blob: 66326eaf50b94e3f35191bc0d9286127988923f0 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000102
103// When using segmented stacks these are lowered into instructions which first
104// check if the current stacklet has enough free memory. If it does, memory is
105// allocated by bumping the stack pointer. Otherwise memory is allocated from
106// the heap.
107
108let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
109def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
110 "# variable sized alloca for segmented stacks",
111 [(set GR32:$dst,
112 (X86SegAlloca GR32:$size))]>,
113 Requires<[NotLP64]>;
114
115let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
116def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
117 "# variable sized alloca for segmented stacks",
118 [(set GR64:$dst,
119 (X86SegAlloca GR64:$size))]>,
120 Requires<[In64BitMode]>;
121}
122
Hans Wennborg8eb336c2016-05-18 16:10:17 +0000123// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
124// targets. These calls are needed to probe the stack when allocating more than
125// 4k bytes in one go. Touching the stack at 4K increments is necessary to
126// ensure that the guard pages used by the OS virtual memory manager are
127// allocated in correct sequence.
128// The main point of having separate instruction are extra unmodelled effects
129// (compared to ordinary calls) like stack pointer change.
130
131let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
132def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
133 "# dynamic stack allocation",
134 [(X86WinAlloca GR32:$size)]>,
135 Requires<[NotLP64]>;
136
137let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
138def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
139 "# dynamic stack allocation",
140 [(X86WinAlloca GR64:$size)]>,
141 Requires<[In64BitMode]>;
142
143
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000144//===----------------------------------------------------------------------===//
145// EH Pseudo Instructions
146//
147let SchedRW = [WriteSystem] in {
148let isTerminator = 1, isReturn = 1, isBarrier = 1,
149 hasCtrlDep = 1, isCodeGenOnly = 1 in {
150def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
151 "ret\t#eh_return, addr: $addr",
152 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
153
154}
155
156let isTerminator = 1, isReturn = 1, isBarrier = 1,
157 hasCtrlDep = 1, isCodeGenOnly = 1 in {
158def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
159 "ret\t#eh_return, addr: $addr",
160 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
161
162}
163
Reid Kleckner51460c12015-11-06 01:49:05 +0000164let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
165 isCodeGenOnly = 1, isReturn = 1 in {
166 def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
167
David Majnemer2652b752015-11-09 23:07:48 +0000168 // CATCHRET needs a custom inserter for SEH.
Reid Kleckner51460c12015-11-06 01:49:05 +0000169 let usesCustomInserter = 1 in
170 def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
171 "# CATCHRET",
172 [(catchret bb:$dst, bb:$from)]>;
Reid Kleckner0e288232015-08-27 23:27:47 +0000173}
174
Reid Kleckner420f0542015-11-09 23:34:42 +0000175let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
David Majnemer2652b752015-11-09 23:07:48 +0000176 usesCustomInserter = 1 in
177def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
178
Reid Kleckner51460c12015-11-06 01:49:05 +0000179// This instruction is responsible for re-establishing stack pointers after an
180// exception has been caught and we are rejoining normal control flow in the
181// parent function or funclet. It generally sets ESP and EBP, and optionally
182// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
183// elsewhere.
Reid Kleckner420f0542015-11-09 23:34:42 +0000184let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
Reid Kleckner51460c12015-11-06 01:49:05 +0000185def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
186
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000187let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
188 usesCustomInserter = 1 in {
189 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
190 "#EH_SJLJ_SETJMP32",
191 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
192 Requires<[Not64BitMode]>;
193 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
194 "#EH_SJLJ_SETJMP64",
195 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
196 Requires<[In64BitMode]>;
197 let isTerminator = 1 in {
198 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
199 "#EH_SJLJ_LONGJMP32",
200 [(X86eh_sjlj_longjmp addr:$buf)]>,
201 Requires<[Not64BitMode]>;
202 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
203 "#EH_SJLJ_LONGJMP64",
204 [(X86eh_sjlj_longjmp addr:$buf)]>,
205 Requires<[In64BitMode]>;
206 }
207}
208} // SchedRW
209
210let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
211 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
212 "#EH_SjLj_Setup\t$dst", []>;
213}
214
215//===----------------------------------------------------------------------===//
216// Pseudo instructions used by unwind info.
217//
218let isPseudo = 1 in {
219 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
220 "#SEH_PushReg $reg", []>;
221 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
222 "#SEH_SaveReg $reg, $dst", []>;
223 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
224 "#SEH_SaveXMM $reg, $dst", []>;
225 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
226 "#SEH_StackAlloc $size", []>;
227 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
228 "#SEH_SetFrame $reg, $offset", []>;
229 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
230 "#SEH_PushFrame $mode", []>;
231 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
232 "#SEH_EndPrologue", []>;
233 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
234 "#SEH_Epilogue", []>;
235}
236
237//===----------------------------------------------------------------------===//
238// Pseudo instructions used by segmented stacks.
239//
240
241// This is lowered into a RET instruction by MCInstLower. We need
242// this so that we don't have to have a MachineBasicBlock which ends
243// with a RET and also has successors.
244let isPseudo = 1 in {
245def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
246 "", []>;
247
248// This instruction is lowered to a RET followed by a MOV. The two
249// instructions are not generated on a higher level since then the
250// verifier sees a MachineBasicBlock ending with a non-terminator.
251def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
252 "", []>;
253}
254
255//===----------------------------------------------------------------------===//
256// Alias Instructions
257//===----------------------------------------------------------------------===//
258
259// Alias instruction mapping movr0 to xor.
260// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
261let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
Hans Wennborg4ae51192016-03-25 01:10:56 +0000262 isPseudo = 1, AddedComplexity = 20 in
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000263def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
264 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
265
266// Other widths can also make use of the 32-bit xor, which may have a smaller
267// encoding and avoid partial register updates.
268def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
269def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
270def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
271 let AddedComplexity = 20;
272}
273
Hans Wennborg08d59052015-12-15 17:10:28 +0000274let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
Hans Wennborg4ae51192016-03-25 01:10:56 +0000275 AddedComplexity = 15 in {
Hans Wennborg08d59052015-12-15 17:10:28 +0000276 // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
277 // which only require 3 bytes compared to MOV32ri which requires 5.
278 let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
279 def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
280 [(set GR32:$dst, 1)]>;
281 def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
282 [(set GR32:$dst, -1)]>;
283 }
284
285 // MOV16ri is 4 bytes, so the instructions above are smaller.
286 def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
287 def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
288}
289
Hans Wennborg4ae51192016-03-25 01:10:56 +0000290let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in {
291// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
292// FIXME: Add itinerary class and Schedule.
293def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
294 [(set GR32:$dst, i32immSExt8:$src)]>,
295 Requires<[OptForMinSize, NotWin64WithoutFP]>;
296def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
297 [(set GR64:$dst, i64immSExt8:$src)]>,
298 Requires<[OptForMinSize, NotWin64WithoutFP]>;
299}
300
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000301// Materialize i64 constant where top 32-bits are zero. This could theoretically
302// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
303// that would make it more difficult to rematerialize.
Craig Toppere00bffb2016-01-05 07:44:14 +0000304let isReMaterializable = 1, isAsCheapAsAMove = 1,
305 isPseudo = 1, hasSideEffects = 0 in
306def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000307
308// This 64-bit pseudo-move can be used for both a 64-bit constant that is
Sanjay Patel85030aa2015-10-13 16:23:00 +0000309// actually the zero-extension of a 32-bit constant and for labels in the
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000310// x86-64 small code model.
Sanjay Patel85030aa2015-10-13 16:23:00 +0000311def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000312
313let AddedComplexity = 1 in
314def : Pat<(i64 mov64imm32:$src),
315 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
316
317// Use sbb to materialize carry bit.
318let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
319// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
320// However, Pat<> can't replicate the destination reg into the inputs of the
321// result.
322def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
323 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
324def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
325 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
326def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
327 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
328def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
329 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
330} // isCodeGenOnly
331
332
333def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
334 (SETB_C16r)>;
335def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
336 (SETB_C32r)>;
337def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
338 (SETB_C64r)>;
339
340def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
341 (SETB_C16r)>;
342def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
343 (SETB_C32r)>;
344def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
345 (SETB_C64r)>;
346
347// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
348// will be eliminated and that the sbb can be extended up to a wider type. When
349// this happens, it is great. However, if we are left with an 8-bit sbb and an
350// and, we might as well just match it as a setb.
351def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
352 (SETBr)>;
353
354// (add OP, SETB) -> (adc OP, 0)
355def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
356 (ADC8ri GR8:$op, 0)>;
357def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
358 (ADC32ri8 GR32:$op, 0)>;
359def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
360 (ADC64ri8 GR64:$op, 0)>;
361
362// (sub OP, SETB) -> (sbb OP, 0)
363def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
364 (SBB8ri GR8:$op, 0)>;
365def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
366 (SBB32ri8 GR32:$op, 0)>;
367def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
368 (SBB64ri8 GR64:$op, 0)>;
369
370// (sub OP, SETCC_CARRY) -> (adc OP, 0)
371def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
372 (ADC8ri GR8:$op, 0)>;
373def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
374 (ADC32ri8 GR32:$op, 0)>;
375def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
376 (ADC64ri8 GR64:$op, 0)>;
377
378//===----------------------------------------------------------------------===//
379// String Pseudo Instructions
380//
381let SchedRW = [WriteMicrocoded] in {
382let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
383def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
384 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
385 Requires<[Not64BitMode]>;
386def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
387 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
388 Requires<[Not64BitMode]>;
389def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
390 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
391 Requires<[Not64BitMode]>;
392}
393
394let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
395def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
396 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
397 Requires<[In64BitMode]>;
398def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
399 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
400 Requires<[In64BitMode]>;
401def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
402 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
403 Requires<[In64BitMode]>;
404def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
405 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
406 Requires<[In64BitMode]>;
407}
408
409// FIXME: Should use "(X86rep_stos AL)" as the pattern.
410let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
411 let Uses = [AL,ECX,EDI] in
412 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
413 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
414 Requires<[Not64BitMode]>;
415 let Uses = [AX,ECX,EDI] in
416 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
417 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
418 Requires<[Not64BitMode]>;
419 let Uses = [EAX,ECX,EDI] in
420 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
421 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
422 Requires<[Not64BitMode]>;
423}
424
425let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
426 let Uses = [AL,RCX,RDI] in
427 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
428 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
429 Requires<[In64BitMode]>;
430 let Uses = [AX,RCX,RDI] in
431 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
432 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
433 Requires<[In64BitMode]>;
434 let Uses = [RAX,RCX,RDI] in
435 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
436 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
437 Requires<[In64BitMode]>;
438
439 let Uses = [RAX,RCX,RDI] in
440 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
441 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
442 Requires<[In64BitMode]>;
443}
444} // SchedRW
445
446//===----------------------------------------------------------------------===//
447// Thread Local Storage Instructions
448//
449
450// ELF TLS Support
451// All calls clobber the non-callee saved registers. ESP is marked as
452// a use to prevent stack-pointer assignments that appear immediately
453// before calls from potentially appearing dead.
454let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
455 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
456 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
457 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
458 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000459 usesCustomInserter = 1, Uses = [ESP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000460def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
461 "# TLS_addr32",
462 [(X86tlsaddr tls32addr:$sym)]>,
463 Requires<[Not64BitMode]>;
464def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
465 "# TLS_base_addr32",
466 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
467 Requires<[Not64BitMode]>;
468}
469
470// All calls clobber the non-callee saved registers. RSP is marked as
471// a use to prevent stack-pointer assignments that appear immediately
472// before calls from potentially appearing dead.
473let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
474 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
475 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
476 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
477 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
478 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Davide Italiano228978c2016-02-20 00:44:47 +0000479 usesCustomInserter = 1, Uses = [RSP] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000480def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
481 "# TLS_addr64",
482 [(X86tlsaddr tls64addr:$sym)]>,
483 Requires<[In64BitMode]>;
484def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
485 "# TLS_base_addr64",
486 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
487 Requires<[In64BitMode]>;
488}
489
490// Darwin TLS Support
491// For i386, the address of the thunk is passed on the stack, on return the
492// address of the variable is in %eax. %ecx is trashed during the function
493// call. All other registers are preserved.
494let Defs = [EAX, ECX, EFLAGS],
495 Uses = [ESP],
496 usesCustomInserter = 1 in
497def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
498 "# TLSCall_32",
499 [(X86TLSCall addr:$sym)]>,
500 Requires<[Not64BitMode]>;
501
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000502// For x86_64, the address of the thunk is passed in %rdi, but the
503// pseudo directly use the symbol, so do not add an implicit use of
504// %rdi. The lowering will do the right thing with RDI.
505// On return the address of the variable is in %rax. All other
506// registers are preserved.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000507let Defs = [RAX, EFLAGS],
Quentin Colombetd6dbec42016-04-27 21:37:37 +0000508 Uses = [RSP],
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000509 usesCustomInserter = 1 in
510def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
511 "# TLSCall_64",
512 [(X86TLSCall addr:$sym)]>,
513 Requires<[In64BitMode]>;
514
515
516//===----------------------------------------------------------------------===//
517// Conditional Move Pseudo Instructions
518
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000519// CMOV* - Used to implement the SELECT DAG operation. Expanded after
520// instruction selection into a branch sequence.
521multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
522 def CMOV#NAME : I<0, Pseudo,
523 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
524 "#CMOV_"#NAME#" PSEUDO!",
525 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
526 EFLAGS)))]>;
527}
528
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000529let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000530 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
531 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
532 // however that requires promoting the operands, and can induce additional
533 // i8 register pressure.
534 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000535
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000536 let Predicates = [NoCMov] in {
537 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
538 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
539 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000540
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000541 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
542 // SSE1/SSE2.
543 let Predicates = [FPStackf32] in
544 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000545
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000546 let Predicates = [FPStackf64] in
547 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
548
549 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
550
551 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
552 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
Chih-Hung Hsieh7993e182015-12-14 22:08:36 +0000553 defm _FR128 : CMOVrr_PSEUDO<FR128, f128>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000554 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
555 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
556 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
557 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
558 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
559 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
560 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
561 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
562 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000563 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
564 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
565 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
566 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000567} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000568
569//===----------------------------------------------------------------------===//
570// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
571//===----------------------------------------------------------------------===//
572
573// FIXME: Use normal instructions and add lock prefix dynamically.
574
575// Memory barriers
576
577// TODO: Get this to fold the constant into the instruction.
578let isCodeGenOnly = 1, Defs = [EFLAGS] in
579def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
Craig Topper9583f512016-01-05 07:44:11 +0000580 "or{l}\t{$zero, $dst|$dst, $zero}", [],
581 IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000582 Sched<[WriteALULd, WriteRMW]>;
583
584let hasSideEffects = 1 in
585def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
586 "#MEMBARRIER",
587 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
588
589// RegOpc corresponds to the mr version of the instruction
590// ImmOpc corresponds to the mi version of the instruction
591// ImmOpc8 corresponds to the mi8 version of the instruction
592// ImmMod corresponds to the instruction format of the mi and mi8 versions
593multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000594 Format ImmMod, SDPatternOperator Op, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000595let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
596 SchedRW = [WriteALULd, WriteRMW] in {
597
598def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
599 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
600 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
601 !strconcat(mnemonic, "{b}\t",
602 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000603 [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
604 IIC_ALU_NONMEM>, LOCK;
605
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000606def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
607 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
608 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
609 !strconcat(mnemonic, "{w}\t",
610 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000611 [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
612 IIC_ALU_NONMEM>, OpSize16, LOCK;
613
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000614def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
615 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
616 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
617 !strconcat(mnemonic, "{l}\t",
618 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000619 [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
620 IIC_ALU_NONMEM>, OpSize32, LOCK;
621
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000622def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
623 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
624 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
625 !strconcat(mnemonic, "{q}\t",
626 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000627 [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
628 IIC_ALU_NONMEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000629
630def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
631 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
632 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
633 !strconcat(mnemonic, "{b}\t",
634 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000635 [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
636 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000637
638def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
639 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
640 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
641 !strconcat(mnemonic, "{w}\t",
642 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000643 [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
644 IIC_ALU_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000645
646def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
647 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
648 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
649 !strconcat(mnemonic, "{l}\t",
650 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000651 [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
652 IIC_ALU_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000653
654def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
655 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
656 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
657 !strconcat(mnemonic, "{q}\t",
658 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000659 [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
660 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000661
662def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
663 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
664 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
665 !strconcat(mnemonic, "{w}\t",
666 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000667 [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
668 IIC_ALU_MEM>, OpSize16, LOCK;
669
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000670def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
671 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
672 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
673 !strconcat(mnemonic, "{l}\t",
674 "{$src2, $dst|$dst, $src2}"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000675 [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
676 IIC_ALU_MEM>, OpSize32, LOCK;
677
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000678def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
679 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
680 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
681 !strconcat(mnemonic, "{q}\t",
682 "{$src2, $dst|$dst, $src2}"),
Craig Topper7b5925a2016-05-02 05:44:21 +0000683 [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000684 IIC_ALU_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000685
686}
687
688}
689
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000690defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
691defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
692defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
693defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
694defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000695
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000696multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000697 int Increment, string mnemonic> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000698let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000699 SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000700def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
701 !strconcat(mnemonic, "{b}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000702 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
703 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000704def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
705 !strconcat(mnemonic, "{w}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000706 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
707 IIC_UNARY_MEM>, OpSize16, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000708def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
709 !strconcat(mnemonic, "{l}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000710 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
711 IIC_UNARY_MEM>, OpSize32, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000712def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
713 !strconcat(mnemonic, "{q}\t$dst"),
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000714 [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
715 IIC_UNARY_MEM>, LOCK;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000716}
717}
718
Ahmed Bougachabb5d7d72016-02-29 19:28:07 +0000719defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, 1, "inc">;
720defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000721
722// Atomic compare and swap.
723multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
724 SDPatternOperator frag, X86MemOperand x86memop,
725 InstrItinClass itin> {
726let isCodeGenOnly = 1 in {
727 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
728 !strconcat(mnemonic, "\t$ptr"),
729 [(frag addr:$ptr)], itin>, TB, LOCK;
730}
731}
732
733multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
734 string mnemonic, SDPatternOperator frag,
735 InstrItinClass itin8, InstrItinClass itin> {
736let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
737 let Defs = [AL, EFLAGS], Uses = [AL] in
738 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
739 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
740 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
741 let Defs = [AX, EFLAGS], Uses = [AX] in
742 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
743 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
744 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
745 let Defs = [EAX, EFLAGS], Uses = [EAX] in
746 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
747 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
748 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
749 let Defs = [RAX, EFLAGS], Uses = [RAX] in
750 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
751 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
752 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
753}
754}
755
756let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
757 SchedRW = [WriteALULd, WriteRMW] in {
758defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
759 X86cas8, i64mem,
760 IIC_CMPX_LOCK_8B>;
761}
762
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000763// This pseudo must be used when the frame uses RBX as
764// the base pointer. Indeed, in such situation RBX is a reserved
765// register and the register allocator will ignore any use/def of
766// it. In other words, the register will not fix the clobbering of
767// RBX that will happen when setting the arguments for the instrucion.
768//
769// Unlike the actual related instuction, we mark that this one
770// defines EBX (instead of using EBX).
771// The rationale is that we will define RBX during the expansion of
772// the pseudo. The argument feeding EBX is ebx_input.
773//
774// The additional argument, $ebx_save, is a temporary register used to
775// save the value of RBX accross the actual instruction.
776//
777// To make sure the register assigned to $ebx_save does not interfere with
778// the definition of the actual instruction, we use a definition $dst which
779// is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
780// the instruction and we are sure we will have a valid register to restore
781// the value of RBX.
782let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
783 SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
784 Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
785def LCMPXCHG8B_SAVE_EBX :
786 I<0, Pseudo, (outs GR32:$dst),
787 (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
788 !strconcat("cmpxchg8b", "\t$ptr"),
789 [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
790 GR32:$ebx_save))],
791 IIC_CMPX_LOCK_8B>;
792}
793
794
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000795let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
796 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
797defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
798 X86cas16, i128mem,
799 IIC_CMPX_LOCK_16B>, REX_W;
800}
801
Quentin Colombetcf9732b2016-03-12 02:25:27 +0000802// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
803let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
804 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
805 isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
806 usesCustomInserter = 1 in {
807def LCMPXCHG16B_SAVE_RBX :
808 I<0, Pseudo, (outs GR64:$dst),
809 (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
810 !strconcat("cmpxchg16b", "\t$ptr"),
811 [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
812 GR64:$rbx_save))],
813 IIC_CMPX_LOCK_16B>;
814}
815
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000816defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
817 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
818
819// Atomic exchange and add
820multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
821 string frag,
822 InstrItinClass itin8, InstrItinClass itin> {
823 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
824 SchedRW = [WriteALULd, WriteRMW] in {
825 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
826 (ins GR8:$val, i8mem:$ptr),
827 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
828 [(set GR8:$dst,
829 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
830 itin8>;
831 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
832 (ins GR16:$val, i16mem:$ptr),
833 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
834 [(set
835 GR16:$dst,
836 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
837 itin>, OpSize16;
838 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
839 (ins GR32:$val, i32mem:$ptr),
840 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
841 [(set
842 GR32:$dst,
843 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
844 itin>, OpSize32;
845 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
846 (ins GR64:$val, i64mem:$ptr),
847 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
848 [(set
849 GR64:$dst,
850 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
851 itin>;
852 }
853}
854
855defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
856 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
857 TB, LOCK;
858
859/* The following multiclass tries to make sure that in code like
860 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000861 * and
862 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000863 * an operation directly on memory is generated instead of wasting a register.
864 * It is not automatic as atomic_store/load are only lowered to MOV instructions
865 * extremely late to prevent them from being accidentally reordered in the backend
866 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
867 */
JF Bastien0f8a99b2015-08-05 23:15:37 +0000868multiclass RELEASE_BINOP_MI<SDNode op> {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000869 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000870 "#BINOP "#NAME#"8mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000871 [(atomic_store_8 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000872 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000873 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
874 "#BINOP "#NAME#"8mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000875 [(atomic_store_8 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000876 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000877 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
878 // costly and avoided as far as possible by this backend anyway
879 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000880 "#BINOP "#NAME#"32mi PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000881 [(atomic_store_32 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000882 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000883 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
884 "#BINOP "#NAME#"32mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000885 [(atomic_store_32 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000886 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000887 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000888 "#BINOP "#NAME#"64mi32 PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000889 [(atomic_store_64 addr:$dst, (op
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000890 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000891 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
892 "#BINOP "#NAME#"64mr PSEUDO!",
JF Bastien0f8a99b2015-08-05 23:15:37 +0000893 [(atomic_store_64 addr:$dst, (op
JF Bastien86620832015-08-05 21:04:59 +0000894 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000895}
JF Bastien986ed682015-10-13 00:28:47 +0000896let Defs = [EFLAGS] in {
897 defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
898 defm RELEASE_AND : RELEASE_BINOP_MI<and>;
899 defm RELEASE_OR : RELEASE_BINOP_MI<or>;
900 defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
901 // Note: we don't deal with sub, because substractions of constants are
902 // optimized into additions before this code can run.
903}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000904
JF Bastien86620832015-08-05 21:04:59 +0000905// Same as above, but for floating-point.
906// FIXME: imm version.
907// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
908// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
909let usesCustomInserter = 1 in {
JF Bastien0f8a99b2015-08-05 23:15:37 +0000910multiclass RELEASE_FP_BINOP_MI<SDNode op> {
JF Bastien86620832015-08-05 21:04:59 +0000911 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
912 "#BINOP "#NAME#"32mr PSEUDO!",
913 [(atomic_store_32 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000914 (i32 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000915 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
916 FR32:$src))))]>, Requires<[HasSSE1]>;
917 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
918 "#BINOP "#NAME#"64mr PSEUDO!",
919 [(atomic_store_64 addr:$dst,
JF Bastien0f8a99b2015-08-05 23:15:37 +0000920 (i64 (bitconvert (op
JF Bastien86620832015-08-05 21:04:59 +0000921 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
922 FR64:$src))))]>, Requires<[HasSSE2]>;
923}
JF Bastien0f8a99b2015-08-05 23:15:37 +0000924defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
JF Bastien86620832015-08-05 21:04:59 +0000925// FIXME: Add fsub, fmul, fdiv, ...
926}
927
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000928multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
929 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000930 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000931 [(atomic_store_8 addr:$dst, dag8)]>;
932 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000933 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000934 [(atomic_store_16 addr:$dst, dag16)]>;
935 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000936 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000937 [(atomic_store_32 addr:$dst, dag32)]>;
938 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000939 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000940 [(atomic_store_64 addr:$dst, dag64)]>;
941}
942
JF Bastien2cdd5e42015-10-15 18:24:52 +0000943let Defs = [EFLAGS] in {
944 defm RELEASE_INC : RELEASE_UNOP<
945 (add (atomic_load_8 addr:$dst), (i8 1)),
946 (add (atomic_load_16 addr:$dst), (i16 1)),
947 (add (atomic_load_32 addr:$dst), (i32 1)),
948 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
949 defm RELEASE_DEC : RELEASE_UNOP<
950 (add (atomic_load_8 addr:$dst), (i8 -1)),
951 (add (atomic_load_16 addr:$dst), (i16 -1)),
952 (add (atomic_load_32 addr:$dst), (i32 -1)),
953 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
954}
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000955/*
956TODO: These don't work because the type inference of TableGen fails.
957TODO: find a way to fix it.
JF Bastien2cdd5e42015-10-15 18:24:52 +0000958let Defs = [EFLAGS] in {
959 defm RELEASE_NEG : RELEASE_UNOP<
960 (ineg (atomic_load_8 addr:$dst)),
961 (ineg (atomic_load_16 addr:$dst)),
962 (ineg (atomic_load_32 addr:$dst)),
963 (ineg (atomic_load_64 addr:$dst))>;
964}
965// NOT doesn't set flags.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000966defm RELEASE_NOT : RELEASE_UNOP<
967 (not (atomic_load_8 addr:$dst)),
968 (not (atomic_load_16 addr:$dst)),
969 (not (atomic_load_32 addr:$dst)),
970 (not (atomic_load_64 addr:$dst))>;
971*/
972
973def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000974 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000975 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
976def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000977 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000978 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
979def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000980 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000981 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
982def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000983 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000984 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
985
986def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000987 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000988 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
989def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000990 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000991 [(atomic_store_16 addr:$dst, GR16:$src)]>;
992def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000993 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000994 [(atomic_store_32 addr:$dst, GR32:$src)]>;
995def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000996 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000997 [(atomic_store_64 addr:$dst, GR64:$src)]>;
998
999def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +00001000 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001001 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
1002def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001003 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001004 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
1005def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001006 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001007 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
1008def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +00001009 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001010 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001011
1012//===----------------------------------------------------------------------===//
1013// DAG Pattern Matching Rules
1014//===----------------------------------------------------------------------===//
1015
Hans Wennborg5f916d32016-03-25 18:11:31 +00001016// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1017// binary size compared to a regular MOV, but it introduces an unnecessary
1018// load, so is not suitable for regular or optsize functions.
1019let Predicates = [OptForMinSize] in {
1020def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1021def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1022def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1023def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1024def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1025def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1026}
1027
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001028// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
1029def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
1030def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
1031def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
1032def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
1033def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001034def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001035def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
1036
1037def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
1038 (ADD32ri GR32:$src1, tconstpool:$src2)>;
1039def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
1040 (ADD32ri GR32:$src1, tjumptable:$src2)>;
1041def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
1042 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
1043def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
1044 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001045def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
1046 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001047def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
1048 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
1049
1050def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1051 (MOV32mi addr:$dst, tglobaladdr:$src)>;
1052def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
1053 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001054def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
1055 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001056def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
1057 (MOV32mi addr:$dst, tblockaddress:$src)>;
1058
1059// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
1060// code model mode, should use 'movabs'. FIXME: This is really a hack, the
1061// 'movabs' predicate should handle this sort of thing.
1062def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1063 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
1064def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1065 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
1066def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1067 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
1068def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1069 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001070def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1071 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001072def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1073 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
1074
1075// In kernel code model, we can get the address of a label
1076// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
1077// the MOV64ri32 should accept these.
1078def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
1079 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
1080def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
1081 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
1082def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1083 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1084def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1085 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001086def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1087 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001088def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1089 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1090
1091// If we have small model and -static mode, it is safe to store global addresses
1092// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
1093// for MOV64mi32 should handle this sort of thing.
1094def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1095 (MOV64mi32 addr:$dst, tconstpool:$src)>,
1096 Requires<[NearData, IsStatic]>;
1097def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1098 (MOV64mi32 addr:$dst, tjumptable:$src)>,
1099 Requires<[NearData, IsStatic]>;
1100def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1101 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1102 Requires<[NearData, IsStatic]>;
1103def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1104 (MOV64mi32 addr:$dst, texternalsym:$src)>,
1105 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +00001106def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1107 (MOV64mi32 addr:$dst, mcsym:$src)>,
1108 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001109def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1110 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1111 Requires<[NearData, IsStatic]>;
1112
Rafael Espindola36b718f2015-06-22 17:46:53 +00001113def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1114def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001115
1116// Calls
1117
1118// tls has some funny stuff here...
1119// This corresponds to movabs $foo@tpoff, %rax
1120def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1121 (MOV64ri32 tglobaltlsaddr :$dst)>;
1122// This corresponds to add $foo@tpoff, %rax
1123def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1124 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1125
1126
1127// Direct PC relative function call for small code model. 32-bit displacement
1128// sign extended to 64-bit.
1129def : Pat<(X86call (i64 tglobaladdr:$dst)),
1130 (CALL64pcrel32 tglobaladdr:$dst)>;
1131def : Pat<(X86call (i64 texternalsym:$dst)),
1132 (CALL64pcrel32 texternalsym:$dst)>;
1133
1134// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1135// can never use callee-saved registers. That is the purpose of the GR64_TC
1136// register classes.
1137//
1138// The only volatile register that is never used by the calling convention is
1139// %r11. This happens when calling a vararg function with 6 arguments.
1140//
1141// Match an X86tcret that uses less than 7 volatile registers.
1142def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1143 (X86tcret node:$ptr, node:$off), [{
1144 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1145 unsigned NumRegs = 0;
1146 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1147 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1148 return false;
1149 return true;
1150}]>;
1151
1152def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1153 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1154 Requires<[Not64BitMode]>;
1155
1156// FIXME: This is disabled for 32-bit PIC mode because the global base
1157// register which is part of the address mode may be assigned a
1158// callee-saved register.
1159def : Pat<(X86tcret (load addr:$dst), imm:$off),
1160 (TCRETURNmi addr:$dst, imm:$off)>,
1161 Requires<[Not64BitMode, IsNotPIC]>;
1162
1163def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1164 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1165 Requires<[NotLP64]>;
1166
1167def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1168 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1169 Requires<[NotLP64]>;
1170
1171def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1172 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1173 Requires<[In64BitMode]>;
1174
1175// Don't fold loads into X86tcret requiring more than 6 regs.
1176// There wouldn't be enough scratch registers for base+index.
1177def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1178 (TCRETURNmi64 addr:$dst, imm:$off)>,
1179 Requires<[In64BitMode]>;
1180
1181def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1182 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1183 Requires<[IsLP64]>;
1184
1185def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1186 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1187 Requires<[IsLP64]>;
1188
1189// Normal calls, with various flavors of addresses.
1190def : Pat<(X86call (i32 tglobaladdr:$dst)),
1191 (CALLpcrel32 tglobaladdr:$dst)>;
1192def : Pat<(X86call (i32 texternalsym:$dst)),
1193 (CALLpcrel32 texternalsym:$dst)>;
1194def : Pat<(X86call (i32 imm:$dst)),
1195 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1196
1197// Comparisons.
1198
1199// TEST R,R is smaller than CMP R,0
1200def : Pat<(X86cmp GR8:$src1, 0),
1201 (TEST8rr GR8:$src1, GR8:$src1)>;
1202def : Pat<(X86cmp GR16:$src1, 0),
1203 (TEST16rr GR16:$src1, GR16:$src1)>;
1204def : Pat<(X86cmp GR32:$src1, 0),
1205 (TEST32rr GR32:$src1, GR32:$src1)>;
1206def : Pat<(X86cmp GR64:$src1, 0),
1207 (TEST64rr GR64:$src1, GR64:$src1)>;
1208
1209// Conditional moves with folded loads with operands swapped and conditions
1210// inverted.
1211multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1212 Instruction Inst64> {
1213 let Predicates = [HasCMov] in {
1214 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1215 (Inst16 GR16:$src2, addr:$src1)>;
1216 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1217 (Inst32 GR32:$src2, addr:$src1)>;
1218 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1219 (Inst64 GR64:$src2, addr:$src1)>;
1220 }
1221}
1222
1223defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1224defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1225defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1226defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1227defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1228defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1229defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1230defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1231defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1232defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1233defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1234defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1235defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1236defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1237defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1238defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1239
1240// zextload bool -> zextload byte
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001241// i1 stored in one byte in zero-extended form.
1242// Upper bits cleanup should be executed before Store.
1243def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1244def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1245def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001246def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskye5bbca62016-02-25 07:05:12 +00001247 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001248
1249// extload bool -> extload byte
1250// When extloading from 16-bit and smaller memory locations into 64-bit
1251// registers, use zero-extending loads so that the entire 64-bit register is
1252// defined, avoiding partial-register updates.
1253
1254def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1255def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1256def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1257def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1258def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1259def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1260
1261// For other extloads, use subregs, since the high contents of the register are
1262// defined after an extload.
1263def : Pat<(extloadi64i1 addr:$src),
1264 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1265def : Pat<(extloadi64i8 addr:$src),
1266 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1267def : Pat<(extloadi64i16 addr:$src),
1268 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1269def : Pat<(extloadi64i32 addr:$src),
1270 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1271
1272// anyext. Define these to do an explicit zero-extend to
1273// avoid partial-register updates.
1274def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1275 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1276def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1277
1278// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1279def : Pat<(i32 (anyext GR16:$src)),
1280 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1281
1282def : Pat<(i64 (anyext GR8 :$src)),
1283 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1284def : Pat<(i64 (anyext GR16:$src)),
1285 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1286def : Pat<(i64 (anyext GR32:$src)),
1287 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1288
1289
1290// Any instruction that defines a 32-bit result leaves the high half of the
1291// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1292// be copying from a truncate. And x86's cmov doesn't do anything if the
1293// condition is false. But any other 32-bit operation will zero-extend
1294// up to 64 bits.
1295def def32 : PatLeaf<(i32 GR32:$src), [{
1296 return N->getOpcode() != ISD::TRUNCATE &&
1297 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1298 N->getOpcode() != ISD::CopyFromReg &&
1299 N->getOpcode() != ISD::AssertSext &&
1300 N->getOpcode() != X86ISD::CMOV;
1301}]>;
1302
1303// In the case of a 32-bit def that is known to implicitly zero-extend,
1304// we can use a SUBREG_TO_REG.
1305def : Pat<(i64 (zext def32:$src)),
1306 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1307
1308//===----------------------------------------------------------------------===//
1309// Pattern match OR as ADD
1310//===----------------------------------------------------------------------===//
1311
1312// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1313// 3-addressified into an LEA instruction to avoid copies. However, we also
1314// want to finally emit these instructions as an or at the end of the code
1315// generator to make the generated code easier to read. To do this, we select
1316// into "disjoint bits" pseudo ops.
1317
1318// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1319def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1320 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1321 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1322
1323 APInt KnownZero0, KnownOne0;
1324 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1325 APInt KnownZero1, KnownOne1;
1326 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1327 return (~KnownZero0 & ~KnownZero1) == 0;
1328}]>;
1329
1330
1331// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1332// Try this before the selecting to OR.
1333let AddedComplexity = 5, SchedRW = [WriteALU] in {
1334
1335let isConvertibleToThreeAddress = 1,
1336 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1337let isCommutable = 1 in {
1338def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1339 "", // orw/addw REG, REG
1340 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1341def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1342 "", // orl/addl REG, REG
1343 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1344def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1345 "", // orq/addq REG, REG
1346 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1347} // isCommutable
1348
1349// NOTE: These are order specific, we want the ri8 forms to be listed
1350// first so that they are slightly preferred to the ri forms.
1351
1352def ADD16ri8_DB : I<0, Pseudo,
1353 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1354 "", // orw/addw REG, imm8
1355 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1356def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1357 "", // orw/addw REG, imm
1358 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1359
1360def ADD32ri8_DB : I<0, Pseudo,
1361 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1362 "", // orl/addl REG, imm8
1363 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1364def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1365 "", // orl/addl REG, imm
1366 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1367
1368
1369def ADD64ri8_DB : I<0, Pseudo,
1370 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1371 "", // orq/addq REG, imm8
1372 [(set GR64:$dst, (or_is_add GR64:$src1,
1373 i64immSExt8:$src2))]>;
1374def ADD64ri32_DB : I<0, Pseudo,
1375 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1376 "", // orq/addq REG, imm
1377 [(set GR64:$dst, (or_is_add GR64:$src1,
1378 i64immSExt32:$src2))]>;
1379}
1380} // AddedComplexity, SchedRW
1381
1382
1383//===----------------------------------------------------------------------===//
1384// Some peepholes
1385//===----------------------------------------------------------------------===//
1386
1387// Odd encoding trick: -128 fits into an 8-bit immediate field while
1388// +128 doesn't, so in this special case use a sub instead of an add.
1389def : Pat<(add GR16:$src1, 128),
1390 (SUB16ri8 GR16:$src1, -128)>;
1391def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1392 (SUB16mi8 addr:$dst, -128)>;
1393
1394def : Pat<(add GR32:$src1, 128),
1395 (SUB32ri8 GR32:$src1, -128)>;
1396def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1397 (SUB32mi8 addr:$dst, -128)>;
1398
1399def : Pat<(add GR64:$src1, 128),
1400 (SUB64ri8 GR64:$src1, -128)>;
1401def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1402 (SUB64mi8 addr:$dst, -128)>;
1403
1404// The same trick applies for 32-bit immediate fields in 64-bit
1405// instructions.
1406def : Pat<(add GR64:$src1, 0x0000000080000000),
1407 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1408def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1409 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1410
1411// To avoid needing to materialize an immediate in a register, use a 32-bit and
1412// with implicit zero-extension instead of a 64-bit and if the immediate has at
1413// least 32 bits of leading zeros. If in addition the last 32 bits can be
1414// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001415// This can also reduce instruction size by eliminating the need for the REX
1416// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001417
Craig Topper7ea899a2015-04-04 04:22:12 +00001418// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1419let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001420def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1421 (SUBREG_TO_REG
1422 (i64 0),
1423 (AND32ri8
1424 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1425 (i32 (GetLo8XForm imm:$imm))),
1426 sub_32bit)>;
1427
1428def : Pat<(and GR64:$src, i64immZExt32:$imm),
1429 (SUBREG_TO_REG
1430 (i64 0),
1431 (AND32ri
1432 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1433 (i32 (GetLo32XForm imm:$imm))),
1434 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001435} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001436
1437
Craig Topper7ea899a2015-04-04 04:22:12 +00001438// AddedComplexity is needed due to the increased complexity on the
1439// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1440// the MOVZX patterns keeps thems together in DAGIsel tables.
1441let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001442// r & (2^16-1) ==> movz
1443def : Pat<(and GR32:$src1, 0xffff),
1444 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1445// r & (2^8-1) ==> movz
1446def : Pat<(and GR32:$src1, 0xff),
1447 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1448 GR32_ABCD)),
1449 sub_8bit))>,
1450 Requires<[Not64BitMode]>;
1451// r & (2^8-1) ==> movz
1452def : Pat<(and GR16:$src1, 0xff),
1453 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1454 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1455 sub_16bit)>,
1456 Requires<[Not64BitMode]>;
1457
1458// r & (2^32-1) ==> movz
1459def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1460 (SUBREG_TO_REG (i64 0),
1461 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1462 sub_32bit)>;
1463// r & (2^16-1) ==> movz
1464def : Pat<(and GR64:$src, 0xffff),
1465 (SUBREG_TO_REG (i64 0),
1466 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1467 sub_32bit)>;
1468// r & (2^8-1) ==> movz
1469def : Pat<(and GR64:$src, 0xff),
1470 (SUBREG_TO_REG (i64 0),
1471 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1472 sub_32bit)>;
1473// r & (2^8-1) ==> movz
1474def : Pat<(and GR32:$src1, 0xff),
1475 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1476 Requires<[In64BitMode]>;
1477// r & (2^8-1) ==> movz
1478def : Pat<(and GR16:$src1, 0xff),
1479 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1480 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1481 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001482} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001483
1484
1485// sext_inreg patterns
1486def : Pat<(sext_inreg GR32:$src, i16),
1487 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1488def : Pat<(sext_inreg GR32:$src, i8),
1489 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1490 GR32_ABCD)),
1491 sub_8bit))>,
1492 Requires<[Not64BitMode]>;
1493
1494def : Pat<(sext_inreg GR16:$src, i8),
1495 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1496 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1497 sub_16bit)>,
1498 Requires<[Not64BitMode]>;
1499
1500def : Pat<(sext_inreg GR64:$src, i32),
1501 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1502def : Pat<(sext_inreg GR64:$src, i16),
1503 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1504def : Pat<(sext_inreg GR64:$src, i8),
1505 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1506def : Pat<(sext_inreg GR32:$src, i8),
1507 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1508 Requires<[In64BitMode]>;
1509def : Pat<(sext_inreg GR16:$src, i8),
1510 (EXTRACT_SUBREG (MOVSX32rr8
1511 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1512 Requires<[In64BitMode]>;
1513
1514// sext, sext_load, zext, zext_load
1515def: Pat<(i16 (sext GR8:$src)),
1516 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1517def: Pat<(sextloadi16i8 addr:$src),
1518 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1519def: Pat<(i16 (zext GR8:$src)),
1520 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1521def: Pat<(zextloadi16i8 addr:$src),
1522 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1523
1524// trunc patterns
1525def : Pat<(i16 (trunc GR32:$src)),
1526 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1527def : Pat<(i8 (trunc GR32:$src)),
1528 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1529 sub_8bit)>,
1530 Requires<[Not64BitMode]>;
1531def : Pat<(i8 (trunc GR16:$src)),
1532 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1533 sub_8bit)>,
1534 Requires<[Not64BitMode]>;
1535def : Pat<(i32 (trunc GR64:$src)),
1536 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1537def : Pat<(i16 (trunc GR64:$src)),
1538 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1539def : Pat<(i8 (trunc GR64:$src)),
1540 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1541def : Pat<(i8 (trunc GR32:$src)),
1542 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1543 Requires<[In64BitMode]>;
1544def : Pat<(i8 (trunc GR16:$src)),
1545 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1546 Requires<[In64BitMode]>;
1547
1548// h-register tricks
1549def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1550 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1551 sub_8bit_hi)>,
1552 Requires<[Not64BitMode]>;
1553def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1554 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1555 sub_8bit_hi)>,
1556 Requires<[Not64BitMode]>;
1557def : Pat<(srl GR16:$src, (i8 8)),
1558 (EXTRACT_SUBREG
1559 (MOVZX32rr8
1560 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1561 sub_8bit_hi)),
1562 sub_16bit)>,
1563 Requires<[Not64BitMode]>;
1564def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1565 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1566 GR16_ABCD)),
1567 sub_8bit_hi))>,
1568 Requires<[Not64BitMode]>;
1569def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1570 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1571 GR16_ABCD)),
1572 sub_8bit_hi))>,
1573 Requires<[Not64BitMode]>;
1574def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1575 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1576 GR32_ABCD)),
1577 sub_8bit_hi))>,
1578 Requires<[Not64BitMode]>;
1579def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1580 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1581 GR32_ABCD)),
1582 sub_8bit_hi))>,
1583 Requires<[Not64BitMode]>;
1584
1585// h-register tricks.
1586// For now, be conservative on x86-64 and use an h-register extract only if the
1587// value is immediately zero-extended or stored, which are somewhat common
1588// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1589// from being allocated in the same instruction as the h register, as there's
1590// currently no way to describe this requirement to the register allocator.
1591
1592// h-register extract and zero-extend.
1593def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1594 (SUBREG_TO_REG
1595 (i64 0),
1596 (MOVZX32_NOREXrr8
1597 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1598 sub_8bit_hi)),
1599 sub_32bit)>;
1600def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1601 (MOVZX32_NOREXrr8
1602 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1603 sub_8bit_hi))>,
1604 Requires<[In64BitMode]>;
1605def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1606 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1607 GR32_ABCD)),
1608 sub_8bit_hi))>,
1609 Requires<[In64BitMode]>;
1610def : Pat<(srl GR16:$src, (i8 8)),
1611 (EXTRACT_SUBREG
1612 (MOVZX32_NOREXrr8
1613 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1614 sub_8bit_hi)),
1615 sub_16bit)>,
1616 Requires<[In64BitMode]>;
1617def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1618 (MOVZX32_NOREXrr8
1619 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1620 sub_8bit_hi))>,
1621 Requires<[In64BitMode]>;
1622def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1623 (MOVZX32_NOREXrr8
1624 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1625 sub_8bit_hi))>,
1626 Requires<[In64BitMode]>;
1627def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1628 (SUBREG_TO_REG
1629 (i64 0),
1630 (MOVZX32_NOREXrr8
1631 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1632 sub_8bit_hi)),
1633 sub_32bit)>;
1634def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1635 (SUBREG_TO_REG
1636 (i64 0),
1637 (MOVZX32_NOREXrr8
1638 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1639 sub_8bit_hi)),
1640 sub_32bit)>;
1641
1642// h-register extract and store.
1643def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1644 (MOV8mr_NOREX
1645 addr:$dst,
1646 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1647 sub_8bit_hi))>;
1648def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1649 (MOV8mr_NOREX
1650 addr:$dst,
1651 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1652 sub_8bit_hi))>,
1653 Requires<[In64BitMode]>;
1654def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1655 (MOV8mr_NOREX
1656 addr:$dst,
1657 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1658 sub_8bit_hi))>,
1659 Requires<[In64BitMode]>;
1660
1661
1662// (shl x, 1) ==> (add x, x)
1663// Note that if x is undef (immediate or otherwise), we could theoretically
1664// end up with the two uses of x getting different values, producing a result
1665// where the least significant bit is not 0. However, the probability of this
1666// happening is considered low enough that this is officially not a
1667// "real problem".
1668def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1669def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1670def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1671def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1672
1673// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001674def immShift32 : ImmLeaf<i8, [{
1675 return countTrailingOnes<uint64_t>(Imm) >= 5;
1676}]>;
1677def immShift64 : ImmLeaf<i8, [{
1678 return countTrailingOnes<uint64_t>(Imm) >= 6;
1679}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001680
1681// Shift amount is implicitly masked.
1682multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1683 // (shift x (and y, 31)) ==> (shift x, y)
1684 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1685 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1686 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1687 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1688 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1689 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1690 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1691 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1692 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1693 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1694 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1695 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1696
1697 // (shift x (and y, 63)) ==> (shift x, y)
1698 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1699 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1700 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1701 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1702}
1703
1704defm : MaskedShiftAmountPats<shl, "SHL">;
1705defm : MaskedShiftAmountPats<srl, "SHR">;
1706defm : MaskedShiftAmountPats<sra, "SAR">;
1707defm : MaskedShiftAmountPats<rotl, "ROL">;
1708defm : MaskedShiftAmountPats<rotr, "ROR">;
1709
1710// (anyext (setcc_carry)) -> (setcc_carry)
1711def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1712 (SETB_C16r)>;
1713def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1714 (SETB_C32r)>;
1715def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1716 (SETB_C32r)>;
1717
1718
1719
1720
1721//===----------------------------------------------------------------------===//
1722// EFLAGS-defining Patterns
1723//===----------------------------------------------------------------------===//
1724
1725// add reg, reg
1726def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1727def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1728def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1729
1730// add reg, mem
1731def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1732 (ADD8rm GR8:$src1, addr:$src2)>;
1733def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1734 (ADD16rm GR16:$src1, addr:$src2)>;
1735def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1736 (ADD32rm GR32:$src1, addr:$src2)>;
1737
1738// add reg, imm
1739def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1740def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1741def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1742def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1743 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1744def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1745 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1746
1747// sub reg, reg
1748def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1749def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1750def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1751
1752// sub reg, mem
1753def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1754 (SUB8rm GR8:$src1, addr:$src2)>;
1755def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1756 (SUB16rm GR16:$src1, addr:$src2)>;
1757def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1758 (SUB32rm GR32:$src1, addr:$src2)>;
1759
1760// sub reg, imm
1761def : Pat<(sub GR8:$src1, imm:$src2),
1762 (SUB8ri GR8:$src1, imm:$src2)>;
1763def : Pat<(sub GR16:$src1, imm:$src2),
1764 (SUB16ri GR16:$src1, imm:$src2)>;
1765def : Pat<(sub GR32:$src1, imm:$src2),
1766 (SUB32ri GR32:$src1, imm:$src2)>;
1767def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1768 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1769def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1770 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1771
1772// sub 0, reg
1773def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1774def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1775def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1776def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1777
1778// mul reg, reg
1779def : Pat<(mul GR16:$src1, GR16:$src2),
1780 (IMUL16rr GR16:$src1, GR16:$src2)>;
1781def : Pat<(mul GR32:$src1, GR32:$src2),
1782 (IMUL32rr GR32:$src1, GR32:$src2)>;
1783
1784// mul reg, mem
1785def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1786 (IMUL16rm GR16:$src1, addr:$src2)>;
1787def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1788 (IMUL32rm GR32:$src1, addr:$src2)>;
1789
1790// mul reg, imm
1791def : Pat<(mul GR16:$src1, imm:$src2),
1792 (IMUL16rri GR16:$src1, imm:$src2)>;
1793def : Pat<(mul GR32:$src1, imm:$src2),
1794 (IMUL32rri GR32:$src1, imm:$src2)>;
1795def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1796 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1797def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1798 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1799
1800// reg = mul mem, imm
1801def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1802 (IMUL16rmi addr:$src1, imm:$src2)>;
1803def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1804 (IMUL32rmi addr:$src1, imm:$src2)>;
1805def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1806 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1807def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1808 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1809
1810// Patterns for nodes that do not produce flags, for instructions that do.
1811
1812// addition
1813def : Pat<(add GR64:$src1, GR64:$src2),
1814 (ADD64rr GR64:$src1, GR64:$src2)>;
1815def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1816 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1817def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1818 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1819def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1820 (ADD64rm GR64:$src1, addr:$src2)>;
1821
1822// subtraction
1823def : Pat<(sub GR64:$src1, GR64:$src2),
1824 (SUB64rr GR64:$src1, GR64:$src2)>;
1825def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1826 (SUB64rm GR64:$src1, addr:$src2)>;
1827def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1828 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1829def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1830 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1831
1832// Multiply
1833def : Pat<(mul GR64:$src1, GR64:$src2),
1834 (IMUL64rr GR64:$src1, GR64:$src2)>;
1835def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1836 (IMUL64rm GR64:$src1, addr:$src2)>;
1837def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1838 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1839def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1840 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1841def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1842 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1843def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1844 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1845
1846// Increment/Decrement reg.
1847// Do not make INC/DEC if it is slow
1848let Predicates = [NotSlowIncDec] in {
1849 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1850 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1851 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1852 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1853 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1854 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1855 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1856 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1857}
1858
1859// or reg/reg.
1860def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1861def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1862def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1863def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1864
1865// or reg/mem
1866def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1867 (OR8rm GR8:$src1, addr:$src2)>;
1868def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1869 (OR16rm GR16:$src1, addr:$src2)>;
1870def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1871 (OR32rm GR32:$src1, addr:$src2)>;
1872def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1873 (OR64rm GR64:$src1, addr:$src2)>;
1874
1875// or reg/imm
1876def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1877def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1878def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1879def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1880 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1881def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1882 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1883def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1884 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1885def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1886 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1887
1888// xor reg/reg
1889def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1890def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1891def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1892def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1893
1894// xor reg/mem
1895def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1896 (XOR8rm GR8:$src1, addr:$src2)>;
1897def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1898 (XOR16rm GR16:$src1, addr:$src2)>;
1899def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1900 (XOR32rm GR32:$src1, addr:$src2)>;
1901def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1902 (XOR64rm GR64:$src1, addr:$src2)>;
1903
1904// xor reg/imm
1905def : Pat<(xor GR8:$src1, imm:$src2),
1906 (XOR8ri GR8:$src1, imm:$src2)>;
1907def : Pat<(xor GR16:$src1, imm:$src2),
1908 (XOR16ri GR16:$src1, imm:$src2)>;
1909def : Pat<(xor GR32:$src1, imm:$src2),
1910 (XOR32ri GR32:$src1, imm:$src2)>;
1911def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1912 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1913def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1914 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1915def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1916 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1917def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1918 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1919
1920// and reg/reg
1921def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1922def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1923def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1924def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1925
1926// and reg/mem
1927def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1928 (AND8rm GR8:$src1, addr:$src2)>;
1929def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1930 (AND16rm GR16:$src1, addr:$src2)>;
1931def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1932 (AND32rm GR32:$src1, addr:$src2)>;
1933def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1934 (AND64rm GR64:$src1, addr:$src2)>;
1935
1936// and reg/imm
1937def : Pat<(and GR8:$src1, imm:$src2),
1938 (AND8ri GR8:$src1, imm:$src2)>;
1939def : Pat<(and GR16:$src1, imm:$src2),
1940 (AND16ri GR16:$src1, imm:$src2)>;
1941def : Pat<(and GR32:$src1, imm:$src2),
1942 (AND32ri GR32:$src1, imm:$src2)>;
1943def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1944 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1945def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1946 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1947def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1948 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1949def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1950 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1951
1952// Bit scan instruction patterns to match explicit zero-undef behavior.
1953def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1954def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1955def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1956def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1957def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1958def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1959
1960// When HasMOVBE is enabled it is possible to get a non-legalized
1961// register-register 16 bit bswap. This maps it to a ROL instruction.
1962let Predicates = [HasMOVBE] in {
1963 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1964}