blob: e75fa8017bdf0d64ea0359bf5c877cc246a50da8 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000029#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000036#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000039#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000040#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000041#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000042using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000043
Chandler Carruth964daaa2014-04-22 02:55:47 +000044#define DEBUG_TYPE "reassociate"
45
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000070 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125
Craig Topperf40110f2014-04-25 05:29:35 +0000126 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
Craig Topperf40110f2014-04-25 05:29:35 +0000133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000157}
158
159namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000160 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000161 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000163 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000164 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000165 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000166 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
Devang Patel09f162c2007-05-01 21:15:47 +0000170
Craig Topper3e4c6972014-03-05 09:10:37 +0000171 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000174 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175 }
176 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000177 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000179 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000180 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000182 Value *OptimizeExpression(BinaryOperator *I,
183 SmallVectorImpl<ValueEntry> &Ops);
184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187 Value *&Res);
188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191 SmallVectorImpl<Factor> &Factors);
192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193 SmallVectorImpl<Factor> &Factors);
194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000195 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000196 void EraseInst(Instruction *I);
197 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000198 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000199 };
200}
201
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000202XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000203 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000204 OrigVal = V;
205 Instruction *I = dyn_cast<Instruction>(V);
206 SymbolicRank = 0;
207
208 if (I && (I->getOpcode() == Instruction::Or ||
209 I->getOpcode() == Instruction::And)) {
210 Value *V0 = I->getOperand(0);
211 Value *V1 = I->getOperand(1);
212 if (isa<ConstantInt>(V0))
213 std::swap(V0, V1);
214
215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216 ConstPart = C->getValue();
217 SymbolicPart = V0;
218 isOr = (I->getOpcode() == Instruction::Or);
219 return;
220 }
221 }
222
223 // view the operand as "V | 0"
224 SymbolicPart = V;
225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226 isOr = true;
227}
228
Dan Gohmand78c4002008-05-13 00:00:25 +0000229char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000230INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000231 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000232
Brian Gaeke960707c2003-11-11 22:41:34 +0000233// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000234FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000235
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000236/// isReassociableOp - Return true if V is an instruction of the specified
237/// opcode and if it only has one use.
238static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000240 cast<Instruction>(V)->getOpcode() == Opcode &&
241 (!isa<FPMathOperator>(V) ||
242 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000243 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000244 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000245}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000246
Chad Rosier11ab9412014-08-14 15:23:01 +0000247static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
248 unsigned Opcode2) {
249 if (V->hasOneUse() && isa<Instruction>(V) &&
250 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000251 cast<Instruction>(V)->getOpcode() == Opcode2) &&
252 (!isa<FPMathOperator>(V) ||
253 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000254 return cast<BinaryOperator>(V);
255 return nullptr;
256}
257
Chris Lattner9f284e02005-05-08 20:57:04 +0000258static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000259 switch (I->getOpcode()) {
260 case Instruction::PHI:
261 case Instruction::LandingPad:
262 case Instruction::Alloca:
263 case Instruction::Load:
264 case Instruction::Invoke:
265 case Instruction::UDiv:
266 case Instruction::SDiv:
267 case Instruction::FDiv:
268 case Instruction::URem:
269 case Instruction::SRem:
270 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000271 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000272 case Instruction::Call:
273 return !isa<DbgInfoIntrinsic>(I);
274 default:
275 return false;
276 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000277}
278
Chris Lattner113f4f42002-06-25 16:13:24 +0000279void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000280 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000281
Chad Rosierf59e5482014-11-14 15:01:38 +0000282 // Assign distinct ranks to function arguments.
283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000284 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
286 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000287
Chris Lattner113f4f42002-06-25 16:13:24 +0000288 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000290 E = RPOT.end(); I != E; ++I) {
291 BasicBlock *BB = *I;
292 unsigned BBRank = RankMap[BB] = ++i << 16;
293
294 // Walk the basic block, adding precomputed ranks for any instructions that
295 // we cannot move. This ensures that the ranks for these instructions are
296 // all different in the block.
297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
298 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000299 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000300 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000301}
302
303unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000304 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000305 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
307 return 0; // Otherwise it's a global or constant, rank 0.
308 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000309
Chris Lattner17229a72010-01-01 00:01:34 +0000310 if (unsigned Rank = ValueRankMap[I])
311 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000312
Chris Lattnerf43e9742005-05-07 04:08:02 +0000313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
314 // we can reassociate expressions for code motion! Since we do not recurse
315 // for PHI nodes, we cannot have infinite recursion here, because there
316 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
318 for (unsigned i = 0, e = I->getNumOperands();
319 i != e && Rank != MaxRank; ++i)
320 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000321
Chris Lattner6e2086d2005-05-08 00:08:33 +0000322 // If this is a not or neg instruction, do not count it for rank. This
323 // assures us that X and ~X will have the same rank.
Chad Rosier11ab9412014-08-14 15:23:01 +0000324 Type *Ty = V->getType();
325 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
326 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
327 !BinaryOperator::isFNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000328 ++Rank;
329
Chad Rosierf59e5482014-11-14 15:01:38 +0000330 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000331
Chris Lattner17229a72010-01-01 00:01:34 +0000332 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000333}
334
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000335// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Chad Rosierf8b55f12014-11-14 17:05:59 +0000336void Reassociate::canonicalizeOperands(Instruction *I) {
337 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
338 assert(I->isCommutative() && "Expected commutative operator.");
339
340 Value *LHS = I->getOperand(0);
341 Value *RHS = I->getOperand(1);
342 unsigned LHSRank = getRank(LHS);
343 unsigned RHSRank = getRank(RHS);
344
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000345 if (isa<Constant>(RHS))
346 return;
347
Chad Rosierf8b55f12014-11-14 17:05:59 +0000348 if (isa<Constant>(LHS) || RHSRank < LHSRank)
349 cast<BinaryOperator>(I)->swapOperands();
350}
351
Chad Rosier11ab9412014-08-14 15:23:01 +0000352static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
353 Instruction *InsertBefore, Value *FlagsOp) {
354 if (S1->getType()->isIntegerTy())
355 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
356 else {
357 BinaryOperator *Res =
358 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
359 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
360 return Res;
361 }
362}
363
364static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
365 Instruction *InsertBefore, Value *FlagsOp) {
366 if (S1->getType()->isIntegerTy())
367 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
368 else {
369 BinaryOperator *Res =
370 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
371 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
372 return Res;
373 }
374}
375
376static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
377 Instruction *InsertBefore, Value *FlagsOp) {
378 if (S1->getType()->isIntegerTy())
379 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
380 else {
381 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
382 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
383 return Res;
384 }
385}
386
Chris Lattner877b1142005-05-08 21:28:52 +0000387/// LowerNegateToMultiply - Replace 0-X with X*-1.
388///
Duncan Sands3293f462012-06-08 20:15:33 +0000389static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000390 Type *Ty = Neg->getType();
391 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
392 : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000393
Chad Rosier11ab9412014-08-14 15:23:01 +0000394 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
395 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000396 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000397 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000398 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000399 return Res;
400}
401
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000402/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
403/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
404/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
405/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
406/// even x in Bitwidth-bit arithmetic.
407static unsigned CarmichaelShift(unsigned Bitwidth) {
408 if (Bitwidth < 3)
409 return Bitwidth - 1;
410 return Bitwidth - 2;
411}
412
413/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
414/// reducing the combined weight using any special properties of the operation.
415/// The existing weight LHS represents the computation X op X op ... op X where
416/// X occurs LHS times. The combined weight represents X op X op ... op X with
417/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
418/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
419/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
420static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
421 // If we were working with infinite precision arithmetic then the combined
422 // weight would be LHS + RHS. But we are using finite precision arithmetic,
423 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
424 // for nilpotent operations and addition, but not for idempotent operations
425 // and multiplication), so it is important to correctly reduce the combined
426 // weight back into range if wrapping would be wrong.
427
428 // If RHS is zero then the weight didn't change.
429 if (RHS.isMinValue())
430 return;
431 // If LHS is zero then the combined weight is RHS.
432 if (LHS.isMinValue()) {
433 LHS = RHS;
434 return;
435 }
436 // From this point on we know that neither LHS nor RHS is zero.
437
438 if (Instruction::isIdempotent(Opcode)) {
439 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
440 // weight of 1. Keeping weights at zero or one also means that wrapping is
441 // not a problem.
442 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
443 return; // Return a weight of 1.
444 }
445 if (Instruction::isNilpotent(Opcode)) {
446 // Nilpotent means X op X === 0, so reduce weights modulo 2.
447 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
448 LHS = 0; // 1 + 1 === 0 modulo 2.
449 return;
450 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000451 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000452 // TODO: Reduce the weight by exploiting nsw/nuw?
453 LHS += RHS;
454 return;
455 }
456
Chad Rosier11ab9412014-08-14 15:23:01 +0000457 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
458 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000459 unsigned Bitwidth = LHS.getBitWidth();
460 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
461 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
462 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
463 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
464 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
465 // which by a happy accident means that they can always be represented using
466 // Bitwidth bits.
467 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
468 // the Carmichael number).
469 if (Bitwidth > 3) {
470 /// CM - The value of Carmichael's lambda function.
471 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
472 // Any weight W >= Threshold can be replaced with W - CM.
473 APInt Threshold = CM + Bitwidth;
474 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
475 // For Bitwidth 4 or more the following sum does not overflow.
476 LHS += RHS;
477 while (LHS.uge(Threshold))
478 LHS -= CM;
479 } else {
480 // To avoid problems with overflow do everything the same as above but using
481 // a larger type.
482 unsigned CM = 1U << CarmichaelShift(Bitwidth);
483 unsigned Threshold = CM + Bitwidth;
484 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
485 "Weights not reduced!");
486 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
487 while (Total >= Threshold)
488 Total -= CM;
489 LHS = Total;
490 }
491}
492
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000493typedef std::pair<Value*, APInt> RepeatedValue;
494
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000495/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000496/// nodes in Ops along with their weights (how many times the leaf occurs). The
497/// original expression is the same as
498/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000499/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000500/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
501/// op
502/// ...
503/// op
504/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
505///
Duncan Sandsac852c72012-11-15 09:58:38 +0000506/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000507///
508/// This routine may modify the function, in which case it returns 'true'. The
509/// changes it makes may well be destructive, changing the value computed by 'I'
510/// to something completely different. Thus if the routine returns 'true' then
511/// you MUST either replace I with a new expression computed from the Ops array,
512/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000513///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514/// A leaf node is either not a binary operation of the same kind as the root
515/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
516/// opcode), or is the same kind of binary operator but has a use which either
517/// does not belong to the expression, or does belong to the expression but is
518/// a leaf node. Every leaf node has at least one use that is a non-leaf node
519/// of the expression, while for non-leaf nodes (except for the root 'I') every
520/// use is a non-leaf node of the expression.
521///
522/// For example:
523/// expression graph node names
524///
525/// + | I
526/// / \ |
527/// + + | A, B
528/// / \ / \ |
529/// * + * | C, D, E
530/// / \ / \ / \ |
531/// + * | F, G
532///
533/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000534/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000535///
536/// The expression is maximal: if some instruction is a binary operator of the
537/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
538/// then the instruction also belongs to the expression, is not a leaf node of
539/// it, and its operands also belong to the expression (but may be leaf nodes).
540///
541/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
542/// order to ensure that every non-root node in the expression has *exactly one*
543/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000544/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000545/// RewriteExprTree to put the values back in if the routine indicates that it
546/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000547///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000548/// In the above example either the right operand of A or the left operand of B
549/// will be replaced by undef. If it is B's operand then this gives:
550///
551/// + | I
552/// / \ |
553/// + + | A, B - operand of B replaced with undef
554/// / \ \ |
555/// * + * | C, D, E
556/// / \ / \ / \ |
557/// + * | F, G
558///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000559/// Note that such undef operands can only be reached by passing through 'I'.
560/// For example, if you visit operands recursively starting from a leaf node
561/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000562/// which requires passing through a phi node.
563///
564/// Note that this routine may also mutate binary operators of the wrong type
565/// that have all uses inside the expression (i.e. only used by non-leaf nodes
566/// of the expression) if it can turn them into binary operators of the right
567/// type and thus make the expression bigger.
568
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000569static bool LinearizeExprTree(BinaryOperator *I,
570 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000571 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000572 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
573 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000574 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000575 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000576
577 // Visit all operands of the expression, keeping track of their weight (the
578 // number of paths from the expression root to the operand, or if you like
579 // the number of times that operand occurs in the linearized expression).
580 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
581 // while A has weight two.
582
583 // Worklist of non-leaf nodes (their operands are in the expression too) along
584 // with their weights, representing a certain number of paths to the operator.
585 // If an operator occurs in the worklist multiple times then we found multiple
586 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000587 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
588 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000589 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000590
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000591 // Leaves of the expression are values that either aren't the right kind of
592 // operation (eg: a constant, or a multiply in an add tree), or are, but have
593 // some uses that are not inside the expression. For example, in I = X + X,
594 // X = A + B, the value X has two uses (by I) that are in the expression. If
595 // X has any other uses, for example in a return instruction, then we consider
596 // X to be a leaf, and won't analyze it further. When we first visit a value,
597 // if it has more than one use then at first we conservatively consider it to
598 // be a leaf. Later, as the expression is explored, we may discover some more
599 // uses of the value from inside the expression. If all uses turn out to be
600 // from within the expression (and the value is a binary operator of the right
601 // kind) then the value is no longer considered to be a leaf, and its operands
602 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000603
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000604 // Leaves - Keeps track of the set of putative leaves as well as the number of
605 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000606 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000607 LeafMap Leaves; // Leaf -> Total weight so far.
608 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
609
610#ifndef NDEBUG
611 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
612#endif
613 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000614 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000615 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000616
617 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
618 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000619 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000620 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
621 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
622
623 // If this is a binary operation of the right kind with only one use then
624 // add its operands to the expression.
625 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000626 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000627 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
628 Worklist.push_back(std::make_pair(BO, Weight));
629 continue;
630 }
631
632 // Appears to be a leaf. Is the operand already in the set of leaves?
633 LeafMap::iterator It = Leaves.find(Op);
634 if (It == Leaves.end()) {
635 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000636 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000637 if (!Op->hasOneUse()) {
638 // This value has uses not accounted for by the expression, so it is
639 // not safe to modify. Mark it as being a leaf.
640 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
641 LeafOrder.push_back(Op);
642 Leaves[Op] = Weight;
643 continue;
644 }
645 // No uses outside the expression, try morphing it.
646 } else if (It != Leaves.end()) {
647 // Already in the leaf map.
648 assert(Visited.count(Op) && "In leaf map but not visited!");
649
650 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000651 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000652
Duncan Sands56514522012-07-26 09:26:40 +0000653#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000654 // The leaf already has one use from inside the expression. As we want
655 // exactly one such use, drop this new use of the leaf.
656 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
657 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000658 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000659
660 // If the leaf is a binary operation of the right kind and we now see
661 // that its multiple original uses were in fact all by nodes belonging
662 // to the expression, then no longer consider it to be a leaf and add
663 // its operands to the expression.
664 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
665 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
666 Worklist.push_back(std::make_pair(BO, It->second));
667 Leaves.erase(It);
668 continue;
669 }
Duncan Sands56514522012-07-26 09:26:40 +0000670#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000671
672 // If we still have uses that are not accounted for by the expression
673 // then it is not safe to modify the value.
674 if (!Op->hasOneUse())
675 continue;
676
677 // No uses outside the expression, try morphing it.
678 Weight = It->second;
679 Leaves.erase(It); // Since the value may be morphed below.
680 }
681
682 // At this point we have a value which, first of all, is not a binary
683 // expression of the right kind, and secondly, is only used inside the
684 // expression. This means that it can safely be modified. See if we
685 // can usefully morph it into an expression of the right kind.
686 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000687 cast<Instruction>(Op)->getOpcode() != Opcode
688 || (isa<FPMathOperator>(Op) &&
689 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000690 "Should have been handled above!");
691 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
692
693 // If this is a multiply expression, turn any internal negations into
694 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000695 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
696 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
697 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
698 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
699 BO = LowerNegateToMultiply(BO);
700 DEBUG(dbgs() << *BO << '\n');
701 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000702 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000703 continue;
704 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000705
706 // Failed to morph into an expression of the right type. This really is
707 // a leaf.
708 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
709 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
710 LeafOrder.push_back(Op);
711 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000712 }
713 }
714
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000715 // The leaves, repeated according to their weights, represent the linearized
716 // form of the expression.
717 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
718 Value *V = LeafOrder[i];
719 LeafMap::iterator It = Leaves.find(V);
720 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000721 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000722 continue;
723 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000724 APInt Weight = It->second;
725 if (Weight.isMinValue())
726 // Leaf already output or weight reduction eliminated it.
727 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000729 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000730 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000731 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000732
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000733 // For nilpotent operations or addition there may be no operands, for example
734 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
735 // in both cases the weight reduces to 0 causing the value to be skipped.
736 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000737 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000738 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000739 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
740 }
741
Chad Rosiere53e8c82014-11-18 20:21:54 +0000742 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000743}
744
Chris Lattner1e506502005-05-07 21:59:39 +0000745// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000746// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000747void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000748 SmallVectorImpl<ValueEntry> &Ops) {
749 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000750
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000751 // Since our optimizations should never increase the number of operations, the
752 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000753 // from the original expression tree, without creating any new instructions,
754 // though the rewritten expression may have a completely different topology.
755 // We take care to not change anything if the new expression will be the same
756 // as the original. If more than trivial changes (like commuting operands)
757 // were made then we are obliged to clear out any optional subclass data like
758 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000759
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000760 /// NodesToRewrite - Nodes from the original expression available for writing
761 /// the new expression into.
762 SmallVector<BinaryOperator*, 8> NodesToRewrite;
763 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000764 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000765
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000766 /// NotRewritable - The operands being written will be the leaves of the new
767 /// expression and must not be used as inner nodes (via NodesToRewrite) by
768 /// mistake. Inner nodes are always reassociable, and usually leaves are not
769 /// (if they were they would have been incorporated into the expression and so
770 /// would not be leaves), so most of the time there is no danger of this. But
771 /// in rare cases a leaf may become reassociable if an optimization kills uses
772 /// of it, or it may momentarily become reassociable during rewriting (below)
773 /// due it being removed as an operand of one of its uses. Ensure that misuse
774 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
775 /// leaves and refusing to reuse any of them as inner nodes.
776 SmallPtrSet<Value*, 8> NotRewritable;
777 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
778 NotRewritable.insert(Ops[i].Op);
779
Duncan Sands3c05cd32012-05-26 16:42:52 +0000780 // ExpressionChanged - Non-null if the rewritten expression differs from the
781 // original in some non-trivial way, requiring the clearing of optional flags.
782 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000783 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000784 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000785 // The last operation (which comes earliest in the IR) is special as both
786 // operands will come from Ops, rather than just one with the other being
787 // a subexpression.
788 if (i+2 == Ops.size()) {
789 Value *NewLHS = Ops[i].Op;
790 Value *NewRHS = Ops[i+1].Op;
791 Value *OldLHS = Op->getOperand(0);
792 Value *OldRHS = Op->getOperand(1);
793
Chad Rosierbc0b8692014-11-17 16:33:50 +0000794 // The new operation differs trivially from the original.
795 if ((NewLHS == OldLHS && NewRHS == OldRHS) ||
796 (NewLHS == OldRHS && NewRHS == OldLHS)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000797 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosierbc0b8692014-11-17 16:33:50 +0000798 canonicalizeOperands(Op);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000799 DEBUG(dbgs() << "TO: " << *Op << '\n');
800 MadeChange = true;
801 ++NumChanged;
802 break;
803 }
804
805 // The new operation differs non-trivially from the original. Overwrite
806 // the old operands with the new ones.
807 DEBUG(dbgs() << "RA: " << *Op << '\n');
808 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000809 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
810 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000811 NodesToRewrite.push_back(BO);
812 Op->setOperand(0, NewLHS);
813 }
814 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000815 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
816 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000817 NodesToRewrite.push_back(BO);
818 Op->setOperand(1, NewRHS);
819 }
Chad Rosierbc0b8692014-11-17 16:33:50 +0000820 // Put the operands in canonical form.
821 canonicalizeOperands(Op);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000822 DEBUG(dbgs() << "TO: " << *Op << '\n');
823
Duncan Sands3c05cd32012-05-26 16:42:52 +0000824 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000825 MadeChange = true;
826 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000827
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000828 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000829 }
Chris Lattner1e506502005-05-07 21:59:39 +0000830
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000831 // Not the last operation. The left-hand side will be a sub-expression
832 // while the right-hand side will be the current element of Ops.
833 Value *NewRHS = Ops[i].Op;
834 if (NewRHS != Op->getOperand(1)) {
835 DEBUG(dbgs() << "RA: " << *Op << '\n');
836 if (NewRHS == Op->getOperand(0)) {
837 // The new right-hand side was already present as the left operand. If
838 // we are lucky then swapping the operands will sort out both of them.
839 Op->swapOperands();
840 } else {
841 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000842 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
843 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000844 NodesToRewrite.push_back(BO);
845 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000846 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000847 }
848 DEBUG(dbgs() << "TO: " << *Op << '\n');
849 MadeChange = true;
850 ++NumChanged;
851 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000852
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000853 // Now deal with the left-hand side. If this is already an operation node
854 // from the original expression then just rewrite the rest of the expression
855 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000856 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
857 if (BO && !NotRewritable.count(BO)) {
Chad Rosierbc0b8692014-11-17 16:33:50 +0000858 canonicalizeOperands(Op);
Duncan Sands98382862012-06-29 19:03:05 +0000859 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000860 continue;
861 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000862
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000863 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000864 // the left-hand side. If there are no nodes left then the optimizers made
865 // an expression with more nodes than the original! This usually means that
866 // they did something stupid but it might mean that the problem was just too
867 // hard (finding the mimimal number of multiplications needed to realize a
868 // multiplication expression is NP-complete). Whatever the reason, smart or
869 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000870 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000871 if (NodesToRewrite.empty()) {
872 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000873 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
874 Undef, Undef, "", I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000875 if (NewOp->getType()->isFloatingPointTy())
876 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000877 } else {
878 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000879 }
880
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000881 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000882 Op->setOperand(0, NewOp);
Chad Rosierbc0b8692014-11-17 16:33:50 +0000883 canonicalizeOperands(Op);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000884 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000885 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000886 MadeChange = true;
887 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000888 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000889 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000890
Duncan Sands3c05cd32012-05-26 16:42:52 +0000891 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000892 // starting from the operator specified in ExpressionChanged, and compactify
893 // the operators to just before the expression root to guarantee that the
894 // expression tree is dominated by all of Ops.
895 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000896 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000897 // Preserve FastMathFlags.
898 if (isa<FPMathOperator>(I)) {
899 FastMathFlags Flags = I->getFastMathFlags();
900 ExpressionChanged->clearSubclassOptionalData();
901 ExpressionChanged->setFastMathFlags(Flags);
902 } else
903 ExpressionChanged->clearSubclassOptionalData();
904
Duncan Sands3c05cd32012-05-26 16:42:52 +0000905 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000906 break;
Duncan Sands514db112012-06-27 14:19:00 +0000907 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000908 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000909 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000910
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000911 // Throw away any left over nodes from the original expression.
912 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000913 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000914}
915
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000916/// NegateValue - Insert instructions before the instruction pointed to by BI,
917/// that computes the negative version of the value specified. The negative
918/// version of the value is returned, and BI is left pointing at the instruction
919/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000920static Value *NegateValue(Value *V, Instruction *BI) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000921 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
922 return ConstantExpr::getFNeg(C);
Chris Lattnerfed33972009-12-31 20:34:32 +0000923 if (Constant *C = dyn_cast<Constant>(V))
924 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000925
Chris Lattner7bc532d2002-05-16 04:37:07 +0000926 // We are trying to expose opportunity for reassociation. One of the things
927 // that we want to do to achieve this is to push a negation as deep into an
928 // expression chain as possible, to expose the add instructions. In practice,
929 // this means that we turn this:
930 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
931 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
932 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000933 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000934 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000935 if (BinaryOperator *I =
936 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000937 // Push the negates through the add.
938 I->setOperand(0, NegateValue(I->getOperand(0), BI));
939 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000940
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000941 // We must move the add instruction here, because the neg instructions do
942 // not dominate the old add instruction in general. By moving it, we are
943 // assured that the neg instructions we just inserted dominate the
944 // instruction we are about to insert after them.
945 //
946 I->moveBefore(BI);
947 I->setName(I->getName()+".neg");
948 return I;
949 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000950
Chris Lattnerfed33972009-12-31 20:34:32 +0000951 // Okay, we need to materialize a negated version of V with an instruction.
952 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000953 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000954 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
955 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000956
957 // We found one! Now we have to make sure that the definition dominates
958 // this use. We do this by moving it to the entry block (if it is a
959 // non-instruction value) or right after the definition. These negates will
960 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000961 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000962
963 // Verify that the negate is in this function, V might be a constant expr.
964 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
965 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000966
Chris Lattnerfed33972009-12-31 20:34:32 +0000967 BasicBlock::iterator InsertPt;
968 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
969 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
970 InsertPt = II->getNormalDest()->begin();
971 } else {
972 InsertPt = InstInput;
973 ++InsertPt;
974 }
975 while (isa<PHINode>(InsertPt)) ++InsertPt;
976 } else {
977 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
978 }
979 TheNeg->moveBefore(InsertPt);
980 return TheNeg;
981 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000982
983 // Insert a 'neg' instruction that subtracts the value from zero to get the
984 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000985 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000986}
987
Chris Lattner902537c2008-02-17 20:44:51 +0000988/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
989/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000990static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000991 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000992 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000993 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000994
Chad Rosierbd64d462014-10-09 20:06:29 +0000995 // Don't breakup X - undef.
996 if (isa<UndefValue>(Sub->getOperand(1)))
997 return false;
998
Chris Lattner902537c2008-02-17 20:44:51 +0000999 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +00001000 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +00001001 Value *V0 = Sub->getOperand(0);
1002 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1003 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +00001004 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +00001005 Value *V1 = Sub->getOperand(1);
1006 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1007 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +00001008 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +00001009 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001010 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +00001011 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1012 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +00001013 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001014
Chris Lattner902537c2008-02-17 20:44:51 +00001015 return false;
1016}
1017
Chris Lattnerf43e9742005-05-07 04:08:02 +00001018/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1019/// only used by an add, transform this into (X+(0-Y)) to promote better
1020/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001021static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +00001022 // Convert a subtract into an add and a neg instruction. This allows sub
1023 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001024 //
Chris Lattnera5526832010-01-01 00:04:26 +00001025 // Calculate the negative value of Operand 1 of the sub instruction,
1026 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001027 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001028 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001029 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001030 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1031 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001032 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001033
1034 // Everyone now refers to the add instruction.
1035 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001036 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001037
David Greened17c3912010-01-05 01:27:24 +00001038 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001039 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001040}
1041
Chris Lattnercea57992005-05-07 04:24:13 +00001042/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1043/// by one, change this into a multiply by a constant to assist with further
1044/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001045static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1046 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1047 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001048
Duncan Sands3293f462012-06-08 20:15:33 +00001049 BinaryOperator *Mul =
1050 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1051 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1052 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001053
1054 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001055 Shl->replaceAllUsesWith(Mul);
1056 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001057
1058 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1059 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1060 // handling.
1061 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1062 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1063 if (NSW && NUW)
1064 Mul->setHasNoSignedWrap(true);
1065 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001066 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001067}
1068
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001069/// FindInOperandList - Scan backwards and forwards among values with the same
1070/// rank as element i to see if X exists. If X does not exist, return i. This
1071/// is useful when scanning for 'x' when we see '-x' because they both get the
1072/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001073static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001074 Value *X) {
1075 unsigned XRank = Ops[i].Rank;
1076 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001077 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001078 if (Ops[j].Op == X)
1079 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001080 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1081 if (Instruction *I2 = dyn_cast<Instruction>(X))
1082 if (I1->isIdenticalTo(I2))
1083 return j;
1084 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001085 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001086 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001087 if (Ops[j].Op == X)
1088 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001089 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1090 if (Instruction *I2 = dyn_cast<Instruction>(X))
1091 if (I1->isIdenticalTo(I2))
1092 return j;
1093 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001094 return i;
1095}
1096
Chris Lattner4c065092006-03-04 09:31:13 +00001097/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1098/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001099static Value *EmitAddTreeOfValues(Instruction *I,
1100 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001101 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001102
Chris Lattner4c065092006-03-04 09:31:13 +00001103 Value *V1 = Ops.back();
1104 Ops.pop_back();
1105 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001106 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001107}
1108
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001109/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001110/// multiplication sequence, and if this sequence contains a multiply by Factor,
1111/// remove Factor from the tree and return the new tree.
1112Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001113 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1114 if (!BO)
1115 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001116
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001117 SmallVector<RepeatedValue, 8> Tree;
1118 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001119 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001120 Factors.reserve(Tree.size());
1121 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1122 RepeatedValue E = Tree[i];
1123 Factors.append(E.second.getZExtValue(),
1124 ValueEntry(getRank(E.first), E.first));
1125 }
Chris Lattner4c065092006-03-04 09:31:13 +00001126
1127 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001128 bool NeedsNegate = false;
1129 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001130 if (Factors[i].Op == Factor) {
1131 FoundFactor = true;
1132 Factors.erase(Factors.begin()+i);
1133 break;
1134 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001135
Chris Lattner0c59ac32010-01-01 01:13:15 +00001136 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001137 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001138 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1139 if (FC1->getValue() == -FC2->getValue()) {
1140 FoundFactor = NeedsNegate = true;
1141 Factors.erase(Factors.begin()+i);
1142 break;
1143 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001144 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1145 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1146 APFloat F1(FC1->getValueAPF());
1147 APFloat F2(FC2->getValueAPF());
1148 F2.changeSign();
1149 if (F1.compare(F2) == APFloat::cmpEqual) {
1150 FoundFactor = NeedsNegate = true;
1151 Factors.erase(Factors.begin() + i);
1152 break;
1153 }
1154 }
1155 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001156 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001157
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001158 if (!FoundFactor) {
1159 // Make sure to restore the operands to the expression tree.
1160 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001161 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001162 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001163
Chris Lattner0c59ac32010-01-01 01:13:15 +00001164 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001165
Chris Lattner1d897942009-12-31 19:34:45 +00001166 // If this was just a single multiply, remove the multiply and return the only
1167 // remaining operand.
1168 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001169 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001170 V = Factors[0].Op;
1171 } else {
1172 RewriteExprTree(BO, Factors);
1173 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001174 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001175
Chris Lattner0c59ac32010-01-01 01:13:15 +00001176 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001177 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001178
Chris Lattner0c59ac32010-01-01 01:13:15 +00001179 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001180}
1181
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001182/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1183/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001184///
1185/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001186static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001187 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001188 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001189 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001190 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001191 Factors.push_back(V);
1192 return;
1193 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001194
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001195 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001196 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1197 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001198}
1199
Chris Lattner5f8a0052009-12-31 07:59:34 +00001200/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1201/// instruction. This optimizes based on identities. If it can be reduced to
1202/// a single Value, it is returned, otherwise the Ops list is mutated as
1203/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001204static Value *OptimizeAndOrXor(unsigned Opcode,
1205 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001206 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1207 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1208 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1209 // First, check for X and ~X in the operand list.
1210 assert(i < Ops.size());
1211 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1212 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1213 unsigned FoundX = FindInOperandList(Ops, i, X);
1214 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001215 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001216 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001217
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001218 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001219 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001220 }
1221 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001222
Chris Lattner5f8a0052009-12-31 07:59:34 +00001223 // Next, check for duplicate pairs of values, which we assume are next to
1224 // each other, due to our sorting criteria.
1225 assert(i < Ops.size());
1226 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1227 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001228 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001229 Ops.erase(Ops.begin()+i);
1230 --i; --e;
1231 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001232 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001233 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001234
Chris Lattner60c2ca72009-12-31 19:49:01 +00001235 // Drop pairs of values for Xor.
1236 assert(Opcode == Instruction::Xor);
1237 if (e == 2)
1238 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001239
Chris Lattnera5526832010-01-01 00:04:26 +00001240 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001241 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1242 i -= 1; e -= 2;
1243 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001244 }
1245 }
Craig Topperf40110f2014-04-25 05:29:35 +00001246 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001247}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001248
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001249/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1250/// instruction with the given two operands, and return the resulting
1251/// instruction. There are two special cases: 1) if the constant operand is 0,
1252/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1253/// be returned.
1254static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1255 const APInt &ConstOpnd) {
1256 if (ConstOpnd != 0) {
1257 if (!ConstOpnd.isAllOnesValue()) {
1258 LLVMContext &Ctx = Opnd->getType()->getContext();
1259 Instruction *I;
1260 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1261 "and.ra", InsertBefore);
1262 I->setDebugLoc(InsertBefore->getDebugLoc());
1263 return I;
1264 }
1265 return Opnd;
1266 }
Craig Topperf40110f2014-04-25 05:29:35 +00001267 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001268}
1269
1270// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1271// into "R ^ C", where C would be 0, and R is a symbolic value.
1272//
1273// If it was successful, true is returned, and the "R" and "C" is returned
1274// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1275// and both "Res" and "ConstOpnd" remain unchanged.
1276//
1277bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1278 APInt &ConstOpnd, Value *&Res) {
1279 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1280 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1281 // = (x & ~c1) ^ (c1 ^ c2)
1282 // It is useful only when c1 == c2.
1283 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1284 if (!Opnd1->getValue()->hasOneUse())
1285 return false;
1286
1287 const APInt &C1 = Opnd1->getConstPart();
1288 if (C1 != ConstOpnd)
1289 return false;
1290
1291 Value *X = Opnd1->getSymbolicPart();
1292 Res = createAndInstr(I, X, ~C1);
1293 // ConstOpnd was C2, now C1 ^ C2.
1294 ConstOpnd ^= C1;
1295
1296 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1297 RedoInsts.insert(T);
1298 return true;
1299 }
1300 return false;
1301}
1302
1303
1304// Helper function of OptimizeXor(). It tries to simplify
1305// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1306// symbolic value.
1307//
1308// If it was successful, true is returned, and the "R" and "C" is returned
1309// via "Res" and "ConstOpnd", respectively (If the entire expression is
1310// evaluated to a constant, the Res is set to NULL); otherwise, false is
1311// returned, and both "Res" and "ConstOpnd" remain unchanged.
1312bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1313 APInt &ConstOpnd, Value *&Res) {
1314 Value *X = Opnd1->getSymbolicPart();
1315 if (X != Opnd2->getSymbolicPart())
1316 return false;
1317
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001318 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1319 int DeadInstNum = 1;
1320 if (Opnd1->getValue()->hasOneUse())
1321 DeadInstNum++;
1322 if (Opnd2->getValue()->hasOneUse())
1323 DeadInstNum++;
1324
1325 // Xor-Rule 2:
1326 // (x | c1) ^ (x & c2)
1327 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1328 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1329 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1330 //
1331 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1332 if (Opnd2->isOrExpr())
1333 std::swap(Opnd1, Opnd2);
1334
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001335 const APInt &C1 = Opnd1->getConstPart();
1336 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001337 APInt C3((~C1) ^ C2);
1338
1339 // Do not increase code size!
1340 if (C3 != 0 && !C3.isAllOnesValue()) {
1341 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1342 if (NewInstNum > DeadInstNum)
1343 return false;
1344 }
1345
1346 Res = createAndInstr(I, X, C3);
1347 ConstOpnd ^= C1;
1348
1349 } else if (Opnd1->isOrExpr()) {
1350 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1351 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001352 const APInt &C1 = Opnd1->getConstPart();
1353 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001354 APInt C3 = C1 ^ C2;
1355
1356 // Do not increase code size
1357 if (C3 != 0 && !C3.isAllOnesValue()) {
1358 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1359 if (NewInstNum > DeadInstNum)
1360 return false;
1361 }
1362
1363 Res = createAndInstr(I, X, C3);
1364 ConstOpnd ^= C3;
1365 } else {
1366 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1367 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001368 const APInt &C1 = Opnd1->getConstPart();
1369 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001370 APInt C3 = C1 ^ C2;
1371 Res = createAndInstr(I, X, C3);
1372 }
1373
1374 // Put the original operands in the Redo list; hope they will be deleted
1375 // as dead code.
1376 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1377 RedoInsts.insert(T);
1378 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1379 RedoInsts.insert(T);
1380
1381 return true;
1382}
1383
1384/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1385/// to a single Value, it is returned, otherwise the Ops list is mutated as
1386/// necessary.
1387Value *Reassociate::OptimizeXor(Instruction *I,
1388 SmallVectorImpl<ValueEntry> &Ops) {
1389 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1390 return V;
1391
1392 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001393 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001394
1395 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001396 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001397 Type *Ty = Ops[0].Op->getType();
1398 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1399
1400 // Step 1: Convert ValueEntry to XorOpnd
1401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1402 Value *V = Ops[i].Op;
1403 if (!isa<ConstantInt>(V)) {
1404 XorOpnd O(V);
1405 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1406 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001407 } else
1408 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1409 }
1410
Shuxin Yang331f01d2013-04-08 22:00:43 +00001411 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1412 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1413 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1414 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1415 // when new elements are added to the vector.
1416 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1417 OpndPtrs.push_back(&Opnds[i]);
1418
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001419 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1420 // the same symbolic value cluster together. For instance, the input operand
1421 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1422 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001423 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001424
1425 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001426 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001427 bool Changed = false;
1428 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001429 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001430 // The combined value
1431 Value *CV;
1432
1433 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1434 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1435 Changed = true;
1436 if (CV)
1437 *CurrOpnd = XorOpnd(CV);
1438 else {
1439 CurrOpnd->Invalidate();
1440 continue;
1441 }
1442 }
1443
1444 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1445 PrevOpnd = CurrOpnd;
1446 continue;
1447 }
1448
1449 // step 3.2: When previous and current operands share the same symbolic
1450 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1451 //
1452 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1453 // Remove previous operand
1454 PrevOpnd->Invalidate();
1455 if (CV) {
1456 *CurrOpnd = XorOpnd(CV);
1457 PrevOpnd = CurrOpnd;
1458 } else {
1459 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001460 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001461 }
1462 Changed = true;
1463 }
1464 }
1465
1466 // Step 4: Reassemble the Ops
1467 if (Changed) {
1468 Ops.clear();
1469 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1470 XorOpnd &O = Opnds[i];
1471 if (O.isInvalid())
1472 continue;
1473 ValueEntry VE(getRank(O.getValue()), O.getValue());
1474 Ops.push_back(VE);
1475 }
1476 if (ConstOpnd != 0) {
1477 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1478 ValueEntry VE(getRank(C), C);
1479 Ops.push_back(VE);
1480 }
1481 int Sz = Ops.size();
1482 if (Sz == 1)
1483 return Ops.back().Op;
1484 else if (Sz == 0) {
1485 assert(ConstOpnd == 0);
1486 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1487 }
1488 }
1489
Craig Topperf40110f2014-04-25 05:29:35 +00001490 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001491}
1492
Chris Lattner5f8a0052009-12-31 07:59:34 +00001493/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1494/// optimizes based on identities. If it can be reduced to a single Value, it
1495/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001496Value *Reassociate::OptimizeAdd(Instruction *I,
1497 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001498 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001499 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1500 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001501 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001502
Chris Lattner5f8a0052009-12-31 07:59:34 +00001503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001504 Value *TheOp = Ops[i].Op;
1505 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001506 // instances of the operand together. Due to our sorting criteria, we know
1507 // that these need to be next to each other in the vector.
1508 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1509 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001510 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001511 do {
1512 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001513 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001514 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001515
Chris Lattnered189172009-12-31 19:25:19 +00001516 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001517 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001518
Chris Lattner60b71b52009-12-31 19:24:52 +00001519 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001520 Type *Ty = TheOp->getType();
1521 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1522 : ConstantFP::get(Ty, NumFound);
1523 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001524
Chris Lattner60b71b52009-12-31 19:24:52 +00001525 // Now that we have inserted a multiply, optimize it. This allows us to
1526 // handle cases that require multiple factoring steps, such as this:
1527 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001528 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001529
Chris Lattner60b71b52009-12-31 19:24:52 +00001530 // If every add operand was a duplicate, return the multiply.
1531 if (Ops.empty())
1532 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001533
Chris Lattner60b71b52009-12-31 19:24:52 +00001534 // Otherwise, we had some input that didn't have the dupe, such as
1535 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1536 // things being added by this operation.
1537 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001538
Chris Lattner60c2ca72009-12-31 19:49:01 +00001539 --i;
1540 e = Ops.size();
1541 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001542 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001543
Benjamin Kramer49689442014-05-31 15:01:54 +00001544 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001545 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1546 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001547 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001548
Benjamin Kramer49689442014-05-31 15:01:54 +00001549 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001550 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001551 X = BinaryOperator::getNegArgument(TheOp);
1552 else if (BinaryOperator::isNot(TheOp))
1553 X = BinaryOperator::getNotArgument(TheOp);
1554
Chris Lattner5f8a0052009-12-31 07:59:34 +00001555 unsigned FoundX = FindInOperandList(Ops, i, X);
1556 if (FoundX == i)
1557 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001558
Chris Lattner5f8a0052009-12-31 07:59:34 +00001559 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001560 if (Ops.size() == 2 &&
1561 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001562 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001563
Benjamin Kramer49689442014-05-31 15:01:54 +00001564 // Remove X and ~X from the operand list.
1565 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1566 return Constant::getAllOnesValue(X->getType());
1567
Chris Lattner5f8a0052009-12-31 07:59:34 +00001568 Ops.erase(Ops.begin()+i);
1569 if (i < FoundX)
1570 --FoundX;
1571 else
1572 --i; // Need to back up an extra one.
1573 Ops.erase(Ops.begin()+FoundX);
1574 ++NumAnnihil;
1575 --i; // Revisit element.
1576 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001577
1578 // if X and ~X we append -1 to the operand list.
1579 if (BinaryOperator::isNot(TheOp)) {
1580 Value *V = Constant::getAllOnesValue(X->getType());
1581 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1582 e += 1;
1583 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001584 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001585
Chris Lattner177140a2009-12-31 18:17:13 +00001586 // Scan the operand list, checking to see if there are any common factors
1587 // between operands. Consider something like A*A+A*B*C+D. We would like to
1588 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1589 // To efficiently find this, we count the number of times a factor occurs
1590 // for any ADD operands that are MULs.
1591 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001592
Chris Lattner177140a2009-12-31 18:17:13 +00001593 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1594 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001595 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001596 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001597 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001598 BinaryOperator *BOp =
1599 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001600 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001601 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001602
Chris Lattner177140a2009-12-31 18:17:13 +00001603 // Compute all of the factors of this added value.
1604 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001605 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001606 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001607
Chris Lattner177140a2009-12-31 18:17:13 +00001608 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001609 SmallPtrSet<Value*, 8> Duplicates;
1610 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1611 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001612 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001613 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001614
Chris Lattner0c59ac32010-01-01 01:13:15 +00001615 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001616 if (Occ > MaxOcc) {
1617 MaxOcc = Occ;
1618 MaxOccVal = Factor;
1619 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001620
Chris Lattner0c59ac32010-01-01 01:13:15 +00001621 // If Factor is a negative constant, add the negated value as a factor
1622 // because we can percolate the negate out. Watch for minint, which
1623 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001624 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001625 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001626 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1627 assert(!Duplicates.count(Factor) &&
1628 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001629 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001630 if (Occ > MaxOcc) {
1631 MaxOcc = Occ;
1632 MaxOccVal = Factor;
1633 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001634 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001635 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1636 if (CF->isNegative()) {
1637 APFloat F(CF->getValueAPF());
1638 F.changeSign();
1639 Factor = ConstantFP::get(CF->getContext(), F);
1640 assert(!Duplicates.count(Factor) &&
1641 "Shouldn't have two constant factors, missed a canonicalize");
1642 unsigned Occ = ++FactorOccurrences[Factor];
1643 if (Occ > MaxOcc) {
1644 MaxOcc = Occ;
1645 MaxOccVal = Factor;
1646 }
1647 }
1648 }
Chris Lattner177140a2009-12-31 18:17:13 +00001649 }
1650 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001651
Chris Lattner177140a2009-12-31 18:17:13 +00001652 // If any factor occurred more than one time, we can pull it out.
1653 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001654 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001655 ++NumFactor;
1656
1657 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1658 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001659 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001660 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001661 Instruction *DummyInst =
1662 I->getType()->isIntegerTy()
1663 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1664 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1665
Bill Wendling274ba892012-05-02 09:59:45 +00001666 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001667 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001668 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001669 BinaryOperator *BOp =
1670 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001671 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001672 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001673
Chris Lattner177140a2009-12-31 18:17:13 +00001674 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001675 // The factorized operand may occur several times. Convert them all in
1676 // one fell swoop.
1677 for (unsigned j = Ops.size(); j != i;) {
1678 --j;
1679 if (Ops[j].Op == Ops[i].Op) {
1680 NewMulOps.push_back(V);
1681 Ops.erase(Ops.begin()+j);
1682 }
1683 }
1684 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001685 }
1686 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001687
Chris Lattner177140a2009-12-31 18:17:13 +00001688 // No need for extra uses anymore.
1689 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001690
Chris Lattner177140a2009-12-31 18:17:13 +00001691 unsigned NumAddedValues = NewMulOps.size();
1692 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001693
Chris Lattner60b71b52009-12-31 19:24:52 +00001694 // Now that we have inserted the add tree, optimize it. This allows us to
1695 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001696 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001697 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001698 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001699 if (Instruction *VI = dyn_cast<Instruction>(V))
1700 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001701
1702 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001703 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001704
Chris Lattner60c2ca72009-12-31 19:49:01 +00001705 // Rerun associate on the multiply in case the inner expression turned into
1706 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001707 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001708
Chris Lattner177140a2009-12-31 18:17:13 +00001709 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1710 // entire result expression is just the multiply "A*(B+C)".
1711 if (Ops.empty())
1712 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001713
Chris Lattnerac615502009-12-31 18:18:46 +00001714 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001715 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001716 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001717 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1718 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001719
Craig Topperf40110f2014-04-25 05:29:35 +00001720 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001721}
Chris Lattner4c065092006-03-04 09:31:13 +00001722
Chandler Carruth739ef802012-04-26 05:30:30 +00001723/// \brief Build up a vector of value/power pairs factoring a product.
1724///
1725/// Given a series of multiplication operands, build a vector of factors and
1726/// the powers each is raised to when forming the final product. Sort them in
1727/// the order of descending power.
1728///
1729/// (x*x) -> [(x, 2)]
1730/// ((x*x)*x) -> [(x, 3)]
1731/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1732///
1733/// \returns Whether any factors have a power greater than one.
1734bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1735 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001736 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1737 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001738 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001739 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1740 Value *Op = Ops[Idx-1].Op;
1741
1742 // Count the number of occurrences of this value.
1743 unsigned Count = 1;
1744 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1745 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001746 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001747 if (Count > 1)
1748 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001749 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001750
Chandler Carruth739ef802012-04-26 05:30:30 +00001751 // We can only simplify factors if the sum of the powers of our simplifiable
1752 // factors is 4 or higher. When that is the case, we will *always* have
1753 // a simplification. This is an important invariant to prevent cyclicly
1754 // trying to simplify already minimal formations.
1755 if (FactorPowerSum < 4)
1756 return false;
1757
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001758 // Now gather the simplifiable factors, removing them from Ops.
1759 FactorPowerSum = 0;
1760 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1761 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001762
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001763 // Count the number of occurrences of this value.
1764 unsigned Count = 1;
1765 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1766 ++Count;
1767 if (Count == 1)
1768 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001769 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001770 Count &= ~1U;
1771 Idx -= Count;
1772 FactorPowerSum += Count;
1773 Factors.push_back(Factor(Op, Count));
1774 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001775 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001776
Chandler Carruth739ef802012-04-26 05:30:30 +00001777 // None of the adjustments above should have reduced the sum of factor powers
1778 // below our mininum of '4'.
1779 assert(FactorPowerSum >= 4);
1780
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001781 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001782 return true;
1783}
1784
1785/// \brief Build a tree of multiplies, computing the product of Ops.
1786static Value *buildMultiplyTree(IRBuilder<> &Builder,
1787 SmallVectorImpl<Value*> &Ops) {
1788 if (Ops.size() == 1)
1789 return Ops.back();
1790
1791 Value *LHS = Ops.pop_back_val();
1792 do {
Chad Rosier11ab9412014-08-14 15:23:01 +00001793 if (LHS->getType()->isIntegerTy())
1794 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1795 else
1796 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001797 } while (!Ops.empty());
1798
1799 return LHS;
1800}
1801
1802/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1803///
1804/// Given a vector of values raised to various powers, where no two values are
1805/// equal and the powers are sorted in decreasing order, compute the minimal
1806/// DAG of multiplies to compute the final product, and return that product
1807/// value.
1808Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1809 SmallVectorImpl<Factor> &Factors) {
1810 assert(Factors[0].Power);
1811 SmallVector<Value *, 4> OuterProduct;
1812 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1813 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1814 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1815 LastIdx = Idx;
1816 continue;
1817 }
1818
1819 // We want to multiply across all the factors with the same power so that
1820 // we can raise them to that power as a single entity. Build a mini tree
1821 // for that.
1822 SmallVector<Value *, 4> InnerProduct;
1823 InnerProduct.push_back(Factors[LastIdx].Base);
1824 do {
1825 InnerProduct.push_back(Factors[Idx].Base);
1826 ++Idx;
1827 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1828
1829 // Reset the base value of the first factor to the new expression tree.
1830 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001831 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1832 if (Instruction *MI = dyn_cast<Instruction>(M))
1833 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001834
1835 LastIdx = Idx;
1836 }
1837 // Unique factors with equal powers -- we've folded them into the first one's
1838 // base.
1839 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1840 Factor::PowerEqual()),
1841 Factors.end());
1842
1843 // Iteratively collect the base of each factor with an add power into the
1844 // outer product, and halve each power in preparation for squaring the
1845 // expression.
1846 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1847 if (Factors[Idx].Power & 1)
1848 OuterProduct.push_back(Factors[Idx].Base);
1849 Factors[Idx].Power >>= 1;
1850 }
1851 if (Factors[0].Power) {
1852 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1853 OuterProduct.push_back(SquareRoot);
1854 OuterProduct.push_back(SquareRoot);
1855 }
1856 if (OuterProduct.size() == 1)
1857 return OuterProduct.front();
1858
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001859 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001860 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001861}
1862
1863Value *Reassociate::OptimizeMul(BinaryOperator *I,
1864 SmallVectorImpl<ValueEntry> &Ops) {
1865 // We can only optimize the multiplies when there is a chain of more than
1866 // three, such that a balanced tree might require fewer total multiplies.
1867 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001868 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001869
1870 // Try to turn linear trees of multiplies without other uses of the
1871 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1872 // re-use.
1873 SmallVector<Factor, 4> Factors;
1874 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001875 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001876
1877 IRBuilder<> Builder(I);
1878 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1879 if (Ops.empty())
1880 return V;
1881
1882 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1883 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001884 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001885}
1886
Chris Lattner4c065092006-03-04 09:31:13 +00001887Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001888 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001889 // Now that we have the linearized expression tree, try to optimize it.
1890 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001891 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001892 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001893 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1894 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1895 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1896 }
1897 // If there was nothing but constants then we are done.
1898 if (Ops.empty())
1899 return Cst;
1900
1901 // Put the combined constant back at the end of the operand list, except if
1902 // there is no point. For example, an add of 0 gets dropped here, while a
1903 // multiplication by zero turns the whole expression into zero.
1904 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1905 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1906 return Cst;
1907 Ops.push_back(ValueEntry(0, Cst));
1908 }
1909
1910 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001911
Chris Lattner9039ff82009-12-31 07:33:14 +00001912 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001913 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001914 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001915 switch (Opcode) {
1916 default: break;
1917 case Instruction::And:
1918 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001919 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1920 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001921 break;
1922
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001923 case Instruction::Xor:
1924 if (Value *Result = OptimizeXor(I, Ops))
1925 return Result;
1926 break;
1927
Chandler Carruth739ef802012-04-26 05:30:30 +00001928 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001929 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001930 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001931 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001932 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001933
1934 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001935 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001936 if (Value *Result = OptimizeMul(I, Ops))
1937 return Result;
1938 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001939 }
1940
Duncan Sands3293f462012-06-08 20:15:33 +00001941 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001942 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001943 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001944}
1945
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001946/// EraseInst - Zap the given instruction, adding interesting operands to the
1947/// work list.
1948void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001949 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1950 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1951 // Erase the dead instruction.
1952 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001953 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001954 I->eraseFromParent();
1955 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001956 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001957 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1958 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1959 // If this is a node in an expression tree, climb to the expression root
1960 // and add that since that's where optimization actually happens.
1961 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001962 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001963 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001964 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001965 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001966 }
1967}
1968
Chad Rosier094ac772014-11-11 22:58:35 +00001969// Canonicalize expressions of the following form:
1970// x + (-Constant * y) -> x - (Constant * y)
1971// x - (-Constant * y) -> x + (Constant * y)
1972Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1973 if (!I->hasOneUse() || I->getType()->isVectorTy())
1974 return nullptr;
1975
Chad Rosier9074b182014-11-13 15:40:20 +00001976 // Must be a mul, fmul, or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001977 unsigned Opcode = I->getOpcode();
Chad Rosierf53f0702014-11-11 23:36:42 +00001978 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1979 Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001980 return nullptr;
1981
1982 // Must have at least one constant operand.
1983 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1984 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1985 if (!C0 && !C1)
1986 return nullptr;
1987
1988 // Must be a negative ConstantInt or ConstantFP.
1989 Constant *C = C0 ? C0 : C1;
1990 unsigned ConstIdx = C0 ? 0 : 1;
1991 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1992 if (!CI->isNegative())
1993 return nullptr;
1994 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1995 if (!CF->isNegative())
1996 return nullptr;
1997 } else
1998 return nullptr;
1999
2000 // User must be a binary operator with one or more uses.
2001 Instruction *User = I->user_back();
2002 if (!isa<BinaryOperator>(User) || !User->getNumUses())
2003 return nullptr;
2004
2005 unsigned UserOpcode = User->getOpcode();
2006 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
2007 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
2008 return nullptr;
2009
2010 // Subtraction is not commutative. Explicitly, the following transform is
2011 // not valid: (-Constant * y) - x -> x + (Constant * y)
2012 if (!User->isCommutative() && User->getOperand(1) != I)
2013 return nullptr;
2014
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002015 // Change the sign of the constant.
Chad Rosier094ac772014-11-11 22:58:35 +00002016 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
2017 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
2018 else {
2019 ConstantFP *CF = cast<ConstantFP>(C);
2020 APFloat Val = CF->getValueAPF();
2021 Val.changeSign();
2022 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2023 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002024
Chad Rosier094ac772014-11-11 22:58:35 +00002025 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2026 // ((-Const*y) + x) -> (x + (-Const*y)).
2027 if (User->getOperand(0) == I && User->isCommutative())
2028 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002029
Chad Rosier094ac772014-11-11 22:58:35 +00002030 Value *Op0 = User->getOperand(0);
2031 Value *Op1 = User->getOperand(1);
2032 BinaryOperator *NI;
2033 switch(UserOpcode) {
2034 default:
2035 llvm_unreachable("Unexpected Opcode!");
2036 case Instruction::Add:
2037 NI = BinaryOperator::CreateSub(Op0, Op1);
2038 break;
2039 case Instruction::Sub:
2040 NI = BinaryOperator::CreateAdd(Op0, Op1);
2041 break;
2042 case Instruction::FAdd:
2043 NI = BinaryOperator::CreateFSub(Op0, Op1);
2044 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2045 break;
2046 case Instruction::FSub:
2047 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2048 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2049 break;
2050 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002051
Chad Rosier094ac772014-11-11 22:58:35 +00002052 NI->insertBefore(User);
2053 NI->setName(User->getName());
2054 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002055 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002056 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002057 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002058 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002059}
2060
Duncan Sands3293f462012-06-08 20:15:33 +00002061/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2062/// instructions is not allowed.
2063void Reassociate::OptimizeInst(Instruction *I) {
2064 // Only consider operations that we understand.
2065 if (!isa<BinaryOperator>(I))
2066 return;
2067
Chad Rosier11ab9412014-08-14 15:23:01 +00002068 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002069 // If an operand of this shift is a reassociable multiply, or if the shift
2070 // is used by a reassociable multiply or add, turn into a multiply.
2071 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2072 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002073 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2074 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002075 Instruction *NI = ConvertShiftToMul(I);
2076 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002077 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002078 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002079 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002080
Chad Rosier094ac772014-11-11 22:58:35 +00002081 // Canonicalize negative constants out of expressions.
2082 if (Instruction *Res = canonicalizeNegConstExpr(I))
2083 I = Res;
2084
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002085 // Commute binary operators, to canonicalize the order of their operands.
2086 // This can potentially expose more CSE opportunities, and makes writing other
2087 // transformations simpler.
2088 if (I->isCommutative())
2089 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002090
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002091 // Don't optimize vector instructions.
2092 if (I->getType()->isVectorTy())
2093 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002094
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002095 // Don't optimize floating point instructions that don't have unsafe algebra.
2096 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2097 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002098
Dan Gohman1c6c3482011-04-12 00:11:56 +00002099 // Do not reassociate boolean (i1) expressions. We want to preserve the
2100 // original order of evaluation for short-circuited comparisons that
2101 // SimplifyCFG has folded to AND/OR expressions. If the expression
2102 // is not further optimized, it is likely to be transformed back to a
2103 // short-circuited form for code gen, and the source order may have been
2104 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002105 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002106 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002107
Dan Gohman1c6c3482011-04-12 00:11:56 +00002108 // If this is a subtract instruction which is not already in negate form,
2109 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002110 if (I->getOpcode() == Instruction::Sub) {
2111 if (ShouldBreakUpSubtract(I)) {
2112 Instruction *NI = BreakUpSubtract(I);
2113 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002114 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002115 I = NI;
2116 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002117 // Otherwise, this is a negation. See if the operand is a multiply tree
2118 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002119 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2120 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002121 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002122 Instruction *NI = LowerNegateToMultiply(I);
2123 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002124 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002125 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002126 }
2127 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002128 } else if (I->getOpcode() == Instruction::FSub) {
2129 if (ShouldBreakUpSubtract(I)) {
2130 Instruction *NI = BreakUpSubtract(I);
2131 RedoInsts.insert(I);
2132 MadeChange = true;
2133 I = NI;
2134 } else if (BinaryOperator::isFNeg(I)) {
2135 // Otherwise, this is a negation. See if the operand is a multiply tree
2136 // and if this is not an inner node of a multiply tree.
2137 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2138 (!I->hasOneUse() ||
2139 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2140 Instruction *NI = LowerNegateToMultiply(I);
2141 RedoInsts.insert(I);
2142 MadeChange = true;
2143 I = NI;
2144 }
2145 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002146 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002147
Duncan Sands3293f462012-06-08 20:15:33 +00002148 // If this instruction is an associative binary operator, process it.
2149 if (!I->isAssociative()) return;
2150 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002151
2152 // If this is an interior node of a reassociable tree, ignore it until we
2153 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002154 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002155 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002156 return;
2157
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002158 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002159 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002160 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002161 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002162 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002163 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2164 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2165 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002166
Duncan Sands3293f462012-06-08 20:15:33 +00002167 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002168}
Chris Lattner1e506502005-05-07 21:59:39 +00002169
Duncan Sands78386032012-06-15 08:37:50 +00002170void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002171 assert(!I->getType()->isVectorTy() &&
2172 "Reassociation of vector instructions is not supported.");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002173
Chris Lattner60b71b52009-12-31 19:24:52 +00002174 // First, walk the expression tree, linearizing the tree, collecting the
2175 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002176 SmallVector<RepeatedValue, 8> Tree;
2177 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002178 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002179 Ops.reserve(Tree.size());
2180 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2181 RepeatedValue E = Tree[i];
2182 Ops.append(E.second.getZExtValue(),
2183 ValueEntry(getRank(E.first), E.first));
2184 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002185
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002186 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2187
Chris Lattner2fc319d2006-03-14 07:11:11 +00002188 // Now that we have linearized the tree to a list and have gathered all of
2189 // the operands and their ranks, sort the operands by their rank. Use a
2190 // stable_sort so that values with equal ranks will have their relative
2191 // positions maintained (and so the compiler is deterministic). Note that
2192 // this sorts so that the highest ranking values end up at the beginning of
2193 // the vector.
2194 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002195
Chris Lattner2fc319d2006-03-14 07:11:11 +00002196 // OptimizeExpression - Now that we have the expression tree in a convenient
2197 // sorted form, optimize it globally if possible.
2198 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002199 if (V == I)
2200 // Self-referential expression in unreachable code.
2201 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002202 // This expression tree simplified to something that isn't a tree,
2203 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002204 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002205 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002206 if (Instruction *VI = dyn_cast<Instruction>(V))
2207 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002208 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002209 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002210 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002211 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002212
Chris Lattner2fc319d2006-03-14 07:11:11 +00002213 // We want to sink immediates as deeply as possible except in the case where
2214 // this is a multiply tree used only by an add, and the immediate is a -1.
2215 // In this case we reassociate to put the negation on the outside so that we
2216 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002217 if (I->hasOneUse()) {
2218 if (I->getOpcode() == Instruction::Mul &&
2219 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2220 isa<ConstantInt>(Ops.back().Op) &&
2221 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2222 ValueEntry Tmp = Ops.pop_back_val();
2223 Ops.insert(Ops.begin(), Tmp);
2224 } else if (I->getOpcode() == Instruction::FMul &&
2225 cast<Instruction>(I->user_back())->getOpcode() ==
2226 Instruction::FAdd &&
2227 isa<ConstantFP>(Ops.back().Op) &&
2228 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2229 ValueEntry Tmp = Ops.pop_back_val();
2230 Ops.insert(Ops.begin(), Tmp);
2231 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002232 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002233
David Greened17c3912010-01-05 01:27:24 +00002234 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002235
Chris Lattner2fc319d2006-03-14 07:11:11 +00002236 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002237 if (Ops[0].Op == I)
2238 // Self-referential expression in unreachable code.
2239 return;
2240
Chris Lattner2fc319d2006-03-14 07:11:11 +00002241 // This expression tree simplified to something that isn't a tree,
2242 // eliminate it.
2243 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002244 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2245 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002246 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002247 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002248 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002249
Chris Lattner60b71b52009-12-31 19:24:52 +00002250 // Now that we ordered and optimized the expressions, splat them back into
2251 // the expression tree, removing any unneeded nodes.
2252 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002253}
2254
Chris Lattner113f4f42002-06-25 16:13:24 +00002255bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002256 if (skipOptnoneFunction(F))
2257 return false;
2258
Duncan Sands3293f462012-06-08 20:15:33 +00002259 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002260 BuildRankMap(F);
2261
Chris Lattner1e506502005-05-07 21:59:39 +00002262 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002263 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2264 // Optimize every instruction in the basic block.
2265 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2266 if (isInstructionTriviallyDead(II)) {
2267 EraseInst(II++);
2268 } else {
2269 OptimizeInst(II);
2270 assert(II->getParent() == BI && "Moved to a different block!");
2271 ++II;
2272 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002273
Duncan Sands3293f462012-06-08 20:15:33 +00002274 // If this produced extra instructions to optimize, handle them now.
2275 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002276 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002277 if (isInstructionTriviallyDead(I))
2278 EraseInst(I);
2279 else
2280 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002281 }
Duncan Sands3293f462012-06-08 20:15:33 +00002282 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002283
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002284 // We are done with the rank map.
2285 RankMap.clear();
2286 ValueRankMap.clear();
2287
Chris Lattner1e506502005-05-07 21:59:39 +00002288 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002289}