blob: e8f52eda3c466df5d9331087cd59d263cf3fe74a [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
Chandler Carruth3bab7e12017-01-11 09:43:56 +000015#include "llvm/Analysis/LoopAccessAnalysis.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000016#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/EquivalenceClasses.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000020#include "llvm/ADT/PointerIntPair.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000021#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000026#include "llvm/ADT/iterator_range.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000027#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/AliasSetTracker.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000029#include "llvm/Analysis/LoopAnalysisManager.h"
Adam Nemet04563272015-02-01 16:56:15 +000030#include "llvm/Analysis/LoopInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000031#include "llvm/Analysis/MemoryLocation.h"
Adam Nemet5b3a5cf2016-07-20 21:44:26 +000032#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000033#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000034#include "llvm/Analysis/ScalarEvolutionExpander.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000035#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000036#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000037#include "llvm/Analysis/ValueTracking.h"
Adam Nemetf45594c2016-07-01 00:09:02 +000038#include "llvm/Analysis/VectorUtils.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000039#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000045#include "llvm/IR/Dominators.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000046#include "llvm/IR/Function.h"
Chandler Carruth3bab7e12017-01-11 09:43:56 +000047#include "llvm/IR/IRBuilder.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000048#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000051#include "llvm/IR/Operator.h"
Xinliang David Li8a021312016-07-02 21:18:40 +000052#include "llvm/IR/PassManager.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000053#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
Adam Nemet04563272015-02-01 16:56:15 +000059#include "llvm/Support/Debug.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000060#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000061#include "llvm/Support/raw_ostream.h"
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +000062#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
Adam Nemet04563272015-02-01 16:56:15 +000070using namespace llvm;
71
Adam Nemet339f42b2015-02-19 19:15:07 +000072#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000073
Adam Nemetf219c642015-02-19 19:14:52 +000074static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
77 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000078unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000079
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
84 cl::location(
85 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000086unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000087
Adam Nemet1d862af2015-02-26 04:39:09 +000088static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
92 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000094
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000095/// \brief The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
Adam Nemetf219c642015-02-19 19:14:52 +0000102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
Adam Nemeta2df7502015-11-03 21:39:52 +0000105/// \brief We collect dependences up to this threshold.
106static cl::opt<unsigned>
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
Adam Nemet9c926572015-03-10 17:40:37 +0000111
Adam Nemeta9f09c62016-06-17 22:35:41 +0000112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
123static cl::opt<bool> EnableMemAccessVersioning(
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
Matthew Simpson37ec5f92016-05-16 17:00:56 +0000127/// \brief Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
Matthew Simpsona250dc92016-05-16 14:14:49 +0000131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
Adam Nemetf219c642015-02-19 19:14:52 +0000134bool VectorizerParams::isInterleaveForced() {
135 return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
Adam Nemet2bd6e982015-02-19 19:15:15 +0000138void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000139 const Loop *TheLoop, const char *PassName,
140 OptimizationRemarkEmitter &ORE) {
Adam Nemet04563272015-02-01 16:56:15 +0000141 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000142 const Value *V = TheLoop->getHeader();
143 if (const Instruction *I = Message.getInstr()) {
Adam Nemete3cef932016-09-21 03:14:20 +0000144 // If there is no debug location attached to the instruction, revert back to
145 // using the loop's.
146 if (I->getDebugLoc())
147 DL = I->getDebugLoc();
Adam Nemet5b3a5cf2016-07-20 21:44:26 +0000148 V = I->getParent();
149 }
150 ORE.emitOptimizationRemarkAnalysis(PassName, DL, V, Message.str());
Adam Nemet04563272015-02-01 16:56:15 +0000151}
152
153Value *llvm::stripIntegerCast(Value *V) {
David Majnemer8b401012016-07-12 20:31:46 +0000154 if (auto *CI = dyn_cast<CastInst>(V))
Adam Nemet04563272015-02-01 16:56:15 +0000155 if (CI->getOperand(0)->getType()->isIntegerTy())
156 return CI->getOperand(0);
157 return V;
158}
159
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000160const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000161 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +0000162 Value *Ptr, Value *OrigPtr) {
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000163 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000164
165 // If there is an entry in the map return the SCEV of the pointer with the
166 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000167 ValueToValueMap::const_iterator SI =
168 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000169 if (SI != PtrToStride.end()) {
170 Value *StrideVal = SI->second;
171
172 // Strip casts.
173 StrideVal = stripIntegerCast(StrideVal);
174
175 // Replace symbolic stride by one.
176 Value *One = ConstantInt::get(StrideVal->getType(), 1);
177 ValueToValueMap RewriteMap;
178 RewriteMap[StrideVal] = One;
179
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000180 ScalarEvolution *SE = PSE.getSE();
Silviu Barangae3c05342015-11-02 14:41:02 +0000181 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
182 const auto *CT =
183 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
184
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000185 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
186 auto *Expr = PSE.getSCEV(Ptr);
Silviu Barangae3c05342015-11-02 14:41:02 +0000187
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000188 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
Adam Nemet04563272015-02-01 16:56:15 +0000189 << "\n");
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000190 return Expr;
Adam Nemet04563272015-02-01 16:56:15 +0000191 }
192
193 // Otherwise, just return the SCEV of the original pointer.
Silviu Barangae3c05342015-11-02 14:41:02 +0000194 return OrigSCEV;
Adam Nemet04563272015-02-01 16:56:15 +0000195}
196
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000197/// Calculate Start and End points of memory access.
198/// Let's assume A is the first access and B is a memory access on N-th loop
199/// iteration. Then B is calculated as:
200/// B = A + Step*N .
201/// Step value may be positive or negative.
202/// N is a calculated back-edge taken count:
203/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
204/// Start and End points are calculated in the following way:
205/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
206/// where SizeOfElt is the size of single memory access in bytes.
207///
208/// There is no conflict when the intervals are disjoint:
209/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
Adam Nemet7cdebac2015-07-14 22:32:44 +0000210void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
211 unsigned DepSetId, unsigned ASId,
Silviu Barangae3c05342015-11-02 14:41:02 +0000212 const ValueToValueMap &Strides,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000213 PredicatedScalarEvolution &PSE) {
Adam Nemet04563272015-02-01 16:56:15 +0000214 // Get the stride replaced scev.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000215 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000216 ScalarEvolution *SE = PSE.getSE();
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000217
Adam Nemet279784f2016-03-24 04:28:47 +0000218 const SCEV *ScStart;
219 const SCEV *ScEnd;
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000220
Adam Nemet59a65502016-03-24 05:15:24 +0000221 if (SE->isLoopInvariant(Sc, Lp))
Adam Nemet279784f2016-03-24 04:28:47 +0000222 ScStart = ScEnd = Sc;
Adam Nemet279784f2016-03-24 04:28:47 +0000223 else {
224 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
225 assert(AR && "Invalid addrec expression");
Silviu Baranga6f444df2016-04-08 14:29:09 +0000226 const SCEV *Ex = PSE.getBackedgeTakenCount();
Adam Nemet279784f2016-03-24 04:28:47 +0000227
228 ScStart = AR->getStart();
229 ScEnd = AR->evaluateAtIteration(Ex, *SE);
230 const SCEV *Step = AR->getStepRecurrence(*SE);
231
232 // For expressions with negative step, the upper bound is ScStart and the
233 // lower bound is ScEnd.
David Majnemer8b401012016-07-12 20:31:46 +0000234 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
Adam Nemet279784f2016-03-24 04:28:47 +0000235 if (CStep->getValue()->isNegative())
236 std::swap(ScStart, ScEnd);
237 } else {
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000238 // Fallback case: the step is not constant, but we can still
Adam Nemet279784f2016-03-24 04:28:47 +0000239 // get the upper and lower bounds of the interval by using min/max
240 // expressions.
241 ScStart = SE->getUMinExpr(ScStart, ScEnd);
242 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243 }
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +0000244 // Add the size of the pointed element to ScEnd.
245 unsigned EltSize =
246 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
247 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
248 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000249 }
250
251 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000252}
253
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000254SmallVector<RuntimePointerChecking::PointerCheck, 4>
Adam Nemet38530882015-08-09 20:06:06 +0000255RuntimePointerChecking::generateChecks() const {
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000256 SmallVector<PointerCheck, 4> Checks;
257
Adam Nemet7c52e052015-07-27 19:38:50 +0000258 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
259 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
260 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
261 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000262
Adam Nemet38530882015-08-09 20:06:06 +0000263 if (needsChecking(CGI, CGJ))
Adam Nemetbbe1f1d2015-07-27 19:38:48 +0000264 Checks.push_back(std::make_pair(&CGI, &CGJ));
265 }
266 }
267 return Checks;
268}
269
Adam Nemet15840392015-08-07 22:44:15 +0000270void RuntimePointerChecking::generateChecks(
271 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
272 assert(Checks.empty() && "Checks is not empty");
273 groupChecks(DepCands, UseDependencies);
274 Checks = generateChecks();
275}
276
Adam Nemet651a5a22015-08-09 20:06:08 +0000277bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
278 const CheckingPtrGroup &N) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000279 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
280 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
Adam Nemet651a5a22015-08-09 20:06:08 +0000281 if (needsChecking(M.Members[I], N.Members[J]))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000282 return true;
283 return false;
284}
285
286/// Compare \p I and \p J and return the minimum.
287/// Return nullptr in case we couldn't find an answer.
288static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
289 ScalarEvolution *SE) {
290 const SCEV *Diff = SE->getMinusSCEV(J, I);
291 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
292
293 if (!C)
294 return nullptr;
295 if (C->getValue()->isNegative())
296 return J;
297 return I;
298}
299
Adam Nemet7cdebac2015-07-14 22:32:44 +0000300bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000301 const SCEV *Start = RtCheck.Pointers[Index].Start;
302 const SCEV *End = RtCheck.Pointers[Index].End;
303
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000304 // Compare the starts and ends with the known minimum and maximum
305 // of this set. We need to know how we compare against the min/max
306 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000307 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000308 if (!Min0)
309 return false;
310
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000311 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000312 if (!Min1)
313 return false;
314
315 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000316 if (Min0 == Start)
317 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000318
319 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000320 if (Min1 != End)
321 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000322
323 Members.push_back(Index);
324 return true;
325}
326
Adam Nemet7cdebac2015-07-14 22:32:44 +0000327void RuntimePointerChecking::groupChecks(
328 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000329 // We build the groups from dependency candidates equivalence classes
330 // because:
331 // - We know that pointers in the same equivalence class share
332 // the same underlying object and therefore there is a chance
333 // that we can compare pointers
334 // - We wouldn't be able to merge two pointers for which we need
335 // to emit a memcheck. The classes in DepCands are already
336 // conveniently built such that no two pointers in the same
337 // class need checking against each other.
338
339 // We use the following (greedy) algorithm to construct the groups
340 // For every pointer in the equivalence class:
341 // For each existing group:
342 // - if the difference between this pointer and the min/max bounds
343 // of the group is a constant, then make the pointer part of the
344 // group and update the min/max bounds of that group as required.
345
346 CheckingGroups.clear();
347
Silviu Baranga48250602015-07-28 13:44:08 +0000348 // If we need to check two pointers to the same underlying object
349 // with a non-constant difference, we shouldn't perform any pointer
350 // grouping with those pointers. This is because we can easily get
351 // into cases where the resulting check would return false, even when
352 // the accesses are safe.
353 //
354 // The following example shows this:
355 // for (i = 0; i < 1000; ++i)
356 // a[5000 + i * m] = a[i] + a[i + 9000]
357 //
358 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
359 // (0, 10000) which is always false. However, if m is 1, there is no
360 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
361 // us to perform an accurate check in this case.
362 //
363 // The above case requires that we have an UnknownDependence between
364 // accesses to the same underlying object. This cannot happen unless
365 // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
366 // is also false. In this case we will use the fallback path and create
367 // separate checking groups for all pointers.
Mehdi Aminiafd13512015-11-05 05:49:43 +0000368
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000369 // If we don't have the dependency partitions, construct a new
Silviu Baranga48250602015-07-28 13:44:08 +0000370 // checking pointer group for each pointer. This is also required
371 // for correctness, because in this case we can have checking between
372 // pointers to the same underlying object.
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000373 if (!UseDependencies) {
374 for (unsigned I = 0; I < Pointers.size(); ++I)
375 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
376 return;
377 }
378
379 unsigned TotalComparisons = 0;
380
381 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000382 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
383 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000384
Silviu Barangace3877f2015-07-09 15:18:25 +0000385 // We need to keep track of what pointers we've already seen so we
386 // don't process them twice.
387 SmallSet<unsigned, 2> Seen;
388
Sanjay Patele4b9f502015-12-07 19:21:39 +0000389 // Go through all equivalence classes, get the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000390 // and add them to the overall solution. We use the order in which accesses
391 // appear in 'Pointers' to enforce determinism.
392 for (unsigned I = 0; I < Pointers.size(); ++I) {
393 // We've seen this pointer before, and therefore already processed
394 // its equivalence class.
395 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000396 continue;
397
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000398 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
399 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000400
Silviu Barangace3877f2015-07-09 15:18:25 +0000401 SmallVector<CheckingPtrGroup, 2> Groups;
402 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
403
Silviu Barangaa647c302015-07-13 14:48:24 +0000404 // Because DepCands is constructed by visiting accesses in the order in
405 // which they appear in alias sets (which is deterministic) and the
406 // iteration order within an equivalence class member is only dependent on
407 // the order in which unions and insertions are performed on the
408 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000409 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000410 MI != ME; ++MI) {
411 unsigned Pointer = PositionMap[MI->getPointer()];
412 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000413 // Mark this pointer as seen.
414 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000415
416 // Go through all the existing sets and see if we can find one
417 // which can include this pointer.
418 for (CheckingPtrGroup &Group : Groups) {
419 // Don't perform more than a certain amount of comparisons.
420 // This should limit the cost of grouping the pointers to something
421 // reasonable. If we do end up hitting this threshold, the algorithm
422 // will create separate groups for all remaining pointers.
423 if (TotalComparisons > MemoryCheckMergeThreshold)
424 break;
425
426 TotalComparisons++;
427
428 if (Group.addPointer(Pointer)) {
429 Merged = true;
430 break;
431 }
432 }
433
434 if (!Merged)
435 // We couldn't add this pointer to any existing set or the threshold
436 // for the number of comparisons has been reached. Create a new group
437 // to hold the current pointer.
438 Groups.push_back(CheckingPtrGroup(Pointer, *this));
439 }
440
441 // We've computed the grouped checks for this partition.
442 // Save the results and continue with the next one.
443 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
444 }
Adam Nemet04563272015-02-01 16:56:15 +0000445}
446
Adam Nemet041e6de2015-07-16 02:48:05 +0000447bool RuntimePointerChecking::arePointersInSamePartition(
448 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
449 unsigned PtrIdx2) {
450 return (PtrToPartition[PtrIdx1] != -1 &&
451 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
452}
453
Adam Nemet651a5a22015-08-09 20:06:08 +0000454bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000455 const PointerInfo &PointerI = Pointers[I];
456 const PointerInfo &PointerJ = Pointers[J];
457
Adam Nemeta8945b72015-02-18 03:43:58 +0000458 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000459 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000460 return false;
461
462 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000463 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000464 return false;
465
466 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000467 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000468 return false;
469
470 return true;
471}
472
Adam Nemet54f0b832015-07-27 23:54:41 +0000473void RuntimePointerChecking::printChecks(
474 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
475 unsigned Depth) const {
476 unsigned N = 0;
477 for (const auto &Check : Checks) {
478 const auto &First = Check.first->Members, &Second = Check.second->Members;
479
480 OS.indent(Depth) << "Check " << N++ << ":\n";
481
482 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
483 for (unsigned K = 0; K < First.size(); ++K)
484 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
485
486 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
487 for (unsigned K = 0; K < Second.size(); ++K)
488 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
489 }
490}
491
Adam Nemet3a91e942015-08-07 19:44:48 +0000492void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000493
494 OS.indent(Depth) << "Run-time memory checks:\n";
Adam Nemet15840392015-08-07 22:44:15 +0000495 printChecks(OS, Checks, Depth);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000496
497 OS.indent(Depth) << "Grouped accesses:\n";
498 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
Adam Nemet54f0b832015-07-27 23:54:41 +0000499 const auto &CG = CheckingGroups[I];
500
501 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
502 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
503 << ")\n";
504 for (unsigned J = 0; J < CG.Members.size(); ++J) {
505 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000506 << "\n";
507 }
508 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000509}
510
Adam Nemet04563272015-02-01 16:56:15 +0000511namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +0000512
Adam Nemet04563272015-02-01 16:56:15 +0000513/// \brief Analyses memory accesses in a loop.
514///
515/// Checks whether run time pointer checks are needed and builds sets for data
516/// dependence checking.
517class AccessAnalysis {
518public:
519 /// \brief Read or write access location.
520 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
521 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
522
Adam Nemete2b885c2015-04-23 20:09:20 +0000523 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000524 MemoryDepChecker::DepCandidates &DA,
525 PredicatedScalarEvolution &PSE)
Silviu Barangae3c05342015-11-02 14:41:02 +0000526 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000527 PSE(PSE) {}
Adam Nemet04563272015-02-01 16:56:15 +0000528
529 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000530 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000531 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000532 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000533 Accesses.insert(MemAccessInfo(Ptr, false));
534 if (IsReadOnly)
535 ReadOnlyPtr.insert(Ptr);
536 }
537
538 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000539 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000540 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000541 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000542 Accesses.insert(MemAccessInfo(Ptr, true));
543 }
544
545 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000546 /// non-intersection.
547 ///
548 /// Returns true if we need no check or if we do and we can generate them
549 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551 Loop *TheLoop, const ValueToValueMap &Strides,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000552 bool ShouldCheckWrap = false);
Adam Nemet04563272015-02-01 16:56:15 +0000553
554 /// \brief Goes over all memory accesses, checks whether a RT check is needed
555 /// and builds sets of dependent accesses.
556 void buildDependenceSets() {
557 processMemAccesses();
558 }
559
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000560 /// \brief Initial processing of memory accesses determined that we need to
561 /// perform dependency checking.
562 ///
563 /// Note that this can later be cleared if we retry memcheck analysis without
564 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000566
567 /// We decided that no dependence analysis would be used. Reset the state.
568 void resetDepChecks(MemoryDepChecker &DepChecker) {
569 CheckDeps.clear();
Adam Nemeta2df7502015-11-03 21:39:52 +0000570 DepChecker.clearDependences();
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000571 }
Adam Nemet04563272015-02-01 16:56:15 +0000572
573 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
574
575private:
576 typedef SetVector<MemAccessInfo> PtrAccessSet;
577
578 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000579 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000580 void processMemAccesses();
581
582 /// Set of all accesses.
583 PtrAccessSet Accesses;
584
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000585 const DataLayout &DL;
586
Adam Nemet04563272015-02-01 16:56:15 +0000587 /// Set of accesses that need a further dependence check.
588 MemAccessInfoSet CheckDeps;
589
590 /// Set of pointers that are read only.
591 SmallPtrSet<Value*, 16> ReadOnlyPtr;
592
Adam Nemet04563272015-02-01 16:56:15 +0000593 /// An alias set tracker to partition the access set by underlying object and
594 //intrinsic property (such as TBAA metadata).
595 AliasSetTracker AST;
596
Adam Nemete2b885c2015-04-23 20:09:20 +0000597 LoopInfo *LI;
598
Adam Nemet04563272015-02-01 16:56:15 +0000599 /// Sets of potentially dependent accesses - members of one set share an
600 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
601 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000602 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000603
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000604 /// \brief Initial processing of memory accesses determined that we may need
605 /// to add memchecks. Perform the analysis to determine the necessary checks.
606 ///
607 /// Note that, this is different from isDependencyCheckNeeded. When we retry
608 /// memcheck analysis without dependency checking
609 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
610 /// while this remains set if we have potentially dependent accesses.
611 bool IsRTCheckAnalysisNeeded;
Silviu Barangae3c05342015-11-02 14:41:02 +0000612
613 /// The SCEV predicate containing all the SCEV-related assumptions.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000614 PredicatedScalarEvolution &PSE;
Adam Nemet04563272015-02-01 16:56:15 +0000615};
616
617} // end anonymous namespace
618
619/// \brief Check whether a pointer can participate in a runtime bounds check.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000620static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
Silviu Barangae3c05342015-11-02 14:41:02 +0000621 const ValueToValueMap &Strides, Value *Ptr,
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000622 Loop *L) {
623 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
Adam Nemet279784f2016-03-24 04:28:47 +0000624
625 // The bounds for loop-invariant pointer is trivial.
626 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627 return true;
628
Adam Nemet04563272015-02-01 16:56:15 +0000629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630 if (!AR)
631 return false;
632
633 return AR->isAffine();
634}
635
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000636/// \brief Check whether a pointer address cannot wrap.
637static bool isNoWrap(PredicatedScalarEvolution &PSE,
638 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
639 const SCEV *PtrScev = PSE.getSCEV(Ptr);
640 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
641 return true;
642
David Majnemer7afb46d2016-07-07 06:24:36 +0000643 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000644 return Stride == 1;
645}
646
Adam Nemet7cdebac2015-07-14 22:32:44 +0000647bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
648 ScalarEvolution *SE, Loop *TheLoop,
649 const ValueToValueMap &StridesMap,
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000650 bool ShouldCheckWrap) {
Adam Nemet04563272015-02-01 16:56:15 +0000651 // Find pointers with computable bounds. We are going to use this information
652 // to place a runtime bound check.
653 bool CanDoRT = true;
654
Adam Nemetee614742015-07-09 22:17:38 +0000655 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000656 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000657
Adam Nemet04563272015-02-01 16:56:15 +0000658 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000659
660 // We assign a consecutive id to access from different alias sets.
661 // Accesses between different groups doesn't need to be checked.
662 unsigned ASId = 1;
663 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000664 int NumReadPtrChecks = 0;
665 int NumWritePtrChecks = 0;
666
Adam Nemet04563272015-02-01 16:56:15 +0000667 // We assign consecutive id to access from different dependence sets.
668 // Accesses within the same set don't need a runtime check.
669 unsigned RunningDepId = 1;
670 DenseMap<Value *, unsigned> DepSetId;
671
672 for (auto A : AS) {
673 Value *Ptr = A.getValue();
674 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
675 MemAccessInfo Access(Ptr, IsWrite);
676
Adam Nemet424edc62015-07-08 22:58:48 +0000677 if (IsWrite)
678 ++NumWritePtrChecks;
679 else
680 ++NumReadPtrChecks;
681
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000682 if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000683 // When we run after a failing dependency check we have to make sure
684 // we don't have wrapping pointers.
Andrey Turetskiy9f02c582016-06-07 14:55:27 +0000685 (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
Adam Nemet04563272015-02-01 16:56:15 +0000686 // The id of the dependence set.
687 unsigned DepId;
688
689 if (IsDepCheckNeeded) {
690 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
691 unsigned &LeaderId = DepSetId[Leader];
692 if (!LeaderId)
693 LeaderId = RunningDepId++;
694 DepId = LeaderId;
695 } else
696 // Each access has its own dependence set.
697 DepId = RunningDepId++;
698
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000699 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
Adam Nemet04563272015-02-01 16:56:15 +0000700
Adam Nemet339f42b2015-02-19 19:15:07 +0000701 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000702 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000703 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000704 CanDoRT = false;
705 }
706 }
707
Adam Nemet424edc62015-07-08 22:58:48 +0000708 // If we have at least two writes or one write and a read then we need to
709 // check them. But there is no need to checks if there is only one
710 // dependence set for this alias set.
711 //
712 // Note that this function computes CanDoRT and NeedRTCheck independently.
713 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
714 // for which we couldn't find the bounds but we don't actually need to emit
715 // any checks so it does not matter.
716 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
717 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
718 NumWritePtrChecks >= 1));
719
Adam Nemet04563272015-02-01 16:56:15 +0000720 ++ASId;
721 }
722
723 // If the pointers that we would use for the bounds comparison have different
724 // address spaces, assume the values aren't directly comparable, so we can't
725 // use them for the runtime check. We also have to assume they could
726 // overlap. In the future there should be metadata for whether address spaces
727 // are disjoint.
728 unsigned NumPointers = RtCheck.Pointers.size();
729 for (unsigned i = 0; i < NumPointers; ++i) {
730 for (unsigned j = i + 1; j < NumPointers; ++j) {
731 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000732 if (RtCheck.Pointers[i].DependencySetId ==
733 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000734 continue;
735 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000736 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000737 continue;
738
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000739 Value *PtrI = RtCheck.Pointers[i].PointerValue;
740 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000741
742 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
743 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
744 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000745 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000746 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000747 return false;
748 }
749 }
750 }
751
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000752 if (NeedRTCheck && CanDoRT)
Adam Nemet15840392015-08-07 22:44:15 +0000753 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000754
Adam Nemet155e8742015-08-07 22:44:21 +0000755 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
Adam Nemetee614742015-07-09 22:17:38 +0000756 << " pointer comparisons.\n");
757
758 RtCheck.Need = NeedRTCheck;
759
760 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
761 if (!CanDoRTIfNeeded)
762 RtCheck.reset();
763 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000764}
765
766void AccessAnalysis::processMemAccesses() {
767 // We process the set twice: first we process read-write pointers, last we
768 // process read-only pointers. This allows us to skip dependence tests for
769 // read-only pointers.
770
Adam Nemet339f42b2015-02-19 19:15:07 +0000771 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000772 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000773 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000774 DEBUG({
775 for (auto A : Accesses)
776 dbgs() << "\t" << *A.getPointer() << " (" <<
777 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
778 "read-only" : "read")) << ")\n";
779 });
780
781 // The AliasSetTracker has nicely partitioned our pointers by metadata
782 // compatibility and potential for underlying-object overlap. As a result, we
783 // only need to check for potential pointer dependencies within each alias
784 // set.
785 for (auto &AS : AST) {
786 // Note that both the alias-set tracker and the alias sets themselves used
787 // linked lists internally and so the iteration order here is deterministic
788 // (matching the original instruction order within each set).
789
790 bool SetHasWrite = false;
791
792 // Map of pointers to last access encountered.
793 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
794 UnderlyingObjToAccessMap ObjToLastAccess;
795
796 // Set of access to check after all writes have been processed.
797 PtrAccessSet DeferredAccesses;
798
799 // Iterate over each alias set twice, once to process read/write pointers,
800 // and then to process read-only pointers.
801 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
802 bool UseDeferred = SetIteration > 0;
803 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
804
805 for (auto AV : AS) {
806 Value *Ptr = AV.getValue();
807
808 // For a single memory access in AliasSetTracker, Accesses may contain
809 // both read and write, and they both need to be handled for CheckDeps.
810 for (auto AC : S) {
811 if (AC.getPointer() != Ptr)
812 continue;
813
814 bool IsWrite = AC.getInt();
815
816 // If we're using the deferred access set, then it contains only
817 // reads.
818 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
819 if (UseDeferred && !IsReadOnlyPtr)
820 continue;
821 // Otherwise, the pointer must be in the PtrAccessSet, either as a
822 // read or a write.
823 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
824 S.count(MemAccessInfo(Ptr, false))) &&
825 "Alias-set pointer not in the access set?");
826
827 MemAccessInfo Access(Ptr, IsWrite);
828 DepCands.insert(Access);
829
830 // Memorize read-only pointers for later processing and skip them in
831 // the first round (they need to be checked after we have seen all
832 // write pointers). Note: we also mark pointer that are not
833 // consecutive as "read-only" pointers (so that we check
834 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
835 if (!UseDeferred && IsReadOnlyPtr) {
836 DeferredAccesses.insert(Access);
837 continue;
838 }
839
840 // If this is a write - check other reads and writes for conflicts. If
841 // this is a read only check other writes for conflicts (but only if
842 // there is no other write to the ptr - this is an optimization to
843 // catch "a[i] = a[i] + " without having to do a dependence check).
844 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
845 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000846 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000847 }
848
849 if (IsWrite)
850 SetHasWrite = true;
851
852 // Create sets of pointers connected by a shared alias set and
853 // underlying object.
854 typedef SmallVector<Value *, 16> ValueVector;
855 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000856
857 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
858 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000859 for (Value *UnderlyingObj : TempObjects) {
Mehdi Aminiafd13512015-11-05 05:49:43 +0000860 // nullptr never alias, don't join sets for pointer that have "null"
861 // in their UnderlyingObjects list.
862 if (isa<ConstantPointerNull>(UnderlyingObj))
863 continue;
864
Adam Nemet04563272015-02-01 16:56:15 +0000865 UnderlyingObjToAccessMap::iterator Prev =
866 ObjToLastAccess.find(UnderlyingObj);
867 if (Prev != ObjToLastAccess.end())
868 DepCands.unionSets(Access, Prev->second);
869
870 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000871 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000872 }
873 }
874 }
875 }
876 }
877}
878
Adam Nemet04563272015-02-01 16:56:15 +0000879static bool isInBoundsGep(Value *Ptr) {
880 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
881 return GEP->isInBounds();
882 return false;
883}
884
Adam Nemetc4866d22015-06-26 17:25:43 +0000885/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
886/// i.e. monotonically increasing/decreasing.
887static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000888 PredicatedScalarEvolution &PSE, const Loop *L) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000889 // FIXME: This should probably only return true for NUW.
890 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
891 return true;
892
893 // Scalar evolution does not propagate the non-wrapping flags to values that
894 // are derived from a non-wrapping induction variable because non-wrapping
895 // could be flow-sensitive.
896 //
897 // Look through the potentially overflowing instruction to try to prove
898 // non-wrapping for the *specific* value of Ptr.
899
900 // The arithmetic implied by an inbounds GEP can't overflow.
901 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
902 if (!GEP || !GEP->isInBounds())
903 return false;
904
905 // Make sure there is only one non-const index and analyze that.
906 Value *NonConstIndex = nullptr;
David Majnemer8b401012016-07-12 20:31:46 +0000907 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
908 if (!isa<ConstantInt>(Index)) {
Adam Nemetc4866d22015-06-26 17:25:43 +0000909 if (NonConstIndex)
910 return false;
David Majnemer8b401012016-07-12 20:31:46 +0000911 NonConstIndex = Index;
Adam Nemetc4866d22015-06-26 17:25:43 +0000912 }
913 if (!NonConstIndex)
914 // The recurrence is on the pointer, ignore for now.
915 return false;
916
917 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
918 // AddRec using a NSW operation.
919 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
920 if (OBO->hasNoSignedWrap() &&
921 // Assume constant for other the operand so that the AddRec can be
922 // easily found.
923 isa<ConstantInt>(OBO->getOperand(1))) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000924 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
Adam Nemetc4866d22015-06-26 17:25:43 +0000925
926 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
927 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
928 }
929
930 return false;
931}
932
Adam Nemet04563272015-02-01 16:56:15 +0000933/// \brief Check whether the access through \p Ptr has a constant stride.
David Majnemer7afb46d2016-07-07 06:24:36 +0000934int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
935 const Loop *Lp, const ValueToValueMap &StridesMap,
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000936 bool Assume, bool ShouldCheckWrap) {
Craig Toppere3dcce92015-08-01 22:20:21 +0000937 Type *Ty = Ptr->getType();
Adam Nemet04563272015-02-01 16:56:15 +0000938 assert(Ty->isPointerTy() && "Unexpected non-ptr");
939
940 // Make sure that the pointer does not point to aggregate types.
Craig Toppere3dcce92015-08-01 22:20:21 +0000941 auto *PtrTy = cast<PointerType>(Ty);
Adam Nemet04563272015-02-01 16:56:15 +0000942 if (PtrTy->getElementType()->isAggregateType()) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000943 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
944 << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000945 return 0;
946 }
947
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000948 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000949
950 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000951 if (Assume && !AR)
Silviu Barangad68ed852016-03-23 15:29:30 +0000952 AR = PSE.getAsAddRec(Ptr);
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000953
Adam Nemet04563272015-02-01 16:56:15 +0000954 if (!AR) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000955 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
956 << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000957 return 0;
958 }
959
960 // The accesss function must stride over the innermost loop.
961 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000962 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000963 *Ptr << " SCEV: " << *AR << "\n");
Kyle Butta02ce982016-01-08 01:55:13 +0000964 return 0;
Adam Nemet04563272015-02-01 16:56:15 +0000965 }
966
967 // The address calculation must not wrap. Otherwise, a dependence could be
968 // inverted.
969 // An inbounds getelementptr that is a AddRec with a unit stride
970 // cannot wrap per definition. The unit stride requirement is checked later.
971 // An getelementptr without an inbounds attribute and unit stride would have
972 // to access the pointer value "0" which is undefined behavior in address
973 // space 0, therefore we can also vectorize this case.
974 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Elena Demikhovsky5f8cc0c2016-09-18 13:56:08 +0000975 bool IsNoWrapAddRec = !ShouldCheckWrap ||
976 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
977 isNoWrapAddRec(Ptr, AR, PSE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000978 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
979 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +0000980 if (Assume) {
981 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
982 IsNoWrapAddRec = true;
983 DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
984 << "LAA: Pointer: " << *Ptr << "\n"
985 << "LAA: SCEV: " << *AR << "\n"
986 << "LAA: Added an overflow assumption\n");
987 } else {
988 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
989 << *Ptr << " SCEV: " << *AR << "\n");
990 return 0;
991 }
Adam Nemet04563272015-02-01 16:56:15 +0000992 }
993
994 // Check the step is constant.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +0000995 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
Adam Nemet04563272015-02-01 16:56:15 +0000996
Adam Nemet943befe2015-07-09 00:03:22 +0000997 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000998 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
999 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001000 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001001 " SCEV: " << *AR << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001002 return 0;
1003 }
1004
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001005 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1006 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001007 const APInt &APStepVal = C->getAPInt();
Adam Nemet04563272015-02-01 16:56:15 +00001008
1009 // Huge step value - give up.
1010 if (APStepVal.getBitWidth() > 64)
1011 return 0;
1012
1013 int64_t StepVal = APStepVal.getSExtValue();
1014
1015 // Strided access.
1016 int64_t Stride = StepVal / Size;
1017 int64_t Rem = StepVal % Size;
1018 if (Rem)
1019 return 0;
1020
1021 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1022 // know we can't "wrap around the address space". In case of address space
1023 // zero we know that this won't happen without triggering undefined behavior.
1024 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Silviu Barangaea63a7f2016-02-08 17:02:45 +00001025 Stride != 1 && Stride != -1) {
1026 if (Assume) {
1027 // We can avoid this case by adding a run-time check.
1028 DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1029 << "inbouds or in address space 0 may wrap:\n"
1030 << "LAA: Pointer: " << *Ptr << "\n"
1031 << "LAA: SCEV: " << *AR << "\n"
1032 << "LAA: Added an overflow assumption\n");
1033 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1034 } else
1035 return 0;
1036 }
Adam Nemet04563272015-02-01 16:56:15 +00001037
1038 return Stride;
1039}
1040
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001041/// Take the pointer operand from the Load/Store instruction.
1042/// Returns NULL if this is not a valid Load/Store instruction.
1043static Value *getPointerOperand(Value *I) {
David Majnemer8b401012016-07-12 20:31:46 +00001044 if (auto *LI = dyn_cast<LoadInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001045 return LI->getPointerOperand();
David Majnemer8b401012016-07-12 20:31:46 +00001046 if (auto *SI = dyn_cast<StoreInst>(I))
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001047 return SI->getPointerOperand();
1048 return nullptr;
1049}
1050
1051/// Take the address space operand from the Load/Store instruction.
1052/// Returns -1 if this is not a valid Load/Store instruction.
1053static unsigned getAddressSpaceOperand(Value *I) {
1054 if (LoadInst *L = dyn_cast<LoadInst>(I))
1055 return L->getPointerAddressSpace();
1056 if (StoreInst *S = dyn_cast<StoreInst>(I))
1057 return S->getPointerAddressSpace();
1058 return -1;
1059}
1060
Mohammad Shahid31213342017-01-28 17:59:44 +00001061/// Saves the memory accesses after sorting it into vector argument 'Sorted'.
1062void llvm::sortMemAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1063 ScalarEvolution &SE,
1064 SmallVectorImpl<Value *> &Sorted) {
1065 SmallVector<std::pair<int, Value *>, 4> OffValPairs;
1066 for (auto *Val : VL) {
1067 // Compute the constant offset from the base pointer of each memory accesses
1068 // and insert into the vector of key,value pair which needs to be sorted.
1069 Value *Ptr = getPointerOperand(Val);
1070 unsigned AS = getAddressSpaceOperand(Val);
1071 unsigned PtrBitWidth = DL.getPointerSizeInBits(AS);
1072 Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
1073 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1074
1075 // FIXME: Currently the offsets are assumed to be constant.However this not
1076 // always true as offsets can be variables also and we would need to
1077 // consider the difference of the variable offsets.
1078 APInt Offset(PtrBitWidth, 0);
1079 Ptr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1080 OffValPairs.push_back(std::make_pair(Offset.getSExtValue(), Val));
1081 }
1082 std::sort(OffValPairs.begin(), OffValPairs.end(),
1083 [](const std::pair<int, Value *> &Left,
1084 const std::pair<int, Value *> &Right) {
1085 return Left.first < Right.first;
1086 });
1087
1088 for (auto& it : OffValPairs)
1089 Sorted.push_back(it.second);
1090}
1091
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001092/// Returns true if the memory operations \p A and \p B are consecutive.
1093bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1094 ScalarEvolution &SE, bool CheckType) {
1095 Value *PtrA = getPointerOperand(A);
1096 Value *PtrB = getPointerOperand(B);
1097 unsigned ASA = getAddressSpaceOperand(A);
1098 unsigned ASB = getAddressSpaceOperand(B);
1099
1100 // Check that the address spaces match and that the pointers are valid.
1101 if (!PtrA || !PtrB || (ASA != ASB))
1102 return false;
1103
1104 // Make sure that A and B are different pointers.
1105 if (PtrA == PtrB)
1106 return false;
1107
1108 // Make sure that A and B have the same type if required.
Chad Rosier83a12032016-08-31 18:37:52 +00001109 if (CheckType && PtrA->getType() != PtrB->getType())
1110 return false;
Haicheng Wuf1c00a22016-01-26 02:27:47 +00001111
1112 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1113 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1114 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1115
1116 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1117 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1118 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1119
1120 // OffsetDelta = OffsetB - OffsetA;
1121 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1122 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1123 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1124 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
1125 const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
1126 // Check if they are based on the same pointer. That makes the offsets
1127 // sufficient.
1128 if (PtrA == PtrB)
1129 return OffsetDelta == Size;
1130
1131 // Compute the necessary base pointer delta to have the necessary final delta
1132 // equal to the size.
1133 // BaseDelta = Size - OffsetDelta;
1134 const SCEV *SizeSCEV = SE.getConstant(Size);
1135 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1136
1137 // Otherwise compute the distance with SCEV between the base pointers.
1138 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1139 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1140 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1141 return X == PtrSCEVB;
1142}
1143
Adam Nemet9c926572015-03-10 17:40:37 +00001144bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1145 switch (Type) {
1146 case NoDep:
1147 case Forward:
1148 case BackwardVectorizable:
1149 return true;
1150
1151 case Unknown:
1152 case ForwardButPreventsForwarding:
1153 case Backward:
1154 case BackwardVectorizableButPreventsForwarding:
1155 return false;
1156 }
David Majnemerd388e932015-03-10 20:23:29 +00001157 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001158}
1159
Adam Nemet397f5822015-11-03 23:50:03 +00001160bool MemoryDepChecker::Dependence::isBackward() const {
Adam Nemet9c926572015-03-10 17:40:37 +00001161 switch (Type) {
1162 case NoDep:
1163 case Forward:
1164 case ForwardButPreventsForwarding:
Adam Nemet397f5822015-11-03 23:50:03 +00001165 case Unknown:
Adam Nemet9c926572015-03-10 17:40:37 +00001166 return false;
1167
Adam Nemet9c926572015-03-10 17:40:37 +00001168 case BackwardVectorizable:
1169 case Backward:
1170 case BackwardVectorizableButPreventsForwarding:
1171 return true;
1172 }
David Majnemerd388e932015-03-10 20:23:29 +00001173 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +00001174}
1175
Adam Nemet397f5822015-11-03 23:50:03 +00001176bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1177 return isBackward() || Type == Unknown;
1178}
1179
1180bool MemoryDepChecker::Dependence::isForward() const {
1181 switch (Type) {
1182 case Forward:
1183 case ForwardButPreventsForwarding:
1184 return true;
1185
1186 case NoDep:
1187 case Unknown:
1188 case BackwardVectorizable:
1189 case Backward:
1190 case BackwardVectorizableButPreventsForwarding:
1191 return false;
1192 }
1193 llvm_unreachable("unexpected DepType!");
1194}
1195
David Majnemer7afb46d2016-07-07 06:24:36 +00001196bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1197 uint64_t TypeByteSize) {
Adam Nemet04563272015-02-01 16:56:15 +00001198 // If loads occur at a distance that is not a multiple of a feasible vector
1199 // factor store-load forwarding does not take place.
1200 // Positive dependences might cause troubles because vectorizing them might
1201 // prevent store-load forwarding making vectorized code run a lot slower.
1202 // a[i] = a[i-3] ^ a[i-8];
1203 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1204 // hence on your typical architecture store-load forwarding does not take
1205 // place. Vectorizing in such cases does not make sense.
1206 // Store-load forwarding distance.
Adam Nemet884d3132016-05-16 16:57:47 +00001207
1208 // After this many iterations store-to-load forwarding conflicts should not
1209 // cause any slowdowns.
David Majnemer7afb46d2016-07-07 06:24:36 +00001210 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
Adam Nemet04563272015-02-01 16:56:15 +00001211 // Maximum vector factor.
David Majnemer7afb46d2016-07-07 06:24:36 +00001212 uint64_t MaxVFWithoutSLForwardIssues = std::min(
Adam Nemet2c34ab52016-05-12 21:41:53 +00001213 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001214
Adam Nemet884d3132016-05-16 16:57:47 +00001215 // Compute the smallest VF at which the store and load would be misaligned.
David Majnemer7afb46d2016-07-07 06:24:36 +00001216 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
Adam Nemet9b5852a2016-05-16 16:57:42 +00001217 VF *= 2) {
Adam Nemet884d3132016-05-16 16:57:47 +00001218 // If the number of vector iteration between the store and the load are
1219 // small we could incur conflicts.
1220 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
Adam Nemet9b5852a2016-05-16 16:57:42 +00001221 MaxVFWithoutSLForwardIssues = (VF >>= 1);
Adam Nemet04563272015-02-01 16:56:15 +00001222 break;
1223 }
1224 }
1225
Adam Nemet9b5852a2016-05-16 16:57:42 +00001226 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1227 DEBUG(dbgs() << "LAA: Distance " << Distance
1228 << " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +00001229 return true;
1230 }
1231
1232 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +00001233 MaxVFWithoutSLForwardIssues !=
Adam Nemet9b5852a2016-05-16 16:57:42 +00001234 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +00001235 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1236 return false;
1237}
1238
Hao Liu751004a2015-06-08 04:48:37 +00001239/// \brief Check the dependence for two accesses with the same stride \p Stride.
1240/// \p Distance is the positive distance and \p TypeByteSize is type size in
1241/// bytes.
1242///
1243/// \returns true if they are independent.
David Majnemer7afb46d2016-07-07 06:24:36 +00001244static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1245 uint64_t TypeByteSize) {
Hao Liu751004a2015-06-08 04:48:37 +00001246 assert(Stride > 1 && "The stride must be greater than 1");
1247 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1248 assert(Distance > 0 && "The distance must be non-zero");
1249
1250 // Skip if the distance is not multiple of type byte size.
1251 if (Distance % TypeByteSize)
1252 return false;
1253
David Majnemer7afb46d2016-07-07 06:24:36 +00001254 uint64_t ScaledDist = Distance / TypeByteSize;
Hao Liu751004a2015-06-08 04:48:37 +00001255
1256 // No dependence if the scaled distance is not multiple of the stride.
1257 // E.g.
1258 // for (i = 0; i < 1024 ; i += 4)
1259 // A[i+2] = A[i] + 1;
1260 //
1261 // Two accesses in memory (scaled distance is 2, stride is 4):
1262 // | A[0] | | | | A[4] | | | |
1263 // | | | A[2] | | | | A[6] | |
1264 //
1265 // E.g.
1266 // for (i = 0; i < 1024 ; i += 3)
1267 // A[i+4] = A[i] + 1;
1268 //
1269 // Two accesses in memory (scaled distance is 4, stride is 3):
1270 // | A[0] | | | A[3] | | | A[6] | | |
1271 // | | | | | A[4] | | | A[7] | |
1272 return ScaledDist % Stride;
1273}
1274
Adam Nemet9c926572015-03-10 17:40:37 +00001275MemoryDepChecker::Dependence::DepType
1276MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1277 const MemAccessInfo &B, unsigned BIdx,
1278 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001279 assert (AIdx < BIdx && "Must pass arguments in program order");
1280
1281 Value *APtr = A.getPointer();
1282 Value *BPtr = B.getPointer();
1283 bool AIsWrite = A.getInt();
1284 bool BIsWrite = B.getInt();
1285
1286 // Two reads are independent.
1287 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001288 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001289
1290 // We cannot check pointers in different address spaces.
1291 if (APtr->getType()->getPointerAddressSpace() !=
1292 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001293 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001294
David Majnemer7afb46d2016-07-07 06:24:36 +00001295 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1296 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
Adam Nemet04563272015-02-01 16:56:15 +00001297
Silviu Barangaadf4b732016-05-10 12:28:49 +00001298 const SCEV *Src = PSE.getSCEV(APtr);
1299 const SCEV *Sink = PSE.getSCEV(BPtr);
Adam Nemet04563272015-02-01 16:56:15 +00001300
1301 // If the induction step is negative we have to invert source and sink of the
1302 // dependence.
1303 if (StrideAPtr < 0) {
Adam Nemet04563272015-02-01 16:56:15 +00001304 std::swap(APtr, BPtr);
1305 std::swap(Src, Sink);
1306 std::swap(AIsWrite, BIsWrite);
1307 std::swap(AIdx, BIdx);
1308 std::swap(StrideAPtr, StrideBPtr);
1309 }
1310
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001311 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
Adam Nemet04563272015-02-01 16:56:15 +00001312
Adam Nemet339f42b2015-02-19 19:15:07 +00001313 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001314 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001315 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00001316 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001317
Adam Nemet943befe2015-07-09 00:03:22 +00001318 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001319 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1320 // the address space.
1321 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001322 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001323 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001324 }
1325
1326 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1327 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001328 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001329 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001330 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001331 }
1332
1333 Type *ATy = APtr->getType()->getPointerElementType();
1334 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001335 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
David Majnemer7afb46d2016-07-07 06:24:36 +00001336 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001337
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001338 const APInt &Val = C->getAPInt();
Matthew Simpson6feebe92016-05-19 15:37:19 +00001339 int64_t Distance = Val.getSExtValue();
David Majnemer7afb46d2016-07-07 06:24:36 +00001340 uint64_t Stride = std::abs(StrideAPtr);
Matthew Simpson6feebe92016-05-19 15:37:19 +00001341
1342 // Attempt to prove strided accesses independent.
1343 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1344 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1345 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1346 return Dependence::NoDep;
1347 }
1348
1349 // Negative distances are not plausible dependencies.
Adam Nemet04563272015-02-01 16:56:15 +00001350 if (Val.isNegative()) {
1351 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001352 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001353 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
Adam Nemetb8486e52016-03-01 00:50:08 +00001354 ATy != BTy)) {
1355 DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001356 return Dependence::ForwardButPreventsForwarding;
Adam Nemetb8486e52016-03-01 00:50:08 +00001357 }
Adam Nemet04563272015-02-01 16:56:15 +00001358
Adam Nemet724ab222016-05-05 23:41:28 +00001359 DEBUG(dbgs() << "LAA: Dependence is negative\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001360 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001361 }
1362
1363 // Write to the same location with the same size.
1364 // Could be improved to assert type sizes are the same (i32 == float, etc).
1365 if (Val == 0) {
1366 if (ATy == BTy)
Adam Nemetd7037c52015-11-03 20:13:43 +00001367 return Dependence::Forward;
Adam Nemet339f42b2015-02-19 19:15:07 +00001368 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001369 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001370 }
1371
1372 assert(Val.isStrictlyPositive() && "Expect a positive value");
1373
Adam Nemet04563272015-02-01 16:56:15 +00001374 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001375 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001376 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001377 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001378 }
1379
Adam Nemet04563272015-02-01 16:56:15 +00001380 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001381 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1382 VectorizerParams::VectorizationFactor : 1);
1383 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1384 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001385 // The minimum number of iterations for a vectorized/unrolled version.
1386 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001387
Hao Liu751004a2015-06-08 04:48:37 +00001388 // It's not vectorizable if the distance is smaller than the minimum distance
1389 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1390 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1391 // TypeByteSize (No need to plus the last gap distance).
1392 //
1393 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1394 // foo(int *A) {
1395 // int *B = (int *)((char *)A + 14);
1396 // for (i = 0 ; i < 1024 ; i += 2)
1397 // B[i] = A[i] + 1;
1398 // }
1399 //
1400 // Two accesses in memory (stride is 2):
1401 // | A[0] | | A[2] | | A[4] | | A[6] | |
1402 // | B[0] | | B[2] | | B[4] |
1403 //
1404 // Distance needs for vectorizing iterations except the last iteration:
1405 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1406 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1407 //
1408 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1409 // 12, which is less than distance.
1410 //
1411 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1412 // the minimum distance needed is 28, which is greater than distance. It is
1413 // not safe to do vectorization.
David Majnemer7afb46d2016-07-07 06:24:36 +00001414 uint64_t MinDistanceNeeded =
Hao Liu751004a2015-06-08 04:48:37 +00001415 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
David Majnemer7afb46d2016-07-07 06:24:36 +00001416 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
Hao Liu751004a2015-06-08 04:48:37 +00001417 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1418 << '\n');
1419 return Dependence::Backward;
1420 }
1421
1422 // Unsafe if the minimum distance needed is greater than max safe distance.
1423 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1424 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1425 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001426 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001427 }
1428
Adam Nemet9cc0c392015-02-26 17:58:48 +00001429 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001430 // FIXME: Should use max factor instead of max distance in bytes, which could
1431 // not handle different types.
1432 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1433 // void foo (int *A, char *B) {
1434 // for (unsigned i = 0; i < 1024; i++) {
1435 // A[i+2] = A[i] + 1;
1436 // B[i+2] = B[i] + 1;
1437 // }
1438 // }
1439 //
1440 // This case is currently unsafe according to the max safe distance. If we
1441 // analyze the two accesses on array B, the max safe dependence distance
1442 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1443 // is 8, which is less than 2 and forbidden vectorization, But actually
1444 // both A and B could be vectorized by 2 iterations.
1445 MaxSafeDepDistBytes =
David Majnemer7afb46d2016-07-07 06:24:36 +00001446 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
Adam Nemet04563272015-02-01 16:56:15 +00001447
1448 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
Matthew Simpson37ec5f92016-05-16 17:00:56 +00001449 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
Adam Nemet04563272015-02-01 16:56:15 +00001450 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001451 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001452
Hao Liu751004a2015-06-08 04:48:37 +00001453 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1454 << " with max VF = "
1455 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001456
Adam Nemet9c926572015-03-10 17:40:37 +00001457 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001458}
1459
Adam Nemetdee666b2015-03-10 17:40:34 +00001460bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001461 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001462 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001463
David Majnemer7afb46d2016-07-07 06:24:36 +00001464 MaxSafeDepDistBytes = -1;
Adam Nemet04563272015-02-01 16:56:15 +00001465 while (!CheckDeps.empty()) {
1466 MemAccessInfo CurAccess = *CheckDeps.begin();
1467
1468 // Get the relevant memory access set.
1469 EquivalenceClasses<MemAccessInfo>::iterator I =
1470 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1471
1472 // Check accesses within this set.
Richard Trieu7a083812016-02-18 22:09:30 +00001473 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1474 AccessSets.member_begin(I);
1475 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1476 AccessSets.member_end();
Adam Nemet04563272015-02-01 16:56:15 +00001477
1478 // Check every access pair.
1479 while (AI != AE) {
1480 CheckDeps.erase(*AI);
1481 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1482 while (OI != AE) {
1483 // Check every accessing instruction pair in program order.
1484 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1485 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1486 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1487 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001488 auto A = std::make_pair(&*AI, *I1);
1489 auto B = std::make_pair(&*OI, *I2);
1490
1491 assert(*I1 != *I2);
1492 if (*I1 > *I2)
1493 std::swap(A, B);
1494
1495 Dependence::DepType Type =
1496 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1497 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1498
Adam Nemeta2df7502015-11-03 21:39:52 +00001499 // Gather dependences unless we accumulated MaxDependences
Adam Nemet9c926572015-03-10 17:40:37 +00001500 // dependences. In that case return as soon as we find the first
1501 // unsafe dependence. This puts a limit on this quadratic
1502 // algorithm.
Adam Nemeta2df7502015-11-03 21:39:52 +00001503 if (RecordDependences) {
1504 if (Type != Dependence::NoDep)
1505 Dependences.push_back(Dependence(A.second, B.second, Type));
Adam Nemet9c926572015-03-10 17:40:37 +00001506
Adam Nemeta2df7502015-11-03 21:39:52 +00001507 if (Dependences.size() >= MaxDependences) {
1508 RecordDependences = false;
1509 Dependences.clear();
Adam Nemet9c926572015-03-10 17:40:37 +00001510 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1511 }
1512 }
Adam Nemeta2df7502015-11-03 21:39:52 +00001513 if (!RecordDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001514 return false;
1515 }
1516 ++OI;
1517 }
1518 AI++;
1519 }
1520 }
Adam Nemet9c926572015-03-10 17:40:37 +00001521
Adam Nemeta2df7502015-11-03 21:39:52 +00001522 DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001523 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001524}
1525
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001526SmallVector<Instruction *, 4>
1527MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1528 MemAccessInfo Access(Ptr, isWrite);
1529 auto &IndexVector = Accesses.find(Access)->second;
1530
1531 SmallVector<Instruction *, 4> Insts;
David Majnemer2d006e72016-08-12 04:32:42 +00001532 transform(IndexVector,
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001533 std::back_inserter(Insts),
1534 [&](unsigned Idx) { return this->InstMap[Idx]; });
1535 return Insts;
1536}
1537
Adam Nemet58913d62015-03-10 17:40:43 +00001538const char *MemoryDepChecker::Dependence::DepName[] = {
1539 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1540 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1541
1542void MemoryDepChecker::Dependence::print(
1543 raw_ostream &OS, unsigned Depth,
1544 const SmallVectorImpl<Instruction *> &Instrs) const {
1545 OS.indent(Depth) << DepName[Type] << ":\n";
1546 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1547 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1548}
1549
Adam Nemet929c38e2015-02-19 19:15:10 +00001550bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001551 // We need to have a loop header.
Adam Nemetd8968f02016-01-18 21:16:33 +00001552 DEBUG(dbgs() << "LAA: Found a loop in "
1553 << TheLoop->getHeader()->getParent()->getName() << ": "
1554 << TheLoop->getHeader()->getName() << '\n');
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001555
Adam Nemetd8968f02016-01-18 21:16:33 +00001556 // We can only analyze innermost loops.
Adam Nemet929c38e2015-02-19 19:15:10 +00001557 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001558 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001559 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
Adam Nemet929c38e2015-02-19 19:15:10 +00001560 return false;
1561 }
1562
1563 // We must have a single backedge.
1564 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001565 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001566 recordAnalysis("CFGNotUnderstood")
1567 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001568 return false;
1569 }
1570
1571 // We must have a single exiting block.
1572 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001573 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001574 recordAnalysis("CFGNotUnderstood")
1575 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001576 return false;
1577 }
1578
1579 // We only handle bottom-tested loops, i.e. loop in which the condition is
1580 // checked at the end of each iteration. With that we can assume that all
1581 // instructions in the loop are executed the same number of times.
1582 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001583 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet877ccee2016-09-30 00:01:30 +00001584 recordAnalysis("CFGNotUnderstood")
1585 << "loop control flow is not understood by analyzer";
Adam Nemet929c38e2015-02-19 19:15:10 +00001586 return false;
1587 }
1588
Adam Nemet929c38e2015-02-19 19:15:10 +00001589 // ScalarEvolution needs to be able to find the exit count.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001590 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1591 if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001592 recordAnalysis("CantComputeNumberOfIterations")
1593 << "could not determine number of loop iterations";
Adam Nemet929c38e2015-02-19 19:15:10 +00001594 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1595 return false;
1596 }
1597
1598 return true;
1599}
1600
Adam Nemetb49d9a52016-07-13 22:36:27 +00001601void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
Adam Nemet7da74ab2016-07-13 22:36:35 +00001602 const TargetLibraryInfo *TLI,
1603 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001604 typedef SmallPtrSet<Value*, 16> ValueSet;
1605
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001606 // Holds the Load and Store instructions.
1607 SmallVector<LoadInst *, 16> Loads;
1608 SmallVector<StoreInst *, 16> Stores;
Adam Nemet04563272015-02-01 16:56:15 +00001609
1610 // Holds all the different accesses in the loop.
1611 unsigned NumReads = 0;
1612 unsigned NumReadWrites = 0;
1613
Xinliang David Lice030ac2016-06-22 23:20:59 +00001614 PtrRtChecking->Pointers.clear();
1615 PtrRtChecking->Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001616
1617 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001618
1619 // For each block.
David Majnemer8b401012016-07-12 20:31:46 +00001620 for (BasicBlock *BB : TheLoop->blocks()) {
Adam Nemet04563272015-02-01 16:56:15 +00001621 // Scan the BB and collect legal loads and stores.
David Majnemer8b401012016-07-12 20:31:46 +00001622 for (Instruction &I : *BB) {
Adam Nemet04563272015-02-01 16:56:15 +00001623 // If this is a load, save it. If this instruction can read from memory
1624 // but is not a load, then we quit. Notice that we don't handle function
1625 // calls that read or write.
David Majnemer8b401012016-07-12 20:31:46 +00001626 if (I.mayReadFromMemory()) {
Adam Nemet04563272015-02-01 16:56:15 +00001627 // Many math library functions read the rounding mode. We will only
1628 // vectorize a loop if it contains known function calls that don't set
1629 // the flag. Therefore, it is safe to ignore this read from memory.
David Majnemer8b401012016-07-12 20:31:46 +00001630 auto *Call = dyn_cast<CallInst>(&I);
David Majnemerb4b27232016-04-19 19:10:21 +00001631 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
Adam Nemet04563272015-02-01 16:56:15 +00001632 continue;
1633
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001634 // If the function has an explicit vectorized counterpart, we can safely
1635 // assume that it can be vectorized.
1636 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1637 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1638 continue;
1639
David Majnemer8b401012016-07-12 20:31:46 +00001640 auto *Ld = dyn_cast<LoadInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001641 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001642 recordAnalysis("NonSimpleLoad", Ld)
1643 << "read with atomic ordering or volatile read";
Adam Nemet339f42b2015-02-19 19:15:07 +00001644 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001645 CanVecMem = false;
1646 return;
Adam Nemet04563272015-02-01 16:56:15 +00001647 }
1648 NumLoads++;
1649 Loads.push_back(Ld);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001650 DepChecker->addAccess(Ld);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001651 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001652 collectStridedAccess(Ld);
Adam Nemet04563272015-02-01 16:56:15 +00001653 continue;
1654 }
1655
1656 // Save 'store' instructions. Abort if other instructions write to memory.
David Majnemer8b401012016-07-12 20:31:46 +00001657 if (I.mayWriteToMemory()) {
1658 auto *St = dyn_cast<StoreInst>(&I);
Adam Nemet04563272015-02-01 16:56:15 +00001659 if (!St) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001660 recordAnalysis("CantVectorizeInstruction", St)
1661 << "instruction cannot be vectorized";
Adam Nemet436018c2015-02-19 19:15:00 +00001662 CanVecMem = false;
1663 return;
Adam Nemet04563272015-02-01 16:56:15 +00001664 }
1665 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001666 recordAnalysis("NonSimpleStore", St)
1667 << "write with atomic ordering or volatile write";
Adam Nemet339f42b2015-02-19 19:15:07 +00001668 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001669 CanVecMem = false;
1670 return;
Adam Nemet04563272015-02-01 16:56:15 +00001671 }
1672 NumStores++;
1673 Stores.push_back(St);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001674 DepChecker->addAccess(St);
Adam Nemeta9f09c62016-06-17 22:35:41 +00001675 if (EnableMemAccessVersioning)
Adam Nemetc953bb92016-06-16 22:57:55 +00001676 collectStridedAccess(St);
Adam Nemet04563272015-02-01 16:56:15 +00001677 }
1678 } // Next instr.
1679 } // Next block.
1680
1681 // Now we have two lists that hold the loads and the stores.
1682 // Next, we find the pointers that they use.
1683
1684 // Check if we see any stores. If there are no stores, then we don't
1685 // care if the pointers are *restrict*.
1686 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001687 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001688 CanVecMem = true;
1689 return;
Adam Nemet04563272015-02-01 16:56:15 +00001690 }
1691
Adam Nemetdee666b2015-03-10 17:40:34 +00001692 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001693 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Xinliang David Li94734ee2016-07-01 05:59:55 +00001694 AA, LI, DependentAccesses, *PSE);
Adam Nemet04563272015-02-01 16:56:15 +00001695
1696 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1697 // multiple times on the same object. If the ptr is accessed twice, once
1698 // for read and once for write, it will only appear once (on the write
1699 // list). This is okay, since we are going to check for conflicts between
1700 // writes and between reads and writes, but not between reads and reads.
1701 ValueSet Seen;
1702
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001703 for (StoreInst *ST : Stores) {
1704 Value *Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001705 // Check for store to loop invariant address.
1706 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001707 // If we did *not* see this pointer before, insert it to the read-write
1708 // list. At this phase it is only a 'write' list.
1709 if (Seen.insert(Ptr).second) {
1710 ++NumReadWrites;
1711
Chandler Carruthac80dc72015-06-17 07:18:54 +00001712 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001713 // The TBAA metadata could have a control dependency on the predication
1714 // condition, so we cannot rely on it when determining whether or not we
1715 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001716 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001717 Loc.AATags.TBAA = nullptr;
1718
1719 Accesses.addStore(Loc);
1720 }
1721 }
1722
1723 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001724 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001725 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001726 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001727 CanVecMem = true;
1728 return;
Adam Nemet04563272015-02-01 16:56:15 +00001729 }
1730
Matthew Simpsone3e3b992016-06-06 14:15:41 +00001731 for (LoadInst *LD : Loads) {
1732 Value *Ptr = LD->getPointerOperand();
Adam Nemet04563272015-02-01 16:56:15 +00001733 // If we did *not* see this pointer before, insert it to the
1734 // read list. If we *did* see it before, then it is already in
1735 // the read-write list. This allows us to vectorize expressions
1736 // such as A[i] += x; Because the address of A[i] is a read-write
1737 // pointer. This only works if the index of A[i] is consecutive.
1738 // If the address of i is unknown (for example A[B[i]]) then we may
1739 // read a few words, modify, and write a few words, and some of the
1740 // words may be written to the same address.
1741 bool IsReadOnlyPtr = false;
Adam Nemet139ffba2016-06-16 08:27:03 +00001742 if (Seen.insert(Ptr).second ||
Xinliang David Li94734ee2016-07-01 05:59:55 +00001743 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001744 ++NumReads;
1745 IsReadOnlyPtr = true;
1746 }
1747
Chandler Carruthac80dc72015-06-17 07:18:54 +00001748 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001749 // The TBAA metadata could have a control dependency on the predication
1750 // condition, so we cannot rely on it when determining whether or not we
1751 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001752 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001753 Loc.AATags.TBAA = nullptr;
1754
1755 Accesses.addLoad(Loc, IsReadOnlyPtr);
1756 }
1757
1758 // If we write (or read-write) to a single destination and there are no
1759 // other reads in this loop then is it safe to vectorize.
1760 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001761 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001762 CanVecMem = true;
1763 return;
Adam Nemet04563272015-02-01 16:56:15 +00001764 }
1765
1766 // Build dependence sets and check whether we need a runtime pointer bounds
1767 // check.
1768 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001769
1770 // Find pointers with computable bounds. We are going to use this information
1771 // to place a runtime bound check.
Xinliang David Li94734ee2016-07-01 05:59:55 +00001772 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
Adam Nemet139ffba2016-06-16 08:27:03 +00001773 TheLoop, SymbolicStrides);
Adam Nemetee614742015-07-09 22:17:38 +00001774 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001775 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
Adam Nemetee614742015-07-09 22:17:38 +00001776 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1777 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001778 CanVecMem = false;
1779 return;
Adam Nemet04563272015-02-01 16:56:15 +00001780 }
1781
Adam Nemetee614742015-07-09 22:17:38 +00001782 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001783
Adam Nemet436018c2015-02-19 19:15:00 +00001784 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001785 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001786 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Xinliang David Lice030ac2016-06-22 23:20:59 +00001787 CanVecMem = DepChecker->areDepsSafe(
Adam Nemet139ffba2016-06-16 08:27:03 +00001788 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
Xinliang David Lice030ac2016-06-22 23:20:59 +00001789 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
Adam Nemet04563272015-02-01 16:56:15 +00001790
Xinliang David Lice030ac2016-06-22 23:20:59 +00001791 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001792 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001793
1794 // Clear the dependency checks. We assume they are not needed.
Xinliang David Lice030ac2016-06-22 23:20:59 +00001795 Accesses.resetDepChecks(*DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001796
Xinliang David Lice030ac2016-06-22 23:20:59 +00001797 PtrRtChecking->reset();
1798 PtrRtChecking->Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001799
Xinliang David Li94734ee2016-07-01 05:59:55 +00001800 auto *SE = PSE->getSE();
Xinliang David Lice030ac2016-06-22 23:20:59 +00001801 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
Adam Nemet139ffba2016-06-16 08:27:03 +00001802 SymbolicStrides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001803
Adam Nemet949e91a2015-03-10 19:12:41 +00001804 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001805 if (!CanDoRTIfNeeded) {
Adam Nemet877ccee2016-09-30 00:01:30 +00001806 recordAnalysis("CantCheckMemDepsAtRunTime")
1807 << "cannot check memory dependencies at runtime";
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001808 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001809 CanVecMem = false;
1810 return;
1811 }
1812
Adam Nemet04563272015-02-01 16:56:15 +00001813 CanVecMem = true;
1814 }
1815 }
1816
Adam Nemet4bb90a72015-03-10 21:47:39 +00001817 if (CanVecMem)
1818 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Xinliang David Lice030ac2016-06-22 23:20:59 +00001819 << (PtrRtChecking->Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001820 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001821 else {
Adam Nemet877ccee2016-09-30 00:01:30 +00001822 recordAnalysis("UnsafeMemDep")
Adam Nemet0a77dfa2016-05-09 23:03:44 +00001823 << "unsafe dependent memory operations in loop. Use "
1824 "#pragma loop distribute(enable) to allow loop distribution "
1825 "to attempt to isolate the offending operations into a separate "
Adam Nemet877ccee2016-09-30 00:01:30 +00001826 "loop";
Adam Nemet4bb90a72015-03-10 21:47:39 +00001827 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1828 }
Adam Nemet04563272015-02-01 16:56:15 +00001829}
1830
Adam Nemet01abb2c2015-02-18 03:43:19 +00001831bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1832 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001833 assert(TheLoop->contains(BB) && "Unknown block used");
1834
1835 // Blocks that do not dominate the latch need predication.
1836 BasicBlock* Latch = TheLoop->getLoopLatch();
1837 return !DT->dominates(BB, Latch);
1838}
1839
Adam Nemet877ccee2016-09-30 00:01:30 +00001840OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
1841 Instruction *I) {
Adam Nemetc9228532015-02-19 19:14:56 +00001842 assert(!Report && "Multiple reports generated");
Adam Nemet877ccee2016-09-30 00:01:30 +00001843
1844 Value *CodeRegion = TheLoop->getHeader();
1845 DebugLoc DL = TheLoop->getStartLoc();
1846
1847 if (I) {
1848 CodeRegion = I->getParent();
1849 // If there is no debug location attached to the instruction, revert back to
1850 // using the loop's.
1851 if (I->getDebugLoc())
1852 DL = I->getDebugLoc();
1853 }
1854
1855 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
1856 CodeRegion);
1857 return *Report;
Adam Nemet04563272015-02-01 16:56:15 +00001858}
1859
Adam Nemet57ac7662015-02-19 19:15:21 +00001860bool LoopAccessInfo::isUniform(Value *V) const {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +00001861 auto *SE = PSE->getSE();
1862 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
1863 // never considered uniform.
1864 // TODO: Is this really what we want? Even without FP SCEV, we may want some
1865 // trivially loop-invariant FP values to be considered uniform.
1866 if (!SE->isSCEVable(V->getType()))
1867 return false;
1868 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
Adam Nemet04563272015-02-01 16:56:15 +00001869}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001870
1871// FIXME: this function is currently a duplicate of the one in
1872// LoopVectorize.cpp.
1873static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1874 Instruction *Loc) {
1875 if (FirstInst)
1876 return FirstInst;
1877 if (Instruction *I = dyn_cast<Instruction>(V))
1878 return I->getParent() == Loc->getParent() ? I : nullptr;
1879 return nullptr;
1880}
1881
Benjamin Kramer039b1042015-10-28 13:54:36 +00001882namespace {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001883
Adam Nemet4e533ef2015-08-21 23:19:57 +00001884/// \brief IR Values for the lower and upper bounds of a pointer evolution. We
1885/// need to use value-handles because SCEV expansion can invalidate previously
1886/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1887/// a previous one.
Adam Nemet1da7df32015-07-26 05:32:14 +00001888struct PointerBounds {
Adam Nemet4e533ef2015-08-21 23:19:57 +00001889 TrackingVH<Value> Start;
1890 TrackingVH<Value> End;
Adam Nemet1da7df32015-07-26 05:32:14 +00001891};
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00001892
Benjamin Kramer039b1042015-10-28 13:54:36 +00001893} // end anonymous namespace
Adam Nemet7206d7a2015-02-06 18:31:04 +00001894
Adam Nemet1da7df32015-07-26 05:32:14 +00001895/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1896/// in \p TheLoop. \return the values for the bounds.
1897static PointerBounds
1898expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1899 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1900 const RuntimePointerChecking &PtrRtChecking) {
1901 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1902 const SCEV *Sc = SE->getSCEV(Ptr);
1903
Keno Fischer92f377b2016-12-05 21:25:03 +00001904 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1905 LLVMContext &Ctx = Loc->getContext();
1906
1907 // Use this type for pointer arithmetic.
1908 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1909
Adam Nemet1da7df32015-07-26 05:32:14 +00001910 if (SE->isLoopInvariant(Sc, TheLoop)) {
1911 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1912 << "\n");
Keno Fischer92f377b2016-12-05 21:25:03 +00001913 // Ptr could be in the loop body. If so, expand a new one at the correct
1914 // location.
1915 Instruction *Inst = dyn_cast<Instruction>(Ptr);
1916 Value *NewPtr = (Inst && TheLoop->contains(Inst))
1917 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1918 : Ptr;
1919 return {NewPtr, NewPtr};
Adam Nemet1da7df32015-07-26 05:32:14 +00001920 } else {
Adam Nemet1da7df32015-07-26 05:32:14 +00001921 Value *Start = nullptr, *End = nullptr;
Adam Nemet1da7df32015-07-26 05:32:14 +00001922 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1923 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1924 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1925 DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1926 return {Start, End};
1927 }
1928}
1929
1930/// \brief Turns a collection of checks into a collection of expanded upper and
1931/// lower bounds for both pointers in the check.
1932static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1933 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1934 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1935 const RuntimePointerChecking &PtrRtChecking) {
1936 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1937
1938 // Here we're relying on the SCEV Expander's cache to only emit code for the
1939 // same bounds once.
David Majnemer2d006e72016-08-12 04:32:42 +00001940 transform(
1941 PointerChecks, std::back_inserter(ChecksWithBounds),
Adam Nemet1da7df32015-07-26 05:32:14 +00001942 [&](const RuntimePointerChecking::PointerCheck &Check) {
NAKAMURA Takumi94abbbd2015-07-27 01:35:30 +00001943 PointerBounds
1944 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1945 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1946 return std::make_pair(First, Second);
Adam Nemet1da7df32015-07-26 05:32:14 +00001947 });
1948
1949 return ChecksWithBounds;
1950}
1951
Adam Nemet5b0a4792015-08-11 00:09:37 +00001952std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
Adam Nemet1da7df32015-07-26 05:32:14 +00001953 Instruction *Loc,
1954 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1955 const {
Adam Nemet1824e412016-07-13 22:18:51 +00001956 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
Xinliang David Li94734ee2016-07-01 05:59:55 +00001957 auto *SE = PSE->getSE();
Adam Nemet1824e412016-07-13 22:18:51 +00001958 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet1da7df32015-07-26 05:32:14 +00001959 auto ExpandedChecks =
Xinliang David Lice030ac2016-06-22 23:20:59 +00001960 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001961
1962 LLVMContext &Ctx = Loc->getContext();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001963 Instruction *FirstInst = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001964 IRBuilder<> ChkBuilder(Loc);
1965 // Our instructions might fold to a constant.
1966 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001967
Adam Nemet1da7df32015-07-26 05:32:14 +00001968 for (const auto &Check : ExpandedChecks) {
1969 const PointerBounds &A = Check.first, &B = Check.second;
Adam Nemetcdb791c2015-08-19 17:24:36 +00001970 // Check if two pointers (A and B) conflict where conflict is computed as:
1971 // start(A) <= end(B) && start(B) <= end(A)
Adam Nemet1da7df32015-07-26 05:32:14 +00001972 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1973 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
Adam Nemet7206d7a2015-02-06 18:31:04 +00001974
Adam Nemet1da7df32015-07-26 05:32:14 +00001975 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1976 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1977 "Trying to bounds check pointers with different address spaces");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001978
Adam Nemet1da7df32015-07-26 05:32:14 +00001979 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1980 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001981
Adam Nemet1da7df32015-07-26 05:32:14 +00001982 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1983 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1984 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1985 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001986
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001987 // [A|B].Start points to the first accessed byte under base [A|B].
1988 // [A|B].End points to the last accessed byte, plus one.
1989 // There is no conflict when the intervals are disjoint:
1990 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1991 //
1992 // bound0 = (B.Start < A.End)
1993 // bound1 = (A.Start < B.End)
1994 // IsConflict = bound0 & bound1
1995 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
Adam Nemet1da7df32015-07-26 05:32:14 +00001996 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Elena Demikhovsky3622fbf2016-08-28 08:53:53 +00001997 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
Adam Nemet1da7df32015-07-26 05:32:14 +00001998 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1999 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2000 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2001 if (MemoryRuntimeCheck) {
2002 IsConflict =
2003 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
Adam Nemet7206d7a2015-02-06 18:31:04 +00002004 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
Adam Nemet7206d7a2015-02-06 18:31:04 +00002005 }
Adam Nemet1da7df32015-07-26 05:32:14 +00002006 MemoryRuntimeCheck = IsConflict;
Adam Nemet7206d7a2015-02-06 18:31:04 +00002007 }
2008
Adam Nemet90fec842015-04-02 17:51:57 +00002009 if (!MemoryRuntimeCheck)
2010 return std::make_pair(nullptr, nullptr);
2011
Adam Nemet7206d7a2015-02-06 18:31:04 +00002012 // We have to do this trickery because the IRBuilder might fold the check to a
2013 // constant expression in which case there is no Instruction anchored in a
2014 // the block.
2015 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2016 ConstantInt::getTrue(Ctx));
2017 ChkBuilder.Insert(Check, "memcheck.conflict");
2018 FirstInst = getFirstInst(FirstInst, Check, Loc);
2019 return std::make_pair(FirstInst, Check);
2020}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002021
Adam Nemet5b0a4792015-08-11 00:09:37 +00002022std::pair<Instruction *, Instruction *>
2023LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002024 if (!PtrRtChecking->Need)
Adam Nemet1da7df32015-07-26 05:32:14 +00002025 return std::make_pair(nullptr, nullptr);
2026
Xinliang David Lice030ac2016-06-22 23:20:59 +00002027 return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
Adam Nemet1da7df32015-07-26 05:32:14 +00002028}
2029
Adam Nemetc953bb92016-06-16 22:57:55 +00002030void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2031 Value *Ptr = nullptr;
2032 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2033 Ptr = LI->getPointerOperand();
2034 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2035 Ptr = SI->getPointerOperand();
2036 else
2037 return;
2038
Xinliang David Li94734ee2016-07-01 05:59:55 +00002039 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
Adam Nemetc953bb92016-06-16 22:57:55 +00002040 if (!Stride)
2041 return;
2042
2043 DEBUG(dbgs() << "LAA: Found a strided access that we can version");
2044 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2045 SymbolicStrides[Ptr] = Stride;
2046 StrideSet.insert(Stride);
2047}
2048
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002049LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002050 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemeta9f09c62016-06-17 22:35:41 +00002051 DominatorTree *DT, LoopInfo *LI)
Xinliang David Li94734ee2016-07-01 05:59:55 +00002052 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
Xinliang David Lice030ac2016-06-22 23:20:59 +00002053 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
Xinliang David Li94734ee2016-07-01 05:59:55 +00002054 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
Adam Nemet7da74ab2016-07-13 22:36:35 +00002055 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2056 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00002057 if (canAnalyzeLoop())
Adam Nemet7da74ab2016-07-13 22:36:35 +00002058 analyzeLoop(AA, LI, TLI, DT);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002059}
2060
Adam Nemete91cc6e2015-02-19 19:15:19 +00002061void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2062 if (CanVecMem) {
Adam Nemet4ad38b62016-05-13 22:49:09 +00002063 OS.indent(Depth) << "Memory dependences are safe";
David Majnemer7afb46d2016-07-07 06:24:36 +00002064 if (MaxSafeDepDistBytes != -1ULL)
Adam Nemetc62e5542016-05-13 22:49:13 +00002065 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2066 << " bytes";
Xinliang David Lice030ac2016-06-22 23:20:59 +00002067 if (PtrRtChecking->Need)
Adam Nemet4ad38b62016-05-13 22:49:09 +00002068 OS << " with run-time checks";
2069 OS << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002070 }
2071
2072 if (Report)
Adam Nemet877ccee2016-09-30 00:01:30 +00002073 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002074
Xinliang David Lice030ac2016-06-22 23:20:59 +00002075 if (auto *Dependences = DepChecker->getDependences()) {
Adam Nemeta2df7502015-11-03 21:39:52 +00002076 OS.indent(Depth) << "Dependences:\n";
2077 for (auto &Dep : *Dependences) {
Xinliang David Lice030ac2016-06-22 23:20:59 +00002078 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
Adam Nemet58913d62015-03-10 17:40:43 +00002079 OS << "\n";
2080 }
2081 } else
Adam Nemeta2df7502015-11-03 21:39:52 +00002082 OS.indent(Depth) << "Too many dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00002083
2084 // List the pair of accesses need run-time checks to prove independence.
Xinliang David Lice030ac2016-06-22 23:20:59 +00002085 PtrRtChecking->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002086 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00002087
2088 OS.indent(Depth) << "Store to invariant address was "
2089 << (StoreToLoopInvariantAddress ? "" : "not ")
2090 << "found in loop.\n";
Silviu Barangae3c05342015-11-02 14:41:02 +00002091
2092 OS.indent(Depth) << "SCEV assumptions:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002093 PSE->getUnionPredicate().print(OS, Depth);
Silviu Barangab77365b2016-04-14 16:08:45 +00002094
2095 OS << "\n";
2096
2097 OS.indent(Depth) << "Expressions re-written:\n";
Xinliang David Li94734ee2016-07-01 05:59:55 +00002098 PSE->print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002099}
2100
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002101const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002102 auto &LAI = LoopAccessInfoMap[L];
2103
Adam Nemet1824e412016-07-13 22:18:51 +00002104 if (!LAI)
2105 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2106
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002107 return *LAI.get();
2108}
2109
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002110void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2111 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
Xinliang David Liecde1c72016-06-09 03:22:39 +00002112
Adam Nemete91cc6e2015-02-19 19:15:19 +00002113 for (Loop *TopLevelLoop : *LI)
2114 for (Loop *L : depth_first(TopLevelLoop)) {
2115 OS.indent(2) << L->getHeader()->getName() << ":\n";
Adam Nemetbdbc5222016-06-16 08:26:56 +00002116 auto &LAI = LAA.getInfo(L);
Adam Nemete91cc6e2015-02-19 19:15:19 +00002117 LAI.print(OS, 4);
2118 }
2119}
2120
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002121bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
Xinliang David Liecde1c72016-06-09 03:22:39 +00002122 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002123 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
Xinliang David Liecde1c72016-06-09 03:22:39 +00002124 TLI = TLIP ? &TLIP->getTLI() : nullptr;
2125 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2126 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2127 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002128
2129 return false;
2130}
2131
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002132void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002133 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth7b560d42015-09-09 17:55:00 +00002134 AU.addRequired<AAResultsWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002135 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00002136 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002137
2138 AU.setPreservesAll();
2139}
2140
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002141char LoopAccessLegacyAnalysis::ID = 0;
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002142static const char laa_name[] = "Loop Access Analysis";
2143#define LAA_NAME "loop-accesses"
2144
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002145INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Chandler Carruth7b560d42015-09-09 17:55:00 +00002146INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002147INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002148INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00002149INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002150INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002151
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002152AnalysisKey LoopAccessAnalysis::Key;
Xinliang David Li8a021312016-07-02 21:18:40 +00002153
Chandler Carruth410eaeb2017-01-11 06:23:21 +00002154LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2155 LoopStandardAnalysisResults &AR) {
2156 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
Xinliang David Li8a021312016-07-02 21:18:40 +00002157}
2158
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002159namespace llvm {
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002160
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002161 Pass *createLAAPass() {
Xinliang David Li7853c1d2016-07-08 20:55:26 +00002162 return new LoopAccessLegacyAnalysis();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00002163 }
Eugene Zelenkoa3fe70d2016-11-30 17:48:10 +00002164
2165} // end namespace llvm