Tmp, Tmp2;
2146 unsigned FirstAnswer = 1;
2147
Jay Foada0653a32014-05-14 21:14:37 +00002148 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002149 // below.
2150
Chris Lattner965c7692008-06-02 01:18:21 +00002151 if (Depth == 6)
2152 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002153
Dan Gohman80ca01c2009-07-17 20:47:02 +00002154 Operator *U = dyn_cast<Operator>(V);
2155 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002156 default: break;
2157 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002158 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002159 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002160
Nadav Rotemc99a3872015-03-06 00:23:58 +00002161 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002162 const APInt *Denominator;
2163 // sdiv X, C -> adds log(C) sign bits.
2164 if (match(U->getOperand(1), m_APInt(Denominator))) {
2165
2166 // Ignore non-positive denominator.
2167 if (!Denominator->isStrictlyPositive())
2168 break;
2169
2170 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002171 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002172
2173 // Add floor(log(C)) bits to the numerator bits.
2174 return std::min(TyBits, NumBits + Denominator->logBase2());
2175 }
2176 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002177 }
2178
2179 case Instruction::SRem: {
2180 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002181 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2182 // positive constant. This let us put a lower bound on the number of sign
2183 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002184 if (match(U->getOperand(1), m_APInt(Denominator))) {
2185
2186 // Ignore non-positive denominator.
2187 if (!Denominator->isStrictlyPositive())
2188 break;
2189
2190 // Calculate the incoming numerator bits. SRem by a positive constant
2191 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002192 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002193 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002194
2195 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002196 // denominator. Given that the denominator is positive, there are two
2197 // cases:
2198 //
2199 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2200 // (1 << ceilLogBase2(C)).
2201 //
2202 // 2. the numerator is negative. Then the result range is (-C,0] and
2203 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2204 //
2205 // Thus a lower bound on the number of sign bits is `TyBits -
2206 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002207
Sanjoy Dase561fee2015-03-25 22:33:53 +00002208 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002209 return std::max(NumrBits, ResBits);
2210 }
2211 break;
2212 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002213
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002214 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002215 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002216 // ashr X, C -> adds C sign bits. Vectors too.
2217 const APInt *ShAmt;
2218 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2219 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002220 if (Tmp > TyBits) Tmp = TyBits;
2221 }
2222 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002223 }
2224 case Instruction::Shl: {
2225 const APInt *ShAmt;
2226 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002227 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002228 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002229 Tmp2 = ShAmt->getZExtValue();
2230 if (Tmp2 >= TyBits || // Bad shift.
2231 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2232 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002233 }
2234 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002235 }
Chris Lattner965c7692008-06-02 01:18:21 +00002236 case Instruction::And:
2237 case Instruction::Or:
2238 case Instruction::Xor: // NOT is handled here.
2239 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002241 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002242 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002243 FirstAnswer = std::min(Tmp, Tmp2);
2244 // We computed what we know about the sign bits as our first
2245 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002246 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002247 }
2248 break;
2249
2250 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002251 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002252 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002253 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002254 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Chris Lattner965c7692008-06-02 01:18:21 +00002256 case Instruction::Add:
2257 // Add can have at most one carry bit. Thus we know that the output
2258 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002259 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002260 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Chris Lattner965c7692008-06-02 01:18:21 +00002262 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002263 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002264 if (CRHS->isAllOnesValue()) {
2265 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002266 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002267
Chris Lattner965c7692008-06-02 01:18:21 +00002268 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2269 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002270 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002271 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002272
Chris Lattner965c7692008-06-02 01:18:21 +00002273 // If we are subtracting one from a positive number, there is no carry
2274 // out of the result.
2275 if (KnownZero.isNegative())
2276 return Tmp;
2277 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002278
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002279 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002280 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002281 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002282
Chris Lattner965c7692008-06-02 01:18:21 +00002283 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002284 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002285 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Chris Lattner965c7692008-06-02 01:18:21 +00002287 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002288 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002289 if (CLHS->isNullValue()) {
2290 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002291 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002292 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2293 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002294 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002295 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002296
Chris Lattner965c7692008-06-02 01:18:21 +00002297 // If the input is known to be positive (the sign bit is known clear),
2298 // the output of the NEG has the same number of sign bits as the input.
2299 if (KnownZero.isNegative())
2300 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002301
Chris Lattner965c7692008-06-02 01:18:21 +00002302 // Otherwise, we treat this like a SUB.
2303 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002304
Chris Lattner965c7692008-06-02 01:18:21 +00002305 // Sub can have at most one carry bit. Thus we know that the output
2306 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002307 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002308 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002309 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002310
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002311 case Instruction::PHI: {
2312 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002313 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002314 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002315 if (NumIncomingValues > 4) break;
2316 // Unreachable blocks may have zero-operand PHI nodes.
2317 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002318
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002319 // Take the minimum of all incoming values. This can't infinitely loop
2320 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002321 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002322 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002323 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002324 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002325 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002326 }
2327 return Tmp;
2328 }
2329
Chris Lattner965c7692008-06-02 01:18:21 +00002330 case Instruction::Trunc:
2331 // FIXME: it's tricky to do anything useful for this, but it is an important
2332 // case for targets like X86.
2333 break;
2334 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002335
Chris Lattner965c7692008-06-02 01:18:21 +00002336 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2337 // use this information.
2338 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002339 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002340 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002341
Chris Lattner965c7692008-06-02 01:18:21 +00002342 if (KnownZero.isNegative()) { // sign bit is 0
2343 Mask = KnownZero;
2344 } else if (KnownOne.isNegative()) { // sign bit is 1;
2345 Mask = KnownOne;
2346 } else {
2347 // Nothing known.
2348 return FirstAnswer;
2349 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002350
Chris Lattner965c7692008-06-02 01:18:21 +00002351 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2352 // the number of identical bits in the top of the input value.
2353 Mask = ~Mask;
2354 Mask <<= Mask.getBitWidth()-TyBits;
2355 // Return # leading zeros. We use 'min' here in case Val was zero before
2356 // shifting. We don't want to return '64' as for an i32 "0".
2357 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2358}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002359
Sanjay Patelaee84212014-11-04 16:27:42 +00002360/// This function computes the integer multiple of Base that equals V.
2361/// If successful, it returns true and returns the multiple in
2362/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002363/// through SExt instructions only if LookThroughSExt is true.
2364bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002365 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002366 const unsigned MaxDepth = 6;
2367
Dan Gohman6a976bb2009-11-18 00:58:27 +00002368 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002369 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002370 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002371
Chris Lattner229907c2011-07-18 04:54:35 +00002372 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002373
Dan Gohman6a976bb2009-11-18 00:58:27 +00002374 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002375
2376 if (Base == 0)
2377 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002378
Victor Hernandez47444882009-11-10 08:28:35 +00002379 if (Base == 1) {
2380 Multiple = V;
2381 return true;
2382 }
2383
2384 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2385 Constant *BaseVal = ConstantInt::get(T, Base);
2386 if (CO && CO == BaseVal) {
2387 // Multiple is 1.
2388 Multiple = ConstantInt::get(T, 1);
2389 return true;
2390 }
2391
2392 if (CI && CI->getZExtValue() % Base == 0) {
2393 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002394 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002395 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002396
Victor Hernandez47444882009-11-10 08:28:35 +00002397 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002398
Victor Hernandez47444882009-11-10 08:28:35 +00002399 Operator *I = dyn_cast<Operator>(V);
2400 if (!I) return false;
2401
2402 switch (I->getOpcode()) {
2403 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002404 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002405 if (!LookThroughSExt) return false;
2406 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002407 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002408 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2409 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002410 case Instruction::Shl:
2411 case Instruction::Mul: {
2412 Value *Op0 = I->getOperand(0);
2413 Value *Op1 = I->getOperand(1);
2414
2415 if (I->getOpcode() == Instruction::Shl) {
2416 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2417 if (!Op1CI) return false;
2418 // Turn Op0 << Op1 into Op0 * 2^Op1
2419 APInt Op1Int = Op1CI->getValue();
2420 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002421 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002422 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002423 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002424 }
2425
Craig Topper9f008862014-04-15 04:59:12 +00002426 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002427 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2428 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2429 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002430 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002431 MulC->getType()->getPrimitiveSizeInBits())
2432 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002433 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002434 MulC->getType()->getPrimitiveSizeInBits())
2435 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattner72d283c2010-09-05 17:20:46 +00002437 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2438 Multiple = ConstantExpr::getMul(MulC, Op1C);
2439 return true;
2440 }
Victor Hernandez47444882009-11-10 08:28:35 +00002441
2442 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2443 if (Mul0CI->getValue() == 1) {
2444 // V == Base * Op1, so return Op1
2445 Multiple = Op1;
2446 return true;
2447 }
2448 }
2449
Craig Topper9f008862014-04-15 04:59:12 +00002450 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002451 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2452 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2453 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002454 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002455 MulC->getType()->getPrimitiveSizeInBits())
2456 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002457 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002458 MulC->getType()->getPrimitiveSizeInBits())
2459 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002460
Chris Lattner72d283c2010-09-05 17:20:46 +00002461 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2462 Multiple = ConstantExpr::getMul(MulC, Op0C);
2463 return true;
2464 }
Victor Hernandez47444882009-11-10 08:28:35 +00002465
2466 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2467 if (Mul1CI->getValue() == 1) {
2468 // V == Base * Op0, so return Op0
2469 Multiple = Op0;
2470 return true;
2471 }
2472 }
Victor Hernandez47444882009-11-10 08:28:35 +00002473 }
2474 }
2475
2476 // We could not determine if V is a multiple of Base.
2477 return false;
2478}
2479
Sanjay Patelaee84212014-11-04 16:27:42 +00002480/// Return true if we can prove that the specified FP value is never equal to
2481/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002482///
2483/// NOTE: this function will need to be revisited when we support non-default
2484/// rounding modes!
2485///
2486bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2487 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2488 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002489
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002490 // FIXME: Magic number! At the least, this should be given a name because it's
2491 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2492 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002493 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002494 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002495
Dan Gohman80ca01c2009-07-17 20:47:02 +00002496 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002497 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002498
2499 // Check if the nsz fast-math flag is set
2500 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2501 if (FPO->hasNoSignedZeros())
2502 return true;
2503
Chris Lattnera12a6de2008-06-02 01:29:46 +00002504 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002505 if (I->getOpcode() == Instruction::FAdd)
2506 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2507 if (CFP->isNullValue())
2508 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002509
Chris Lattnera12a6de2008-06-02 01:29:46 +00002510 // sitofp and uitofp turn into +0.0 for zero.
2511 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2512 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002513
Chris Lattnera12a6de2008-06-02 01:29:46 +00002514 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2515 // sqrt(-0.0) = -0.0, no other negative results are possible.
2516 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002517 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002518
Chris Lattnera12a6de2008-06-02 01:29:46 +00002519 if (const CallInst *CI = dyn_cast<CallInst>(I))
2520 if (const Function *F = CI->getCalledFunction()) {
2521 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002522 // abs(x) != -0.0
2523 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002524 // fabs[lf](x) != -0.0
2525 if (F->getName() == "fabs") return true;
2526 if (F->getName() == "fabsf") return true;
2527 if (F->getName() == "fabsl") return true;
2528 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2529 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002530 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002531 }
2532 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002533
Chris Lattnera12a6de2008-06-02 01:29:46 +00002534 return false;
2535}
2536
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002537bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2538 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2539 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2540
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002541 // FIXME: Magic number! At the least, this should be given a name because it's
2542 // used similarly in CannotBeNegativeZero(). A better fix may be to
2543 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002544 if (Depth == 6)
2545 return false; // Limit search depth.
2546
2547 const Operator *I = dyn_cast<Operator>(V);
2548 if (!I) return false;
2549
2550 switch (I->getOpcode()) {
2551 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002552 // Unsigned integers are always nonnegative.
2553 case Instruction::UIToFP:
2554 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002555 case Instruction::FMul:
2556 // x*x is always non-negative or a NaN.
2557 if (I->getOperand(0) == I->getOperand(1))
2558 return true;
2559 // Fall through
2560 case Instruction::FAdd:
2561 case Instruction::FDiv:
2562 case Instruction::FRem:
2563 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2564 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002565 case Instruction::Select:
2566 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2567 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002568 case Instruction::FPExt:
2569 case Instruction::FPTrunc:
2570 // Widening/narrowing never change sign.
2571 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2572 case Instruction::Call:
2573 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2574 switch (II->getIntrinsicID()) {
2575 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002576 case Intrinsic::maxnum:
2577 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2578 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2579 case Intrinsic::minnum:
2580 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2581 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002582 case Intrinsic::exp:
2583 case Intrinsic::exp2:
2584 case Intrinsic::fabs:
2585 case Intrinsic::sqrt:
2586 return true;
2587 case Intrinsic::powi:
2588 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2589 // powi(x,n) is non-negative if n is even.
2590 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2591 return true;
2592 }
2593 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2594 case Intrinsic::fma:
2595 case Intrinsic::fmuladd:
2596 // x*x+y is non-negative if y is non-negative.
2597 return I->getOperand(0) == I->getOperand(1) &&
2598 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2599 }
2600 break;
2601 }
2602 return false;
2603}
2604
Sanjay Patelaee84212014-11-04 16:27:42 +00002605/// If the specified value can be set by repeating the same byte in memory,
2606/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002607/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2608/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2609/// byte store (e.g. i16 0x1234), return null.
2610Value *llvm::isBytewiseValue(Value *V) {
2611 // All byte-wide stores are splatable, even of arbitrary variables.
2612 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002613
2614 // Handle 'null' ConstantArrayZero etc.
2615 if (Constant *C = dyn_cast<Constant>(V))
2616 if (C->isNullValue())
2617 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002618
Chris Lattner9cb10352010-12-26 20:15:01 +00002619 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002620 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002621 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2622 if (CFP->getType()->isFloatTy())
2623 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2624 if (CFP->getType()->isDoubleTy())
2625 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2626 // Don't handle long double formats, which have strange constraints.
2627 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002628
Benjamin Kramer17d90152015-02-07 19:29:02 +00002629 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002630 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002631 if (CI->getBitWidth() % 8 == 0) {
2632 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002633
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002634 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002635 return nullptr;
2636 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002637 }
2638 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002639
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002640 // A ConstantDataArray/Vector is splatable if all its members are equal and
2641 // also splatable.
2642 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2643 Value *Elt = CA->getElementAsConstant(0);
2644 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002645 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002646 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002647
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002648 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2649 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002650 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002651
Chris Lattner9cb10352010-12-26 20:15:01 +00002652 return Val;
2653 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002654
Chris Lattner9cb10352010-12-26 20:15:01 +00002655 // Conceptually, we could handle things like:
2656 // %a = zext i8 %X to i16
2657 // %b = shl i16 %a, 8
2658 // %c = or i16 %a, %b
2659 // but until there is an example that actually needs this, it doesn't seem
2660 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002661 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002662}
2663
2664
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002665// This is the recursive version of BuildSubAggregate. It takes a few different
2666// arguments. Idxs is the index within the nested struct From that we are
2667// looking at now (which is of type IndexedType). IdxSkip is the number of
2668// indices from Idxs that should be left out when inserting into the resulting
2669// struct. To is the result struct built so far, new insertvalue instructions
2670// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002671static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002672 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002673 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002674 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002675 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002676 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002677 // Save the original To argument so we can modify it
2678 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002679 // General case, the type indexed by Idxs is a struct
2680 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2681 // Process each struct element recursively
2682 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002683 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002684 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002685 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002686 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002687 if (!To) {
2688 // Couldn't find any inserted value for this index? Cleanup
2689 while (PrevTo != OrigTo) {
2690 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2691 PrevTo = Del->getAggregateOperand();
2692 Del->eraseFromParent();
2693 }
2694 // Stop processing elements
2695 break;
2696 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002697 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002698 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002699 if (To)
2700 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002701 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002702 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2703 // the struct's elements had a value that was inserted directly. In the latter
2704 // case, perhaps we can't determine each of the subelements individually, but
2705 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002706
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002707 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002708 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002709
2710 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002711 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002712
2713 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002714 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002715 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002716}
2717
2718// This helper takes a nested struct and extracts a part of it (which is again a
2719// struct) into a new value. For example, given the struct:
2720// { a, { b, { c, d }, e } }
2721// and the indices "1, 1" this returns
2722// { c, d }.
2723//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002724// It does this by inserting an insertvalue for each element in the resulting
2725// struct, as opposed to just inserting a single struct. This will only work if
2726// each of the elements of the substruct are known (ie, inserted into From by an
2727// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002728//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002729// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002730static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002731 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002732 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002733 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002734 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002735 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002736 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002737 unsigned IdxSkip = Idxs.size();
2738
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002739 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002740}
2741
Sanjay Patelaee84212014-11-04 16:27:42 +00002742/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002743/// the scalar value indexed is already around as a register, for example if it
2744/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002745///
2746/// If InsertBefore is not null, this function will duplicate (modified)
2747/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002748Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2749 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002750 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002751 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002752 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002753 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002754 // We have indices, so V should have an indexable type.
2755 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2756 "Not looking at a struct or array?");
2757 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2758 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002759
Chris Lattner67058832012-01-25 06:48:06 +00002760 if (Constant *C = dyn_cast<Constant>(V)) {
2761 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002762 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002763 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2764 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002765
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002766 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002767 // Loop the indices for the insertvalue instruction in parallel with the
2768 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002769 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002770 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2771 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002772 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002773 // We can't handle this without inserting insertvalues
2774 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002775 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002776
2777 // The requested index identifies a part of a nested aggregate. Handle
2778 // this specially. For example,
2779 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2780 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2781 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2782 // This can be changed into
2783 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2784 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2785 // which allows the unused 0,0 element from the nested struct to be
2786 // removed.
2787 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2788 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002789 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002790
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002791 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002792 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793 // looking for, then.
2794 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002795 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002796 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002797 }
2798 // If we end up here, the indices of the insertvalue match with those
2799 // requested (though possibly only partially). Now we recursively look at
2800 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002801 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002802 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002803 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002804 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002805
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002806 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002807 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002808 // something else, we can extract from that something else directly instead.
2809 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002810
2811 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002812 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002814 SmallVector<unsigned, 5> Idxs;
2815 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002816 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002817 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002818
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002819 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002820 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002821
Craig Topper1bef2c82012-12-22 19:15:35 +00002822 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002823 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002824
Jay Foad57aa6362011-07-13 10:26:04 +00002825 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002826 }
2827 // Otherwise, we don't know (such as, extracting from a function return value
2828 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002829 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002830}
Evan Chengda3db112008-06-30 07:31:25 +00002831
Sanjay Patelaee84212014-11-04 16:27:42 +00002832/// Analyze the specified pointer to see if it can be expressed as a base
2833/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002834Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002835 const DataLayout &DL) {
2836 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002837 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002838
2839 // We walk up the defs but use a visited set to handle unreachable code. In
2840 // that case, we stop after accumulating the cycle once (not that it
2841 // matters).
2842 SmallPtrSet<Value *, 16> Visited;
2843 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002844 if (Ptr->getType()->isVectorTy())
2845 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002846
Nuno Lopes368c4d02012-12-31 20:48:35 +00002847 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002848 APInt GEPOffset(BitWidth, 0);
2849 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2850 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002851
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002852 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002853
Nuno Lopes368c4d02012-12-31 20:48:35 +00002854 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002855 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2856 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002857 Ptr = cast<Operator>(Ptr)->getOperand(0);
2858 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2859 if (GA->mayBeOverridden())
2860 break;
2861 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002862 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002863 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002864 }
2865 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002866 Offset = ByteOffset.getSExtValue();
2867 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002868}
2869
2870
Sanjay Patelaee84212014-11-04 16:27:42 +00002871/// This function computes the length of a null-terminated C string pointed to
2872/// by V. If successful, it returns true and returns the string in Str.
2873/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002874bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2875 uint64_t Offset, bool TrimAtNul) {
2876 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002877
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002878 // Look through bitcast instructions and geps.
2879 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002880
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002881 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002882 // offset.
2883 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002884 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002885 if (GEP->getNumOperands() != 3)
2886 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002887
Evan Chengda3db112008-06-30 07:31:25 +00002888 // Make sure the index-ee is a pointer to array of i8.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00002889 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002890 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002891 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002892
Evan Chengda3db112008-06-30 07:31:25 +00002893 // Check to make sure that the first operand of the GEP is an integer and
2894 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002895 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002896 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002897 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Evan Chengda3db112008-06-30 07:31:25 +00002899 // If the second index isn't a ConstantInt, then this is a variable index
2900 // into the array. If this occurs, we can't say anything meaningful about
2901 // the string.
2902 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002903 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002904 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002905 else
2906 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002907 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2908 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002909 }
Nick Lewycky46209882011-10-20 00:34:35 +00002910
Evan Chengda3db112008-06-30 07:31:25 +00002911 // The GEP instruction, constant or instruction, must reference a global
2912 // variable that is a constant and is initialized. The referenced constant
2913 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002914 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002915 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002916 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002917
Nick Lewycky46209882011-10-20 00:34:35 +00002918 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002919 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002920 // This is a degenerate case. The initializer is constant zero so the
2921 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002922 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002923 return true;
2924 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002925
Evan Chengda3db112008-06-30 07:31:25 +00002926 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002927 const ConstantDataArray *Array =
2928 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002929 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002930 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002931
Evan Chengda3db112008-06-30 07:31:25 +00002932 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002933 uint64_t NumElts = Array->getType()->getArrayNumElements();
2934
2935 // Start out with the entire array in the StringRef.
2936 Str = Array->getAsString();
2937
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002938 if (Offset > NumElts)
2939 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002940
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002941 // Skip over 'offset' bytes.
2942 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002944 if (TrimAtNul) {
2945 // Trim off the \0 and anything after it. If the array is not nul
2946 // terminated, we just return the whole end of string. The client may know
2947 // some other way that the string is length-bound.
2948 Str = Str.substr(0, Str.find('\0'));
2949 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002950 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002951}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002952
2953// These next two are very similar to the above, but also look through PHI
2954// nodes.
2955// TODO: See if we can integrate these two together.
2956
Sanjay Patelaee84212014-11-04 16:27:42 +00002957/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002958/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002959static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002960 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002961 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002962
2963 // If this is a PHI node, there are two cases: either we have already seen it
2964 // or we haven't.
2965 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002966 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002967 return ~0ULL; // already in the set.
2968
2969 // If it was new, see if all the input strings are the same length.
2970 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002971 for (Value *IncValue : PN->incoming_values()) {
2972 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002973 if (Len == 0) return 0; // Unknown length -> unknown.
2974
2975 if (Len == ~0ULL) continue;
2976
2977 if (Len != LenSoFar && LenSoFar != ~0ULL)
2978 return 0; // Disagree -> unknown.
2979 LenSoFar = Len;
2980 }
2981
2982 // Success, all agree.
2983 return LenSoFar;
2984 }
2985
2986 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2987 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2988 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2989 if (Len1 == 0) return 0;
2990 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2991 if (Len2 == 0) return 0;
2992 if (Len1 == ~0ULL) return Len2;
2993 if (Len2 == ~0ULL) return Len1;
2994 if (Len1 != Len2) return 0;
2995 return Len1;
2996 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002997
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002998 // Otherwise, see if we can read the string.
2999 StringRef StrData;
3000 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003001 return 0;
3002
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003003 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003004}
3005
Sanjay Patelaee84212014-11-04 16:27:42 +00003006/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003007/// the specified pointer, return 'len+1'. If we can't, return 0.
3008uint64_t llvm::GetStringLength(Value *V) {
3009 if (!V->getType()->isPointerTy()) return 0;
3010
3011 SmallPtrSet<PHINode*, 32> PHIs;
3012 uint64_t Len = GetStringLengthH(V, PHIs);
3013 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3014 // an empty string as a length.
3015 return Len == ~0ULL ? 1 : Len;
3016}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003017
Adam Nemete2b885c2015-04-23 20:09:20 +00003018/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3019/// previous iteration of the loop was referring to the same object as \p PN.
3020static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3021 // Find the loop-defined value.
3022 Loop *L = LI->getLoopFor(PN->getParent());
3023 if (PN->getNumIncomingValues() != 2)
3024 return true;
3025
3026 // Find the value from previous iteration.
3027 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3028 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3029 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3030 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3031 return true;
3032
3033 // If a new pointer is loaded in the loop, the pointer references a different
3034 // object in every iteration. E.g.:
3035 // for (i)
3036 // int *p = a[i];
3037 // ...
3038 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3039 if (!L->isLoopInvariant(Load->getPointerOperand()))
3040 return false;
3041 return true;
3042}
3043
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003044Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3045 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003046 if (!V->getType()->isPointerTy())
3047 return V;
3048 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3049 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3050 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003051 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3052 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003053 V = cast<Operator>(V)->getOperand(0);
3054 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3055 if (GA->mayBeOverridden())
3056 return V;
3057 V = GA->getAliasee();
3058 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00003059 // See if InstructionSimplify knows any relevant tricks.
3060 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003061 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003062 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003063 V = Simplified;
3064 continue;
3065 }
3066
Dan Gohmana4fcd242010-12-15 20:02:24 +00003067 return V;
3068 }
3069 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3070 }
3071 return V;
3072}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003073
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003074void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003075 const DataLayout &DL, LoopInfo *LI,
3076 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003077 SmallPtrSet<Value *, 4> Visited;
3078 SmallVector<Value *, 4> Worklist;
3079 Worklist.push_back(V);
3080 do {
3081 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003082 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003083
David Blaikie70573dc2014-11-19 07:49:26 +00003084 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003085 continue;
3086
3087 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3088 Worklist.push_back(SI->getTrueValue());
3089 Worklist.push_back(SI->getFalseValue());
3090 continue;
3091 }
3092
3093 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003094 // If this PHI changes the underlying object in every iteration of the
3095 // loop, don't look through it. Consider:
3096 // int **A;
3097 // for (i) {
3098 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3099 // Curr = A[i];
3100 // *Prev, *Curr;
3101 //
3102 // Prev is tracking Curr one iteration behind so they refer to different
3103 // underlying objects.
3104 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3105 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003106 for (Value *IncValue : PN->incoming_values())
3107 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003108 continue;
3109 }
3110
3111 Objects.push_back(P);
3112 } while (!Worklist.empty());
3113}
3114
Sanjay Patelaee84212014-11-04 16:27:42 +00003115/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003116bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003117 for (const User *U : V->users()) {
3118 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003119 if (!II) return false;
3120
3121 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3122 II->getIntrinsicID() != Intrinsic::lifetime_end)
3123 return false;
3124 }
3125 return true;
3126}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003127
Philip Reames5461d452015-04-23 17:36:48 +00003128static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003129 Type *Ty, const DataLayout &DL,
3130 const Instruction *CtxI,
3131 const DominatorTree *DT,
3132 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003133 assert(Offset.isNonNegative() && "offset can't be negative");
3134 assert(Ty->isSized() && "must be sized");
3135
3136 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003137 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00003138 if (const Argument *A = dyn_cast<Argument>(BV)) {
3139 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003140 if (!DerefBytes.getBoolValue()) {
3141 DerefBytes = A->getDereferenceableOrNullBytes();
3142 CheckForNonNull = true;
3143 }
Philip Reames5461d452015-04-23 17:36:48 +00003144 } else if (auto CS = ImmutableCallSite(BV)) {
3145 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003146 if (!DerefBytes.getBoolValue()) {
3147 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3148 CheckForNonNull = true;
3149 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00003150 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3151 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3152 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3153 DerefBytes = CI->getLimitedValue();
3154 }
3155 if (!DerefBytes.getBoolValue()) {
3156 if (MDNode *MD =
3157 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3158 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3159 DerefBytes = CI->getLimitedValue();
3160 }
3161 CheckForNonNull = true;
3162 }
Philip Reames5461d452015-04-23 17:36:48 +00003163 }
3164
3165 if (DerefBytes.getBoolValue())
3166 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003167 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3168 return true;
3169
Philip Reames5461d452015-04-23 17:36:48 +00003170 return false;
3171}
3172
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003173static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3174 const Instruction *CtxI,
3175 const DominatorTree *DT,
3176 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003177 Type *VTy = V->getType();
3178 Type *Ty = VTy->getPointerElementType();
3179 if (!Ty->isSized())
3180 return false;
3181
3182 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003183 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003184}
3185
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003186static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3187 const DataLayout &DL) {
Artur Pilipenkoffd13282015-10-09 15:58:26 +00003188 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003189
3190 if (!BaseAlign) {
3191 Type *Ty = Base->getType()->getPointerElementType();
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003192 if (!Ty->isSized())
3193 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003194 BaseAlign = DL.getABITypeAlignment(Ty);
3195 }
3196
3197 APInt Alignment(Offset.getBitWidth(), Align);
3198
3199 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3200 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3201}
3202
3203static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003204 Type *Ty = Base->getType();
3205 assert(Ty->isSized() && "must be sized");
3206 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003207 return isAligned(Base, Offset, Align, DL);
3208}
3209
Philip Reames5461d452015-04-23 17:36:48 +00003210/// Test if V is always a pointer to allocated and suitably aligned memory for
3211/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003212static bool isDereferenceableAndAlignedPointer(
3213 const Value *V, unsigned Align, const DataLayout &DL,
3214 const Instruction *CtxI, const DominatorTree *DT,
3215 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003216 // Note that it is not safe to speculate into a malloc'd region because
3217 // malloc may return null.
3218
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003219 // These are obviously ok if aligned.
3220 if (isa<AllocaInst>(V))
3221 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003222
3223 // It's not always safe to follow a bitcast, for example:
3224 // bitcast i8* (alloca i8) to i32*
3225 // would result in a 4-byte load from a 1-byte alloca. However,
3226 // if we're casting from a pointer from a type of larger size
3227 // to a type of smaller size (or the same size), and the alignment
3228 // is at least as large as for the resulting pointer type, then
3229 // we can look through the bitcast.
3230 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3231 Type *STy = BC->getSrcTy()->getPointerElementType(),
3232 *DTy = BC->getDestTy()->getPointerElementType();
3233 if (STy->isSized() && DTy->isSized() &&
3234 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3235 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003236 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3237 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003238 }
3239
3240 // Global variables which can't collapse to null are ok.
3241 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003242 if (!GV->hasExternalWeakLinkage())
3243 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003244
3245 // byval arguments are okay.
3246 if (const Argument *A = dyn_cast<Argument>(V))
3247 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003248 return isAligned(V, Align, DL);
3249
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003250 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003251 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003252
3253 // For GEPs, determine if the indexing lands within the allocated object.
3254 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003255 Type *Ty = GEP->getResultElementType();
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003256 const Value *Base = GEP->getPointerOperand();
3257
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003258 // Conservatively require that the base pointer be fully dereferenceable
3259 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003260 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003261 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003262 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3263 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003264 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003265
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003266 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003267 if (!GEP->accumulateConstantOffset(DL, Offset))
3268 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003269
3270 // Check if the load is within the bounds of the underlying object
3271 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003272 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003273 Type *BaseType = GEP->getSourceElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003274 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3275 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3276 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003277 }
3278
3279 // For gc.relocate, look through relocations
Manuel Jacob83eefa62016-01-05 04:03:00 +00003280 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3281 return isDereferenceableAndAlignedPointer(
3282 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003283
3284 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003285 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3286 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003287
3288 // If we don't know, assume the worst.
3289 return false;
3290}
3291
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003292bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3293 const DataLayout &DL,
3294 const Instruction *CtxI,
3295 const DominatorTree *DT,
3296 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003297 // When dereferenceability information is provided by a dereferenceable
3298 // attribute, we know exactly how many bytes are dereferenceable. If we can
3299 // determine the exact offset to the attributed variable, we can use that
3300 // information here.
3301 Type *VTy = V->getType();
3302 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003303
3304 // Require ABI alignment for loads without alignment specification
3305 if (Align == 0)
3306 Align = DL.getABITypeAlignment(Ty);
3307
Philip Reames5461d452015-04-23 17:36:48 +00003308 if (Ty->isSized()) {
3309 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3310 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003311
Philip Reames5461d452015-04-23 17:36:48 +00003312 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003313 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3314 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003315 return true;
3316 }
3317
3318 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003319 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3320 Visited);
3321}
3322
3323bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3324 const Instruction *CtxI,
3325 const DominatorTree *DT,
3326 const TargetLibraryInfo *TLI) {
3327 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003328}
3329
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003330bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3331 const Instruction *CtxI,
3332 const DominatorTree *DT,
3333 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003334 const Operator *Inst = dyn_cast<Operator>(V);
3335 if (!Inst)
3336 return false;
3337
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003338 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3339 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3340 if (C->canTrap())
3341 return false;
3342
3343 switch (Inst->getOpcode()) {
3344 default:
3345 return true;
3346 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003347 case Instruction::URem: {
3348 // x / y is undefined if y == 0.
3349 const APInt *V;
3350 if (match(Inst->getOperand(1), m_APInt(V)))
3351 return *V != 0;
3352 return false;
3353 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003354 case Instruction::SDiv:
3355 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003356 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003357 const APInt *Numerator, *Denominator;
3358 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3359 return false;
3360 // We cannot hoist this division if the denominator is 0.
3361 if (*Denominator == 0)
3362 return false;
3363 // It's safe to hoist if the denominator is not 0 or -1.
3364 if (*Denominator != -1)
3365 return true;
3366 // At this point we know that the denominator is -1. It is safe to hoist as
3367 // long we know that the numerator is not INT_MIN.
3368 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3369 return !Numerator->isMinSignedValue();
3370 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003371 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003372 }
3373 case Instruction::Load: {
3374 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003375 if (!LI->isUnordered() ||
3376 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003377 LI->getParent()->getParent()->hasFnAttribute(
3378 Attribute::SanitizeThread) ||
3379 // Speculative load may load data from dirty regions.
3380 LI->getParent()->getParent()->hasFnAttribute(
3381 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003382 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003383 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003384 return isDereferenceableAndAlignedPointer(
3385 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003386 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003387 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003388 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3389 switch (II->getIntrinsicID()) {
3390 // These synthetic intrinsics have no side-effects and just mark
3391 // information about their operands.
3392 // FIXME: There are other no-op synthetic instructions that potentially
3393 // should be considered at least *safe* to speculate...
3394 case Intrinsic::dbg_declare:
3395 case Intrinsic::dbg_value:
3396 return true;
3397
3398 case Intrinsic::bswap:
3399 case Intrinsic::ctlz:
3400 case Intrinsic::ctpop:
3401 case Intrinsic::cttz:
3402 case Intrinsic::objectsize:
3403 case Intrinsic::sadd_with_overflow:
3404 case Intrinsic::smul_with_overflow:
3405 case Intrinsic::ssub_with_overflow:
3406 case Intrinsic::uadd_with_overflow:
3407 case Intrinsic::umul_with_overflow:
3408 case Intrinsic::usub_with_overflow:
3409 return true;
3410 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3411 // errno like libm sqrt would.
3412 case Intrinsic::sqrt:
3413 case Intrinsic::fma:
3414 case Intrinsic::fmuladd:
3415 case Intrinsic::fabs:
3416 case Intrinsic::minnum:
3417 case Intrinsic::maxnum:
3418 return true;
3419 // TODO: some fp intrinsics are marked as having the same error handling
3420 // as libm. They're safe to speculate when they won't error.
3421 // TODO: are convert_{from,to}_fp16 safe?
3422 // TODO: can we list target-specific intrinsics here?
3423 default: break;
3424 }
3425 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003426 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003427 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003428 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003429 case Instruction::VAArg:
3430 case Instruction::Alloca:
3431 case Instruction::Invoke:
3432 case Instruction::PHI:
3433 case Instruction::Store:
3434 case Instruction::Ret:
3435 case Instruction::Br:
3436 case Instruction::IndirectBr:
3437 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003438 case Instruction::Unreachable:
3439 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003440 case Instruction::AtomicRMW:
3441 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003442 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003443 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003444 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003445 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003446 case Instruction::CatchRet:
3447 case Instruction::CleanupPad:
3448 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003449 return false; // Misc instructions which have effects
3450 }
3451}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003452
Quentin Colombet6443cce2015-08-06 18:44:34 +00003453bool llvm::mayBeMemoryDependent(const Instruction &I) {
3454 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3455}
3456
Sanjay Patelaee84212014-11-04 16:27:42 +00003457/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003458bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003459 assert(V->getType()->isPointerTy() && "V must be pointer type");
3460
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003461 // Alloca never returns null, malloc might.
3462 if (isa<AllocaInst>(V)) return true;
3463
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003464 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003465 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003466 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003467
Pete Cooper6b716212015-08-27 03:16:29 +00003468 // A global variable in address space 0 is non null unless extern weak.
3469 // Other address spaces may have null as a valid address for a global,
3470 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003471 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003472 return !GV->hasExternalWeakLinkage() &&
3473 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003474
Philip Reamescdb72f32014-10-20 22:40:55 +00003475 // A Load tagged w/nonnull metadata is never null.
3476 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003477 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003478
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003479 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003480 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003481 return true;
3482
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003483 return false;
3484}
David Majnemer491331a2015-01-02 07:29:43 +00003485
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003486static bool isKnownNonNullFromDominatingCondition(const Value *V,
3487 const Instruction *CtxI,
3488 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003489 assert(V->getType()->isPointerTy() && "V must be pointer type");
3490
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003491 unsigned NumUsesExplored = 0;
3492 for (auto U : V->users()) {
3493 // Avoid massive lists
3494 if (NumUsesExplored >= DomConditionsMaxUses)
3495 break;
3496 NumUsesExplored++;
3497 // Consider only compare instructions uniquely controlling a branch
3498 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3499 if (!Cmp)
3500 continue;
3501
3502 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3503 continue;
3504
3505 for (auto *CmpU : Cmp->users()) {
3506 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3507 if (!BI)
3508 continue;
3509
3510 assert(BI->isConditional() && "uses a comparison!");
3511
3512 BasicBlock *NonNullSuccessor = nullptr;
3513 CmpInst::Predicate Pred;
3514
3515 if (match(const_cast<ICmpInst*>(Cmp),
3516 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3517 if (Pred == ICmpInst::ICMP_EQ)
3518 NonNullSuccessor = BI->getSuccessor(1);
3519 else if (Pred == ICmpInst::ICMP_NE)
3520 NonNullSuccessor = BI->getSuccessor(0);
3521 }
3522
3523 if (NonNullSuccessor) {
3524 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3525 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3526 return true;
3527 }
3528 }
3529 }
3530
3531 return false;
3532}
3533
3534bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3535 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3536 if (isKnownNonNull(V, TLI))
3537 return true;
3538
3539 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3540}
3541
David Majnemer491331a2015-01-02 07:29:43 +00003542OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003543 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003544 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003545 const Instruction *CxtI,
3546 const DominatorTree *DT) {
3547 // Multiplying n * m significant bits yields a result of n + m significant
3548 // bits. If the total number of significant bits does not exceed the
3549 // result bit width (minus 1), there is no overflow.
3550 // This means if we have enough leading zero bits in the operands
3551 // we can guarantee that the result does not overflow.
3552 // Ref: "Hacker's Delight" by Henry Warren
3553 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3554 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003555 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003556 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003557 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003558 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3559 DT);
3560 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3561 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003562 // Note that underestimating the number of zero bits gives a more
3563 // conservative answer.
3564 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3565 RHSKnownZero.countLeadingOnes();
3566 // First handle the easy case: if we have enough zero bits there's
3567 // definitely no overflow.
3568 if (ZeroBits >= BitWidth)
3569 return OverflowResult::NeverOverflows;
3570
3571 // Get the largest possible values for each operand.
3572 APInt LHSMax = ~LHSKnownZero;
3573 APInt RHSMax = ~RHSKnownZero;
3574
3575 // We know the multiply operation doesn't overflow if the maximum values for
3576 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003577 bool MaxOverflow;
3578 LHSMax.umul_ov(RHSMax, MaxOverflow);
3579 if (!MaxOverflow)
3580 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003581
David Majnemerc8a576b2015-01-02 07:29:47 +00003582 // We know it always overflows if multiplying the smallest possible values for
3583 // the operands also results in overflow.
3584 bool MinOverflow;
3585 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3586 if (MinOverflow)
3587 return OverflowResult::AlwaysOverflows;
3588
3589 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003590}
David Majnemer5310c1e2015-01-07 00:39:50 +00003591
3592OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003593 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003594 AssumptionCache *AC,
3595 const Instruction *CxtI,
3596 const DominatorTree *DT) {
3597 bool LHSKnownNonNegative, LHSKnownNegative;
3598 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3599 AC, CxtI, DT);
3600 if (LHSKnownNonNegative || LHSKnownNegative) {
3601 bool RHSKnownNonNegative, RHSKnownNegative;
3602 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3603 AC, CxtI, DT);
3604
3605 if (LHSKnownNegative && RHSKnownNegative) {
3606 // The sign bit is set in both cases: this MUST overflow.
3607 // Create a simple add instruction, and insert it into the struct.
3608 return OverflowResult::AlwaysOverflows;
3609 }
3610
3611 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3612 // The sign bit is clear in both cases: this CANNOT overflow.
3613 // Create a simple add instruction, and insert it into the struct.
3614 return OverflowResult::NeverOverflows;
3615 }
3616 }
3617
3618 return OverflowResult::MayOverflow;
3619}
James Molloy71b91c22015-05-11 14:42:20 +00003620
Jingyue Wu10fcea52015-08-20 18:27:04 +00003621static OverflowResult computeOverflowForSignedAdd(
3622 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3623 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3624 if (Add && Add->hasNoSignedWrap()) {
3625 return OverflowResult::NeverOverflows;
3626 }
3627
3628 bool LHSKnownNonNegative, LHSKnownNegative;
3629 bool RHSKnownNonNegative, RHSKnownNegative;
3630 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3631 AC, CxtI, DT);
3632 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3633 AC, CxtI, DT);
3634
3635 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3636 (LHSKnownNegative && RHSKnownNonNegative)) {
3637 // The sign bits are opposite: this CANNOT overflow.
3638 return OverflowResult::NeverOverflows;
3639 }
3640
3641 // The remaining code needs Add to be available. Early returns if not so.
3642 if (!Add)
3643 return OverflowResult::MayOverflow;
3644
3645 // If the sign of Add is the same as at least one of the operands, this add
3646 // CANNOT overflow. This is particularly useful when the sum is
3647 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3648 // operands.
3649 bool LHSOrRHSKnownNonNegative =
3650 (LHSKnownNonNegative || RHSKnownNonNegative);
3651 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3652 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3653 bool AddKnownNonNegative, AddKnownNegative;
3654 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3655 /*Depth=*/0, AC, CxtI, DT);
3656 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3657 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3658 return OverflowResult::NeverOverflows;
3659 }
3660 }
3661
3662 return OverflowResult::MayOverflow;
3663}
3664
3665OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3666 const DataLayout &DL,
3667 AssumptionCache *AC,
3668 const Instruction *CxtI,
3669 const DominatorTree *DT) {
3670 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3671 Add, DL, AC, CxtI, DT);
3672}
3673
3674OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3675 const DataLayout &DL,
3676 AssumptionCache *AC,
3677 const Instruction *CxtI,
3678 const DominatorTree *DT) {
3679 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3680}
3681
Jingyue Wu42f1d672015-07-28 18:22:40 +00003682bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3683 // FIXME: This conservative implementation can be relaxed. E.g. most
3684 // atomic operations are guaranteed to terminate on most platforms
3685 // and most functions terminate.
3686
3687 return !I->isAtomic() && // atomics may never succeed on some platforms
3688 !isa<CallInst>(I) && // could throw and might not terminate
3689 !isa<InvokeInst>(I) && // might not terminate and could throw to
3690 // non-successor (see bug 24185 for details).
3691 !isa<ResumeInst>(I) && // has no successors
3692 !isa<ReturnInst>(I); // has no successors
3693}
3694
3695bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3696 const Loop *L) {
3697 // The loop header is guaranteed to be executed for every iteration.
3698 //
3699 // FIXME: Relax this constraint to cover all basic blocks that are
3700 // guaranteed to be executed at every iteration.
3701 if (I->getParent() != L->getHeader()) return false;
3702
3703 for (const Instruction &LI : *L->getHeader()) {
3704 if (&LI == I) return true;
3705 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3706 }
3707 llvm_unreachable("Instruction not contained in its own parent basic block.");
3708}
3709
3710bool llvm::propagatesFullPoison(const Instruction *I) {
3711 switch (I->getOpcode()) {
3712 case Instruction::Add:
3713 case Instruction::Sub:
3714 case Instruction::Xor:
3715 case Instruction::Trunc:
3716 case Instruction::BitCast:
3717 case Instruction::AddrSpaceCast:
3718 // These operations all propagate poison unconditionally. Note that poison
3719 // is not any particular value, so xor or subtraction of poison with
3720 // itself still yields poison, not zero.
3721 return true;
3722
3723 case Instruction::AShr:
3724 case Instruction::SExt:
3725 // For these operations, one bit of the input is replicated across
3726 // multiple output bits. A replicated poison bit is still poison.
3727 return true;
3728
3729 case Instruction::Shl: {
3730 // Left shift *by* a poison value is poison. The number of
3731 // positions to shift is unsigned, so no negative values are
3732 // possible there. Left shift by zero places preserves poison. So
3733 // it only remains to consider left shift of poison by a positive
3734 // number of places.
3735 //
3736 // A left shift by a positive number of places leaves the lowest order bit
3737 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3738 // make the poison operand violate that flag, yielding a fresh full-poison
3739 // value.
3740 auto *OBO = cast<OverflowingBinaryOperator>(I);
3741 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3742 }
3743
3744 case Instruction::Mul: {
3745 // A multiplication by zero yields a non-poison zero result, so we need to
3746 // rule out zero as an operand. Conservatively, multiplication by a
3747 // non-zero constant is not multiplication by zero.
3748 //
3749 // Multiplication by a non-zero constant can leave some bits
3750 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3751 // order bit unpoisoned. So we need to consider that.
3752 //
3753 // Multiplication by 1 preserves poison. If the multiplication has a
3754 // no-wrap flag, then we can make the poison operand violate that flag
3755 // when multiplied by any integer other than 0 and 1.
3756 auto *OBO = cast<OverflowingBinaryOperator>(I);
3757 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3758 for (Value *V : OBO->operands()) {
3759 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3760 // A ConstantInt cannot yield poison, so we can assume that it is
3761 // the other operand that is poison.
3762 return !CI->isZero();
3763 }
3764 }
3765 }
3766 return false;
3767 }
3768
3769 case Instruction::GetElementPtr:
3770 // A GEP implicitly represents a sequence of additions, subtractions,
3771 // truncations, sign extensions and multiplications. The multiplications
3772 // are by the non-zero sizes of some set of types, so we do not have to be
3773 // concerned with multiplication by zero. If the GEP is in-bounds, then
3774 // these operations are implicitly no-signed-wrap so poison is propagated
3775 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3776 return cast<GEPOperator>(I)->isInBounds();
3777
3778 default:
3779 return false;
3780 }
3781}
3782
3783const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3784 switch (I->getOpcode()) {
3785 case Instruction::Store:
3786 return cast<StoreInst>(I)->getPointerOperand();
3787
3788 case Instruction::Load:
3789 return cast<LoadInst>(I)->getPointerOperand();
3790
3791 case Instruction::AtomicCmpXchg:
3792 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3793
3794 case Instruction::AtomicRMW:
3795 return cast<AtomicRMWInst>(I)->getPointerOperand();
3796
3797 case Instruction::UDiv:
3798 case Instruction::SDiv:
3799 case Instruction::URem:
3800 case Instruction::SRem:
3801 return I->getOperand(1);
3802
3803 default:
3804 return nullptr;
3805 }
3806}
3807
3808bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3809 // We currently only look for uses of poison values within the same basic
3810 // block, as that makes it easier to guarantee that the uses will be
3811 // executed given that PoisonI is executed.
3812 //
3813 // FIXME: Expand this to consider uses beyond the same basic block. To do
3814 // this, look out for the distinction between post-dominance and strong
3815 // post-dominance.
3816 const BasicBlock *BB = PoisonI->getParent();
3817
3818 // Set of instructions that we have proved will yield poison if PoisonI
3819 // does.
3820 SmallSet<const Value *, 16> YieldsPoison;
3821 YieldsPoison.insert(PoisonI);
3822
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003823 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3824 I != E; ++I) {
3825 if (&*I != PoisonI) {
3826 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003827 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003828 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3829 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003830 }
3831
3832 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003833 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003834 for (const User *User : I->users()) {
3835 const Instruction *UserI = cast<Instruction>(User);
3836 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3837 YieldsPoison.insert(User);
3838 }
3839 }
3840 }
3841 return false;
3842}
3843
James Molloy134bec22015-08-11 09:12:57 +00003844static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3845 if (FMF.noNaNs())
3846 return true;
3847
3848 if (auto *C = dyn_cast<ConstantFP>(V))
3849 return !C->isNaN();
3850 return false;
3851}
3852
3853static bool isKnownNonZero(Value *V) {
3854 if (auto *C = dyn_cast<ConstantFP>(V))
3855 return !C->isZero();
3856 return false;
3857}
3858
3859static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3860 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003861 Value *CmpLHS, Value *CmpRHS,
3862 Value *TrueVal, Value *FalseVal,
3863 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003864 LHS = CmpLHS;
3865 RHS = CmpRHS;
3866
James Molloy134bec22015-08-11 09:12:57 +00003867 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3868 // return inconsistent results between implementations.
3869 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3870 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3871 // Therefore we behave conservatively and only proceed if at least one of the
3872 // operands is known to not be zero, or if we don't care about signed zeroes.
3873 switch (Pred) {
3874 default: break;
3875 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3876 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3877 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3878 !isKnownNonZero(CmpRHS))
3879 return {SPF_UNKNOWN, SPNB_NA, false};
3880 }
3881
3882 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3883 bool Ordered = false;
3884
3885 // When given one NaN and one non-NaN input:
3886 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3887 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3888 // ordered comparison fails), which could be NaN or non-NaN.
3889 // so here we discover exactly what NaN behavior is required/accepted.
3890 if (CmpInst::isFPPredicate(Pred)) {
3891 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3892 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3893
3894 if (LHSSafe && RHSSafe) {
3895 // Both operands are known non-NaN.
3896 NaNBehavior = SPNB_RETURNS_ANY;
3897 } else if (CmpInst::isOrdered(Pred)) {
3898 // An ordered comparison will return false when given a NaN, so it
3899 // returns the RHS.
3900 Ordered = true;
3901 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003902 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003903 NaNBehavior = SPNB_RETURNS_NAN;
3904 else if (RHSSafe)
3905 NaNBehavior = SPNB_RETURNS_OTHER;
3906 else
3907 // Completely unsafe.
3908 return {SPF_UNKNOWN, SPNB_NA, false};
3909 } else {
3910 Ordered = false;
3911 // An unordered comparison will return true when given a NaN, so it
3912 // returns the LHS.
3913 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003914 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003915 NaNBehavior = SPNB_RETURNS_OTHER;
3916 else if (RHSSafe)
3917 NaNBehavior = SPNB_RETURNS_NAN;
3918 else
3919 // Completely unsafe.
3920 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003921 }
3922 }
3923
James Molloy71b91c22015-05-11 14:42:20 +00003924 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003925 std::swap(CmpLHS, CmpRHS);
3926 Pred = CmpInst::getSwappedPredicate(Pred);
3927 if (NaNBehavior == SPNB_RETURNS_NAN)
3928 NaNBehavior = SPNB_RETURNS_OTHER;
3929 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3930 NaNBehavior = SPNB_RETURNS_NAN;
3931 Ordered = !Ordered;
3932 }
3933
3934 // ([if]cmp X, Y) ? X : Y
3935 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003936 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003937 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003938 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003939 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003940 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003941 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003942 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003943 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003944 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003945 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3946 case FCmpInst::FCMP_UGT:
3947 case FCmpInst::FCMP_UGE:
3948 case FCmpInst::FCMP_OGT:
3949 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3950 case FCmpInst::FCMP_ULT:
3951 case FCmpInst::FCMP_ULE:
3952 case FCmpInst::FCMP_OLT:
3953 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003954 }
3955 }
3956
3957 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3958 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3959 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3960
3961 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3962 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3963 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003964 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003965 }
3966
3967 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3968 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3969 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003970 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003971 }
3972 }
3973
3974 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3975 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3976 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3977 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3978 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3979 LHS = TrueVal;
3980 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003981 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003982 }
3983 }
3984 }
3985
3986 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3987
James Molloy134bec22015-08-11 09:12:57 +00003988 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003989}
James Molloy270ef8c2015-05-15 16:04:50 +00003990
James Molloy569cea62015-09-02 17:25:25 +00003991static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3992 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003993 CastInst *CI = dyn_cast<CastInst>(V1);
3994 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003995 CastInst *CI2 = dyn_cast<CastInst>(V2);
3996 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003997 return nullptr;
3998 *CastOp = CI->getOpcode();
3999
James Molloy569cea62015-09-02 17:25:25 +00004000 if (CI2) {
4001 // If V1 and V2 are both the same cast from the same type, we can look
4002 // through V1.
4003 if (CI2->getOpcode() == CI->getOpcode() &&
4004 CI2->getSrcTy() == CI->getSrcTy())
4005 return CI2->getOperand(0);
4006 return nullptr;
4007 } else if (!C) {
4008 return nullptr;
4009 }
4010
James Molloy2b21a7c2015-05-20 18:41:25 +00004011 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4012 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4013 // This is only valid if the truncated value can be sign-extended
4014 // back to the original value.
4015 if (ConstantExpr::getSExt(T, C->getType()) == C)
4016 return T;
4017 return nullptr;
4018 }
4019 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00004020 return ConstantExpr::getTrunc(C, CI->getSrcTy());
4021
4022 if (isa<TruncInst>(CI))
4023 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4024
James Molloy134bec22015-08-11 09:12:57 +00004025 if (isa<FPToUIInst>(CI))
4026 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4027
4028 if (isa<FPToSIInst>(CI))
4029 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4030
4031 if (isa<UIToFPInst>(CI))
4032 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4033
4034 if (isa<SIToFPInst>(CI))
4035 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4036
4037 if (isa<FPTruncInst>(CI))
4038 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4039
4040 if (isa<FPExtInst>(CI))
4041 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4042
James Molloy270ef8c2015-05-15 16:04:50 +00004043 return nullptr;
4044}
4045
James Molloy134bec22015-08-11 09:12:57 +00004046SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00004047 Value *&LHS, Value *&RHS,
4048 Instruction::CastOps *CastOp) {
4049 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004050 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004051
James Molloy134bec22015-08-11 09:12:57 +00004052 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4053 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004054
James Molloy134bec22015-08-11 09:12:57 +00004055 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004056 Value *CmpLHS = CmpI->getOperand(0);
4057 Value *CmpRHS = CmpI->getOperand(1);
4058 Value *TrueVal = SI->getTrueValue();
4059 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004060 FastMathFlags FMF;
4061 if (isa<FPMathOperator>(CmpI))
4062 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004063
4064 // Bail out early.
4065 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004066 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004067
4068 // Deal with type mismatches.
4069 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004070 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004071 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004072 cast<CastInst>(TrueVal)->getOperand(0), C,
4073 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004074 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004075 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004076 C, cast<CastInst>(FalseVal)->getOperand(0),
4077 LHS, RHS);
4078 }
James Molloy134bec22015-08-11 09:12:57 +00004079 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004080 LHS, RHS);
4081}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004082
4083ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4084 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4085 assert(NumRanges >= 1 && "Must have at least one range!");
4086 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4087
4088 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4089 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4090
4091 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4092
4093 for (unsigned i = 1; i < NumRanges; ++i) {
4094 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4095 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4096
4097 // Note: unionWith will potentially create a range that contains values not
4098 // contained in any of the original N ranges.
4099 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4100 }
4101
4102 return CR;
4103}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004104
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004105/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004106static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4107 const DataLayout &DL, unsigned Depth,
4108 AssumptionCache *AC, const Instruction *CxtI,
4109 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004110 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004111 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4112 return true;
4113
4114 switch (Pred) {
4115 default:
4116 return false;
4117
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004118 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004119 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004120
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004121 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004122 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004123 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004124 return false;
4125 }
4126
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004127 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004128 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004129
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004130 // LHS u<= LHS +_{nuw} C for any C
4131 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004132 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004133
4134 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4135 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4136 const APInt *&CA, const APInt *&CB) {
4137 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4138 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4139 return true;
4140
4141 // If X & C == 0 then (X | C) == X +_{nuw} C
4142 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4143 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4144 unsigned BitWidth = CA->getBitWidth();
4145 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4146 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4147
4148 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4149 return true;
4150 }
4151
4152 return false;
4153 };
4154
4155 Value *X;
4156 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004157 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4158 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004159
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004160 return false;
4161 }
4162 }
4163}
4164
4165/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4166/// ALHS ARHS" is true.
4167static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004168 Value *ARHS, Value *BLHS, Value *BRHS,
4169 const DataLayout &DL, unsigned Depth,
4170 AssumptionCache *AC, const Instruction *CxtI,
4171 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004172 switch (Pred) {
4173 default:
4174 return false;
4175
4176 case CmpInst::ICMP_SLT:
4177 case CmpInst::ICMP_SLE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004178 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4179 DT) &&
4180 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4181 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004182
4183 case CmpInst::ICMP_ULT:
4184 case CmpInst::ICMP_ULE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004185 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4186 DT) &&
4187 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4188 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004189 }
4190}
4191
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004192bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4193 unsigned Depth, AssumptionCache *AC,
4194 const Instruction *CxtI,
4195 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004196 assert(LHS->getType() == RHS->getType() && "mismatched type");
4197 Type *OpTy = LHS->getType();
4198 assert(OpTy->getScalarType()->isIntegerTy(1));
4199
4200 // LHS ==> RHS by definition
4201 if (LHS == RHS) return true;
4202
4203 if (OpTy->isVectorTy())
4204 // TODO: extending the code below to handle vectors
4205 return false;
4206 assert(OpTy->isIntegerTy(1) && "implied by above");
4207
4208 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004209 Value *ALHS, *ARHS;
4210 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004211
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004212 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4213 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4214 return false;
4215
4216 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004217 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4218 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004219
4220 return false;
4221}