blob: d003d027ddb9f5abc36058bc379f18e472808240 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Serge Pavlovd526b132017-05-09 13:35:13 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
47 (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000048 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000049 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000050 Requires<[NotLP64]>;
51def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
52 "#ADJCALLSTACKUP",
53 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
54 Requires<[NotLP64]>;
55}
Serge Pavlovd526b132017-05-09 13:35:13 +000056def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
57 (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
Michael Kuperstein13fbd452015-02-01 16:56:04 +000058
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000059
60// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
61// a stack adjustment and the codegen must know that they may modify the stack
62// pointer before prolog-epilog rewriting occurs.
63// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
64// sub / add which can clobber EFLAGS.
65let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Serge Pavlovd526b132017-05-09 13:35:13 +000066def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
67 (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000069 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000070 Requires<[IsLP64]>;
71def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
72 "#ADJCALLSTACKUP",
73 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
74 Requires<[IsLP64]>;
75}
Serge Pavlovd526b132017-05-09 13:35:13 +000076def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
77 (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000078
79
80// x86-64 va_start lowering magic.
81let usesCustomInserter = 1, Defs = [EFLAGS] in {
82def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
83 (outs),
84 (ins GR8:$al,
85 i64imm:$regsavefi, i64imm:$offset,
86 variable_ops),
87 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
88 [(X86vastart_save_xmm_regs GR8:$al,
89 imm:$regsavefi,
90 imm:$offset),
91 (implicit EFLAGS)]>;
92
93// The VAARG_64 pseudo-instruction takes the address of the va_list,
94// and places the address of the next argument into a register.
95let Defs = [EFLAGS] in
96def VAARG_64 : I<0, Pseudo,
97 (outs GR64:$dst),
98 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
99 "#VAARG_64 $dst, $ap, $size, $mode, $align",
100 [(set GR64:$dst,
101 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
102 (implicit EFLAGS)]>;
103
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000104
105// When using segmented stacks these are lowered into instructions which first
106// check if the current stacklet has enough free memory. If it does, memory is
107// allocated by bumping the stack pointer. Otherwise memory is allocated from
108// the heap.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
112 "# variable sized alloca for segmented stacks",
113 [(set GR32:$dst,
114 (X86SegAlloca GR32:$size))]>,
115 Requires<[NotLP64]>;
116
117let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
118def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
119 "# variable sized alloca for segmented stacks",
120 [(set GR64:$dst,
121 (X86SegAlloca GR64:$size))]>,
122 Requires<[In64BitMode]>;
123}
124
Hans Wennborg8eb336c2016-05-18 16:10:17 +0000125// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
126// targets. These calls are needed to probe the stack when allocating more than
127// 4k bytes in one go. Touching the stack at 4K increments is necessary to
128// ensure that the guard pages used by the OS virtual memory manager are
129// allocated in correct sequence.
130// The main point of having separate instruction are extra unmodelled effects
131// (compared to ordinary calls) like stack pointer change.
132
133let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
134def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
135 "# dynamic stack allocation",
136 [(X86WinAlloca GR32:$size)]>,
137 Requires<[NotLP64]>;
138
139let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
140def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
141 "# dynamic stack allocation",
142 [(X86WinAlloca GR64:$size)]>,
143 Requires<[In64BitMode]>;
144
145
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000146//===----------------------------------------------------------------------===//
147// EH Pseudo Instructions
148//
149let SchedRW = [WriteSystem] in {
150let isTerminator = 1, isReturn = 1, isBarrier = 1,
151 hasCtrlDep = 1, isCodeGenOnly = 1 in {
152def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
153 "ret\t#eh_return, addr: $addr",
154 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
155
156}
157
158let isTerminator = 1, isReturn = 1, isBarrier = 1,
159 hasCtrlDep = 1, isCodeGenOnly = 1 in {
160def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
161 "ret\t#eh_return, addr: $addr",
162 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
163
164}
165
Reid Kleckner51460c12015-11-06 01:49:05 +0000166let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
167 isCodeGenOnly = 1, isReturn = 1 in {
168 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
169
David Majnemer2652b752015-11-09 23:07:48 +0000170 // CATCHRET needs a custom inserter for SEH.
Reid Kleckner51460c12015-11-06 01:49:05 +0000171 let usesCustomInserter = 1 in
172 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
173 "# CATCHRET",
174 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000175}
176
Reid Kleckner420f0542015-11-09 23:34:42 +0000177let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
David Majnemer2652b752015-11-09 23:07:48 +0000178 usesCustomInserter = 1 in
179def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
180
Reid Kleckner51460c12015-11-06 01:49:05 +0000181// This instruction is responsible for re-establishing stack pointers after an
182// exception has been caught and we are rejoining normal control flow in the
183// parent function or funclet. It generally sets ESP and EBP, and optionally
184// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
185// elsewhere.
Reid Kleckner420f0542015-11-09 23:34:42 +0000186let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
Reid Kleckner51460c12015-11-06 01:49:05 +0000187def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
188
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000189let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
190 usesCustomInserter = 1 in {
191 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
192 "#EH_SJLJ_SETJMP32",
193 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
194 Requires<[Not64BitMode]>;
195 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
196 "#EH_SJLJ_SETJMP64",
197 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
198 Requires<[In64BitMode]>;
199 let isTerminator = 1 in {
200 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
201 "#EH_SJLJ_LONGJMP32",
202 [(X86eh_sjlj_longjmp addr:$buf)]>,
203 Requires<[Not64BitMode]>;
204 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
205 "#EH_SJLJ_LONGJMP64",
206 [(X86eh_sjlj_longjmp addr:$buf)]>,
207 Requires<[In64BitMode]>;
208 }
209}
210} // SchedRW
211
212let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
213 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
214 "#EH_SjLj_Setup\t$dst", []>;
215}
216
217//===----------------------------------------------------------------------===//
218// Pseudo instructions used by unwind info.
219//
220let isPseudo = 1 in {
221 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
222 "#SEH_PushReg $reg", []>;
223 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
224 "#SEH_SaveReg $reg, $dst", []>;
225 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
226 "#SEH_SaveXMM $reg, $dst", []>;
227 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
228 "#SEH_StackAlloc $size", []>;
229 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
230 "#SEH_SetFrame $reg, $offset", []>;
231 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
232 "#SEH_PushFrame $mode", []>;
233 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
234 "#SEH_EndPrologue", []>;
235 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
236 "#SEH_Epilogue", []>;
237}
238
239//===----------------------------------------------------------------------===//
240// Pseudo instructions used by segmented stacks.
241//
242
243// This is lowered into a RET instruction by MCInstLower. We need
244// this so that we don't have to have a MachineBasicBlock which ends
245// with a RET and also has successors.
246let isPseudo = 1 in {
247def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
248 "", []>;
249
250// This instruction is lowered to a RET followed by a MOV. The two
251// instructions are not generated on a higher level since then the
252// verifier sees a MachineBasicBlock ending with a non-terminator.
253def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
254 "", []>;
255}
256
257//===----------------------------------------------------------------------===//
258// Alias Instructions
259//===----------------------------------------------------------------------===//
260
261// Alias instruction mapping movr0 to xor.
262// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
263let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
Craig Toppere4d5aa72017-03-17 05:59:54 +0000264 isPseudo = 1, AddedComplexity = 10 in
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000265def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
266 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
267
268// Other widths can also make use of the 32-bit xor, which may have a smaller
269// encoding and avoid partial register updates.
Craig Toppere4d5aa72017-03-17 05:59:54 +0000270let AddedComplexity = 10 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000271def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
272def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
Craig Toppere4d5aa72017-03-17 05:59:54 +0000273def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000274}
275
Hans Wennborg08d59052015-12-15 17:10:28 +0000276let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
Craig Toppere4d5aa72017-03-17 05:59:54 +0000277 AddedComplexity = 10 in {
Hans Wennborg08d59052015-12-15 17:10:28 +0000278 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
279 // which only require 3 bytes compared to MOV32ri which requires 5.
280 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
281 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
282 [(set GR32:$dst, 1)]>;
283 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
284 [(set GR32:$dst, -1)]>;
285 }
286
287 // MOV16ri is 4 bytes, so the instructions above are smaller.
288 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
289 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
290}
291
Craig Toppere4d5aa72017-03-17 05:59:54 +0000292let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5 in {
Hans Wennborg4ae51192016-03-25 01:10:56 +0000293// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
294// FIXME: Add itinerary class and Schedule.
295def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
296 [(set GR32:$dst, i32immSExt8:$src)]>,
297 Requires<[OptForMinSize, NotWin64WithoutFP]>;
298def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
299 [(set GR64:$dst, i64immSExt8:$src)]>,
300 Requires<[OptForMinSize, NotWin64WithoutFP]>;
301}
302
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000303// Materialize i64 constant where top 32-bits are zero. This could theoretically
304// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
305// that would make it more difficult to rematerialize.
Craig Toppere00bffb2016-01-05 07:44:14 +0000306let isReMaterializable = 1, isAsCheapAsAMove = 1,
307 isPseudo = 1, hasSideEffects = 0 in
308def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000309
310// This 64-bit pseudo-move can be used for both a 64-bit constant that is
Sanjay Patel85030aa2015-10-13 16:23:00 +0000311// actually the zero-extension of a 32-bit constant and for labels in the
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000312// x86-64 small code model.
Sanjay Patel85030aa2015-10-13 16:23:00 +0000313def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000314
315let AddedComplexity = 1 in
316def : Pat<(i64 mov64imm32:$src),
317 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
318
319// Use sbb to materialize carry bit.
320let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
321// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
322// However, Pat<> can't replicate the destination reg into the inputs of the
323// result.
324def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
325 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
326def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
327 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
328def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
329 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
330def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
331 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
332} // isCodeGenOnly
333
334
335def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
336 (SETB_C16r)>;
337def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
338 (SETB_C32r)>;
339def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
340 (SETB_C64r)>;
341
342def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
343 (SETB_C16r)>;
344def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
345 (SETB_C32r)>;
346def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
347 (SETB_C64r)>;
348
349// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
350// will be eliminated and that the sbb can be extended up to a wider type. When
351// this happens, it is great. However, if we are left with an 8-bit sbb and an
352// and, we might as well just match it as a setb.
353def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
354 (SETBr)>;
355
356// (add OP, SETB) -> (adc OP, 0)
357def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
358 (ADC8ri GR8:$op, 0)>;
359def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
360 (ADC32ri8 GR32:$op, 0)>;
361def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
362 (ADC64ri8 GR64:$op, 0)>;
363
364// (sub OP, SETB) -> (sbb OP, 0)
365def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
366 (SBB8ri GR8:$op, 0)>;
367def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
368 (SBB32ri8 GR32:$op, 0)>;
369def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
370 (SBB64ri8 GR64:$op, 0)>;
371
372// (sub OP, SETCC_CARRY) -> (adc OP, 0)
373def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
374 (ADC8ri GR8:$op, 0)>;
375def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
376 (ADC32ri8 GR32:$op, 0)>;
377def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
378 (ADC64ri8 GR64:$op, 0)>;
379
380//===----------------------------------------------------------------------===//
381// String Pseudo Instructions
382//
383let SchedRW = [WriteMicrocoded] in {
384let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
385def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
386 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
387 Requires<[Not64BitMode]>;
388def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
389 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
390 Requires<[Not64BitMode]>;
391def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
392 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
393 Requires<[Not64BitMode]>;
394}
395
396let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
397def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
398 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
399 Requires<[In64BitMode]>;
400def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
401 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
402 Requires<[In64BitMode]>;
403def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
404 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
405 Requires<[In64BitMode]>;
406def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
407 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
408 Requires<[In64BitMode]>;
409}
410
411// FIXME: Should use "(X86rep_stos AL)" as the pattern.
412let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
413 let Uses = [AL,ECX,EDI] in
414 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
415 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
416 Requires<[Not64BitMode]>;
417 let Uses = [AX,ECX,EDI] in
418 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
419 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
420 Requires<[Not64BitMode]>;
421 let Uses = [EAX,ECX,EDI] in
422 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
423 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
424 Requires<[Not64BitMode]>;
425}
426
427let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
428 let Uses = [AL,RCX,RDI] in
429 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
430 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
431 Requires<[In64BitMode]>;
432 let Uses = [AX,RCX,RDI] in
433 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
434 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
435 Requires<[In64BitMode]>;
436 let Uses = [RAX,RCX,RDI] in
437 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
438 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
439 Requires<[In64BitMode]>;
440
441 let Uses = [RAX,RCX,RDI] in
442 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
443 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
444 Requires<[In64BitMode]>;
445}
446} // SchedRW
447
448//===----------------------------------------------------------------------===//
449// Thread Local Storage Instructions
450//
451
452// ELF TLS Support
453// All calls clobber the non-callee saved registers. ESP is marked as
454// a use to prevent stack-pointer assignments that appear immediately
455// before calls from potentially appearing dead.
456let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
457 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
458 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
459 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
460 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000461 usesCustomInserter = 1, Uses = [ESP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000462def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
463 "# TLS_addr32",
464 [(X86tlsaddr tls32addr:$sym)]>,
465 Requires<[Not64BitMode]>;
466def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
467 "# TLS_base_addr32",
468 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
469 Requires<[Not64BitMode]>;
470}
471
472// All calls clobber the non-callee saved registers. RSP is marked as
473// a use to prevent stack-pointer assignments that appear immediately
474// before calls from potentially appearing dead.
475let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
476 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
477 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
478 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
479 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
480 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000481 usesCustomInserter = 1, Uses = [RSP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000482def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
483 "# TLS_addr64",
484 [(X86tlsaddr tls64addr:$sym)]>,
485 Requires<[In64BitMode]>;
486def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
487 "# TLS_base_addr64",
488 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
489 Requires<[In64BitMode]>;
490}
491
492// Darwin TLS Support
493// For i386, the address of the thunk is passed on the stack, on return the
494// address of the variable is in %eax. %ecx is trashed during the function
495// call. All other registers are preserved.
496let Defs = [EAX, ECX, EFLAGS],
497 Uses = [ESP],
498 usesCustomInserter = 1 in
499def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
500 "# TLSCall_32",
501 [(X86TLSCall addr:$sym)]>,
502 Requires<[Not64BitMode]>;
503
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000504// For x86_64, the address of the thunk is passed in %rdi, but the
505// pseudo directly use the symbol, so do not add an implicit use of
506// %rdi. The lowering will do the right thing with RDI.
507// On return the address of the variable is in %rax. All other
508// registers are preserved.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000509let Defs = [RAX, EFLAGS],
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000510 Uses = [RSP],
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000511 usesCustomInserter = 1 in
512def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
513 "# TLSCall_64",
514 [(X86TLSCall addr:$sym)]>,
515 Requires<[In64BitMode]>;
516
517
518//===----------------------------------------------------------------------===//
519// Conditional Move Pseudo Instructions
520
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000521// CMOV* - Used to implement the SELECT DAG operation. Expanded after
522// instruction selection into a branch sequence.
523multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
524 def CMOV#NAME : I<0, Pseudo,
525 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
526 "#CMOV_"#NAME#" PSEUDO!",
527 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
528 EFLAGS)))]>;
529}
530
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000531let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000532 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
533 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
534 // however that requires promoting the operands, and can induce additional
535 // i8 register pressure.
536 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000537
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000538 let Predicates = [NoCMov] in {
539 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
540 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
541 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000542
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000543 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
544 // SSE1/SSE2.
545 let Predicates = [FPStackf32] in
546 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000547
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000548 let Predicates = [FPStackf64] in
549 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
550
551 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
552
553 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
554 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
Chih-Hung Hsieh7993e182015-12-14 22:08:36 +0000555 defm _FR128 : CMOVrr_PSEUDO<FR128, f128>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000556 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
557 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
558 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
559 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
560 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
561 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
562 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
563 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
564 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000565 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
566 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
567 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
568 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000569} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000570
571//===----------------------------------------------------------------------===//
572// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
573//===----------------------------------------------------------------------===//
574
575// FIXME: Use normal instructions and add lock prefix dynamically.
576
577// Memory barriers
578
579// TODO: Get this to fold the constant into the instruction.
580let isCodeGenOnly = 1, Defs = [EFLAGS] in
581def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
Craig Topper9583f512016-01-05 07:44:11 +0000582 "or{l}\t{$zero, $dst|$dst, $zero}", [],
583 IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000584 Sched<[WriteALULd, WriteRMW]>;
585
586let hasSideEffects = 1 in
587def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
588 "#MEMBARRIER",
589 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
590
591// RegOpc corresponds to the mr version of the instruction
592// ImmOpc corresponds to the mi version of the instruction
593// ImmOpc8 corresponds to the mi8 version of the instruction
594// ImmMod corresponds to the instruction format of the mi and mi8 versions
595multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000596 Format ImmMod, SDPatternOperator Op, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000597let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
598 SchedRW = [WriteALULd, WriteRMW] in {
599
600def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
601 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
602 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
603 !strconcat(mnemonic, "{b}\t",
604 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000605 [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
606 IIC_ALU_NONMEM>, LOCK;
607
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000608def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
609 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
610 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
611 !strconcat(mnemonic, "{w}\t",
612 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000613 [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
614 IIC_ALU_NONMEM>, OpSize16, LOCK;
615
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000616def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
617 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
618 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
619 !strconcat(mnemonic, "{l}\t",
620 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000621 [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
622 IIC_ALU_NONMEM>, OpSize32, LOCK;
623
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000624def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
625 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
626 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
627 !strconcat(mnemonic, "{q}\t",
628 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000629 [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
630 IIC_ALU_NONMEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000631
632def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
633 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
634 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
635 !strconcat(mnemonic, "{b}\t",
636 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000637 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
638 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000639
640def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
641 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
642 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
643 !strconcat(mnemonic, "{w}\t",
644 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000645 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
646 IIC_ALU_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000647
648def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
649 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
650 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
651 !strconcat(mnemonic, "{l}\t",
652 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000653 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
654 IIC_ALU_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000655
656def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
657 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
658 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
659 !strconcat(mnemonic, "{q}\t",
660 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000661 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
662 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000663
664def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
665 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
666 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
667 !strconcat(mnemonic, "{w}\t",
668 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000669 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
670 IIC_ALU_MEM>, OpSize16, LOCK;
671
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000672def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
673 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
674 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
675 !strconcat(mnemonic, "{l}\t",
676 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000677 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
678 IIC_ALU_MEM>, OpSize32, LOCK;
679
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000680def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
681 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
682 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
683 !strconcat(mnemonic, "{q}\t",
684 "{$src2, $dst|$dst, $src2}"),
Craig Topper7b5925a2016-05-02 05:44:21 +0000685 [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000686 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000687
688}
689
690}
691
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000692defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
693defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
694defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
695defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
696defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000697
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000698multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000699 int Increment, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000700let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000701 SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000702def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
703 !strconcat(mnemonic, "{b}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000704 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
705 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000706def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
707 !strconcat(mnemonic, "{w}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000708 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
709 IIC_UNARY_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000710def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
711 !strconcat(mnemonic, "{l}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000712 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
713 IIC_UNARY_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000714def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
715 !strconcat(mnemonic, "{q}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000716 [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
717 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000718}
719}
720
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000721defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">;
722defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000723
724// Atomic compare and swap.
725multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
726 SDPatternOperator frag, X86MemOperand x86memop,
727 InstrItinClass itin> {
Nikolai Bozhenov3a8d1082016-11-24 13:23:35 +0000728let isCodeGenOnly = 1, usesCustomInserter = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000729 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
730 !strconcat(mnemonic, "\t$ptr"),
731 [(frag addr:$ptr)], itin>, TB, LOCK;
732}
733}
734
735multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
736 string mnemonic, SDPatternOperator frag,
737 InstrItinClass itin8, InstrItinClass itin> {
738let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
739 let Defs = [AL, EFLAGS], Uses = [AL] in
740 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
741 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
742 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
743 let Defs = [AX, EFLAGS], Uses = [AX] in
744 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
745 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
746 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
747 let Defs = [EAX, EFLAGS], Uses = [EAX] in
748 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
749 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
750 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
751 let Defs = [RAX, EFLAGS], Uses = [RAX] in
752 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
753 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
754 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
755}
756}
757
758let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
759 SchedRW = [WriteALULd, WriteRMW] in {
760defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
761 X86cas8, i64mem,
762 IIC_CMPX_LOCK_8B>;
763}
764
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000765// This pseudo must be used when the frame uses RBX as
766// the base pointer. Indeed, in such situation RBX is a reserved
767// register and the register allocator will ignore any use/def of
768// it. In other words, the register will not fix the clobbering of
769// RBX that will happen when setting the arguments for the instrucion.
770//
771// Unlike the actual related instuction, we mark that this one
772// defines EBX (instead of using EBX).
773// The rationale is that we will define RBX during the expansion of
774// the pseudo. The argument feeding EBX is ebx_input.
775//
776// The additional argument, $ebx_save, is a temporary register used to
Simon Pilgrim68168d12017-03-30 12:59:53 +0000777// save the value of RBX across the actual instruction.
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000778//
779// To make sure the register assigned to $ebx_save does not interfere with
780// the definition of the actual instruction, we use a definition $dst which
Simon Pilgrim68168d12017-03-30 12:59:53 +0000781// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000782// the instruction and we are sure we will have a valid register to restore
783// the value of RBX.
784let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
785 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
786 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
787def LCMPXCHG8B_SAVE_EBX :
788 I<0, Pseudo, (outs GR32:$dst),
789 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
790 !strconcat("cmpxchg8b", "\t$ptr"),
791 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
792 GR32:$ebx_save))],
793 IIC_CMPX_LOCK_8B>;
794}
795
796
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000797let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
798 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
799defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
800 X86cas16, i128mem,
801 IIC_CMPX_LOCK_16B>, REX_W;
802}
803
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000804// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
805let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
806 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
807 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
808 usesCustomInserter = 1 in {
809def LCMPXCHG16B_SAVE_RBX :
810 I<0, Pseudo, (outs GR64:$dst),
811 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
812 !strconcat("cmpxchg16b", "\t$ptr"),
813 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
814 GR64:$rbx_save))],
815 IIC_CMPX_LOCK_16B>;
816}
817
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000818defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
819 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
820
821// Atomic exchange and add
822multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
823 string frag,
824 InstrItinClass itin8, InstrItinClass itin> {
825 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
826 SchedRW = [WriteALULd, WriteRMW] in {
827 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
828 (ins GR8:$val, i8mem:$ptr),
829 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
830 [(set GR8:$dst,
831 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
832 itin8>;
833 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
834 (ins GR16:$val, i16mem:$ptr),
835 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
836 [(set
837 GR16:$dst,
838 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
839 itin>, OpSize16;
840 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
841 (ins GR32:$val, i32mem:$ptr),
842 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
843 [(set
844 GR32:$dst,
845 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
846 itin>, OpSize32;
847 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
848 (ins GR64:$val, i64mem:$ptr),
849 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
850 [(set
851 GR64:$dst,
852 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
853 itin>;
854 }
855}
856
857defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
858 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
859 TB, LOCK;
860
861/* The following multiclass tries to make sure that in code like
862 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000863 * and
864 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000865 * an operation directly on memory is generated instead of wasting a register.
866 * It is not automatic as atomic_store/load are only lowered to MOV instructions
867 * extremely late to prevent them from being accidentally reordered in the backend
868 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
869 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000870multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000871 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000872 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000873 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000874 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000875 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
876 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000877 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000878 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000879 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
880 // costly and avoided as far as possible by this backend anyway
881 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000882 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000883 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000884 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000885 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
886 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000887 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000888 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000889 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000890 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000891 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000892 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000893 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
894 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000895 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000896 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000897}
JF Bastien986ed682015-10-13 00:28:47 +0000898let Defs = [EFLAGS] in {
899 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
900 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
901 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
902 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
903 // Note: we don't deal with sub, because substractions of constants are
904 // optimized into additions before this code can run.
905}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000906
JF Bastien86620832015-08-05 21:04:59 +0000907// Same as above, but for floating-point.
908// FIXME: imm version.
909// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
910// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
911let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000912multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000913 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
914 "#BINOP "#NAME#"32mr PSEUDO!",
915 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000916 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000917 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
918 FR32:$src))))]>, Requires<[HasSSE1]>;
919 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
920 "#BINOP "#NAME#"64mr PSEUDO!",
921 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000922 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000923 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
924 FR64:$src))))]>, Requires<[HasSSE2]>;
925}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000926defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000927// FIXME: Add fsub, fmul, fdiv, ...
928}
929
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000930multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
931 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000932 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000933 [(atomic_store_8 addr:$dst, dag8)]>;
934 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000935 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000936 [(atomic_store_16 addr:$dst, dag16)]>;
937 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000938 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000939 [(atomic_store_32 addr:$dst, dag32)]>;
940 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000941 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000942 [(atomic_store_64 addr:$dst, dag64)]>;
943}
944
JF Bastien2cdd5e42015-10-15 18:24:52 +0000945let Defs = [EFLAGS] in {
946 defm RELEASE_INC : RELEASE_UNOP<
947 (add (atomic_load_8 addr:$dst), (i8 1)),
948 (add (atomic_load_16 addr:$dst), (i16 1)),
949 (add (atomic_load_32 addr:$dst), (i32 1)),
950 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
951 defm RELEASE_DEC : RELEASE_UNOP<
952 (add (atomic_load_8 addr:$dst), (i8 -1)),
953 (add (atomic_load_16 addr:$dst), (i16 -1)),
954 (add (atomic_load_32 addr:$dst), (i32 -1)),
955 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
956}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000957/*
958TODO: These don't work because the type inference of TableGen fails.
959TODO: find a way to fix it.
JF Bastien2cdd5e42015-10-15 18:24:52 +0000960let Defs = [EFLAGS] in {
961 defm RELEASE_NEG : RELEASE_UNOP<
962 (ineg (atomic_load_8 addr:$dst)),
963 (ineg (atomic_load_16 addr:$dst)),
964 (ineg (atomic_load_32 addr:$dst)),
965 (ineg (atomic_load_64 addr:$dst))>;
966}
967// NOT doesn't set flags.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000968defm RELEASE_NOT : RELEASE_UNOP<
969 (not (atomic_load_8 addr:$dst)),
970 (not (atomic_load_16 addr:$dst)),
971 (not (atomic_load_32 addr:$dst)),
972 (not (atomic_load_64 addr:$dst))>;
973*/
974
975def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000976 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000977 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
978def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000979 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000980 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
981def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000982 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000983 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
984def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000985 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000986 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
987
988def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000989 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000990 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
991def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000992 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000993 [(atomic_store_16 addr:$dst, GR16:$src)]>;
994def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000995 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000996 [(atomic_store_32 addr:$dst, GR32:$src)]>;
997def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000998 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000999 [(atomic_store_64 addr:$dst, GR64:$src)]>;
1000
1001def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +00001002 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001003 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
1004def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001005 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001006 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
1007def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001008 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001009 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
1010def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001011 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001012 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001013
1014//===----------------------------------------------------------------------===//
1015// DAG Pattern Matching Rules
1016//===----------------------------------------------------------------------===//
1017
Hans Wennborg5f916d32016-03-25 18:11:31 +00001018// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1019// binary size compared to a regular MOV, but it introduces an unnecessary
1020// load, so is not suitable for regular or optsize functions.
1021let Predicates = [OptForMinSize] in {
1022def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1023def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1024def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1025def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1026def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1027def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1028}
1029
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001030// In kernel code model, we can get the address of a label
1031// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
1032// the MOV64ri32 should accept these.
1033def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1034 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
1035def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1036 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
1037def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1038 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1039def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1040 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001041def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1042 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001043def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1044 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1045
1046// If we have small model and -static mode, it is safe to store global addresses
1047// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
1048// for MOV64mi32 should handle this sort of thing.
1049def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1050 (MOV64mi32 addr:$dst, tconstpool:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001051 Requires<[NearData, IsNotPIC]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001052def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1053 (MOV64mi32 addr:$dst, tjumptable:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001054 Requires<[NearData, IsNotPIC]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001055def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1056 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001057 Requires<[NearData, IsNotPIC]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001058def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1059 (MOV64mi32 addr:$dst, texternalsym:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001060 Requires<[NearData, IsNotPIC]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001061def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1062 (MOV64mi32 addr:$dst, mcsym:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001063 Requires<[NearData, IsNotPIC]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001064def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1065 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
Rafael Espindola68760382016-06-27 21:09:14 +00001066 Requires<[NearData, IsNotPIC]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001067
Rafael Espindola36b718f2015-06-22 17:46:53 +00001068def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1069def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001070
1071// Calls
1072
1073// tls has some funny stuff here...
1074// This corresponds to movabs $foo@tpoff, %rax
1075def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1076 (MOV64ri32 tglobaltlsaddr :$dst)>;
1077// This corresponds to add $foo@tpoff, %rax
1078def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1079 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1080
1081
1082// Direct PC relative function call for small code model. 32-bit displacement
1083// sign extended to 64-bit.
1084def : Pat<(X86call (i64 tglobaladdr:$dst)),
1085 (CALL64pcrel32 tglobaladdr:$dst)>;
1086def : Pat<(X86call (i64 texternalsym:$dst)),
1087 (CALL64pcrel32 texternalsym:$dst)>;
1088
1089// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1090// can never use callee-saved registers. That is the purpose of the GR64_TC
1091// register classes.
1092//
1093// The only volatile register that is never used by the calling convention is
1094// %r11. This happens when calling a vararg function with 6 arguments.
1095//
1096// Match an X86tcret that uses less than 7 volatile registers.
1097def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1098 (X86tcret node:$ptr, node:$off), [{
1099 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1100 unsigned NumRegs = 0;
1101 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1102 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1103 return false;
1104 return true;
1105}]>;
1106
1107def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1108 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1109 Requires<[Not64BitMode]>;
1110
1111// FIXME: This is disabled for 32-bit PIC mode because the global base
1112// register which is part of the address mode may be assigned a
1113// callee-saved register.
1114def : Pat<(X86tcret (load addr:$dst), imm:$off),
1115 (TCRETURNmi addr:$dst, imm:$off)>,
1116 Requires<[Not64BitMode, IsNotPIC]>;
1117
1118def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1119 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1120 Requires<[NotLP64]>;
1121
1122def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1123 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1124 Requires<[NotLP64]>;
1125
1126def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1127 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1128 Requires<[In64BitMode]>;
1129
1130// Don't fold loads into X86tcret requiring more than 6 regs.
1131// There wouldn't be enough scratch registers for base+index.
1132def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1133 (TCRETURNmi64 addr:$dst, imm:$off)>,
1134 Requires<[In64BitMode]>;
1135
1136def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1137 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1138 Requires<[IsLP64]>;
1139
1140def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1141 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1142 Requires<[IsLP64]>;
1143
1144// Normal calls, with various flavors of addresses.
1145def : Pat<(X86call (i32 tglobaladdr:$dst)),
1146 (CALLpcrel32 tglobaladdr:$dst)>;
1147def : Pat<(X86call (i32 texternalsym:$dst)),
1148 (CALLpcrel32 texternalsym:$dst)>;
1149def : Pat<(X86call (i32 imm:$dst)),
1150 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1151
1152// Comparisons.
1153
1154// TEST R,R is smaller than CMP R,0
1155def : Pat<(X86cmp GR8:$src1, 0),
1156 (TEST8rr GR8:$src1, GR8:$src1)>;
1157def : Pat<(X86cmp GR16:$src1, 0),
1158 (TEST16rr GR16:$src1, GR16:$src1)>;
1159def : Pat<(X86cmp GR32:$src1, 0),
1160 (TEST32rr GR32:$src1, GR32:$src1)>;
1161def : Pat<(X86cmp GR64:$src1, 0),
1162 (TEST64rr GR64:$src1, GR64:$src1)>;
1163
1164// Conditional moves with folded loads with operands swapped and conditions
1165// inverted.
1166multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1167 Instruction Inst64> {
1168 let Predicates = [HasCMov] in {
1169 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1170 (Inst16 GR16:$src2, addr:$src1)>;
1171 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1172 (Inst32 GR32:$src2, addr:$src1)>;
1173 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1174 (Inst64 GR64:$src2, addr:$src1)>;
1175 }
1176}
1177
1178defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1179defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1180defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1181defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1182defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1183defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1184defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1185defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1186defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1187defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1188defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1189defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1190defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1191defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1192defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1193defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1194
1195// zextload bool -> zextload byte
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001196// i1 stored in one byte in zero-extended form.
1197// Upper bits cleanup should be executed before Store.
1198def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1199def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1200def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001201def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001202 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001203
1204// extload bool -> extload byte
1205// When extloading from 16-bit and smaller memory locations into 64-bit
1206// registers, use zero-extending loads so that the entire 64-bit register is
1207// defined, avoiding partial-register updates.
1208
1209def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1210def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1211def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1212def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1213def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1214def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1215
1216// For other extloads, use subregs, since the high contents of the register are
1217// defined after an extload.
1218def : Pat<(extloadi64i1 addr:$src),
1219 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1220def : Pat<(extloadi64i8 addr:$src),
1221 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1222def : Pat<(extloadi64i16 addr:$src),
1223 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1224def : Pat<(extloadi64i32 addr:$src),
1225 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1226
1227// anyext. Define these to do an explicit zero-extend to
1228// avoid partial-register updates.
1229def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1230 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1231def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1232
1233// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1234def : Pat<(i32 (anyext GR16:$src)),
1235 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1236
1237def : Pat<(i64 (anyext GR8 :$src)),
1238 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1239def : Pat<(i64 (anyext GR16:$src)),
1240 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1241def : Pat<(i64 (anyext GR32:$src)),
1242 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1243
1244
1245// Any instruction that defines a 32-bit result leaves the high half of the
1246// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
David L Kreitzer8b959e52016-07-29 15:09:54 +00001247// be copying from a truncate. Any other 32-bit operation will zero-extend
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001248// up to 64 bits.
1249def def32 : PatLeaf<(i32 GR32:$src), [{
1250 return N->getOpcode() != ISD::TRUNCATE &&
1251 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1252 N->getOpcode() != ISD::CopyFromReg &&
David L Kreitzer8b959e52016-07-29 15:09:54 +00001253 N->getOpcode() != ISD::AssertSext;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001254}]>;
1255
1256// In the case of a 32-bit def that is known to implicitly zero-extend,
1257// we can use a SUBREG_TO_REG.
1258def : Pat<(i64 (zext def32:$src)),
1259 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1260
1261//===----------------------------------------------------------------------===//
1262// Pattern match OR as ADD
1263//===----------------------------------------------------------------------===//
1264
1265// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1266// 3-addressified into an LEA instruction to avoid copies. However, we also
1267// want to finally emit these instructions as an or at the end of the code
1268// generator to make the generated code easier to read. To do this, we select
1269// into "disjoint bits" pseudo ops.
1270
1271// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1272def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1273 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1274 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1275
Craig Topperd0af7e82017-04-28 05:31:46 +00001276 KnownBits Known0;
1277 CurDAG->computeKnownBits(N->getOperand(0), Known0, 0);
1278 KnownBits Known1;
1279 CurDAG->computeKnownBits(N->getOperand(1), Known1, 0);
1280 return (~Known0.Zero & ~Known1.Zero) == 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001281}]>;
1282
1283
1284// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1285// Try this before the selecting to OR.
1286let AddedComplexity = 5, SchedRW = [WriteALU] in {
1287
1288let isConvertibleToThreeAddress = 1,
1289 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1290let isCommutable = 1 in {
1291def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1292 "", // orw/addw REG, REG
1293 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1294def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1295 "", // orl/addl REG, REG
1296 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1297def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1298 "", // orq/addq REG, REG
1299 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1300} // isCommutable
1301
1302// NOTE: These are order specific, we want the ri8 forms to be listed
1303// first so that they are slightly preferred to the ri forms.
1304
1305def ADD16ri8_DB : I<0, Pseudo,
1306 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1307 "", // orw/addw REG, imm8
1308 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1309def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1310 "", // orw/addw REG, imm
1311 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1312
1313def ADD32ri8_DB : I<0, Pseudo,
1314 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1315 "", // orl/addl REG, imm8
1316 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1317def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1318 "", // orl/addl REG, imm
1319 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1320
1321
1322def ADD64ri8_DB : I<0, Pseudo,
1323 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1324 "", // orq/addq REG, imm8
1325 [(set GR64:$dst, (or_is_add GR64:$src1,
1326 i64immSExt8:$src2))]>;
1327def ADD64ri32_DB : I<0, Pseudo,
1328 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1329 "", // orq/addq REG, imm
1330 [(set GR64:$dst, (or_is_add GR64:$src1,
1331 i64immSExt32:$src2))]>;
1332}
1333} // AddedComplexity, SchedRW
1334
1335
1336//===----------------------------------------------------------------------===//
1337// Some peepholes
1338//===----------------------------------------------------------------------===//
1339
1340// Odd encoding trick: -128 fits into an 8-bit immediate field while
1341// +128 doesn't, so in this special case use a sub instead of an add.
1342def : Pat<(add GR16:$src1, 128),
1343 (SUB16ri8 GR16:$src1, -128)>;
1344def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1345 (SUB16mi8 addr:$dst, -128)>;
1346
1347def : Pat<(add GR32:$src1, 128),
1348 (SUB32ri8 GR32:$src1, -128)>;
1349def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1350 (SUB32mi8 addr:$dst, -128)>;
1351
1352def : Pat<(add GR64:$src1, 128),
1353 (SUB64ri8 GR64:$src1, -128)>;
1354def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1355 (SUB64mi8 addr:$dst, -128)>;
1356
1357// The same trick applies for 32-bit immediate fields in 64-bit
1358// instructions.
1359def : Pat<(add GR64:$src1, 0x0000000080000000),
1360 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
Eli Friedman17e8ea12016-07-14 05:48:25 +00001361def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001362 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1363
1364// To avoid needing to materialize an immediate in a register, use a 32-bit and
1365// with implicit zero-extension instead of a 64-bit and if the immediate has at
1366// least 32 bits of leading zeros. If in addition the last 32 bits can be
1367// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001368// This can also reduce instruction size by eliminating the need for the REX
1369// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001370
Craig Topper7ea899a2015-04-04 04:22:12 +00001371// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1372let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001373def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1374 (SUBREG_TO_REG
1375 (i64 0),
1376 (AND32ri8
1377 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1378 (i32 (GetLo8XForm imm:$imm))),
1379 sub_32bit)>;
1380
1381def : Pat<(and GR64:$src, i64immZExt32:$imm),
1382 (SUBREG_TO_REG
1383 (i64 0),
1384 (AND32ri
1385 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1386 (i32 (GetLo32XForm imm:$imm))),
1387 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001388} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001389
1390
Craig Topper7ea899a2015-04-04 04:22:12 +00001391// AddedComplexity is needed due to the increased complexity on the
1392// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1393// the MOVZX patterns keeps thems together in DAGIsel tables.
1394let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001395// r & (2^16-1) ==> movz
1396def : Pat<(and GR32:$src1, 0xffff),
1397 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1398// r & (2^8-1) ==> movz
1399def : Pat<(and GR32:$src1, 0xff),
1400 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1401 GR32_ABCD)),
1402 sub_8bit))>,
1403 Requires<[Not64BitMode]>;
1404// r & (2^8-1) ==> movz
1405def : Pat<(and GR16:$src1, 0xff),
1406 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1407 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1408 sub_16bit)>,
1409 Requires<[Not64BitMode]>;
1410
1411// r & (2^32-1) ==> movz
1412def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1413 (SUBREG_TO_REG (i64 0),
1414 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1415 sub_32bit)>;
1416// r & (2^16-1) ==> movz
1417def : Pat<(and GR64:$src, 0xffff),
1418 (SUBREG_TO_REG (i64 0),
1419 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1420 sub_32bit)>;
1421// r & (2^8-1) ==> movz
1422def : Pat<(and GR64:$src, 0xff),
1423 (SUBREG_TO_REG (i64 0),
1424 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1425 sub_32bit)>;
1426// r & (2^8-1) ==> movz
1427def : Pat<(and GR32:$src1, 0xff),
1428 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1429 Requires<[In64BitMode]>;
1430// r & (2^8-1) ==> movz
1431def : Pat<(and GR16:$src1, 0xff),
1432 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1433 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1434 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001435} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001436
1437
1438// sext_inreg patterns
1439def : Pat<(sext_inreg GR32:$src, i16),
1440 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1441def : Pat<(sext_inreg GR32:$src, i8),
1442 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1443 GR32_ABCD)),
1444 sub_8bit))>,
1445 Requires<[Not64BitMode]>;
1446
1447def : Pat<(sext_inreg GR16:$src, i8),
1448 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1449 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1450 sub_16bit)>,
1451 Requires<[Not64BitMode]>;
1452
1453def : Pat<(sext_inreg GR64:$src, i32),
1454 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1455def : Pat<(sext_inreg GR64:$src, i16),
1456 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1457def : Pat<(sext_inreg GR64:$src, i8),
1458 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1459def : Pat<(sext_inreg GR32:$src, i8),
1460 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1461 Requires<[In64BitMode]>;
1462def : Pat<(sext_inreg GR16:$src, i8),
1463 (EXTRACT_SUBREG (MOVSX32rr8
1464 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1465 Requires<[In64BitMode]>;
1466
1467// sext, sext_load, zext, zext_load
1468def: Pat<(i16 (sext GR8:$src)),
1469 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1470def: Pat<(sextloadi16i8 addr:$src),
1471 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1472def: Pat<(i16 (zext GR8:$src)),
1473 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1474def: Pat<(zextloadi16i8 addr:$src),
1475 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1476
1477// trunc patterns
1478def : Pat<(i16 (trunc GR32:$src)),
1479 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1480def : Pat<(i8 (trunc GR32:$src)),
1481 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1482 sub_8bit)>,
1483 Requires<[Not64BitMode]>;
1484def : Pat<(i8 (trunc GR16:$src)),
1485 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1486 sub_8bit)>,
1487 Requires<[Not64BitMode]>;
1488def : Pat<(i32 (trunc GR64:$src)),
1489 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1490def : Pat<(i16 (trunc GR64:$src)),
1491 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1492def : Pat<(i8 (trunc GR64:$src)),
1493 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1494def : Pat<(i8 (trunc GR32:$src)),
1495 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1496 Requires<[In64BitMode]>;
1497def : Pat<(i8 (trunc GR16:$src)),
1498 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1499 Requires<[In64BitMode]>;
1500
1501// h-register tricks
1502def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1503 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1504 sub_8bit_hi)>,
1505 Requires<[Not64BitMode]>;
Kevin B. Smithed0b6202016-05-31 22:00:12 +00001506def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1507 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1508 sub_8bit_hi)>,
1509 Requires<[Not64BitMode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001510def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1511 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1512 sub_8bit_hi)>,
1513 Requires<[Not64BitMode]>;
1514def : Pat<(srl GR16:$src, (i8 8)),
1515 (EXTRACT_SUBREG
1516 (MOVZX32rr8
1517 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1518 sub_8bit_hi)),
1519 sub_16bit)>,
1520 Requires<[Not64BitMode]>;
1521def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1522 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1523 GR16_ABCD)),
1524 sub_8bit_hi))>,
1525 Requires<[Not64BitMode]>;
1526def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1527 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1528 GR16_ABCD)),
1529 sub_8bit_hi))>,
1530 Requires<[Not64BitMode]>;
1531def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1532 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1533 GR32_ABCD)),
1534 sub_8bit_hi))>,
1535 Requires<[Not64BitMode]>;
1536def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1537 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1538 GR32_ABCD)),
1539 sub_8bit_hi))>,
1540 Requires<[Not64BitMode]>;
1541
1542// h-register tricks.
1543// For now, be conservative on x86-64 and use an h-register extract only if the
1544// value is immediately zero-extended or stored, which are somewhat common
1545// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1546// from being allocated in the same instruction as the h register, as there's
1547// currently no way to describe this requirement to the register allocator.
1548
1549// h-register extract and zero-extend.
1550def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1551 (SUBREG_TO_REG
1552 (i64 0),
1553 (MOVZX32_NOREXrr8
1554 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1555 sub_8bit_hi)),
1556 sub_32bit)>;
1557def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1558 (MOVZX32_NOREXrr8
1559 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1560 sub_8bit_hi))>,
1561 Requires<[In64BitMode]>;
1562def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1563 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1564 GR32_ABCD)),
1565 sub_8bit_hi))>,
1566 Requires<[In64BitMode]>;
1567def : Pat<(srl GR16:$src, (i8 8)),
1568 (EXTRACT_SUBREG
1569 (MOVZX32_NOREXrr8
1570 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1571 sub_8bit_hi)),
1572 sub_16bit)>,
1573 Requires<[In64BitMode]>;
1574def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1575 (MOVZX32_NOREXrr8
1576 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1577 sub_8bit_hi))>,
1578 Requires<[In64BitMode]>;
1579def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1580 (MOVZX32_NOREXrr8
1581 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1582 sub_8bit_hi))>,
1583 Requires<[In64BitMode]>;
1584def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1585 (SUBREG_TO_REG
1586 (i64 0),
1587 (MOVZX32_NOREXrr8
1588 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1589 sub_8bit_hi)),
1590 sub_32bit)>;
1591def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1592 (SUBREG_TO_REG
1593 (i64 0),
1594 (MOVZX32_NOREXrr8
1595 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1596 sub_8bit_hi)),
1597 sub_32bit)>;
1598
1599// h-register extract and store.
1600def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1601 (MOV8mr_NOREX
1602 addr:$dst,
1603 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1604 sub_8bit_hi))>;
1605def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1606 (MOV8mr_NOREX
1607 addr:$dst,
1608 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1609 sub_8bit_hi))>,
1610 Requires<[In64BitMode]>;
1611def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1612 (MOV8mr_NOREX
1613 addr:$dst,
1614 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1615 sub_8bit_hi))>,
1616 Requires<[In64BitMode]>;
1617
1618
1619// (shl x, 1) ==> (add x, x)
1620// Note that if x is undef (immediate or otherwise), we could theoretically
1621// end up with the two uses of x getting different values, producing a result
1622// where the least significant bit is not 0. However, the probability of this
1623// happening is considered low enough that this is officially not a
1624// "real problem".
1625def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1626def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1627def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1628def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1629
1630// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001631def immShift32 : ImmLeaf<i8, [{
1632 return countTrailingOnes<uint64_t>(Imm) >= 5;
1633}]>;
1634def immShift64 : ImmLeaf<i8, [{
1635 return countTrailingOnes<uint64_t>(Imm) >= 6;
1636}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001637
1638// Shift amount is implicitly masked.
1639multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1640 // (shift x (and y, 31)) ==> (shift x, y)
1641 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1642 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1643 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1644 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1645 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1646 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1647 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1648 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1649 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1650 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1651 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1652 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1653
1654 // (shift x (and y, 63)) ==> (shift x, y)
1655 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1656 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1657 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1658 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1659}
1660
1661defm : MaskedShiftAmountPats<shl, "SHL">;
1662defm : MaskedShiftAmountPats<srl, "SHR">;
1663defm : MaskedShiftAmountPats<sra, "SAR">;
1664defm : MaskedShiftAmountPats<rotl, "ROL">;
1665defm : MaskedShiftAmountPats<rotr, "ROR">;
1666
Simon Pilgrim46f119a2016-08-01 12:11:43 +00001667// Double shift amount is implicitly masked.
1668multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
1669 // (shift x (and y, 31)) ==> (shift x, y)
1670 def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
1671 (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
1672 def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
1673 (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
1674
1675 // (shift x (and y, 63)) ==> (shift x, y)
1676 def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
1677 (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
1678}
1679
1680defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
1681defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
1682
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001683// (anyext (setcc_carry)) -> (setcc_carry)
1684def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1685 (SETB_C16r)>;
1686def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1687 (SETB_C32r)>;
1688def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1689 (SETB_C32r)>;
1690
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001691//===----------------------------------------------------------------------===//
1692// EFLAGS-defining Patterns
1693//===----------------------------------------------------------------------===//
1694
1695// add reg, reg
1696def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1697def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1698def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1699
1700// add reg, mem
1701def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1702 (ADD8rm GR8:$src1, addr:$src2)>;
1703def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1704 (ADD16rm GR16:$src1, addr:$src2)>;
1705def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1706 (ADD32rm GR32:$src1, addr:$src2)>;
1707
1708// add reg, imm
1709def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1710def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1711def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1712def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1713 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1714def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1715 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1716
1717// sub reg, reg
1718def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1719def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1720def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1721
1722// sub reg, mem
1723def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1724 (SUB8rm GR8:$src1, addr:$src2)>;
1725def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1726 (SUB16rm GR16:$src1, addr:$src2)>;
1727def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1728 (SUB32rm GR32:$src1, addr:$src2)>;
1729
1730// sub reg, imm
1731def : Pat<(sub GR8:$src1, imm:$src2),
1732 (SUB8ri GR8:$src1, imm:$src2)>;
1733def : Pat<(sub GR16:$src1, imm:$src2),
1734 (SUB16ri GR16:$src1, imm:$src2)>;
1735def : Pat<(sub GR32:$src1, imm:$src2),
1736 (SUB32ri GR32:$src1, imm:$src2)>;
1737def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1738 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1739def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1740 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1741
1742// sub 0, reg
1743def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1744def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1745def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1746def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1747
Peter Collingbourneef089bd2017-02-09 22:02:28 +00001748// sub reg, relocImm
1749def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
1750 (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
1751def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
1752 (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
1753
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001754// mul reg, reg
1755def : Pat<(mul GR16:$src1, GR16:$src2),
1756 (IMUL16rr GR16:$src1, GR16:$src2)>;
1757def : Pat<(mul GR32:$src1, GR32:$src2),
1758 (IMUL32rr GR32:$src1, GR32:$src2)>;
1759
1760// mul reg, mem
1761def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1762 (IMUL16rm GR16:$src1, addr:$src2)>;
1763def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1764 (IMUL32rm GR32:$src1, addr:$src2)>;
1765
1766// mul reg, imm
1767def : Pat<(mul GR16:$src1, imm:$src2),
1768 (IMUL16rri GR16:$src1, imm:$src2)>;
1769def : Pat<(mul GR32:$src1, imm:$src2),
1770 (IMUL32rri GR32:$src1, imm:$src2)>;
1771def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1772 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1773def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1774 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1775
1776// reg = mul mem, imm
1777def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1778 (IMUL16rmi addr:$src1, imm:$src2)>;
1779def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1780 (IMUL32rmi addr:$src1, imm:$src2)>;
1781def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1782 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1783def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1784 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1785
1786// Patterns for nodes that do not produce flags, for instructions that do.
1787
1788// addition
1789def : Pat<(add GR64:$src1, GR64:$src2),
1790 (ADD64rr GR64:$src1, GR64:$src2)>;
1791def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1792 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1793def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1794 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1795def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1796 (ADD64rm GR64:$src1, addr:$src2)>;
1797
1798// subtraction
1799def : Pat<(sub GR64:$src1, GR64:$src2),
1800 (SUB64rr GR64:$src1, GR64:$src2)>;
1801def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1802 (SUB64rm GR64:$src1, addr:$src2)>;
1803def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1804 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1805def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1806 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1807
1808// Multiply
1809def : Pat<(mul GR64:$src1, GR64:$src2),
1810 (IMUL64rr GR64:$src1, GR64:$src2)>;
1811def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1812 (IMUL64rm GR64:$src1, addr:$src2)>;
1813def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1814 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1815def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1816 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1817def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1818 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1819def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1820 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1821
1822// Increment/Decrement reg.
1823// Do not make INC/DEC if it is slow
1824let Predicates = [NotSlowIncDec] in {
1825 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1826 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1827 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1828 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1829 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1830 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1831 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1832 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1833}
1834
1835// or reg/reg.
1836def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1837def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1838def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1839def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1840
1841// or reg/mem
1842def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1843 (OR8rm GR8:$src1, addr:$src2)>;
1844def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1845 (OR16rm GR16:$src1, addr:$src2)>;
1846def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1847 (OR32rm GR32:$src1, addr:$src2)>;
1848def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1849 (OR64rm GR64:$src1, addr:$src2)>;
1850
1851// or reg/imm
1852def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1853def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1854def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1855def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1856 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1857def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1858 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1859def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1860 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1861def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1862 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1863
1864// xor reg/reg
1865def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1866def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1867def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1868def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1869
1870// xor reg/mem
1871def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1872 (XOR8rm GR8:$src1, addr:$src2)>;
1873def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1874 (XOR16rm GR16:$src1, addr:$src2)>;
1875def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1876 (XOR32rm GR32:$src1, addr:$src2)>;
1877def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1878 (XOR64rm GR64:$src1, addr:$src2)>;
1879
1880// xor reg/imm
1881def : Pat<(xor GR8:$src1, imm:$src2),
1882 (XOR8ri GR8:$src1, imm:$src2)>;
1883def : Pat<(xor GR16:$src1, imm:$src2),
1884 (XOR16ri GR16:$src1, imm:$src2)>;
1885def : Pat<(xor GR32:$src1, imm:$src2),
1886 (XOR32ri GR32:$src1, imm:$src2)>;
1887def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1888 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1889def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1890 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1891def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1892 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1893def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1894 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1895
1896// and reg/reg
1897def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1898def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1899def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1900def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1901
1902// and reg/mem
1903def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1904 (AND8rm GR8:$src1, addr:$src2)>;
1905def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1906 (AND16rm GR16:$src1, addr:$src2)>;
1907def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1908 (AND32rm GR32:$src1, addr:$src2)>;
1909def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1910 (AND64rm GR64:$src1, addr:$src2)>;
1911
1912// and reg/imm
1913def : Pat<(and GR8:$src1, imm:$src2),
1914 (AND8ri GR8:$src1, imm:$src2)>;
1915def : Pat<(and GR16:$src1, imm:$src2),
1916 (AND16ri GR16:$src1, imm:$src2)>;
1917def : Pat<(and GR32:$src1, imm:$src2),
1918 (AND32ri GR32:$src1, imm:$src2)>;
1919def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1920 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1921def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1922 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1923def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1924 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1925def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1926 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1927
1928// Bit scan instruction patterns to match explicit zero-undef behavior.
1929def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1930def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1931def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1932def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1933def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1934def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1935
1936// When HasMOVBE is enabled it is possible to get a non-legalized
1937// register-register 16 bit bswap. This maps it to a ROL instruction.
1938let Predicates = [HasMOVBE] in {
1939 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1940}