blob: 5eeea6452e3849bed8a7bca0647923ba8cf67f12 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000034 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000035 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000039 </ol>
40 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000043 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000044 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000050 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000052 </ol>
53 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000054 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000057 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000058 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000059 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000060 <li><a href="#t_floating">Floating Point Types</a></li>
61 <li><a href="#t_void">Void Type</a></li>
62 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000063 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 </ol>
65 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000066 <li><a href="#t_derived">Derived Types</a>
67 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000068 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000069 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000072 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000073 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000074 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000078 </ol>
79 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000080 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000081 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000086 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000087 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky49f89192009-04-04 07:22:01 +000088 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000089 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000090 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000091 <li><a href="#othervalues">Other Values</a>
92 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +000094 </ol>
95 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +000096 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
97 <ol>
98 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +000099 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
100 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000101 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
102 Global Variable</a></li>
103 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
104 Global Variable</a></li>
105 </ol>
106 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000107 <li><a href="#instref">Instruction Reference</a>
108 <ol>
109 <li><a href="#terminators">Terminator Instructions</a>
110 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000111 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
112 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000113 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000114 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000115 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000116 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000117 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000118 </ol>
119 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000120 <li><a href="#binaryops">Binary Operations</a>
121 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000122 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000123 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000124 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000125 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000127 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000128 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
129 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
130 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000131 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
132 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
133 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000136 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
137 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000138 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
139 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
140 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000141 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000143 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000146 <li><a href="#vectorops">Vector Operations</a>
147 <ol>
148 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
149 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
150 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000151 </ol>
152 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000153 <li><a href="#aggregateops">Aggregate Operations</a>
154 <ol>
155 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
156 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
157 </ol>
158 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000159 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000160 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </ol>
166 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000167 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000181 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000182 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000191 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000194 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000195 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000196 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </ol>
203 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000209 </ol>
210 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000220 </ol>
221 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 </ol>
233 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000235 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000240 </ol>
241 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000250 </ol>
251 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000276 <li><a href="#int_memorymarkers">Memory Use Markers</a>
277 <ol>
278 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
279 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
280 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
281 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
282 </ol>
283 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000284 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000285 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000286 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000287 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000288 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000289 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000290 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000291 '<tt>llvm.trap</tt>' Intrinsic</a></li>
292 <li><a href="#int_stackprotector">
293 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000294 <li><a href="#int_objectsize">
295 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000296 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000297 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000298 </ol>
299 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000300</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000301
302<div class="doc_author">
303 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
304 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000305</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000306
Chris Lattner2f7c9632001-06-06 20:29:01 +0000307<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000308<div class="doc_section"> <a name="abstract">Abstract </a></div>
309<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000310
Misha Brukman76307852003-11-08 01:05:38 +0000311<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000312
313<p>This document is a reference manual for the LLVM assembly language. LLVM is
314 a Static Single Assignment (SSA) based representation that provides type
315 safety, low-level operations, flexibility, and the capability of representing
316 'all' high-level languages cleanly. It is the common code representation
317 used throughout all phases of the LLVM compilation strategy.</p>
318
Misha Brukman76307852003-11-08 01:05:38 +0000319</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000320
Chris Lattner2f7c9632001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="introduction">Introduction</a> </div>
323<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000324
Misha Brukman76307852003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000327<p>The LLVM code representation is designed to be used in three different forms:
328 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
329 for fast loading by a Just-In-Time compiler), and as a human readable
330 assembly language representation. This allows LLVM to provide a powerful
331 intermediate representation for efficient compiler transformations and
332 analysis, while providing a natural means to debug and visualize the
333 transformations. The three different forms of LLVM are all equivalent. This
334 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000335
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000336<p>The LLVM representation aims to be light-weight and low-level while being
337 expressive, typed, and extensible at the same time. It aims to be a
338 "universal IR" of sorts, by being at a low enough level that high-level ideas
339 may be cleanly mapped to it (similar to how microprocessors are "universal
340 IR's", allowing many source languages to be mapped to them). By providing
341 type information, LLVM can be used as the target of optimizations: for
342 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000343 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000344 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000345
Misha Brukman76307852003-11-08 01:05:38 +0000346</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Chris Lattner2f7c9632001-06-06 20:29:01 +0000348<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000349<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000350
Misha Brukman76307852003-11-08 01:05:38 +0000351<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000352
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000353<p>It is important to note that this document describes 'well formed' LLVM
354 assembly language. There is a difference between what the parser accepts and
355 what is considered 'well formed'. For example, the following instruction is
356 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000357
Bill Wendling3716c5d2007-05-29 09:04:49 +0000358<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000359<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000360%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000361</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000362</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
Bill Wendling7f4a3362009-11-02 00:24:16 +0000364<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
365 LLVM infrastructure provides a verification pass that may be used to verify
366 that an LLVM module is well formed. This pass is automatically run by the
367 parser after parsing input assembly and by the optimizer before it outputs
368 bitcode. The violations pointed out by the verifier pass indicate bugs in
369 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000370
Bill Wendling3716c5d2007-05-29 09:04:49 +0000371</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000372
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000373<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000374
Chris Lattner2f7c9632001-06-06 20:29:01 +0000375<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000376<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000377<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000378
Misha Brukman76307852003-11-08 01:05:38 +0000379<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000380
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000381<p>LLVM identifiers come in two basic types: global and local. Global
382 identifiers (functions, global variables) begin with the <tt>'@'</tt>
383 character. Local identifiers (register names, types) begin with
384 the <tt>'%'</tt> character. Additionally, there are three different formats
385 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
Chris Lattner2f7c9632001-06-06 20:29:01 +0000387<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000388 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000389 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
390 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
391 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
392 other characters in their names can be surrounded with quotes. Special
393 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
394 ASCII code for the character in hexadecimal. In this way, any character
395 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000396
Reid Spencerb23b65f2007-08-07 14:34:28 +0000397 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000398 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000399
Reid Spencer8f08d802004-12-09 18:02:53 +0000400 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000401 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000402</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000403
Reid Spencerb23b65f2007-08-07 14:34:28 +0000404<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000405 don't need to worry about name clashes with reserved words, and the set of
406 reserved words may be expanded in the future without penalty. Additionally,
407 unnamed identifiers allow a compiler to quickly come up with a temporary
408 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
Chris Lattner48b383b02003-11-25 01:02:51 +0000410<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 languages. There are keywords for different opcodes
412 ('<tt><a href="#i_add">add</a></tt>',
413 '<tt><a href="#i_bitcast">bitcast</a></tt>',
414 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
415 ('<tt><a href="#t_void">void</a></tt>',
416 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
417 reserved words cannot conflict with variable names, because none of them
418 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000419
420<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000421 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Misha Brukman76307852003-11-08 01:05:38 +0000423<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000424
Bill Wendling3716c5d2007-05-29 09:04:49 +0000425<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000426<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000427%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000428</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000429</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000430
Misha Brukman76307852003-11-08 01:05:38 +0000431<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432
Bill Wendling3716c5d2007-05-29 09:04:49 +0000433<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000435%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000437</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Misha Brukman76307852003-11-08 01:05:38 +0000439<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440
Bill Wendling3716c5d2007-05-29 09:04:49 +0000441<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000442<pre>
Gabor Greifbd0328f2009-10-28 13:05:07 +0000443%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
444%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000445%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000447</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000449<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
450 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000451
Chris Lattner2f7c9632001-06-06 20:29:01 +0000452<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000453 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000454 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000455
456 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000457 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000458
Misha Brukman76307852003-11-08 01:05:38 +0000459 <li>Unnamed temporaries are numbered sequentially</li>
460</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461
Bill Wendling7f4a3362009-11-02 00:24:16 +0000462<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000463 demonstrating instructions, we will follow an instruction with a comment that
464 defines the type and name of value produced. Comments are shown in italic
465 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000466
Misha Brukman76307852003-11-08 01:05:38 +0000467</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000468
469<!-- *********************************************************************** -->
470<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
471<!-- *********************************************************************** -->
472
473<!-- ======================================================================= -->
474<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
475</div>
476
477<div class="doc_text">
478
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000479<p>LLVM programs are composed of "Module"s, each of which is a translation unit
480 of the input programs. Each module consists of functions, global variables,
481 and symbol table entries. Modules may be combined together with the LLVM
482 linker, which merges function (and global variable) definitions, resolves
483 forward declarations, and merges symbol table entries. Here is an example of
484 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000485
Bill Wendling3716c5d2007-05-29 09:04:49 +0000486<div class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +0000487<pre>
488<i>; Declare the string constant as a global constant.</i>
489<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000490
491<i>; External declaration of the puts function</i>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000492<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
494<i>; Definition of main function</i>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000495define i32 @main() { <i>; i32()* </i>
496 <i>; Convert [13 x i8]* to i8 *...</i>
497 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000498
Bill Wendling7f4a3362009-11-02 00:24:16 +0000499 <i>; Call puts function to write out the string to stdout.</i>
500 <a href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
501 <a href="#i_ret">ret</a> i32 0<br>}<br>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000502</pre>
503</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000504
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000505<p>This example is made up of a <a href="#globalvars">global variable</a> named
506 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
507 a <a href="#functionstructure">function definition</a> for
508 "<tt>main</tt>".</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000509
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000510<p>In general, a module is made up of a list of global values, where both
511 functions and global variables are global values. Global values are
512 represented by a pointer to a memory location (in this case, a pointer to an
513 array of char, and a pointer to a function), and have one of the
514 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Chris Lattnerd79749a2004-12-09 16:36:40 +0000516</div>
517
518<!-- ======================================================================= -->
519<div class="doc_subsection">
520 <a name="linkage">Linkage Types</a>
521</div>
522
523<div class="doc_text">
524
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000525<p>All Global Variables and Functions have one of the following types of
526 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
528<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000529 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000530 <dd>Global values with private linkage are only directly accessible by objects
531 in the current module. In particular, linking code into a module with an
532 private global value may cause the private to be renamed as necessary to
533 avoid collisions. Because the symbol is private to the module, all
534 references can be updated. This doesn't show up in any symbol table in the
535 object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000536
Bill Wendling7f4a3362009-11-02 00:24:16 +0000537 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000538 <dd>Similar to private, but the symbol is passed through the assembler and
Chris Lattnere7f064e2009-08-24 04:32:16 +0000539 removed by the linker after evaluation. Note that (unlike private
540 symbols) linker_private symbols are subject to coalescing by the linker:
541 weak symbols get merged and redefinitions are rejected. However, unlike
542 normal strong symbols, they are removed by the linker from the final
543 linked image (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000544
Bill Wendling7f4a3362009-11-02 00:24:16 +0000545 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000546 <dd>Similar to private, but the value shows as a local symbol
547 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
548 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000549
Bill Wendling7f4a3362009-11-02 00:24:16 +0000550 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000551 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000552 into the object file corresponding to the LLVM module. They exist to
553 allow inlining and other optimizations to take place given knowledge of
554 the definition of the global, which is known to be somewhere outside the
555 module. Globals with <tt>available_externally</tt> linkage are allowed to
556 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
557 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000558
Bill Wendling7f4a3362009-11-02 00:24:16 +0000559 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000560 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000561 the same name when linkage occurs. This is typically used to implement
562 inline functions, templates, or other code which must be generated in each
563 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
564 allowed to be discarded.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000565
Bill Wendling7f4a3362009-11-02 00:24:16 +0000566 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000567 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
568 <tt>linkonce</tt> linkage, except that unreferenced globals with
569 <tt>weak</tt> linkage may not be discarded. This is used for globals that
570 are declared "weak" in C source code.</dd>
571
Bill Wendling7f4a3362009-11-02 00:24:16 +0000572 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000573 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
574 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
575 global scope.
576 Symbols with "<tt>common</tt>" linkage are merged in the same way as
577 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000578 <tt>common</tt> symbols may not have an explicit section,
579 must have a zero initializer, and may not be marked '<a
580 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
581 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000582
Chris Lattnerd79749a2004-12-09 16:36:40 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000585 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000586 pointer to array type. When two global variables with appending linkage
587 are linked together, the two global arrays are appended together. This is
588 the LLVM, typesafe, equivalent of having the system linker append together
589 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000590
Bill Wendling7f4a3362009-11-02 00:24:16 +0000591 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000592 <dd>The semantics of this linkage follow the ELF object file model: the symbol
593 is weak until linked, if not linked, the symbol becomes null instead of
594 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000595
Bill Wendling7f4a3362009-11-02 00:24:16 +0000596 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
597 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000598 <dd>Some languages allow differing globals to be merged, such as two functions
599 with different semantics. Other languages, such as <tt>C++</tt>, ensure
600 that only equivalent globals are ever merged (the "one definition rule" -
601 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
602 and <tt>weak_odr</tt> linkage types to indicate that the global will only
603 be merged with equivalent globals. These linkage types are otherwise the
604 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000605
Chris Lattner6af02f32004-12-09 16:11:40 +0000606 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000607 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000608 visible, meaning that it participates in linkage and can be used to
609 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000610</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000611
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000612<p>The next two types of linkage are targeted for Microsoft Windows platform
613 only. They are designed to support importing (exporting) symbols from (to)
614 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000615
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000616<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000617 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000618 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000619 or variable via a global pointer to a pointer that is set up by the DLL
620 exporting the symbol. On Microsoft Windows targets, the pointer name is
621 formed by combining <code>__imp_</code> and the function or variable
622 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000623
Bill Wendling7f4a3362009-11-02 00:24:16 +0000624 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000625 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000626 pointer to a pointer in a DLL, so that it can be referenced with the
627 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
628 name is formed by combining <code>__imp_</code> and the function or
629 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000630</dl>
631
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000632<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
633 another module defined a "<tt>.LC0</tt>" variable and was linked with this
634 one, one of the two would be renamed, preventing a collision. Since
635 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
636 declarations), they are accessible outside of the current module.</p>
637
638<p>It is illegal for a function <i>declaration</i> to have any linkage type
639 other than "externally visible", <tt>dllimport</tt>
640 or <tt>extern_weak</tt>.</p>
641
Duncan Sands12da8ce2009-03-07 15:45:40 +0000642<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000643 or <tt>weak_odr</tt> linkages.</p>
644
Chris Lattner6af02f32004-12-09 16:11:40 +0000645</div>
646
647<!-- ======================================================================= -->
648<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000649 <a name="callingconv">Calling Conventions</a>
650</div>
651
652<div class="doc_text">
653
654<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000655 and <a href="#i_invoke">invokes</a> can all have an optional calling
656 convention specified for the call. The calling convention of any pair of
657 dynamic caller/callee must match, or the behavior of the program is
658 undefined. The following calling conventions are supported by LLVM, and more
659 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000660
661<dl>
662 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000663 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664 specified) matches the target C calling conventions. This calling
665 convention supports varargs function calls and tolerates some mismatch in
666 the declared prototype and implemented declaration of the function (as
667 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000668
669 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000670 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000671 (e.g. by passing things in registers). This calling convention allows the
672 target to use whatever tricks it wants to produce fast code for the
673 target, without having to conform to an externally specified ABI
674 (Application Binary Interface). Implementations of this convention should
675 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
676 optimization</a> to be supported. This calling convention does not
677 support varargs and requires the prototype of all callees to exactly match
678 the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000679
680 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000682 as possible under the assumption that the call is not commonly executed.
683 As such, these calls often preserve all registers so that the call does
684 not break any live ranges in the caller side. This calling convention
685 does not support varargs and requires the prototype of all callees to
686 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000687
Chris Lattner573f64e2005-05-07 01:46:40 +0000688 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000689 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000690 target-specific calling conventions to be used. Target specific calling
691 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000692</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000693
694<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000695 support Pascal conventions or any other well-known target-independent
696 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000697
698</div>
699
700<!-- ======================================================================= -->
701<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000702 <a name="visibility">Visibility Styles</a>
703</div>
704
705<div class="doc_text">
706
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000707<p>All Global Variables and Functions have one of the following visibility
708 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000709
710<dl>
711 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000712 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000713 that the declaration is visible to other modules and, in shared libraries,
714 means that the declared entity may be overridden. On Darwin, default
715 visibility means that the declaration is visible to other modules. Default
716 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000717
718 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000719 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000720 object if they are in the same shared object. Usually, hidden visibility
721 indicates that the symbol will not be placed into the dynamic symbol
722 table, so no other module (executable or shared library) can reference it
723 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000724
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000725 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000726 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000727 the dynamic symbol table, but that references within the defining module
728 will bind to the local symbol. That is, the symbol cannot be overridden by
729 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000730</dl>
731
732</div>
733
734<!-- ======================================================================= -->
735<div class="doc_subsection">
Chris Lattnerbc088212009-01-11 20:53:49 +0000736 <a name="namedtypes">Named Types</a>
737</div>
738
739<div class="doc_text">
740
741<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 it easier to read the IR and make the IR more condensed (particularly when
743 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000744
745<div class="doc_code">
746<pre>
747%mytype = type { %mytype*, i32 }
748</pre>
749</div>
750
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000751<p>You may give a name to any <a href="#typesystem">type</a> except
752 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
753 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000754
755<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000756 and that you can therefore specify multiple names for the same type. This
757 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
758 uses structural typing, the name is not part of the type. When printing out
759 LLVM IR, the printer will pick <em>one name</em> to render all types of a
760 particular shape. This means that if you have code where two different
761 source types end up having the same LLVM type, that the dumper will sometimes
762 print the "wrong" or unexpected type. This is an important design point and
763 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000764
765</div>
766
Chris Lattnerbc088212009-01-11 20:53:49 +0000767<!-- ======================================================================= -->
768<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000769 <a name="globalvars">Global Variables</a>
770</div>
771
772<div class="doc_text">
773
Chris Lattner5d5aede2005-02-12 19:30:21 +0000774<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000775 instead of run-time. Global variables may optionally be initialized, may
776 have an explicit section to be placed in, and may have an optional explicit
777 alignment specified. A variable may be defined as "thread_local", which
778 means that it will not be shared by threads (each thread will have a
779 separated copy of the variable). A variable may be defined as a global
780 "constant," which indicates that the contents of the variable
781 will <b>never</b> be modified (enabling better optimization, allowing the
782 global data to be placed in the read-only section of an executable, etc).
783 Note that variables that need runtime initialization cannot be marked
784 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000785
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000786<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
787 constant, even if the final definition of the global is not. This capability
788 can be used to enable slightly better optimization of the program, but
789 requires the language definition to guarantee that optimizations based on the
790 'constantness' are valid for the translation units that do not include the
791 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000792
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000793<p>As SSA values, global variables define pointer values that are in scope
794 (i.e. they dominate) all basic blocks in the program. Global variables
795 always define a pointer to their "content" type because they describe a
796 region of memory, and all memory objects in LLVM are accessed through
797 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000798
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000799<p>A global variable may be declared to reside in a target-specific numbered
800 address space. For targets that support them, address spaces may affect how
801 optimizations are performed and/or what target instructions are used to
802 access the variable. The default address space is zero. The address space
803 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000804
Chris Lattner662c8722005-11-12 00:45:07 +0000805<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000807
Chris Lattner54611b42005-11-06 08:02:57 +0000808<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000809 the alignment is set to zero, the alignment of the global is set by the
810 target to whatever it feels convenient. If an explicit alignment is
811 specified, the global is forced to have at least that much alignment. All
812 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000813
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000814<p>For example, the following defines a global in a numbered address space with
815 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000816
Bill Wendling3716c5d2007-05-29 09:04:49 +0000817<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000818<pre>
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000819@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000820</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000821</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000822
Chris Lattner6af02f32004-12-09 16:11:40 +0000823</div>
824
825
826<!-- ======================================================================= -->
827<div class="doc_subsection">
828 <a name="functionstructure">Functions</a>
829</div>
830
831<div class="doc_text">
832
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000833<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
834 optional <a href="#linkage">linkage type</a>, an optional
835 <a href="#visibility">visibility style</a>, an optional
836 <a href="#callingconv">calling convention</a>, a return type, an optional
837 <a href="#paramattrs">parameter attribute</a> for the return type, a function
838 name, a (possibly empty) argument list (each with optional
839 <a href="#paramattrs">parameter attributes</a>), optional
840 <a href="#fnattrs">function attributes</a>, an optional section, an optional
841 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
842 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000843
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000844<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
845 optional <a href="#linkage">linkage type</a>, an optional
846 <a href="#visibility">visibility style</a>, an optional
847 <a href="#callingconv">calling convention</a>, a return type, an optional
848 <a href="#paramattrs">parameter attribute</a> for the return type, a function
849 name, a possibly empty list of arguments, an optional alignment, and an
850 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000851
Chris Lattner67c37d12008-08-05 18:29:16 +0000852<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000853 (Control Flow Graph) for the function. Each basic block may optionally start
854 with a label (giving the basic block a symbol table entry), contains a list
855 of instructions, and ends with a <a href="#terminators">terminator</a>
856 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000857
Chris Lattnera59fb102007-06-08 16:52:14 +0000858<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000859 executed on entrance to the function, and it is not allowed to have
860 predecessor basic blocks (i.e. there can not be any branches to the entry
861 block of a function). Because the block can have no predecessors, it also
862 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000863
Chris Lattner662c8722005-11-12 00:45:07 +0000864<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000865 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000866
Chris Lattner54611b42005-11-06 08:02:57 +0000867<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000868 the alignment is set to zero, the alignment of the function is set by the
869 target to whatever it feels convenient. If an explicit alignment is
870 specified, the function is forced to have at least that much alignment. All
871 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000872
Bill Wendling30235112009-07-20 02:39:26 +0000873<h5>Syntax:</h5>
Devang Patel02256232008-10-07 17:48:33 +0000874<div class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000875<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +0000876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</pre>
Devang Patel02256232008-10-07 17:48:33 +0000882</div>
883
Chris Lattner6af02f32004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000886<!-- ======================================================================= -->
887<div class="doc_subsection">
888 <a name="aliasstructure">Aliases</a>
889</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000890
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000891<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000892
893<p>Aliases act as "second name" for the aliasee value (which can be either
894 function, global variable, another alias or bitcast of global value). Aliases
895 may have an optional <a href="#linkage">linkage type</a>, and an
896 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000897
Bill Wendling30235112009-07-20 02:39:26 +0000898<h5>Syntax:</h5>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000900<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000902</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000903</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000904
905</div>
906
Chris Lattner91c15c42006-01-23 23:23:47 +0000907<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000908<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000909
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000910<div class="doc_text">
911
912<p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
918
919<p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
921 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000922
923<div class="doc_code">
924<pre>
Nick Lewyckydac78d82009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000928</pre>
929</div>
930
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000931<p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000933
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000934<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000935
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000936<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000937 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be zero-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000941
Bill Wendling7f4a3362009-11-02 00:24:16 +0000942 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000943 <dd>This indicates to the code generator that the parameter or return value
944 should be sign-extended to a 32-bit value by the caller (for a parameter)
945 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000946
Bill Wendling7f4a3362009-11-02 00:24:16 +0000947 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000948 <dd>This indicates that this parameter or return value should be treated in a
949 special target-dependent fashion during while emitting code for a function
950 call or return (usually, by putting it in a register as opposed to memory,
951 though some targets use it to distinguish between two different kinds of
952 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000953
Bill Wendling7f4a3362009-11-02 00:24:16 +0000954 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000955 <dd>This indicates that the pointer parameter should really be passed by value
956 to the function. The attribute implies that a hidden copy of the pointee
957 is made between the caller and the callee, so the callee is unable to
958 modify the value in the callee. This attribute is only valid on LLVM
959 pointer arguments. It is generally used to pass structs and arrays by
960 value, but is also valid on pointers to scalars. The copy is considered
961 to belong to the caller not the callee (for example,
962 <tt><a href="#readonly">readonly</a></tt> functions should not write to
963 <tt>byval</tt> parameters). This is not a valid attribute for return
964 values. The byval attribute also supports specifying an alignment with
965 the align attribute. This has a target-specific effect on the code
966 generator that usually indicates a desired alignment for the synthesized
967 stack slot.</dd>
968
Bill Wendling7f4a3362009-11-02 00:24:16 +0000969 <dt><tt><b>sret</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000970 <dd>This indicates that the pointer parameter specifies the address of a
971 structure that is the return value of the function in the source program.
972 This pointer must be guaranteed by the caller to be valid: loads and
973 stores to the structure may be assumed by the callee to not to trap. This
974 may only be applied to the first parameter. This is not a valid attribute
975 for return values. </dd>
976
Bill Wendling7f4a3362009-11-02 00:24:16 +0000977 <dt><tt><b>noalias</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000978 <dd>This indicates that the pointer does not alias any global or any other
979 parameter. The caller is responsible for ensuring that this is the
980 case. On a function return value, <tt>noalias</tt> additionally indicates
981 that the pointer does not alias any other pointers visible to the
982 caller. For further details, please see the discussion of the NoAlias
983 response in
984 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
985 analysis</a>.</dd>
986
Bill Wendling7f4a3362009-11-02 00:24:16 +0000987 <dt><tt><b>nocapture</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000988 <dd>This indicates that the callee does not make any copies of the pointer
989 that outlive the callee itself. This is not a valid attribute for return
990 values.</dd>
991
Bill Wendling7f4a3362009-11-02 00:24:16 +0000992 <dt><tt><b>nest</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000993 <dd>This indicates that the pointer parameter can be excised using the
994 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
995 attribute for return values.</dd>
996</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000997
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000998</div>
999
1000<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +00001001<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001002 <a name="gc">Garbage Collector Names</a>
1003</div>
1004
1005<div class="doc_text">
Gordon Henriksen71183b62007-12-10 03:18:06 +00001006
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001007<p>Each function may specify a garbage collector name, which is simply a
1008 string:</p>
1009
1010<div class="doc_code">
1011<pre>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001012define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001013</pre>
1014</div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001015
1016<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017 collector which will cause the compiler to alter its output in order to
1018 support the named garbage collection algorithm.</p>
1019
Gordon Henriksen71183b62007-12-10 03:18:06 +00001020</div>
1021
1022<!-- ======================================================================= -->
1023<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +00001024 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +00001025</div>
1026
1027<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +00001028
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001029<p>Function attributes are set to communicate additional information about a
1030 function. Function attributes are considered to be part of the function, not
1031 of the function type, so functions with different parameter attributes can
1032 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001033
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001034<p>Function attributes are simple keywords that follow the type specified. If
1035 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001036
1037<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001038<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +00001039define void @f() noinline { ... }
1040define void @f() alwaysinline { ... }
1041define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001042define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001043</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001044</div>
1045
Bill Wendlingb175fa42008-09-07 10:26:33 +00001046<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001047 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001048 <dd>This attribute indicates that the inliner should attempt to inline this
1049 function into callers whenever possible, ignoring any active inlining size
1050 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001051
Bill Wendling7f4a3362009-11-02 00:24:16 +00001052 <dt><tt><b>inlinehint</b></tt></dt>
Dale Johannesen2aaf5392009-08-26 01:08:21 +00001053 <dd>This attribute indicates that the source code contained a hint that inlining
1054 this function is desirable (such as the "inline" keyword in C/C++). It
1055 is just a hint; it imposes no requirements on the inliner.</dd>
1056
Bill Wendling7f4a3362009-11-02 00:24:16 +00001057 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001058 <dd>This attribute indicates that the inliner should never inline this
1059 function in any situation. This attribute may not be used together with
1060 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001061
Bill Wendling7f4a3362009-11-02 00:24:16 +00001062 <dt><tt><b>optsize</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001063 <dd>This attribute suggests that optimization passes and code generator passes
1064 make choices that keep the code size of this function low, and otherwise
1065 do optimizations specifically to reduce code size.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001066
Bill Wendling7f4a3362009-11-02 00:24:16 +00001067 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001068 <dd>This function attribute indicates that the function never returns
1069 normally. This produces undefined behavior at runtime if the function
1070 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001071
Bill Wendling7f4a3362009-11-02 00:24:16 +00001072 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001073 <dd>This function attribute indicates that the function never returns with an
1074 unwind or exceptional control flow. If the function does unwind, its
1075 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001076
Bill Wendling7f4a3362009-11-02 00:24:16 +00001077 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001078 <dd>This attribute indicates that the function computes its result (or decides
1079 to unwind an exception) based strictly on its arguments, without
1080 dereferencing any pointer arguments or otherwise accessing any mutable
1081 state (e.g. memory, control registers, etc) visible to caller functions.
1082 It does not write through any pointer arguments
1083 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1084 changes any state visible to callers. This means that it cannot unwind
1085 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1086 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001087
Bill Wendling7f4a3362009-11-02 00:24:16 +00001088 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089 <dd>This attribute indicates that the function does not write through any
1090 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1091 arguments) or otherwise modify any state (e.g. memory, control registers,
1092 etc) visible to caller functions. It may dereference pointer arguments
1093 and read state that may be set in the caller. A readonly function always
1094 returns the same value (or unwinds an exception identically) when called
1095 with the same set of arguments and global state. It cannot unwind an
1096 exception by calling the <tt>C++</tt> exception throwing methods, but may
1097 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001098
Bill Wendling7f4a3362009-11-02 00:24:16 +00001099 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001100 <dd>This attribute indicates that the function should emit a stack smashing
1101 protector. It is in the form of a "canary"&mdash;a random value placed on
1102 the stack before the local variables that's checked upon return from the
1103 function to see if it has been overwritten. A heuristic is used to
1104 determine if a function needs stack protectors or not.<br>
1105<br>
1106 If a function that has an <tt>ssp</tt> attribute is inlined into a
1107 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1108 function will have an <tt>ssp</tt> attribute.</dd>
1109
Bill Wendling7f4a3362009-11-02 00:24:16 +00001110 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001111 <dd>This attribute indicates that the function should <em>always</em> emit a
1112 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001113 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1114<br>
1115 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1116 function that doesn't have an <tt>sspreq</tt> attribute or which has
1117 an <tt>ssp</tt> attribute, then the resulting function will have
1118 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001119
Bill Wendling7f4a3362009-11-02 00:24:16 +00001120 <dt><tt><b>noredzone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001121 <dd>This attribute indicates that the code generator should not use a red
1122 zone, even if the target-specific ABI normally permits it.</dd>
1123
Bill Wendling7f4a3362009-11-02 00:24:16 +00001124 <dt><tt><b>noimplicitfloat</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001125 <dd>This attributes disables implicit floating point instructions.</dd>
1126
Bill Wendling7f4a3362009-11-02 00:24:16 +00001127 <dt><tt><b>naked</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001128 <dd>This attribute disables prologue / epilogue emission for the function.
1129 This can have very system-specific consequences.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001130</dl>
1131
Devang Patelcaacdba2008-09-04 23:05:13 +00001132</div>
1133
1134<!-- ======================================================================= -->
1135<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +00001136 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +00001137</div>
1138
1139<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001140
1141<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1142 the GCC "file scope inline asm" blocks. These blocks are internally
1143 concatenated by LLVM and treated as a single unit, but may be separated in
1144 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001145
Bill Wendling3716c5d2007-05-29 09:04:49 +00001146<div class="doc_code">
1147<pre>
1148module asm "inline asm code goes here"
1149module asm "more can go here"
1150</pre>
1151</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001152
1153<p>The strings can contain any character by escaping non-printable characters.
1154 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001155 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001156
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001157<p>The inline asm code is simply printed to the machine code .s file when
1158 assembly code is generated.</p>
1159
Chris Lattner91c15c42006-01-23 23:23:47 +00001160</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001161
Reid Spencer50c723a2007-02-19 23:54:10 +00001162<!-- ======================================================================= -->
1163<div class="doc_subsection">
1164 <a name="datalayout">Data Layout</a>
1165</div>
1166
1167<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001168
Reid Spencer50c723a2007-02-19 23:54:10 +00001169<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001170 data is to be laid out in memory. The syntax for the data layout is
1171 simply:</p>
1172
1173<div class="doc_code">
1174<pre>
1175target datalayout = "<i>layout specification</i>"
1176</pre>
1177</div>
1178
1179<p>The <i>layout specification</i> consists of a list of specifications
1180 separated by the minus sign character ('-'). Each specification starts with
1181 a letter and may include other information after the letter to define some
1182 aspect of the data layout. The specifications accepted are as follows:</p>
1183
Reid Spencer50c723a2007-02-19 23:54:10 +00001184<dl>
1185 <dt><tt>E</tt></dt>
1186 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001187 bits with the most significance have the lowest address location.</dd>
1188
Reid Spencer50c723a2007-02-19 23:54:10 +00001189 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001190 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001191 the bits with the least significance have the lowest address
1192 location.</dd>
1193
Reid Spencer50c723a2007-02-19 23:54:10 +00001194 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1195 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001196 <i>preferred</i> alignments. All sizes are in bits. Specifying
1197 the <i>pref</i> alignment is optional. If omitted, the
1198 preceding <tt>:</tt> should be omitted too.</dd>
1199
Reid Spencer50c723a2007-02-19 23:54:10 +00001200 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1201 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001202 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1203
Reid Spencer50c723a2007-02-19 23:54:10 +00001204 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1205 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001206 <i>size</i>.</dd>
1207
Reid Spencer50c723a2007-02-19 23:54:10 +00001208 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1209 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001210 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1211 (double).</dd>
1212
Reid Spencer50c723a2007-02-19 23:54:10 +00001213 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1214 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001215 <i>size</i>.</dd>
1216
Daniel Dunbar7921a592009-06-08 22:17:53 +00001217 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1218 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001219 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001220
1221 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1222 <dd>This specifies a set of native integer widths for the target CPU
1223 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1224 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
1225 this set are considered to support most general arithmetic
1226 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001227</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001228
Reid Spencer50c723a2007-02-19 23:54:10 +00001229<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001230 default set of specifications which are then (possibly) overriden by the
1231 specifications in the <tt>datalayout</tt> keyword. The default specifications
1232 are given in this list:</p>
1233
Reid Spencer50c723a2007-02-19 23:54:10 +00001234<ul>
1235 <li><tt>E</tt> - big endian</li>
1236 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1237 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1238 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1239 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1240 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001241 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001242 alignment of 64-bits</li>
1243 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1244 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1245 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1246 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1247 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001248 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001249</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001250
1251<p>When LLVM is determining the alignment for a given type, it uses the
1252 following rules:</p>
1253
Reid Spencer50c723a2007-02-19 23:54:10 +00001254<ol>
1255 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001256 specification is used.</li>
1257
Reid Spencer50c723a2007-02-19 23:54:10 +00001258 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001259 smallest integer type that is larger than the bitwidth of the sought type
1260 is used. If none of the specifications are larger than the bitwidth then
1261 the the largest integer type is used. For example, given the default
1262 specifications above, the i7 type will use the alignment of i8 (next
1263 largest) while both i65 and i256 will use the alignment of i64 (largest
1264 specified).</li>
1265
Reid Spencer50c723a2007-02-19 23:54:10 +00001266 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001267 largest vector type that is smaller than the sought vector type will be
1268 used as a fall back. This happens because &lt;128 x double&gt; can be
1269 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001270</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001271
Reid Spencer50c723a2007-02-19 23:54:10 +00001272</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001273
Dan Gohman6154a012009-07-27 18:07:55 +00001274<!-- ======================================================================= -->
1275<div class="doc_subsection">
1276 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1277</div>
1278
1279<div class="doc_text">
1280
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001281<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001282with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001283is undefined. Pointer values are associated with address ranges
1284according to the following rules:</p>
1285
1286<ul>
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001287 <li>A pointer value formed from a
1288 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1289 is associated with the addresses associated with the first operand
1290 of the <tt>getelementptr</tt>.</li>
1291 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001292 range of the variable's storage.</li>
1293 <li>The result value of an allocation instruction is associated with
1294 the address range of the allocated storage.</li>
1295 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001296 no address.</li>
1297 <li>A pointer value formed by an
1298 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1299 address ranges of all pointer values that contribute (directly or
1300 indirectly) to the computation of the pointer's value.</li>
1301 <li>The result value of a
1302 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman6154a012009-07-27 18:07:55 +00001303 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1304 <li>An integer constant other than zero or a pointer value returned
1305 from a function not defined within LLVM may be associated with address
1306 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001307 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001308 allocated by mechanisms provided by LLVM.</li>
1309 </ul>
1310
1311<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001312<tt><a href="#i_load">load</a></tt> merely indicates the size and
1313alignment of the memory from which to load, as well as the
1314interpretation of the value. The first operand of a
1315<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1316and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001317
1318<p>Consequently, type-based alias analysis, aka TBAA, aka
1319<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1320LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1321additional information which specialized optimization passes may use
1322to implement type-based alias analysis.</p>
1323
1324</div>
1325
Chris Lattner2f7c9632001-06-06 20:29:01 +00001326<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001327<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1328<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001329
Misha Brukman76307852003-11-08 01:05:38 +00001330<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001331
Misha Brukman76307852003-11-08 01:05:38 +00001332<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001333 intermediate representation. Being typed enables a number of optimizations
1334 to be performed on the intermediate representation directly, without having
1335 to do extra analyses on the side before the transformation. A strong type
1336 system makes it easier to read the generated code and enables novel analyses
1337 and transformations that are not feasible to perform on normal three address
1338 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001339
1340</div>
1341
Chris Lattner2f7c9632001-06-06 20:29:01 +00001342<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001343<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001344Classifications</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001345
Misha Brukman76307852003-11-08 01:05:38 +00001346<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001347
1348<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001349
1350<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001351 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001352 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001353 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001354 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001355 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001356 </tr>
1357 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001358 <td><a href="#t_floating">floating point</a></td>
1359 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001360 </tr>
1361 <tr>
1362 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001363 <td><a href="#t_integer">integer</a>,
1364 <a href="#t_floating">floating point</a>,
1365 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001366 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001367 <a href="#t_struct">structure</a>,
1368 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001369 <a href="#t_label">label</a>,
1370 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001371 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001372 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001373 <tr>
1374 <td><a href="#t_primitive">primitive</a></td>
1375 <td><a href="#t_label">label</a>,
1376 <a href="#t_void">void</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001377 <a href="#t_floating">floating point</a>,
1378 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001379 </tr>
1380 <tr>
1381 <td><a href="#t_derived">derived</a></td>
1382 <td><a href="#t_integer">integer</a>,
1383 <a href="#t_array">array</a>,
1384 <a href="#t_function">function</a>,
1385 <a href="#t_pointer">pointer</a>,
1386 <a href="#t_struct">structure</a>,
1387 <a href="#t_pstruct">packed structure</a>,
1388 <a href="#t_vector">vector</a>,
1389 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001390 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001391 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001392 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001393</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001394
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001395<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1396 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001397 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001398
Misha Brukman76307852003-11-08 01:05:38 +00001399</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001400
Chris Lattner2f7c9632001-06-06 20:29:01 +00001401<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001402<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001403
Chris Lattner7824d182008-01-04 04:32:38 +00001404<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001405
Chris Lattner7824d182008-01-04 04:32:38 +00001406<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001407 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001408
Chris Lattner43542b32008-01-04 04:34:14 +00001409</div>
1410
Chris Lattner7824d182008-01-04 04:32:38 +00001411<!-- _______________________________________________________________________ -->
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001412<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1413
1414<div class="doc_text">
1415
1416<h5>Overview:</h5>
1417<p>The integer type is a very simple type that simply specifies an arbitrary
1418 bit width for the integer type desired. Any bit width from 1 bit to
1419 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1420
1421<h5>Syntax:</h5>
1422<pre>
1423 iN
1424</pre>
1425
1426<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1427 value.</p>
1428
1429<h5>Examples:</h5>
1430<table class="layout">
1431 <tr class="layout">
1432 <td class="left"><tt>i1</tt></td>
1433 <td class="left">a single-bit integer.</td>
1434 </tr>
1435 <tr class="layout">
1436 <td class="left"><tt>i32</tt></td>
1437 <td class="left">a 32-bit integer.</td>
1438 </tr>
1439 <tr class="layout">
1440 <td class="left"><tt>i1942652</tt></td>
1441 <td class="left">a really big integer of over 1 million bits.</td>
1442 </tr>
1443</table>
1444
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001445</div>
1446
1447<!-- _______________________________________________________________________ -->
Chris Lattner7824d182008-01-04 04:32:38 +00001448<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1449
1450<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001451
1452<table>
1453 <tbody>
1454 <tr><th>Type</th><th>Description</th></tr>
1455 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1456 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1457 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1458 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1459 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1460 </tbody>
1461</table>
1462
Chris Lattner7824d182008-01-04 04:32:38 +00001463</div>
1464
1465<!-- _______________________________________________________________________ -->
1466<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1467
1468<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001469
Chris Lattner7824d182008-01-04 04:32:38 +00001470<h5>Overview:</h5>
1471<p>The void type does not represent any value and has no size.</p>
1472
1473<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001474<pre>
1475 void
1476</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001477
Chris Lattner7824d182008-01-04 04:32:38 +00001478</div>
1479
1480<!-- _______________________________________________________________________ -->
1481<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1482
1483<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001484
Chris Lattner7824d182008-01-04 04:32:38 +00001485<h5>Overview:</h5>
1486<p>The label type represents code labels.</p>
1487
1488<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001489<pre>
1490 label
1491</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001492
Chris Lattner7824d182008-01-04 04:32:38 +00001493</div>
1494
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001495<!-- _______________________________________________________________________ -->
1496<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1497
1498<div class="doc_text">
Bill Wendling30235112009-07-20 02:39:26 +00001499
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001500<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001501<p>The metadata type represents embedded metadata. No derived types may be
1502 created from metadata except for <a href="#t_function">function</a>
1503 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001504
1505<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001506<pre>
1507 metadata
1508</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001509
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001510</div>
1511
Chris Lattner7824d182008-01-04 04:32:38 +00001512
1513<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001514<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001515
Misha Brukman76307852003-11-08 01:05:38 +00001516<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001517
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001518<p>The real power in LLVM comes from the derived types in the system. This is
1519 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001520 useful types. Each of these types contain one or more element types which
1521 may be a primitive type, or another derived type. For example, it is
1522 possible to have a two dimensional array, using an array as the element type
1523 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001524
Bill Wendling3716c5d2007-05-29 09:04:49 +00001525</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001526
1527<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001528<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001529
Misha Brukman76307852003-11-08 01:05:38 +00001530<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001531
Chris Lattner2f7c9632001-06-06 20:29:01 +00001532<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001533<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001534 sequentially in memory. The array type requires a size (number of elements)
1535 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001536
Chris Lattner590645f2002-04-14 06:13:44 +00001537<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001538<pre>
1539 [&lt;# elements&gt; x &lt;elementtype&gt;]
1540</pre>
1541
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001542<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1543 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001544
Chris Lattner590645f2002-04-14 06:13:44 +00001545<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001546<table class="layout">
1547 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001548 <td class="left"><tt>[40 x i32]</tt></td>
1549 <td class="left">Array of 40 32-bit integer values.</td>
1550 </tr>
1551 <tr class="layout">
1552 <td class="left"><tt>[41 x i32]</tt></td>
1553 <td class="left">Array of 41 32-bit integer values.</td>
1554 </tr>
1555 <tr class="layout">
1556 <td class="left"><tt>[4 x i8]</tt></td>
1557 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001558 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001559</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001560<p>Here are some examples of multidimensional arrays:</p>
1561<table class="layout">
1562 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001563 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1564 <td class="left">3x4 array of 32-bit integer values.</td>
1565 </tr>
1566 <tr class="layout">
1567 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1568 <td class="left">12x10 array of single precision floating point values.</td>
1569 </tr>
1570 <tr class="layout">
1571 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1572 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001573 </tr>
1574</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001575
Dan Gohmanc74bc282009-11-09 19:01:53 +00001576<p>There is no restriction on indexing beyond the end of the array implied by
1577 a static type (though there are restrictions on indexing beyond the bounds
1578 of an allocated object in some cases). This means that single-dimension
1579 'variable sized array' addressing can be implemented in LLVM with a zero
1580 length array type. An implementation of 'pascal style arrays' in LLVM could
1581 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001582
Misha Brukman76307852003-11-08 01:05:38 +00001583</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001584
Chris Lattner2f7c9632001-06-06 20:29:01 +00001585<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001586<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001587
Misha Brukman76307852003-11-08 01:05:38 +00001588<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001589
Chris Lattner2f7c9632001-06-06 20:29:01 +00001590<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001591<p>The function type can be thought of as a function signature. It consists of
1592 a return type and a list of formal parameter types. The return type of a
1593 function type is a scalar type, a void type, or a struct type. If the return
1594 type is a struct type then all struct elements must be of first class types,
1595 and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001596
Chris Lattner2f7c9632001-06-06 20:29:01 +00001597<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001598<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001599 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001600</pre>
1601
John Criswell4c0cf7f2005-10-24 16:17:18 +00001602<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001603 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1604 which indicates that the function takes a variable number of arguments.
1605 Variable argument functions can access their arguments with
1606 the <a href="#int_varargs">variable argument handling intrinsic</a>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001607 functions. '<tt>&lt;returntype&gt;</tt>' is a any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001608 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001609
Chris Lattner2f7c9632001-06-06 20:29:01 +00001610<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001611<table class="layout">
1612 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001613 <td class="left"><tt>i32 (i32)</tt></td>
1614 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001615 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001616 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001617 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001618 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001619 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1620 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001621 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001622 <tt>float</tt>.
1623 </td>
1624 </tr><tr class="layout">
1625 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1626 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001627 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001628 which returns an integer. This is the signature for <tt>printf</tt> in
1629 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001630 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001631 </tr><tr class="layout">
1632 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001633 <td class="left">A function taking an <tt>i32</tt>, returning a
1634 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001635 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001636 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001637</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001638
Misha Brukman76307852003-11-08 01:05:38 +00001639</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001640
Chris Lattner2f7c9632001-06-06 20:29:01 +00001641<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001642<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001643
Misha Brukman76307852003-11-08 01:05:38 +00001644<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001645
Chris Lattner2f7c9632001-06-06 20:29:01 +00001646<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001647<p>The structure type is used to represent a collection of data members together
1648 in memory. The packing of the field types is defined to match the ABI of the
1649 underlying processor. The elements of a structure may be any type that has a
1650 size.</p>
1651
1652<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1653 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1654 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1655
Chris Lattner2f7c9632001-06-06 20:29:01 +00001656<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001657<pre>
1658 { &lt;type list&gt; }
1659</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001660
Chris Lattner2f7c9632001-06-06 20:29:01 +00001661<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001662<table class="layout">
1663 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001664 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1665 <td class="left">A triple of three <tt>i32</tt> values</td>
1666 </tr><tr class="layout">
1667 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1668 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1669 second element is a <a href="#t_pointer">pointer</a> to a
1670 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1671 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001672 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001673</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001674
Misha Brukman76307852003-11-08 01:05:38 +00001675</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001676
Chris Lattner2f7c9632001-06-06 20:29:01 +00001677<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001678<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1679</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001680
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001681<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001682
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001683<h5>Overview:</h5>
1684<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001685 together in memory. There is no padding between fields. Further, the
1686 alignment of a packed structure is 1 byte. The elements of a packed
1687 structure may be any type that has a size.</p>
1688
1689<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1690 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1691 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1692
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001693<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001694<pre>
1695 &lt; { &lt;type list&gt; } &gt;
1696</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001697
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001698<h5>Examples:</h5>
1699<table class="layout">
1700 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001701 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1702 <td class="left">A triple of three <tt>i32</tt> values</td>
1703 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001704 <td class="left">
1705<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001706 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1707 second element is a <a href="#t_pointer">pointer</a> to a
1708 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1709 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001710 </tr>
1711</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001712
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001713</div>
1714
1715<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001716<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner4a67c912009-02-08 19:53:29 +00001717
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001718<div class="doc_text">
1719
1720<h5>Overview:</h5>
1721<p>As in many languages, the pointer type represents a pointer or reference to
1722 another object, which must live in memory. Pointer types may have an optional
1723 address space attribute defining the target-specific numbered address space
1724 where the pointed-to object resides. The default address space is zero.</p>
1725
1726<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1727 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001728
Chris Lattner590645f2002-04-14 06:13:44 +00001729<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001730<pre>
1731 &lt;type&gt; *
1732</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001733
Chris Lattner590645f2002-04-14 06:13:44 +00001734<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001735<table class="layout">
1736 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001737 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001738 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1739 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1740 </tr>
1741 <tr class="layout">
1742 <td class="left"><tt>i32 (i32 *) *</tt></td>
1743 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001744 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001745 <tt>i32</tt>.</td>
1746 </tr>
1747 <tr class="layout">
1748 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1749 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1750 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001751 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001752</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001753
Misha Brukman76307852003-11-08 01:05:38 +00001754</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001755
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001756<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001757<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001758
Misha Brukman76307852003-11-08 01:05:38 +00001759<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001760
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001761<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001762<p>A vector type is a simple derived type that represents a vector of elements.
1763 Vector types are used when multiple primitive data are operated in parallel
1764 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00001765 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001766 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001767
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001768<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001769<pre>
1770 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1771</pre>
1772
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001773<p>The number of elements is a constant integer value; elementtype may be any
1774 integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001775
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001776<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001777<table class="layout">
1778 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001779 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1780 <td class="left">Vector of 4 32-bit integer values.</td>
1781 </tr>
1782 <tr class="layout">
1783 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1784 <td class="left">Vector of 8 32-bit floating-point values.</td>
1785 </tr>
1786 <tr class="layout">
1787 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1788 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001789 </tr>
1790</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001791
Misha Brukman76307852003-11-08 01:05:38 +00001792</div>
1793
Chris Lattner37b6b092005-04-25 17:34:15 +00001794<!-- _______________________________________________________________________ -->
1795<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1796<div class="doc_text">
1797
1798<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001799<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001800 corresponds (for example) to the C notion of a forward declared structure
1801 type. In LLVM, opaque types can eventually be resolved to any type (not just
1802 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001803
1804<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001805<pre>
1806 opaque
1807</pre>
1808
1809<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001810<table class="layout">
1811 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001812 <td class="left"><tt>opaque</tt></td>
1813 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001814 </tr>
1815</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001816
Chris Lattner37b6b092005-04-25 17:34:15 +00001817</div>
1818
Chris Lattnercf7a5842009-02-02 07:32:36 +00001819<!-- ======================================================================= -->
1820<div class="doc_subsection">
1821 <a name="t_uprefs">Type Up-references</a>
1822</div>
1823
1824<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001825
Chris Lattnercf7a5842009-02-02 07:32:36 +00001826<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001827<p>An "up reference" allows you to refer to a lexically enclosing type without
1828 requiring it to have a name. For instance, a structure declaration may
1829 contain a pointer to any of the types it is lexically a member of. Example
1830 of up references (with their equivalent as named type declarations)
1831 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001832
1833<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00001834 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00001835 { \2 }* %y = type { %y }*
1836 \1* %z = type %z*
1837</pre>
1838
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001839<p>An up reference is needed by the asmprinter for printing out cyclic types
1840 when there is no declared name for a type in the cycle. Because the
1841 asmprinter does not want to print out an infinite type string, it needs a
1842 syntax to handle recursive types that have no names (all names are optional
1843 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001844
1845<h5>Syntax:</h5>
1846<pre>
1847 \&lt;level&gt;
1848</pre>
1849
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001850<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001851
1852<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001853<table class="layout">
1854 <tr class="layout">
1855 <td class="left"><tt>\1*</tt></td>
1856 <td class="left">Self-referential pointer.</td>
1857 </tr>
1858 <tr class="layout">
1859 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1860 <td class="left">Recursive structure where the upref refers to the out-most
1861 structure.</td>
1862 </tr>
1863</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00001864
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001865</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00001866
Chris Lattner74d3f822004-12-09 17:30:23 +00001867<!-- *********************************************************************** -->
1868<div class="doc_section"> <a name="constants">Constants</a> </div>
1869<!-- *********************************************************************** -->
1870
1871<div class="doc_text">
1872
1873<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001874 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001875
1876</div>
1877
1878<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001879<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001880
1881<div class="doc_text">
1882
1883<dl>
1884 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001885 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001886 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001887
1888 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001889 <dd>Standard integers (such as '4') are constants of
1890 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1891 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001892
1893 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001894 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001895 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1896 notation (see below). The assembler requires the exact decimal value of a
1897 floating-point constant. For example, the assembler accepts 1.25 but
1898 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1899 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001900
1901 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00001902 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001903 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001904</dl>
1905
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001906<p>The one non-intuitive notation for constants is the hexadecimal form of
1907 floating point constants. For example, the form '<tt>double
1908 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1909 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1910 constants are required (and the only time that they are generated by the
1911 disassembler) is when a floating point constant must be emitted but it cannot
1912 be represented as a decimal floating point number in a reasonable number of
1913 digits. For example, NaN's, infinities, and other special values are
1914 represented in their IEEE hexadecimal format so that assembly and disassembly
1915 do not cause any bits to change in the constants.</p>
1916
Dale Johannesencd4a3012009-02-11 22:14:51 +00001917<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001918 represented using the 16-digit form shown above (which matches the IEEE754
1919 representation for double); float values must, however, be exactly
1920 representable as IEE754 single precision. Hexadecimal format is always used
1921 for long double, and there are three forms of long double. The 80-bit format
1922 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1923 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1924 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1925 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1926 currently supported target uses this format. Long doubles will only work if
1927 they match the long double format on your target. All hexadecimal formats
1928 are big-endian (sign bit at the left).</p>
1929
Chris Lattner74d3f822004-12-09 17:30:23 +00001930</div>
1931
1932<!-- ======================================================================= -->
Chris Lattner361bfcd2009-02-28 18:32:25 +00001933<div class="doc_subsection">
Bill Wendling972b7202009-07-20 02:32:41 +00001934<a name="aggregateconstants"></a> <!-- old anchor -->
1935<a name="complexconstants">Complex Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +00001936</div>
1937
1938<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001939
Chris Lattner361bfcd2009-02-28 18:32:25 +00001940<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001941 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001942
1943<dl>
1944 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001945 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001946 type definitions (a comma separated list of elements, surrounded by braces
1947 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1948 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1949 Structure constants must have <a href="#t_struct">structure type</a>, and
1950 the number and types of elements must match those specified by the
1951 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001952
1953 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001954 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001955 definitions (a comma separated list of elements, surrounded by square
1956 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1957 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1958 the number and types of elements must match those specified by the
1959 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001960
Reid Spencer404a3252007-02-15 03:07:05 +00001961 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00001962 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001963 definitions (a comma separated list of elements, surrounded by
1964 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1965 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1966 have <a href="#t_vector">vector type</a>, and the number and types of
1967 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001968
1969 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001970 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001971 value to zero of <em>any</em> type, including scalar and aggregate types.
1972 This is often used to avoid having to print large zero initializers
1973 (e.g. for large arrays) and is always exactly equivalent to using explicit
1974 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00001975
1976 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00001977 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001978 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1979 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1980 be interpreted as part of the instruction stream, metadata is a place to
1981 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001982</dl>
1983
1984</div>
1985
1986<!-- ======================================================================= -->
1987<div class="doc_subsection">
1988 <a name="globalconstants">Global Variable and Function Addresses</a>
1989</div>
1990
1991<div class="doc_text">
1992
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001993<p>The addresses of <a href="#globalvars">global variables</a>
1994 and <a href="#functionstructure">functions</a> are always implicitly valid
1995 (link-time) constants. These constants are explicitly referenced when
1996 the <a href="#identifiers">identifier for the global</a> is used and always
1997 have <a href="#t_pointer">pointer</a> type. For example, the following is a
1998 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001999
Bill Wendling3716c5d2007-05-29 09:04:49 +00002000<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00002001<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00002002@X = global i32 17
2003@Y = global i32 42
2004@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002005</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002006</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002007
2008</div>
2009
2010<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00002011<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002012<div class="doc_text">
2013
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002014<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002015 indicates that the user of the value may receive an unspecified bit-pattern.
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002016 Undefined values may be of any type (other than label or void) and be used
2017 anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002018
Chris Lattner92ada5d2009-09-11 01:49:31 +00002019<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002020 program is well defined no matter what value is used. This gives the
2021 compiler more freedom to optimize. Here are some examples of (potentially
2022 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002023
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002024
2025<div class="doc_code">
2026<pre>
2027 %A = add %X, undef
2028 %B = sub %X, undef
2029 %C = xor %X, undef
2030Safe:
2031 %A = undef
2032 %B = undef
2033 %C = undef
2034</pre>
2035</div>
2036
2037<p>This is safe because all of the output bits are affected by the undef bits.
2038Any output bit can have a zero or one depending on the input bits.</p>
2039
2040<div class="doc_code">
2041<pre>
2042 %A = or %X, undef
2043 %B = and %X, undef
2044Safe:
2045 %A = -1
2046 %B = 0
2047Unsafe:
2048 %A = undef
2049 %B = undef
2050</pre>
2051</div>
2052
2053<p>These logical operations have bits that are not always affected by the input.
2054For example, if "%X" has a zero bit, then the output of the 'and' operation will
2055always be a zero, no matter what the corresponding bit from the undef is. As
Chris Lattner92ada5d2009-09-11 01:49:31 +00002056such, it is unsafe to optimize or assume that the result of the and is undef.
2057However, it is safe to assume that all bits of the undef could be 0, and
2058optimize the and to 0. Likewise, it is safe to assume that all the bits of
2059the undef operand to the or could be set, allowing the or to be folded to
2060-1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002061
2062<div class="doc_code">
2063<pre>
2064 %A = select undef, %X, %Y
2065 %B = select undef, 42, %Y
2066 %C = select %X, %Y, undef
2067Safe:
2068 %A = %X (or %Y)
2069 %B = 42 (or %Y)
2070 %C = %Y
2071Unsafe:
2072 %A = undef
2073 %B = undef
2074 %C = undef
2075</pre>
2076</div>
2077
2078<p>This set of examples show that undefined select (and conditional branch)
2079conditions can go "either way" but they have to come from one of the two
2080operands. In the %A example, if %X and %Y were both known to have a clear low
2081bit, then %A would have to have a cleared low bit. However, in the %C example,
2082the optimizer is allowed to assume that the undef operand could be the same as
2083%Y, allowing the whole select to be eliminated.</p>
2084
2085
2086<div class="doc_code">
2087<pre>
2088 %A = xor undef, undef
2089
2090 %B = undef
2091 %C = xor %B, %B
2092
2093 %D = undef
2094 %E = icmp lt %D, 4
2095 %F = icmp gte %D, 4
2096
2097Safe:
2098 %A = undef
2099 %B = undef
2100 %C = undef
2101 %D = undef
2102 %E = undef
2103 %F = undef
2104</pre>
2105</div>
2106
2107<p>This example points out that two undef operands are not necessarily the same.
2108This can be surprising to people (and also matches C semantics) where they
2109assume that "X^X" is always zero, even if X is undef. This isn't true for a
2110number of reasons, but the short answer is that an undef "variable" can
2111arbitrarily change its value over its "live range". This is true because the
2112"variable" doesn't actually <em>have a live range</em>. Instead, the value is
2113logically read from arbitrary registers that happen to be around when needed,
Benjamin Kramer0f420382009-10-12 14:46:08 +00002114so the value is not necessarily consistent over time. In fact, %A and %C need
Chris Lattner6760e542009-09-08 15:13:16 +00002115to have the same semantics or the core LLVM "replace all uses with" concept
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002116would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002117
2118<div class="doc_code">
2119<pre>
2120 %A = fdiv undef, %X
2121 %B = fdiv %X, undef
2122Safe:
2123 %A = undef
2124b: unreachable
2125</pre>
2126</div>
2127
2128<p>These examples show the crucial difference between an <em>undefined
2129value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2130allowed to have an arbitrary bit-pattern. This means that the %A operation
2131can be constant folded to undef because the undef could be an SNaN, and fdiv is
2132not (currently) defined on SNaN's. However, in the second example, we can make
2133a more aggressive assumption: because the undef is allowed to be an arbitrary
2134value, we are allowed to assume that it could be zero. Since a divide by zero
Chris Lattner10ff0c12009-09-08 19:45:34 +00002135has <em>undefined behavior</em>, we are allowed to assume that the operation
Chris Lattnera34a7182009-09-07 23:33:52 +00002136does not execute at all. This allows us to delete the divide and all code after
2137it: since the undefined operation "can't happen", the optimizer can assume that
2138it occurs in dead code.
2139</p>
2140
2141<div class="doc_code">
2142<pre>
2143a: store undef -> %X
2144b: store %X -> undef
2145Safe:
2146a: &lt;deleted&gt;
2147b: unreachable
2148</pre>
2149</div>
2150
2151<p>These examples reiterate the fdiv example: a store "of" an undefined value
2152can be assumed to not have any effect: we can assume that the value is
2153overwritten with bits that happen to match what was already there. However, a
2154store "to" an undefined location could clobber arbitrary memory, therefore, it
2155has undefined behavior.</p>
2156
Chris Lattner74d3f822004-12-09 17:30:23 +00002157</div>
2158
2159<!-- ======================================================================= -->
Chris Lattner2bfd3202009-10-27 21:19:13 +00002160<div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2161 Blocks</a></div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002162<div class="doc_text">
2163
Chris Lattneraa99c942009-11-01 01:27:45 +00002164<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002165
2166<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002167 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002168 the address of the entry block is illegal.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002169
2170<p>This value only has defined behavior when used as an operand to the
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002171 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
Chris Lattnere4801f72009-10-27 21:01:34 +00002172 against null. Pointer equality tests between labels addresses is undefined
2173 behavior - though, again, comparison against null is ok, and no label is
Chris Lattner2bfd3202009-10-27 21:19:13 +00002174 equal to the null pointer. This may also be passed around as an opaque
2175 pointer sized value as long as the bits are not inspected. This allows
Chris Lattnerda37b302009-10-27 21:44:20 +00002176 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002177 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
Chris Lattner2bfd3202009-10-27 21:19:13 +00002178
2179<p>Finally, some targets may provide defined semantics when
Chris Lattnere4801f72009-10-27 21:01:34 +00002180 using the value as the operand to an inline assembly, but that is target
2181 specific.
2182 </p>
2183
2184</div>
2185
2186
2187<!-- ======================================================================= -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002188<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2189</div>
2190
2191<div class="doc_text">
2192
2193<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002194 to be used as constants. Constant expressions may be of
2195 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2196 operation that does not have side effects (e.g. load and call are not
2197 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002198
2199<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002200 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002201 <dd>Truncate a constant to another type. The bit size of CST must be larger
2202 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002203
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002204 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002205 <dd>Zero extend a constant to another type. The bit size of CST must be
2206 smaller or equal to the bit size of TYPE. Both types must be
2207 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002208
2209 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002210 <dd>Sign extend a constant to another type. The bit size of CST must be
2211 smaller or equal to the bit size of TYPE. Both types must be
2212 integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002213
2214 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002215 <dd>Truncate a floating point constant to another floating point type. The
2216 size of CST must be larger than the size of TYPE. Both types must be
2217 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002218
2219 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002220 <dd>Floating point extend a constant to another type. The size of CST must be
2221 smaller or equal to the size of TYPE. Both types must be floating
2222 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002223
Reid Spencer753163d2007-07-31 14:40:14 +00002224 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002225 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002226 constant. TYPE must be a scalar or vector integer type. CST must be of
2227 scalar or vector floating point type. Both CST and TYPE must be scalars,
2228 or vectors of the same number of elements. If the value won't fit in the
2229 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002230
Reid Spencer51b07252006-11-09 23:03:26 +00002231 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002232 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002233 constant. TYPE must be a scalar or vector integer type. CST must be of
2234 scalar or vector floating point type. Both CST and TYPE must be scalars,
2235 or vectors of the same number of elements. If the value won't fit in the
2236 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002237
Reid Spencer51b07252006-11-09 23:03:26 +00002238 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002239 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002240 constant. TYPE must be a scalar or vector floating point type. CST must be
2241 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2242 vectors of the same number of elements. If the value won't fit in the
2243 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002244
Reid Spencer51b07252006-11-09 23:03:26 +00002245 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002246 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002247 constant. TYPE must be a scalar or vector floating point type. CST must be
2248 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2249 vectors of the same number of elements. If the value won't fit in the
2250 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002251
Reid Spencer5b950642006-11-11 23:08:07 +00002252 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2253 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002254 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2255 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2256 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002257
2258 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002259 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2260 type. CST must be of integer type. The CST value is zero extended,
2261 truncated, or unchanged to make it fit in a pointer size. This one is
2262 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002263
2264 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002265 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2266 are the same as those for the <a href="#i_bitcast">bitcast
2267 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002268
2269 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman1639c392009-07-27 21:53:46 +00002270 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002271 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002272 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2273 instruction, the index list may have zero or more indexes, which are
2274 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002275
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002276 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002277 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002278
2279 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2280 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2281
2282 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2283 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002284
2285 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002286 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2287 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002288
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00002289 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002290 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2291 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002292
2293 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002294 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2295 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002296
Chris Lattner74d3f822004-12-09 17:30:23 +00002297 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002298 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2299 be any of the <a href="#binaryops">binary</a>
2300 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2301 on operands are the same as those for the corresponding instruction
2302 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002304
Chris Lattner74d3f822004-12-09 17:30:23 +00002305</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002306
Nick Lewycky49f89192009-04-04 07:22:01 +00002307<!-- ======================================================================= -->
2308<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2309</div>
2310
2311<div class="doc_text">
2312
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002313<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2314 stream without affecting the behaviour of the program. There are two
2315 metadata primitives, strings and nodes. All metadata has the
2316 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2317 point ('<tt>!</tt>').</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002318
2319<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002320 any character by escaping non-printable characters with "\xx" where "xx" is
2321 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002322
2323<p>Metadata nodes are represented with notation similar to structure constants
Benjamin Kramer0f420382009-10-12 14:46:08 +00002324 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002325 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2326 10}</tt>".</p>
Nick Lewycky49f89192009-04-04 07:22:01 +00002327
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002328<p>A metadata node will attempt to track changes to the values it holds. In the
2329 event that a value is deleted, it will be replaced with a typeless
2330 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckyb8f9b7a2009-05-10 20:57:05 +00002331
Nick Lewycky49f89192009-04-04 07:22:01 +00002332<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002333 the program that isn't available in the instructions, or that isn't easily
2334 computable. Similarly, the code generator may expect a certain metadata
2335 format to be used to express debugging information.</p>
2336
Nick Lewycky49f89192009-04-04 07:22:01 +00002337</div>
2338
Chris Lattner2f7c9632001-06-06 20:29:01 +00002339<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00002340<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2341<!-- *********************************************************************** -->
2342
2343<!-- ======================================================================= -->
2344<div class="doc_subsection">
2345<a name="inlineasm">Inline Assembler Expressions</a>
2346</div>
2347
2348<div class="doc_text">
2349
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002350<p>LLVM supports inline assembler expressions (as opposed
2351 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2352 a special value. This value represents the inline assembler as a string
2353 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002354 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002355 expression has side effects, and a flag indicating whether the function
2356 containing the asm needs to align its stack conservatively. An example
2357 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002358
Bill Wendling3716c5d2007-05-29 09:04:49 +00002359<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002360<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002361i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002362</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002363</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002364
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002365<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2366 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2367 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002368
Bill Wendling3716c5d2007-05-29 09:04:49 +00002369<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002370<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002371%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002372</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002373</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002374
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002375<p>Inline asms with side effects not visible in the constraint list must be
2376 marked as having side effects. This is done through the use of the
2377 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002378
Bill Wendling3716c5d2007-05-29 09:04:49 +00002379<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00002380<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002381call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002382</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00002383</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002384
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002385<p>In some cases inline asms will contain code that will not work unless the
2386 stack is aligned in some way, such as calls or SSE instructions on x86,
2387 yet will not contain code that does that alignment within the asm.
2388 The compiler should make conservative assumptions about what the asm might
2389 contain and should generate its usual stack alignment code in the prologue
2390 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002391
2392<div class="doc_code">
2393<pre>
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002394call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002395</pre>
2396</div>
2397
2398<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2399 first.</p>
2400
Chris Lattner98f013c2006-01-25 23:47:57 +00002401<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002402 documented here. Constraints on what can be done (e.g. duplication, moving,
2403 etc need to be documented). This is probably best done by reference to
2404 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002405
2406</div>
2407
Chris Lattnerae76db52009-07-20 05:55:19 +00002408
2409<!-- *********************************************************************** -->
2410<div class="doc_section">
2411 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2412</div>
2413<!-- *********************************************************************** -->
2414
2415<p>LLVM has a number of "magic" global variables that contain data that affect
2416code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002417of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2418section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2419by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002420
2421<!-- ======================================================================= -->
2422<div class="doc_subsection">
2423<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2424</div>
2425
2426<div class="doc_text">
2427
2428<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2429href="#linkage_appending">appending linkage</a>. This array contains a list of
2430pointers to global variables and functions which may optionally have a pointer
2431cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2432
2433<pre>
2434 @X = global i8 4
2435 @Y = global i32 123
2436
2437 @llvm.used = appending global [2 x i8*] [
2438 i8* @X,
2439 i8* bitcast (i32* @Y to i8*)
2440 ], section "llvm.metadata"
2441</pre>
2442
2443<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2444compiler, assembler, and linker are required to treat the symbol as if there is
2445a reference to the global that it cannot see. For example, if a variable has
2446internal linkage and no references other than that from the <tt>@llvm.used</tt>
2447list, it cannot be deleted. This is commonly used to represent references from
2448inline asms and other things the compiler cannot "see", and corresponds to
2449"attribute((used))" in GNU C.</p>
2450
2451<p>On some targets, the code generator must emit a directive to the assembler or
2452object file to prevent the assembler and linker from molesting the symbol.</p>
2453
2454</div>
2455
2456<!-- ======================================================================= -->
2457<div class="doc_subsection">
Chris Lattner58f9bb22009-07-20 06:14:25 +00002458<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2459</div>
2460
2461<div class="doc_text">
2462
2463<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2464<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2465touching the symbol. On targets that support it, this allows an intelligent
2466linker to optimize references to the symbol without being impeded as it would be
2467by <tt>@llvm.used</tt>.</p>
2468
2469<p>This is a rare construct that should only be used in rare circumstances, and
2470should not be exposed to source languages.</p>
2471
2472</div>
2473
2474<!-- ======================================================================= -->
2475<div class="doc_subsection">
Chris Lattnerae76db52009-07-20 05:55:19 +00002476<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2477</div>
2478
2479<div class="doc_text">
2480
2481<p>TODO: Describe this.</p>
2482
2483</div>
2484
2485<!-- ======================================================================= -->
2486<div class="doc_subsection">
2487<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2488</div>
2489
2490<div class="doc_text">
2491
2492<p>TODO: Describe this.</p>
2493
2494</div>
2495
2496
Chris Lattner98f013c2006-01-25 23:47:57 +00002497<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002498<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2499<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002500
Misha Brukman76307852003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002502
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002503<p>The LLVM instruction set consists of several different classifications of
2504 instructions: <a href="#terminators">terminator
2505 instructions</a>, <a href="#binaryops">binary instructions</a>,
2506 <a href="#bitwiseops">bitwise binary instructions</a>,
2507 <a href="#memoryops">memory instructions</a>, and
2508 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002509
Misha Brukman76307852003-11-08 01:05:38 +00002510</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002511
Chris Lattner2f7c9632001-06-06 20:29:01 +00002512<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002513<div class="doc_subsection"> <a name="terminators">Terminator
2514Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002515
Misha Brukman76307852003-11-08 01:05:38 +00002516<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00002517
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002518<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2519 in a program ends with a "Terminator" instruction, which indicates which
2520 block should be executed after the current block is finished. These
2521 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2522 control flow, not values (the one exception being the
2523 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2524
2525<p>There are six different terminator instructions: the
2526 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2527 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2528 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling33fef7e2009-11-02 00:25:26 +00002529 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002530 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2531 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2532 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002533
Misha Brukman76307852003-11-08 01:05:38 +00002534</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002535
Chris Lattner2f7c9632001-06-06 20:29:01 +00002536<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002537<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2538Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002539
Misha Brukman76307852003-11-08 01:05:38 +00002540<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002541
Chris Lattner2f7c9632001-06-06 20:29:01 +00002542<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002543<pre>
2544 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002545 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002546</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002547
Chris Lattner2f7c9632001-06-06 20:29:01 +00002548<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002549<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2550 a value) from a function back to the caller.</p>
2551
2552<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2553 value and then causes control flow, and one that just causes control flow to
2554 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002555
Chris Lattner2f7c9632001-06-06 20:29:01 +00002556<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002557<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2558 return value. The type of the return value must be a
2559 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002560
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002561<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2562 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2563 value or a return value with a type that does not match its type, or if it
2564 has a void return type and contains a '<tt>ret</tt>' instruction with a
2565 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002566
Chris Lattner2f7c9632001-06-06 20:29:01 +00002567<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002568<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2569 the calling function's context. If the caller is a
2570 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2571 instruction after the call. If the caller was an
2572 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2573 the beginning of the "normal" destination block. If the instruction returns
2574 a value, that value shall set the call or invoke instruction's return
2575 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002576
Chris Lattner2f7c9632001-06-06 20:29:01 +00002577<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002578<pre>
2579 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002580 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002581 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002582</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002583
Misha Brukman76307852003-11-08 01:05:38 +00002584</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002585<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002586<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002587
Misha Brukman76307852003-11-08 01:05:38 +00002588<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002589
Chris Lattner2f7c9632001-06-06 20:29:01 +00002590<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002591<pre>
2592 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002593</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002594
Chris Lattner2f7c9632001-06-06 20:29:01 +00002595<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002596<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2597 different basic block in the current function. There are two forms of this
2598 instruction, corresponding to a conditional branch and an unconditional
2599 branch.</p>
2600
Chris Lattner2f7c9632001-06-06 20:29:01 +00002601<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002602<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2603 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2604 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2605 target.</p>
2606
Chris Lattner2f7c9632001-06-06 20:29:01 +00002607<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002608<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002609 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2610 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2611 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2612
Chris Lattner2f7c9632001-06-06 20:29:01 +00002613<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002614<pre>
2615Test:
2616 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2617 br i1 %cond, label %IfEqual, label %IfUnequal
2618IfEqual:
2619 <a href="#i_ret">ret</a> i32 1
2620IfUnequal:
2621 <a href="#i_ret">ret</a> i32 0
2622</pre>
2623
Misha Brukman76307852003-11-08 01:05:38 +00002624</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002625
Chris Lattner2f7c9632001-06-06 20:29:01 +00002626<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002627<div class="doc_subsubsection">
2628 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2629</div>
2630
Misha Brukman76307852003-11-08 01:05:38 +00002631<div class="doc_text">
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002632
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002633<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002634<pre>
2635 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2636</pre>
2637
Chris Lattner2f7c9632001-06-06 20:29:01 +00002638<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002639<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002640 several different places. It is a generalization of the '<tt>br</tt>'
2641 instruction, allowing a branch to occur to one of many possible
2642 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002643
Chris Lattner2f7c9632001-06-06 20:29:01 +00002644<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002645<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002646 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2647 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2648 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002649
Chris Lattner2f7c9632001-06-06 20:29:01 +00002650<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002651<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002652 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2653 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00002654 transferred to the corresponding destination; otherwise, control flow is
2655 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002656
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002657<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002658<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002659 <tt>switch</tt> instruction, this instruction may be code generated in
2660 different ways. For example, it could be generated as a series of chained
2661 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002662
2663<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002664<pre>
2665 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002666 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00002667 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002668
2669 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002670 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002671
2672 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00002673 switch i32 %val, label %otherwise [ i32 0, label %onzero
2674 i32 1, label %onone
2675 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002676</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002677
Misha Brukman76307852003-11-08 01:05:38 +00002678</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002679
Chris Lattner3ed871f2009-10-27 19:13:16 +00002680
2681<!-- _______________________________________________________________________ -->
2682<div class="doc_subsubsection">
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002683 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002684</div>
2685
2686<div class="doc_text">
2687
2688<h5>Syntax:</h5>
2689<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002690 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002691</pre>
2692
2693<h5>Overview:</h5>
2694
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002695<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00002696 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00002697 "<tt>address</tt>". Address must be derived from a <a
2698 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00002699
2700<h5>Arguments:</h5>
2701
2702<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
2703 rest of the arguments indicate the full set of possible destinations that the
2704 address may point to. Blocks are allowed to occur multiple times in the
2705 destination list, though this isn't particularly useful.</p>
2706
2707<p>This destination list is required so that dataflow analysis has an accurate
2708 understanding of the CFG.</p>
2709
2710<h5>Semantics:</h5>
2711
2712<p>Control transfers to the block specified in the address argument. All
2713 possible destination blocks must be listed in the label list, otherwise this
2714 instruction has undefined behavior. This implies that jumps to labels
2715 defined in other functions have undefined behavior as well.</p>
2716
2717<h5>Implementation:</h5>
2718
2719<p>This is typically implemented with a jump through a register.</p>
2720
2721<h5>Example:</h5>
2722<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00002723 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00002724</pre>
2725
2726</div>
2727
2728
Chris Lattner2f7c9632001-06-06 20:29:01 +00002729<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002730<div class="doc_subsubsection">
2731 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2732</div>
2733
Misha Brukman76307852003-11-08 01:05:38 +00002734<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002735
Chris Lattner2f7c9632001-06-06 20:29:01 +00002736<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002737<pre>
Devang Patel02256232008-10-07 17:48:33 +00002738 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002739 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002740</pre>
2741
Chris Lattnera8292f32002-05-06 22:08:29 +00002742<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002743<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002744 function, with the possibility of control flow transfer to either the
2745 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2746 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2747 control flow will return to the "normal" label. If the callee (or any
2748 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2749 instruction, control is interrupted and continued at the dynamically nearest
2750 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002751
Chris Lattner2f7c9632001-06-06 20:29:01 +00002752<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002753<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002754
Chris Lattner2f7c9632001-06-06 20:29:01 +00002755<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002756 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2757 convention</a> the call should use. If none is specified, the call
2758 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002759
2760 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002761 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2762 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002763
Chris Lattner0132aff2005-05-06 22:57:40 +00002764 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002765 function value being invoked. In most cases, this is a direct function
2766 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2767 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002768
2769 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002770 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002771
2772 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002773 signature argument types. If the function signature indicates the
2774 function accepts a variable number of arguments, the extra arguments can
2775 be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002776
2777 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002778 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002779
2780 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002781 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00002782
Devang Patel02256232008-10-07 17:48:33 +00002783 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002784 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2785 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002786</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002787
Chris Lattner2f7c9632001-06-06 20:29:01 +00002788<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002789<p>This instruction is designed to operate as a standard
2790 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2791 primary difference is that it establishes an association with a label, which
2792 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002793
2794<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002795 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2796 exception. Additionally, this is important for implementation of
2797 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002798
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002799<p>For the purposes of the SSA form, the definition of the value returned by the
2800 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2801 block to the "normal" label. If the callee unwinds then no return value is
2802 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00002803
Chris Lattner2f7c9632001-06-06 20:29:01 +00002804<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002805<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002806 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002807 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002808 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002809 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002810</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002811
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002812</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002813
Chris Lattner5ed60612003-09-03 00:41:47 +00002814<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002815
Chris Lattner48b383b02003-11-25 01:02:51 +00002816<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2817Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002818
Misha Brukman76307852003-11-08 01:05:38 +00002819<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002820
Chris Lattner5ed60612003-09-03 00:41:47 +00002821<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002822<pre>
2823 unwind
2824</pre>
2825
Chris Lattner5ed60612003-09-03 00:41:47 +00002826<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002827<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002828 at the first callee in the dynamic call stack which used
2829 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2830 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002831
Chris Lattner5ed60612003-09-03 00:41:47 +00002832<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002833<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002834 immediately halt. The dynamic call stack is then searched for the
2835 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2836 Once found, execution continues at the "exceptional" destination block
2837 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2838 instruction in the dynamic call chain, undefined behavior results.</p>
2839
Misha Brukman76307852003-11-08 01:05:38 +00002840</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002841
2842<!-- _______________________________________________________________________ -->
2843
2844<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2845Instruction</a> </div>
2846
2847<div class="doc_text">
2848
2849<h5>Syntax:</h5>
2850<pre>
2851 unreachable
2852</pre>
2853
2854<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002855<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002856 instruction is used to inform the optimizer that a particular portion of the
2857 code is not reachable. This can be used to indicate that the code after a
2858 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002859
2860<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002861<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002862
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002863</div>
2864
Chris Lattner2f7c9632001-06-06 20:29:01 +00002865<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002866<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002867
Misha Brukman76307852003-11-08 01:05:38 +00002868<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002869
2870<p>Binary operators are used to do most of the computation in a program. They
2871 require two operands of the same type, execute an operation on them, and
2872 produce a single value. The operands might represent multiple data, as is
2873 the case with the <a href="#t_vector">vector</a> data type. The result value
2874 has the same type as its operands.</p>
2875
Misha Brukman76307852003-11-08 01:05:38 +00002876<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002877
Misha Brukman76307852003-11-08 01:05:38 +00002878</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002879
Chris Lattner2f7c9632001-06-06 20:29:01 +00002880<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002881<div class="doc_subsubsection">
2882 <a name="i_add">'<tt>add</tt>' Instruction</a>
2883</div>
2884
Misha Brukman76307852003-11-08 01:05:38 +00002885<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002886
Chris Lattner2f7c9632001-06-06 20:29:01 +00002887<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002888<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00002889 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00002890 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2891 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2892 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002893</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002894
Chris Lattner2f7c9632001-06-06 20:29:01 +00002895<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002896<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002897
Chris Lattner2f7c9632001-06-06 20:29:01 +00002898<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002899<p>The two arguments to the '<tt>add</tt>' instruction must
2900 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2901 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002902
Chris Lattner2f7c9632001-06-06 20:29:01 +00002903<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002904<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002905
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002906<p>If the sum has unsigned overflow, the result returned is the mathematical
2907 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002909<p>Because LLVM integers use a two's complement representation, this instruction
2910 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002911
Dan Gohman902dfff2009-07-22 22:44:56 +00002912<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2913 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2914 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2915 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002916
Chris Lattner2f7c9632001-06-06 20:29:01 +00002917<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002918<pre>
2919 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002920</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002921
Misha Brukman76307852003-11-08 01:05:38 +00002922</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002923
Chris Lattner2f7c9632001-06-06 20:29:01 +00002924<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002925<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00002926 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2927</div>
2928
2929<div class="doc_text">
2930
2931<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002932<pre>
2933 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2934</pre>
2935
2936<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002937<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2938
2939<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002940<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002941 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2942 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00002943
2944<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002945<p>The value produced is the floating point sum of the two operands.</p>
2946
2947<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002948<pre>
2949 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2950</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002951
Dan Gohmana5b96452009-06-04 22:49:04 +00002952</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002953
Dan Gohmana5b96452009-06-04 22:49:04 +00002954<!-- _______________________________________________________________________ -->
2955<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002956 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2957</div>
2958
Misha Brukman76307852003-11-08 01:05:38 +00002959<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002960
Chris Lattner2f7c9632001-06-06 20:29:01 +00002961<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002962<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00002963 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00002964 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2965 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2966 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002967</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002968
Chris Lattner2f7c9632001-06-06 20:29:01 +00002969<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002970<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002971 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002972
2973<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002974 '<tt>neg</tt>' instruction present in most other intermediate
2975 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002976
Chris Lattner2f7c9632001-06-06 20:29:01 +00002977<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002978<p>The two arguments to the '<tt>sub</tt>' instruction must
2979 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2980 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002981
Chris Lattner2f7c9632001-06-06 20:29:01 +00002982<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00002983<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002984
Dan Gohmana5b96452009-06-04 22:49:04 +00002985<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002986 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2987 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002988
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002989<p>Because LLVM integers use a two's complement representation, this instruction
2990 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002991
Dan Gohman902dfff2009-07-22 22:44:56 +00002992<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2993 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2994 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2995 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00002996
Chris Lattner2f7c9632001-06-06 20:29:01 +00002997<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002998<pre>
2999 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003000 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003001</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003002
Misha Brukman76307852003-11-08 01:05:38 +00003003</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003004
Chris Lattner2f7c9632001-06-06 20:29:01 +00003005<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003006<div class="doc_subsubsection">
Dan Gohmana5b96452009-06-04 22:49:04 +00003007 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3008</div>
3009
3010<div class="doc_text">
3011
3012<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003013<pre>
3014 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3015</pre>
3016
3017<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003018<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003019 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003020
3021<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003022 '<tt>fneg</tt>' instruction present in most other intermediate
3023 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003024
3025<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003026<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003027 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3028 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003029
3030<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003031<p>The value produced is the floating point difference of the two operands.</p>
3032
3033<h5>Example:</h5>
3034<pre>
3035 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3036 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3037</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003038
Dan Gohmana5b96452009-06-04 22:49:04 +00003039</div>
3040
3041<!-- _______________________________________________________________________ -->
3042<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003043 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3044</div>
3045
Misha Brukman76307852003-11-08 01:05:38 +00003046<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003047
Chris Lattner2f7c9632001-06-06 20:29:01 +00003048<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003049<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003050 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003051 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3052 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3053 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003054</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003055
Chris Lattner2f7c9632001-06-06 20:29:01 +00003056<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003057<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003058
Chris Lattner2f7c9632001-06-06 20:29:01 +00003059<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003060<p>The two arguments to the '<tt>mul</tt>' instruction must
3061 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3062 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003063
Chris Lattner2f7c9632001-06-06 20:29:01 +00003064<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003065<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003066
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003067<p>If the result of the multiplication has unsigned overflow, the result
3068 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3069 width of the result.</p>
3070
3071<p>Because LLVM integers use a two's complement representation, and the result
3072 is the same width as the operands, this instruction returns the correct
3073 result for both signed and unsigned integers. If a full product
3074 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3075 be sign-extended or zero-extended as appropriate to the width of the full
3076 product.</p>
3077
Dan Gohman902dfff2009-07-22 22:44:56 +00003078<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3079 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3080 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3081 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003082
Chris Lattner2f7c9632001-06-06 20:29:01 +00003083<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003084<pre>
3085 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003086</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003087
Misha Brukman76307852003-11-08 01:05:38 +00003088</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003089
Chris Lattner2f7c9632001-06-06 20:29:01 +00003090<!-- _______________________________________________________________________ -->
Dan Gohmana5b96452009-06-04 22:49:04 +00003091<div class="doc_subsubsection">
3092 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3093</div>
3094
3095<div class="doc_text">
3096
3097<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003098<pre>
3099 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003100</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003101
Dan Gohmana5b96452009-06-04 22:49:04 +00003102<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003103<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003104
3105<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003106<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003107 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3108 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003109
3110<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003111<p>The value produced is the floating point product of the two operands.</p>
3112
3113<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003114<pre>
3115 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003116</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003117
Dan Gohmana5b96452009-06-04 22:49:04 +00003118</div>
3119
3120<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003121<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3122</a></div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003123
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003124<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003125
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003126<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003127<pre>
3128 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003129</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003130
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003131<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003132<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003133
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003134<h5>Arguments:</h5>
3135<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003136 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3137 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003138
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003139<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003140<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003141
Chris Lattner2f2427e2008-01-28 00:36:27 +00003142<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003143 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3144
Chris Lattner2f2427e2008-01-28 00:36:27 +00003145<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003146
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003147<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003148<pre>
3149 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003150</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003151
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003152</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003153
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003154<!-- _______________________________________________________________________ -->
3155<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3156</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003157
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003158<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003159
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003160<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003161<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003162 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003163 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003164</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003165
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003166<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003167<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003168
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003169<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003170<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003171 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3172 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003173
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003174<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003175<p>The value produced is the signed integer quotient of the two operands rounded
3176 towards zero.</p>
3177
Chris Lattner2f2427e2008-01-28 00:36:27 +00003178<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003179 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3180
Chris Lattner2f2427e2008-01-28 00:36:27 +00003181<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003182 undefined behavior; this is a rare case, but can occur, for example, by doing
3183 a 32-bit division of -2147483648 by -1.</p>
3184
Dan Gohman71dfd782009-07-22 00:04:19 +00003185<p>If the <tt>exact</tt> keyword is present, the result value of the
3186 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
3187 would occur.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003188
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003189<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003190<pre>
3191 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003192</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003193
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003194</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003195
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003196<!-- _______________________________________________________________________ -->
3197<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00003198Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003199
Misha Brukman76307852003-11-08 01:05:38 +00003200<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003201
Chris Lattner2f7c9632001-06-06 20:29:01 +00003202<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003203<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003204 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003205</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003206
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003207<h5>Overview:</h5>
3208<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003209
Chris Lattner48b383b02003-11-25 01:02:51 +00003210<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003211<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003212 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3213 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003214
Chris Lattner48b383b02003-11-25 01:02:51 +00003215<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003216<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003217
Chris Lattner48b383b02003-11-25 01:02:51 +00003218<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003219<pre>
3220 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003221</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003222
Chris Lattner48b383b02003-11-25 01:02:51 +00003223</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003224
Chris Lattner48b383b02003-11-25 01:02:51 +00003225<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00003226<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3227</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003228
Reid Spencer7eb55b32006-11-02 01:53:59 +00003229<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003230
Reid Spencer7eb55b32006-11-02 01:53:59 +00003231<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003232<pre>
3233 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003234</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003235
Reid Spencer7eb55b32006-11-02 01:53:59 +00003236<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003237<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3238 division of its two arguments.</p>
3239
Reid Spencer7eb55b32006-11-02 01:53:59 +00003240<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003241<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003242 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3243 values. Both arguments must have identical types.</p>
3244
Reid Spencer7eb55b32006-11-02 01:53:59 +00003245<h5>Semantics:</h5>
3246<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003247 This instruction always performs an unsigned division to get the
3248 remainder.</p>
3249
Chris Lattner2f2427e2008-01-28 00:36:27 +00003250<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003251 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3252
Chris Lattner2f2427e2008-01-28 00:36:27 +00003253<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003254
Reid Spencer7eb55b32006-11-02 01:53:59 +00003255<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003256<pre>
3257 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003258</pre>
3259
3260</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003261
Reid Spencer7eb55b32006-11-02 01:53:59 +00003262<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003263<div class="doc_subsubsection">
3264 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3265</div>
3266
Chris Lattner48b383b02003-11-25 01:02:51 +00003267<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003268
Chris Lattner48b383b02003-11-25 01:02:51 +00003269<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003270<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003271 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003272</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003273
Chris Lattner48b383b02003-11-25 01:02:51 +00003274<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003275<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3276 division of its two operands. This instruction can also take
3277 <a href="#t_vector">vector</a> versions of the values in which case the
3278 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003279
Chris Lattner48b383b02003-11-25 01:02:51 +00003280<h5>Arguments:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003281<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003282 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3283 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003284
Chris Lattner48b383b02003-11-25 01:02:51 +00003285<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003286<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003287 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3288 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3289 a value. For more information about the difference,
3290 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3291 Math Forum</a>. For a table of how this is implemented in various languages,
3292 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3293 Wikipedia: modulo operation</a>.</p>
3294
Chris Lattner2f2427e2008-01-28 00:36:27 +00003295<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003296 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3297
Chris Lattner2f2427e2008-01-28 00:36:27 +00003298<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003299 Overflow also leads to undefined behavior; this is a rare case, but can
3300 occur, for example, by taking the remainder of a 32-bit division of
3301 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3302 lets srem be implemented using instructions that return both the result of
3303 the division and the remainder.)</p>
3304
Chris Lattner48b383b02003-11-25 01:02:51 +00003305<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003306<pre>
3307 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003308</pre>
3309
3310</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003311
Reid Spencer7eb55b32006-11-02 01:53:59 +00003312<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003313<div class="doc_subsubsection">
3314 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3315
Reid Spencer7eb55b32006-11-02 01:53:59 +00003316<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003317
Reid Spencer7eb55b32006-11-02 01:53:59 +00003318<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003319<pre>
3320 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003321</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003322
Reid Spencer7eb55b32006-11-02 01:53:59 +00003323<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003324<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3325 its two operands.</p>
3326
Reid Spencer7eb55b32006-11-02 01:53:59 +00003327<h5>Arguments:</h5>
3328<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003329 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3330 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003331
Reid Spencer7eb55b32006-11-02 01:53:59 +00003332<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003333<p>This instruction returns the <i>remainder</i> of a division. The remainder
3334 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003335
Reid Spencer7eb55b32006-11-02 01:53:59 +00003336<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003337<pre>
3338 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003339</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003340
Misha Brukman76307852003-11-08 01:05:38 +00003341</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003342
Reid Spencer2ab01932007-02-02 13:57:07 +00003343<!-- ======================================================================= -->
3344<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3345Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003346
Reid Spencer2ab01932007-02-02 13:57:07 +00003347<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003348
3349<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3350 program. They are generally very efficient instructions and can commonly be
3351 strength reduced from other instructions. They require two operands of the
3352 same type, execute an operation on them, and produce a single value. The
3353 resulting value is the same type as its operands.</p>
3354
Reid Spencer2ab01932007-02-02 13:57:07 +00003355</div>
3356
Reid Spencer04e259b2007-01-31 21:39:12 +00003357<!-- _______________________________________________________________________ -->
3358<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3359Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003360
Reid Spencer04e259b2007-01-31 21:39:12 +00003361<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003362
Reid Spencer04e259b2007-01-31 21:39:12 +00003363<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003364<pre>
3365 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003366</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003367
Reid Spencer04e259b2007-01-31 21:39:12 +00003368<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003369<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3370 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003371
Reid Spencer04e259b2007-01-31 21:39:12 +00003372<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003373<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3374 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3375 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003376
Reid Spencer04e259b2007-01-31 21:39:12 +00003377<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003378<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3379 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3380 is (statically or dynamically) negative or equal to or larger than the number
3381 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3382 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3383 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003384
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003385<h5>Example:</h5>
3386<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003387 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3388 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3389 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003390 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003391 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003392</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003393
Reid Spencer04e259b2007-01-31 21:39:12 +00003394</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003395
Reid Spencer04e259b2007-01-31 21:39:12 +00003396<!-- _______________________________________________________________________ -->
3397<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3398Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003399
Reid Spencer04e259b2007-01-31 21:39:12 +00003400<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003401
Reid Spencer04e259b2007-01-31 21:39:12 +00003402<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003403<pre>
3404 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003405</pre>
3406
3407<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003408<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3409 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003410
3411<h5>Arguments:</h5>
3412<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003413 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3414 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003415
3416<h5>Semantics:</h5>
3417<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003418 significant bits of the result will be filled with zero bits after the shift.
3419 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3420 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3421 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3422 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003423
3424<h5>Example:</h5>
3425<pre>
3426 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3427 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3428 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3429 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003430 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003431 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003432</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003433
Reid Spencer04e259b2007-01-31 21:39:12 +00003434</div>
3435
Reid Spencer2ab01932007-02-02 13:57:07 +00003436<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00003437<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3438Instruction</a> </div>
3439<div class="doc_text">
3440
3441<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003442<pre>
3443 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003444</pre>
3445
3446<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003447<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3448 operand shifted to the right a specified number of bits with sign
3449 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003450
3451<h5>Arguments:</h5>
3452<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003453 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3454 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003455
3456<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003457<p>This instruction always performs an arithmetic shift right operation, The
3458 most significant bits of the result will be filled with the sign bit
3459 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3460 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3461 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3462 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003463
3464<h5>Example:</h5>
3465<pre>
3466 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3467 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3468 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3469 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003470 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003471 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003472</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003473
Reid Spencer04e259b2007-01-31 21:39:12 +00003474</div>
3475
Chris Lattner2f7c9632001-06-06 20:29:01 +00003476<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003477<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3478Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003479
Misha Brukman76307852003-11-08 01:05:38 +00003480<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003481
Chris Lattner2f7c9632001-06-06 20:29:01 +00003482<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003483<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003484 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003485</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003486
Chris Lattner2f7c9632001-06-06 20:29:01 +00003487<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003488<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3489 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003490
Chris Lattner2f7c9632001-06-06 20:29:01 +00003491<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003492<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003493 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3494 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003495
Chris Lattner2f7c9632001-06-06 20:29:01 +00003496<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003497<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003498
Misha Brukman76307852003-11-08 01:05:38 +00003499<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003500 <tbody>
3501 <tr>
3502 <td>In0</td>
3503 <td>In1</td>
3504 <td>Out</td>
3505 </tr>
3506 <tr>
3507 <td>0</td>
3508 <td>0</td>
3509 <td>0</td>
3510 </tr>
3511 <tr>
3512 <td>0</td>
3513 <td>1</td>
3514 <td>0</td>
3515 </tr>
3516 <tr>
3517 <td>1</td>
3518 <td>0</td>
3519 <td>0</td>
3520 </tr>
3521 <tr>
3522 <td>1</td>
3523 <td>1</td>
3524 <td>1</td>
3525 </tr>
3526 </tbody>
3527</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003528
Chris Lattner2f7c9632001-06-06 20:29:01 +00003529<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003530<pre>
3531 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003532 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3533 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003534</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003535</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003536<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003537<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003538
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003539<div class="doc_text">
3540
3541<h5>Syntax:</h5>
3542<pre>
3543 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3544</pre>
3545
3546<h5>Overview:</h5>
3547<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3548 two operands.</p>
3549
3550<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003551<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003552 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3553 values. Both arguments must have identical types.</p>
3554
Chris Lattner2f7c9632001-06-06 20:29:01 +00003555<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003556<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557
Chris Lattner48b383b02003-11-25 01:02:51 +00003558<table border="1" cellspacing="0" cellpadding="4">
3559 <tbody>
3560 <tr>
3561 <td>In0</td>
3562 <td>In1</td>
3563 <td>Out</td>
3564 </tr>
3565 <tr>
3566 <td>0</td>
3567 <td>0</td>
3568 <td>0</td>
3569 </tr>
3570 <tr>
3571 <td>0</td>
3572 <td>1</td>
3573 <td>1</td>
3574 </tr>
3575 <tr>
3576 <td>1</td>
3577 <td>0</td>
3578 <td>1</td>
3579 </tr>
3580 <tr>
3581 <td>1</td>
3582 <td>1</td>
3583 <td>1</td>
3584 </tr>
3585 </tbody>
3586</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003587
Chris Lattner2f7c9632001-06-06 20:29:01 +00003588<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003589<pre>
3590 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003591 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3592 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003593</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003594
Misha Brukman76307852003-11-08 01:05:38 +00003595</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003596
Chris Lattner2f7c9632001-06-06 20:29:01 +00003597<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003598<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3599Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003600
Misha Brukman76307852003-11-08 01:05:38 +00003601<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003602
Chris Lattner2f7c9632001-06-06 20:29:01 +00003603<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003604<pre>
3605 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003606</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003607
Chris Lattner2f7c9632001-06-06 20:29:01 +00003608<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003609<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3610 its two operands. The <tt>xor</tt> is used to implement the "one's
3611 complement" operation, which is the "~" operator in C.</p>
3612
Chris Lattner2f7c9632001-06-06 20:29:01 +00003613<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003614<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003615 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3616 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003617
Chris Lattner2f7c9632001-06-06 20:29:01 +00003618<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003619<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003620
Chris Lattner48b383b02003-11-25 01:02:51 +00003621<table border="1" cellspacing="0" cellpadding="4">
3622 <tbody>
3623 <tr>
3624 <td>In0</td>
3625 <td>In1</td>
3626 <td>Out</td>
3627 </tr>
3628 <tr>
3629 <td>0</td>
3630 <td>0</td>
3631 <td>0</td>
3632 </tr>
3633 <tr>
3634 <td>0</td>
3635 <td>1</td>
3636 <td>1</td>
3637 </tr>
3638 <tr>
3639 <td>1</td>
3640 <td>0</td>
3641 <td>1</td>
3642 </tr>
3643 <tr>
3644 <td>1</td>
3645 <td>1</td>
3646 <td>0</td>
3647 </tr>
3648 </tbody>
3649</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003650
Chris Lattner2f7c9632001-06-06 20:29:01 +00003651<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003652<pre>
3653 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003654 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3655 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3656 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003657</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003658
Misha Brukman76307852003-11-08 01:05:38 +00003659</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003660
Chris Lattner2f7c9632001-06-06 20:29:01 +00003661<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00003662<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00003663 <a name="vectorops">Vector Operations</a>
3664</div>
3665
3666<div class="doc_text">
3667
3668<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003669 target-independent manner. These instructions cover the element-access and
3670 vector-specific operations needed to process vectors effectively. While LLVM
3671 does directly support these vector operations, many sophisticated algorithms
3672 will want to use target-specific intrinsics to take full advantage of a
3673 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003674
3675</div>
3676
3677<!-- _______________________________________________________________________ -->
3678<div class="doc_subsubsection">
3679 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3680</div>
3681
3682<div class="doc_text">
3683
3684<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003685<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003686 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003687</pre>
3688
3689<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003690<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3691 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003692
3693
3694<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003695<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3696 of <a href="#t_vector">vector</a> type. The second operand is an index
3697 indicating the position from which to extract the element. The index may be
3698 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003699
3700<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003701<p>The result is a scalar of the same type as the element type of
3702 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3703 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3704 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003705
3706<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003707<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003708 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003709</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003710
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003711</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003712
3713<!-- _______________________________________________________________________ -->
3714<div class="doc_subsubsection">
3715 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3716</div>
3717
3718<div class="doc_text">
3719
3720<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003721<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00003722 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003723</pre>
3724
3725<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003726<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3727 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003728
3729<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003730<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3731 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3732 whose type must equal the element type of the first operand. The third
3733 operand is an index indicating the position at which to insert the value.
3734 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003735
3736<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003737<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3738 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3739 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3740 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003741
3742<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003743<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003744 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003745</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003746
Chris Lattnerce83bff2006-04-08 23:07:04 +00003747</div>
3748
3749<!-- _______________________________________________________________________ -->
3750<div class="doc_subsubsection">
3751 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3752</div>
3753
3754<div class="doc_text">
3755
3756<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003757<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00003758 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003759</pre>
3760
3761<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003762<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3763 from two input vectors, returning a vector with the same element type as the
3764 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003765
3766<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003767<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3768 with types that match each other. The third argument is a shuffle mask whose
3769 element type is always 'i32'. The result of the instruction is a vector
3770 whose length is the same as the shuffle mask and whose element type is the
3771 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003772
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003773<p>The shuffle mask operand is required to be a constant vector with either
3774 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003775
3776<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003777<p>The elements of the two input vectors are numbered from left to right across
3778 both of the vectors. The shuffle mask operand specifies, for each element of
3779 the result vector, which element of the two input vectors the result element
3780 gets. The element selector may be undef (meaning "don't care") and the
3781 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003782
3783<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003784<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003785 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00003786 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003787 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003788 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003789 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00003790 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003791 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00003792 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003793</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00003794
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003795</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00003796
Chris Lattnerce83bff2006-04-08 23:07:04 +00003797<!-- ======================================================================= -->
3798<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00003799 <a name="aggregateops">Aggregate Operations</a>
3800</div>
3801
3802<div class="doc_text">
3803
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003804<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003805
3806</div>
3807
3808<!-- _______________________________________________________________________ -->
3809<div class="doc_subsubsection">
3810 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3811</div>
3812
3813<div class="doc_text">
3814
3815<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003816<pre>
3817 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3818</pre>
3819
3820<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003821<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3822 or array element from an aggregate value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003823
3824<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003825<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3826 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3827 operands are constant indices to specify which value to extract in a similar
3828 manner as indices in a
3829 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003830
3831<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832<p>The result is the value at the position in the aggregate specified by the
3833 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003834
3835<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003836<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003837 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003838</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003839
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003840</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003841
3842<!-- _______________________________________________________________________ -->
3843<div class="doc_subsubsection">
3844 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3845</div>
3846
3847<div class="doc_text">
3848
3849<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003850<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003851 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003852</pre>
3853
3854<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003855<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3856 array element in an aggregate.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003857
3858
3859<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003860<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3861 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3862 second operand is a first-class value to insert. The following operands are
3863 constant indices indicating the position at which to insert the value in a
3864 similar manner as indices in a
3865 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3866 value to insert must have the same type as the value identified by the
3867 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003868
3869<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003870<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3871 that of <tt>val</tt> except that the value at the position specified by the
3872 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003873
3874<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003875<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00003876 &lt;result&gt; = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003877</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003878
Dan Gohmanb9d66602008-05-12 23:51:09 +00003879</div>
3880
3881
3882<!-- ======================================================================= -->
3883<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003884 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003885</div>
3886
Misha Brukman76307852003-11-08 01:05:38 +00003887<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003888
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003889<p>A key design point of an SSA-based representation is how it represents
3890 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00003891 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003892 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003893
Misha Brukman76307852003-11-08 01:05:38 +00003894</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003895
Chris Lattner2f7c9632001-06-06 20:29:01 +00003896<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003897<div class="doc_subsubsection">
Chris Lattner54611b42005-11-06 08:02:57 +00003898 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3899</div>
3900
Misha Brukman76307852003-11-08 01:05:38 +00003901<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003902
Chris Lattner2f7c9632001-06-06 20:29:01 +00003903<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003904<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003905 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003906</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003907
Chris Lattner2f7c9632001-06-06 20:29:01 +00003908<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003909<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003910 currently executing function, to be automatically released when this function
3911 returns to its caller. The object is always allocated in the generic address
3912 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003913
Chris Lattner2f7c9632001-06-06 20:29:01 +00003914<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003915<p>The '<tt>alloca</tt>' instruction
3916 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3917 runtime stack, returning a pointer of the appropriate type to the program.
3918 If "NumElements" is specified, it is the number of elements allocated,
3919 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3920 specified, the value result of the allocation is guaranteed to be aligned to
3921 at least that boundary. If not specified, or if zero, the target can choose
3922 to align the allocation on any convenient boundary compatible with the
3923 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003924
Misha Brukman76307852003-11-08 01:05:38 +00003925<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003926
Chris Lattner2f7c9632001-06-06 20:29:01 +00003927<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00003928<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003929 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3930 memory is automatically released when the function returns. The
3931 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3932 variables that must have an address available. When the function returns
3933 (either with the <tt><a href="#i_ret">ret</a></tt>
3934 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3935 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003936
Chris Lattner2f7c9632001-06-06 20:29:01 +00003937<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003938<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00003939 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3940 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3941 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3942 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003943</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003944
Misha Brukman76307852003-11-08 01:05:38 +00003945</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003946
Chris Lattner2f7c9632001-06-06 20:29:01 +00003947<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003948<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3949Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003950
Misha Brukman76307852003-11-08 01:05:38 +00003951<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003952
Chris Lattner095735d2002-05-06 03:03:22 +00003953<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003954<pre>
3955 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3956 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3957</pre>
3958
Chris Lattner095735d2002-05-06 03:03:22 +00003959<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003960<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003961
Chris Lattner095735d2002-05-06 03:03:22 +00003962<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003963<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3964 from which to load. The pointer must point to
3965 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3966 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3967 number or order of execution of this <tt>load</tt> with other
3968 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3969 instructions. </p>
3970
3971<p>The optional constant "align" argument specifies the alignment of the
3972 operation (that is, the alignment of the memory address). A value of 0 or an
3973 omitted "align" argument means that the operation has the preferential
3974 alignment for the target. It is the responsibility of the code emitter to
3975 ensure that the alignment information is correct. Overestimating the
3976 alignment results in an undefined behavior. Underestimating the alignment may
3977 produce less efficient code. An alignment of 1 is always safe.</p>
3978
Chris Lattner095735d2002-05-06 03:03:22 +00003979<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003980<p>The location of memory pointed to is loaded. If the value being loaded is of
3981 scalar type then the number of bytes read does not exceed the minimum number
3982 of bytes needed to hold all bits of the type. For example, loading an
3983 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3984 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3985 is undefined if the value was not originally written using a store of the
3986 same type.</p>
3987
Chris Lattner095735d2002-05-06 03:03:22 +00003988<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003989<pre>
3990 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3991 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003992 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003993</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003994
Misha Brukman76307852003-11-08 01:05:38 +00003995</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003996
Chris Lattner095735d2002-05-06 03:03:22 +00003997<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003998<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3999Instruction</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004000
Reid Spencera89fb182006-11-09 21:18:01 +00004001<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004002
Chris Lattner095735d2002-05-06 03:03:22 +00004003<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004004<pre>
4005 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Christopher Lambbff50202007-04-21 08:16:25 +00004006 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004007</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004008
Chris Lattner095735d2002-05-06 03:03:22 +00004009<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004010<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004011
Chris Lattner095735d2002-05-06 03:03:22 +00004012<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004013<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4014 and an address at which to store it. The type of the
4015 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4016 the <a href="#t_firstclass">first class</a> type of the
4017 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
4018 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
4019 or order of execution of this <tt>store</tt> with other
4020 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
4021 instructions.</p>
4022
4023<p>The optional constant "align" argument specifies the alignment of the
4024 operation (that is, the alignment of the memory address). A value of 0 or an
4025 omitted "align" argument means that the operation has the preferential
4026 alignment for the target. It is the responsibility of the code emitter to
4027 ensure that the alignment information is correct. Overestimating the
4028 alignment results in an undefined behavior. Underestimating the alignment may
4029 produce less efficient code. An alignment of 1 is always safe.</p>
4030
Chris Lattner48b383b02003-11-25 01:02:51 +00004031<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004032<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4033 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4034 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4035 does not exceed the minimum number of bytes needed to hold all bits of the
4036 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4037 writing a value of a type like <tt>i20</tt> with a size that is not an
4038 integral number of bytes, it is unspecified what happens to the extra bits
4039 that do not belong to the type, but they will typically be overwritten.</p>
4040
Chris Lattner095735d2002-05-06 03:03:22 +00004041<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004042<pre>
4043 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004044 store i32 3, i32* %ptr <i>; yields {void}</i>
4045 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004046</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004047
Reid Spencer443460a2006-11-09 21:15:49 +00004048</div>
4049
Chris Lattner095735d2002-05-06 03:03:22 +00004050<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00004051<div class="doc_subsubsection">
4052 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4053</div>
4054
Misha Brukman76307852003-11-08 01:05:38 +00004055<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004056
Chris Lattner590645f2002-04-14 06:13:44 +00004057<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004058<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004059 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004060 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004061</pre>
4062
Chris Lattner590645f2002-04-14 06:13:44 +00004063<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004064<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4065 subelement of an aggregate data structure. It performs address calculation
4066 only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004067
Chris Lattner590645f2002-04-14 06:13:44 +00004068<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004069<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004070 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004071 elements of the aggregate object are indexed. The interpretation of each
4072 index is dependent on the type being indexed into. The first index always
4073 indexes the pointer value given as the first argument, the second index
4074 indexes a value of the type pointed to (not necessarily the value directly
4075 pointed to, since the first index can be non-zero), etc. The first type
4076 indexed into must be a pointer value, subsequent types can be arrays, vectors
4077 and structs. Note that subsequent types being indexed into can never be
4078 pointers, since that would require loading the pointer before continuing
4079 calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004080
4081<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnera40b9122009-07-29 06:44:13 +00004082 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004083 <b>constants</b> are allowed. When indexing into an array, pointer or
Chris Lattnera40b9122009-07-29 06:44:13 +00004084 vector, integers of any width are allowed, and they are not required to be
4085 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004086
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004087<p>For example, let's consider a C code fragment and how it gets compiled to
4088 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004089
Bill Wendling3716c5d2007-05-29 09:04:49 +00004090<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004091<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004092struct RT {
4093 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004094 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004095 char C;
4096};
4097struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004098 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004099 double Y;
4100 struct RT Z;
4101};
Chris Lattner33fd7022004-04-05 01:30:49 +00004102
Chris Lattnera446f1b2007-05-29 15:43:56 +00004103int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004104 return &amp;s[1].Z.B[5][13];
4105}
Chris Lattner33fd7022004-04-05 01:30:49 +00004106</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004107</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004108
Misha Brukman76307852003-11-08 01:05:38 +00004109<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004110
Bill Wendling3716c5d2007-05-29 09:04:49 +00004111<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00004112<pre>
Chris Lattnerbc088212009-01-11 20:53:49 +00004113%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4114%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004115
Dan Gohman6b867702009-07-25 02:23:48 +00004116define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004117entry:
4118 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4119 ret i32* %reg
4120}
Chris Lattner33fd7022004-04-05 01:30:49 +00004121</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00004122</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00004123
Chris Lattner590645f2002-04-14 06:13:44 +00004124<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004125<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004126 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4127 }</tt>' type, a structure. The second index indexes into the third element
4128 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4129 i8 }</tt>' type, another structure. The third index indexes into the second
4130 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4131 array. The two dimensions of the array are subscripted into, yielding an
4132 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4133 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004134
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004135<p>Note that it is perfectly legal to index partially through a structure,
4136 returning a pointer to an inner element. Because of this, the LLVM code for
4137 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004138
4139<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004140 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004141 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004142 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4143 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004144 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4145 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4146 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004147 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004148</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004149
Dan Gohman1639c392009-07-27 21:53:46 +00004150<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman61acaaa2009-07-29 16:00:30 +00004151 <tt>getelementptr</tt> is undefined if the base pointer is not an
4152 <i>in bounds</i> address of an allocated object, or if any of the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004153 that would be formed by successive addition of the offsets implied by the
4154 indices to the base address with infinitely precise arithmetic are not an
4155 <i>in bounds</i> address of that allocated object.
Dan Gohman61acaaa2009-07-29 16:00:30 +00004156 The <i>in bounds</i> addresses for an allocated object are all the addresses
Dan Gohman2de532c2009-08-20 17:08:17 +00004157 that point into the object, plus the address one byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004158
4159<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4160 the base address with silently-wrapping two's complement arithmetic, and
4161 the result value of the <tt>getelementptr</tt> may be outside the object
4162 pointed to by the base pointer. The result value may not necessarily be
4163 used to access memory though, even if it happens to point into allocated
4164 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4165 section for more information.</p>
4166
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004167<p>The getelementptr instruction is often confusing. For some more insight into
4168 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004169
Chris Lattner590645f2002-04-14 06:13:44 +00004170<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004171<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004172 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004173 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4174 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004175 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004176 <i>; yields i8*:eptr</i>
4177 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004178 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004179 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004180</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004181
Chris Lattner33fd7022004-04-05 01:30:49 +00004182</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004183
Chris Lattner2f7c9632001-06-06 20:29:01 +00004184<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00004185<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00004186</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004187
Misha Brukman76307852003-11-08 01:05:38 +00004188<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004189
Reid Spencer97c5fa42006-11-08 01:18:52 +00004190<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004191 which all take a single operand and a type. They perform various bit
4192 conversions on the operand.</p>
4193
Misha Brukman76307852003-11-08 01:05:38 +00004194</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004195
Chris Lattnera8292f32002-05-06 22:08:29 +00004196<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004197<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004198 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4199</div>
4200<div class="doc_text">
4201
4202<h5>Syntax:</h5>
4203<pre>
4204 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4205</pre>
4206
4207<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004208<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4209 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004210
4211<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004212<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4213 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4214 size and type of the result, which must be
4215 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4216 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4217 allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004218
4219<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004220<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4221 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4222 source size must be larger than the destination size, <tt>trunc</tt> cannot
4223 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004224
4225<h5>Example:</h5>
4226<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004227 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004228 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004229 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004230</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004231
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004232</div>
4233
4234<!-- _______________________________________________________________________ -->
4235<div class="doc_subsubsection">
4236 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4237</div>
4238<div class="doc_text">
4239
4240<h5>Syntax:</h5>
4241<pre>
4242 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4243</pre>
4244
4245<h5>Overview:</h5>
4246<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004247 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004248
4249
4250<h5>Arguments:</h5>
4251<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004252 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4253 also be of <a href="#t_integer">integer</a> type. The bit size of the
4254 <tt>value</tt> must be smaller than the bit size of the destination type,
4255 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004256
4257<h5>Semantics:</h5>
4258<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004259 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004260
Reid Spencer07c9c682007-01-12 15:46:11 +00004261<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004262
4263<h5>Example:</h5>
4264<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004265 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004266 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004267</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004269</div>
4270
4271<!-- _______________________________________________________________________ -->
4272<div class="doc_subsubsection">
4273 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4274</div>
4275<div class="doc_text">
4276
4277<h5>Syntax:</h5>
4278<pre>
4279 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4280</pre>
4281
4282<h5>Overview:</h5>
4283<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4284
4285<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004286<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4287 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4288 also be of <a href="#t_integer">integer</a> type. The bit size of the
4289 <tt>value</tt> must be smaller than the bit size of the destination type,
4290 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004291
4292<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004293<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4294 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4295 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004296
Reid Spencer36a15422007-01-12 03:35:51 +00004297<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004298
4299<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004300<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004301 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004302 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004303</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004304
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004305</div>
4306
4307<!-- _______________________________________________________________________ -->
4308<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00004309 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4310</div>
4311
4312<div class="doc_text">
4313
4314<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004315<pre>
4316 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4317</pre>
4318
4319<h5>Overview:</h5>
4320<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004321 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004322
4323<h5>Arguments:</h5>
4324<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004325 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4326 to cast it to. The size of <tt>value</tt> must be larger than the size of
4327 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4328 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004329
4330<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004331<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4332 <a href="#t_floating">floating point</a> type to a smaller
4333 <a href="#t_floating">floating point</a> type. If the value cannot fit
4334 within the destination type, <tt>ty2</tt>, then the results are
4335 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004336
4337<h5>Example:</h5>
4338<pre>
4339 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4340 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4341</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004342
Reid Spencer2e2740d2006-11-09 21:48:10 +00004343</div>
4344
4345<!-- _______________________________________________________________________ -->
4346<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004347 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4348</div>
4349<div class="doc_text">
4350
4351<h5>Syntax:</h5>
4352<pre>
4353 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4354</pre>
4355
4356<h5>Overview:</h5>
4357<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004358 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004359
4360<h5>Arguments:</h5>
4361<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004362 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4363 a <a href="#t_floating">floating point</a> type to cast it to. The source
4364 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004365
4366<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004367<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004368 <a href="#t_floating">floating point</a> type to a larger
4369 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4370 used to make a <i>no-op cast</i> because it always changes bits. Use
4371 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004372
4373<h5>Example:</h5>
4374<pre>
4375 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4376 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4377</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004378
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004379</div>
4380
4381<!-- _______________________________________________________________________ -->
4382<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00004383 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004384</div>
4385<div class="doc_text">
4386
4387<h5>Syntax:</h5>
4388<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004389 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004390</pre>
4391
4392<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004393<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004394 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004395
4396<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004397<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4398 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4399 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4400 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4401 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004402
4403<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004404<p>The '<tt>fptoui</tt>' instruction converts its
4405 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4406 towards zero) unsigned integer value. If the value cannot fit
4407 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004408
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004409<h5>Example:</h5>
4410<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004411 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004412 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004413 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004414</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004415
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004416</div>
4417
4418<!-- _______________________________________________________________________ -->
4419<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004420 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004421</div>
4422<div class="doc_text">
4423
4424<h5>Syntax:</h5>
4425<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004426 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004427</pre>
4428
4429<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004430<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004431 <a href="#t_floating">floating point</a> <tt>value</tt> to
4432 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004433
Chris Lattnera8292f32002-05-06 22:08:29 +00004434<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004435<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4436 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4437 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4438 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4439 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004440
Chris Lattnera8292f32002-05-06 22:08:29 +00004441<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004442<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004443 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4444 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4445 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004446
Chris Lattner70de6632001-07-09 00:26:23 +00004447<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004448<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004449 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004450 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004451 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004452</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004453
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004454</div>
4455
4456<!-- _______________________________________________________________________ -->
4457<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004458 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004459</div>
4460<div class="doc_text">
4461
4462<h5>Syntax:</h5>
4463<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004464 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004465</pre>
4466
4467<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004468<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004469 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004470
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004471<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004472<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004473 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4474 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4475 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4476 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004477
4478<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004479<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004480 integer quantity and converts it to the corresponding floating point
4481 value. If the value cannot fit in the floating point value, the results are
4482 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004483
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004484<h5>Example:</h5>
4485<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004486 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004487 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004488</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004489
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004490</div>
4491
4492<!-- _______________________________________________________________________ -->
4493<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00004494 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004495</div>
4496<div class="doc_text">
4497
4498<h5>Syntax:</h5>
4499<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004500 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004501</pre>
4502
4503<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004504<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4505 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004506
4507<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004508<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004509 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4510 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4511 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4512 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004513
4514<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004515<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4516 quantity and converts it to the corresponding floating point value. If the
4517 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004518
4519<h5>Example:</h5>
4520<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004521 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004522 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004523</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004524
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004525</div>
4526
4527<!-- _______________________________________________________________________ -->
4528<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00004529 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4530</div>
4531<div class="doc_text">
4532
4533<h5>Syntax:</h5>
4534<pre>
4535 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4536</pre>
4537
4538<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004539<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4540 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004541
4542<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004543<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4544 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4545 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004546
4547<h5>Semantics:</h5>
4548<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004549 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4550 truncating or zero extending that value to the size of the integer type. If
4551 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4552 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4553 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4554 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004555
4556<h5>Example:</h5>
4557<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004558 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4559 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004560</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004561
Reid Spencerb7344ff2006-11-11 21:00:47 +00004562</div>
4563
4564<!-- _______________________________________________________________________ -->
4565<div class="doc_subsubsection">
4566 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4567</div>
4568<div class="doc_text">
4569
4570<h5>Syntax:</h5>
4571<pre>
4572 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4573</pre>
4574
4575<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004576<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4577 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004578
4579<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00004580<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004581 value to cast, and a type to cast it to, which must be a
4582 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004583
4584<h5>Semantics:</h5>
4585<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004586 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4587 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4588 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4589 than the size of a pointer then a zero extension is done. If they are the
4590 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004591
4592<h5>Example:</h5>
4593<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004594 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004595 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4596 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00004597</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004598
Reid Spencerb7344ff2006-11-11 21:00:47 +00004599</div>
4600
4601<!-- _______________________________________________________________________ -->
4602<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00004603 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004604</div>
4605<div class="doc_text">
4606
4607<h5>Syntax:</h5>
4608<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00004609 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004610</pre>
4611
4612<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004613<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004614 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004615
4616<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004617<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4618 non-aggregate first class value, and a type to cast it to, which must also be
4619 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4620 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4621 identical. If the source type is a pointer, the destination type must also be
4622 a pointer. This instruction supports bitwise conversion of vectors to
4623 integers and to vectors of other types (as long as they have the same
4624 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004625
4626<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00004627<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004628 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4629 this conversion. The conversion is done as if the <tt>value</tt> had been
4630 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4631 be converted to other pointer types with this instruction. To convert
4632 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4633 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004634
4635<h5>Example:</h5>
4636<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004637 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004638 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004639 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00004640</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004641
Misha Brukman76307852003-11-08 01:05:38 +00004642</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004643
Reid Spencer97c5fa42006-11-08 01:18:52 +00004644<!-- ======================================================================= -->
4645<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004646
Reid Spencer97c5fa42006-11-08 01:18:52 +00004647<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004648
4649<p>The instructions in this category are the "miscellaneous" instructions, which
4650 defy better classification.</p>
4651
Reid Spencer97c5fa42006-11-08 01:18:52 +00004652</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004653
4654<!-- _______________________________________________________________________ -->
4655<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4656</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004657
Reid Spencerc828a0e2006-11-18 21:50:54 +00004658<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004659
Reid Spencerc828a0e2006-11-18 21:50:54 +00004660<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004661<pre>
4662 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004663</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004664
Reid Spencerc828a0e2006-11-18 21:50:54 +00004665<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004666<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4667 boolean values based on comparison of its two integer, integer vector, or
4668 pointer operands.</p>
4669
Reid Spencerc828a0e2006-11-18 21:50:54 +00004670<h5>Arguments:</h5>
4671<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004672 the condition code indicating the kind of comparison to perform. It is not a
4673 value, just a keyword. The possible condition code are:</p>
4674
Reid Spencerc828a0e2006-11-18 21:50:54 +00004675<ol>
4676 <li><tt>eq</tt>: equal</li>
4677 <li><tt>ne</tt>: not equal </li>
4678 <li><tt>ugt</tt>: unsigned greater than</li>
4679 <li><tt>uge</tt>: unsigned greater or equal</li>
4680 <li><tt>ult</tt>: unsigned less than</li>
4681 <li><tt>ule</tt>: unsigned less or equal</li>
4682 <li><tt>sgt</tt>: signed greater than</li>
4683 <li><tt>sge</tt>: signed greater or equal</li>
4684 <li><tt>slt</tt>: signed less than</li>
4685 <li><tt>sle</tt>: signed less or equal</li>
4686</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004687
Chris Lattnerc0f423a2007-01-15 01:54:13 +00004688<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004689 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4690 typed. They must also be identical types.</p>
4691
Reid Spencerc828a0e2006-11-18 21:50:54 +00004692<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004693<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4694 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004695 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004696 result, as follows:</p>
4697
Reid Spencerc828a0e2006-11-18 21:50:54 +00004698<ol>
4699 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004700 <tt>false</tt> otherwise. No sign interpretation is necessary or
4701 performed.</li>
4702
Reid Spencerc828a0e2006-11-18 21:50:54 +00004703 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004704 <tt>false</tt> otherwise. No sign interpretation is necessary or
4705 performed.</li>
4706
Reid Spencerc828a0e2006-11-18 21:50:54 +00004707 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004708 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4709
Reid Spencerc828a0e2006-11-18 21:50:54 +00004710 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004711 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4712 to <tt>op2</tt>.</li>
4713
Reid Spencerc828a0e2006-11-18 21:50:54 +00004714 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004715 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4716
Reid Spencerc828a0e2006-11-18 21:50:54 +00004717 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004718 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4719
Reid Spencerc828a0e2006-11-18 21:50:54 +00004720 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004721 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4722
Reid Spencerc828a0e2006-11-18 21:50:54 +00004723 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004724 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4725 to <tt>op2</tt>.</li>
4726
Reid Spencerc828a0e2006-11-18 21:50:54 +00004727 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004728 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4729
Reid Spencerc828a0e2006-11-18 21:50:54 +00004730 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004731 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004732</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004733
Reid Spencerc828a0e2006-11-18 21:50:54 +00004734<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004735 values are compared as if they were integers.</p>
4736
4737<p>If the operands are integer vectors, then they are compared element by
4738 element. The result is an <tt>i1</tt> vector with the same number of elements
4739 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004740
4741<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004742<pre>
4743 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004744 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4745 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4746 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4747 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4748 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004749</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004750
4751<p>Note that the code generator does not yet support vector types with
4752 the <tt>icmp</tt> instruction.</p>
4753
Reid Spencerc828a0e2006-11-18 21:50:54 +00004754</div>
4755
4756<!-- _______________________________________________________________________ -->
4757<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4758</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004759
Reid Spencerc828a0e2006-11-18 21:50:54 +00004760<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004761
Reid Spencerc828a0e2006-11-18 21:50:54 +00004762<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004763<pre>
4764 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004765</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004766
Reid Spencerc828a0e2006-11-18 21:50:54 +00004767<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004768<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4769 values based on comparison of its operands.</p>
4770
4771<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004772(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004773
4774<p>If the operands are floating point vectors, then the result type is a vector
4775 of boolean with the same number of elements as the operands being
4776 compared.</p>
4777
Reid Spencerc828a0e2006-11-18 21:50:54 +00004778<h5>Arguments:</h5>
4779<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004780 the condition code indicating the kind of comparison to perform. It is not a
4781 value, just a keyword. The possible condition code are:</p>
4782
Reid Spencerc828a0e2006-11-18 21:50:54 +00004783<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00004784 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004785 <li><tt>oeq</tt>: ordered and equal</li>
4786 <li><tt>ogt</tt>: ordered and greater than </li>
4787 <li><tt>oge</tt>: ordered and greater than or equal</li>
4788 <li><tt>olt</tt>: ordered and less than </li>
4789 <li><tt>ole</tt>: ordered and less than or equal</li>
4790 <li><tt>one</tt>: ordered and not equal</li>
4791 <li><tt>ord</tt>: ordered (no nans)</li>
4792 <li><tt>ueq</tt>: unordered or equal</li>
4793 <li><tt>ugt</tt>: unordered or greater than </li>
4794 <li><tt>uge</tt>: unordered or greater than or equal</li>
4795 <li><tt>ult</tt>: unordered or less than </li>
4796 <li><tt>ule</tt>: unordered or less than or equal</li>
4797 <li><tt>une</tt>: unordered or not equal</li>
4798 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004799 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004800</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004801
Jeff Cohen222a8a42007-04-29 01:07:00 +00004802<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004803 <i>unordered</i> means that either operand may be a QNAN.</p>
4804
4805<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4806 a <a href="#t_floating">floating point</a> type or
4807 a <a href="#t_vector">vector</a> of floating point type. They must have
4808 identical types.</p>
4809
Reid Spencerc828a0e2006-11-18 21:50:54 +00004810<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004811<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004812 according to the condition code given as <tt>cond</tt>. If the operands are
4813 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00004814 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004815 follows:</p>
4816
Reid Spencerc828a0e2006-11-18 21:50:54 +00004817<ol>
4818 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004819
Reid Spencerf69acf32006-11-19 03:00:14 +00004820 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004821 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4822
Reid Spencerf69acf32006-11-19 03:00:14 +00004823 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004824 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4825
Reid Spencerf69acf32006-11-19 03:00:14 +00004826 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004827 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4828
Reid Spencerf69acf32006-11-19 03:00:14 +00004829 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004830 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4831
Reid Spencerf69acf32006-11-19 03:00:14 +00004832 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004833 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4834
Reid Spencerf69acf32006-11-19 03:00:14 +00004835 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004836 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4837
Reid Spencerf69acf32006-11-19 03:00:14 +00004838 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004839
Reid Spencerf69acf32006-11-19 03:00:14 +00004840 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004841 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4842
Reid Spencerf69acf32006-11-19 03:00:14 +00004843 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004844 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4845
Reid Spencerf69acf32006-11-19 03:00:14 +00004846 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004847 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4848
Reid Spencerf69acf32006-11-19 03:00:14 +00004849 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004850 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4851
Reid Spencerf69acf32006-11-19 03:00:14 +00004852 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004853 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4854
Reid Spencerf69acf32006-11-19 03:00:14 +00004855 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004856 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4857
Reid Spencerf69acf32006-11-19 03:00:14 +00004858 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004859
Reid Spencerc828a0e2006-11-18 21:50:54 +00004860 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4861</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004862
4863<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004864<pre>
4865 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004866 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4867 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4868 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004869</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004870
4871<p>Note that the code generator does not yet support vector types with
4872 the <tt>fcmp</tt> instruction.</p>
4873
Reid Spencerc828a0e2006-11-18 21:50:54 +00004874</div>
4875
Reid Spencer97c5fa42006-11-08 01:18:52 +00004876<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004877<div class="doc_subsubsection">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004878 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4879</div>
4880
Reid Spencer97c5fa42006-11-08 01:18:52 +00004881<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004882
Reid Spencer97c5fa42006-11-08 01:18:52 +00004883<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004884<pre>
4885 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4886</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004887
Reid Spencer97c5fa42006-11-08 01:18:52 +00004888<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004889<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4890 SSA graph representing the function.</p>
4891
Reid Spencer97c5fa42006-11-08 01:18:52 +00004892<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004893<p>The type of the incoming values is specified with the first type field. After
4894 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4895 one pair for each predecessor basic block of the current block. Only values
4896 of <a href="#t_firstclass">first class</a> type may be used as the value
4897 arguments to the PHI node. Only labels may be used as the label
4898 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004899
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004900<p>There must be no non-phi instructions between the start of a basic block and
4901 the PHI instructions: i.e. PHI instructions must be first in a basic
4902 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004903
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004904<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4905 occur on the edge from the corresponding predecessor block to the current
4906 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4907 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00004908
Reid Spencer97c5fa42006-11-08 01:18:52 +00004909<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004910<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004911 specified by the pair corresponding to the predecessor basic block that
4912 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004913
Reid Spencer97c5fa42006-11-08 01:18:52 +00004914<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004915<pre>
4916Loop: ; Infinite loop that counts from 0 on up...
4917 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4918 %nextindvar = add i32 %indvar, 1
4919 br label %Loop
4920</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004921
Reid Spencer97c5fa42006-11-08 01:18:52 +00004922</div>
4923
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004924<!-- _______________________________________________________________________ -->
4925<div class="doc_subsubsection">
4926 <a name="i_select">'<tt>select</tt>' Instruction</a>
4927</div>
4928
4929<div class="doc_text">
4930
4931<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004932<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004933 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4934
Dan Gohmanef9462f2008-10-14 16:51:45 +00004935 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004936</pre>
4937
4938<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004939<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4940 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004941
4942
4943<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004944<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4945 values indicating the condition, and two values of the
4946 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4947 vectors and the condition is a scalar, then entire vectors are selected, not
4948 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004949
4950<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004951<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4952 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004953
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004954<p>If the condition is a vector of i1, then the value arguments must be vectors
4955 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004956
4957<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004958<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004959 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004960</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00004961
4962<p>Note that the code generator does not yet support conditions
4963 with vector type.</p>
4964
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004965</div>
4966
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004967<!-- _______________________________________________________________________ -->
4968<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004969 <a name="i_call">'<tt>call</tt>' Instruction</a>
4970</div>
4971
Misha Brukman76307852003-11-08 01:05:38 +00004972<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004973
Chris Lattner2f7c9632001-06-06 20:29:01 +00004974<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004975<pre>
Devang Patel02256232008-10-07 17:48:33 +00004976 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004977</pre>
4978
Chris Lattner2f7c9632001-06-06 20:29:01 +00004979<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004980<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004981
Chris Lattner2f7c9632001-06-06 20:29:01 +00004982<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004983<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004984
Chris Lattnera8292f32002-05-06 22:08:29 +00004985<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004986 <li>The optional "tail" marker indicates whether the callee function accesses
4987 any allocas or varargs in the caller. If the "tail" marker is present,
4988 the function call is eligible for tail call optimization. Note that calls
4989 may be marked "tail" even if they do not occur before
4990 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004991
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004992 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
4993 convention</a> the call should use. If none is specified, the call
4994 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004995
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004996 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4997 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
4998 '<tt>inreg</tt>' attributes are valid here.</li>
4999
5000 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5001 type of the return value. Functions that return no value are marked
5002 <tt><a href="#t_void">void</a></tt>.</li>
5003
5004 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5005 being invoked. The argument types must match the types implied by this
5006 signature. This type can be omitted if the function is not varargs and if
5007 the function type does not return a pointer to a function.</li>
5008
5009 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5010 be invoked. In most cases, this is a direct function invocation, but
5011 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5012 to function value.</li>
5013
5014 <li>'<tt>function args</tt>': argument list whose types match the function
5015 signature argument types. All arguments must be of
5016 <a href="#t_firstclass">first class</a> type. If the function signature
5017 indicates the function accepts a variable number of arguments, the extra
5018 arguments can be specified.</li>
5019
5020 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5021 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5022 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005023</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005024
Chris Lattner2f7c9632001-06-06 20:29:01 +00005025<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005026<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5027 a specified function, with its incoming arguments bound to the specified
5028 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5029 function, control flow continues with the instruction after the function
5030 call, and the return value of the function is bound to the result
5031 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005032
Chris Lattner2f7c9632001-06-06 20:29:01 +00005033<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005034<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005035 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005036 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
5037 %X = tail call i32 @foo() <i>; yields i32</i>
5038 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5039 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005040
5041 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005042 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005043 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5044 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005045 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005046 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005047</pre>
5048
Dale Johannesen68f971b2009-09-24 18:38:21 +00005049<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005050standard C99 library as being the C99 library functions, and may perform
5051optimizations or generate code for them under that assumption. This is
5052something we'd like to change in the future to provide better support for
5053freestanding environments and non-C-based langauges.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005054
Misha Brukman76307852003-11-08 01:05:38 +00005055</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005056
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005057<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00005058<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00005059 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005060</div>
5061
Misha Brukman76307852003-11-08 01:05:38 +00005062<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00005063
Chris Lattner26ca62e2003-10-18 05:51:36 +00005064<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005065<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005066 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005067</pre>
5068
Chris Lattner26ca62e2003-10-18 05:51:36 +00005069<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005070<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005071 the "variable argument" area of a function call. It is used to implement the
5072 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005073
Chris Lattner26ca62e2003-10-18 05:51:36 +00005074<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005075<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5076 argument. It returns a value of the specified argument type and increments
5077 the <tt>va_list</tt> to point to the next argument. The actual type
5078 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005079
Chris Lattner26ca62e2003-10-18 05:51:36 +00005080<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005081<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5082 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5083 to the next argument. For more information, see the variable argument
5084 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005085
5086<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005087 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5088 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005089
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005090<p><tt>va_arg</tt> is an LLVM instruction instead of
5091 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5092 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005093
Chris Lattner26ca62e2003-10-18 05:51:36 +00005094<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005095<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5096
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005097<p>Note that the code generator does not yet fully support va_arg on many
5098 targets. Also, it does not currently support va_arg with aggregate types on
5099 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005100
Misha Brukman76307852003-11-08 01:05:38 +00005101</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005102
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005103<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00005104<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5105<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005106
Misha Brukman76307852003-11-08 01:05:38 +00005107<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00005108
5109<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005110 well known names and semantics and are required to follow certain
5111 restrictions. Overall, these intrinsics represent an extension mechanism for
5112 the LLVM language that does not require changing all of the transformations
5113 in LLVM when adding to the language (or the bitcode reader/writer, the
5114 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005115
John Criswell88190562005-05-16 16:17:45 +00005116<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005117 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5118 begin with this prefix. Intrinsic functions must always be external
5119 functions: you cannot define the body of intrinsic functions. Intrinsic
5120 functions may only be used in call or invoke instructions: it is illegal to
5121 take the address of an intrinsic function. Additionally, because intrinsic
5122 functions are part of the LLVM language, it is required if any are added that
5123 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005124
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005125<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5126 family of functions that perform the same operation but on different data
5127 types. Because LLVM can represent over 8 million different integer types,
5128 overloading is used commonly to allow an intrinsic function to operate on any
5129 integer type. One or more of the argument types or the result type can be
5130 overloaded to accept any integer type. Argument types may also be defined as
5131 exactly matching a previous argument's type or the result type. This allows
5132 an intrinsic function which accepts multiple arguments, but needs all of them
5133 to be of the same type, to only be overloaded with respect to a single
5134 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005135
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005136<p>Overloaded intrinsics will have the names of its overloaded argument types
5137 encoded into its function name, each preceded by a period. Only those types
5138 which are overloaded result in a name suffix. Arguments whose type is matched
5139 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5140 can take an integer of any width and returns an integer of exactly the same
5141 integer width. This leads to a family of functions such as
5142 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5143 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5144 suffix is required. Because the argument's type is matched against the return
5145 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005146
5147<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005148 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005149
Misha Brukman76307852003-11-08 01:05:38 +00005150</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005151
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005152<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00005153<div class="doc_subsection">
5154 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5155</div>
5156
Misha Brukman76307852003-11-08 01:05:38 +00005157<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005158
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005159<p>Variable argument support is defined in LLVM with
5160 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5161 intrinsic functions. These functions are related to the similarly named
5162 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005163
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005164<p>All of these functions operate on arguments that use a target-specific value
5165 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5166 not define what this type is, so all transformations should be prepared to
5167 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005168
Chris Lattner30b868d2006-05-15 17:26:46 +00005169<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005170 instruction and the variable argument handling intrinsic functions are
5171 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005172
Bill Wendling3716c5d2007-05-29 09:04:49 +00005173<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00005174<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005175define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005176 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005177 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005178 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005179 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005180
5181 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005182 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005183
5184 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005185 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005186 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005187 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005188 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005189
5190 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005191 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005192 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005193}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005194
5195declare void @llvm.va_start(i8*)
5196declare void @llvm.va_copy(i8*, i8*)
5197declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005198</pre>
Misha Brukman76307852003-11-08 01:05:38 +00005199</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005200
Bill Wendling3716c5d2007-05-29 09:04:49 +00005201</div>
5202
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005203<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005204<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005205 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005206</div>
5207
5208
Misha Brukman76307852003-11-08 01:05:38 +00005209<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005210
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005211<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005212<pre>
5213 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5214</pre>
5215
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005216<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005217<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5218 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005219
5220<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005221<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005222
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005223<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005224<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005225 macro available in C. In a target-dependent way, it initializes
5226 the <tt>va_list</tt> element to which the argument points, so that the next
5227 call to <tt>va_arg</tt> will produce the first variable argument passed to
5228 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5229 need to know the last argument of the function as the compiler can figure
5230 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005231
Misha Brukman76307852003-11-08 01:05:38 +00005232</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005233
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005234<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005235<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005236 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005237</div>
5238
Misha Brukman76307852003-11-08 01:05:38 +00005239<div class="doc_text">
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005240
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005241<h5>Syntax:</h5>
5242<pre>
5243 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5244</pre>
5245
5246<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005247<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005248 which has been initialized previously
5249 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5250 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005251
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005252<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005253<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005254
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005255<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005256<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005257 macro available in C. In a target-dependent way, it destroys
5258 the <tt>va_list</tt> element to which the argument points. Calls
5259 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5260 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5261 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005262
Misha Brukman76307852003-11-08 01:05:38 +00005263</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005264
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005265<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00005266<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005267 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00005268</div>
5269
Misha Brukman76307852003-11-08 01:05:38 +00005270<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005271
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005272<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005273<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005274 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005275</pre>
5276
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005277<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005278<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005279 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005280
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005281<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005282<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005283 The second argument is a pointer to a <tt>va_list</tt> element to copy
5284 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005285
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005286<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005287<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005288 macro available in C. In a target-dependent way, it copies the
5289 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5290 element. This intrinsic is necessary because
5291 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5292 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005293
Misha Brukman76307852003-11-08 01:05:38 +00005294</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005295
Chris Lattnerfee11462004-02-12 17:01:32 +00005296<!-- ======================================================================= -->
5297<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00005298 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5299</div>
5300
5301<div class="doc_text">
5302
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005303<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005304Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005305intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5306roots on the stack</a>, as well as garbage collector implementations that
5307require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5308barriers. Front-ends for type-safe garbage collected languages should generate
5309these intrinsics to make use of the LLVM garbage collectors. For more details,
5310see <a href="GarbageCollection.html">Accurate Garbage Collection with
5311LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005312
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005313<p>The garbage collection intrinsics only operate on objects in the generic
5314 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005315
Chris Lattner757528b0b2004-05-23 21:06:01 +00005316</div>
5317
5318<!-- _______________________________________________________________________ -->
5319<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005320 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005321</div>
5322
5323<div class="doc_text">
5324
5325<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005326<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005327 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005328</pre>
5329
5330<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005331<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005332 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005333
5334<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005335<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005336 root pointer. The second pointer (which must be either a constant or a
5337 global value address) contains the meta-data to be associated with the
5338 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005339
5340<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005341<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005342 location. At compile-time, the code generator generates information to allow
5343 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5344 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5345 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005346
5347</div>
5348
Chris Lattner757528b0b2004-05-23 21:06:01 +00005349<!-- _______________________________________________________________________ -->
5350<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005351 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005352</div>
5353
5354<div class="doc_text">
5355
5356<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005357<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005358 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005359</pre>
5360
5361<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005362<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005363 locations, allowing garbage collector implementations that require read
5364 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005365
5366<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005367<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005368 allocated from the garbage collector. The first object is a pointer to the
5369 start of the referenced object, if needed by the language runtime (otherwise
5370 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005371
5372<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005373<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005374 instruction, but may be replaced with substantially more complex code by the
5375 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5376 may only be used in a function which <a href="#gc">specifies a GC
5377 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005378
5379</div>
5380
Chris Lattner757528b0b2004-05-23 21:06:01 +00005381<!-- _______________________________________________________________________ -->
5382<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005383 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005384</div>
5385
5386<div class="doc_text">
5387
5388<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005389<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005390 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005391</pre>
5392
5393<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005394<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005395 locations, allowing garbage collector implementations that require write
5396 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005397
5398<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005399<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005400 object to store it to, and the third is the address of the field of Obj to
5401 store to. If the runtime does not require a pointer to the object, Obj may
5402 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005403
5404<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005405<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005406 instruction, but may be replaced with substantially more complex code by the
5407 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5408 may only be used in a function which <a href="#gc">specifies a GC
5409 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005410
5411</div>
5412
Chris Lattner757528b0b2004-05-23 21:06:01 +00005413<!-- ======================================================================= -->
5414<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00005415 <a name="int_codegen">Code Generator Intrinsics</a>
5416</div>
5417
5418<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005419
5420<p>These intrinsics are provided by LLVM to expose special features that may
5421 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005422
5423</div>
5424
5425<!-- _______________________________________________________________________ -->
5426<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005427 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005428</div>
5429
5430<div class="doc_text">
5431
5432<h5>Syntax:</h5>
5433<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005434 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005435</pre>
5436
5437<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005438<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5439 target-specific value indicating the return address of the current function
5440 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005441
5442<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443<p>The argument to this intrinsic indicates which function to return the address
5444 for. Zero indicates the calling function, one indicates its caller, etc.
5445 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005446
5447<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005448<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5449 indicating the return address of the specified call frame, or zero if it
5450 cannot be identified. The value returned by this intrinsic is likely to be
5451 incorrect or 0 for arguments other than zero, so it should only be used for
5452 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005453
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005454<p>Note that calling this intrinsic does not prevent function inlining or other
5455 aggressive transformations, so the value returned may not be that of the
5456 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005457
Chris Lattner3649c3a2004-02-14 04:08:35 +00005458</div>
5459
Chris Lattner3649c3a2004-02-14 04:08:35 +00005460<!-- _______________________________________________________________________ -->
5461<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005462 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005463</div>
5464
5465<div class="doc_text">
5466
5467<h5>Syntax:</h5>
5468<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005469 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005470</pre>
5471
5472<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005473<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5474 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005475
5476<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005477<p>The argument to this intrinsic indicates which function to return the frame
5478 pointer for. Zero indicates the calling function, one indicates its caller,
5479 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005480
5481<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005482<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5483 indicating the frame address of the specified call frame, or zero if it
5484 cannot be identified. The value returned by this intrinsic is likely to be
5485 incorrect or 0 for arguments other than zero, so it should only be used for
5486 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005487
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005488<p>Note that calling this intrinsic does not prevent function inlining or other
5489 aggressive transformations, so the value returned may not be that of the
5490 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005491
Chris Lattner3649c3a2004-02-14 04:08:35 +00005492</div>
5493
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005494<!-- _______________________________________________________________________ -->
5495<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005496 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005497</div>
5498
5499<div class="doc_text">
5500
5501<h5>Syntax:</h5>
5502<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005503 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00005504</pre>
5505
5506<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005507<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5508 of the function stack, for use
5509 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5510 useful for implementing language features like scoped automatic variable
5511 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005512
5513<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005514<p>This intrinsic returns a opaque pointer value that can be passed
5515 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5516 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5517 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5518 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5519 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5520 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005521
5522</div>
5523
5524<!-- _______________________________________________________________________ -->
5525<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005526 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005527</div>
5528
5529<div class="doc_text">
5530
5531<h5>Syntax:</h5>
5532<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005533 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00005534</pre>
5535
5536<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005537<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5538 the function stack to the state it was in when the
5539 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5540 executed. This is useful for implementing language features like scoped
5541 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005542
5543<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005544<p>See the description
5545 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00005546
5547</div>
5548
Chris Lattner2f0f0012006-01-13 02:03:13 +00005549<!-- _______________________________________________________________________ -->
5550<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005551 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005552</div>
5553
5554<div class="doc_text">
5555
5556<h5>Syntax:</h5>
5557<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005558 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005559</pre>
5560
5561<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005562<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5563 insert a prefetch instruction if supported; otherwise, it is a noop.
5564 Prefetches have no effect on the behavior of the program but can change its
5565 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005566
5567<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005568<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5569 specifier determining if the fetch should be for a read (0) or write (1),
5570 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5571 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5572 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005573
5574<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005575<p>This intrinsic does not modify the behavior of the program. In particular,
5576 prefetches cannot trap and do not produce a value. On targets that support
5577 this intrinsic, the prefetch can provide hints to the processor cache for
5578 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00005579
5580</div>
5581
Andrew Lenharthb4427912005-03-28 20:05:49 +00005582<!-- _______________________________________________________________________ -->
5583<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005584 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005585</div>
5586
5587<div class="doc_text">
5588
5589<h5>Syntax:</h5>
5590<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005591 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00005592</pre>
5593
5594<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005595<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5596 Counter (PC) in a region of code to simulators and other tools. The method
5597 is target specific, but it is expected that the marker will use exported
5598 symbols to transmit the PC of the marker. The marker makes no guarantees
5599 that it will remain with any specific instruction after optimizations. It is
5600 possible that the presence of a marker will inhibit optimizations. The
5601 intended use is to be inserted after optimizations to allow correlations of
5602 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005603
5604<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005605<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005606
5607<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005608<p>This intrinsic does not modify the behavior of the program. Backends that do
5609 not support this intrinisic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00005610
5611</div>
5612
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005613<!-- _______________________________________________________________________ -->
5614<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005615 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005616</div>
5617
5618<div class="doc_text">
5619
5620<h5>Syntax:</h5>
5621<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005622 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005623</pre>
5624
5625<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005626<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5627 counter register (or similar low latency, high accuracy clocks) on those
5628 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5629 should map to RPCC. As the backing counters overflow quickly (on the order
5630 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005631
5632<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005633<p>When directly supported, reading the cycle counter should not modify any
5634 memory. Implementations are allowed to either return a application specific
5635 value or a system wide value. On backends without support, this is lowered
5636 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005637
5638</div>
5639
Chris Lattner3649c3a2004-02-14 04:08:35 +00005640<!-- ======================================================================= -->
5641<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005642 <a name="int_libc">Standard C Library Intrinsics</a>
5643</div>
5644
5645<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005646
5647<p>LLVM provides intrinsics for a few important standard C library functions.
5648 These intrinsics allow source-language front-ends to pass information about
5649 the alignment of the pointer arguments to the code generator, providing
5650 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005651
5652</div>
5653
5654<!-- _______________________________________________________________________ -->
5655<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005656 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005657</div>
5658
5659<div class="doc_text">
5660
5661<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005662<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5663 integer bit width. Not all targets support all bit widths however.</p>
5664
Chris Lattnerfee11462004-02-12 17:01:32 +00005665<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005666 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005667 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005668 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5669 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005670 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005671 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005672 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005673 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005674</pre>
5675
5676<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005677<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5678 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005679
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005680<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5681 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005682
5683<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005684<p>The first argument is a pointer to the destination, the second is a pointer
5685 to the source. The third argument is an integer argument specifying the
5686 number of bytes to copy, and the fourth argument is the alignment of the
5687 source and destination locations.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005688
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005689<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5690 then the caller guarantees that both the source and destination pointers are
5691 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005692
Chris Lattnerfee11462004-02-12 17:01:32 +00005693<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005694<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5695 source location to the destination location, which are not allowed to
5696 overlap. It copies "len" bytes of memory over. If the argument is known to
5697 be aligned to some boundary, this can be specified as the fourth argument,
5698 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005699
Chris Lattnerfee11462004-02-12 17:01:32 +00005700</div>
5701
Chris Lattnerf30152e2004-02-12 18:10:10 +00005702<!-- _______________________________________________________________________ -->
5703<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005704 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005705</div>
5706
5707<div class="doc_text">
5708
5709<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005710<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005711 width. Not all targets support all bit widths however.</p>
5712
Chris Lattnerf30152e2004-02-12 18:10:10 +00005713<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005714 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005715 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005716 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5717 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005718 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005719 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005720 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005721 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005722</pre>
5723
5724<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005725<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5726 source location to the destination location. It is similar to the
5727 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5728 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005729
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005730<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5731 intrinsics do not return a value, and takes an extra alignment argument.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005732
5733<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005734<p>The first argument is a pointer to the destination, the second is a pointer
5735 to the source. The third argument is an integer argument specifying the
5736 number of bytes to copy, and the fourth argument is the alignment of the
5737 source and destination locations.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005738
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005739<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5740 then the caller guarantees that the source and destination pointers are
5741 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00005742
Chris Lattnerf30152e2004-02-12 18:10:10 +00005743<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005744<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5745 source location to the destination location, which may overlap. It copies
5746 "len" bytes of memory over. If the argument is known to be aligned to some
5747 boundary, this can be specified as the fourth argument, otherwise it should
5748 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005749
Chris Lattnerf30152e2004-02-12 18:10:10 +00005750</div>
5751
Chris Lattner3649c3a2004-02-14 04:08:35 +00005752<!-- _______________________________________________________________________ -->
5753<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005754 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005755</div>
5756
5757<div class="doc_text">
5758
5759<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00005760<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005761 width. Not all targets support all bit widths however.</p>
5762
Chris Lattner3649c3a2004-02-14 04:08:35 +00005763<pre>
Chris Lattnerdd708342008-11-21 16:42:48 +00005764 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005765 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerdd708342008-11-21 16:42:48 +00005766 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5767 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005768 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005769 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005770 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005771 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005772</pre>
5773
5774<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005775<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5776 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005777
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005778<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5779 intrinsic does not return a value, and takes an extra alignment argument.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005780
5781<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005782<p>The first argument is a pointer to the destination to fill, the second is the
5783 byte value to fill it with, the third argument is an integer argument
5784 specifying the number of bytes to fill, and the fourth argument is the known
5785 alignment of destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005786
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005787<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5788 then the caller guarantees that the destination pointer is aligned to that
5789 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005790
5791<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005792<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5793 at the destination location. If the argument is known to be aligned to some
5794 boundary, this can be specified as the fourth argument, otherwise it should
5795 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005796
Chris Lattner3649c3a2004-02-14 04:08:35 +00005797</div>
5798
Chris Lattner3b4f4372004-06-11 02:28:03 +00005799<!-- _______________________________________________________________________ -->
5800<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005801 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005802</div>
5803
5804<div class="doc_text">
5805
5806<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005807<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5808 floating point or vector of floating point type. Not all targets support all
5809 types however.</p>
5810
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005811<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005812 declare float @llvm.sqrt.f32(float %Val)
5813 declare double @llvm.sqrt.f64(double %Val)
5814 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5815 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5816 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005817</pre>
5818
5819<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005820<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5821 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5822 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5823 behavior for negative numbers other than -0.0 (which allows for better
5824 optimization, because there is no need to worry about errno being
5825 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005826
5827<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005828<p>The argument and return value are floating point numbers of the same
5829 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005830
5831<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005832<p>This function returns the sqrt of the specified operand if it is a
5833 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005834
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005835</div>
5836
Chris Lattner33b73f92006-09-08 06:34:02 +00005837<!-- _______________________________________________________________________ -->
5838<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005839 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005840</div>
5841
5842<div class="doc_text">
5843
5844<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005845<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5846 floating point or vector of floating point type. Not all targets support all
5847 types however.</p>
5848
Chris Lattner33b73f92006-09-08 06:34:02 +00005849<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005850 declare float @llvm.powi.f32(float %Val, i32 %power)
5851 declare double @llvm.powi.f64(double %Val, i32 %power)
5852 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5853 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5854 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005855</pre>
5856
5857<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005858<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5859 specified (positive or negative) power. The order of evaluation of
5860 multiplications is not defined. When a vector of floating point type is
5861 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005862
5863<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005864<p>The second argument is an integer power, and the first is a value to raise to
5865 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005866
5867<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005868<p>This function returns the first value raised to the second power with an
5869 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00005870
Chris Lattner33b73f92006-09-08 06:34:02 +00005871</div>
5872
Dan Gohmanb6324c12007-10-15 20:30:11 +00005873<!-- _______________________________________________________________________ -->
5874<div class="doc_subsubsection">
5875 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5876</div>
5877
5878<div class="doc_text">
5879
5880<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005881<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5882 floating point or vector of floating point type. Not all targets support all
5883 types however.</p>
5884
Dan Gohmanb6324c12007-10-15 20:30:11 +00005885<pre>
5886 declare float @llvm.sin.f32(float %Val)
5887 declare double @llvm.sin.f64(double %Val)
5888 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5889 declare fp128 @llvm.sin.f128(fp128 %Val)
5890 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5891</pre>
5892
5893<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005894<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005895
5896<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005897<p>The argument and return value are floating point numbers of the same
5898 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005899
5900<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005901<p>This function returns the sine of the specified operand, returning the same
5902 values as the libm <tt>sin</tt> functions would, and handles error conditions
5903 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005904
Dan Gohmanb6324c12007-10-15 20:30:11 +00005905</div>
5906
5907<!-- _______________________________________________________________________ -->
5908<div class="doc_subsubsection">
5909 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5910</div>
5911
5912<div class="doc_text">
5913
5914<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005915<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5916 floating point or vector of floating point type. Not all targets support all
5917 types however.</p>
5918
Dan Gohmanb6324c12007-10-15 20:30:11 +00005919<pre>
5920 declare float @llvm.cos.f32(float %Val)
5921 declare double @llvm.cos.f64(double %Val)
5922 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5923 declare fp128 @llvm.cos.f128(fp128 %Val)
5924 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5925</pre>
5926
5927<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005928<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005929
5930<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005931<p>The argument and return value are floating point numbers of the same
5932 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005933
5934<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005935<p>This function returns the cosine of the specified operand, returning the same
5936 values as the libm <tt>cos</tt> functions would, and handles error conditions
5937 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005938
Dan Gohmanb6324c12007-10-15 20:30:11 +00005939</div>
5940
5941<!-- _______________________________________________________________________ -->
5942<div class="doc_subsubsection">
5943 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5944</div>
5945
5946<div class="doc_text">
5947
5948<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005949<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5950 floating point or vector of floating point type. Not all targets support all
5951 types however.</p>
5952
Dan Gohmanb6324c12007-10-15 20:30:11 +00005953<pre>
5954 declare float @llvm.pow.f32(float %Val, float %Power)
5955 declare double @llvm.pow.f64(double %Val, double %Power)
5956 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5957 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5958 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5959</pre>
5960
5961<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005962<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5963 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005964
5965<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005966<p>The second argument is a floating point power, and the first is a value to
5967 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005968
5969<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005970<p>This function returns the first value raised to the second power, returning
5971 the same values as the libm <tt>pow</tt> functions would, and handles error
5972 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005973
Dan Gohmanb6324c12007-10-15 20:30:11 +00005974</div>
5975
Andrew Lenharth1d463522005-05-03 18:01:48 +00005976<!-- ======================================================================= -->
5977<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005978 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005979</div>
5980
5981<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005982
5983<p>LLVM provides intrinsics for a few important bit manipulation operations.
5984 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005985
5986</div>
5987
5988<!-- _______________________________________________________________________ -->
5989<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005990 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005991</div>
5992
5993<div class="doc_text">
5994
5995<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005996<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005997 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5998
Nate Begeman0f223bb2006-01-13 23:26:38 +00005999<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006000 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6001 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6002 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006003</pre>
6004
6005<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006006<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6007 values with an even number of bytes (positive multiple of 16 bits). These
6008 are useful for performing operations on data that is not in the target's
6009 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006010
6011<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006012<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6013 and low byte of the input i16 swapped. Similarly,
6014 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6015 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6016 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6017 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6018 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6019 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006020
6021</div>
6022
6023<!-- _______________________________________________________________________ -->
6024<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006025 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006026</div>
6027
6028<div class="doc_text">
6029
6030<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006031<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006032 width. Not all targets support all bit widths however.</p>
6033
Andrew Lenharth1d463522005-05-03 18:01:48 +00006034<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006035 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006036 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006037 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006038 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6039 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006040</pre>
6041
6042<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006043<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6044 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006045
6046<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006047<p>The only argument is the value to be counted. The argument may be of any
6048 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006049
6050<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006051<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006052
Andrew Lenharth1d463522005-05-03 18:01:48 +00006053</div>
6054
6055<!-- _______________________________________________________________________ -->
6056<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006057 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006058</div>
6059
6060<div class="doc_text">
6061
6062<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006063<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6064 integer bit width. Not all targets support all bit widths however.</p>
6065
Andrew Lenharth1d463522005-05-03 18:01:48 +00006066<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006067 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6068 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006069 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006070 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6071 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006072</pre>
6073
6074<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006075<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6076 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006077
6078<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006079<p>The only argument is the value to be counted. The argument may be of any
6080 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006081
6082<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006083<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6084 zeros in a variable. If the src == 0 then the result is the size in bits of
6085 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006086
Andrew Lenharth1d463522005-05-03 18:01:48 +00006087</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006088
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006089<!-- _______________________________________________________________________ -->
6090<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00006091 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006092</div>
6093
6094<div class="doc_text">
6095
6096<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006097<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6098 integer bit width. Not all targets support all bit widths however.</p>
6099
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006100<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006101 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6102 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006103 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006104 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6105 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006106</pre>
6107
6108<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006109<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6110 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006111
6112<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006113<p>The only argument is the value to be counted. The argument may be of any
6114 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006115
6116<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006117<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6118 zeros in a variable. If the src == 0 then the result is the size in bits of
6119 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006120
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006121</div>
6122
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006123<!-- ======================================================================= -->
6124<div class="doc_subsection">
6125 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6126</div>
6127
6128<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006129
6130<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006131
6132</div>
6133
Bill Wendlingf4d70622009-02-08 01:40:31 +00006134<!-- _______________________________________________________________________ -->
6135<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006136 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006137</div>
6138
6139<div class="doc_text">
6140
6141<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006142<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006143 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006144
6145<pre>
6146 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6147 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6148 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6149</pre>
6150
6151<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006152<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006153 a signed addition of the two arguments, and indicate whether an overflow
6154 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006155
6156<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006157<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006158 be of integer types of any bit width, but they must have the same bit
6159 width. The second element of the result structure must be of
6160 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6161 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006162
6163<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006164<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006165 a signed addition of the two variables. They return a structure &mdash; the
6166 first element of which is the signed summation, and the second element of
6167 which is a bit specifying if the signed summation resulted in an
6168 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006169
6170<h5>Examples:</h5>
6171<pre>
6172 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6173 %sum = extractvalue {i32, i1} %res, 0
6174 %obit = extractvalue {i32, i1} %res, 1
6175 br i1 %obit, label %overflow, label %normal
6176</pre>
6177
6178</div>
6179
6180<!-- _______________________________________________________________________ -->
6181<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006182 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006183</div>
6184
6185<div class="doc_text">
6186
6187<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006188<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006189 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006190
6191<pre>
6192 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6193 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6194 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6195</pre>
6196
6197<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006198<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006199 an unsigned addition of the two arguments, and indicate whether a carry
6200 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006201
6202<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006203<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006204 be of integer types of any bit width, but they must have the same bit
6205 width. The second element of the result structure must be of
6206 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6207 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006208
6209<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006210<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006211 an unsigned addition of the two arguments. They return a structure &mdash;
6212 the first element of which is the sum, and the second element of which is a
6213 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006214
6215<h5>Examples:</h5>
6216<pre>
6217 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6218 %sum = extractvalue {i32, i1} %res, 0
6219 %obit = extractvalue {i32, i1} %res, 1
6220 br i1 %obit, label %carry, label %normal
6221</pre>
6222
6223</div>
6224
6225<!-- _______________________________________________________________________ -->
6226<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006227 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006228</div>
6229
6230<div class="doc_text">
6231
6232<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006233<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006234 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006235
6236<pre>
6237 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6238 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6239 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6240</pre>
6241
6242<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006243<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006244 a signed subtraction of the two arguments, and indicate whether an overflow
6245 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006246
6247<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006248<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006249 be of integer types of any bit width, but they must have the same bit
6250 width. The second element of the result structure must be of
6251 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6252 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006253
6254<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006255<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006256 a signed subtraction of the two arguments. They return a structure &mdash;
6257 the first element of which is the subtraction, and the second element of
6258 which is a bit specifying if the signed subtraction resulted in an
6259 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006260
6261<h5>Examples:</h5>
6262<pre>
6263 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6264 %sum = extractvalue {i32, i1} %res, 0
6265 %obit = extractvalue {i32, i1} %res, 1
6266 br i1 %obit, label %overflow, label %normal
6267</pre>
6268
6269</div>
6270
6271<!-- _______________________________________________________________________ -->
6272<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006273 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006274</div>
6275
6276<div class="doc_text">
6277
6278<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006279<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006280 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006281
6282<pre>
6283 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6284 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6285 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6286</pre>
6287
6288<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006289<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006290 an unsigned subtraction of the two arguments, and indicate whether an
6291 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006292
6293<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006294<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006295 be of integer types of any bit width, but they must have the same bit
6296 width. The second element of the result structure must be of
6297 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6298 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006299
6300<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006301<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006302 an unsigned subtraction of the two arguments. They return a structure &mdash;
6303 the first element of which is the subtraction, and the second element of
6304 which is a bit specifying if the unsigned subtraction resulted in an
6305 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006306
6307<h5>Examples:</h5>
6308<pre>
6309 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6310 %sum = extractvalue {i32, i1} %res, 0
6311 %obit = extractvalue {i32, i1} %res, 1
6312 br i1 %obit, label %overflow, label %normal
6313</pre>
6314
6315</div>
6316
6317<!-- _______________________________________________________________________ -->
6318<div class="doc_subsubsection">
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006319 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006320</div>
6321
6322<div class="doc_text">
6323
6324<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006325<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006326 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006327
6328<pre>
6329 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6330 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6331 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6332</pre>
6333
6334<h5>Overview:</h5>
6335
6336<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006337 a signed multiplication of the two arguments, and indicate whether an
6338 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006339
6340<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006341<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006342 be of integer types of any bit width, but they must have the same bit
6343 width. The second element of the result structure must be of
6344 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6345 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006346
6347<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006348<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006349 a signed multiplication of the two arguments. They return a structure &mdash;
6350 the first element of which is the multiplication, and the second element of
6351 which is a bit specifying if the signed multiplication resulted in an
6352 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006353
6354<h5>Examples:</h5>
6355<pre>
6356 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6357 %sum = extractvalue {i32, i1} %res, 0
6358 %obit = extractvalue {i32, i1} %res, 1
6359 br i1 %obit, label %overflow, label %normal
6360</pre>
6361
Reid Spencer5bf54c82007-04-11 23:23:49 +00006362</div>
6363
Bill Wendlingb9a73272009-02-08 23:00:09 +00006364<!-- _______________________________________________________________________ -->
6365<div class="doc_subsubsection">
6366 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6367</div>
6368
6369<div class="doc_text">
6370
6371<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006372<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006373 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006374
6375<pre>
6376 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6377 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6378 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6379</pre>
6380
6381<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006382<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006383 a unsigned multiplication of the two arguments, and indicate whether an
6384 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006385
6386<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006387<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006388 be of integer types of any bit width, but they must have the same bit
6389 width. The second element of the result structure must be of
6390 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6391 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006392
6393<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006394<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006395 an unsigned multiplication of the two arguments. They return a structure
6396 &mdash; the first element of which is the multiplication, and the second
6397 element of which is a bit specifying if the unsigned multiplication resulted
6398 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006399
6400<h5>Examples:</h5>
6401<pre>
6402 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6403 %sum = extractvalue {i32, i1} %res, 0
6404 %obit = extractvalue {i32, i1} %res, 1
6405 br i1 %obit, label %overflow, label %normal
6406</pre>
6407
6408</div>
6409
Chris Lattner941515c2004-01-06 05:31:32 +00006410<!-- ======================================================================= -->
6411<div class="doc_subsection">
6412 <a name="int_debugger">Debugger Intrinsics</a>
6413</div>
6414
6415<div class="doc_text">
Chris Lattner941515c2004-01-06 05:31:32 +00006416
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006417<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6418 prefix), are described in
6419 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6420 Level Debugging</a> document.</p>
6421
6422</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006423
Jim Laskey2211f492007-03-14 19:31:19 +00006424<!-- ======================================================================= -->
6425<div class="doc_subsection">
6426 <a name="int_eh">Exception Handling Intrinsics</a>
6427</div>
6428
6429<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006430
6431<p>The LLVM exception handling intrinsics (which all start with
6432 <tt>llvm.eh.</tt> prefix), are described in
6433 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6434 Handling</a> document.</p>
6435
Jim Laskey2211f492007-03-14 19:31:19 +00006436</div>
6437
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006438<!-- ======================================================================= -->
6439<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00006440 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00006441</div>
6442
6443<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006444
6445<p>This intrinsic makes it possible to excise one parameter, marked with
6446 the <tt>nest</tt> attribute, from a function. The result is a callable
6447 function pointer lacking the nest parameter - the caller does not need to
6448 provide a value for it. Instead, the value to use is stored in advance in a
6449 "trampoline", a block of memory usually allocated on the stack, which also
6450 contains code to splice the nest value into the argument list. This is used
6451 to implement the GCC nested function address extension.</p>
6452
6453<p>For example, if the function is
6454 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6455 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6456 follows:</p>
6457
6458<div class="doc_code">
Duncan Sands644f9172007-07-27 12:58:54 +00006459<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00006460 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6461 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6462 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6463 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00006464</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006465</div>
6466
6467<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6468 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6469
Duncan Sands644f9172007-07-27 12:58:54 +00006470</div>
6471
6472<!-- _______________________________________________________________________ -->
6473<div class="doc_subsubsection">
6474 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6475</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006476
Duncan Sands644f9172007-07-27 12:58:54 +00006477<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006478
Duncan Sands644f9172007-07-27 12:58:54 +00006479<h5>Syntax:</h5>
6480<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006481 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00006482</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006483
Duncan Sands644f9172007-07-27 12:58:54 +00006484<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006485<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6486 function pointer suitable for executing it.</p>
6487
Duncan Sands644f9172007-07-27 12:58:54 +00006488<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006489<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6490 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6491 sufficiently aligned block of memory; this memory is written to by the
6492 intrinsic. Note that the size and the alignment are target-specific - LLVM
6493 currently provides no portable way of determining them, so a front-end that
6494 generates this intrinsic needs to have some target-specific knowledge.
6495 The <tt>func</tt> argument must hold a function bitcast to
6496 an <tt>i8*</tt>.</p>
6497
Duncan Sands644f9172007-07-27 12:58:54 +00006498<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006499<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6500 dependent code, turning it into a function. A pointer to this function is
6501 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6502 function pointer type</a> before being called. The new function's signature
6503 is the same as that of <tt>func</tt> with any arguments marked with
6504 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6505 is allowed, and it must be of pointer type. Calling the new function is
6506 equivalent to calling <tt>func</tt> with the same argument list, but
6507 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6508 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6509 by <tt>tramp</tt> is modified, then the effect of any later call to the
6510 returned function pointer is undefined.</p>
6511
Duncan Sands644f9172007-07-27 12:58:54 +00006512</div>
6513
6514<!-- ======================================================================= -->
6515<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006516 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6517</div>
6518
6519<div class="doc_text">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006520
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006521<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6522 hardware constructs for atomic operations and memory synchronization. This
6523 provides an interface to the hardware, not an interface to the programmer. It
6524 is aimed at a low enough level to allow any programming models or APIs
6525 (Application Programming Interfaces) which need atomic behaviors to map
6526 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6527 hardware provides a "universal IR" for source languages, it also provides a
6528 starting point for developing a "universal" atomic operation and
6529 synchronization IR.</p>
6530
6531<p>These do <em>not</em> form an API such as high-level threading libraries,
6532 software transaction memory systems, atomic primitives, and intrinsic
6533 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6534 application libraries. The hardware interface provided by LLVM should allow
6535 a clean implementation of all of these APIs and parallel programming models.
6536 No one model or paradigm should be selected above others unless the hardware
6537 itself ubiquitously does so.</p>
6538
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006539</div>
6540
6541<!-- _______________________________________________________________________ -->
6542<div class="doc_subsubsection">
6543 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6544</div>
6545<div class="doc_text">
6546<h5>Syntax:</h5>
6547<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006548 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006549</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006550
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006551<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006552<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6553 specific pairs of memory access types.</p>
6554
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006555<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006556<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6557 The first four arguments enables a specific barrier as listed below. The
6558 fith argument specifies that the barrier applies to io or device or uncached
6559 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006560
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006561<ul>
6562 <li><tt>ll</tt>: load-load barrier</li>
6563 <li><tt>ls</tt>: load-store barrier</li>
6564 <li><tt>sl</tt>: store-load barrier</li>
6565 <li><tt>ss</tt>: store-store barrier</li>
6566 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6567</ul>
6568
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006569<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006570<p>This intrinsic causes the system to enforce some ordering constraints upon
6571 the loads and stores of the program. This barrier does not
6572 indicate <em>when</em> any events will occur, it only enforces
6573 an <em>order</em> in which they occur. For any of the specified pairs of load
6574 and store operations (f.ex. load-load, or store-load), all of the first
6575 operations preceding the barrier will complete before any of the second
6576 operations succeeding the barrier begin. Specifically the semantics for each
6577 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006578
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006579<ul>
6580 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6581 after the barrier begins.</li>
6582 <li><tt>ls</tt>: All loads before the barrier must complete before any
6583 store after the barrier begins.</li>
6584 <li><tt>ss</tt>: All stores before the barrier must complete before any
6585 store after the barrier begins.</li>
6586 <li><tt>sl</tt>: All stores before the barrier must complete before any
6587 load after the barrier begins.</li>
6588</ul>
6589
6590<p>These semantics are applied with a logical "and" behavior when more than one
6591 is enabled in a single memory barrier intrinsic.</p>
6592
6593<p>Backends may implement stronger barriers than those requested when they do
6594 not support as fine grained a barrier as requested. Some architectures do
6595 not need all types of barriers and on such architectures, these become
6596 noops.</p>
6597
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006598<h5>Example:</h5>
6599<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006600%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6601%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006602 store i32 4, %ptr
6603
6604%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6605 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6606 <i>; guarantee the above finishes</i>
6607 store i32 8, %ptr <i>; before this begins</i>
6608</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006609
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006610</div>
6611
Andrew Lenharth95528942008-02-21 06:45:13 +00006612<!-- _______________________________________________________________________ -->
6613<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006614 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006615</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006616
Andrew Lenharth95528942008-02-21 06:45:13 +00006617<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006618
Andrew Lenharth95528942008-02-21 06:45:13 +00006619<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006620<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6621 any integer bit width and for different address spaces. Not all targets
6622 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006623
6624<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006625 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6626 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6627 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6628 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006629</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006630
Andrew Lenharth95528942008-02-21 06:45:13 +00006631<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006632<p>This loads a value in memory and compares it to a given value. If they are
6633 equal, it stores a new value into the memory.</p>
6634
Andrew Lenharth95528942008-02-21 06:45:13 +00006635<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006636<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6637 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6638 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6639 this integer type. While any bit width integer may be used, targets may only
6640 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006641
Andrew Lenharth95528942008-02-21 06:45:13 +00006642<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006643<p>This entire intrinsic must be executed atomically. It first loads the value
6644 in memory pointed to by <tt>ptr</tt> and compares it with the
6645 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6646 memory. The loaded value is yielded in all cases. This provides the
6647 equivalent of an atomic compare-and-swap operation within the SSA
6648 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006649
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006650<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00006651<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006652%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6653%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00006654 store i32 4, %ptr
6655
6656%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006657%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006658 <i>; yields {i32}:result1 = 4</i>
6659%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6660%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6661
6662%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006663%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006664 <i>; yields {i32}:result2 = 8</i>
6665%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6666
6667%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6668</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669
Andrew Lenharth95528942008-02-21 06:45:13 +00006670</div>
6671
6672<!-- _______________________________________________________________________ -->
6673<div class="doc_subsubsection">
6674 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6675</div>
6676<div class="doc_text">
6677<h5>Syntax:</h5>
6678
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006679<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6680 integer bit width. Not all targets support all bit widths however.</p>
6681
Andrew Lenharth95528942008-02-21 06:45:13 +00006682<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006683 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6684 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6685 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6686 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006687</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006688
Andrew Lenharth95528942008-02-21 06:45:13 +00006689<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006690<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6691 the value from memory. It then stores the value in <tt>val</tt> in the memory
6692 at <tt>ptr</tt>.</p>
6693
Andrew Lenharth95528942008-02-21 06:45:13 +00006694<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006695<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6696 the <tt>val</tt> argument and the result must be integers of the same bit
6697 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6698 integer type. The targets may only lower integer representations they
6699 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006700
Andrew Lenharth95528942008-02-21 06:45:13 +00006701<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006702<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6703 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6704 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006705
Andrew Lenharth95528942008-02-21 06:45:13 +00006706<h5>Examples:</h5>
6707<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006708%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6709%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00006710 store i32 4, %ptr
6711
6712%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00006713%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006714 <i>; yields {i32}:result1 = 4</i>
6715%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6716%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6717
6718%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00006719%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006720 <i>; yields {i32}:result2 = 8</i>
6721
6722%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6723%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6724</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006725
Andrew Lenharth95528942008-02-21 06:45:13 +00006726</div>
6727
6728<!-- _______________________________________________________________________ -->
6729<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006730 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006731
6732</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006733
Andrew Lenharth95528942008-02-21 06:45:13 +00006734<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006735
Andrew Lenharth95528942008-02-21 06:45:13 +00006736<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006737<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6738 any integer bit width. Not all targets support all bit widths however.</p>
6739
Andrew Lenharth95528942008-02-21 06:45:13 +00006740<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006741 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6742 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6743 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6744 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006745</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00006746
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006747<h5>Overview:</h5>
6748<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6749 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6750
6751<h5>Arguments:</h5>
6752<p>The intrinsic takes two arguments, the first a pointer to an integer value
6753 and the second an integer value. The result is also an integer value. These
6754 integer types can have any bit width, but they must all have the same bit
6755 width. The targets may only lower integer representations they support.</p>
6756
Andrew Lenharth95528942008-02-21 06:45:13 +00006757<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006758<p>This intrinsic does a series of operations atomically. It first loads the
6759 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6760 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00006761
6762<h5>Examples:</h5>
6763<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006764%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6765%ptr = bitcast i8* %mallocP to i32*
6766 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006767%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006768 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006769%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006770 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006771%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006772 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006773%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006774</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006775
Andrew Lenharth95528942008-02-21 06:45:13 +00006776</div>
6777
Mon P Wang6a490372008-06-25 08:15:39 +00006778<!-- _______________________________________________________________________ -->
6779<div class="doc_subsubsection">
6780 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6781
6782</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006783
Mon P Wang6a490372008-06-25 08:15:39 +00006784<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006785
Mon P Wang6a490372008-06-25 08:15:39 +00006786<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006787<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6788 any integer bit width and for different address spaces. Not all targets
6789 support all bit widths however.</p>
6790
Mon P Wang6a490372008-06-25 08:15:39 +00006791<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006792 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6793 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6794 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6795 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006796</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006797
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006798<h5>Overview:</h5>
6799<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6800 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6801
6802<h5>Arguments:</h5>
6803<p>The intrinsic takes two arguments, the first a pointer to an integer value
6804 and the second an integer value. The result is also an integer value. These
6805 integer types can have any bit width, but they must all have the same bit
6806 width. The targets may only lower integer representations they support.</p>
6807
Mon P Wang6a490372008-06-25 08:15:39 +00006808<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006809<p>This intrinsic does a series of operations atomically. It first loads the
6810 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6811 result to <tt>ptr</tt>. It yields the original value stored
6812 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006813
6814<h5>Examples:</h5>
6815<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006816%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6817%ptr = bitcast i8* %mallocP to i32*
6818 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006819%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006820 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006821%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006822 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006823%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006824 <i>; yields {i32}:result3 = 2</i>
6825%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6826</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006827
Mon P Wang6a490372008-06-25 08:15:39 +00006828</div>
6829
6830<!-- _______________________________________________________________________ -->
6831<div class="doc_subsubsection">
6832 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6833 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6834 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6835 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006836</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006837
Mon P Wang6a490372008-06-25 08:15:39 +00006838<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006839
Mon P Wang6a490372008-06-25 08:15:39 +00006840<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006841<p>These are overloaded intrinsics. You can
6842 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6843 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6844 bit width and for different address spaces. Not all targets support all bit
6845 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006846
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006847<pre>
6848 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6849 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6850 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6851 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006852</pre>
6853
6854<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006855 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6856 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6857 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6858 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006859</pre>
6860
6861<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006862 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6863 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6864 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6865 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006866</pre>
6867
6868<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006869 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6870 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6871 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6872 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006873</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006874
Mon P Wang6a490372008-06-25 08:15:39 +00006875<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006876<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6877 the value stored in memory at <tt>ptr</tt>. It yields the original value
6878 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006879
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006880<h5>Arguments:</h5>
6881<p>These intrinsics take two arguments, the first a pointer to an integer value
6882 and the second an integer value. The result is also an integer value. These
6883 integer types can have any bit width, but they must all have the same bit
6884 width. The targets may only lower integer representations they support.</p>
6885
Mon P Wang6a490372008-06-25 08:15:39 +00006886<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006887<p>These intrinsics does a series of operations atomically. They first load the
6888 value stored at <tt>ptr</tt>. They then do the bitwise
6889 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6890 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006891
6892<h5>Examples:</h5>
6893<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006894%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6895%ptr = bitcast i8* %mallocP to i32*
6896 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006897%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006898 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006899%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006900 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006901%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006902 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006903%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006904 <i>; yields {i32}:result3 = FF</i>
6905%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6906</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00006907
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006908</div>
Mon P Wang6a490372008-06-25 08:15:39 +00006909
6910<!-- _______________________________________________________________________ -->
6911<div class="doc_subsubsection">
6912 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6913 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6914 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6915 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6a490372008-06-25 08:15:39 +00006916</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006917
Mon P Wang6a490372008-06-25 08:15:39 +00006918<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006919
Mon P Wang6a490372008-06-25 08:15:39 +00006920<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006921<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6922 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6923 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6924 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006925
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006926<pre>
6927 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6928 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6929 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6930 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006931</pre>
6932
6933<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006934 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6935 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6936 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6937 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006938</pre>
6939
6940<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006941 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6942 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6943 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6944 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006945</pre>
6946
6947<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006948 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6949 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6950 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6951 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006952</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006953
Mon P Wang6a490372008-06-25 08:15:39 +00006954<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006955<p>These intrinsics takes the signed or unsigned minimum or maximum of
6956 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6957 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006958
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006959<h5>Arguments:</h5>
6960<p>These intrinsics take two arguments, the first a pointer to an integer value
6961 and the second an integer value. The result is also an integer value. These
6962 integer types can have any bit width, but they must all have the same bit
6963 width. The targets may only lower integer representations they support.</p>
6964
Mon P Wang6a490372008-06-25 08:15:39 +00006965<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006966<p>These intrinsics does a series of operations atomically. They first load the
6967 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6968 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6969 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006970
6971<h5>Examples:</h5>
6972<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00006973%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
6974%ptr = bitcast i8* %mallocP to i32*
6975 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006976%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006977 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006978%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006979 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006980%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006981 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006982%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006983 <i>; yields {i32}:result3 = 8</i>
6984%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6985</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006986
Mon P Wang6a490372008-06-25 08:15:39 +00006987</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006988
Nick Lewycky6f7d8342009-10-13 07:03:23 +00006989
6990<!-- ======================================================================= -->
6991<div class="doc_subsection">
6992 <a name="int_memorymarkers">Memory Use Markers</a>
6993</div>
6994
6995<div class="doc_text">
6996
6997<p>This class of intrinsics exists to information about the lifetime of memory
6998 objects and ranges where variables are immutable.</p>
6999
7000</div>
7001
7002<!-- _______________________________________________________________________ -->
7003<div class="doc_subsubsection">
7004 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7005</div>
7006
7007<div class="doc_text">
7008
7009<h5>Syntax:</h5>
7010<pre>
7011 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7012</pre>
7013
7014<h5>Overview:</h5>
7015<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7016 object's lifetime.</p>
7017
7018<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007019<p>The first argument is a constant integer representing the size of the
7020 object, or -1 if it is variable sized. The second argument is a pointer to
7021 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007022
7023<h5>Semantics:</h5>
7024<p>This intrinsic indicates that before this point in the code, the value of the
7025 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007026 never be used and has an undefined value. A load from the pointer that
7027 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007028 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7029
7030</div>
7031
7032<!-- _______________________________________________________________________ -->
7033<div class="doc_subsubsection">
7034 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7035</div>
7036
7037<div class="doc_text">
7038
7039<h5>Syntax:</h5>
7040<pre>
7041 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7042</pre>
7043
7044<h5>Overview:</h5>
7045<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7046 object's lifetime.</p>
7047
7048<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007049<p>The first argument is a constant integer representing the size of the
7050 object, or -1 if it is variable sized. The second argument is a pointer to
7051 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007052
7053<h5>Semantics:</h5>
7054<p>This intrinsic indicates that after this point in the code, the value of the
7055 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7056 never be used and has an undefined value. Any stores into the memory object
7057 following this intrinsic may be removed as dead.
7058
7059</div>
7060
7061<!-- _______________________________________________________________________ -->
7062<div class="doc_subsubsection">
7063 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7064</div>
7065
7066<div class="doc_text">
7067
7068<h5>Syntax:</h5>
7069<pre>
7070 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7071</pre>
7072
7073<h5>Overview:</h5>
7074<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7075 a memory object will not change.</p>
7076
7077<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007078<p>The first argument is a constant integer representing the size of the
7079 object, or -1 if it is variable sized. The second argument is a pointer to
7080 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007081
7082<h5>Semantics:</h5>
7083<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7084 the return value, the referenced memory location is constant and
7085 unchanging.</p>
7086
7087</div>
7088
7089<!-- _______________________________________________________________________ -->
7090<div class="doc_subsubsection">
7091 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7092</div>
7093
7094<div class="doc_text">
7095
7096<h5>Syntax:</h5>
7097<pre>
7098 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7099</pre>
7100
7101<h5>Overview:</h5>
7102<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7103 a memory object are mutable.</p>
7104
7105<h5>Arguments:</h5>
7106<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007107 The second argument is a constant integer representing the size of the
7108 object, or -1 if it is variable sized and the third argument is a pointer
7109 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007110
7111<h5>Semantics:</h5>
7112<p>This intrinsic indicates that the memory is mutable again.</p>
7113
7114</div>
7115
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007116<!-- ======================================================================= -->
7117<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007118 <a name="int_general">General Intrinsics</a>
7119</div>
7120
7121<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007122
7123<p>This class of intrinsics is designed to be generic and has no specific
7124 purpose.</p>
7125
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007126</div>
7127
7128<!-- _______________________________________________________________________ -->
7129<div class="doc_subsubsection">
7130 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7131</div>
7132
7133<div class="doc_text">
7134
7135<h5>Syntax:</h5>
7136<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00007137 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007138</pre>
7139
7140<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007141<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007142
7143<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007144<p>The first argument is a pointer to a value, the second is a pointer to a
7145 global string, the third is a pointer to a global string which is the source
7146 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007147
7148<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007149<p>This intrinsic allows annotation of local variables with arbitrary strings.
7150 This can be useful for special purpose optimizations that want to look for
7151 these annotations. These have no other defined use, they are ignored by code
7152 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007153
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007154</div>
7155
Tanya Lattner293c0372007-09-21 22:59:12 +00007156<!-- _______________________________________________________________________ -->
7157<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00007158 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00007159</div>
7160
7161<div class="doc_text">
7162
7163<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007164<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7165 any integer bit width.</p>
7166
Tanya Lattner293c0372007-09-21 22:59:12 +00007167<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00007168 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7169 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7170 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7171 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7172 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00007173</pre>
7174
7175<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007176<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007177
7178<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007179<p>The first argument is an integer value (result of some expression), the
7180 second is a pointer to a global string, the third is a pointer to a global
7181 string which is the source file name, and the last argument is the line
7182 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007183
7184<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007185<p>This intrinsic allows annotations to be put on arbitrary expressions with
7186 arbitrary strings. This can be useful for special purpose optimizations that
7187 want to look for these annotations. These have no other defined use, they
7188 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007189
Tanya Lattner293c0372007-09-21 22:59:12 +00007190</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007191
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007192<!-- _______________________________________________________________________ -->
7193<div class="doc_subsubsection">
7194 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7195</div>
7196
7197<div class="doc_text">
7198
7199<h5>Syntax:</h5>
7200<pre>
7201 declare void @llvm.trap()
7202</pre>
7203
7204<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007205<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007206
7207<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007208<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007209
7210<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007211<p>This intrinsics is lowered to the target dependent trap instruction. If the
7212 target does not have a trap instruction, this intrinsic will be lowered to
7213 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007214
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007215</div>
7216
Bill Wendling14313312008-11-19 05:56:17 +00007217<!-- _______________________________________________________________________ -->
7218<div class="doc_subsubsection">
Misha Brukman50de2b22008-11-22 23:55:29 +00007219 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling14313312008-11-19 05:56:17 +00007220</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007221
Bill Wendling14313312008-11-19 05:56:17 +00007222<div class="doc_text">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007223
Bill Wendling14313312008-11-19 05:56:17 +00007224<h5>Syntax:</h5>
7225<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007226 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendling14313312008-11-19 05:56:17 +00007227</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007228
Bill Wendling14313312008-11-19 05:56:17 +00007229<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007230<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7231 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7232 ensure that it is placed on the stack before local variables.</p>
7233
Bill Wendling14313312008-11-19 05:56:17 +00007234<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007235<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7236 arguments. The first argument is the value loaded from the stack
7237 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7238 that has enough space to hold the value of the guard.</p>
7239
Bill Wendling14313312008-11-19 05:56:17 +00007240<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007241<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7242 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7243 stack. This is to ensure that if a local variable on the stack is
7244 overwritten, it will destroy the value of the guard. When the function exits,
7245 the guard on the stack is checked against the original guard. If they're
7246 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7247 function.</p>
7248
Bill Wendling14313312008-11-19 05:56:17 +00007249</div>
7250
Eric Christopher73484322009-11-30 08:03:53 +00007251<!-- _______________________________________________________________________ -->
7252<div class="doc_subsubsection">
7253 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7254</div>
7255
7256<div class="doc_text">
7257
7258<h5>Syntax:</h5>
7259<pre>
7260 declare i32 @llvm.objectsize.i32( i8* &lt;ptr&gt;, i32 &lt;type&gt; )
7261 declare i64 @llvm.objectsize.i64( i8* &lt;ptr&gt;, i32 &lt;type&gt; )
7262</pre>
7263
7264<h5>Overview:</h5>
7265<p>The <tt>llvm.objectsize</tt> intrinsic returns the constant number of bytes
7266 from <tt>ptr</tt> to the end of the object <tt>ptr</tt> points to if it
7267 can deduce this at compile time. If there are any side-effects in evaluating
7268 the argument or it cannot deduce which objects <tt>ptr</tt> points to at compile
7269 time the intrinsic returns <tt>(size_t) -1</tt> for <tt>type</tt> 0
7270 or 1 and <tt>(size_t) 0</tt> for <tt>type</tt> 2 or 3.</p>
7271
7272<h5>Arguments:</h5>
7273<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
7274 argument is a pointer to the object <tt>ptr</tt> and an integer <tt>type</tt>.
7275 <tt>type</tt> is an integer ranging from 0 to 3. The lsb corresponds to
7276 a return value based on whole objects, the second bit whether or not we
7277 return the maximum or minimum remaining bytes computed.</p>
7278
7279<h5>Semantics:</h5>
7280<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
7281 representing the size of the object concerned or <tt>(size_t) -1</tt> if
7282 it cannot be determined at compile time.</p>
7283
7284</div>
7285
Chris Lattner2f7c9632001-06-06 20:29:01 +00007286<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007287<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007288<address>
7289 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007290 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007291 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007292 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007293
7294 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00007295 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007296 Last modified: $Date$
7297</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007298
Misha Brukman76307852003-11-08 01:05:38 +00007299</body>
7300</html>