blob: ea4e25188da0a8fb3041a60e60d8207cb6aa5556 [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
Misha Brukmanc88330a2005-04-21 23:38:14 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanc88330a2005-04-21 23:38:14 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerd92fb002002-10-25 22:55:53 +00009//
Chris Lattnerb4d58d72003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattnerd92fb002002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner27d24792002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner0d808742002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Owen Andersone2f23a32007-09-07 04:06:50 +000020#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000021#include "llvm/CodeGen/LiveVariables.h"
Dan Gohmancc78cdf2008-12-03 05:21:24 +000022#include "llvm/CodeGen/MachineConstantPool.h"
Hans Wennborg789acfb2012-06-01 16:27:21 +000023#include "llvm/CodeGen/MachineDominators.h"
Owen Anderson6bb0c522008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengc8c172e2006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Andrew Trick153ebe62013-10-31 22:11:56 +000027#include "llvm/CodeGen/StackMaps.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/DerivedTypes.h"
Eric Christopher79cc1e32014-09-02 22:28:02 +000029#include "llvm/IR/Function.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/LLVMContext.h"
Craig Topperb25fda92012-03-17 18:46:09 +000031#include "llvm/MC/MCAsmInfo.h"
Tom Roeder44cb65f2014-06-05 19:29:43 +000032#include "llvm/MC/MCExpr.h"
Chris Lattner6a5e7062010-04-26 23:37:21 +000033#include "llvm/MC/MCInst.h"
Owen Anderson2a3be7b2008-01-07 01:35:02 +000034#include "llvm/Support/CommandLine.h"
David Greened589daf2010-01-05 01:29:29 +000035#include "llvm/Support/Debug.h"
Torok Edwin6dd27302009-07-08 18:01:40 +000036#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
Evan Chenge95f3912007-09-25 01:57:46 +000038#include "llvm/Target/TargetOptions.h"
David Greene70fdd572009-11-12 20:55:29 +000039#include <limits>
40
Chandler Carruthd174b722014-04-22 02:03:14 +000041using namespace llvm;
42
Chandler Carruthe96dd892014-04-21 22:55:11 +000043#define DEBUG_TYPE "x86-instr-info"
44
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000045#define GET_INSTRINFO_CTOR_DTOR
Evan Cheng1e210d02011-06-28 20:07:07 +000046#include "X86GenInstrInfo.inc"
47
Chris Lattnera6f074f2009-08-23 03:41:05 +000048static cl::opt<bool>
49NoFusing("disable-spill-fusing",
50 cl::desc("Disable fusing of spill code into instructions"));
51static cl::opt<bool>
52PrintFailedFusing("print-failed-fuse-candidates",
53 cl::desc("Print instructions that the allocator wants to"
54 " fuse, but the X86 backend currently can't"),
55 cl::Hidden);
56static cl::opt<bool>
57ReMatPICStubLoad("remat-pic-stub-load",
58 cl::desc("Re-materialize load from stub in PIC mode"),
59 cl::init(false), cl::Hidden);
Owen Anderson2a3be7b2008-01-07 01:35:02 +000060
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000061enum {
62 // Select which memory operand is being unfolded.
Craig Topper1cac50b2012-06-23 08:01:18 +000063 // (stored in bits 0 - 3)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000064 TB_INDEX_0 = 0,
65 TB_INDEX_1 = 1,
66 TB_INDEX_2 = 2,
Elena Demikhovsky602f3a22012-05-31 09:20:20 +000067 TB_INDEX_3 = 3,
Robert Khasanov79fb7292014-12-18 12:28:22 +000068 TB_INDEX_4 = 4,
Craig Topper1cac50b2012-06-23 08:01:18 +000069 TB_INDEX_MASK = 0xf,
70
71 // Do not insert the reverse map (MemOp -> RegOp) into the table.
72 // This may be needed because there is a many -> one mapping.
73 TB_NO_REVERSE = 1 << 4,
74
75 // Do not insert the forward map (RegOp -> MemOp) into the table.
76 // This is needed for Native Client, which prohibits branch
77 // instructions from using a memory operand.
78 TB_NO_FORWARD = 1 << 5,
79
80 TB_FOLDED_LOAD = 1 << 6,
81 TB_FOLDED_STORE = 1 << 7,
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000082
83 // Minimum alignment required for load/store.
84 // Used for RegOp->MemOp conversion.
85 // (stored in bits 8 - 15)
86 TB_ALIGN_SHIFT = 8,
87 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
88 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
89 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
Elena Demikhovskycf5b1452013-08-11 07:55:09 +000090 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
Craig Topper1cac50b2012-06-23 08:01:18 +000091 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +000092};
93
Sanjay Patele951a382015-02-17 22:38:06 +000094struct X86MemoryFoldTableEntry {
Craig Topper2dac9622012-03-09 07:45:21 +000095 uint16_t RegOp;
96 uint16_t MemOp;
Craig Topper1cac50b2012-06-23 08:01:18 +000097 uint16_t Flags;
Craig Topper2dac9622012-03-09 07:45:21 +000098};
99
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +0000100// Pin the vtable to this file.
101void X86InstrInfo::anchor() {}
102
Eric Christopher6c786a12014-06-10 22:34:31 +0000103X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104 : X86GenInstrInfo(
Pavel Chupinbe9f1212014-09-22 13:11:35 +0000105 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
Eric Christopher6c786a12014-06-10 22:34:31 +0000107 Subtarget(STI), RI(STI) {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +0000108
Sanjay Patele951a382015-02-17 22:38:06 +0000109 static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000110 { X86::ADC32ri, X86::ADC32mi, 0 },
111 { X86::ADC32ri8, X86::ADC32mi8, 0 },
112 { X86::ADC32rr, X86::ADC32mr, 0 },
113 { X86::ADC64ri32, X86::ADC64mi32, 0 },
114 { X86::ADC64ri8, X86::ADC64mi8, 0 },
115 { X86::ADC64rr, X86::ADC64mr, 0 },
116 { X86::ADD16ri, X86::ADD16mi, 0 },
117 { X86::ADD16ri8, X86::ADD16mi8, 0 },
118 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
119 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
120 { X86::ADD16rr, X86::ADD16mr, 0 },
121 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
122 { X86::ADD32ri, X86::ADD32mi, 0 },
123 { X86::ADD32ri8, X86::ADD32mi8, 0 },
124 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
125 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
126 { X86::ADD32rr, X86::ADD32mr, 0 },
127 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
128 { X86::ADD64ri32, X86::ADD64mi32, 0 },
129 { X86::ADD64ri8, X86::ADD64mi8, 0 },
130 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
131 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
132 { X86::ADD64rr, X86::ADD64mr, 0 },
133 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
134 { X86::ADD8ri, X86::ADD8mi, 0 },
135 { X86::ADD8rr, X86::ADD8mr, 0 },
136 { X86::AND16ri, X86::AND16mi, 0 },
137 { X86::AND16ri8, X86::AND16mi8, 0 },
138 { X86::AND16rr, X86::AND16mr, 0 },
139 { X86::AND32ri, X86::AND32mi, 0 },
140 { X86::AND32ri8, X86::AND32mi8, 0 },
141 { X86::AND32rr, X86::AND32mr, 0 },
142 { X86::AND64ri32, X86::AND64mi32, 0 },
143 { X86::AND64ri8, X86::AND64mi8, 0 },
144 { X86::AND64rr, X86::AND64mr, 0 },
145 { X86::AND8ri, X86::AND8mi, 0 },
146 { X86::AND8rr, X86::AND8mr, 0 },
147 { X86::DEC16r, X86::DEC16m, 0 },
148 { X86::DEC32r, X86::DEC32m, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000149 { X86::DEC64r, X86::DEC64m, 0 },
150 { X86::DEC8r, X86::DEC8m, 0 },
151 { X86::INC16r, X86::INC16m, 0 },
152 { X86::INC32r, X86::INC32m, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000153 { X86::INC64r, X86::INC64m, 0 },
154 { X86::INC8r, X86::INC8m, 0 },
155 { X86::NEG16r, X86::NEG16m, 0 },
156 { X86::NEG32r, X86::NEG32m, 0 },
157 { X86::NEG64r, X86::NEG64m, 0 },
158 { X86::NEG8r, X86::NEG8m, 0 },
159 { X86::NOT16r, X86::NOT16m, 0 },
160 { X86::NOT32r, X86::NOT32m, 0 },
161 { X86::NOT64r, X86::NOT64m, 0 },
162 { X86::NOT8r, X86::NOT8m, 0 },
163 { X86::OR16ri, X86::OR16mi, 0 },
164 { X86::OR16ri8, X86::OR16mi8, 0 },
165 { X86::OR16rr, X86::OR16mr, 0 },
166 { X86::OR32ri, X86::OR32mi, 0 },
167 { X86::OR32ri8, X86::OR32mi8, 0 },
168 { X86::OR32rr, X86::OR32mr, 0 },
169 { X86::OR64ri32, X86::OR64mi32, 0 },
170 { X86::OR64ri8, X86::OR64mi8, 0 },
171 { X86::OR64rr, X86::OR64mr, 0 },
172 { X86::OR8ri, X86::OR8mi, 0 },
173 { X86::OR8rr, X86::OR8mr, 0 },
174 { X86::ROL16r1, X86::ROL16m1, 0 },
175 { X86::ROL16rCL, X86::ROL16mCL, 0 },
176 { X86::ROL16ri, X86::ROL16mi, 0 },
177 { X86::ROL32r1, X86::ROL32m1, 0 },
178 { X86::ROL32rCL, X86::ROL32mCL, 0 },
179 { X86::ROL32ri, X86::ROL32mi, 0 },
180 { X86::ROL64r1, X86::ROL64m1, 0 },
181 { X86::ROL64rCL, X86::ROL64mCL, 0 },
182 { X86::ROL64ri, X86::ROL64mi, 0 },
183 { X86::ROL8r1, X86::ROL8m1, 0 },
184 { X86::ROL8rCL, X86::ROL8mCL, 0 },
185 { X86::ROL8ri, X86::ROL8mi, 0 },
186 { X86::ROR16r1, X86::ROR16m1, 0 },
187 { X86::ROR16rCL, X86::ROR16mCL, 0 },
188 { X86::ROR16ri, X86::ROR16mi, 0 },
189 { X86::ROR32r1, X86::ROR32m1, 0 },
190 { X86::ROR32rCL, X86::ROR32mCL, 0 },
191 { X86::ROR32ri, X86::ROR32mi, 0 },
192 { X86::ROR64r1, X86::ROR64m1, 0 },
193 { X86::ROR64rCL, X86::ROR64mCL, 0 },
194 { X86::ROR64ri, X86::ROR64mi, 0 },
195 { X86::ROR8r1, X86::ROR8m1, 0 },
196 { X86::ROR8rCL, X86::ROR8mCL, 0 },
197 { X86::ROR8ri, X86::ROR8mi, 0 },
198 { X86::SAR16r1, X86::SAR16m1, 0 },
199 { X86::SAR16rCL, X86::SAR16mCL, 0 },
200 { X86::SAR16ri, X86::SAR16mi, 0 },
201 { X86::SAR32r1, X86::SAR32m1, 0 },
202 { X86::SAR32rCL, X86::SAR32mCL, 0 },
203 { X86::SAR32ri, X86::SAR32mi, 0 },
204 { X86::SAR64r1, X86::SAR64m1, 0 },
205 { X86::SAR64rCL, X86::SAR64mCL, 0 },
206 { X86::SAR64ri, X86::SAR64mi, 0 },
207 { X86::SAR8r1, X86::SAR8m1, 0 },
208 { X86::SAR8rCL, X86::SAR8mCL, 0 },
209 { X86::SAR8ri, X86::SAR8mi, 0 },
210 { X86::SBB32ri, X86::SBB32mi, 0 },
211 { X86::SBB32ri8, X86::SBB32mi8, 0 },
212 { X86::SBB32rr, X86::SBB32mr, 0 },
213 { X86::SBB64ri32, X86::SBB64mi32, 0 },
214 { X86::SBB64ri8, X86::SBB64mi8, 0 },
215 { X86::SBB64rr, X86::SBB64mr, 0 },
216 { X86::SHL16rCL, X86::SHL16mCL, 0 },
217 { X86::SHL16ri, X86::SHL16mi, 0 },
218 { X86::SHL32rCL, X86::SHL32mCL, 0 },
219 { X86::SHL32ri, X86::SHL32mi, 0 },
220 { X86::SHL64rCL, X86::SHL64mCL, 0 },
221 { X86::SHL64ri, X86::SHL64mi, 0 },
222 { X86::SHL8rCL, X86::SHL8mCL, 0 },
223 { X86::SHL8ri, X86::SHL8mi, 0 },
224 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
225 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
226 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
227 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
228 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
229 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
230 { X86::SHR16r1, X86::SHR16m1, 0 },
231 { X86::SHR16rCL, X86::SHR16mCL, 0 },
232 { X86::SHR16ri, X86::SHR16mi, 0 },
233 { X86::SHR32r1, X86::SHR32m1, 0 },
234 { X86::SHR32rCL, X86::SHR32mCL, 0 },
235 { X86::SHR32ri, X86::SHR32mi, 0 },
236 { X86::SHR64r1, X86::SHR64m1, 0 },
237 { X86::SHR64rCL, X86::SHR64mCL, 0 },
238 { X86::SHR64ri, X86::SHR64mi, 0 },
239 { X86::SHR8r1, X86::SHR8m1, 0 },
240 { X86::SHR8rCL, X86::SHR8mCL, 0 },
241 { X86::SHR8ri, X86::SHR8mi, 0 },
242 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
243 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
244 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
245 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
246 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
247 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
248 { X86::SUB16ri, X86::SUB16mi, 0 },
249 { X86::SUB16ri8, X86::SUB16mi8, 0 },
250 { X86::SUB16rr, X86::SUB16mr, 0 },
251 { X86::SUB32ri, X86::SUB32mi, 0 },
252 { X86::SUB32ri8, X86::SUB32mi8, 0 },
253 { X86::SUB32rr, X86::SUB32mr, 0 },
254 { X86::SUB64ri32, X86::SUB64mi32, 0 },
255 { X86::SUB64ri8, X86::SUB64mi8, 0 },
256 { X86::SUB64rr, X86::SUB64mr, 0 },
257 { X86::SUB8ri, X86::SUB8mi, 0 },
258 { X86::SUB8rr, X86::SUB8mr, 0 },
259 { X86::XOR16ri, X86::XOR16mi, 0 },
260 { X86::XOR16ri8, X86::XOR16mi8, 0 },
261 { X86::XOR16rr, X86::XOR16mr, 0 },
262 { X86::XOR32ri, X86::XOR32mi, 0 },
263 { X86::XOR32ri8, X86::XOR32mi8, 0 },
264 { X86::XOR32rr, X86::XOR32mr, 0 },
265 { X86::XOR64ri32, X86::XOR64mi32, 0 },
266 { X86::XOR64ri8, X86::XOR64mi8, 0 },
267 { X86::XOR64rr, X86::XOR64mr, 0 },
268 { X86::XOR8ri, X86::XOR8mi, 0 },
269 { X86::XOR8rr, X86::XOR8mr, 0 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000270 };
271
Sanjay Patele951a382015-02-17 22:38:06 +0000272 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
273 unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
274 unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
275 unsigned Flags = MemoryFoldTable2Addr[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000276 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
277 RegOp, MemOp,
278 // Index 0, folded load and store, no alignment requirement.
279 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000280 }
281
Sanjay Patele951a382015-02-17 22:38:06 +0000282 static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000283 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
284 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
285 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
286 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
287 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000288 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
289 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
290 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
291 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
292 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
293 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
294 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
295 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
296 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
297 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
298 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
299 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
300 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
301 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
302 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
Craig Topperd09a9af2012-12-26 01:47:12 +0000303 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000304 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
305 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
306 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
307 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
308 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
309 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
310 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
311 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
312 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
313 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
314 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
315 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
316 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
317 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
318 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
319 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
320 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
321 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
322 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
325 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000326 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
327 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
328 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
329 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
330 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
331 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000332 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
333 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
334 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
335 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000336 { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
337 { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
Reid Klecknera580b6e2015-01-30 21:03:31 +0000356 { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000357 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
358 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
359 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000360 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000361
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000362 // AVX 128-bit versions of foldable instructions
Craig Topperd09a9af2012-12-26 01:47:12 +0000363 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
Craig Topperd78429f2012-01-14 18:14:53 +0000364 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000365 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
366 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
367 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
368 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
369 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
370 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
371 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
372 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
373 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000374 { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
375 { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000376
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000377 // AVX 256-bit foldable instructions
Craig Topperd78429f2012-01-14 18:14:53 +0000378 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000379 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
380 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
381 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
382 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000383 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000384
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000385 // AVX-512 foldable instructions
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000386 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
387 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
388 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
389 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
390 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
391 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
392 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000393 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
394 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000395 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000396 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000397
Robert Khasanov6d62c022014-09-26 09:48:50 +0000398 // AVX-512 foldable instructions (256-bit versions)
399 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
400 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
401 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
402 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
403 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
404 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
405 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
406 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
407 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
408 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000409
Robert Khasanov6d62c022014-09-26 09:48:50 +0000410 // AVX-512 foldable instructions (128-bit versions)
411 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
412 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
413 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
414 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
415 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
416 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
417 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
418 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
419 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000420 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000421
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000422 // F16C foldable instructions
423 { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
424 { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000425 };
426
Sanjay Patele951a382015-02-17 22:38:06 +0000427 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
428 unsigned RegOp = MemoryFoldTable0[i].RegOp;
429 unsigned MemOp = MemoryFoldTable0[i].MemOp;
430 unsigned Flags = MemoryFoldTable0[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000431 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
432 RegOp, MemOp, TB_INDEX_0 | Flags);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000433 }
434
Sanjay Patele951a382015-02-17 22:38:06 +0000435 static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000436 { X86::CMP16rr, X86::CMP16rm, 0 },
437 { X86::CMP32rr, X86::CMP32rm, 0 },
438 { X86::CMP64rr, X86::CMP64rm, 0 },
439 { X86::CMP8rr, X86::CMP8rm, 0 },
440 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
441 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
442 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
443 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
444 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
445 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
446 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
447 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
448 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
449 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000450 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
451 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
452 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
453 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
454 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
455 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
456 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
457 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000458 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
459 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000460 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
461 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000462 { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000463 { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000464 { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000465 { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000466 { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000467 { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000468 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
469 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
470 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
471 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
472 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
473 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
474 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
475 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000476 { X86::MOV16rr, X86::MOV16rm, 0 },
477 { X86::MOV32rr, X86::MOV32rm, 0 },
478 { X86::MOV64rr, X86::MOV64rm, 0 },
479 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
480 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
481 { X86::MOV8rr, X86::MOV8rm, 0 },
482 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
483 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000484 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
485 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
486 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
487 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000488 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
489 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
490 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
491 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
492 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
493 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
494 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
495 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
496 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
497 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000498 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
499 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
500 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
501 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
502 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
503 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000504 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
505 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
506 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000507 { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
508 { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
509 { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
510 { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
511 { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
512 { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
513 { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
514 { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
515 { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
516 { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
517 { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
518 { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
519 { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
520 { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
521 { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
522 { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
523 { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000524 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
525 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
526 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000527 { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000528 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
529 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000530 { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
531 { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000532 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
533 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
534 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
535 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
536 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000537 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000538 { X86::SQRTSDr, X86::SQRTSDm, 0 },
539 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
540 { X86::SQRTSSr, X86::SQRTSSm, 0 },
541 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
542 { X86::TEST16rr, X86::TEST16rm, 0 },
543 { X86::TEST32rr, X86::TEST32rm, 0 },
544 { X86::TEST64rr, X86::TEST64rm, 0 },
545 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000546 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000547 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
548 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000549
Bruno Cardoso Lopesab7afa92015-02-25 15:14:02 +0000550 // MMX version of foldable instructions
551 { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
552 { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
553 { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
554 { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
555 { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
556 { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
557 { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
558 { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
559 { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
560 { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
561
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000562 // AVX 128-bit versions of foldable instructions
563 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
564 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000565 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
566 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000567 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
568 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
Pete Cooper8bbce762012-06-14 22:12:58 +0000569 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
Craig Topper11913052012-06-15 07:02:58 +0000570 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
571 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
572 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
573 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
574 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
575 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
576 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
577 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
578 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000579 { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000580 { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000581 { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000582 { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000583 { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000584 { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000585 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
586 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000587 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
588 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
589 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
590 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
591 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
592 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
593 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
594 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000595 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
596 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
Craig Topperb2922162012-12-26 02:14:19 +0000597 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000598 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000599 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
600 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
Craig Topper81d1e592012-12-26 02:44:47 +0000601 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
602 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
603 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000604 { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
605 { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
606 { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
607 { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
608 { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000609 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
610 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000611 { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
612 { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
613 { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
614 { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
615 { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
616 { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
617 { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
618 { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
619 { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
620 { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
621 { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
622 { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000623 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
624 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
625 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +0000626 { X86::VPTESTrr, X86::VPTESTrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000627 { X86::VRCPPSr, X86::VRCPPSm, 0 },
628 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000629 { X86::VROUNDPDr, X86::VROUNDPDm, 0 },
630 { X86::VROUNDPSr, X86::VROUNDPSm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000631 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
632 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
633 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000634 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000635 { X86::VTESTPDrr, X86::VTESTPDrm, 0 },
636 { X86::VTESTPSrr, X86::VTESTPSrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000637 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000638 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000639
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000640 // AVX 256-bit foldable instructions
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000641 { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
Simon Pilgrim1fc483d2014-11-05 22:28:25 +0000642 { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000643 { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
Simon Pilgrimbf1e0792014-12-16 22:30:10 +0000644 { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000645 { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000646 { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
Simon Pilgrim615ab8e2014-11-06 22:15:41 +0000647 { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
648 { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000649 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
650 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000651 { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
Craig Toppera875b7c2012-01-19 08:50:38 +0000652 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
Simon Pilgrim7e6d5732015-01-22 22:39:59 +0000653 { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
654 { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +0000655 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +0000656 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000657 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
658 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
Simon Pilgrima2618672015-02-07 21:44:06 +0000659 { X86::VPTESTYrr, X86::VPTESTYrm, 0 },
Simon Pilgrima6367262014-10-25 08:11:20 +0000660 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
661 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000662 { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
663 { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
Simon Pilgrima6367262014-10-25 08:11:20 +0000664 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000665 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, 0 },
Simon Pilgrima6367262014-10-25 08:11:20 +0000666 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
667 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000668 { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
669 { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
Nadav Rotemee3552f2012-07-15 12:26:30 +0000670
Craig Topper182b00a2011-11-14 08:07:55 +0000671 // AVX2 foldable instructions
Sanjay Patel1a20fdf2015-02-17 22:09:54 +0000672
673 // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
674 // VBROADCASTS{SD}rm memory instructions were available from AVX1.
675 // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
676 // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
677 // so they don't need an equivalent limitation.
Simon Pilgrimd11b0132015-02-08 17:13:54 +0000678 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
679 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
680 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
Craig Topper81d1e592012-12-26 02:44:47 +0000681 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
682 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
683 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000684 { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 },
685 { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 },
686 { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 },
687 { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 },
688 { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 },
689 { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 },
690 { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 },
691 { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 },
692 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
693 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
694 { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 },
695 { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 },
696 { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
697 { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
698 { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
699 { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 },
700 { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 },
701 { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 },
702 { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
703 { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
704 { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
705 { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +0000706 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
707 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
708 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
Michael Liao2de86af2012-09-26 08:24:51 +0000709
Simon Pilgrimcd322542015-02-10 12:57:17 +0000710 // XOP foldable instructions
711 { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
712 { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
713 { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
714 { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
715 { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
716 { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
717 { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
718 { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
719 { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
720 { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
721 { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
722 { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
723 { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
724 { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
725 { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
726 { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
727 { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
728 { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
729 { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
730 { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
731 { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
732 { X86::VPROTBri, X86::VPROTBmi, 0 },
733 { X86::VPROTBrr, X86::VPROTBmr, 0 },
734 { X86::VPROTDri, X86::VPROTDmi, 0 },
735 { X86::VPROTDrr, X86::VPROTDmr, 0 },
736 { X86::VPROTQri, X86::VPROTQmi, 0 },
737 { X86::VPROTQrr, X86::VPROTQmr, 0 },
738 { X86::VPROTWri, X86::VPROTWmi, 0 },
739 { X86::VPROTWrr, X86::VPROTWmr, 0 },
740 { X86::VPSHABrr, X86::VPSHABmr, 0 },
741 { X86::VPSHADrr, X86::VPSHADmr, 0 },
742 { X86::VPSHAQrr, X86::VPSHAQmr, 0 },
743 { X86::VPSHAWrr, X86::VPSHAWmr, 0 },
744 { X86::VPSHLBrr, X86::VPSHLBmr, 0 },
745 { X86::VPSHLDrr, X86::VPSHLDmr, 0 },
746 { X86::VPSHLQrr, X86::VPSHLQmr, 0 },
747 { X86::VPSHLWrr, X86::VPSHLWmr, 0 },
748
Craig Topperc81e2942013-10-05 20:20:51 +0000749 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +0000750 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
751 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000752 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
753 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
754 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
755 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
756 { X86::BLCI32rr, X86::BLCI32rm, 0 },
757 { X86::BLCI64rr, X86::BLCI64rm, 0 },
758 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
759 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
760 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
761 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
762 { X86::BLCS32rr, X86::BLCS32rm, 0 },
763 { X86::BLCS64rr, X86::BLCS64rm, 0 },
764 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
765 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000766 { X86::BLSI32rr, X86::BLSI32rm, 0 },
767 { X86::BLSI64rr, X86::BLSI64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000768 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
769 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000770 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
771 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
772 { X86::BLSR32rr, X86::BLSR32rm, 0 },
773 { X86::BLSR64rr, X86::BLSR64rm, 0 },
774 { X86::BZHI32rr, X86::BZHI32rm, 0 },
775 { X86::BZHI64rr, X86::BZHI64rm, 0 },
776 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
777 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
778 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
779 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
780 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
781 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
Michael Liao2de86af2012-09-26 08:24:51 +0000782 { X86::RORX32ri, X86::RORX32mi, 0 },
783 { X86::RORX64ri, X86::RORX64mi, 0 },
Michael Liao2b425e12012-09-26 08:26:25 +0000784 { X86::SARX32rr, X86::SARX32rm, 0 },
785 { X86::SARX64rr, X86::SARX64rm, 0 },
786 { X86::SHRX32rr, X86::SHRX32rm, 0 },
787 { X86::SHRX64rr, X86::SHRX64rm, 0 },
788 { X86::SHLX32rr, X86::SHLX32rm, 0 },
789 { X86::SHLX64rr, X86::SHLX64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000790 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
791 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +0000792 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
793 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
794 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
Craig Topperc81e2942013-10-05 20:20:51 +0000795 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
796 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +0000797
798 // AVX-512 foldable instructions
799 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
800 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000801 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
802 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
Robert Khasanov7ca7df02014-08-04 14:35:15 +0000803 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
804 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
Robert Khasanov6d62c022014-09-26 09:48:50 +0000805 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
806 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
Robert Khasanov7ca7df02014-08-04 14:35:15 +0000807 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
808 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
Robert Khasanov3c30c4b2014-08-06 15:40:34 +0000809 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
810 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +0000811 { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
812 { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000813 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
814 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000815
Robert Khasanov6d62c022014-09-26 09:48:50 +0000816 // AVX-512 foldable instructions (256-bit versions)
817 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
818 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
819 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
820 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
821 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
822 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
823 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
824 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
825 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
826 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000827 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
828 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
Simon Pilgrimd142ab72015-02-10 13:22:57 +0000829
Robert Khasanov6d62c022014-09-26 09:48:50 +0000830 // AVX-512 foldable instructions (256-bit versions)
831 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
832 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
833 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
834 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
835 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
836 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
837 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
838 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
839 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
840 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +0000841 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
Simon Pilgrimcd322542015-02-10 12:57:17 +0000842
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000843 // F16C foldable instructions
844 { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
845 { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +0000846
Craig Topper514f02c2013-09-17 06:50:11 +0000847 // AES foldable instructions
848 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
849 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
Simon Pilgrim295eaad2015-02-12 20:01:03 +0000850 { X86::VAESIMCrr, X86::VAESIMCrm, 0 },
851 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000852 };
853
Sanjay Patele951a382015-02-17 22:38:06 +0000854 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
855 unsigned RegOp = MemoryFoldTable1[i].RegOp;
856 unsigned MemOp = MemoryFoldTable1[i].MemOp;
857 unsigned Flags = MemoryFoldTable1[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000858 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
859 RegOp, MemOp,
860 // Index 1, folded load
861 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +0000862 }
863
Sanjay Patele951a382015-02-17 22:38:06 +0000864 static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000865 { X86::ADC32rr, X86::ADC32rm, 0 },
866 { X86::ADC64rr, X86::ADC64rm, 0 },
867 { X86::ADD16rr, X86::ADD16rm, 0 },
868 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
869 { X86::ADD32rr, X86::ADD32rm, 0 },
870 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
871 { X86::ADD64rr, X86::ADD64rm, 0 },
872 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
873 { X86::ADD8rr, X86::ADD8rm, 0 },
874 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
875 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
876 { X86::ADDSDrr, X86::ADDSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000877 { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000878 { X86::ADDSSrr, X86::ADDSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000879 { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000880 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
881 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
882 { X86::AND16rr, X86::AND16rm, 0 },
883 { X86::AND32rr, X86::AND32rm, 0 },
884 { X86::AND64rr, X86::AND64rm, 0 },
885 { X86::AND8rr, X86::AND8rm, 0 },
886 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
887 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
888 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
889 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +0000890 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
891 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
892 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
893 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000894 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
895 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
896 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
897 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
898 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
899 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
900 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
901 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
902 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
903 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
904 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
905 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
906 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
907 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
908 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
909 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
910 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
911 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
912 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
913 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
914 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
915 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
916 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
917 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
918 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
919 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
920 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
921 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
922 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
923 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
924 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
925 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
926 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
927 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
928 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
929 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
930 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
931 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
932 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
933 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
934 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
935 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
936 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
937 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
938 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
939 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
940 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
941 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
942 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
943 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
944 { X86::CMPSDrr, X86::CMPSDrm, 0 },
945 { X86::CMPSSrr, X86::CMPSSrm, 0 },
946 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
947 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
948 { X86::DIVSDrr, X86::DIVSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000949 { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000950 { X86::DIVSSrr, X86::DIVSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000951 { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
952 { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
953 { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +0000954
955 // FIXME: We should not be folding Fs* scalar loads into vector
956 // instructions because the vector instructions require vector-sized
957 // loads. Lowering should create vector-sized instructions (the Fv*
958 // variants below) to allow load folding.
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000959 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
960 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
961 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
962 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
963 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
964 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
965 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
966 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +0000967
968 { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 },
969 { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 },
970 { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 },
971 { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 },
972 { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 },
973 { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 },
974 { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 },
975 { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000976 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
977 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
978 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
979 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
980 { X86::IMUL16rr, X86::IMUL16rm, 0 },
981 { X86::IMUL32rr, X86::IMUL32rm, 0 },
982 { X86::IMUL64rr, X86::IMUL64rm, 0 },
983 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
984 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
Manman Ren959acb12012-08-13 18:29:41 +0000985 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
986 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
987 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
988 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
989 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
990 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000991 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000992 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000993 { X86::MAXSDrr, X86::MAXSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000994 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000995 { X86::MAXSSrr, X86::MAXSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +0000996 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000997 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000998 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +0000999 { X86::MINSDrr, X86::MINSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001000 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001001 { X86::MINSSrr, X86::MINSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001002 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +00001003 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001004 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
1005 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
1006 { X86::MULSDrr, X86::MULSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001007 { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001008 { X86::MULSSrr, X86::MULSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001009 { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001010 { X86::OR16rr, X86::OR16rm, 0 },
1011 { X86::OR32rr, X86::OR32rm, 0 },
1012 { X86::OR64rr, X86::OR64rm, 0 },
1013 { X86::OR8rr, X86::OR8rm, 0 },
1014 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
1015 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
1016 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
1017 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001018 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001019 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
1020 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
1021 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
1022 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
1023 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
1024 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001025 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
1026 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001027 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001028 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001029 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
1030 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
1031 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
1032 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001033 { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
Craig Topperd78429f2012-01-14 18:14:53 +00001034 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001035 { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001036 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
1037 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001038 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001039 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
1040 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
1041 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001042 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001043 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001044 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
1045 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001046 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001047 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001048 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
Craig Topperce4f9c52012-01-25 05:37:32 +00001049 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001050 { X86::PINSRBrr, X86::PINSRBrm, 0 },
1051 { X86::PINSRDrr, X86::PINSRDrm, 0 },
1052 { X86::PINSRQrr, X86::PINSRQrm, 0 },
1053 { X86::PINSRWrri, X86::PINSRWrmi, 0 },
Craig Topper182b00a2011-11-14 08:07:55 +00001054 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001055 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
1056 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
1057 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
1058 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
1059 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
Benjamin Kramer4669d182012-12-21 14:04:55 +00001060 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
1061 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
1062 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
1063 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
1064 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
1065 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
1066 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
1067 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001068 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
Craig Topper182b00a2011-11-14 08:07:55 +00001069 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001070 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
1071 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
1072 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
1073 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
1074 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
1075 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
1076 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
Craig Topper78349002012-01-25 06:43:11 +00001077 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
1078 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
1079 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
1080 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001081 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
1082 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
1083 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
1084 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
1085 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
1086 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
1087 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
1088 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
1089 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
1090 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001091 { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001092 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
1093 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001094 { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
1095 { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001096 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
1097 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
1098 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
1099 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
1100 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
1101 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
1102 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
1103 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
1104 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
1105 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
1106 { X86::SBB32rr, X86::SBB32rm, 0 },
1107 { X86::SBB64rr, X86::SBB64rm, 0 },
1108 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
1109 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
1110 { X86::SUB16rr, X86::SUB16rm, 0 },
1111 { X86::SUB32rr, X86::SUB32rm, 0 },
1112 { X86::SUB64rr, X86::SUB64rm, 0 },
1113 { X86::SUB8rr, X86::SUB8rm, 0 },
1114 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
1115 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
1116 { X86::SUBSDrr, X86::SUBSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001117 { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001118 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001119 { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001120 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001121 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
1122 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
1123 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
1124 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
1125 { X86::XOR16rr, X86::XOR16rm, 0 },
1126 { X86::XOR32rr, X86::XOR32rm, 0 },
1127 { X86::XOR64rr, X86::XOR64rm, 0 },
1128 { X86::XOR8rr, X86::XOR8rm, 0 },
1129 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001130 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001131
Bruno Cardoso Lopesab7afa92015-02-25 15:14:02 +00001132 // MMX version of foldable instructions
1133 { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
1134 { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
1135 { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
1136 { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
1137 { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
1138 { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
1139 { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
1140 { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
1141 { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
1142 { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
1143 { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
1144 { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
1145 { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
1146 { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
1147 { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
1148 { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
1149 { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
1150 { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
1151 { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
1152 { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
1153 { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
1154 { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
1155 { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
1156 { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
1157 { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
1158 { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
1159 { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
1160 { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
1161 { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
1162 { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
1163 { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1164 { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
1165 { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
1166 { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
1167 { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
1168 { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
1169 { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
1170 { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
1171 { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
1172 { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
1173 { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
1174 { X86::MMX_PORirr, X86::MMX_PORirm, 0 },
1175 { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
1176 { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
1177 { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
1178 { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
1179 { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
1180 { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
1181 { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
1182 { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
1183 { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
1184 { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
1185 { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
1186 { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
1187 { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
1188 { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
1189 { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
1190 { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
1191 { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
1192 { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
1193 { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
1194 { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
1195 { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
1196 { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
1197 { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
1198 { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
1199 { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
1200 { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
1201 { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
1202 { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
1203
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001204 // AVX 128-bit versions of foldable instructions
1205 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
1206 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
1207 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
1208 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
1209 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
1210 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
1211 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
1212 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
1213 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
1214 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
Craig Toppercaef1c52012-12-26 00:35:47 +00001215 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
1216 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001217 { X86::VRCPSSr, X86::VRCPSSm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001218 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
1219 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
1220 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001221 { X86::VADDPDrr, X86::VADDPDrm, 0 },
1222 { X86::VADDPSrr, X86::VADDPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001223 { X86::VADDSDrr, X86::VADDSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001224 { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001225 { X86::VADDSSrr, X86::VADDSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001226 { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001227 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
1228 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
1229 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
1230 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
1231 { X86::VANDPDrr, X86::VANDPDrm, 0 },
1232 { X86::VANDPSrr, X86::VANDPSrm, 0 },
1233 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
1234 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
1235 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
1236 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
1237 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
1238 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001239 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
1240 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001241 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
1242 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001243 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001244 { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001245 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001246 { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
1247 { X86::VDPPDrri, X86::VDPPDrmi, 0 },
1248 { X86::VDPPSrri, X86::VDPPSrmi, 0 },
Sanjay Patelb811c1d2015-02-17 20:08:21 +00001249 // Do not fold VFs* loads because there are no scalar load variants for
1250 // these instructions. When folded, the load is required to be 128-bits, so
1251 // the load size would not match.
1252 { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 },
1253 { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 },
1254 { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 },
1255 { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 },
1256 { X86::VFvORPDrr, X86::VFvORPDrm, 0 },
1257 { X86::VFvORPSrr, X86::VFvORPSrm, 0 },
1258 { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 },
1259 { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001260 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
1261 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
1262 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
1263 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001264 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
1265 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001266 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001267 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001268 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001269 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001270 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001271 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001272 { X86::VMINPDrr, X86::VMINPDrm, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001273 { X86::VMINPSrr, X86::VMINPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001274 { X86::VMINSDrr, X86::VMINSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001275 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001276 { X86::VMINSSrr, X86::VMINSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001277 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
Craig Topper81d1e592012-12-26 02:44:47 +00001278 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
1279 { X86::VMULPDrr, X86::VMULPDrm, 0 },
1280 { X86::VMULPSrr, X86::VMULPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001281 { X86::VMULSDrr, X86::VMULSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001282 { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001283 { X86::VMULSSrr, X86::VMULSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001284 { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001285 { X86::VORPDrr, X86::VORPDrm, 0 },
1286 { X86::VORPSrr, X86::VORPSrm, 0 },
1287 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
1288 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
1289 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
1290 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
1291 { X86::VPADDBrr, X86::VPADDBrm, 0 },
1292 { X86::VPADDDrr, X86::VPADDDrm, 0 },
1293 { X86::VPADDQrr, X86::VPADDQrm, 0 },
1294 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
1295 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
1296 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
1297 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
1298 { X86::VPADDWrr, X86::VPADDWrm, 0 },
1299 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
1300 { X86::VPANDNrr, X86::VPANDNrm, 0 },
1301 { X86::VPANDrr, X86::VPANDrm, 0 },
1302 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
1303 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001304 { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001305 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001306 { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001307 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
1308 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
1309 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
1310 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
1311 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
1312 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
1313 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
1314 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
1315 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
1316 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
1317 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
1318 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
1319 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
1320 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
1321 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
1322 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001323 { X86::VPINSRBrr, X86::VPINSRBrm, 0 },
1324 { X86::VPINSRDrr, X86::VPINSRDrm, 0 },
1325 { X86::VPINSRQrr, X86::VPINSRQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001326 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
1327 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
1328 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
1329 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
1330 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
1331 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
1332 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
1333 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
1334 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
1335 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
1336 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
1337 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
1338 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
1339 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
1340 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
1341 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
1342 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
1343 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
1344 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
1345 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
1346 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
1347 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
1348 { X86::VPORrr, X86::VPORrm, 0 },
1349 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
1350 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
1351 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
1352 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
1353 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
1354 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
1355 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
1356 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
1357 { X86::VPSRADrr, X86::VPSRADrm, 0 },
1358 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
1359 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
1360 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
1361 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
1362 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
1363 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001364 { X86::VPSUBQrr, X86::VPSUBQrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001365 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
1366 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
Simon Pilgrim5fa0fb22015-01-21 23:43:30 +00001367 { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
1368 { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001369 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
1370 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
1371 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1372 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1373 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1374 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1375 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1376 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1377 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1378 { X86::VPXORrr, X86::VPXORrm, 0 },
1379 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1380 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1381 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1382 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001383 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001384 { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00001385 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001386 { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001387 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1388 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1389 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1390 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1391 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1392 { X86::VXORPSrr, X86::VXORPSrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001393
Craig Topperd78429f2012-01-14 18:14:53 +00001394 // AVX 256-bit foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001395 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1396 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1397 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1398 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1399 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1400 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1401 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1402 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1403 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1404 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1405 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1406 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1407 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1408 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1409 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1410 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
Simon Pilgrim20bc37c2015-01-19 22:40:45 +00001411 { X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001412 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1413 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1414 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1415 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1416 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1417 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001418 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001419 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001420 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001421 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1422 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1423 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1424 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1425 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1426 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1427 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1428 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1429 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1430 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1431 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1432 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1433 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1434 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1435 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1436 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1437 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001438
Craig Topper182b00a2011-11-14 08:07:55 +00001439 // AVX2 foldable instructions
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001440 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1441 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1442 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1443 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1444 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1445 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1446 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1447 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1448 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1449 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1450 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1451 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1452 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1453 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1454 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1455 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1456 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1457 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1458 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1459 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001460 { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001461 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1462 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1463 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1464 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1465 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1466 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1467 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1468 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1469 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1470 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1471 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001472 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001473 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1474 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1475 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1476 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1477 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1478 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1479 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1480 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1481 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1482 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1483 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1484 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1485 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1486 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1487 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1488 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1489 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1490 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1491 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1492 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1493 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1494 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1495 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1496 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1497 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1498 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1499 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1500 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1501 { X86::VPORYrr, X86::VPORYrm, 0 },
1502 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1503 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1504 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1505 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1506 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1507 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1508 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1509 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1510 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1511 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1512 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1513 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1514 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1515 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1516 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1517 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1518 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1519 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1520 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1521 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1522 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1523 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1524 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1525 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1526 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001527 { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001528 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1529 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
Simon Pilgrimd142ab72015-02-10 13:22:57 +00001530 { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
1531 { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
Nadav Rotemdc0ad922012-12-24 09:40:33 +00001532 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1533 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1534 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1535 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1536 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1537 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1538 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1539 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1540 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1541 { X86::VPXORYrr, X86::VPXORYrm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001542
1543 // FMA4 foldable patterns
Craig Topperf7e92f12015-02-10 05:10:50 +00001544 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
1545 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
1546 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 },
1547 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 },
1548 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 },
1549 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 },
1550 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
1551 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
1552 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 },
1553 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 },
1554 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 },
1555 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 },
1556 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
1557 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
1558 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 },
1559 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 },
1560 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 },
1561 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 },
1562 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
1563 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
1564 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 },
1565 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 },
1566 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 },
1567 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 },
1568 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 },
1569 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 },
1570 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 },
1571 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 },
1572 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 },
1573 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 },
1574 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 },
1575 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 },
Michael Liaof9f7b552012-09-26 08:22:37 +00001576
Simon Pilgrimcd322542015-02-10 12:57:17 +00001577 // XOP foldable instructions
1578 { X86::VPCMOVrr, X86::VPCMOVmr, 0 },
1579 { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 },
1580 { X86::VPCOMBri, X86::VPCOMBmi, 0 },
1581 { X86::VPCOMDri, X86::VPCOMDmi, 0 },
1582 { X86::VPCOMQri, X86::VPCOMQmi, 0 },
1583 { X86::VPCOMWri, X86::VPCOMWmi, 0 },
1584 { X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
1585 { X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
1586 { X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
1587 { X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
1588 { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
1589 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
1590 { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
1591 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
1592 { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
1593 { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
1594 { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
1595 { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
1596 { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
1597 { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
1598 { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
1599 { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
1600 { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
1601 { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
1602 { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
1603 { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
1604 { X86::VPPERMrr, X86::VPPERMmr, 0 },
1605 { X86::VPROTBrr, X86::VPROTBrm, 0 },
1606 { X86::VPROTDrr, X86::VPROTDrm, 0 },
1607 { X86::VPROTQrr, X86::VPROTQrm, 0 },
1608 { X86::VPROTWrr, X86::VPROTWrm, 0 },
1609 { X86::VPSHABrr, X86::VPSHABrm, 0 },
1610 { X86::VPSHADrr, X86::VPSHADrm, 0 },
1611 { X86::VPSHAQrr, X86::VPSHAQrm, 0 },
1612 { X86::VPSHAWrr, X86::VPSHAWrm, 0 },
1613 { X86::VPSHLBrr, X86::VPSHLBrm, 0 },
1614 { X86::VPSHLDrr, X86::VPSHLDrm, 0 },
1615 { X86::VPSHLQrr, X86::VPSHLQrm, 0 },
1616 { X86::VPSHLWrr, X86::VPSHLWrm, 0 },
1617
Michael Liaof9f7b552012-09-26 08:22:37 +00001618 // BMI/BMI2 foldable instructions
Craig Topperf924a582012-12-17 05:02:29 +00001619 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1620 { X86::ANDN64rr, X86::ANDN64rm, 0 },
Michael Liaof9f7b552012-09-26 08:22:37 +00001621 { X86::MULX32rr, X86::MULX32rm, 0 },
1622 { X86::MULX64rr, X86::MULX64rm, 0 },
Craig Topperf924a582012-12-17 05:02:29 +00001623 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1624 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1625 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1626 { X86::PEXT64rr, X86::PEXT64rm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001627
1628 // AVX-512 foldable instructions
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001629 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1630 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1631 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1632 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1633 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1634 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1635 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1636 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1637 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1638 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1639 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1640 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001641 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1642 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00001643 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1644 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001645 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
1646 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
1647 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
1648 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
1649 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
1650 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
1651 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
1652 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
1653 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001654 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1655 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1656 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1657 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1658 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001659 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
1660 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
Elena Demikhovsky534015e2013-09-02 07:12:29 +00001661 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1662 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
1663 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
1664 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
Elena Demikhovskybb2f6b72014-03-27 09:45:08 +00001665 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +00001666 { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
1667 { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
1668
1669 // AVX-512{F,VL} foldable instructions
1670 { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
1671 { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
1672 { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
Craig Topper514f02c2013-09-17 06:50:11 +00001673
Robert Khasanov79fb7292014-12-18 12:28:22 +00001674 // AVX-512{F,VL} foldable instructions
1675 { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
1676 { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
1677 { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
1678 { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
1679
Craig Topper514f02c2013-09-17 06:50:11 +00001680 // AES foldable instructions
1681 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1682 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1683 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1684 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
Craig Topperf7e92f12015-02-10 05:10:50 +00001685 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
1686 { X86::VAESDECrr, X86::VAESDECrm, 0 },
1687 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
1688 { X86::VAESENCrr, X86::VAESENCrm, 0 },
Craig Topper514f02c2013-09-17 06:50:11 +00001689
1690 // SHA foldable instructions
1691 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1692 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1693 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1694 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1695 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1696 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001697 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001698 };
1699
Sanjay Patele951a382015-02-17 22:38:06 +00001700 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
1701 unsigned RegOp = MemoryFoldTable2[i].RegOp;
1702 unsigned MemOp = MemoryFoldTable2[i].MemOp;
1703 unsigned Flags = MemoryFoldTable2[i].Flags;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001704 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1705 RegOp, MemOp,
1706 // Index 2, folded load
1707 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00001708 }
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001709
Sanjay Patele951a382015-02-17 22:38:06 +00001710 static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001711 // FMA foldable instructions
Lang Hamesc2c75132014-04-02 22:06:16 +00001712 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
1713 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
1714 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
1715 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
1716 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
1717 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001718
Lang Hamesc2c75132014-04-02 22:06:16 +00001719 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
1720 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
1721 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
1722 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
1723 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
1724 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
1725 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
1726 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
1727 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
1728 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
1729 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
1730 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001731
Lang Hamesc2c75132014-04-02 22:06:16 +00001732 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
1733 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
1734 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
1735 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
1736 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
1737 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001738
Lang Hamesc2c75132014-04-02 22:06:16 +00001739 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
1740 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
1741 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
1742 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
1743 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
1744 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
1745 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
1746 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
1747 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
1748 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
1749 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
1750 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001751
Lang Hamesc2c75132014-04-02 22:06:16 +00001752 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
1753 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
1754 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
1755 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
1756 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
1757 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001758
Lang Hamesc2c75132014-04-02 22:06:16 +00001759 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
1760 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
1761 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
1762 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
1763 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
1764 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
1765 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
1766 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
1767 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
1768 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
1769 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
1770 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001771
Lang Hamesc2c75132014-04-02 22:06:16 +00001772 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
1773 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
1774 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
1775 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
1776 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
1777 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
Craig Topper2e127b52012-06-01 05:48:39 +00001778
Lang Hamesc2c75132014-04-02 22:06:16 +00001779 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
1780 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
1781 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
1782 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
1783 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
1784 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
1785 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
1786 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
1787 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
1788 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
1789 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
1790 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
Craig Topper3cb14302012-06-04 07:08:21 +00001791
Lang Hamesc2c75132014-04-02 22:06:16 +00001792 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
1793 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
1794 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
1795 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
1796 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
1797 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
1798 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
1799 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
1800 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
1801 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
1802 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
1803 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
Craig Topper3cb14302012-06-04 07:08:21 +00001804
Lang Hamesc2c75132014-04-02 22:06:16 +00001805 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
1806 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
1807 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
1808 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
1809 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
1810 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
1811 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
1812 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
1813 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
1814 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
1815 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
1816 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
Craig Topper908e6852012-08-31 23:10:34 +00001817
1818 // FMA4 foldable patterns
Craig Topper3b530ea2012-11-04 04:40:08 +00001819 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
1820 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001821 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
1822 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
1823 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
1824 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001825 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
1826 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001827 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
1828 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
1829 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
1830 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001831 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
1832 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001833 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
1834 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
1835 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
1836 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
Craig Topper3b530ea2012-11-04 04:40:08 +00001837 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
1838 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
Craig Topper908e6852012-08-31 23:10:34 +00001839 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
1840 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
1841 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
1842 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
1843 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
1844 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
1845 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
1846 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
1847 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
1848 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
1849 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
1850 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
Simon Pilgrimcd322542015-02-10 12:57:17 +00001851
1852 // XOP foldable instructions
1853 { X86::VPCMOVrr, X86::VPCMOVrm, 0 },
1854 { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 },
1855 { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
1856 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
1857 { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
1858 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
1859 { X86::VPPERMrr, X86::VPPERMrm, 0 },
1860
Elena Demikhovsky2e408ae2013-10-06 13:11:09 +00001861 // AVX-512 VPERMI instructions with 3 source operands.
1862 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1863 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1864 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1865 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
Elena Demikhovsky172a27c2014-01-08 10:54:22 +00001866 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
1867 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
1868 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
Robert Khasanov8e8c3992014-12-09 18:45:30 +00001869 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
1870 { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
1871 { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
1872 { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
1873 { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
Robert Khasanov79fb7292014-12-18 12:28:22 +00001874 { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
1875 // AVX-512 arithmetic instructions
1876 { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
1877 { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
1878 { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
1879 { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
1880 { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
1881 { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
1882 { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
1883 { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
1884 { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
1885 { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
1886 { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
1887 { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
1888 // AVX-512{F,VL} arithmetic instructions 256-bit
1889 { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
1890 { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
1891 { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
1892 { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
1893 { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
1894 { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
1895 { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
1896 { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
1897 { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
1898 { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
1899 { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
1900 { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
1901 // AVX-512{F,VL} arithmetic instructions 128-bit
1902 { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
1903 { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
1904 { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
1905 { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
1906 { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
1907 { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
1908 { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
1909 { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
1910 { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
1911 { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
1912 { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
1913 { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001914 };
1915
Sanjay Patele951a382015-02-17 22:38:06 +00001916 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
1917 unsigned RegOp = MemoryFoldTable3[i].RegOp;
1918 unsigned MemOp = MemoryFoldTable3[i].MemOp;
1919 unsigned Flags = MemoryFoldTable3[i].Flags;
Elena Demikhovsky602f3a22012-05-31 09:20:20 +00001920 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1921 RegOp, MemOp,
1922 // Index 3, folded load
1923 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1924 }
1925
Sanjay Patele951a382015-02-17 22:38:06 +00001926 static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
Robert Khasanov79fb7292014-12-18 12:28:22 +00001927 // AVX-512 foldable instructions
1928 { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
1929 { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
1930 { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
1931 { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
1932 { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
1933 { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
1934 { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
1935 { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
1936 { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
1937 { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
1938 { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
1939 { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
1940 // AVX-512{F,VL} foldable instructions 256-bit
1941 { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
1942 { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
1943 { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
1944 { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
1945 { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
1946 { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
1947 { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
1948 { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
1949 { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
1950 { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
1951 { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
1952 { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
1953 // AVX-512{F,VL} foldable instructions 128-bit
1954 { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
1955 { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
1956 { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
1957 { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
1958 { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
1959 { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
1960 { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
1961 { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
1962 { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
1963 { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
1964 { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
1965 { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
1966 };
1967
Sanjay Patele951a382015-02-17 22:38:06 +00001968 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
1969 unsigned RegOp = MemoryFoldTable4[i].RegOp;
1970 unsigned MemOp = MemoryFoldTable4[i].MemOp;
1971 unsigned Flags = MemoryFoldTable4[i].Flags;
Robert Khasanov79fb7292014-12-18 12:28:22 +00001972 AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
1973 RegOp, MemOp,
1974 // Index 4, folded load
1975 Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
1976 }
Chris Lattnerd92fb002002-10-25 22:55:53 +00001977}
1978
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00001979void
1980X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1981 MemOp2RegOpTableType &M2RTable,
1982 unsigned RegOp, unsigned MemOp, unsigned Flags) {
1983 if ((Flags & TB_NO_FORWARD) == 0) {
1984 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1985 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1986 }
1987 if ((Flags & TB_NO_REVERSE) == 0) {
1988 assert(!M2RTable.count(MemOp) &&
1989 "Duplicated entries in unfolding maps?");
1990 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1991 }
1992}
1993
Evan Cheng42166152010-01-12 00:09:37 +00001994bool
Evan Cheng30bebff2010-01-13 00:30:23 +00001995X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1996 unsigned &SrcReg, unsigned &DstReg,
1997 unsigned &SubIdx) const {
Evan Cheng42166152010-01-12 00:09:37 +00001998 switch (MI.getOpcode()) {
1999 default: break;
2000 case X86::MOVSX16rr8:
2001 case X86::MOVZX16rr8:
2002 case X86::MOVSX32rr8:
2003 case X86::MOVZX32rr8:
2004 case X86::MOVSX64rr8:
Eric Christopher6c786a12014-06-10 22:34:31 +00002005 if (!Subtarget.is64Bit())
Evan Chengceb5a4e2010-01-13 08:01:32 +00002006 // It's not always legal to reference the low 8-bit of the larger
2007 // register in 32-bit mode.
2008 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002009 case X86::MOVSX32rr16:
2010 case X86::MOVZX32rr16:
2011 case X86::MOVSX64rr16:
Tim Northover04eb4232013-05-30 10:43:18 +00002012 case X86::MOVSX64rr32: {
Evan Cheng42166152010-01-12 00:09:37 +00002013 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2014 // Be conservative.
2015 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002016 SrcReg = MI.getOperand(1).getReg();
2017 DstReg = MI.getOperand(0).getReg();
Evan Cheng42166152010-01-12 00:09:37 +00002018 switch (MI.getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00002019 default: llvm_unreachable("Unreachable!");
Evan Cheng42166152010-01-12 00:09:37 +00002020 case X86::MOVSX16rr8:
2021 case X86::MOVZX16rr8:
2022 case X86::MOVSX32rr8:
2023 case X86::MOVZX32rr8:
2024 case X86::MOVSX64rr8:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002025 SubIdx = X86::sub_8bit;
Evan Cheng42166152010-01-12 00:09:37 +00002026 break;
2027 case X86::MOVSX32rr16:
2028 case X86::MOVZX32rr16:
2029 case X86::MOVSX64rr16:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002030 SubIdx = X86::sub_16bit;
Evan Cheng42166152010-01-12 00:09:37 +00002031 break;
2032 case X86::MOVSX64rr32:
Jakob Stoklund Olesen396c8802010-05-25 17:04:16 +00002033 SubIdx = X86::sub_32bit;
Evan Cheng42166152010-01-12 00:09:37 +00002034 break;
2035 }
Evan Cheng30bebff2010-01-13 00:30:23 +00002036 return true;
Evan Cheng42166152010-01-12 00:09:37 +00002037 }
2038 }
Evan Cheng30bebff2010-01-13 00:30:23 +00002039 return false;
Evan Cheng42166152010-01-12 00:09:37 +00002040}
2041
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002042int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2043 const MachineFunction *MF = MI->getParent()->getParent();
2044 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2045
2046 if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2047 MI->getOpcode() == getCallFrameDestroyOpcode()) {
2048 unsigned StackAlign = TFI->getStackAlignment();
Simon Pilgrimcd322542015-02-10 12:57:17 +00002049 int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002050 StackAlign;
2051
2052 SPAdj -= MI->getOperand(1).getImm();
2053
2054 if (MI->getOpcode() == getCallFrameSetupOpcode())
2055 return SPAdj;
2056 else
2057 return -SPAdj;
2058 }
Simon Pilgrimcd322542015-02-10 12:57:17 +00002059
2060 // To know whether a call adjusts the stack, we need information
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002061 // that is bound to the following ADJCALLSTACKUP pseudo.
2062 // Look for the next ADJCALLSTACKUP that follows the call.
2063 if (MI->isCall()) {
2064 const MachineBasicBlock* MBB = MI->getParent();
2065 auto I = ++MachineBasicBlock::const_iterator(MI);
2066 for (auto E = MBB->end(); I != E; ++I) {
2067 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2068 I->isCall())
2069 break;
2070 }
2071
2072 // If we could not find a frame destroy opcode, then it has already
2073 // been simplified, so we don't care.
2074 if (I->getOpcode() != getCallFrameDestroyOpcode())
2075 return 0;
2076
2077 return -(I->getOperand(1).getImm());
2078 }
2079
2080 // Currently handle only PUSHes we can reasonably expect to see
2081 // in call sequences
2082 switch (MI->getOpcode()) {
Simon Pilgrimcd322542015-02-10 12:57:17 +00002083 default:
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002084 return 0;
2085 case X86::PUSH32i8:
2086 case X86::PUSH32r:
2087 case X86::PUSH32rmm:
2088 case X86::PUSH32rmr:
2089 case X86::PUSHi32:
2090 return 4;
2091 }
2092}
2093
Sanjay Patel203ee502015-02-17 21:55:20 +00002094/// Return true and the FrameIndex if the specified
David Greene70fdd572009-11-12 20:55:29 +00002095/// operand and follow operands form a reference to the stack frame.
2096bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2097 int &FrameIndex) const {
Craig Topper646f64f2014-05-06 07:04:32 +00002098 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2099 MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2100 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2101 MI->getOperand(Op+X86::AddrDisp).isImm() &&
2102 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2103 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2104 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2105 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
David Greene70fdd572009-11-12 20:55:29 +00002106 return true;
2107 }
2108 return false;
2109}
2110
David Greene2f4c3742009-11-13 00:29:53 +00002111static bool isFrameLoadOpcode(int Opcode) {
2112 switch (Opcode) {
David Blaikie46a9f012012-01-20 21:51:11 +00002113 default:
2114 return false;
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002115 case X86::MOV8rm:
2116 case X86::MOV16rm:
2117 case X86::MOV32rm:
Evan Cheng11b0a5d2006-09-08 06:48:29 +00002118 case X86::MOV64rm:
Dale Johannesen3d7008c2007-07-04 21:07:47 +00002119 case X86::LD_Fp64m:
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002120 case X86::MOVSSrm:
2121 case X86::MOVSDrm:
Chris Lattnerbfc2c682006-04-18 16:44:51 +00002122 case X86::MOVAPSrm:
2123 case X86::MOVAPDrm:
Dan Gohmanbdc0f8b2009-01-09 02:40:34 +00002124 case X86::MOVDQArm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00002125 case X86::VMOVSSrm:
2126 case X86::VMOVSDrm:
2127 case X86::VMOVAPSrm:
2128 case X86::VMOVAPDrm:
2129 case X86::VMOVDQArm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002130 case X86::VMOVUPSYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002131 case X86::VMOVAPSYrm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002132 case X86::VMOVUPDYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002133 case X86::VMOVAPDYrm:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002134 case X86::VMOVDQUYrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002135 case X86::VMOVDQAYrm:
Bill Wendlinge7b2a862007-04-03 06:00:37 +00002136 case X86::MMX_MOVD64rm:
2137 case X86::MMX_MOVQ64rm:
Elena Demikhovskya5d38a32014-01-23 14:27:26 +00002138 case X86::VMOVAPSZrm:
2139 case X86::VMOVUPSZrm:
David Greene2f4c3742009-11-13 00:29:53 +00002140 return true;
David Greene2f4c3742009-11-13 00:29:53 +00002141 }
David Greene2f4c3742009-11-13 00:29:53 +00002142}
2143
2144static bool isFrameStoreOpcode(int Opcode) {
2145 switch (Opcode) {
2146 default: break;
2147 case X86::MOV8mr:
2148 case X86::MOV16mr:
2149 case X86::MOV32mr:
2150 case X86::MOV64mr:
2151 case X86::ST_FpP64m:
2152 case X86::MOVSSmr:
2153 case X86::MOVSDmr:
2154 case X86::MOVAPSmr:
2155 case X86::MOVAPDmr:
2156 case X86::MOVDQAmr:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00002157 case X86::VMOVSSmr:
2158 case X86::VMOVSDmr:
2159 case X86::VMOVAPSmr:
2160 case X86::VMOVAPDmr:
2161 case X86::VMOVDQAmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002162 case X86::VMOVUPSYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002163 case X86::VMOVAPSYmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002164 case X86::VMOVUPDYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002165 case X86::VMOVAPDYmr:
Simon Pilgrim9c1e4122014-11-18 23:38:19 +00002166 case X86::VMOVDQUYmr:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00002167 case X86::VMOVDQAYmr:
Elena Demikhovskya5d38a32014-01-23 14:27:26 +00002168 case X86::VMOVUPSZmr:
2169 case X86::VMOVAPSZmr:
David Greene2f4c3742009-11-13 00:29:53 +00002170 case X86::MMX_MOVD64mr:
2171 case X86::MMX_MOVQ64mr:
2172 case X86::MMX_MOVNTQmr:
2173 return true;
2174 }
2175 return false;
2176}
2177
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002178unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00002179 int &FrameIndex) const {
2180 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00002181 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002182 return MI->getOperand(0).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00002183 return 0;
2184}
2185
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002186unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greene2f4c3742009-11-13 00:29:53 +00002187 int &FrameIndex) const {
2188 if (isFrameLoadOpcode(MI->getOpcode())) {
2189 unsigned Reg;
2190 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2191 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00002192 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00002193 const MachineMemOperand *Dummy;
2194 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002195 }
2196 return 0;
2197}
2198
Dan Gohman0b273252008-11-18 19:49:32 +00002199unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002200 int &FrameIndex) const {
David Greene2f4c3742009-11-13 00:29:53 +00002201 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen96a890a2010-07-27 04:17:01 +00002202 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2203 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerec536272010-07-08 22:41:28 +00002204 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greene2f4c3742009-11-13 00:29:53 +00002205 return 0;
2206}
2207
2208unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2209 int &FrameIndex) const {
2210 if (isFrameStoreOpcode(MI->getOpcode())) {
2211 unsigned Reg;
2212 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2213 return Reg;
David Greene70fdd572009-11-12 20:55:29 +00002214 // Check for post-frame index elimination operations
David Greene0508e432009-12-04 22:38:46 +00002215 const MachineMemOperand *Dummy;
2216 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattnerbb53acd2006-02-02 20:12:32 +00002217 }
2218 return 0;
2219}
2220
Sanjay Patel203ee502015-02-17 21:55:20 +00002221/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
Dan Gohman3b460302008-07-07 23:14:23 +00002222static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Jakob Stoklund Olesen3b9a4422012-08-08 00:40:47 +00002223 // Don't waste compile time scanning use-def chains of physregs.
2224 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2225 return false;
Evan Cheng308e5642008-03-27 01:45:11 +00002226 bool isPICBase = false;
Owen Anderson16c6bf42014-03-13 23:12:04 +00002227 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2228 E = MRI.def_instr_end(); I != E; ++I) {
2229 MachineInstr *DefMI = &*I;
Evan Cheng308e5642008-03-27 01:45:11 +00002230 if (DefMI->getOpcode() != X86::MOVPC32r)
2231 return false;
2232 assert(!isPICBase && "More than one PIC base?");
2233 isPICBase = true;
2234 }
2235 return isPICBase;
2236}
Evan Cheng1973a462008-03-31 07:54:19 +00002237
Bill Wendling1e117682008-05-12 20:54:26 +00002238bool
Dan Gohmane919de52009-10-10 00:34:18 +00002239X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2240 AliasAnalysis *AA) const {
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002241 switch (MI->getOpcode()) {
2242 default: break;
Craig Toppera0cabf12012-08-21 08:17:07 +00002243 case X86::MOV8rm:
2244 case X86::MOV16rm:
2245 case X86::MOV32rm:
2246 case X86::MOV64rm:
2247 case X86::LD_Fp64m:
2248 case X86::MOVSSrm:
2249 case X86::MOVSDrm:
2250 case X86::MOVAPSrm:
2251 case X86::MOVUPSrm:
2252 case X86::MOVAPDrm:
2253 case X86::MOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00002254 case X86::MOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002255 case X86::VMOVSSrm:
2256 case X86::VMOVSDrm:
2257 case X86::VMOVAPSrm:
2258 case X86::VMOVUPSrm:
2259 case X86::VMOVAPDrm:
2260 case X86::VMOVDQArm:
Craig Topper922f10a2012-12-06 06:49:16 +00002261 case X86::VMOVDQUrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002262 case X86::VMOVAPSYrm:
2263 case X86::VMOVUPSYrm:
2264 case X86::VMOVAPDYrm:
2265 case X86::VMOVDQAYrm:
Craig Topper922f10a2012-12-06 06:49:16 +00002266 case X86::VMOVDQUYrm:
Craig Toppera0cabf12012-08-21 08:17:07 +00002267 case X86::MMX_MOVD64rm:
2268 case X86::MMX_MOVQ64rm:
2269 case X86::FsVMOVAPSrm:
2270 case X86::FsVMOVAPDrm:
2271 case X86::FsMOVAPSrm:
2272 case X86::FsMOVAPDrm: {
2273 // Loads from constant pools are trivially rematerializable.
Craig Topper646f64f2014-05-06 07:04:32 +00002274 if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2275 MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2276 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2277 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
Craig Toppera0cabf12012-08-21 08:17:07 +00002278 MI->isInvariantLoad(AA)) {
Craig Topper646f64f2014-05-06 07:04:32 +00002279 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
Craig Toppera0cabf12012-08-21 08:17:07 +00002280 if (BaseReg == 0 || BaseReg == X86::RIP)
2281 return true;
2282 // Allow re-materialization of PIC load.
Craig Topper646f64f2014-05-06 07:04:32 +00002283 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
Craig Toppera0cabf12012-08-21 08:17:07 +00002284 return false;
2285 const MachineFunction &MF = *MI->getParent()->getParent();
2286 const MachineRegisterInfo &MRI = MF.getRegInfo();
2287 return regIsPICBase(BaseReg, MRI);
Evan Cheng94ba37f2008-02-22 09:25:47 +00002288 }
Craig Toppera0cabf12012-08-21 08:17:07 +00002289 return false;
2290 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002291
Craig Toppera0cabf12012-08-21 08:17:07 +00002292 case X86::LEA32r:
2293 case X86::LEA64r: {
Craig Topper646f64f2014-05-06 07:04:32 +00002294 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2295 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2296 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2297 !MI->getOperand(1+X86::AddrDisp).isReg()) {
Craig Toppera0cabf12012-08-21 08:17:07 +00002298 // lea fi#, lea GV, etc. are all rematerializable.
Craig Topper646f64f2014-05-06 07:04:32 +00002299 if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
Craig Toppera0cabf12012-08-21 08:17:07 +00002300 return true;
Craig Topper646f64f2014-05-06 07:04:32 +00002301 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
Craig Toppera0cabf12012-08-21 08:17:07 +00002302 if (BaseReg == 0)
2303 return true;
2304 // Allow re-materialization of lea PICBase + x.
2305 const MachineFunction &MF = *MI->getParent()->getParent();
2306 const MachineRegisterInfo &MRI = MF.getRegInfo();
2307 return regIsPICBase(BaseReg, MRI);
2308 }
2309 return false;
2310 }
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002311 }
Evan Cheng29e62a52008-03-27 01:41:09 +00002312
Dan Gohmane8c1e422007-06-26 00:48:07 +00002313 // All other instructions marked M_REMATERIALIZABLE are always trivially
2314 // rematerializable.
2315 return true;
Dan Gohman4a4a8eb2007-06-14 20:50:44 +00002316}
2317
Alexey Volkov6226de62014-05-20 08:55:50 +00002318bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2319 MachineBasicBlock::iterator I) const {
Evan Chengb6dee6e2010-03-23 20:35:45 +00002320 MachineBasicBlock::iterator E = MBB.end();
2321
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002322 // For compile time consideration, if we are not able to determine the
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002323 // safety after visiting 4 instructions in each direction, we will assume
2324 // it's not safe.
2325 MachineBasicBlock::iterator Iter = I;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002326 for (unsigned i = 0; Iter != E && i < 4; ++i) {
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002327 bool SeenDef = false;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002328 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2329 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00002330 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2331 SeenDef = true;
Dan Gohman0d1e9a82008-10-03 15:45:36 +00002332 if (!MO.isReg())
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002333 continue;
2334 if (MO.getReg() == X86::EFLAGS) {
2335 if (MO.isUse())
2336 return false;
2337 SeenDef = true;
2338 }
2339 }
2340
2341 if (SeenDef)
2342 // This instruction defines EFLAGS, no need to look any further.
2343 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002344 ++Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00002345 // Skip over DBG_VALUE.
2346 while (Iter != E && Iter->isDebugValue())
2347 ++Iter;
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002348 }
Dan Gohmanc8354582008-10-21 03:24:31 +00002349
Jakob Stoklund Olesenf08354d2011-09-02 23:52:52 +00002350 // It is safe to clobber EFLAGS at the end of a block of no successor has it
2351 // live in.
2352 if (Iter == E) {
2353 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2354 SE = MBB.succ_end(); SI != SE; ++SI)
2355 if ((*SI)->isLiveIn(X86::EFLAGS))
2356 return false;
2357 return true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002358 }
2359
Evan Chengb6dee6e2010-03-23 20:35:45 +00002360 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002361 Iter = I;
2362 for (unsigned i = 0; i < 4; ++i) {
2363 // If we make it to the beginning of the block, it's safe to clobber
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002364 // EFLAGS iff EFLAGS is not live-in.
Evan Chengb6dee6e2010-03-23 20:35:45 +00002365 if (Iter == B)
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002366 return !MBB.isLiveIn(X86::EFLAGS);
2367
2368 --Iter;
Evan Chengb6dee6e2010-03-23 20:35:45 +00002369 // Skip over DBG_VALUE.
2370 while (Iter != B && Iter->isDebugValue())
2371 --Iter;
2372
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002373 bool SawKill = false;
2374 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2375 MachineOperand &MO = Iter->getOperand(j);
Jakob Stoklund Olesen4519fd02012-02-09 00:17:22 +00002376 // A register mask may clobber EFLAGS, but we should still look for a
2377 // live EFLAGS def.
2378 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2379 SawKill = true;
Dan Gohman0be8c2b2009-10-14 00:08:59 +00002380 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2381 if (MO.isDef()) return MO.isDead();
2382 if (MO.isKill()) SawKill = true;
2383 }
2384 }
2385
2386 if (SawKill)
2387 // This instruction kills EFLAGS and doesn't redefine it, so
2388 // there's no need to look further.
Dan Gohmanc8354582008-10-21 03:24:31 +00002389 return true;
Evan Cheng3f2ceac2008-06-24 07:10:51 +00002390 }
2391
2392 // Conservative answer.
2393 return false;
2394}
2395
Evan Chenged6e34f2008-03-31 20:40:39 +00002396void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2397 MachineBasicBlock::iterator I,
Evan Cheng84517442009-07-16 09:20:10 +00002398 unsigned DestReg, unsigned SubIdx,
Evan Cheng6ad7da92009-11-14 02:55:43 +00002399 const MachineInstr *Orig,
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00002400 const TargetRegisterInfo &TRI) const {
Tim Northover64ec0ff2013-05-30 13:19:42 +00002401 // MOV32r0 is implemented with a xor which clobbers condition code.
2402 // Re-materialize it as movri instructions to avoid side effects.
Evan Cheng84517442009-07-16 09:20:10 +00002403 unsigned Opc = Orig->getOpcode();
Tim Northover64ec0ff2013-05-30 13:19:42 +00002404 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2405 DebugLoc DL = Orig->getDebugLoc();
2406 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2407 .addImm(0);
2408 } else {
Dan Gohman3b460302008-07-07 23:14:23 +00002409 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chenged6e34f2008-03-31 20:40:39 +00002410 MBB.insert(I, MI);
Evan Chenged6e34f2008-03-31 20:40:39 +00002411 }
Evan Cheng147cb762008-04-16 23:44:44 +00002412
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00002413 MachineInstr *NewMI = std::prev(I);
Jakob Stoklund Olesena8ad9772010-06-02 22:47:25 +00002414 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chenged6e34f2008-03-31 20:40:39 +00002415}
2416
Sanjay Patel203ee502015-02-17 21:55:20 +00002417/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
Evan Chenga8a9c152007-10-05 08:04:01 +00002418static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chenga8a9c152007-10-05 08:04:01 +00002419 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2420 MachineOperand &MO = MI->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00002421 if (MO.isReg() && MO.isDef() &&
Evan Chenga8a9c152007-10-05 08:04:01 +00002422 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2423 return true;
2424 }
2425 }
2426 return false;
2427}
2428
Sanjay Patel203ee502015-02-17 21:55:20 +00002429/// Check whether the shift count for a machine operand is non-zero.
David Majnemer7ea2a522013-05-22 08:13:02 +00002430inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2431 unsigned ShiftAmtOperandIdx) {
2432 // The shift count is six bits with the REX.W prefix and five bits without.
2433 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2434 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2435 return Imm & ShiftCountMask;
2436}
2437
Sanjay Patel203ee502015-02-17 21:55:20 +00002438/// Check whether the given shift count is appropriate
David Majnemer7ea2a522013-05-22 08:13:02 +00002439/// can be represented by a LEA instruction.
2440inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2441 // Left shift instructions can be transformed into load-effective-address
2442 // instructions if we can encode them appropriately.
2443 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2444 // The SIB.scale field is two bits wide which means that we can encode any
2445 // shift amount less than 4.
2446 return ShAmt < 4 && ShAmt > 0;
2447}
2448
Tim Northover6833e3f2013-06-10 20:43:49 +00002449bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2450 unsigned Opc, bool AllowSP,
2451 unsigned &NewSrc, bool &isKill, bool &isUndef,
2452 MachineOperand &ImplicitOp) const {
2453 MachineFunction &MF = *MI->getParent()->getParent();
2454 const TargetRegisterClass *RC;
2455 if (AllowSP) {
2456 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2457 } else {
2458 RC = Opc != X86::LEA32r ?
2459 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2460 }
2461 unsigned SrcReg = Src.getReg();
2462
2463 // For both LEA64 and LEA32 the register already has essentially the right
2464 // type (32-bit or 64-bit) we may just need to forbid SP.
2465 if (Opc != X86::LEA64_32r) {
2466 NewSrc = SrcReg;
2467 isKill = Src.isKill();
2468 isUndef = Src.isUndef();
2469
2470 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2471 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2472 return false;
2473
2474 return true;
2475 }
2476
2477 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2478 // another we need to add 64-bit registers to the final MI.
2479 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2480 ImplicitOp = Src;
2481 ImplicitOp.setImplicit();
2482
2483 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2484 MachineBasicBlock::LivenessQueryResult LQR =
2485 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2486
2487 switch (LQR) {
2488 case MachineBasicBlock::LQR_Unknown:
2489 // We can't give sane liveness flags to the instruction, abandon LEA
2490 // formation.
2491 return false;
2492 case MachineBasicBlock::LQR_Live:
2493 isKill = MI->killsRegister(SrcReg);
2494 isUndef = false;
2495 break;
2496 default:
2497 // The physreg itself is dead, so we have to use it as an <undef>.
2498 isKill = false;
2499 isUndef = true;
2500 break;
2501 }
2502 } else {
2503 // Virtual register of the wrong class, we have to create a temporary 64-bit
2504 // vreg to feed into the LEA.
2505 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2506 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2507 get(TargetOpcode::COPY))
2508 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2509 .addOperand(Src);
2510
2511 // Which is obviously going to be dead after we're done with it.
2512 isKill = true;
2513 isUndef = false;
2514 }
2515
2516 // We've set all the parameters without issue.
2517 return true;
2518}
2519
Sanjay Patel203ee502015-02-17 21:55:20 +00002520/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2521/// LEA to form 3-address code by promoting to a 32-bit superregister and then
2522/// truncating back down to a 16-bit subregister.
Evan Cheng766a73f2009-12-11 06:01:48 +00002523MachineInstr *
2524X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2525 MachineFunction::iterator &MFI,
2526 MachineBasicBlock::iterator &MBBI,
2527 LiveVariables *LV) const {
2528 MachineInstr *MI = MBBI;
2529 unsigned Dest = MI->getOperand(0).getReg();
2530 unsigned Src = MI->getOperand(1).getReg();
2531 bool isDead = MI->getOperand(0).isDead();
2532 bool isKill = MI->getOperand(1).isKill();
2533
Evan Cheng766a73f2009-12-11 06:01:48 +00002534 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng766a73f2009-12-11 06:01:48 +00002535 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Tim Northover6833e3f2013-06-10 20:43:49 +00002536 unsigned Opc, leaInReg;
Eric Christopher6c786a12014-06-10 22:34:31 +00002537 if (Subtarget.is64Bit()) {
Tim Northover6833e3f2013-06-10 20:43:49 +00002538 Opc = X86::LEA64_32r;
2539 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2540 } else {
2541 Opc = X86::LEA32r;
2542 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2543 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002544
Evan Cheng766a73f2009-12-11 06:01:48 +00002545 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002546 // well be shifting and then extracting the lower 16-bits.
Evan Cheng26fdd722009-12-12 20:03:14 +00002547 // This has the potential to cause partial register stall. e.g.
Evan Cheng3974c8d2009-12-12 18:55:26 +00002548 // movw (%rbp,%rcx,2), %dx
2549 // leal -65(%rdx), %esi
Evan Cheng26fdd722009-12-12 20:03:14 +00002550 // But testing has shown this *does* help performance in 64-bit mode (at
2551 // least on modern x86 machines).
Evan Cheng766a73f2009-12-11 06:01:48 +00002552 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2553 MachineInstr *InsMI =
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00002554 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2555 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2556 .addReg(Src, getKillRegState(isKill));
Evan Cheng766a73f2009-12-11 06:01:48 +00002557
2558 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2559 get(Opc), leaOutReg);
2560 switch (MIOpc) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00002561 default: llvm_unreachable("Unreachable!");
Evan Cheng766a73f2009-12-11 06:01:48 +00002562 case X86::SHL16ri: {
2563 unsigned ShAmt = MI->getOperand(2).getImm();
2564 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattnerf4693072010-07-08 23:46:44 +00002565 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng766a73f2009-12-11 06:01:48 +00002566 break;
2567 }
2568 case X86::INC16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00002569 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng766a73f2009-12-11 06:01:48 +00002570 break;
2571 case X86::DEC16r:
Chris Lattnerf4693072010-07-08 23:46:44 +00002572 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng766a73f2009-12-11 06:01:48 +00002573 break;
2574 case X86::ADD16ri:
2575 case X86::ADD16ri8:
Chris Lattnerdd774772010-10-08 03:57:25 +00002576 case X86::ADD16ri_DB:
2577 case X86::ADD16ri8_DB:
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002578 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng766a73f2009-12-11 06:01:48 +00002579 break;
Chris Lattner626656a2010-10-08 03:54:52 +00002580 case X86::ADD16rr:
2581 case X86::ADD16rr_DB: {
Evan Cheng766a73f2009-12-11 06:01:48 +00002582 unsigned Src2 = MI->getOperand(2).getReg();
2583 bool isKill2 = MI->getOperand(2).isKill();
2584 unsigned leaInReg2 = 0;
Craig Topper062a2ba2014-04-25 05:30:21 +00002585 MachineInstr *InsMI2 = nullptr;
Evan Cheng766a73f2009-12-11 06:01:48 +00002586 if (Src == Src2) {
2587 // ADD16rr %reg1028<kill>, %reg1028
2588 // just a single insert_subreg.
2589 addRegReg(MIB, leaInReg, true, leaInReg, false);
2590 } else {
Eric Christopher6c786a12014-06-10 22:34:31 +00002591 if (Subtarget.is64Bit())
Tim Northover6833e3f2013-06-10 20:43:49 +00002592 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2593 else
2594 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng766a73f2009-12-11 06:01:48 +00002595 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002596 // well be shifting and then extracting the lower 16-bits.
Evan Cheng7fae11b2011-12-14 02:11:42 +00002597 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
Evan Cheng766a73f2009-12-11 06:01:48 +00002598 InsMI2 =
Evan Cheng7fae11b2011-12-14 02:11:42 +00002599 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
Jakob Stoklund Olesena1e883d2010-07-08 16:40:15 +00002600 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2601 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng766a73f2009-12-11 06:01:48 +00002602 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2603 }
2604 if (LV && isKill2 && InsMI2)
2605 LV->replaceKillInstruction(Src2, MI, InsMI2);
2606 break;
2607 }
2608 }
2609
2610 MachineInstr *NewMI = MIB;
2611 MachineInstr *ExtMI =
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002612 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng766a73f2009-12-11 06:01:48 +00002613 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen00264622010-07-08 16:40:22 +00002614 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng766a73f2009-12-11 06:01:48 +00002615
2616 if (LV) {
2617 // Update live variables
2618 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2619 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2620 if (isKill)
2621 LV->replaceKillInstruction(Src, MI, InsMI);
2622 if (isDead)
2623 LV->replaceKillInstruction(Dest, MI, ExtMI);
2624 }
2625
2626 return ExtMI;
2627}
2628
Sanjay Patel203ee502015-02-17 21:55:20 +00002629/// This method must be implemented by targets that
Chris Lattnerb7782d72005-01-02 02:37:07 +00002630/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2631/// may be able to convert a two-address instruction into a true
2632/// three-address instruction on demand. This allows the X86 target (for
2633/// example) to convert ADD and SHL instructions into LEA instructions if they
2634/// would require register copies due to two-addressness.
2635///
2636/// This method returns a null pointer if the transformation cannot be
2637/// performed, otherwise it returns the new instruction.
2638///
Evan Cheng07fc1072006-12-01 21:52:41 +00002639MachineInstr *
2640X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2641 MachineBasicBlock::iterator &MBBI,
Owen Anderson30cc0282008-07-02 23:41:07 +00002642 LiveVariables *LV) const {
Evan Cheng07fc1072006-12-01 21:52:41 +00002643 MachineInstr *MI = MBBI;
David Majnemer7ea2a522013-05-22 08:13:02 +00002644
2645 // The following opcodes also sets the condition code register(s). Only
2646 // convert them to equivalent lea if the condition code register def's
2647 // are dead!
2648 if (hasLiveCondCodeDef(MI))
Craig Topper062a2ba2014-04-25 05:30:21 +00002649 return nullptr;
David Majnemer7ea2a522013-05-22 08:13:02 +00002650
Dan Gohman3b460302008-07-07 23:14:23 +00002651 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerb7782d72005-01-02 02:37:07 +00002652 // All instructions input are two-addr instructions. Get the known operands.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002653 const MachineOperand &Dest = MI->getOperand(0);
2654 const MachineOperand &Src = MI->getOperand(1);
Chris Lattnerb7782d72005-01-02 02:37:07 +00002655
Craig Topper062a2ba2014-04-25 05:30:21 +00002656 MachineInstr *NewMI = nullptr;
Evan Cheng07fc1072006-12-01 21:52:41 +00002657 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattner3e1d9172007-03-20 06:08:29 +00002658 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng26fdd722009-12-12 20:03:14 +00002659 // 16-bit LEA is also slow on Core2.
Evan Cheng07fc1072006-12-01 21:52:41 +00002660 bool DisableLEA16 = true;
Eric Christopher6c786a12014-06-10 22:34:31 +00002661 bool is64Bit = Subtarget.is64Bit();
Evan Cheng07fc1072006-12-01 21:52:41 +00002662
Evan Chengfa2c8282007-10-05 20:34:26 +00002663 unsigned MIOpc = MI->getOpcode();
2664 switch (MIOpc) {
Craig Topper39354e12015-01-07 08:10:38 +00002665 default: return nullptr;
Chris Lattnerbcd38852007-03-28 18:12:31 +00002666 case X86::SHL64ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002667 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002668 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002669 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002670
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002671 // LEA can't handle RSP.
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002672 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2673 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2674 &X86::GR64_NOSPRegClass))
Craig Topper062a2ba2014-04-25 05:30:21 +00002675 return nullptr;
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002676
Bill Wendling27b508d2009-02-11 21:51:19 +00002677 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002678 .addOperand(Dest)
2679 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattnerbcd38852007-03-28 18:12:31 +00002680 break;
2681 }
Chris Lattner3e1d9172007-03-20 06:08:29 +00002682 case X86::SHL32ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002683 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002684 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002685 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002686
Tim Northover6833e3f2013-06-10 20:43:49 +00002687 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2688
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002689 // LEA can't handle ESP.
Tim Northover6833e3f2013-06-10 20:43:49 +00002690 bool isKill, isUndef;
2691 unsigned SrcReg;
2692 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2693 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2694 SrcReg, isKill, isUndef, ImplicitOp))
Craig Topper062a2ba2014-04-25 05:30:21 +00002695 return nullptr;
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002696
Tim Northover6833e3f2013-06-10 20:43:49 +00002697 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002698 .addOperand(Dest)
Tim Northover6833e3f2013-06-10 20:43:49 +00002699 .addReg(0).addImm(1 << ShAmt)
2700 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2701 .addImm(0).addReg(0);
2702 if (ImplicitOp.getReg() != 0)
2703 MIB.addOperand(ImplicitOp);
2704 NewMI = MIB;
2705
Chris Lattner3e1d9172007-03-20 06:08:29 +00002706 break;
2707 }
2708 case X86::SHL16ri: {
Evan Cheng483e1ce2007-09-14 21:48:26 +00002709 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
David Majnemer7ea2a522013-05-22 08:13:02 +00002710 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
Craig Topper062a2ba2014-04-25 05:30:21 +00002711 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
Evan Cheng7d98a482008-07-03 09:09:37 +00002712
Evan Cheng766a73f2009-12-11 06:01:48 +00002713 if (DisableLEA16)
Craig Topper062a2ba2014-04-25 05:30:21 +00002714 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
Evan Cheng766a73f2009-12-11 06:01:48 +00002715 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002716 .addOperand(Dest)
2717 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
Chris Lattner3e1d9172007-03-20 06:08:29 +00002718 break;
Evan Cheng66f849b2006-05-30 20:26:50 +00002719 }
Craig Topper39354e12015-01-07 08:10:38 +00002720 case X86::INC64r:
2721 case X86::INC32r: {
2722 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2723 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2724 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2725 bool isKill, isUndef;
2726 unsigned SrcReg;
2727 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2728 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2729 SrcReg, isKill, isUndef, ImplicitOp))
2730 return nullptr;
Evan Cheng66f849b2006-05-30 20:26:50 +00002731
Craig Topper39354e12015-01-07 08:10:38 +00002732 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2733 .addOperand(Dest)
2734 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2735 if (ImplicitOp.getReg() != 0)
2736 MIB.addOperand(ImplicitOp);
Jakob Stoklund Olesenb19bae42010-10-07 00:07:26 +00002737
Craig Topper39354e12015-01-07 08:10:38 +00002738 NewMI = addOffset(MIB, 1);
2739 break;
Evan Chengfa2c8282007-10-05 20:34:26 +00002740 }
Craig Topper39354e12015-01-07 08:10:38 +00002741 case X86::INC16r:
2742 if (DisableLEA16)
2743 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2744 : nullptr;
2745 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2746 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2747 .addOperand(Dest).addOperand(Src), 1);
2748 break;
2749 case X86::DEC64r:
2750 case X86::DEC32r: {
2751 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2752 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2753 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2754
2755 bool isKill, isUndef;
2756 unsigned SrcReg;
2757 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2758 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2759 SrcReg, isKill, isUndef, ImplicitOp))
2760 return nullptr;
2761
2762 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2763 .addOperand(Dest)
2764 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2765 if (ImplicitOp.getReg() != 0)
2766 MIB.addOperand(ImplicitOp);
2767
2768 NewMI = addOffset(MIB, -1);
2769
2770 break;
2771 }
2772 case X86::DEC16r:
2773 if (DisableLEA16)
2774 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2775 : nullptr;
2776 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2777 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2778 .addOperand(Dest).addOperand(Src), -1);
2779 break;
2780 case X86::ADD64rr:
2781 case X86::ADD64rr_DB:
2782 case X86::ADD32rr:
2783 case X86::ADD32rr_DB: {
2784 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2785 unsigned Opc;
2786 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2787 Opc = X86::LEA64r;
2788 else
2789 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2790
2791 bool isKill, isUndef;
2792 unsigned SrcReg;
2793 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2794 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2795 SrcReg, isKill, isUndef, ImplicitOp))
2796 return nullptr;
2797
2798 const MachineOperand &Src2 = MI->getOperand(2);
2799 bool isKill2, isUndef2;
2800 unsigned SrcReg2;
2801 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2802 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2803 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2804 return nullptr;
2805
2806 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2807 .addOperand(Dest);
2808 if (ImplicitOp.getReg() != 0)
2809 MIB.addOperand(ImplicitOp);
2810 if (ImplicitOp2.getReg() != 0)
2811 MIB.addOperand(ImplicitOp2);
2812
2813 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2814
2815 // Preserve undefness of the operands.
2816 NewMI->getOperand(1).setIsUndef(isUndef);
2817 NewMI->getOperand(3).setIsUndef(isUndef2);
2818
2819 if (LV && Src2.isKill())
2820 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2821 break;
2822 }
2823 case X86::ADD16rr:
2824 case X86::ADD16rr_DB: {
2825 if (DisableLEA16)
2826 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2827 : nullptr;
2828 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2829 unsigned Src2 = MI->getOperand(2).getReg();
2830 bool isKill2 = MI->getOperand(2).isKill();
2831 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2832 .addOperand(Dest),
2833 Src.getReg(), Src.isKill(), Src2, isKill2);
2834
2835 // Preserve undefness of the operands.
2836 bool isUndef = MI->getOperand(1).isUndef();
2837 bool isUndef2 = MI->getOperand(2).isUndef();
2838 NewMI->getOperand(1).setIsUndef(isUndef);
2839 NewMI->getOperand(3).setIsUndef(isUndef2);
2840
2841 if (LV && isKill2)
2842 LV->replaceKillInstruction(Src2, MI, NewMI);
2843 break;
2844 }
2845 case X86::ADD64ri32:
2846 case X86::ADD64ri8:
2847 case X86::ADD64ri32_DB:
2848 case X86::ADD64ri8_DB:
2849 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2850 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2851 .addOperand(Dest).addOperand(Src),
2852 MI->getOperand(2).getImm());
2853 break;
2854 case X86::ADD32ri:
2855 case X86::ADD32ri8:
2856 case X86::ADD32ri_DB:
2857 case X86::ADD32ri8_DB: {
2858 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2859 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2860
2861 bool isKill, isUndef;
2862 unsigned SrcReg;
2863 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2864 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2865 SrcReg, isKill, isUndef, ImplicitOp))
2866 return nullptr;
2867
2868 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2869 .addOperand(Dest)
2870 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2871 if (ImplicitOp.getReg() != 0)
2872 MIB.addOperand(ImplicitOp);
2873
2874 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2875 break;
2876 }
2877 case X86::ADD16ri:
2878 case X86::ADD16ri8:
2879 case X86::ADD16ri_DB:
2880 case X86::ADD16ri8_DB:
2881 if (DisableLEA16)
2882 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2883 : nullptr;
2884 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2885 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2886 .addOperand(Dest).addOperand(Src),
2887 MI->getOperand(2).getImm());
2888 break;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002889 }
2890
Craig Topper062a2ba2014-04-25 05:30:21 +00002891 if (!NewMI) return nullptr;
Evan Cheng1bc1cae2008-02-07 08:29:53 +00002892
Evan Cheng7d98a482008-07-03 09:09:37 +00002893 if (LV) { // Update live variables
Jakob Stoklund Olesen70304272012-08-23 22:36:31 +00002894 if (Src.isKill())
2895 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2896 if (Dest.isDead())
2897 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
Evan Cheng7d98a482008-07-03 09:09:37 +00002898 }
2899
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00002900 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Chengdc2c8742006-11-15 20:58:11 +00002901 return NewMI;
Chris Lattnerb7782d72005-01-02 02:37:07 +00002902}
2903
Sanjay Patel203ee502015-02-17 21:55:20 +00002904/// We have a few instructions that must be hacked on to commute them.
Chris Lattner29478012005-01-19 07:11:01 +00002905///
Evan Cheng03553bb2008-06-16 07:33:11 +00002906MachineInstr *
2907X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner29478012005-01-19 07:11:01 +00002908 switch (MI->getOpcode()) {
Chris Lattnerd54845f2005-01-19 07:31:24 +00002909 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2910 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner29478012005-01-19 07:11:01 +00002911 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman48ea03d2007-09-14 23:17:45 +00002912 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2913 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2914 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattnerd54845f2005-01-19 07:31:24 +00002915 unsigned Opc;
2916 unsigned Size;
2917 switch (MI->getOpcode()) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002918 default: llvm_unreachable("Unreachable!");
Chris Lattnerd54845f2005-01-19 07:31:24 +00002919 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2920 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2921 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2922 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman48ea03d2007-09-14 23:17:45 +00002923 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2924 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattnerd54845f2005-01-19 07:31:24 +00002925 }
Chris Lattner5c463782007-12-30 20:49:49 +00002926 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmana39b0a12008-10-17 01:23:35 +00002927 if (NewMI) {
2928 MachineFunction &MF = *MI->getParent()->getParent();
2929 MI = MF.CloneMachineInstr(MI);
2930 NewMI = false;
Evan Cheng244183e2008-02-13 02:46:49 +00002931 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00002932 MI->setDesc(get(Opc));
2933 MI->getOperand(3).setImm(Size-Amt);
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00002934 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00002935 }
Simon Pilgrimc9a07792014-11-04 23:25:08 +00002936 case X86::BLENDPDrri:
2937 case X86::BLENDPSrri:
2938 case X86::PBLENDWrri:
2939 case X86::VBLENDPDrri:
2940 case X86::VBLENDPSrri:
2941 case X86::VBLENDPDYrri:
2942 case X86::VBLENDPSYrri:
2943 case X86::VPBLENDDrri:
2944 case X86::VPBLENDWrri:
2945 case X86::VPBLENDDYrri:
2946 case X86::VPBLENDWYrri:{
2947 unsigned Mask;
2948 switch (MI->getOpcode()) {
2949 default: llvm_unreachable("Unreachable!");
2950 case X86::BLENDPDrri: Mask = 0x03; break;
2951 case X86::BLENDPSrri: Mask = 0x0F; break;
2952 case X86::PBLENDWrri: Mask = 0xFF; break;
2953 case X86::VBLENDPDrri: Mask = 0x03; break;
2954 case X86::VBLENDPSrri: Mask = 0x0F; break;
2955 case X86::VBLENDPDYrri: Mask = 0x0F; break;
2956 case X86::VBLENDPSYrri: Mask = 0xFF; break;
2957 case X86::VPBLENDDrri: Mask = 0x0F; break;
2958 case X86::VPBLENDWrri: Mask = 0xFF; break;
2959 case X86::VPBLENDDYrri: Mask = 0xFF; break;
2960 case X86::VPBLENDWYrri: Mask = 0xFF; break;
2961 }
Andrea Di Biagio7ecd22c2014-11-06 14:36:45 +00002962 // Only the least significant bits of Imm are used.
2963 unsigned Imm = MI->getOperand(3).getImm() & Mask;
Simon Pilgrimc9a07792014-11-04 23:25:08 +00002964 if (NewMI) {
2965 MachineFunction &MF = *MI->getParent()->getParent();
2966 MI = MF.CloneMachineInstr(MI);
2967 NewMI = false;
2968 }
2969 MI->getOperand(3).setImm(Mask ^ Imm);
2970 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2971 }
Simon Pilgrim9b7c0032015-01-26 22:00:18 +00002972 case X86::PCLMULQDQrr:
2973 case X86::VPCLMULQDQrr:{
2974 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2975 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2976 unsigned Imm = MI->getOperand(3).getImm();
2977 unsigned Src1Hi = Imm & 0x01;
2978 unsigned Src2Hi = Imm & 0x10;
2979 if (NewMI) {
2980 MachineFunction &MF = *MI->getParent()->getParent();
2981 MI = MF.CloneMachineInstr(MI);
2982 NewMI = false;
2983 }
2984 MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2985 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2986 }
Simon Pilgrim0629ba12015-01-26 22:29:24 +00002987 case X86::CMPPDrri:
2988 case X86::CMPPSrri:
2989 case X86::VCMPPDrri:
2990 case X86::VCMPPSrri:
2991 case X86::VCMPPDYrri:
2992 case X86::VCMPPSYrri: {
2993 // Float comparison can be safely commuted for
2994 // Ordered/Unordered/Equal/NotEqual tests
2995 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
2996 switch (Imm) {
2997 case 0x00: // EQUAL
2998 case 0x03: // UNORDERED
2999 case 0x04: // NOT EQUAL
3000 case 0x07: // ORDERED
3001 if (NewMI) {
3002 MachineFunction &MF = *MI->getParent()->getParent();
3003 MI = MF.CloneMachineInstr(MI);
3004 NewMI = false;
3005 }
3006 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3007 default:
3008 return nullptr;
3009 }
3010 }
Simon Pilgrim31457d52015-02-14 22:40:46 +00003011 case X86::VPCOMBri: case X86::VPCOMUBri:
3012 case X86::VPCOMDri: case X86::VPCOMUDri:
3013 case X86::VPCOMQri: case X86::VPCOMUQri:
3014 case X86::VPCOMWri: case X86::VPCOMUWri: {
3015 // Flip comparison mode immediate (if necessary).
3016 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3017 switch (Imm) {
3018 case 0x00: Imm = 0x02; break; // LT -> GT
3019 case 0x01: Imm = 0x03; break; // LE -> GE
3020 case 0x02: Imm = 0x00; break; // GT -> LT
3021 case 0x03: Imm = 0x01; break; // GE -> LE
3022 case 0x04: // EQ
3023 case 0x05: // NE
3024 case 0x06: // FALSE
3025 case 0x07: // TRUE
3026 default:
3027 break;
3028 }
3029 if (NewMI) {
3030 MachineFunction &MF = *MI->getParent()->getParent();
3031 MI = MF.CloneMachineInstr(MI);
3032 NewMI = false;
3033 }
3034 MI->getOperand(3).setImm(Imm);
3035 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3036 }
Craig Topper653e7592012-08-21 07:32:16 +00003037 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
3038 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3039 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
3040 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3041 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3042 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
3043 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
3044 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3045 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3046 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
3047 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
3048 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3049 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
3050 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3051 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
3052 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3053 unsigned Opc;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003054 switch (MI->getOpcode()) {
Craig Topper653e7592012-08-21 07:32:16 +00003055 default: llvm_unreachable("Unreachable!");
Evan Cheng1151ffd2007-10-05 23:13:21 +00003056 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
3057 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
3058 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
3059 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3060 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3061 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3062 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
3063 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
3064 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
3065 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3066 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3067 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner1a1c6002010-10-05 23:00:14 +00003068 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3069 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3070 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3071 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
3072 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
3073 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003074 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
3075 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
3076 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
3077 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3078 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3079 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3080 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3081 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3082 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3083 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
3084 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
3085 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
3086 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
3087 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003088 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003089 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3090 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3091 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3092 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
3093 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003094 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003095 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3096 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3097 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00003098 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
3099 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang6c8bcf92009-04-18 05:16:01 +00003100 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman7e47cc72009-01-07 00:35:10 +00003101 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3102 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3103 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng1151ffd2007-10-05 23:13:21 +00003104 }
Dan Gohmana39b0a12008-10-17 01:23:35 +00003105 if (NewMI) {
3106 MachineFunction &MF = *MI->getParent()->getParent();
3107 MI = MF.CloneMachineInstr(MI);
3108 NewMI = false;
3109 }
Chris Lattner59687512008-01-11 18:10:50 +00003110 MI->setDesc(get(Opc));
Lang Hamesc59a2d02014-04-02 23:57:49 +00003111 // Fallthrough intended.
Evan Cheng1151ffd2007-10-05 23:13:21 +00003112 }
Chris Lattner29478012005-01-19 07:11:01 +00003113 default:
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00003114 return TargetInstrInfo::commuteInstruction(MI, NewMI);
Chris Lattner29478012005-01-19 07:11:01 +00003115 }
3116}
3117
Lang Hamesc59a2d02014-04-02 23:57:49 +00003118bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
3119 unsigned &SrcOpIdx2) const {
3120 switch (MI->getOpcode()) {
Simon Pilgrim0629ba12015-01-26 22:29:24 +00003121 case X86::CMPPDrri:
3122 case X86::CMPPSrri:
3123 case X86::VCMPPDrri:
3124 case X86::VCMPPSrri:
3125 case X86::VCMPPDYrri:
3126 case X86::VCMPPSYrri: {
3127 // Float comparison can be safely commuted for
3128 // Ordered/Unordered/Equal/NotEqual tests
3129 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3130 switch (Imm) {
3131 case 0x00: // EQUAL
3132 case 0x03: // UNORDERED
3133 case 0x04: // NOT EQUAL
3134 case 0x07: // ORDERED
3135 SrcOpIdx1 = 1;
3136 SrcOpIdx2 = 2;
3137 return true;
3138 }
3139 return false;
3140 }
Lang Hamesc59a2d02014-04-02 23:57:49 +00003141 case X86::VFMADDPDr231r:
3142 case X86::VFMADDPSr231r:
3143 case X86::VFMADDSDr231r:
3144 case X86::VFMADDSSr231r:
3145 case X86::VFMSUBPDr231r:
3146 case X86::VFMSUBPSr231r:
3147 case X86::VFMSUBSDr231r:
3148 case X86::VFMSUBSSr231r:
3149 case X86::VFNMADDPDr231r:
3150 case X86::VFNMADDPSr231r:
3151 case X86::VFNMADDSDr231r:
3152 case X86::VFNMADDSSr231r:
3153 case X86::VFNMSUBPDr231r:
3154 case X86::VFNMSUBPSr231r:
3155 case X86::VFNMSUBSDr231r:
3156 case X86::VFNMSUBSSr231r:
3157 case X86::VFMADDPDr231rY:
3158 case X86::VFMADDPSr231rY:
3159 case X86::VFMSUBPDr231rY:
3160 case X86::VFMSUBPSr231rY:
3161 case X86::VFNMADDPDr231rY:
3162 case X86::VFNMADDPSr231rY:
3163 case X86::VFNMSUBPDr231rY:
3164 case X86::VFNMSUBPSr231rY:
3165 SrcOpIdx1 = 2;
3166 SrcOpIdx2 = 3;
3167 return true;
3168 default:
3169 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3170 }
3171}
3172
Manman Ren5f6fa422012-07-09 18:57:12 +00003173static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003174 switch (BrOpc) {
3175 default: return X86::COND_INVALID;
Craig Topper49758aa2015-01-06 04:23:53 +00003176 case X86::JE_1: return X86::COND_E;
3177 case X86::JNE_1: return X86::COND_NE;
3178 case X86::JL_1: return X86::COND_L;
3179 case X86::JLE_1: return X86::COND_LE;
3180 case X86::JG_1: return X86::COND_G;
3181 case X86::JGE_1: return X86::COND_GE;
3182 case X86::JB_1: return X86::COND_B;
3183 case X86::JBE_1: return X86::COND_BE;
3184 case X86::JA_1: return X86::COND_A;
3185 case X86::JAE_1: return X86::COND_AE;
3186 case X86::JS_1: return X86::COND_S;
3187 case X86::JNS_1: return X86::COND_NS;
3188 case X86::JP_1: return X86::COND_P;
3189 case X86::JNP_1: return X86::COND_NP;
3190 case X86::JO_1: return X86::COND_O;
3191 case X86::JNO_1: return X86::COND_NO;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003192 }
3193}
3194
Sanjay Patel203ee502015-02-17 21:55:20 +00003195/// Return condition code of a SET opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00003196static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3197 switch (Opc) {
3198 default: return X86::COND_INVALID;
3199 case X86::SETAr: case X86::SETAm: return X86::COND_A;
3200 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3201 case X86::SETBr: case X86::SETBm: return X86::COND_B;
3202 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3203 case X86::SETEr: case X86::SETEm: return X86::COND_E;
3204 case X86::SETGr: case X86::SETGm: return X86::COND_G;
3205 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3206 case X86::SETLr: case X86::SETLm: return X86::COND_L;
3207 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3208 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3209 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3210 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3211 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3212 case X86::SETOr: case X86::SETOm: return X86::COND_O;
3213 case X86::SETPr: case X86::SETPm: return X86::COND_P;
3214 case X86::SETSr: case X86::SETSm: return X86::COND_S;
3215 }
3216}
3217
Sanjay Patel203ee502015-02-17 21:55:20 +00003218/// Return condition code of a CMov opcode.
Michael Liao32376622012-09-20 03:06:15 +00003219X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
Manman Ren5f6fa422012-07-09 18:57:12 +00003220 switch (Opc) {
3221 default: return X86::COND_INVALID;
3222 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
3223 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
3224 return X86::COND_A;
3225 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3226 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3227 return X86::COND_AE;
3228 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
3229 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
3230 return X86::COND_B;
3231 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3232 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3233 return X86::COND_BE;
3234 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
3235 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
3236 return X86::COND_E;
3237 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
3238 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
3239 return X86::COND_G;
3240 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3241 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3242 return X86::COND_GE;
3243 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
3244 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
3245 return X86::COND_L;
3246 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3247 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3248 return X86::COND_LE;
3249 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3250 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3251 return X86::COND_NE;
3252 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3253 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3254 return X86::COND_NO;
3255 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3256 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3257 return X86::COND_NP;
3258 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3259 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3260 return X86::COND_NS;
3261 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
3262 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
3263 return X86::COND_O;
3264 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
3265 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
3266 return X86::COND_P;
3267 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
3268 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
3269 return X86::COND_S;
3270 }
3271}
3272
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003273unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3274 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00003275 default: llvm_unreachable("Illegal condition code!");
Craig Topper49758aa2015-01-06 04:23:53 +00003276 case X86::COND_E: return X86::JE_1;
3277 case X86::COND_NE: return X86::JNE_1;
3278 case X86::COND_L: return X86::JL_1;
3279 case X86::COND_LE: return X86::JLE_1;
3280 case X86::COND_G: return X86::JG_1;
3281 case X86::COND_GE: return X86::JGE_1;
3282 case X86::COND_B: return X86::JB_1;
3283 case X86::COND_BE: return X86::JBE_1;
3284 case X86::COND_A: return X86::JA_1;
3285 case X86::COND_AE: return X86::JAE_1;
3286 case X86::COND_S: return X86::JS_1;
3287 case X86::COND_NS: return X86::JNS_1;
3288 case X86::COND_P: return X86::JP_1;
3289 case X86::COND_NP: return X86::JNP_1;
3290 case X86::COND_O: return X86::JO_1;
3291 case X86::COND_NO: return X86::JNO_1;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003292 }
3293}
3294
Sanjay Patel203ee502015-02-17 21:55:20 +00003295/// Return the inverse of the specified condition,
Chris Lattner3a897f32006-10-21 05:52:40 +00003296/// e.g. turning COND_E to COND_NE.
3297X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3298 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00003299 default: llvm_unreachable("Illegal condition code!");
Chris Lattner3a897f32006-10-21 05:52:40 +00003300 case X86::COND_E: return X86::COND_NE;
3301 case X86::COND_NE: return X86::COND_E;
3302 case X86::COND_L: return X86::COND_GE;
3303 case X86::COND_LE: return X86::COND_G;
3304 case X86::COND_G: return X86::COND_LE;
3305 case X86::COND_GE: return X86::COND_L;
3306 case X86::COND_B: return X86::COND_AE;
3307 case X86::COND_BE: return X86::COND_A;
3308 case X86::COND_A: return X86::COND_BE;
3309 case X86::COND_AE: return X86::COND_B;
3310 case X86::COND_S: return X86::COND_NS;
3311 case X86::COND_NS: return X86::COND_S;
3312 case X86::COND_P: return X86::COND_NP;
3313 case X86::COND_NP: return X86::COND_P;
3314 case X86::COND_O: return X86::COND_NO;
3315 case X86::COND_NO: return X86::COND_O;
3316 }
3317}
3318
Sanjay Patel203ee502015-02-17 21:55:20 +00003319/// Assuming the flags are set by MI(a,b), return the condition code if we
3320/// modify the instructions such that flags are set by MI(b,a).
Benjamin Kramerabbfe692012-07-13 13:25:15 +00003321static X86::CondCode getSwappedCondition(X86::CondCode CC) {
Manman Ren5f6fa422012-07-09 18:57:12 +00003322 switch (CC) {
3323 default: return X86::COND_INVALID;
3324 case X86::COND_E: return X86::COND_E;
3325 case X86::COND_NE: return X86::COND_NE;
3326 case X86::COND_L: return X86::COND_G;
3327 case X86::COND_LE: return X86::COND_GE;
3328 case X86::COND_G: return X86::COND_L;
3329 case X86::COND_GE: return X86::COND_LE;
3330 case X86::COND_B: return X86::COND_A;
3331 case X86::COND_BE: return X86::COND_AE;
3332 case X86::COND_A: return X86::COND_B;
3333 case X86::COND_AE: return X86::COND_BE;
3334 }
3335}
3336
Sanjay Patel203ee502015-02-17 21:55:20 +00003337/// Return a set opcode for the given condition and
Manman Ren5f6fa422012-07-09 18:57:12 +00003338/// whether it has memory operand.
Juergen Ributzka2da1bbc2014-06-16 23:58:24 +00003339unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00003340 static const uint16_t Opc[16][2] = {
Manman Ren5f6fa422012-07-09 18:57:12 +00003341 { X86::SETAr, X86::SETAm },
3342 { X86::SETAEr, X86::SETAEm },
3343 { X86::SETBr, X86::SETBm },
3344 { X86::SETBEr, X86::SETBEm },
3345 { X86::SETEr, X86::SETEm },
3346 { X86::SETGr, X86::SETGm },
3347 { X86::SETGEr, X86::SETGEm },
3348 { X86::SETLr, X86::SETLm },
3349 { X86::SETLEr, X86::SETLEm },
3350 { X86::SETNEr, X86::SETNEm },
3351 { X86::SETNOr, X86::SETNOm },
3352 { X86::SETNPr, X86::SETNPm },
3353 { X86::SETNSr, X86::SETNSm },
3354 { X86::SETOr, X86::SETOm },
3355 { X86::SETPr, X86::SETPm },
3356 { X86::SETSr, X86::SETSm }
3357 };
3358
Juergen Ributzka2da1bbc2014-06-16 23:58:24 +00003359 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
Manman Ren5f6fa422012-07-09 18:57:12 +00003360 return Opc[CC][HasMemoryOperand ? 1 : 0];
3361}
3362
Sanjay Patel203ee502015-02-17 21:55:20 +00003363/// Return a cmov opcode for the given condition,
Manman Ren5f6fa422012-07-09 18:57:12 +00003364/// register size in bytes, and operand type.
Juergen Ributzka6ef06f92014-06-23 21:55:36 +00003365unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3366 bool HasMemoryOperand) {
Craig Topperbfcfdeb2012-08-21 08:23:21 +00003367 static const uint16_t Opc[32][3] = {
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003368 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
3369 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3370 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
3371 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3372 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
3373 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
3374 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3375 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
3376 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3377 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3378 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3379 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3380 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3381 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
3382 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
Manman Ren5f6fa422012-07-09 18:57:12 +00003383 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
3384 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
3385 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3386 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
3387 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3388 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
3389 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
3390 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3391 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
3392 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3393 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3394 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3395 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3396 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3397 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
3398 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
3399 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003400 };
3401
3402 assert(CC < 16 && "Can only handle standard cond codes");
Manman Ren5f6fa422012-07-09 18:57:12 +00003403 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003404 switch(RegBytes) {
3405 default: llvm_unreachable("Illegal register size!");
Manman Ren5f6fa422012-07-09 18:57:12 +00003406 case 2: return Opc[Idx][0];
3407 case 4: return Opc[Idx][1];
3408 case 8: return Opc[Idx][2];
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003409 }
3410}
3411
Dale Johannesen616627b2007-06-14 22:03:45 +00003412bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng7f8e5632011-12-07 07:15:52 +00003413 if (!MI->isTerminator()) return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003414
Chris Lattnera98c6792008-01-07 01:56:04 +00003415 // Conditional branch is a special case.
Evan Cheng7f8e5632011-12-07 07:15:52 +00003416 if (MI->isBranch() && !MI->isBarrier())
Chris Lattnera98c6792008-01-07 01:56:04 +00003417 return true;
Evan Cheng7f8e5632011-12-07 07:15:52 +00003418 if (!MI->isPredicable())
Chris Lattnera98c6792008-01-07 01:56:04 +00003419 return true;
3420 return !isPredicated(MI);
Dale Johannesen616627b2007-06-14 22:03:45 +00003421}
Chris Lattner3a897f32006-10-21 05:52:40 +00003422
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003423bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003424 MachineBasicBlock *&TBB,
3425 MachineBasicBlock *&FBB,
Evan Cheng64dfcac2009-02-09 07:14:22 +00003426 SmallVectorImpl<MachineOperand> &Cond,
3427 bool AllowModify) const {
Dan Gohman97d95d62008-10-21 03:29:32 +00003428 // Start from the bottom of the block and work up, examining the
3429 // terminator instructions.
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003430 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003431 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003432 while (I != MBB.begin()) {
3433 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00003434 if (I->isDebugValue())
3435 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00003436
3437 // Working from the bottom, when we see a non-terminator instruction, we're
3438 // done.
Jakob Stoklund Olesenc30b4dd2010-07-16 17:41:44 +00003439 if (!isUnpredicatedTerminator(I))
Dan Gohman97d95d62008-10-21 03:29:32 +00003440 break;
Bill Wendling277381f2009-12-14 06:51:19 +00003441
3442 // A terminator that isn't a branch can't easily be handled by this
3443 // analysis.
Evan Cheng7f8e5632011-12-07 07:15:52 +00003444 if (!I->isBranch())
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003445 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003446
Dan Gohman97d95d62008-10-21 03:29:32 +00003447 // Handle unconditional branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003448 if (I->getOpcode() == X86::JMP_1) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003449 UnCondBrIter = I;
3450
Evan Cheng64dfcac2009-02-09 07:14:22 +00003451 if (!AllowModify) {
3452 TBB = I->getOperand(0).getMBB();
Evan Cheng2fa28112009-05-08 06:34:09 +00003453 continue;
Evan Cheng64dfcac2009-02-09 07:14:22 +00003454 }
3455
Dan Gohman97d95d62008-10-21 03:29:32 +00003456 // If the block has any instructions after a JMP, delete them.
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003457 while (std::next(I) != MBB.end())
3458 std::next(I)->eraseFromParent();
Bill Wendling277381f2009-12-14 06:51:19 +00003459
Dan Gohman97d95d62008-10-21 03:29:32 +00003460 Cond.clear();
Craig Topper062a2ba2014-04-25 05:30:21 +00003461 FBB = nullptr;
Bill Wendling277381f2009-12-14 06:51:19 +00003462
Dan Gohman97d95d62008-10-21 03:29:32 +00003463 // Delete the JMP if it's equivalent to a fall-through.
3464 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
Craig Topper062a2ba2014-04-25 05:30:21 +00003465 TBB = nullptr;
Dan Gohman97d95d62008-10-21 03:29:32 +00003466 I->eraseFromParent();
3467 I = MBB.end();
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003468 UnCondBrIter = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003469 continue;
3470 }
Bill Wendling277381f2009-12-14 06:51:19 +00003471
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003472 // TBB is used to indicate the unconditional destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00003473 TBB = I->getOperand(0).getMBB();
3474 continue;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003475 }
Bill Wendling277381f2009-12-14 06:51:19 +00003476
Dan Gohman97d95d62008-10-21 03:29:32 +00003477 // Handle conditional branches.
Manman Ren5f6fa422012-07-09 18:57:12 +00003478 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003479 if (BranchCode == X86::COND_INVALID)
3480 return true; // Can't handle indirect branch.
Bill Wendling277381f2009-12-14 06:51:19 +00003481
Dan Gohman97d95d62008-10-21 03:29:32 +00003482 // Working from the bottom, handle the first conditional branch.
3483 if (Cond.empty()) {
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003484 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3485 if (AllowModify && UnCondBrIter != MBB.end() &&
3486 MBB.isLayoutSuccessor(TargetBB)) {
3487 // If we can modify the code and it ends in something like:
3488 //
3489 // jCC L1
3490 // jmp L2
3491 // L1:
3492 // ...
3493 // L2:
3494 //
3495 // Then we can change this to:
3496 //
3497 // jnCC L2
3498 // L1:
3499 // ...
3500 // L2:
3501 //
3502 // Which is a bit more efficient.
3503 // We conditionally jump to the fall-through block.
3504 BranchCode = GetOppositeBranchCondition(BranchCode);
3505 unsigned JNCC = GetCondBranchFromCond(BranchCode);
3506 MachineBasicBlock::iterator OldInst = I;
3507
3508 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3509 .addMBB(UnCondBrIter->getOperand(0).getMBB());
Craig Topper49758aa2015-01-06 04:23:53 +00003510 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003511 .addMBB(TargetBB);
Evan Cheng4ca4bc62010-04-13 18:50:27 +00003512
3513 OldInst->eraseFromParent();
3514 UnCondBrIter->eraseFromParent();
3515
3516 // Restart the analysis.
3517 UnCondBrIter = MBB.end();
3518 I = MBB.end();
3519 continue;
3520 }
3521
Dan Gohman97d95d62008-10-21 03:29:32 +00003522 FBB = TBB;
3523 TBB = I->getOperand(0).getMBB();
3524 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3525 continue;
3526 }
Bill Wendling277381f2009-12-14 06:51:19 +00003527
3528 // Handle subsequent conditional branches. Only handle the case where all
3529 // conditional branches branch to the same destination and their condition
3530 // opcodes fit one of the special multi-branch idioms.
Dan Gohman97d95d62008-10-21 03:29:32 +00003531 assert(Cond.size() == 1);
3532 assert(TBB);
Bill Wendling277381f2009-12-14 06:51:19 +00003533
3534 // Only handle the case where all conditional branches branch to the same
3535 // destination.
Dan Gohman97d95d62008-10-21 03:29:32 +00003536 if (TBB != I->getOperand(0).getMBB())
3537 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003538
Dan Gohman97d95d62008-10-21 03:29:32 +00003539 // If the conditions are the same, we can leave them alone.
Bill Wendling277381f2009-12-14 06:51:19 +00003540 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman97d95d62008-10-21 03:29:32 +00003541 if (OldBranchCode == BranchCode)
3542 continue;
Bill Wendling277381f2009-12-14 06:51:19 +00003543
3544 // If they differ, see if they fit one of the known patterns. Theoretically,
3545 // we could handle more patterns here, but we shouldn't expect to see them
3546 // if instruction selection has done a reasonable job.
Dan Gohman97d95d62008-10-21 03:29:32 +00003547 if ((OldBranchCode == X86::COND_NP &&
3548 BranchCode == X86::COND_E) ||
3549 (OldBranchCode == X86::COND_E &&
3550 BranchCode == X86::COND_NP))
3551 BranchCode = X86::COND_NP_OR_E;
3552 else if ((OldBranchCode == X86::COND_P &&
3553 BranchCode == X86::COND_NE) ||
3554 (OldBranchCode == X86::COND_NE &&
3555 BranchCode == X86::COND_P))
3556 BranchCode = X86::COND_NE_OR_P;
3557 else
3558 return true;
Bill Wendling277381f2009-12-14 06:51:19 +00003559
Dan Gohman97d95d62008-10-21 03:29:32 +00003560 // Update the MachineOperand.
3561 Cond[0].setImm(BranchCode);
Chris Lattner74436002006-10-30 22:27:23 +00003562 }
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003563
Dan Gohman97d95d62008-10-21 03:29:32 +00003564 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003565}
3566
Evan Chenge20dd922007-05-18 00:18:17 +00003567unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003568 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman97d95d62008-10-21 03:29:32 +00003569 unsigned Count = 0;
3570
3571 while (I != MBB.begin()) {
3572 --I;
Dale Johannesen4244d122010-04-02 01:38:09 +00003573 if (I->isDebugValue())
3574 continue;
Craig Topper49758aa2015-01-06 04:23:53 +00003575 if (I->getOpcode() != X86::JMP_1 &&
Manman Ren5f6fa422012-07-09 18:57:12 +00003576 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Dan Gohman97d95d62008-10-21 03:29:32 +00003577 break;
3578 // Remove the branch.
3579 I->eraseFromParent();
3580 I = MBB.end();
3581 ++Count;
3582 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00003583
Dan Gohman97d95d62008-10-21 03:29:32 +00003584 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003585}
3586
Evan Chenge20dd922007-05-18 00:18:17 +00003587unsigned
3588X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
3589 MachineBasicBlock *FBB,
Stuart Hastings0125b642010-06-17 22:43:56 +00003590 const SmallVectorImpl<MachineOperand> &Cond,
3591 DebugLoc DL) const {
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003592 // Shouldn't be a fall through.
3593 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner6fca75e2006-10-21 05:34:23 +00003594 assert((Cond.size() == 1 || Cond.size() == 0) &&
3595 "X86 branch conditions have one component!");
3596
Dan Gohman97d95d62008-10-21 03:29:32 +00003597 if (Cond.empty()) {
3598 // Unconditional branch?
3599 assert(!FBB && "Unconditional branch with multiple successors!");
Craig Topper49758aa2015-01-06 04:23:53 +00003600 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
Evan Chenge20dd922007-05-18 00:18:17 +00003601 return 1;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003602 }
Dan Gohman97d95d62008-10-21 03:29:32 +00003603
3604 // Conditional branch.
3605 unsigned Count = 0;
3606 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3607 switch (CC) {
3608 case X86::COND_NP_OR_E:
3609 // Synthesize NP_OR_E with two branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003610 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003611 ++Count;
Craig Topper49758aa2015-01-06 04:23:53 +00003612 BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003613 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003614 break;
3615 case X86::COND_NE_OR_P:
3616 // Synthesize NE_OR_P with two branches.
Craig Topper49758aa2015-01-06 04:23:53 +00003617 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003618 ++Count;
Craig Topper49758aa2015-01-06 04:23:53 +00003619 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003620 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003621 break;
Bill Wendling543ce1f2010-03-05 00:33:59 +00003622 default: {
3623 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings0125b642010-06-17 22:43:56 +00003624 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling543ce1f2010-03-05 00:33:59 +00003625 ++Count;
Dan Gohman97d95d62008-10-21 03:29:32 +00003626 }
Bill Wendling543ce1f2010-03-05 00:33:59 +00003627 }
Dan Gohman97d95d62008-10-21 03:29:32 +00003628 if (FBB) {
3629 // Two-way Conditional branch. Insert the second branch.
Craig Topper49758aa2015-01-06 04:23:53 +00003630 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
Dan Gohman97d95d62008-10-21 03:29:32 +00003631 ++Count;
3632 }
3633 return Count;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00003634}
3635
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003636bool X86InstrInfo::
3637canInsertSelect(const MachineBasicBlock &MBB,
3638 const SmallVectorImpl<MachineOperand> &Cond,
3639 unsigned TrueReg, unsigned FalseReg,
3640 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3641 // Not all subtargets have cmov instructions.
Eric Christopher6c786a12014-06-10 22:34:31 +00003642 if (!Subtarget.hasCMov())
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003643 return false;
3644 if (Cond.size() != 1)
3645 return false;
3646 // We cannot do the composite conditions, at least not in SSA form.
3647 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3648 return false;
3649
3650 // Check register classes.
3651 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3652 const TargetRegisterClass *RC =
3653 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3654 if (!RC)
3655 return false;
3656
3657 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3658 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3659 X86::GR32RegClass.hasSubClassEq(RC) ||
3660 X86::GR64RegClass.hasSubClassEq(RC)) {
3661 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3662 // Bridge. Probably Ivy Bridge as well.
3663 CondCycles = 2;
3664 TrueCycles = 2;
3665 FalseCycles = 2;
3666 return true;
3667 }
3668
3669 // Can't do vectors.
3670 return false;
3671}
3672
3673void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3674 MachineBasicBlock::iterator I, DebugLoc DL,
3675 unsigned DstReg,
3676 const SmallVectorImpl<MachineOperand> &Cond,
3677 unsigned TrueReg, unsigned FalseReg) const {
3678 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3679 assert(Cond.size() == 1 && "Invalid Cond array");
3680 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
Manman Ren5f6fa422012-07-09 18:57:12 +00003681 MRI.getRegClass(DstReg)->getSize(),
3682 false/*HasMemoryOperand*/);
Jakob Stoklund Olesen49e4d4b2012-07-04 00:09:58 +00003683 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3684}
3685
Sanjay Patel203ee502015-02-17 21:55:20 +00003686/// Test if the given register is a physical h register.
Dan Gohman7913ea52009-04-15 00:04:23 +00003687static bool isHReg(unsigned Reg) {
Dan Gohman29869722009-04-27 16:41:36 +00003688 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman7913ea52009-04-15 00:04:23 +00003689}
3690
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003691// Try and copy between VR128/VR64 and GR64 registers.
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003692static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
Eric Christopher6c786a12014-06-10 22:34:31 +00003693 const X86Subtarget &Subtarget) {
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003694
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003695 // SrcReg(VR128) -> DestReg(GR64)
3696 // SrcReg(VR64) -> DestReg(GR64)
3697 // SrcReg(GR64) -> DestReg(VR128)
3698 // SrcReg(GR64) -> DestReg(VR64)
3699
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003700 bool HasAVX = Subtarget.hasAVX();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003701 bool HasAVX512 = Subtarget.hasAVX512();
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003702 if (X86::GR64RegClass.contains(DestReg)) {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003703 if (X86::VR128XRegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003704 // Copy from a VR128 register to a GR64 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003705 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3706 X86::MOVPQIto64rr);
Craig Topperbab0c762012-08-21 08:29:51 +00003707 if (X86::VR64RegClass.contains(SrcReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003708 // Copy from a VR64 register to a GR64 register.
3709 return X86::MOVSDto64rr;
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003710 } else if (X86::GR64RegClass.contains(SrcReg)) {
3711 // Copy from a GR64 register to a VR128 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003712 if (X86::VR128XRegClass.contains(DestReg))
3713 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3714 X86::MOV64toPQIrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003715 // Copy from a GR64 register to a VR64 register.
Craig Topperbab0c762012-08-21 08:29:51 +00003716 if (X86::VR64RegClass.contains(DestReg))
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003717 return X86::MOV64toSDrr;
3718 }
3719
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003720 // SrcReg(FR32) -> DestReg(GR32)
3721 // SrcReg(GR32) -> DestReg(FR32)
3722
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003723 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003724 // Copy from a FR32 register to a GR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003725 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
Jakob Stoklund Olesenf05864a2011-09-22 22:45:24 +00003726
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003727 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
Craig Topperbab0c762012-08-21 08:29:51 +00003728 // Copy from a GR32 register to a FR32 register.
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003729 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
Anton Korobeynikovc0b36922010-08-27 14:43:06 +00003730 return 0;
3731}
3732
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003733inline static bool MaskRegClassContains(unsigned Reg) {
3734 return X86::VK8RegClass.contains(Reg) ||
3735 X86::VK16RegClass.contains(Reg) ||
Robert Khasanov74acbb72014-07-23 14:49:42 +00003736 X86::VK32RegClass.contains(Reg) ||
3737 X86::VK64RegClass.contains(Reg) ||
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003738 X86::VK1RegClass.contains(Reg);
3739}
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003740static
3741unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3742 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3743 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3744 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3745 DestReg = get512BitSuperRegister(DestReg);
3746 SrcReg = get512BitSuperRegister(SrcReg);
3747 return X86::VMOVAPSZrr;
3748 }
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003749 if (MaskRegClassContains(DestReg) &&
3750 MaskRegClassContains(SrcReg))
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003751 return X86::KMOVWkk;
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003752 if (MaskRegClassContains(DestReg) &&
Elena Demikhovsky6270b382013-12-10 11:58:35 +00003753 (X86::GR32RegClass.contains(SrcReg) ||
3754 X86::GR16RegClass.contains(SrcReg) ||
3755 X86::GR8RegClass.contains(SrcReg))) {
3756 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3757 return X86::KMOVWkr;
3758 }
3759 if ((X86::GR32RegClass.contains(DestReg) ||
3760 X86::GR16RegClass.contains(DestReg) ||
3761 X86::GR8RegClass.contains(DestReg)) &&
Elena Demikhovsky47fc44e2013-12-16 13:52:35 +00003762 MaskRegClassContains(SrcReg)) {
Elena Demikhovsky6270b382013-12-10 11:58:35 +00003763 DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3764 return X86::KMOVWrk;
3765 }
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003766 return 0;
3767}
3768
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003769void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3770 MachineBasicBlock::iterator MI, DebugLoc DL,
3771 unsigned DestReg, unsigned SrcReg,
3772 bool KillSrc) const {
3773 // First deal with the normal symmetric copies.
Eric Christopher6c786a12014-06-10 22:34:31 +00003774 bool HasAVX = Subtarget.hasAVX();
3775 bool HasAVX512 = Subtarget.hasAVX512();
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003776 unsigned Opc = 0;
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003777 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3778 Opc = X86::MOV64rr;
3779 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3780 Opc = X86::MOV32rr;
3781 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3782 Opc = X86::MOV16rr;
3783 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3784 // Copying to or from a physical H register on x86-64 requires a NOREX
3785 // move. Otherwise use a normal move.
3786 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
Eric Christopher6c786a12014-06-10 22:34:31 +00003787 Subtarget.is64Bit()) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003788 Opc = X86::MOV8rr_NOREX;
Jakob Stoklund Olesen464fcc02011-10-07 20:15:54 +00003789 // Both operands must be encodable without an REX prefix.
3790 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3791 "8-bit H register can not be copied outside GR8_NOREX");
3792 } else
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003793 Opc = X86::MOV8rr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003794 }
3795 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3796 Opc = X86::MMX_MOVQ64rr;
3797 else if (HasAVX512)
3798 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3799 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003800 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003801 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3802 Opc = X86::VMOVAPSYrr;
Elena Demikhovskycf5b1452013-08-11 07:55:09 +00003803 if (!Opc)
Eric Christopher6c786a12014-06-10 22:34:31 +00003804 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003805
3806 if (Opc) {
3807 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3808 .addReg(SrcReg, getKillRegState(KillSrc));
3809 return;
3810 }
3811
3812 // Moving EFLAGS to / from another register requires a push and a pop.
Nadav Rotemd5aae982012-12-21 23:48:49 +00003813 // Notice that we have to adjust the stack if we don't want to clobber the
JF Bastienac8b66b2014-08-05 23:27:34 +00003814 // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003815 if (SrcReg == X86::EFLAGS) {
3816 if (X86::GR64RegClass.contains(DestReg)) {
3817 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3818 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3819 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003820 }
3821 if (X86::GR32RegClass.contains(DestReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003822 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3823 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3824 return;
3825 }
3826 }
3827 if (DestReg == X86::EFLAGS) {
3828 if (X86::GR64RegClass.contains(SrcReg)) {
3829 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3830 .addReg(SrcReg, getKillRegState(KillSrc));
3831 BuildMI(MBB, MI, DL, get(X86::POPF64));
3832 return;
Craig Topperbab0c762012-08-21 08:29:51 +00003833 }
3834 if (X86::GR32RegClass.contains(SrcReg)) {
Jakob Stoklund Olesen930f8082010-07-08 19:46:25 +00003835 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3836 .addReg(SrcReg, getKillRegState(KillSrc));
3837 BuildMI(MBB, MI, DL, get(X86::POPF32));
3838 return;
3839 }
3840 }
3841
3842 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3843 << " to " << RI.getName(DestReg) << '\n');
3844 llvm_unreachable("Cannot emit physreg copy instruction");
3845}
3846
Rafael Espindolae302f832010-06-12 20:13:29 +00003847static unsigned getLoadStoreRegOpcode(unsigned Reg,
3848 const TargetRegisterClass *RC,
3849 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00003850 const X86Subtarget &STI,
Rafael Espindolae302f832010-06-12 20:13:29 +00003851 bool load) {
Eric Christopher6c786a12014-06-10 22:34:31 +00003852 if (STI.hasAVX512()) {
Andrew Trick8460a3b2013-10-14 22:18:56 +00003853 if (X86::VK8RegClass.hasSubClassEq(RC) ||
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003854 X86::VK16RegClass.hasSubClassEq(RC))
3855 return load ? X86::KMOVWkm : X86::KMOVWmk;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003856 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003857 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003858 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003859 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
Elena Demikhovsky34586e72013-10-02 12:20:42 +00003860 if (X86::VR512RegClass.hasSubClassEq(RC))
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003861 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3862 }
3863
Eric Christopher6c786a12014-06-10 22:34:31 +00003864 bool HasAVX = STI.hasAVX();
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003865 switch (RC->getSize()) {
Rafael Espindola6635f982010-07-12 03:43:04 +00003866 default:
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003867 llvm_unreachable("Unknown spill size");
3868 case 1:
3869 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Eric Christopher6c786a12014-06-10 22:34:31 +00003870 if (STI.is64Bit())
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003871 // Copying to or from a physical H register on x86-64 requires a NOREX
3872 // move. Otherwise use a normal move.
3873 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3874 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3875 return load ? X86::MOV8rm : X86::MOV8mr;
3876 case 2:
3877 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3878 return load ? X86::MOV16rm : X86::MOV16mr;
3879 case 4:
3880 if (X86::GR32RegClass.hasSubClassEq(RC))
3881 return load ? X86::MOV32rm : X86::MOV32mr;
3882 if (X86::FR32RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003883 return load ?
3884 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3885 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003886 if (X86::RFP32RegClass.hasSubClassEq(RC))
3887 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3888 llvm_unreachable("Unknown 4-byte regclass");
3889 case 8:
3890 if (X86::GR64RegClass.hasSubClassEq(RC))
3891 return load ? X86::MOV64rm : X86::MOV64mr;
3892 if (X86::FR64RegClass.hasSubClassEq(RC))
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003893 return load ?
3894 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3895 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
Jakob Stoklund Olesen56ce3a02011-06-01 15:32:10 +00003896 if (X86::VR64RegClass.hasSubClassEq(RC))
3897 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3898 if (X86::RFP64RegClass.hasSubClassEq(RC))
3899 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3900 llvm_unreachable("Unknown 8-byte regclass");
3901 case 10:
3902 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00003903 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003904 case 16: {
Elena Demikhovsky0a74b7d2013-11-14 11:29:27 +00003905 assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3906 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
Rafael Espindolae302f832010-06-12 20:13:29 +00003907 // If stack is realigned we can use aligned stores.
3908 if (isStackAligned)
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003909 return load ?
3910 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3911 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindolae302f832010-06-12 20:13:29 +00003912 else
Bruno Cardoso Lopesdb520db2011-08-31 03:04:09 +00003913 return load ?
3914 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3915 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3916 }
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003917 case 32:
Elena Demikhovsky0a74b7d2013-11-14 11:29:27 +00003918 assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3919 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00003920 // If stack is realigned we can use aligned stores.
3921 if (isStackAligned)
3922 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3923 else
3924 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003925 case 64:
3926 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3927 if (isStackAligned)
3928 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3929 else
3930 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
Rafael Espindolae302f832010-06-12 20:13:29 +00003931 }
3932}
3933
Dan Gohman29869722009-04-27 16:41:36 +00003934static unsigned getStoreRegOpcode(unsigned SrcReg,
3935 const TargetRegisterClass *RC,
3936 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00003937 const X86Subtarget &STI) {
3938 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
Rafael Espindolae302f832010-06-12 20:13:29 +00003939}
Owen Andersoneee14602008-01-01 21:11:32 +00003940
Rafael Espindolae302f832010-06-12 20:13:29 +00003941
3942static unsigned getLoadRegOpcode(unsigned DestReg,
3943 const TargetRegisterClass *RC,
3944 bool isStackAligned,
Eric Christopher6c786a12014-06-10 22:34:31 +00003945 const X86Subtarget &STI) {
3946 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
Owen Andersoneee14602008-01-01 21:11:32 +00003947}
3948
3949void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3950 MachineBasicBlock::iterator MI,
3951 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00003952 const TargetRegisterClass *RC,
3953 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003954 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesenc3c05ed2010-07-27 04:16:58 +00003955 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3956 "Stack slot too small for store");
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003957 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Eric Christopher05b81972015-02-02 17:38:43 +00003958 bool isAligned =
3959 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3960 RI.canRealignStack(MF);
Eric Christopher6c786a12014-06-10 22:34:31 +00003961 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
Dale Johannesene5a41342010-01-26 00:03:12 +00003962 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00003963 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00003964 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersoneee14602008-01-01 21:11:32 +00003965}
3966
3967void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3968 bool isKill,
3969 SmallVectorImpl<MachineOperand> &Addr,
3970 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00003971 MachineInstr::mmo_iterator MMOBegin,
3972 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00003973 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003974 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00003975 bool isAligned = MMOBegin != MMOEnd &&
3976 (*MMOBegin)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00003977 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
Chris Lattner6f306d72010-04-02 20:16:16 +00003978 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00003979 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersoneee14602008-01-01 21:11:32 +00003980 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00003981 MIB.addOperand(Addr[i]);
Bill Wendlingf7b83c72009-05-13 21:33:08 +00003982 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmandd76bb22009-10-09 18:10:05 +00003983 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00003984 NewMIs.push_back(MIB);
3985}
3986
Owen Andersoneee14602008-01-01 21:11:32 +00003987
3988void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003989 MachineBasicBlock::iterator MI,
3990 unsigned DestReg, int FrameIdx,
Evan Chengefb126a2010-05-06 19:06:44 +00003991 const TargetRegisterClass *RC,
3992 const TargetRegisterInfo *TRI) const {
Anton Korobeynikovb7a49922008-07-19 06:30:51 +00003993 const MachineFunction &MF = *MBB.getParent();
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00003994 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Eric Christopher05b81972015-02-02 17:38:43 +00003995 bool isAligned =
3996 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3997 RI.canRealignStack(MF);
Eric Christopher6c786a12014-06-10 22:34:31 +00003998 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
Dale Johannesene5a41342010-01-26 00:03:12 +00003999 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendling27b508d2009-02-11 21:51:19 +00004000 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersoneee14602008-01-01 21:11:32 +00004001}
4002
4003void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng7d98a482008-07-03 09:09:37 +00004004 SmallVectorImpl<MachineOperand> &Addr,
4005 const TargetRegisterClass *RC,
Dan Gohmandd76bb22009-10-09 18:10:05 +00004006 MachineInstr::mmo_iterator MMOBegin,
4007 MachineInstr::mmo_iterator MMOEnd,
Owen Andersoneee14602008-01-01 21:11:32 +00004008 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Elena Demikhovsky3ce8dbb2013-08-18 13:08:57 +00004009 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00004010 bool isAligned = MMOBegin != MMOEnd &&
4011 (*MMOBegin)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00004012 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
Chris Lattner6f306d72010-04-02 20:16:16 +00004013 DebugLoc DL;
Dale Johannesen6b8c76a2009-02-12 23:08:38 +00004014 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersoneee14602008-01-01 21:11:32 +00004015 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004016 MIB.addOperand(Addr[i]);
Dan Gohmandd76bb22009-10-09 18:10:05 +00004017 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersoneee14602008-01-01 21:11:32 +00004018 NewMIs.push_back(MIB);
4019}
4020
Manman Renc9656732012-07-06 17:36:20 +00004021bool X86InstrInfo::
4022analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4023 int &CmpMask, int &CmpValue) const {
4024 switch (MI->getOpcode()) {
4025 default: break;
4026 case X86::CMP64ri32:
4027 case X86::CMP64ri8:
4028 case X86::CMP32ri:
4029 case X86::CMP32ri8:
4030 case X86::CMP16ri:
4031 case X86::CMP16ri8:
4032 case X86::CMP8ri:
4033 SrcReg = MI->getOperand(0).getReg();
4034 SrcReg2 = 0;
4035 CmpMask = ~0;
4036 CmpValue = MI->getOperand(1).getImm();
4037 return true;
Manman Ren1be131b2012-08-08 00:51:41 +00004038 // A SUB can be used to perform comparison.
4039 case X86::SUB64rm:
4040 case X86::SUB32rm:
4041 case X86::SUB16rm:
4042 case X86::SUB8rm:
4043 SrcReg = MI->getOperand(1).getReg();
4044 SrcReg2 = 0;
4045 CmpMask = ~0;
4046 CmpValue = 0;
4047 return true;
4048 case X86::SUB64rr:
4049 case X86::SUB32rr:
4050 case X86::SUB16rr:
4051 case X86::SUB8rr:
4052 SrcReg = MI->getOperand(1).getReg();
4053 SrcReg2 = MI->getOperand(2).getReg();
4054 CmpMask = ~0;
4055 CmpValue = 0;
4056 return true;
4057 case X86::SUB64ri32:
4058 case X86::SUB64ri8:
4059 case X86::SUB32ri:
4060 case X86::SUB32ri8:
4061 case X86::SUB16ri:
4062 case X86::SUB16ri8:
4063 case X86::SUB8ri:
4064 SrcReg = MI->getOperand(1).getReg();
4065 SrcReg2 = 0;
4066 CmpMask = ~0;
4067 CmpValue = MI->getOperand(2).getImm();
4068 return true;
Manman Renc9656732012-07-06 17:36:20 +00004069 case X86::CMP64rr:
4070 case X86::CMP32rr:
4071 case X86::CMP16rr:
4072 case X86::CMP8rr:
4073 SrcReg = MI->getOperand(0).getReg();
4074 SrcReg2 = MI->getOperand(1).getReg();
4075 CmpMask = ~0;
4076 CmpValue = 0;
4077 return true;
Manman Rend0a4ee82012-07-18 21:40:01 +00004078 case X86::TEST8rr:
4079 case X86::TEST16rr:
4080 case X86::TEST32rr:
4081 case X86::TEST64rr:
4082 SrcReg = MI->getOperand(0).getReg();
4083 if (MI->getOperand(1).getReg() != SrcReg) return false;
4084 // Compare against zero.
4085 SrcReg2 = 0;
4086 CmpMask = ~0;
4087 CmpValue = 0;
4088 return true;
Manman Renc9656732012-07-06 17:36:20 +00004089 }
4090 return false;
4091}
4092
Sanjay Patel203ee502015-02-17 21:55:20 +00004093/// Check whether the first instruction, whose only
Manman Renc9656732012-07-06 17:36:20 +00004094/// purpose is to update flags, can be made redundant.
4095/// CMPrr can be made redundant by SUBrr if the operands are the same.
4096/// This function can be extended later on.
4097/// SrcReg, SrcRegs: register operands for FlagI.
4098/// ImmValue: immediate for FlagI if it takes an immediate.
4099inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4100 unsigned SrcReg2, int ImmValue,
4101 MachineInstr *OI) {
4102 if (((FlagI->getOpcode() == X86::CMP64rr &&
4103 OI->getOpcode() == X86::SUB64rr) ||
4104 (FlagI->getOpcode() == X86::CMP32rr &&
4105 OI->getOpcode() == X86::SUB32rr)||
4106 (FlagI->getOpcode() == X86::CMP16rr &&
4107 OI->getOpcode() == X86::SUB16rr)||
4108 (FlagI->getOpcode() == X86::CMP8rr &&
4109 OI->getOpcode() == X86::SUB8rr)) &&
4110 ((OI->getOperand(1).getReg() == SrcReg &&
4111 OI->getOperand(2).getReg() == SrcReg2) ||
4112 (OI->getOperand(1).getReg() == SrcReg2 &&
4113 OI->getOperand(2).getReg() == SrcReg)))
4114 return true;
4115
4116 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4117 OI->getOpcode() == X86::SUB64ri32) ||
4118 (FlagI->getOpcode() == X86::CMP64ri8 &&
4119 OI->getOpcode() == X86::SUB64ri8) ||
4120 (FlagI->getOpcode() == X86::CMP32ri &&
4121 OI->getOpcode() == X86::SUB32ri) ||
4122 (FlagI->getOpcode() == X86::CMP32ri8 &&
4123 OI->getOpcode() == X86::SUB32ri8) ||
4124 (FlagI->getOpcode() == X86::CMP16ri &&
4125 OI->getOpcode() == X86::SUB16ri) ||
4126 (FlagI->getOpcode() == X86::CMP16ri8 &&
4127 OI->getOpcode() == X86::SUB16ri8) ||
4128 (FlagI->getOpcode() == X86::CMP8ri &&
4129 OI->getOpcode() == X86::SUB8ri)) &&
4130 OI->getOperand(1).getReg() == SrcReg &&
4131 OI->getOperand(2).getImm() == ImmValue)
4132 return true;
4133 return false;
4134}
4135
Sanjay Patel203ee502015-02-17 21:55:20 +00004136/// Check whether the definition can be converted
Manman Rend0a4ee82012-07-18 21:40:01 +00004137/// to remove a comparison against zero.
4138inline static bool isDefConvertible(MachineInstr *MI) {
4139 switch (MI->getOpcode()) {
4140 default: return false;
David Majnemer7ea2a522013-05-22 08:13:02 +00004141
4142 // The shift instructions only modify ZF if their shift count is non-zero.
4143 // N.B.: The processor truncates the shift count depending on the encoding.
4144 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4145 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4146 return getTruncatedShiftCount(MI, 2) != 0;
4147
4148 // Some left shift instructions can be turned into LEA instructions but only
4149 // if their flags aren't used. Avoid transforming such instructions.
4150 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4151 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4152 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4153 return ShAmt != 0;
4154 }
4155
4156 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4157 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4158 return getTruncatedShiftCount(MI, 3) != 0;
4159
Manman Rend0a4ee82012-07-18 21:40:01 +00004160 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4161 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4162 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4163 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4164 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00004165 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
Manman Rend0a4ee82012-07-18 21:40:01 +00004166 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4167 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4168 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4169 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4170 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
Craig Topper5b08cf72012-12-17 04:55:07 +00004171 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
Manman Rend0a4ee82012-07-18 21:40:01 +00004172 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4173 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4174 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4175 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4176 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4177 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4178 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4179 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4180 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4181 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4182 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4183 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4184 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4185 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4186 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
David Majnemer8f169742013-05-15 22:03:08 +00004187 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4188 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4189 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4190 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4191 case X86::ADC32ri: case X86::ADC32ri8:
4192 case X86::ADC32rr: case X86::ADC64ri32:
4193 case X86::ADC64ri8: case X86::ADC64rr:
4194 case X86::SBB32ri: case X86::SBB32ri8:
4195 case X86::SBB32rr: case X86::SBB64ri32:
4196 case X86::SBB64ri8: case X86::SBB64rr:
Craig Topperf3ff6ae2012-12-17 05:12:30 +00004197 case X86::ANDN32rr: case X86::ANDN32rm:
4198 case X86::ANDN64rr: case X86::ANDN64rm:
David Majnemer8f169742013-05-15 22:03:08 +00004199 case X86::BEXTR32rr: case X86::BEXTR64rr:
4200 case X86::BEXTR32rm: case X86::BEXTR64rm:
4201 case X86::BLSI32rr: case X86::BLSI32rm:
4202 case X86::BLSI64rr: case X86::BLSI64rm:
4203 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4204 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4205 case X86::BLSR32rr: case X86::BLSR32rm:
4206 case X86::BLSR64rr: case X86::BLSR64rm:
4207 case X86::BZHI32rr: case X86::BZHI32rm:
4208 case X86::BZHI64rr: case X86::BZHI64rm:
4209 case X86::LZCNT16rr: case X86::LZCNT16rm:
4210 case X86::LZCNT32rr: case X86::LZCNT32rm:
4211 case X86::LZCNT64rr: case X86::LZCNT64rm:
4212 case X86::POPCNT16rr:case X86::POPCNT16rm:
4213 case X86::POPCNT32rr:case X86::POPCNT32rm:
4214 case X86::POPCNT64rr:case X86::POPCNT64rm:
4215 case X86::TZCNT16rr: case X86::TZCNT16rm:
4216 case X86::TZCNT32rr: case X86::TZCNT32rm:
4217 case X86::TZCNT64rr: case X86::TZCNT64rm:
Manman Rend0a4ee82012-07-18 21:40:01 +00004218 return true;
4219 }
4220}
4221
Sanjay Patel203ee502015-02-17 21:55:20 +00004222/// Check whether the use can be converted to remove a comparison against zero.
Benjamin Kramer594f9632014-05-14 16:14:45 +00004223static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4224 switch (MI->getOpcode()) {
4225 default: return X86::COND_INVALID;
4226 case X86::LZCNT16rr: case X86::LZCNT16rm:
4227 case X86::LZCNT32rr: case X86::LZCNT32rm:
4228 case X86::LZCNT64rr: case X86::LZCNT64rm:
4229 return X86::COND_B;
4230 case X86::POPCNT16rr:case X86::POPCNT16rm:
4231 case X86::POPCNT32rr:case X86::POPCNT32rm:
4232 case X86::POPCNT64rr:case X86::POPCNT64rm:
4233 return X86::COND_E;
4234 case X86::TZCNT16rr: case X86::TZCNT16rm:
4235 case X86::TZCNT32rr: case X86::TZCNT32rm:
4236 case X86::TZCNT64rr: case X86::TZCNT64rm:
4237 return X86::COND_B;
4238 }
4239}
4240
Sanjay Patel203ee502015-02-17 21:55:20 +00004241/// Check if there exists an earlier instruction that
Manman Renc9656732012-07-06 17:36:20 +00004242/// operates on the same source operands and sets flags in the same way as
4243/// Compare; remove Compare if possible.
4244bool X86InstrInfo::
4245optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4246 int CmpMask, int CmpValue,
4247 const MachineRegisterInfo *MRI) const {
Manman Ren1be131b2012-08-08 00:51:41 +00004248 // Check whether we can replace SUB with CMP.
4249 unsigned NewOpcode = 0;
4250 switch (CmpInstr->getOpcode()) {
4251 default: break;
4252 case X86::SUB64ri32:
4253 case X86::SUB64ri8:
4254 case X86::SUB32ri:
4255 case X86::SUB32ri8:
4256 case X86::SUB16ri:
4257 case X86::SUB16ri8:
4258 case X86::SUB8ri:
4259 case X86::SUB64rm:
4260 case X86::SUB32rm:
4261 case X86::SUB16rm:
4262 case X86::SUB8rm:
4263 case X86::SUB64rr:
4264 case X86::SUB32rr:
4265 case X86::SUB16rr:
4266 case X86::SUB8rr: {
4267 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4268 return false;
4269 // There is no use of the destination register, we can replace SUB with CMP.
4270 switch (CmpInstr->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00004271 default: llvm_unreachable("Unreachable!");
Manman Ren1be131b2012-08-08 00:51:41 +00004272 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4273 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4274 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4275 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4276 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4277 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4278 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4279 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4280 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4281 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4282 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4283 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4284 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4285 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4286 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4287 }
4288 CmpInstr->setDesc(get(NewOpcode));
4289 CmpInstr->RemoveOperand(0);
4290 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4291 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4292 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4293 return false;
4294 }
4295 }
4296
Manman Renc9656732012-07-06 17:36:20 +00004297 // Get the unique definition of SrcReg.
4298 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4299 if (!MI) return false;
4300
4301 // CmpInstr is the first instruction of the BB.
4302 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4303
Manman Rend0a4ee82012-07-18 21:40:01 +00004304 // If we are comparing against zero, check whether we can use MI to update
4305 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4306 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
Benjamin Kramer594f9632014-05-14 16:14:45 +00004307 if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
Manman Rend0a4ee82012-07-18 21:40:01 +00004308 return false;
4309
Benjamin Kramer594f9632014-05-14 16:14:45 +00004310 // If we have a use of the source register between the def and our compare
4311 // instruction we can eliminate the compare iff the use sets EFLAGS in the
4312 // right way.
4313 bool ShouldUpdateCC = false;
4314 X86::CondCode NewCC = X86::COND_INVALID;
4315 if (IsCmpZero && !isDefConvertible(MI)) {
4316 // Scan forward from the use until we hit the use we're looking for or the
4317 // compare instruction.
4318 for (MachineBasicBlock::iterator J = MI;; ++J) {
4319 // Do we have a convertible instruction?
4320 NewCC = isUseDefConvertible(J);
4321 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4322 J->getOperand(1).getReg() == SrcReg) {
4323 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4324 ShouldUpdateCC = true; // Update CC later on.
4325 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4326 // with the new def.
4327 MI = Def = J;
4328 break;
4329 }
4330
4331 if (J == I)
4332 return false;
4333 }
4334 }
4335
Manman Renc9656732012-07-06 17:36:20 +00004336 // We are searching for an earlier instruction that can make CmpInstr
4337 // redundant and that instruction will be saved in Sub.
Craig Topper062a2ba2014-04-25 05:30:21 +00004338 MachineInstr *Sub = nullptr;
Manman Renc9656732012-07-06 17:36:20 +00004339 const TargetRegisterInfo *TRI = &getRegisterInfo();
Manman Ren5f6fa422012-07-09 18:57:12 +00004340
Manman Renc9656732012-07-06 17:36:20 +00004341 // We iterate backward, starting from the instruction before CmpInstr and
4342 // stop when reaching the definition of a source register or done with the BB.
4343 // RI points to the instruction before CmpInstr.
4344 // If the definition is in this basic block, RE points to the definition;
4345 // otherwise, RE is the rend of the basic block.
4346 MachineBasicBlock::reverse_iterator
4347 RI = MachineBasicBlock::reverse_iterator(I),
4348 RE = CmpInstr->getParent() == MI->getParent() ?
4349 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
4350 CmpInstr->getParent()->rend();
Craig Topper062a2ba2014-04-25 05:30:21 +00004351 MachineInstr *Movr0Inst = nullptr;
Manman Renc9656732012-07-06 17:36:20 +00004352 for (; RI != RE; ++RI) {
4353 MachineInstr *Instr = &*RI;
4354 // Check whether CmpInstr can be made redundant by the current instruction.
Manman Rend0a4ee82012-07-18 21:40:01 +00004355 if (!IsCmpZero &&
4356 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
Manman Renc9656732012-07-06 17:36:20 +00004357 Sub = Instr;
4358 break;
4359 }
4360
4361 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
Manman Ren1553ce02012-07-11 19:35:12 +00004362 Instr->readsRegister(X86::EFLAGS, TRI)) {
Manman Renc9656732012-07-06 17:36:20 +00004363 // This instruction modifies or uses EFLAGS.
Manman Ren1553ce02012-07-11 19:35:12 +00004364
4365 // MOV32r0 etc. are implemented with xor which clobbers condition code.
4366 // They are safe to move up, if the definition to EFLAGS is dead and
4367 // earlier instructions do not read or write EFLAGS.
Tim Northover64ec0ff2013-05-30 13:19:42 +00004368 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
Manman Ren1553ce02012-07-11 19:35:12 +00004369 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
4370 Movr0Inst = Instr;
4371 continue;
4372 }
4373
Manman Renc9656732012-07-06 17:36:20 +00004374 // We can't remove CmpInstr.
4375 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00004376 }
Manman Renc9656732012-07-06 17:36:20 +00004377 }
4378
4379 // Return false if no candidates exist.
Manman Rend0a4ee82012-07-18 21:40:01 +00004380 if (!IsCmpZero && !Sub)
Manman Renc9656732012-07-06 17:36:20 +00004381 return false;
4382
Manman Renbb360742012-07-07 03:34:46 +00004383 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
4384 Sub->getOperand(2).getReg() == SrcReg);
4385
Manman Renc9656732012-07-06 17:36:20 +00004386 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
Manman Renbb360742012-07-07 03:34:46 +00004387 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4388 // If we are done with the basic block, we need to check whether EFLAGS is
4389 // live-out.
4390 bool IsSafe = false;
Manman Renc9656732012-07-06 17:36:20 +00004391 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
4392 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
4393 for (++I; I != E; ++I) {
4394 const MachineInstr &Instr = *I;
Manman Ren32367c02012-07-28 03:15:46 +00004395 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4396 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4397 // We should check the usage if this instruction uses and updates EFLAGS.
4398 if (!UseEFLAGS && ModifyEFLAGS) {
Manman Renc9656732012-07-06 17:36:20 +00004399 // It is safe to remove CmpInstr if EFLAGS is updated again.
Manman Renbb360742012-07-07 03:34:46 +00004400 IsSafe = true;
Manman Renc9656732012-07-06 17:36:20 +00004401 break;
Manman Renbb360742012-07-07 03:34:46 +00004402 }
Manman Ren32367c02012-07-28 03:15:46 +00004403 if (!UseEFLAGS && !ModifyEFLAGS)
Manman Renc9656732012-07-06 17:36:20 +00004404 continue;
4405
4406 // EFLAGS is used by this instruction.
Nick Lewycky0a9a8662014-06-04 07:45:54 +00004407 X86::CondCode OldCC = X86::COND_INVALID;
Manman Rend0a4ee82012-07-18 21:40:01 +00004408 bool OpcIsSET = false;
4409 if (IsCmpZero || IsSwapped) {
4410 // We decode the condition code from opcode.
Manman Ren5f6fa422012-07-09 18:57:12 +00004411 if (Instr.isBranch())
4412 OldCC = getCondFromBranchOpc(Instr.getOpcode());
4413 else {
4414 OldCC = getCondFromSETOpc(Instr.getOpcode());
4415 if (OldCC != X86::COND_INVALID)
4416 OpcIsSET = true;
4417 else
Michael Liao32376622012-09-20 03:06:15 +00004418 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
Manman Ren5f6fa422012-07-09 18:57:12 +00004419 }
4420 if (OldCC == X86::COND_INVALID) return false;
Manman Rend0a4ee82012-07-18 21:40:01 +00004421 }
4422 if (IsCmpZero) {
4423 switch (OldCC) {
4424 default: break;
4425 case X86::COND_A: case X86::COND_AE:
4426 case X86::COND_B: case X86::COND_BE:
4427 case X86::COND_G: case X86::COND_GE:
4428 case X86::COND_L: case X86::COND_LE:
4429 case X86::COND_O: case X86::COND_NO:
4430 // CF and OF are used, we can't perform this optimization.
4431 return false;
4432 }
Benjamin Kramer594f9632014-05-14 16:14:45 +00004433
4434 // If we're updating the condition code check if we have to reverse the
4435 // condition.
4436 if (ShouldUpdateCC)
4437 switch (OldCC) {
4438 default:
4439 return false;
4440 case X86::COND_E:
4441 break;
4442 case X86::COND_NE:
4443 NewCC = GetOppositeBranchCondition(NewCC);
4444 break;
4445 }
Manman Rend0a4ee82012-07-18 21:40:01 +00004446 } else if (IsSwapped) {
4447 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4448 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4449 // We swap the condition code and synthesize the new opcode.
Benjamin Kramer594f9632014-05-14 16:14:45 +00004450 NewCC = getSwappedCondition(OldCC);
Manman Ren5f6fa422012-07-09 18:57:12 +00004451 if (NewCC == X86::COND_INVALID) return false;
Benjamin Kramer594f9632014-05-14 16:14:45 +00004452 }
Manman Ren5f6fa422012-07-09 18:57:12 +00004453
Benjamin Kramer594f9632014-05-14 16:14:45 +00004454 if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
Manman Ren5f6fa422012-07-09 18:57:12 +00004455 // Synthesize the new opcode.
4456 bool HasMemoryOperand = Instr.hasOneMemOperand();
4457 unsigned NewOpc;
4458 if (Instr.isBranch())
4459 NewOpc = GetCondBranchFromCond(NewCC);
4460 else if(OpcIsSET)
4461 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
4462 else {
4463 unsigned DstReg = Instr.getOperand(0).getReg();
4464 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
4465 HasMemoryOperand);
4466 }
Manman Renc9656732012-07-06 17:36:20 +00004467
4468 // Push the MachineInstr to OpsToUpdate.
4469 // If it is safe to remove CmpInstr, the condition code of these
4470 // instructions will be modified.
4471 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
4472 }
Manman Ren32367c02012-07-28 03:15:46 +00004473 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4474 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
Manman Renbb360742012-07-07 03:34:46 +00004475 IsSafe = true;
4476 break;
4477 }
4478 }
4479
4480 // If EFLAGS is not killed nor re-defined, we should check whether it is
4481 // live-out. If it is live-out, do not optimize.
Manman Rend0a4ee82012-07-18 21:40:01 +00004482 if ((IsCmpZero || IsSwapped) && !IsSafe) {
Manman Renbb360742012-07-07 03:34:46 +00004483 MachineBasicBlock *MBB = CmpInstr->getParent();
4484 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
4485 SE = MBB->succ_end(); SI != SE; ++SI)
4486 if ((*SI)->isLiveIn(X86::EFLAGS))
4487 return false;
Manman Renc9656732012-07-06 17:36:20 +00004488 }
4489
Manman Rend0a4ee82012-07-18 21:40:01 +00004490 // The instruction to be updated is either Sub or MI.
4491 Sub = IsCmpZero ? MI : Sub;
David Majnemer5ba473a2013-05-18 01:02:03 +00004492 // Move Movr0Inst to the appropriate place before Sub.
Manman Ren1553ce02012-07-11 19:35:12 +00004493 if (Movr0Inst) {
David Majnemer5ba473a2013-05-18 01:02:03 +00004494 // Look backwards until we find a def that doesn't use the current EFLAGS.
4495 Def = Sub;
4496 MachineBasicBlock::reverse_iterator
4497 InsertI = MachineBasicBlock::reverse_iterator(++Def),
4498 InsertE = Sub->getParent()->rend();
4499 for (; InsertI != InsertE; ++InsertI) {
4500 MachineInstr *Instr = &*InsertI;
4501 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4502 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4503 Sub->getParent()->remove(Movr0Inst);
4504 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4505 Movr0Inst);
4506 break;
4507 }
4508 }
4509 if (InsertI == InsertE)
4510 return false;
Manman Ren1553ce02012-07-11 19:35:12 +00004511 }
4512
Jan Wen Voung4ce1d7b2012-09-17 22:04:23 +00004513 // Make sure Sub instruction defines EFLAGS and mark the def live.
David Majnemer8f169742013-05-15 22:03:08 +00004514 unsigned i = 0, e = Sub->getNumOperands();
4515 for (; i != e; ++i) {
4516 MachineOperand &MO = Sub->getOperand(i);
4517 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4518 MO.setIsDead(false);
4519 break;
4520 }
4521 }
4522 assert(i != e && "Unable to locate a def EFLAGS operand");
4523
Manman Renc9656732012-07-06 17:36:20 +00004524 CmpInstr->eraseFromParent();
4525
4526 // Modify the condition code of instructions in OpsToUpdate.
4527 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
4528 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
4529 return true;
4530}
4531
Sanjay Patel203ee502015-02-17 21:55:20 +00004532/// Try to remove the load by folding it to a register
Manman Ren5759d012012-08-02 00:56:42 +00004533/// operand at the use. We fold the load instructions if load defines a virtual
4534/// register, the virtual register is used once in the same BB, and the
4535/// instructions in-between do not load or store, and have no side effects.
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004536MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
4537 const MachineRegisterInfo *MRI,
4538 unsigned &FoldAsLoadDefReg,
4539 MachineInstr *&DefMI) const {
Manman Ren5759d012012-08-02 00:56:42 +00004540 if (FoldAsLoadDefReg == 0)
Craig Topper062a2ba2014-04-25 05:30:21 +00004541 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004542 // To be conservative, if there exists another load, clear the load candidate.
4543 if (MI->mayLoad()) {
4544 FoldAsLoadDefReg = 0;
Craig Topper062a2ba2014-04-25 05:30:21 +00004545 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004546 }
4547
4548 // Check whether we can move DefMI here.
4549 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4550 assert(DefMI);
4551 bool SawStore = false;
Craig Topper062a2ba2014-04-25 05:30:21 +00004552 if (!DefMI->isSafeToMove(this, nullptr, SawStore))
4553 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004554
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004555 // Collect information about virtual register operands of MI.
4556 unsigned SrcOperandId = 0;
4557 bool FoundSrcOperand = false;
4558 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
4559 MachineOperand &MO = MI->getOperand(i);
4560 if (!MO.isReg())
4561 continue;
4562 unsigned Reg = MO.getReg();
4563 if (Reg != FoldAsLoadDefReg)
4564 continue;
4565 // Do not fold if we have a subreg use or a def or multiple uses.
4566 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
Craig Topper062a2ba2014-04-25 05:30:21 +00004567 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004568
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004569 SrcOperandId = i;
4570 FoundSrcOperand = true;
Manman Ren5759d012012-08-02 00:56:42 +00004571 }
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004572 if (!FoundSrcOperand)
4573 return nullptr;
4574
4575 // Check whether we can fold the def into SrcOperandId.
4576 SmallVector<unsigned, 8> Ops;
4577 Ops.push_back(SrcOperandId);
4578 MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
4579 if (FoldMI) {
4580 FoldAsLoadDefReg = 0;
4581 return FoldMI;
4582 }
4583
Craig Topper062a2ba2014-04-25 05:30:21 +00004584 return nullptr;
Manman Ren5759d012012-08-02 00:56:42 +00004585}
4586
Sanjay Patel203ee502015-02-17 21:55:20 +00004587/// Expand a single-def pseudo instruction to a two-addr
4588/// instruction with two undef reads of the register being defined.
4589/// This is used for mapping:
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004590/// %xmm4 = V_SET0
4591/// to:
4592/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
4593///
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004594static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4595 const MCInstrDesc &Desc) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004596 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004597 unsigned Reg = MIB->getOperand(0).getReg();
4598 MIB->setDesc(Desc);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004599
4600 // MachineInstr::addOperand() will insert explicit operands before any
4601 // implicit operands.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004602 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004603 // But we don't trust that.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004604 assert(MIB->getOperand(1).getReg() == Reg &&
4605 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004606 return true;
4607}
4608
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004609// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4610// code sequence is needed for other targets.
4611static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4612 const TargetInstrInfo &TII) {
4613 MachineBasicBlock &MBB = *MIB->getParent();
4614 DebugLoc DL = MIB->getDebugLoc();
4615 unsigned Reg = MIB->getOperand(0).getReg();
4616 const GlobalValue *GV =
4617 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4618 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4619 MachineMemOperand *MMO = MBB.getParent()->
4620 getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
Reid Klecknerda00cf52014-10-31 23:19:46 +00004621 MachineBasicBlock::iterator I = MIB.getInstr();
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004622
4623 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4624 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4625 .addMemOperand(MMO);
4626 MIB->setDebugLoc(DL);
4627 MIB->setDesc(TII.get(X86::MOV64rm));
4628 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4629}
4630
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004631bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
Eric Christopher6c786a12014-06-10 22:34:31 +00004632 bool HasAVX = Subtarget.hasAVX();
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004633 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004634 switch (MI->getOpcode()) {
Craig Topper854f6442013-12-31 03:05:38 +00004635 case X86::MOV32r0:
4636 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
Craig Topper93849022012-10-05 06:05:15 +00004637 case X86::SETB_C8r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004638 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
Craig Topper93849022012-10-05 06:05:15 +00004639 case X86::SETB_C16r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004640 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
Craig Topper93849022012-10-05 06:05:15 +00004641 case X86::SETB_C32r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004642 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
Craig Topper93849022012-10-05 06:05:15 +00004643 case X86::SETB_C64r:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004644 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004645 case X86::V_SET0:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00004646 case X86::FsFLD0SS:
4647 case X86::FsFLD0SD:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004648 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
Craig Topperbd509ee2012-08-28 07:05:28 +00004649 case X86::AVX_SET0:
4650 assert(HasAVX && "AVX not supported");
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004651 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00004652 case X86::AVX512_512_SET0:
4653 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
Craig Topper72f51c32012-08-28 07:30:47 +00004654 case X86::V_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004655 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
Craig Topper72f51c32012-08-28 07:30:47 +00004656 case X86::AVX2_SETALLONES:
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004657 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
Jakob Stoklund Olesen729abd32011-10-08 18:28:28 +00004658 case X86::TEST8ri_NOREX:
4659 MI->setDesc(get(X86::TEST8ri));
4660 return true;
Michael Liao5bf95782014-12-04 05:20:33 +00004661 case X86::KSET0B:
Elena Demikhovskyf8f478b2013-08-25 12:54:30 +00004662 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
4663 case X86::KSET1B:
4664 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00004665 case TargetOpcode::LOAD_STACK_GUARD:
4666 expandLoadStackGuard(MIB, *this);
4667 return true;
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00004668 }
4669 return false;
4670}
4671
Dan Gohman3b460302008-07-07 23:14:23 +00004672static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohman906152a2009-01-05 17:59:02 +00004673 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendlinge3c78362009-02-03 00:55:04 +00004674 MachineInstr *MI,
4675 const TargetInstrInfo &TII) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004676 // Create the base instruction with the memory operand as the first part.
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004677 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00004678 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4679 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004680 MachineInstrBuilder MIB(MF, NewMI);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004681 unsigned NumAddrOps = MOs.size();
4682 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004683 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004684 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00004685 addOffset(MIB, 0);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004686
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004687 // Loop over the rest of the ri operands, converting them over.
Chris Lattner03ad8852008-01-07 07:27:27 +00004688 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004689 for (unsigned i = 0; i != NumOps; ++i) {
4690 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman2af1f852009-02-18 05:45:50 +00004691 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004692 }
4693 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4694 MachineOperand &MO = MI->getOperand(i);
Dan Gohman2af1f852009-02-18 05:45:50 +00004695 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004696 }
4697 return MIB;
4698}
4699
Dan Gohman3b460302008-07-07 23:14:23 +00004700static MachineInstr *FuseInst(MachineFunction &MF,
4701 unsigned Opcode, unsigned OpNo,
Dan Gohman906152a2009-01-05 17:59:02 +00004702 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004703 MachineInstr *MI, const TargetInstrInfo &TII) {
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004704 // Omit the implicit operands, something BuildMI can't do.
Bill Wendlinge3c78362009-02-03 00:55:04 +00004705 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4706 MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00004707 MachineInstrBuilder MIB(MF, NewMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004708
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004709 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4710 MachineOperand &MO = MI->getOperand(i);
4711 if (i == OpNo) {
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004712 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004713 unsigned NumAddrOps = MOs.size();
4714 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004715 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004716 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00004717 addOffset(MIB, 0);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004718 } else {
Dan Gohman2af1f852009-02-18 05:45:50 +00004719 MIB.addOperand(MO);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004720 }
4721 }
4722 return MIB;
4723}
4724
4725static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohman906152a2009-01-05 17:59:02 +00004726 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004727 MachineInstr *MI) {
Dan Gohman3b460302008-07-07 23:14:23 +00004728 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling27b508d2009-02-11 21:51:19 +00004729 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004730
4731 unsigned NumAddrOps = MOs.size();
4732 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00004733 MIB.addOperand(MOs[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004734 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola3b2df102009-04-08 21:14:34 +00004735 addOffset(MIB, 0);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004736 return MIB.addImm(0);
4737}
4738
4739MachineInstr*
Dan Gohman3f86b512008-12-03 18:43:12 +00004740X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
Sanjay Patela7b893d2015-02-09 16:30:58 +00004741 MachineInstr *MI, unsigned OpNum,
Evan Cheng9e0c7f22009-07-15 06:10:07 +00004742 const SmallVectorImpl<MachineOperand> &MOs,
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004743 unsigned Size, unsigned Align,
4744 bool AllowCommute) const {
Craig Topper062a2ba2014-04-25 05:30:21 +00004745 const DenseMap<unsigned,
4746 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
Eric Christopher6c786a12014-06-10 22:34:31 +00004747 bool isCallRegIndirect = Subtarget.callRegIndirect();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004748 bool isTwoAddrFold = false;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004749
Sanjay Patelfc54c612015-02-09 16:04:52 +00004750 // For CPUs that favor the register form of a call,
4751 // do not fold loads into calls.
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004752 if (isCallRegIndirect &&
Sanjay Patelfc54c612015-02-09 16:04:52 +00004753 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
Craig Topper062a2ba2014-04-25 05:30:21 +00004754 return nullptr;
Preston Gurdd6be4bf2013-03-27 23:16:18 +00004755
Chris Lattner03ad8852008-01-07 07:27:27 +00004756 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004757 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00004758 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004759
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00004760 // FIXME: AsmPrinter doesn't know how to handle
4761 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4762 if (MI->getOpcode() == X86::ADD32ri &&
4763 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
Craig Topper062a2ba2014-04-25 05:30:21 +00004764 return nullptr;
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00004765
Craig Topper062a2ba2014-04-25 05:30:21 +00004766 MachineInstr *NewMI = nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004767 // Folding a memory location into the two-address part of a two-address
4768 // instruction is different than folding it other places. It requires
4769 // replacing the *two* registers with the memory location.
Sanjay Patela7b893d2015-02-09 16:30:58 +00004770 if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
Dan Gohman0d1e9a82008-10-03 15:45:36 +00004771 MI->getOperand(0).isReg() &&
4772 MI->getOperand(1).isReg() &&
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004773 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004774 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4775 isTwoAddrFold = true;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004776 } else if (OpNum == 0) {
Tim Northover64ec0ff2013-05-30 13:19:42 +00004777 if (MI->getOpcode() == X86::MOV32r0) {
4778 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
4779 if (NewMI)
4780 return NewMI;
Craig Topperf9115972012-08-23 04:57:36 +00004781 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004782
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004783 OpcodeTablePtr = &RegOp2MemOpTable0;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004784 } else if (OpNum == 1) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004785 OpcodeTablePtr = &RegOp2MemOpTable1;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004786 } else if (OpNum == 2) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004787 OpcodeTablePtr = &RegOp2MemOpTable2;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004788 } else if (OpNum == 3) {
Elena Demikhovsky3cb3b002012-08-01 12:06:00 +00004789 OpcodeTablePtr = &RegOp2MemOpTable3;
Sanjay Patela7b893d2015-02-09 16:30:58 +00004790 } else if (OpNum == 4) {
Robert Khasanov79fb7292014-12-18 12:28:22 +00004791 OpcodeTablePtr = &RegOp2MemOpTable4;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004792 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004793
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004794 // If table selected...
4795 if (OpcodeTablePtr) {
4796 // Find the Opcode to fuse
Chris Lattner1c090c02010-10-07 23:08:41 +00004797 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4798 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004799 if (I != OpcodeTablePtr->end()) {
Evan Cheng3cad6282009-09-11 00:39:26 +00004800 unsigned Opcode = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00004801 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Evan Cheng9e0c7f22009-07-15 06:10:07 +00004802 if (Align < MinAlign)
Craig Topper062a2ba2014-04-25 05:30:21 +00004803 return nullptr;
Evan Cheng74a32312009-09-11 01:01:31 +00004804 bool NarrowToMOV32rm = false;
Evan Cheng3cad6282009-09-11 00:39:26 +00004805 if (Size) {
Sanjay Patela7b893d2015-02-09 16:30:58 +00004806 unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
Evan Cheng3cad6282009-09-11 00:39:26 +00004807 if (Size < RCSize) {
4808 // Check if it's safe to fold the load. If the size of the object is
4809 // narrower than the load width, then it's not.
4810 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
Craig Topper062a2ba2014-04-25 05:30:21 +00004811 return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00004812 // If this is a 64-bit load, but the spill slot is 32, then we can do
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004813 // a 32-bit load which is implicitly zero-extended. This likely is
4814 // due to live interval analysis remat'ing a load from stack slot.
Evan Cheng74a32312009-09-11 01:01:31 +00004815 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
Craig Topper062a2ba2014-04-25 05:30:21 +00004816 return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00004817 Opcode = X86::MOV32rm;
Evan Cheng74a32312009-09-11 01:01:31 +00004818 NarrowToMOV32rm = true;
Evan Cheng3cad6282009-09-11 00:39:26 +00004819 }
4820 }
4821
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004822 if (isTwoAddrFold)
Evan Cheng3cad6282009-09-11 00:39:26 +00004823 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004824 else
Sanjay Patela7b893d2015-02-09 16:30:58 +00004825 NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
Evan Cheng74a32312009-09-11 01:01:31 +00004826
4827 if (NarrowToMOV32rm) {
4828 // If this is the special case where we use a MOV32rm to load a 32-bit
4829 // value and zero-extend the top bits. Change the destination register
4830 // to a 32-bit one.
4831 unsigned DstReg = NewMI->getOperand(0).getReg();
4832 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004833 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
Evan Cheng74a32312009-09-11 01:01:31 +00004834 else
Jakob Stoklund Olesen9340ea52010-05-24 14:48:17 +00004835 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng74a32312009-09-11 01:01:31 +00004836 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004837 return NewMI;
4838 }
4839 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004840
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004841 // If the instruction and target operand are commutable, commute the
4842 // instruction and try again.
4843 if (AllowCommute) {
Sanjay Patela7b893d2015-02-09 16:30:58 +00004844 unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00004845 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4846 bool HasDef = MI->getDesc().getNumDefs();
4847 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
4848 unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
4849 unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
4850 bool Tied0 =
4851 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4852 bool Tied1 =
4853 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4854
4855 // If either of the commutable operands are tied to the destination
4856 // then we can not commute + fold.
4857 if ((HasDef && Reg0 == Reg1 && Tied0) ||
4858 (HasDef && Reg0 == Reg2 && Tied1))
4859 return nullptr;
4860
4861 if ((CommuteOpIdx1 == OriginalOpIdx) ||
4862 (CommuteOpIdx2 == OriginalOpIdx)) {
4863 MachineInstr *CommutedMI = commuteInstruction(MI, false);
4864 if (!CommutedMI) {
4865 // Unable to commute.
4866 return nullptr;
4867 }
4868 if (CommutedMI != MI) {
4869 // New instruction. We can't fold from this.
4870 CommutedMI->eraseFromParent();
4871 return nullptr;
4872 }
4873
4874 // Attempt to fold with the commuted version of the instruction.
4875 unsigned CommuteOp =
4876 (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
4877 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
4878 /*AllowCommute=*/false);
4879 if (NewMI)
4880 return NewMI;
4881
4882 // Folding failed again - undo the commute before returning.
4883 MachineInstr *UncommutedMI = commuteInstruction(MI, false);
4884 if (!UncommutedMI) {
4885 // Unable to commute.
4886 return nullptr;
4887 }
4888 if (UncommutedMI != MI) {
4889 // New instruction. It doesn't need to be kept.
4890 UncommutedMI->eraseFromParent();
4891 return nullptr;
4892 }
4893
4894 // Return here to prevent duplicate fuse failure report.
4895 return nullptr;
4896 }
4897 }
4898 }
4899
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00004900 // No fusion
Jakob Stoklund Olesen51702ec2010-07-09 20:43:09 +00004901 if (PrintFailedFusing && !MI->isCopy())
Sanjay Patela7b893d2015-02-09 16:30:58 +00004902 dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
Craig Topper062a2ba2014-04-25 05:30:21 +00004903 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004904}
4905
Sanjay Patel203ee502015-02-17 21:55:20 +00004906/// Return true for all instructions that only update
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004907/// the first 32 or 64-bits of the destination register and leave the rest
4908/// unmodified. This can be used to avoid folding loads if the instructions
4909/// only update part of the destination register, and the non-updated part is
4910/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4911/// instructions breaks the partial register dependency and it can improve
4912/// performance. e.g.:
4913///
4914/// movss (%rdi), %xmm0
4915/// cvtss2sd %xmm0, %xmm0
4916///
4917/// Instead of
4918/// cvtss2sd (%rdi), %xmm0
4919///
Bruno Cardoso Lopes7b435682011-09-15 23:04:24 +00004920/// FIXME: This should be turned into a TSFlags.
4921///
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004922static bool hasPartialRegUpdate(unsigned Opcode) {
4923 switch (Opcode) {
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004924 case X86::CVTSI2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004925 case X86::CVTSI2SSrm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004926 case X86::CVTSI2SS64rr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004927 case X86::CVTSI2SS64rm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004928 case X86::CVTSI2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004929 case X86::CVTSI2SDrm:
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004930 case X86::CVTSI2SD64rr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004931 case X86::CVTSI2SD64rm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004932 case X86::CVTSD2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004933 case X86::CVTSD2SSrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004934 case X86::Int_CVTSD2SSrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004935 case X86::Int_CVTSD2SSrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004936 case X86::CVTSS2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004937 case X86::CVTSS2SDrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004938 case X86::Int_CVTSS2SDrr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004939 case X86::Int_CVTSS2SDrm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004940 case X86::RCPSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004941 case X86::RCPSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004942 case X86::RCPSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004943 case X86::RCPSSm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004944 case X86::ROUNDSDr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004945 case X86::ROUNDSDm:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00004946 case X86::ROUNDSDr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004947 case X86::ROUNDSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004948 case X86::ROUNDSSm:
Benjamin Kramer2dc5dec2011-12-09 15:43:55 +00004949 case X86::ROUNDSSr_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004950 case X86::RSQRTSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004951 case X86::RSQRTSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004952 case X86::RSQRTSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004953 case X86::RSQRTSSm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004954 case X86::SQRTSSr:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004955 case X86::SQRTSSm:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004956 case X86::SQRTSSr_Int:
Michael Kuperstein47c97152014-12-15 13:18:21 +00004957 case X86::SQRTSSm_Int:
4958 case X86::SQRTSDr:
4959 case X86::SQRTSDm:
4960 case X86::SQRTSDr_Int:
4961 case X86::SQRTSDm_Int:
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00004962 return true;
4963 }
4964
4965 return false;
4966}
Owen Anderson2a3be7b2008-01-07 01:35:02 +00004967
Sanjay Patel203ee502015-02-17 21:55:20 +00004968/// Inform the ExeDepsFix pass how many idle
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00004969/// instructions we would like before a partial register update.
4970unsigned X86InstrInfo::
4971getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4972 const TargetRegisterInfo *TRI) const {
4973 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
4974 return 0;
4975
4976 // If MI is marked as reading Reg, the partial register update is wanted.
4977 const MachineOperand &MO = MI->getOperand(0);
4978 unsigned Reg = MO.getReg();
4979 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4980 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
4981 return 0;
4982 } else {
4983 if (MI->readsRegister(Reg, TRI))
4984 return 0;
4985 }
4986
4987 // If any of the preceding 16 instructions are reading Reg, insert a
4988 // dependency breaking instruction. The magic number is based on a few
4989 // Nehalem experiments.
4990 return 16;
4991}
4992
Andrew Trickb6d56be2013-10-14 22:19:03 +00004993// Return true for any instruction the copies the high bits of the first source
4994// operand into the unused high bits of the destination operand.
4995static bool hasUndefRegUpdate(unsigned Opcode) {
4996 switch (Opcode) {
4997 case X86::VCVTSI2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00004998 case X86::VCVTSI2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00004999 case X86::Int_VCVTSI2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005000 case X86::Int_VCVTSI2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005001 case X86::VCVTSI2SS64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005002 case X86::VCVTSI2SS64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005003 case X86::Int_VCVTSI2SS64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005004 case X86::Int_VCVTSI2SS64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005005 case X86::VCVTSI2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005006 case X86::VCVTSI2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005007 case X86::Int_VCVTSI2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005008 case X86::Int_VCVTSI2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005009 case X86::VCVTSI2SD64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005010 case X86::VCVTSI2SD64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005011 case X86::Int_VCVTSI2SD64rr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005012 case X86::Int_VCVTSI2SD64rm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005013 case X86::VCVTSD2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005014 case X86::VCVTSD2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005015 case X86::Int_VCVTSD2SSrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005016 case X86::Int_VCVTSD2SSrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005017 case X86::VCVTSS2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005018 case X86::VCVTSS2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005019 case X86::Int_VCVTSS2SDrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005020 case X86::Int_VCVTSS2SDrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005021 case X86::VRCPSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005022 case X86::VRCPSSm:
5023 case X86::VRCPSSm_Int:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005024 case X86::VROUNDSDr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005025 case X86::VROUNDSDm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005026 case X86::VROUNDSDr_Int:
5027 case X86::VROUNDSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005028 case X86::VROUNDSSm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005029 case X86::VROUNDSSr_Int:
5030 case X86::VRSQRTSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005031 case X86::VRSQRTSSm:
5032 case X86::VRSQRTSSm_Int:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005033 case X86::VSQRTSSr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005034 case X86::VSQRTSSm:
5035 case X86::VSQRTSSm_Int:
5036 case X86::VSQRTSDr:
5037 case X86::VSQRTSDm:
5038 case X86::VSQRTSDm_Int:
5039 // AVX-512
Andrew Trickb6d56be2013-10-14 22:19:03 +00005040 case X86::VCVTSD2SSZrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005041 case X86::VCVTSD2SSZrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005042 case X86::VCVTSS2SDZrr:
Michael Kuperstein683c3cd2014-12-28 13:15:05 +00005043 case X86::VCVTSS2SDZrm:
Andrew Trickb6d56be2013-10-14 22:19:03 +00005044 return true;
5045 }
5046
5047 return false;
5048}
5049
5050/// Inform the ExeDepsFix pass how many idle instructions we would like before
5051/// certain undef register reads.
5052///
5053/// This catches the VCVTSI2SD family of instructions:
5054///
5055/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5056///
5057/// We should to be careful *not* to catch VXOR idioms which are presumably
5058/// handled specially in the pipeline:
5059///
5060/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5061///
5062/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5063/// high bits that are passed-through are not live.
5064unsigned X86InstrInfo::
5065getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5066 const TargetRegisterInfo *TRI) const {
5067 if (!hasUndefRegUpdate(MI->getOpcode()))
5068 return 0;
5069
5070 // Set the OpNum parameter to the first source operand.
5071 OpNum = 1;
5072
5073 const MachineOperand &MO = MI->getOperand(OpNum);
5074 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5075 // Use the same magic number as getPartialRegUpdateClearance.
5076 return 16;
5077 }
5078 return 0;
5079}
5080
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005081void X86InstrInfo::
5082breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5083 const TargetRegisterInfo *TRI) const {
5084 unsigned Reg = MI->getOperand(OpNum).getReg();
Andrew Trickb6d56be2013-10-14 22:19:03 +00005085 // If MI kills this register, the false dependence is already broken.
5086 if (MI->killsRegister(Reg, TRI))
5087 return;
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005088 if (X86::VR128RegClass.contains(Reg)) {
5089 // These instructions are all floating point domain, so xorps is the best
5090 // choice.
Eric Christopher6c786a12014-06-10 22:34:31 +00005091 bool HasAVX = Subtarget.hasAVX();
Jakob Stoklund Olesenf8ad3362011-11-15 01:15:30 +00005092 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
5093 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5094 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5095 } else if (X86::VR256RegClass.contains(Reg)) {
5096 // Use vxorps to clear the full ymm register.
5097 // It wants to read and write the xmm sub-register.
5098 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5099 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5100 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5101 .addReg(Reg, RegState::ImplicitDefine);
5102 } else
5103 return;
5104 MI->addRegisterKilled(Reg, TRI, true);
5105}
5106
Andrew Trick153ebe62013-10-31 22:11:56 +00005107MachineInstr*
5108X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
5109 const SmallVectorImpl<unsigned> &Ops,
5110 int FrameIndex) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005111 // Check switch flag
Craig Topper062a2ba2014-04-25 05:30:21 +00005112 if (NoFusing) return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005113
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005114 // Unless optimizing for size, don't fold to avoid partial
5115 // register update stalls
Duncan P. N. Exon Smith5975a702015-02-14 01:59:52 +00005116 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005117 hasPartialRegUpdate(MI->getOpcode()))
Craig Topper062a2ba2014-04-25 05:30:21 +00005118 return nullptr;
Evan Cheng4cf30b72009-12-18 07:40:29 +00005119
Evan Cheng3b3286d2008-02-08 21:20:40 +00005120 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng3cad6282009-09-11 00:39:26 +00005121 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng3b3286d2008-02-08 21:20:40 +00005122 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Benjamin Kramer858a3882013-10-06 13:48:22 +00005123 // If the function stack isn't realigned we don't want to fold instructions
5124 // that need increased alignment.
5125 if (!RI.needsStackRealignment(MF))
Eric Christopher05b81972015-02-02 17:38:43 +00005126 Alignment =
5127 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005128 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5129 unsigned NewOpc = 0;
Evan Cheng3cad6282009-09-11 00:39:26 +00005130 unsigned RCSize = 0;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005131 switch (MI->getOpcode()) {
Craig Topper062a2ba2014-04-25 05:30:21 +00005132 default: return nullptr;
Evan Cheng3cad6282009-09-11 00:39:26 +00005133 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohman887dd1c2010-05-18 21:42:03 +00005134 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5135 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5136 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005137 }
Evan Cheng3cad6282009-09-11 00:39:26 +00005138 // Check if it's safe to fold the load. If the size of the object is
5139 // narrower than the load width, then it's not.
5140 if (Size < RCSize)
Craig Topper062a2ba2014-04-25 05:30:21 +00005141 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005142 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00005143 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005144 MI->getOperand(1).ChangeToImmediate(0);
5145 } else if (Ops.size() != 1)
Craig Topper062a2ba2014-04-25 05:30:21 +00005146 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005147
5148 SmallVector<MachineOperand,4> MOs;
5149 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00005150 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
5151 Size, Alignment, /*AllowCommute=*/true);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005152}
5153
Akira Hatanaka760814a2014-09-15 18:23:52 +00005154static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
5155 const MachineFunction &MF) {
5156 unsigned Opc = LoadMI.getOpcode();
5157 unsigned RegSize =
5158 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5159
5160 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
5161 // These instructions only load 32 bits, we can't fold them if the
5162 // destination register is wider than 32 bits (4 bytes).
5163 return true;
5164
5165 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
5166 // These instructions only load 64 bits, we can't fold them if the
5167 // destination register is wider than 64 bits (8 bytes).
5168 return true;
5169
5170 return false;
5171}
5172
Dan Gohman3f86b512008-12-03 18:43:12 +00005173MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5174 MachineInstr *MI,
Evan Cheng9e0c7f22009-07-15 06:10:07 +00005175 const SmallVectorImpl<unsigned> &Ops,
Dan Gohman3f86b512008-12-03 18:43:12 +00005176 MachineInstr *LoadMI) const {
Andrew Trick3112a5e2013-11-12 18:06:12 +00005177 // If loading from a FrameIndex, fold directly from the FrameIndex.
5178 unsigned NumOps = LoadMI->getDesc().getNumOperands();
5179 int FrameIndex;
Akira Hatanaka760814a2014-09-15 18:23:52 +00005180 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5181 if (isPartialRegisterLoad(*LoadMI, MF))
5182 return nullptr;
Andrew Trick3112a5e2013-11-12 18:06:12 +00005183 return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
Akira Hatanaka760814a2014-09-15 18:23:52 +00005184 }
Andrew Trick3112a5e2013-11-12 18:06:12 +00005185
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005186 // Check switch flag
Craig Topper062a2ba2014-04-25 05:30:21 +00005187 if (NoFusing) return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005188
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005189 // Unless optimizing for size, don't fold to avoid partial
5190 // register update stalls
Duncan P. N. Exon Smith5975a702015-02-14 01:59:52 +00005191 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
Bruno Cardoso Lopes6b302952011-09-15 21:42:23 +00005192 hasPartialRegUpdate(MI->getOpcode()))
Craig Topper062a2ba2014-04-25 05:30:21 +00005193 return nullptr;
Evan Cheng4cf30b72009-12-18 07:40:29 +00005194
Dan Gohman9a542a42008-07-12 00:10:52 +00005195 // Determine the alignment of the load.
Evan Cheng3b3286d2008-02-08 21:20:40 +00005196 unsigned Alignment = 0;
Dan Gohman9a542a42008-07-12 00:10:52 +00005197 if (LoadMI->hasOneMemOperand())
Dan Gohman48b185d2009-09-25 20:36:54 +00005198 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman69499b132009-09-21 18:30:38 +00005199 else
5200 switch (LoadMI->getOpcode()) {
Craig Toppera3a65832011-11-19 22:34:59 +00005201 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00005202 case X86::AVX_SET0:
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005203 Alignment = 32;
5204 break;
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005205 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005206 case X86::V_SETALLONES:
5207 Alignment = 16;
5208 break;
5209 case X86::FsFLD0SD:
5210 Alignment = 8;
5211 break;
5212 case X86::FsFLD0SS:
5213 Alignment = 4;
5214 break;
5215 default:
Craig Topper062a2ba2014-04-25 05:30:21 +00005216 return nullptr;
Dan Gohman69499b132009-09-21 18:30:38 +00005217 }
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005218 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5219 unsigned NewOpc = 0;
5220 switch (MI->getOpcode()) {
Craig Topper062a2ba2014-04-25 05:30:21 +00005221 default: return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005222 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005223 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5224 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5225 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005226 }
5227 // Change to CMPXXri r, 0 first.
Chris Lattner59687512008-01-11 18:10:50 +00005228 MI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005229 MI->getOperand(1).ChangeToImmediate(0);
5230 } else if (Ops.size() != 1)
Craig Topper062a2ba2014-04-25 05:30:21 +00005231 return nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005232
Jakob Stoklund Olesen9c473e42010-08-11 23:08:22 +00005233 // Make sure the subregisters match.
5234 // Otherwise we risk changing the size of the load.
5235 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
Craig Topper062a2ba2014-04-25 05:30:21 +00005236 return nullptr;
Jakob Stoklund Olesen9c473e42010-08-11 23:08:22 +00005237
Chris Lattnerec536272010-07-08 22:41:28 +00005238 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman69499b132009-09-21 18:30:38 +00005239 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005240 case X86::V_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005241 case X86::V_SETALLONES:
Craig Toppera3a65832011-11-19 22:34:59 +00005242 case X86::AVX2_SETALLONES:
Craig Topperbd509ee2012-08-28 07:05:28 +00005243 case X86::AVX_SET0:
Dan Gohman69499b132009-09-21 18:30:38 +00005244 case X86::FsFLD0SD:
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005245 case X86::FsFLD0SS: {
Jakob Stoklund Olesendd1904e2011-09-29 05:10:54 +00005246 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005247 // Create a constant-pool entry and operands to load from it.
5248
Dan Gohman772952f2010-03-09 03:01:40 +00005249 // Medium and large mode can't fold loads this way.
Eric Christopher6c786a12014-06-10 22:34:31 +00005250 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5251 MF.getTarget().getCodeModel() != CodeModel::Kernel)
Craig Topper062a2ba2014-04-25 05:30:21 +00005252 return nullptr;
Dan Gohman772952f2010-03-09 03:01:40 +00005253
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005254 // x86-32 PIC requires a PIC base register for constant pools.
5255 unsigned PICBase = 0;
Eric Christopher6c786a12014-06-10 22:34:31 +00005256 if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
5257 if (Subtarget.is64Bit())
Evan Chengfdd0eb42009-07-16 18:44:05 +00005258 PICBase = X86::RIP;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00005259 else
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005260 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Chengfdd0eb42009-07-16 18:44:05 +00005261 // This doesn't work for several reasons.
5262 // 1. GlobalBaseReg may have been spilled.
5263 // 2. It may not be live at MI.
Craig Topper062a2ba2014-04-25 05:30:21 +00005264 return nullptr;
Jakob Stoklund Olesenc7895d32009-07-16 21:24:13 +00005265 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005266
Dan Gohman69499b132009-09-21 18:30:38 +00005267 // Create a constant-pool entry.
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005268 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattner229907c2011-07-18 04:54:35 +00005269 Type *Ty;
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005270 unsigned Opc = LoadMI->getOpcode();
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005271 if (Opc == X86::FsFLD0SS)
Dan Gohman69499b132009-09-21 18:30:38 +00005272 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Jakob Stoklund Olesenbde32d32011-11-29 22:27:25 +00005273 else if (Opc == X86::FsFLD0SD)
Dan Gohman69499b132009-09-21 18:30:38 +00005274 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Craig Topperbd509ee2012-08-28 07:05:28 +00005275 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
Craig Toppera4c5a472012-01-13 06:12:41 +00005276 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
Dan Gohman69499b132009-09-21 18:30:38 +00005277 else
5278 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00005279
Craig Topper72f51c32012-08-28 07:30:47 +00005280 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
Bruno Cardoso Lopes9212bf22011-07-25 23:05:32 +00005281 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5282 Constant::getNullValue(Ty);
Dan Gohman69499b132009-09-21 18:30:38 +00005283 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005284
5285 // Create operands to load from the constant pool entry.
5286 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5287 MOs.push_back(MachineOperand::CreateImm(1));
5288 MOs.push_back(MachineOperand::CreateReg(0, false));
5289 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola3b2df102009-04-08 21:14:34 +00005290 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman69499b132009-09-21 18:30:38 +00005291 break;
5292 }
5293 default: {
Akira Hatanaka760814a2014-09-15 18:23:52 +00005294 if (isPartialRegisterLoad(*LoadMI, MF))
Craig Topper062a2ba2014-04-25 05:30:21 +00005295 return nullptr;
Manman Ren5b462822012-11-27 18:09:26 +00005296
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005297 // Folding a normal load. Just copy the load's address operands.
Chris Lattnerec536272010-07-08 22:41:28 +00005298 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005299 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman69499b132009-09-21 18:30:38 +00005300 break;
5301 }
Dan Gohmancc78cdf2008-12-03 05:21:24 +00005302 }
Simon Pilgrim2f9548a2014-10-20 22:14:22 +00005303 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
5304 /*Size=*/0, Alignment, /*AllowCommute=*/true);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005305}
5306
5307
Dan Gohman33332bc2008-10-16 01:49:15 +00005308bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
5309 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005310 // Check switch flag
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005311 if (NoFusing) return 0;
5312
5313 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5314 switch (MI->getOpcode()) {
5315 default: return false;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005316 case X86::TEST8rr:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005317 case X86::TEST16rr:
5318 case X86::TEST32rr:
5319 case X86::TEST64rr:
5320 return true;
Jakob Stoklund Olesen2348cdd2011-04-30 23:00:05 +00005321 case X86::ADD32ri:
5322 // FIXME: AsmPrinter doesn't know how to handle
5323 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5324 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5325 return false;
5326 break;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005327 }
5328 }
5329
5330 if (Ops.size() != 1)
5331 return false;
5332
5333 unsigned OpNum = Ops[0];
5334 unsigned Opc = MI->getOpcode();
Chris Lattner03ad8852008-01-07 07:27:27 +00005335 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005336 bool isTwoAddr = NumOps > 1 &&
Evan Cheng6cc775f2011-06-28 19:10:37 +00005337 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005338
5339 // Folding a memory location into the two-address part of a two-address
5340 // instruction is different than folding it other places. It requires
5341 // replacing the *two* registers with the memory location.
Craig Topper062a2ba2014-04-25 05:30:21 +00005342 const DenseMap<unsigned,
5343 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005344 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005345 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
Sanjay Patela7b893d2015-02-09 16:30:58 +00005346 } else if (OpNum == 0) {
Tim Northover64ec0ff2013-05-30 13:19:42 +00005347 if (Opc == X86::MOV32r0)
5348 return true;
5349
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005350 OpcodeTablePtr = &RegOp2MemOpTable0;
5351 } else if (OpNum == 1) {
5352 OpcodeTablePtr = &RegOp2MemOpTable1;
5353 } else if (OpNum == 2) {
5354 OpcodeTablePtr = &RegOp2MemOpTable2;
Craig Topper7573c8f2012-08-31 22:12:16 +00005355 } else if (OpNum == 3) {
5356 OpcodeTablePtr = &RegOp2MemOpTable3;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005357 }
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005358
Chris Lattner626656a2010-10-08 03:54:52 +00005359 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
5360 return true;
Jakob Stoklund Olesen9de596e2012-11-28 02:35:17 +00005361 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005362}
5363
5364bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
5365 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling27b508d2009-02-11 21:51:19 +00005366 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00005367 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5368 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005369 if (I == MemOp2RegOpTable.end())
5370 return false;
5371 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005372 unsigned Index = I->second.second & TB_INDEX_MASK;
5373 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5374 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005375 if (UnfoldLoad && !FoldedLoad)
5376 return false;
5377 UnfoldLoad &= FoldedLoad;
5378 if (UnfoldStore && !FoldedStore)
5379 return false;
5380 UnfoldStore &= FoldedStore;
5381
Evan Cheng6cc775f2011-06-28 19:10:37 +00005382 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005383 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng0ce84482010-07-02 20:36:18 +00005384 if (!MI->hasOneMemOperand() &&
5385 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005386 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005387 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5388 // conservatively assume the address is unaligned. That's bad for
5389 // performance.
5390 return false;
Chris Lattnerec536272010-07-08 22:41:28 +00005391 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005392 SmallVector<MachineOperand,2> BeforeOps;
5393 SmallVector<MachineOperand,2> AfterOps;
5394 SmallVector<MachineOperand,4> ImpOps;
5395 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5396 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00005397 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005398 AddrOps.push_back(Op);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00005399 else if (Op.isReg() && Op.isImplicit())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005400 ImpOps.push_back(Op);
5401 else if (i < Index)
5402 BeforeOps.push_back(Op);
5403 else if (i > Index)
5404 AfterOps.push_back(Op);
5405 }
5406
5407 // Emit the load instruction.
5408 if (UnfoldLoad) {
Dan Gohmandd76bb22009-10-09 18:10:05 +00005409 std::pair<MachineInstr::mmo_iterator,
5410 MachineInstr::mmo_iterator> MMOs =
5411 MF.extractLoadMemRefs(MI->memoperands_begin(),
5412 MI->memoperands_end());
5413 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005414 if (UnfoldStore) {
5415 // Address operands cannot be marked isKill.
Chris Lattnerec536272010-07-08 22:41:28 +00005416 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005417 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohman0d1e9a82008-10-03 15:45:36 +00005418 if (MO.isReg())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005419 MO.setIsKill(false);
5420 }
5421 }
5422 }
5423
5424 // Emit the data processing instruction.
Evan Cheng6cc775f2011-06-28 19:10:37 +00005425 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Jakob Stoklund Olesenb159b5f2012-12-19 21:31:56 +00005426 MachineInstrBuilder MIB(MF, DataMI);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00005427
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005428 if (FoldedStore)
Bill Wendlingf7b83c72009-05-13 21:33:08 +00005429 MIB.addReg(Reg, RegState::Define);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005430 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00005431 MIB.addOperand(BeforeOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005432 if (FoldedLoad)
5433 MIB.addReg(Reg);
5434 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman2af1f852009-02-18 05:45:50 +00005435 MIB.addOperand(AfterOps[i]);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005436 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
5437 MachineOperand &MO = ImpOps[i];
Bill Wendlingf7b83c72009-05-13 21:33:08 +00005438 MIB.addReg(MO.getReg(),
5439 getDefRegState(MO.isDef()) |
5440 RegState::Implicit |
5441 getKillRegState(MO.isKill()) |
Evan Cheng0dc101b2009-06-30 08:49:04 +00005442 getDeadRegState(MO.isDead()) |
5443 getUndefRegState(MO.isUndef()));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005444 }
5445 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005446 switch (DataMI->getOpcode()) {
5447 default: break;
5448 case X86::CMP64ri32:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005449 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005450 case X86::CMP32ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005451 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005452 case X86::CMP16ri:
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005453 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005454 case X86::CMP8ri: {
5455 MachineOperand &MO0 = DataMI->getOperand(0);
5456 MachineOperand &MO1 = DataMI->getOperand(1);
5457 if (MO1.getImm() == 0) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00005458 unsigned NewOpc;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005459 switch (DataMI->getOpcode()) {
Craig Topper4bc3e5a2012-08-21 08:16:16 +00005460 default: llvm_unreachable("Unreachable!");
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005461 case X86::CMP64ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005462 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005463 case X86::CMP32ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005464 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8bf6632010-05-18 21:54:15 +00005465 case X86::CMP16ri8:
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005466 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
5467 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
5468 }
Chris Lattner59687512008-01-11 18:10:50 +00005469 DataMI->setDesc(get(NewOpc));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005470 MO1.ChangeToRegister(MO0.getReg(), false);
5471 }
5472 }
5473 }
5474 NewMIs.push_back(DataMI);
5475
5476 // Emit the store instruction.
5477 if (UnfoldStore) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005478 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005479 std::pair<MachineInstr::mmo_iterator,
5480 MachineInstr::mmo_iterator> MMOs =
5481 MF.extractStoreMemRefs(MI->memoperands_begin(),
5482 MI->memoperands_end());
5483 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005484 }
5485
5486 return true;
5487}
5488
5489bool
5490X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling27b508d2009-02-11 21:51:19 +00005491 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohman17059682008-07-17 19:10:17 +00005492 if (!N->isMachineOpcode())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005493 return false;
5494
Chris Lattner1c090c02010-10-07 23:08:41 +00005495 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5496 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005497 if (I == MemOp2RegOpTable.end())
5498 return false;
5499 unsigned Opc = I->second.first;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005500 unsigned Index = I->second.second & TB_INDEX_MASK;
5501 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5502 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Evan Cheng6cc775f2011-06-28 19:10:37 +00005503 const MCInstrDesc &MCID = get(Opc);
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005504 MachineFunction &MF = DAG.getMachineFunction();
5505 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
Evan Cheng6cc775f2011-06-28 19:10:37 +00005506 unsigned NumDefs = MCID.NumDefs;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005507 std::vector<SDValue> AddrOps;
5508 std::vector<SDValue> BeforeOps;
5509 std::vector<SDValue> AfterOps;
Andrew Trickef9de2a2013-05-25 02:42:55 +00005510 SDLoc dl(N);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005511 unsigned NumOps = N->getNumOperands();
Dan Gohman48b185d2009-09-25 20:36:54 +00005512 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005513 SDValue Op = N->getOperand(i);
Chris Lattnerec536272010-07-08 22:41:28 +00005514 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005515 AddrOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00005516 else if (i < Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005517 BeforeOps.push_back(Op);
Dan Gohmancc329b52009-03-04 19:23:38 +00005518 else if (i > Index-NumDefs)
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005519 AfterOps.push_back(Op);
5520 }
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005521 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005522 AddrOps.push_back(Chain);
5523
5524 // Emit the load instruction.
Craig Topper062a2ba2014-04-25 05:30:21 +00005525 SDNode *Load = nullptr;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005526 if (FoldedLoad) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00005527 EVT VT = *RC->vt_begin();
Evan Chengf25ef4f2009-11-16 21:56:03 +00005528 std::pair<MachineInstr::mmo_iterator,
5529 MachineInstr::mmo_iterator> MMOs =
5530 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5531 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00005532 if (!(*MMOs.first) &&
5533 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005534 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005535 // Do not introduce a slow unaligned load.
5536 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005537 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5538 bool isAligned = (*MMOs.first) &&
5539 (*MMOs.first)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00005540 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
Michael Liaob53d8962013-04-19 22:22:57 +00005541 VT, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005542 NewNodes.push_back(Load);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005543
5544 // Preserve memory reference information.
Dan Gohmandd76bb22009-10-09 18:10:05 +00005545 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005546 }
5547
5548 // Emit the data processing instruction.
Owen Anderson53aa7a92009-08-10 22:56:29 +00005549 std::vector<EVT> VTs;
Craig Topper062a2ba2014-04-25 05:30:21 +00005550 const TargetRegisterClass *DstRC = nullptr;
Evan Cheng6cc775f2011-06-28 19:10:37 +00005551 if (MCID.getNumDefs() > 0) {
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00005552 DstRC = getRegClass(MCID, 0, &RI, MF);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005553 VTs.push_back(*DstRC->vt_begin());
5554 }
5555 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Anderson53aa7a92009-08-10 22:56:29 +00005556 EVT VT = N->getValueType(i);
Evan Cheng6cc775f2011-06-28 19:10:37 +00005557 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005558 VTs.push_back(VT);
5559 }
5560 if (Load)
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005561 BeforeOps.push_back(SDValue(Load, 0));
Benjamin Kramer4f6ac162015-02-28 10:11:12 +00005562 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
Michael Liaob53d8962013-04-19 22:22:57 +00005563 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005564 NewNodes.push_back(NewNode);
5565
5566 // Emit the store instruction.
5567 if (FoldedStore) {
5568 AddrOps.pop_back();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00005569 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005570 AddrOps.push_back(Chain);
Evan Chengf25ef4f2009-11-16 21:56:03 +00005571 std::pair<MachineInstr::mmo_iterator,
5572 MachineInstr::mmo_iterator> MMOs =
5573 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5574 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng0ce84482010-07-02 20:36:18 +00005575 if (!(*MMOs.first) &&
5576 RC == &X86::VR128RegClass &&
Eric Christopher6c786a12014-06-10 22:34:31 +00005577 !Subtarget.isUnalignedMemAccessFast())
Evan Cheng0ce84482010-07-02 20:36:18 +00005578 // Do not introduce a slow unaligned store.
5579 return false;
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005580 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5581 bool isAligned = (*MMOs.first) &&
5582 (*MMOs.first)->getAlignment() >= Alignment;
Eric Christopher6c786a12014-06-10 22:34:31 +00005583 SDNode *Store =
5584 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5585 dl, MVT::Other, AddrOps);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005586 NewNodes.push_back(Store);
Dan Gohmandd76bb22009-10-09 18:10:05 +00005587
5588 // Preserve memory reference information.
Craig Topper9e71b822015-02-10 06:29:28 +00005589 cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005590 }
5591
5592 return true;
5593}
5594
5595unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman49fa51d2009-10-30 22:18:41 +00005596 bool UnfoldLoad, bool UnfoldStore,
5597 unsigned *LoadRegIndex) const {
Chris Lattner1c090c02010-10-07 23:08:41 +00005598 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5599 MemOp2RegOpTable.find(Opc);
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005600 if (I == MemOp2RegOpTable.end())
5601 return 0;
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005602 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5603 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005604 if (UnfoldLoad && !FoldedLoad)
5605 return 0;
5606 if (UnfoldStore && !FoldedStore)
5607 return 0;
Dan Gohman49fa51d2009-10-30 22:18:41 +00005608 if (LoadRegIndex)
Bruno Cardoso Lopes23eb5262011-09-08 18:35:57 +00005609 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
Owen Anderson2a3be7b2008-01-07 01:35:02 +00005610 return I->second.first;
5611}
5612
Evan Cheng4f026f32010-01-22 03:34:51 +00005613bool
5614X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5615 int64_t &Offset1, int64_t &Offset2) const {
5616 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5617 return false;
5618 unsigned Opc1 = Load1->getMachineOpcode();
5619 unsigned Opc2 = Load2->getMachineOpcode();
5620 switch (Opc1) {
5621 default: return false;
5622 case X86::MOV8rm:
5623 case X86::MOV16rm:
5624 case X86::MOV32rm:
5625 case X86::MOV64rm:
5626 case X86::LD_Fp32m:
5627 case X86::LD_Fp64m:
5628 case X86::LD_Fp80m:
5629 case X86::MOVSSrm:
5630 case X86::MOVSDrm:
5631 case X86::MMX_MOVD64rm:
5632 case X86::MMX_MOVQ64rm:
5633 case X86::FsMOVAPSrm:
5634 case X86::FsMOVAPDrm:
5635 case X86::MOVAPSrm:
5636 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005637 case X86::MOVAPDrm:
5638 case X86::MOVDQArm:
5639 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005640 // AVX load instructions
5641 case X86::VMOVSSrm:
5642 case X86::VMOVSDrm:
5643 case X86::FsVMOVAPSrm:
5644 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005645 case X86::VMOVAPSrm:
5646 case X86::VMOVUPSrm:
5647 case X86::VMOVAPDrm:
5648 case X86::VMOVDQArm:
5649 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00005650 case X86::VMOVAPSYrm:
5651 case X86::VMOVUPSYrm:
5652 case X86::VMOVAPDYrm:
5653 case X86::VMOVDQAYrm:
5654 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005655 break;
5656 }
5657 switch (Opc2) {
5658 default: return false;
5659 case X86::MOV8rm:
5660 case X86::MOV16rm:
5661 case X86::MOV32rm:
5662 case X86::MOV64rm:
5663 case X86::LD_Fp32m:
5664 case X86::LD_Fp64m:
5665 case X86::LD_Fp80m:
5666 case X86::MOVSSrm:
5667 case X86::MOVSDrm:
5668 case X86::MMX_MOVD64rm:
5669 case X86::MMX_MOVQ64rm:
5670 case X86::FsMOVAPSrm:
5671 case X86::FsMOVAPDrm:
5672 case X86::MOVAPSrm:
5673 case X86::MOVUPSrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005674 case X86::MOVAPDrm:
5675 case X86::MOVDQArm:
5676 case X86::MOVDQUrm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00005677 // AVX load instructions
5678 case X86::VMOVSSrm:
5679 case X86::VMOVSDrm:
5680 case X86::FsVMOVAPSrm:
5681 case X86::FsVMOVAPDrm:
Bruno Cardoso Lopesd560b8c2011-09-14 02:36:58 +00005682 case X86::VMOVAPSrm:
5683 case X86::VMOVUPSrm:
5684 case X86::VMOVAPDrm:
5685 case X86::VMOVDQArm:
5686 case X86::VMOVDQUrm:
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00005687 case X86::VMOVAPSYrm:
5688 case X86::VMOVUPSYrm:
5689 case X86::VMOVAPDYrm:
5690 case X86::VMOVDQAYrm:
5691 case X86::VMOVDQUYrm:
Evan Cheng4f026f32010-01-22 03:34:51 +00005692 break;
5693 }
5694
5695 // Check if chain operands and base addresses match.
5696 if (Load1->getOperand(0) != Load2->getOperand(0) ||
5697 Load1->getOperand(5) != Load2->getOperand(5))
5698 return false;
5699 // Segment operands should match as well.
5700 if (Load1->getOperand(4) != Load2->getOperand(4))
5701 return false;
5702 // Scale should be 1, Index should be Reg0.
5703 if (Load1->getOperand(1) == Load2->getOperand(1) &&
5704 Load1->getOperand(2) == Load2->getOperand(2)) {
5705 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
5706 return false;
Evan Cheng4f026f32010-01-22 03:34:51 +00005707
5708 // Now let's examine the displacements.
5709 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
5710 isa<ConstantSDNode>(Load2->getOperand(3))) {
5711 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
5712 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
5713 return true;
5714 }
5715 }
5716 return false;
5717}
5718
5719bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5720 int64_t Offset1, int64_t Offset2,
5721 unsigned NumLoads) const {
5722 assert(Offset2 > Offset1);
5723 if ((Offset2 - Offset1) / 8 > 64)
5724 return false;
5725
5726 unsigned Opc1 = Load1->getMachineOpcode();
5727 unsigned Opc2 = Load2->getMachineOpcode();
5728 if (Opc1 != Opc2)
5729 return false; // FIXME: overly conservative?
5730
5731 switch (Opc1) {
5732 default: break;
5733 case X86::LD_Fp32m:
5734 case X86::LD_Fp64m:
5735 case X86::LD_Fp80m:
5736 case X86::MMX_MOVD64rm:
5737 case X86::MMX_MOVQ64rm:
5738 return false;
5739 }
5740
5741 EVT VT = Load1->getValueType(0);
5742 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005743 default:
Evan Cheng4f026f32010-01-22 03:34:51 +00005744 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5745 // have 16 of them to play with.
Eric Christopher6c786a12014-06-10 22:34:31 +00005746 if (Subtarget.is64Bit()) {
Evan Cheng4f026f32010-01-22 03:34:51 +00005747 if (NumLoads >= 3)
5748 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005749 } else if (NumLoads) {
Evan Cheng4f026f32010-01-22 03:34:51 +00005750 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005751 }
Evan Cheng4f026f32010-01-22 03:34:51 +00005752 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00005753 case MVT::i8:
5754 case MVT::i16:
5755 case MVT::i32:
5756 case MVT::i64:
Evan Cheng16cf9342010-01-22 23:49:11 +00005757 case MVT::f32:
5758 case MVT::f64:
Evan Cheng4f026f32010-01-22 03:34:51 +00005759 if (NumLoads)
5760 return false;
Bill Wendling8ce69cd2010-06-22 22:16:17 +00005761 break;
Evan Cheng4f026f32010-01-22 03:34:51 +00005762 }
5763
5764 return true;
5765}
5766
Andrew Trick47740de2013-06-23 09:00:28 +00005767bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
5768 MachineInstr *Second) const {
5769 // Check if this processor supports macro-fusion. Since this is a minor
5770 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
5771 // proxy for SandyBridge+.
Eric Christopher6c786a12014-06-10 22:34:31 +00005772 if (!Subtarget.hasAVX())
Andrew Trick47740de2013-06-23 09:00:28 +00005773 return false;
5774
5775 enum {
5776 FuseTest,
5777 FuseCmp,
5778 FuseInc
5779 } FuseKind;
5780
5781 switch(Second->getOpcode()) {
5782 default:
5783 return false;
Craig Topper49758aa2015-01-06 04:23:53 +00005784 case X86::JE_1:
5785 case X86::JNE_1:
5786 case X86::JL_1:
5787 case X86::JLE_1:
5788 case X86::JG_1:
5789 case X86::JGE_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005790 FuseKind = FuseInc;
5791 break;
Craig Topper49758aa2015-01-06 04:23:53 +00005792 case X86::JB_1:
5793 case X86::JBE_1:
5794 case X86::JA_1:
5795 case X86::JAE_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005796 FuseKind = FuseCmp;
5797 break;
Craig Topper49758aa2015-01-06 04:23:53 +00005798 case X86::JS_1:
5799 case X86::JNS_1:
5800 case X86::JP_1:
5801 case X86::JNP_1:
5802 case X86::JO_1:
5803 case X86::JNO_1:
Andrew Trick47740de2013-06-23 09:00:28 +00005804 FuseKind = FuseTest;
5805 break;
5806 }
5807 switch (First->getOpcode()) {
5808 default:
5809 return false;
5810 case X86::TEST8rr:
5811 case X86::TEST16rr:
5812 case X86::TEST32rr:
5813 case X86::TEST64rr:
5814 case X86::TEST8ri:
5815 case X86::TEST16ri:
5816 case X86::TEST32ri:
5817 case X86::TEST32i32:
5818 case X86::TEST64i32:
5819 case X86::TEST64ri32:
5820 case X86::TEST8rm:
5821 case X86::TEST16rm:
5822 case X86::TEST32rm:
5823 case X86::TEST64rm:
Akira Hatanaka7cc27642014-07-10 18:00:53 +00005824 case X86::TEST8ri_NOREX:
Andrew Trick47740de2013-06-23 09:00:28 +00005825 case X86::AND16i16:
5826 case X86::AND16ri:
5827 case X86::AND16ri8:
5828 case X86::AND16rm:
5829 case X86::AND16rr:
5830 case X86::AND32i32:
5831 case X86::AND32ri:
5832 case X86::AND32ri8:
5833 case X86::AND32rm:
5834 case X86::AND32rr:
5835 case X86::AND64i32:
5836 case X86::AND64ri32:
5837 case X86::AND64ri8:
5838 case X86::AND64rm:
5839 case X86::AND64rr:
5840 case X86::AND8i8:
5841 case X86::AND8ri:
5842 case X86::AND8rm:
5843 case X86::AND8rr:
5844 return true;
5845 case X86::CMP16i16:
5846 case X86::CMP16ri:
5847 case X86::CMP16ri8:
5848 case X86::CMP16rm:
5849 case X86::CMP16rr:
5850 case X86::CMP32i32:
5851 case X86::CMP32ri:
5852 case X86::CMP32ri8:
5853 case X86::CMP32rm:
5854 case X86::CMP32rr:
5855 case X86::CMP64i32:
5856 case X86::CMP64ri32:
5857 case X86::CMP64ri8:
5858 case X86::CMP64rm:
5859 case X86::CMP64rr:
5860 case X86::CMP8i8:
5861 case X86::CMP8ri:
5862 case X86::CMP8rm:
5863 case X86::CMP8rr:
5864 case X86::ADD16i16:
5865 case X86::ADD16ri:
5866 case X86::ADD16ri8:
5867 case X86::ADD16ri8_DB:
5868 case X86::ADD16ri_DB:
5869 case X86::ADD16rm:
5870 case X86::ADD16rr:
5871 case X86::ADD16rr_DB:
5872 case X86::ADD32i32:
5873 case X86::ADD32ri:
5874 case X86::ADD32ri8:
5875 case X86::ADD32ri8_DB:
5876 case X86::ADD32ri_DB:
5877 case X86::ADD32rm:
5878 case X86::ADD32rr:
5879 case X86::ADD32rr_DB:
5880 case X86::ADD64i32:
5881 case X86::ADD64ri32:
5882 case X86::ADD64ri32_DB:
5883 case X86::ADD64ri8:
5884 case X86::ADD64ri8_DB:
5885 case X86::ADD64rm:
5886 case X86::ADD64rr:
5887 case X86::ADD64rr_DB:
5888 case X86::ADD8i8:
5889 case X86::ADD8mi:
5890 case X86::ADD8mr:
5891 case X86::ADD8ri:
5892 case X86::ADD8rm:
5893 case X86::ADD8rr:
5894 case X86::SUB16i16:
5895 case X86::SUB16ri:
5896 case X86::SUB16ri8:
5897 case X86::SUB16rm:
5898 case X86::SUB16rr:
5899 case X86::SUB32i32:
5900 case X86::SUB32ri:
5901 case X86::SUB32ri8:
5902 case X86::SUB32rm:
5903 case X86::SUB32rr:
5904 case X86::SUB64i32:
5905 case X86::SUB64ri32:
5906 case X86::SUB64ri8:
5907 case X86::SUB64rm:
5908 case X86::SUB64rr:
5909 case X86::SUB8i8:
5910 case X86::SUB8ri:
5911 case X86::SUB8rm:
5912 case X86::SUB8rr:
5913 return FuseKind == FuseCmp || FuseKind == FuseInc;
5914 case X86::INC16r:
5915 case X86::INC32r:
Andrew Trick47740de2013-06-23 09:00:28 +00005916 case X86::INC64r:
5917 case X86::INC8r:
5918 case X86::DEC16r:
5919 case X86::DEC32r:
Andrew Trick47740de2013-06-23 09:00:28 +00005920 case X86::DEC64r:
5921 case X86::DEC8r:
5922 return FuseKind == FuseInc;
5923 }
5924}
Evan Cheng4f026f32010-01-22 03:34:51 +00005925
Chris Lattnerc0fb5672006-10-20 17:42:20 +00005926bool X86InstrInfo::
Owen Anderson4f6bf042008-08-14 22:49:33 +00005927ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner3a897f32006-10-21 05:52:40 +00005928 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chengf93bc7f2008-08-29 23:21:31 +00005929 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman97d95d62008-10-21 03:29:32 +00005930 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5931 return true;
Evan Chengf93bc7f2008-08-29 23:21:31 +00005932 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner3a897f32006-10-21 05:52:40 +00005933 return false;
Chris Lattnerc0fb5672006-10-20 17:42:20 +00005934}
5935
Evan Chengf7137222008-10-27 07:14:50 +00005936bool X86InstrInfo::
Evan Chengb5f0ec32009-02-06 17:17:30 +00005937isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5938 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Chengf7137222008-10-27 07:14:50 +00005939 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengb5f0ec32009-02-06 17:17:30 +00005940 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5941 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Chengf7137222008-10-27 07:14:50 +00005942}
5943
Sanjay Patel203ee502015-02-17 21:55:20 +00005944/// Return a virtual register initialized with the
Dan Gohman6ebe7342008-09-30 00:58:23 +00005945/// the global base register value. Output instructions required to
5946/// initialize the register in the function entry block, if necessary.
Dan Gohman24300732008-09-23 18:22:58 +00005947///
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005948/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5949///
Dan Gohman6ebe7342008-09-30 00:58:23 +00005950unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
Eric Christopher6c786a12014-06-10 22:34:31 +00005951 assert(!Subtarget.is64Bit() &&
Dan Gohman6ebe7342008-09-30 00:58:23 +00005952 "X86-64 PIC uses RIP relative addressing");
5953
5954 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5955 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5956 if (GlobalBaseReg != 0)
5957 return GlobalBaseReg;
5958
Dan Gohmand7b5ce32010-07-10 09:00:22 +00005959 // Create the register. The code to initialize it is inserted
5960 // later, by the CGBR pass (below).
Dan Gohman24300732008-09-23 18:22:58 +00005961 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Jakob Stoklund Olesen38dcd592012-05-20 18:43:00 +00005962 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Dan Gohman6ebe7342008-09-30 00:58:23 +00005963 X86FI->setGlobalBaseReg(GlobalBaseReg);
5964 return GlobalBaseReg;
Dan Gohman24300732008-09-23 18:22:58 +00005965}
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00005966
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00005967// These are the replaceable SSE instructions. Some of these have Int variants
5968// that we don't include here. We don't want to replace instructions selected
5969// by intrinsics.
Craig Topper2dac9622012-03-09 07:45:21 +00005970static const uint16_t ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes1401e042010-08-12 02:08:52 +00005971 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesendbff4e82010-03-30 22:46:53 +00005972 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5973 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5974 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
5975 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
5976 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
5977 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
5978 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
5979 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
5980 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
5981 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
5982 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
5983 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
5984 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
5985 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005986 // AVX 128-bit support
5987 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
5988 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
5989 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
5990 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
5991 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
5992 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5993 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
5994 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
5995 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
5996 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
5997 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
5998 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
Bruno Cardoso Lopes7f704b32010-08-12 20:20:53 +00005999 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
6000 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes67785972011-07-14 18:50:58 +00006001 // AVX 256-bit support
6002 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
6003 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
6004 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
6005 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
6006 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
Craig Topper05baa852011-11-15 05:55:35 +00006007 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
6008};
6009
Craig Topper2dac9622012-03-09 07:45:21 +00006010static const uint16_t ReplaceableInstrsAVX2[][3] = {
Craig Topper05baa852011-11-15 05:55:35 +00006011 //PackedSingle PackedDouble PackedInt
Craig Topperf87a2be2011-11-09 09:37:21 +00006012 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
6013 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
6014 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
6015 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
6016 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
6017 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
6018 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
Craig Topper12b72de2011-11-29 05:37:58 +00006019 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
6020 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6021 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6022 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
6023 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
6024 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
Quentin Colombet6f12ae02014-03-26 00:10:22 +00006025 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
6026 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6027 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6028 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6029 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6030 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6031 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006032};
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006033
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006034// FIXME: Some shuffle and unpack instructions have equivalents in different
6035// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006036
Craig Topper2dac9622012-03-09 07:45:21 +00006037static const uint16_t *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006038 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006039 if (ReplaceableInstrs[i][domain-1] == opcode)
6040 return ReplaceableInstrs[i];
Craig Topper062a2ba2014-04-25 05:30:21 +00006041 return nullptr;
Craig Topper649d1c52011-11-15 06:39:01 +00006042}
6043
Craig Topper2dac9622012-03-09 07:45:21 +00006044static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
Craig Topper649d1c52011-11-15 06:39:01 +00006045 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
6046 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
6047 return ReplaceableInstrsAVX2[i];
Craig Topper062a2ba2014-04-25 05:30:21 +00006048 return nullptr;
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006049}
6050
6051std::pair<uint16_t, uint16_t>
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00006052X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006053 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Eric Christopher6c786a12014-06-10 22:34:31 +00006054 bool hasAVX2 = Subtarget.hasAVX2();
Craig Topper649d1c52011-11-15 06:39:01 +00006055 uint16_t validDomains = 0;
6056 if (domain && lookup(MI->getOpcode(), domain))
6057 validDomains = 0xe;
6058 else if (domain && lookupAVX2(MI->getOpcode(), domain))
6059 validDomains = hasAVX2 ? 0xe : 0x6;
6060 return std::make_pair(domain, validDomains);
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006061}
6062
Jakob Stoklund Olesenb48c9942011-09-27 22:57:18 +00006063void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006064 assert(Domain>0 && Domain<4 && "Invalid execution domain");
6065 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6066 assert(dom && "Not an SSE instruction");
Craig Topper2dac9622012-03-09 07:45:21 +00006067 const uint16_t *table = lookup(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006068 if (!table) { // try the other table
Eric Christopher6c786a12014-06-10 22:34:31 +00006069 assert((Subtarget.hasAVX2() || Domain < 3) &&
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006070 "256-bit vector operations only available in AVX2");
Craig Topper649d1c52011-11-15 06:39:01 +00006071 table = lookupAVX2(MI->getOpcode(), dom);
Jakob Stoklund Olesen02845412011-11-23 04:03:08 +00006072 }
Jakob Stoklund Olesenb551aa42010-03-29 23:24:21 +00006073 assert(table && "Cannot change domain");
6074 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen49e121d2010-03-25 17:25:00 +00006075}
Chris Lattner6a5e7062010-04-26 23:37:21 +00006076
Sanjay Patel203ee502015-02-17 21:55:20 +00006077/// Return the noop instruction to use for a noop.
Chris Lattner6a5e7062010-04-26 23:37:21 +00006078void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6079 NopInst.setOpcode(X86::NOOP);
6080}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006081
Tom Roedereb7a3032014-11-11 21:08:02 +00006082// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6083// In particular, getJumpInstrTableEntryBound must always return an upper bound
6084// on the encoding lengths of the instructions generated by
6085// getUnconditionalBranch and getTrap.
Tom Roeder44cb65f2014-06-05 19:29:43 +00006086void X86InstrInfo::getUnconditionalBranch(
6087 MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
Craig Topper49758aa2015-01-06 04:23:53 +00006088 Branch.setOpcode(X86::JMP_1);
Tom Roeder44cb65f2014-06-05 19:29:43 +00006089 Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
6090}
6091
Tom Roedereb7a3032014-11-11 21:08:02 +00006092// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6093// In particular, getJumpInstrTableEntryBound must always return an upper bound
6094// on the encoding lengths of the instructions generated by
6095// getUnconditionalBranch and getTrap.
Tom Roeder44cb65f2014-06-05 19:29:43 +00006096void X86InstrInfo::getTrap(MCInst &MI) const {
6097 MI.setOpcode(X86::TRAP);
6098}
6099
Tom Roedereb7a3032014-11-11 21:08:02 +00006100// See getTrap and getUnconditionalBranch for conditions on the value returned
6101// by this function.
6102unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6103 // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6104 // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6105 return 5;
6106}
6107
Andrew Trick641e2d42011-03-05 08:00:22 +00006108bool X86InstrInfo::isHighLatencyDef(int opc) const {
6109 switch (opc) {
Evan Cheng63c76082010-10-19 18:58:51 +00006110 default: return false;
6111 case X86::DIVSDrm:
6112 case X86::DIVSDrm_Int:
6113 case X86::DIVSDrr:
6114 case X86::DIVSDrr_Int:
6115 case X86::DIVSSrm:
6116 case X86::DIVSSrm_Int:
6117 case X86::DIVSSrr:
6118 case X86::DIVSSrr_Int:
6119 case X86::SQRTPDm:
Evan Cheng63c76082010-10-19 18:58:51 +00006120 case X86::SQRTPDr:
Evan Cheng63c76082010-10-19 18:58:51 +00006121 case X86::SQRTPSm:
Evan Cheng63c76082010-10-19 18:58:51 +00006122 case X86::SQRTPSr:
Evan Cheng63c76082010-10-19 18:58:51 +00006123 case X86::SQRTSDm:
6124 case X86::SQRTSDm_Int:
6125 case X86::SQRTSDr:
6126 case X86::SQRTSDr_Int:
6127 case X86::SQRTSSm:
6128 case X86::SQRTSSm_Int:
6129 case X86::SQRTSSr:
6130 case X86::SQRTSSr_Int:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006131 // AVX instructions with high latency
6132 case X86::VDIVSDrm:
6133 case X86::VDIVSDrm_Int:
6134 case X86::VDIVSDrr:
6135 case X86::VDIVSDrr_Int:
6136 case X86::VDIVSSrm:
6137 case X86::VDIVSSrm_Int:
6138 case X86::VDIVSSrr:
6139 case X86::VDIVSSrr_Int:
6140 case X86::VSQRTPDm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006141 case X86::VSQRTPDr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006142 case X86::VSQRTPSm:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006143 case X86::VSQRTPSr:
Bruno Cardoso Lopesc69d68a2011-09-15 22:15:52 +00006144 case X86::VSQRTSDm:
6145 case X86::VSQRTSDm_Int:
6146 case X86::VSQRTSDr:
6147 case X86::VSQRTSSm:
6148 case X86::VSQRTSSm_Int:
6149 case X86::VSQRTSSr:
Robert Khasanov1cf354c2014-10-28 18:22:41 +00006150 case X86::VSQRTPDZm:
6151 case X86::VSQRTPDZr:
6152 case X86::VSQRTPSZm:
6153 case X86::VSQRTPSZr:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00006154 case X86::VSQRTSDZm:
6155 case X86::VSQRTSDZm_Int:
6156 case X86::VSQRTSDZr:
6157 case X86::VSQRTSSZm_Int:
6158 case X86::VSQRTSSZr:
6159 case X86::VSQRTSSZm:
6160 case X86::VDIVSDZrm:
6161 case X86::VDIVSDZrr:
6162 case X86::VDIVSSZrm:
6163 case X86::VDIVSSZrr:
Elena Demikhovsky534015e2013-09-02 07:12:29 +00006164
6165 case X86::VGATHERQPSZrm:
6166 case X86::VGATHERQPDZrm:
6167 case X86::VGATHERDPDZrm:
6168 case X86::VGATHERDPSZrm:
6169 case X86::VPGATHERQDZrm:
6170 case X86::VPGATHERQQZrm:
6171 case X86::VPGATHERDDZrm:
Elena Demikhovsky402ee642013-09-02 07:41:01 +00006172 case X86::VPGATHERDQZrm:
6173 case X86::VSCATTERQPDZmr:
6174 case X86::VSCATTERQPSZmr:
6175 case X86::VSCATTERDPDZmr:
6176 case X86::VSCATTERDPSZmr:
6177 case X86::VPSCATTERQDZmr:
6178 case X86::VPSCATTERQQZmr:
6179 case X86::VPSCATTERDDZmr:
6180 case X86::VPSCATTERDQZmr:
Evan Cheng63c76082010-10-19 18:58:51 +00006181 return true;
6182 }
6183}
6184
Andrew Trick641e2d42011-03-05 08:00:22 +00006185bool X86InstrInfo::
6186hasHighOperandLatency(const InstrItineraryData *ItinData,
6187 const MachineRegisterInfo *MRI,
6188 const MachineInstr *DefMI, unsigned DefIdx,
6189 const MachineInstr *UseMI, unsigned UseIdx) const {
6190 return isHighLatencyDef(DefMI->getOpcode());
6191}
6192
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006193namespace {
Sanjay Patel203ee502015-02-17 21:55:20 +00006194 /// Create Global Base Reg pass. This initializes the PIC
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006195 /// global base register for x86-32.
6196 struct CGBR : public MachineFunctionPass {
6197 static char ID;
Owen Andersona7aed182010-08-06 18:33:48 +00006198 CGBR() : MachineFunctionPass(ID) {}
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006199
Craig Topper2d9361e2014-03-09 07:44:38 +00006200 bool runOnMachineFunction(MachineFunction &MF) override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006201 const X86TargetMachine *TM =
6202 static_cast<const X86TargetMachine *>(&MF.getTarget());
Eric Christopher05b81972015-02-02 17:38:43 +00006203 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006204
Eric Christopher0d5c99e2014-05-22 01:46:02 +00006205 // Don't do anything if this is 64-bit as 64-bit PIC
6206 // uses RIP relative addressing.
Eric Christopher05b81972015-02-02 17:38:43 +00006207 if (STI.is64Bit())
Eric Christopher0d5c99e2014-05-22 01:46:02 +00006208 return false;
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006209
6210 // Only emit a global base reg in PIC mode.
6211 if (TM->getRelocationModel() != Reloc::PIC_)
6212 return false;
6213
Dan Gohman534db8a2010-09-17 20:24:24 +00006214 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
6215 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6216
6217 // If we didn't need a GlobalBaseReg, don't insert code.
6218 if (GlobalBaseReg == 0)
6219 return false;
6220
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006221 // Insert the set of GlobalBaseReg into the first MBB of the function
6222 MachineBasicBlock &FirstMBB = MF.front();
6223 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
6224 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
6225 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Eric Christopher05b81972015-02-02 17:38:43 +00006226 const X86InstrInfo *TII = STI.getInstrInfo();
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006227
6228 unsigned PC;
Eric Christopher05b81972015-02-02 17:38:43 +00006229 if (STI.isPICStyleGOT())
Craig Topperabadc662012-04-20 06:31:50 +00006230 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006231 else
Dan Gohman534db8a2010-09-17 20:24:24 +00006232 PC = GlobalBaseReg;
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00006233
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006234 // Operand of MovePCtoStack is completely ignored by asm printer. It's
6235 // only used in JIT code emission as displacement to pc.
6236 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumi9d29eff2011-01-26 02:03:37 +00006237
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006238 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
6239 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Eric Christopher05b81972015-02-02 17:38:43 +00006240 if (STI.isPICStyleGOT()) {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006241 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
6242 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
6243 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
6244 X86II::MO_GOT_ABSOLUTE_ADDRESS);
6245 }
6246
6247 return true;
6248 }
6249
Craig Topper2d9361e2014-03-09 07:44:38 +00006250 const char *getPassName() const override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006251 return "X86 PIC Global Base Reg Initialization";
6252 }
6253
Craig Topper2d9361e2014-03-09 07:44:38 +00006254 void getAnalysisUsage(AnalysisUsage &AU) const override {
Dan Gohmand7b5ce32010-07-10 09:00:22 +00006255 AU.setPreservesCFG();
6256 MachineFunctionPass::getAnalysisUsage(AU);
6257 }
6258 };
6259}
6260
6261char CGBR::ID = 0;
6262FunctionPass*
Eric Christopher463b84b2014-05-22 01:45:57 +00006263llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
Hans Wennborg789acfb2012-06-01 16:27:21 +00006264
6265namespace {
6266 struct LDTLSCleanup : public MachineFunctionPass {
6267 static char ID;
6268 LDTLSCleanup() : MachineFunctionPass(ID) {}
6269
Craig Topper2d9361e2014-03-09 07:44:38 +00006270 bool runOnMachineFunction(MachineFunction &MF) override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006271 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
6272 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
6273 // No point folding accesses if there isn't at least two.
6274 return false;
6275 }
6276
6277 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
6278 return VisitNode(DT->getRootNode(), 0);
6279 }
6280
6281 // Visit the dominator subtree rooted at Node in pre-order.
6282 // If TLSBaseAddrReg is non-null, then use that to replace any
6283 // TLS_base_addr instructions. Otherwise, create the register
6284 // when the first such instruction is seen, and then use it
6285 // as we encounter more instructions.
6286 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
6287 MachineBasicBlock *BB = Node->getBlock();
6288 bool Changed = false;
6289
6290 // Traverse the current block.
6291 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
6292 ++I) {
6293 switch (I->getOpcode()) {
6294 case X86::TLS_base_addr32:
6295 case X86::TLS_base_addr64:
6296 if (TLSBaseAddrReg)
6297 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
6298 else
6299 I = SetRegister(I, &TLSBaseAddrReg);
6300 Changed = true;
6301 break;
6302 default:
6303 break;
6304 }
6305 }
6306
6307 // Visit the children of this block in the dominator tree.
6308 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
6309 I != E; ++I) {
6310 Changed |= VisitNode(*I, TLSBaseAddrReg);
6311 }
6312
6313 return Changed;
6314 }
6315
6316 // Replace the TLS_base_addr instruction I with a copy from
6317 // TLSBaseAddrReg, returning the new instruction.
6318 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
6319 unsigned TLSBaseAddrReg) {
6320 MachineFunction *MF = I->getParent()->getParent();
Eric Christopher05b81972015-02-02 17:38:43 +00006321 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6322 const bool is64Bit = STI.is64Bit();
6323 const X86InstrInfo *TII = STI.getInstrInfo();
Hans Wennborg789acfb2012-06-01 16:27:21 +00006324
6325 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
6326 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
6327 TII->get(TargetOpcode::COPY),
6328 is64Bit ? X86::RAX : X86::EAX)
6329 .addReg(TLSBaseAddrReg);
6330
6331 // Erase the TLS_base_addr instruction.
6332 I->eraseFromParent();
6333
6334 return Copy;
6335 }
6336
6337 // Create a virtal register in *TLSBaseAddrReg, and populate it by
6338 // inserting a copy instruction after I. Returns the new instruction.
6339 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
6340 MachineFunction *MF = I->getParent()->getParent();
Eric Christopher05b81972015-02-02 17:38:43 +00006341 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6342 const bool is64Bit = STI.is64Bit();
6343 const X86InstrInfo *TII = STI.getInstrInfo();
Hans Wennborg789acfb2012-06-01 16:27:21 +00006344
6345 // Create a virtual register for the TLS base address.
6346 MachineRegisterInfo &RegInfo = MF->getRegInfo();
6347 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
6348 ? &X86::GR64RegClass
6349 : &X86::GR32RegClass);
6350
6351 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
6352 MachineInstr *Next = I->getNextNode();
6353 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
6354 TII->get(TargetOpcode::COPY),
6355 *TLSBaseAddrReg)
6356 .addReg(is64Bit ? X86::RAX : X86::EAX);
6357
6358 return Copy;
6359 }
6360
Craig Topper2d9361e2014-03-09 07:44:38 +00006361 const char *getPassName() const override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006362 return "Local Dynamic TLS Access Clean-up";
6363 }
6364
Craig Topper2d9361e2014-03-09 07:44:38 +00006365 void getAnalysisUsage(AnalysisUsage &AU) const override {
Hans Wennborg789acfb2012-06-01 16:27:21 +00006366 AU.setPreservesCFG();
6367 AU.addRequired<MachineDominatorTree>();
6368 MachineFunctionPass::getAnalysisUsage(AU);
6369 }
6370 };
6371}
6372
6373char LDTLSCleanup::ID = 0;
6374FunctionPass*
6375llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }