blob: c86317dd821c6e6d159dbfa5c00d510007595da8 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000029#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000036#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000039#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000040#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000041#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000042using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000043
Chandler Carruth964daaa2014-04-22 02:55:47 +000044#define DEBUG_TYPE "reassociate"
45
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000070 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125
Craig Topperf40110f2014-04-25 05:29:35 +0000126 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 bool isOrExpr() const { return isOr; }
128 Value *getValue() const { return OrigVal; }
129 Value *getSymbolicPart() const { return SymbolicPart; }
130 unsigned getSymbolicRank() const { return SymbolicRank; }
131 const APInt &getConstPart() const { return ConstPart; }
132
Craig Topperf40110f2014-04-25 05:29:35 +0000133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000145 struct PtrSortFunctor {
146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000157}
158
159namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000160 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000161 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000163 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000164 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000165 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000166 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
Devang Patel09f162c2007-05-01 21:15:47 +0000170
Craig Topper3e4c6972014-03-05 09:10:37 +0000171 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172
Craig Topper3e4c6972014-03-05 09:10:37 +0000173 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000174 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000175 }
176 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000177 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178 unsigned getRank(Value *V);
Duncan Sands78386032012-06-15 08:37:50 +0000179 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000181 Value *OptimizeExpression(BinaryOperator *I,
182 SmallVectorImpl<ValueEntry> &Ops);
183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186 Value *&Res);
187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190 SmallVectorImpl<Factor> &Factors);
191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192 SmallVectorImpl<Factor> &Factors);
193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000194 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000195 void EraseInst(Instruction *I);
196 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000197 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000198 };
199}
200
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000201XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000202 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000203 OrigVal = V;
204 Instruction *I = dyn_cast<Instruction>(V);
205 SymbolicRank = 0;
206
207 if (I && (I->getOpcode() == Instruction::Or ||
208 I->getOpcode() == Instruction::And)) {
209 Value *V0 = I->getOperand(0);
210 Value *V1 = I->getOperand(1);
211 if (isa<ConstantInt>(V0))
212 std::swap(V0, V1);
213
214 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
215 ConstPart = C->getValue();
216 SymbolicPart = V0;
217 isOr = (I->getOpcode() == Instruction::Or);
218 return;
219 }
220 }
221
222 // view the operand as "V | 0"
223 SymbolicPart = V;
224 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
225 isOr = true;
226}
227
Dan Gohmand78c4002008-05-13 00:00:25 +0000228char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000229INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000230 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000231
Brian Gaeke960707c2003-11-11 22:41:34 +0000232// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000233FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000234
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000235/// isReassociableOp - Return true if V is an instruction of the specified
236/// opcode and if it only has one use.
237static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
238 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000239 cast<Instruction>(V)->getOpcode() == Opcode &&
240 (!isa<FPMathOperator>(V) ||
241 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000242 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000243 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000244}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000245
Chad Rosier11ab9412014-08-14 15:23:01 +0000246static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
247 unsigned Opcode2) {
248 if (V->hasOneUse() && isa<Instruction>(V) &&
249 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000250 cast<Instruction>(V)->getOpcode() == Opcode2) &&
251 (!isa<FPMathOperator>(V) ||
252 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000253 return cast<BinaryOperator>(V);
254 return nullptr;
255}
256
Chris Lattner9f284e02005-05-08 20:57:04 +0000257static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000258 switch (I->getOpcode()) {
259 case Instruction::PHI:
260 case Instruction::LandingPad:
261 case Instruction::Alloca:
262 case Instruction::Load:
263 case Instruction::Invoke:
264 case Instruction::UDiv:
265 case Instruction::SDiv:
266 case Instruction::FDiv:
267 case Instruction::URem:
268 case Instruction::SRem:
269 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000270 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000271 case Instruction::Call:
272 return !isa<DbgInfoIntrinsic>(I);
273 default:
274 return false;
275 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000276}
277
Chris Lattner113f4f42002-06-25 16:13:24 +0000278void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000279 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000280
Chad Rosierf59e5482014-11-14 15:01:38 +0000281 // Assign distinct ranks to function arguments.
282 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000283 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000284 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
285 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000286
Chris Lattner113f4f42002-06-25 16:13:24 +0000287 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000288 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000289 E = RPOT.end(); I != E; ++I) {
290 BasicBlock *BB = *I;
291 unsigned BBRank = RankMap[BB] = ++i << 16;
292
293 // Walk the basic block, adding precomputed ranks for any instructions that
294 // we cannot move. This ensures that the ranks for these instructions are
295 // all different in the block.
296 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
297 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000298 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000299 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000300}
301
302unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000303 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000304 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000305 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
306 return 0; // Otherwise it's a global or constant, rank 0.
307 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000308
Chris Lattner17229a72010-01-01 00:01:34 +0000309 if (unsigned Rank = ValueRankMap[I])
310 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000311
Chris Lattnerf43e9742005-05-07 04:08:02 +0000312 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
313 // we can reassociate expressions for code motion! Since we do not recurse
314 // for PHI nodes, we cannot have infinite recursion here, because there
315 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000316 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
317 for (unsigned i = 0, e = I->getNumOperands();
318 i != e && Rank != MaxRank; ++i)
319 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000320
Chris Lattner6e2086d2005-05-08 00:08:33 +0000321 // If this is a not or neg instruction, do not count it for rank. This
322 // assures us that X and ~X will have the same rank.
Chad Rosier11ab9412014-08-14 15:23:01 +0000323 Type *Ty = V->getType();
324 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
325 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
326 !BinaryOperator::isFNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000327 ++Rank;
328
Chad Rosierf59e5482014-11-14 15:01:38 +0000329 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000330
Chris Lattner17229a72010-01-01 00:01:34 +0000331 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000332}
333
Chad Rosier11ab9412014-08-14 15:23:01 +0000334static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
335 Instruction *InsertBefore, Value *FlagsOp) {
336 if (S1->getType()->isIntegerTy())
337 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
338 else {
339 BinaryOperator *Res =
340 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
341 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
342 return Res;
343 }
344}
345
346static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
347 Instruction *InsertBefore, Value *FlagsOp) {
348 if (S1->getType()->isIntegerTy())
349 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
350 else {
351 BinaryOperator *Res =
352 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
353 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
354 return Res;
355 }
356}
357
358static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
359 Instruction *InsertBefore, Value *FlagsOp) {
360 if (S1->getType()->isIntegerTy())
361 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
362 else {
363 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
364 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
365 return Res;
366 }
367}
368
Chris Lattner877b1142005-05-08 21:28:52 +0000369/// LowerNegateToMultiply - Replace 0-X with X*-1.
370///
Duncan Sands3293f462012-06-08 20:15:33 +0000371static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000372 Type *Ty = Neg->getType();
373 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
374 : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000375
Chad Rosier11ab9412014-08-14 15:23:01 +0000376 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
377 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000378 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000379 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000380 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000381 return Res;
382}
383
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000384/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
385/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
386/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
387/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
388/// even x in Bitwidth-bit arithmetic.
389static unsigned CarmichaelShift(unsigned Bitwidth) {
390 if (Bitwidth < 3)
391 return Bitwidth - 1;
392 return Bitwidth - 2;
393}
394
395/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
396/// reducing the combined weight using any special properties of the operation.
397/// The existing weight LHS represents the computation X op X op ... op X where
398/// X occurs LHS times. The combined weight represents X op X op ... op X with
399/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
400/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
401/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
402static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
403 // If we were working with infinite precision arithmetic then the combined
404 // weight would be LHS + RHS. But we are using finite precision arithmetic,
405 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
406 // for nilpotent operations and addition, but not for idempotent operations
407 // and multiplication), so it is important to correctly reduce the combined
408 // weight back into range if wrapping would be wrong.
409
410 // If RHS is zero then the weight didn't change.
411 if (RHS.isMinValue())
412 return;
413 // If LHS is zero then the combined weight is RHS.
414 if (LHS.isMinValue()) {
415 LHS = RHS;
416 return;
417 }
418 // From this point on we know that neither LHS nor RHS is zero.
419
420 if (Instruction::isIdempotent(Opcode)) {
421 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
422 // weight of 1. Keeping weights at zero or one also means that wrapping is
423 // not a problem.
424 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
425 return; // Return a weight of 1.
426 }
427 if (Instruction::isNilpotent(Opcode)) {
428 // Nilpotent means X op X === 0, so reduce weights modulo 2.
429 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
430 LHS = 0; // 1 + 1 === 0 modulo 2.
431 return;
432 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000433 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000434 // TODO: Reduce the weight by exploiting nsw/nuw?
435 LHS += RHS;
436 return;
437 }
438
Chad Rosier11ab9412014-08-14 15:23:01 +0000439 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
440 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000441 unsigned Bitwidth = LHS.getBitWidth();
442 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
443 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
444 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
445 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
446 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
447 // which by a happy accident means that they can always be represented using
448 // Bitwidth bits.
449 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
450 // the Carmichael number).
451 if (Bitwidth > 3) {
452 /// CM - The value of Carmichael's lambda function.
453 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
454 // Any weight W >= Threshold can be replaced with W - CM.
455 APInt Threshold = CM + Bitwidth;
456 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
457 // For Bitwidth 4 or more the following sum does not overflow.
458 LHS += RHS;
459 while (LHS.uge(Threshold))
460 LHS -= CM;
461 } else {
462 // To avoid problems with overflow do everything the same as above but using
463 // a larger type.
464 unsigned CM = 1U << CarmichaelShift(Bitwidth);
465 unsigned Threshold = CM + Bitwidth;
466 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
467 "Weights not reduced!");
468 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
469 while (Total >= Threshold)
470 Total -= CM;
471 LHS = Total;
472 }
473}
474
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000475typedef std::pair<Value*, APInt> RepeatedValue;
476
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000477/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000478/// nodes in Ops along with their weights (how many times the leaf occurs). The
479/// original expression is the same as
480/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000481/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000482/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
483/// op
484/// ...
485/// op
486/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
487///
Duncan Sandsac852c72012-11-15 09:58:38 +0000488/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000489///
490/// This routine may modify the function, in which case it returns 'true'. The
491/// changes it makes may well be destructive, changing the value computed by 'I'
492/// to something completely different. Thus if the routine returns 'true' then
493/// you MUST either replace I with a new expression computed from the Ops array,
494/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000495///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000496/// A leaf node is either not a binary operation of the same kind as the root
497/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
498/// opcode), or is the same kind of binary operator but has a use which either
499/// does not belong to the expression, or does belong to the expression but is
500/// a leaf node. Every leaf node has at least one use that is a non-leaf node
501/// of the expression, while for non-leaf nodes (except for the root 'I') every
502/// use is a non-leaf node of the expression.
503///
504/// For example:
505/// expression graph node names
506///
507/// + | I
508/// / \ |
509/// + + | A, B
510/// / \ / \ |
511/// * + * | C, D, E
512/// / \ / \ / \ |
513/// + * | F, G
514///
515/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000516/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000517///
518/// The expression is maximal: if some instruction is a binary operator of the
519/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
520/// then the instruction also belongs to the expression, is not a leaf node of
521/// it, and its operands also belong to the expression (but may be leaf nodes).
522///
523/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
524/// order to ensure that every non-root node in the expression has *exactly one*
525/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000526/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000527/// RewriteExprTree to put the values back in if the routine indicates that it
528/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000529///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000530/// In the above example either the right operand of A or the left operand of B
531/// will be replaced by undef. If it is B's operand then this gives:
532///
533/// + | I
534/// / \ |
535/// + + | A, B - operand of B replaced with undef
536/// / \ \ |
537/// * + * | C, D, E
538/// / \ / \ / \ |
539/// + * | F, G
540///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000541/// Note that such undef operands can only be reached by passing through 'I'.
542/// For example, if you visit operands recursively starting from a leaf node
543/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000544/// which requires passing through a phi node.
545///
546/// Note that this routine may also mutate binary operators of the wrong type
547/// that have all uses inside the expression (i.e. only used by non-leaf nodes
548/// of the expression) if it can turn them into binary operators of the right
549/// type and thus make the expression bigger.
550
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000551static bool LinearizeExprTree(BinaryOperator *I,
552 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000553 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000554 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
555 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000556 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000557 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000558
559 // Visit all operands of the expression, keeping track of their weight (the
560 // number of paths from the expression root to the operand, or if you like
561 // the number of times that operand occurs in the linearized expression).
562 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
563 // while A has weight two.
564
565 // Worklist of non-leaf nodes (their operands are in the expression too) along
566 // with their weights, representing a certain number of paths to the operator.
567 // If an operator occurs in the worklist multiple times then we found multiple
568 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000569 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
570 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
571 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000572
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000573 // Leaves of the expression are values that either aren't the right kind of
574 // operation (eg: a constant, or a multiply in an add tree), or are, but have
575 // some uses that are not inside the expression. For example, in I = X + X,
576 // X = A + B, the value X has two uses (by I) that are in the expression. If
577 // X has any other uses, for example in a return instruction, then we consider
578 // X to be a leaf, and won't analyze it further. When we first visit a value,
579 // if it has more than one use then at first we conservatively consider it to
580 // be a leaf. Later, as the expression is explored, we may discover some more
581 // uses of the value from inside the expression. If all uses turn out to be
582 // from within the expression (and the value is a binary operator of the right
583 // kind) then the value is no longer considered to be a leaf, and its operands
584 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000585
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000586 // Leaves - Keeps track of the set of putative leaves as well as the number of
587 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000588 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000589 LeafMap Leaves; // Leaf -> Total weight so far.
590 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
591
592#ifndef NDEBUG
593 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
594#endif
595 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000596 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000597 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000598
599 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
600 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000601 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000602 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
603 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
604
605 // If this is a binary operation of the right kind with only one use then
606 // add its operands to the expression.
607 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
608 assert(Visited.insert(Op) && "Not first visit!");
609 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
610 Worklist.push_back(std::make_pair(BO, Weight));
611 continue;
612 }
613
614 // Appears to be a leaf. Is the operand already in the set of leaves?
615 LeafMap::iterator It = Leaves.find(Op);
616 if (It == Leaves.end()) {
617 // Not in the leaf map. Must be the first time we saw this operand.
618 assert(Visited.insert(Op) && "Not first visit!");
619 if (!Op->hasOneUse()) {
620 // This value has uses not accounted for by the expression, so it is
621 // not safe to modify. Mark it as being a leaf.
622 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
623 LeafOrder.push_back(Op);
624 Leaves[Op] = Weight;
625 continue;
626 }
627 // No uses outside the expression, try morphing it.
628 } else if (It != Leaves.end()) {
629 // Already in the leaf map.
630 assert(Visited.count(Op) && "In leaf map but not visited!");
631
632 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000633 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000634
Duncan Sands56514522012-07-26 09:26:40 +0000635#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000636 // The leaf already has one use from inside the expression. As we want
637 // exactly one such use, drop this new use of the leaf.
638 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
639 I->setOperand(OpIdx, UndefValue::get(I->getType()));
640 MadeChange = true;
641
642 // If the leaf is a binary operation of the right kind and we now see
643 // that its multiple original uses were in fact all by nodes belonging
644 // to the expression, then no longer consider it to be a leaf and add
645 // its operands to the expression.
646 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
647 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
648 Worklist.push_back(std::make_pair(BO, It->second));
649 Leaves.erase(It);
650 continue;
651 }
Duncan Sands56514522012-07-26 09:26:40 +0000652#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000653
654 // If we still have uses that are not accounted for by the expression
655 // then it is not safe to modify the value.
656 if (!Op->hasOneUse())
657 continue;
658
659 // No uses outside the expression, try morphing it.
660 Weight = It->second;
661 Leaves.erase(It); // Since the value may be morphed below.
662 }
663
664 // At this point we have a value which, first of all, is not a binary
665 // expression of the right kind, and secondly, is only used inside the
666 // expression. This means that it can safely be modified. See if we
667 // can usefully morph it into an expression of the right kind.
668 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000669 cast<Instruction>(Op)->getOpcode() != Opcode
670 || (isa<FPMathOperator>(Op) &&
671 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000672 "Should have been handled above!");
673 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
674
675 // If this is a multiply expression, turn any internal negations into
676 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000677 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
678 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
679 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
680 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
681 BO = LowerNegateToMultiply(BO);
682 DEBUG(dbgs() << *BO << '\n');
683 Worklist.push_back(std::make_pair(BO, Weight));
684 MadeChange = true;
685 continue;
686 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000687
688 // Failed to morph into an expression of the right type. This really is
689 // a leaf.
690 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
691 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
692 LeafOrder.push_back(Op);
693 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000694 }
695 }
696
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 // The leaves, repeated according to their weights, represent the linearized
698 // form of the expression.
699 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
700 Value *V = LeafOrder[i];
701 LeafMap::iterator It = Leaves.find(V);
702 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000703 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000704 continue;
705 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000706 APInt Weight = It->second;
707 if (Weight.isMinValue())
708 // Leaf already output or weight reduction eliminated it.
709 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000711 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000712 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000713 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000714
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000715 // For nilpotent operations or addition there may be no operands, for example
716 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
717 // in both cases the weight reduces to 0 causing the value to be skipped.
718 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000719 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000720 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000721 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
722 }
723
724 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000725}
726
Chris Lattner1e506502005-05-07 21:59:39 +0000727// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000729void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000730 SmallVectorImpl<ValueEntry> &Ops) {
731 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000732
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000733 // Since our optimizations should never increase the number of operations, the
734 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000735 // from the original expression tree, without creating any new instructions,
736 // though the rewritten expression may have a completely different topology.
737 // We take care to not change anything if the new expression will be the same
738 // as the original. If more than trivial changes (like commuting operands)
739 // were made then we are obliged to clear out any optional subclass data like
740 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000741
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000742 /// NodesToRewrite - Nodes from the original expression available for writing
743 /// the new expression into.
744 SmallVector<BinaryOperator*, 8> NodesToRewrite;
745 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000746 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000747
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000748 /// NotRewritable - The operands being written will be the leaves of the new
749 /// expression and must not be used as inner nodes (via NodesToRewrite) by
750 /// mistake. Inner nodes are always reassociable, and usually leaves are not
751 /// (if they were they would have been incorporated into the expression and so
752 /// would not be leaves), so most of the time there is no danger of this. But
753 /// in rare cases a leaf may become reassociable if an optimization kills uses
754 /// of it, or it may momentarily become reassociable during rewriting (below)
755 /// due it being removed as an operand of one of its uses. Ensure that misuse
756 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
757 /// leaves and refusing to reuse any of them as inner nodes.
758 SmallPtrSet<Value*, 8> NotRewritable;
759 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
760 NotRewritable.insert(Ops[i].Op);
761
Duncan Sands3c05cd32012-05-26 16:42:52 +0000762 // ExpressionChanged - Non-null if the rewritten expression differs from the
763 // original in some non-trivial way, requiring the clearing of optional flags.
764 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000765 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000766 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000767 // The last operation (which comes earliest in the IR) is special as both
768 // operands will come from Ops, rather than just one with the other being
769 // a subexpression.
770 if (i+2 == Ops.size()) {
771 Value *NewLHS = Ops[i].Op;
772 Value *NewRHS = Ops[i+1].Op;
773 Value *OldLHS = Op->getOperand(0);
774 Value *OldRHS = Op->getOperand(1);
775
776 if (NewLHS == OldLHS && NewRHS == OldRHS)
777 // Nothing changed, leave it alone.
778 break;
779
780 if (NewLHS == OldRHS && NewRHS == OldLHS) {
781 // The order of the operands was reversed. Swap them.
782 DEBUG(dbgs() << "RA: " << *Op << '\n');
783 Op->swapOperands();
784 DEBUG(dbgs() << "TO: " << *Op << '\n');
785 MadeChange = true;
786 ++NumChanged;
787 break;
788 }
789
790 // The new operation differs non-trivially from the original. Overwrite
791 // the old operands with the new ones.
792 DEBUG(dbgs() << "RA: " << *Op << '\n');
793 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000794 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
795 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000796 NodesToRewrite.push_back(BO);
797 Op->setOperand(0, NewLHS);
798 }
799 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000800 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
801 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000802 NodesToRewrite.push_back(BO);
803 Op->setOperand(1, NewRHS);
804 }
805 DEBUG(dbgs() << "TO: " << *Op << '\n');
806
Duncan Sands3c05cd32012-05-26 16:42:52 +0000807 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000808 MadeChange = true;
809 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000810
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000811 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000812 }
Chris Lattner1e506502005-05-07 21:59:39 +0000813
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000814 // Not the last operation. The left-hand side will be a sub-expression
815 // while the right-hand side will be the current element of Ops.
816 Value *NewRHS = Ops[i].Op;
817 if (NewRHS != Op->getOperand(1)) {
818 DEBUG(dbgs() << "RA: " << *Op << '\n');
819 if (NewRHS == Op->getOperand(0)) {
820 // The new right-hand side was already present as the left operand. If
821 // we are lucky then swapping the operands will sort out both of them.
822 Op->swapOperands();
823 } else {
824 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000825 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
826 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000827 NodesToRewrite.push_back(BO);
828 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000829 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000830 }
831 DEBUG(dbgs() << "TO: " << *Op << '\n');
832 MadeChange = true;
833 ++NumChanged;
834 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000835
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000836 // Now deal with the left-hand side. If this is already an operation node
837 // from the original expression then just rewrite the rest of the expression
838 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000839 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
840 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000841 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000842 continue;
843 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000844
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000845 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000846 // the left-hand side. If there are no nodes left then the optimizers made
847 // an expression with more nodes than the original! This usually means that
848 // they did something stupid but it might mean that the problem was just too
849 // hard (finding the mimimal number of multiplications needed to realize a
850 // multiplication expression is NP-complete). Whatever the reason, smart or
851 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000852 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000853 if (NodesToRewrite.empty()) {
854 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000855 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
856 Undef, Undef, "", I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000857 if (NewOp->getType()->isFloatingPointTy())
858 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000859 } else {
860 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000861 }
862
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000863 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000864 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000865 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000866 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000867 MadeChange = true;
868 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000869 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000870 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000871
Duncan Sands3c05cd32012-05-26 16:42:52 +0000872 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000873 // starting from the operator specified in ExpressionChanged, and compactify
874 // the operators to just before the expression root to guarantee that the
875 // expression tree is dominated by all of Ops.
876 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000877 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000878 // Preserve FastMathFlags.
879 if (isa<FPMathOperator>(I)) {
880 FastMathFlags Flags = I->getFastMathFlags();
881 ExpressionChanged->clearSubclassOptionalData();
882 ExpressionChanged->setFastMathFlags(Flags);
883 } else
884 ExpressionChanged->clearSubclassOptionalData();
885
Duncan Sands3c05cd32012-05-26 16:42:52 +0000886 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000887 break;
Duncan Sands514db112012-06-27 14:19:00 +0000888 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000889 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000890 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000891
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000892 // Throw away any left over nodes from the original expression.
893 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000894 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000895}
896
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000897/// NegateValue - Insert instructions before the instruction pointed to by BI,
898/// that computes the negative version of the value specified. The negative
899/// version of the value is returned, and BI is left pointing at the instruction
900/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000901static Value *NegateValue(Value *V, Instruction *BI) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000902 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
903 return ConstantExpr::getFNeg(C);
Chris Lattnerfed33972009-12-31 20:34:32 +0000904 if (Constant *C = dyn_cast<Constant>(V))
905 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000906
Chris Lattner7bc532d2002-05-16 04:37:07 +0000907 // We are trying to expose opportunity for reassociation. One of the things
908 // that we want to do to achieve this is to push a negation as deep into an
909 // expression chain as possible, to expose the add instructions. In practice,
910 // this means that we turn this:
911 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
912 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
913 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000914 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000915 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000916 if (BinaryOperator *I =
917 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000918 // Push the negates through the add.
919 I->setOperand(0, NegateValue(I->getOperand(0), BI));
920 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000921
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000922 // We must move the add instruction here, because the neg instructions do
923 // not dominate the old add instruction in general. By moving it, we are
924 // assured that the neg instructions we just inserted dominate the
925 // instruction we are about to insert after them.
926 //
927 I->moveBefore(BI);
928 I->setName(I->getName()+".neg");
929 return I;
930 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000931
Chris Lattnerfed33972009-12-31 20:34:32 +0000932 // Okay, we need to materialize a negated version of V with an instruction.
933 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000934 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000935 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
936 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000937
938 // We found one! Now we have to make sure that the definition dominates
939 // this use. We do this by moving it to the entry block (if it is a
940 // non-instruction value) or right after the definition. These negates will
941 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000942 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000943
944 // Verify that the negate is in this function, V might be a constant expr.
945 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
946 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000947
Chris Lattnerfed33972009-12-31 20:34:32 +0000948 BasicBlock::iterator InsertPt;
949 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
950 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
951 InsertPt = II->getNormalDest()->begin();
952 } else {
953 InsertPt = InstInput;
954 ++InsertPt;
955 }
956 while (isa<PHINode>(InsertPt)) ++InsertPt;
957 } else {
958 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
959 }
960 TheNeg->moveBefore(InsertPt);
961 return TheNeg;
962 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000963
964 // Insert a 'neg' instruction that subtracts the value from zero to get the
965 // negation.
Chad Rosier11ab9412014-08-14 15:23:01 +0000966 return CreateNeg(V, V->getName() + ".neg", BI, BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000967}
968
Chris Lattner902537c2008-02-17 20:44:51 +0000969/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
970/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000971static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000972 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000973 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000974 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000975
Chad Rosierbd64d462014-10-09 20:06:29 +0000976 // Don't breakup X - undef.
977 if (isa<UndefValue>(Sub->getOperand(1)))
978 return false;
979
Chris Lattner902537c2008-02-17 20:44:51 +0000980 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000981 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000982 Value *V0 = Sub->getOperand(0);
983 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
984 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000985 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000986 Value *V1 = Sub->getOperand(1);
987 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
988 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000989 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000990 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000991 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000992 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
993 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000994 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000995
Chris Lattner902537c2008-02-17 20:44:51 +0000996 return false;
997}
998
Chris Lattnerf43e9742005-05-07 04:08:02 +0000999/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1000/// only used by an add, transform this into (X+(0-Y)) to promote better
1001/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001002static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +00001003 // Convert a subtract into an add and a neg instruction. This allows sub
1004 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001005 //
Chris Lattnera5526832010-01-01 00:04:26 +00001006 // Calculate the negative value of Operand 1 of the sub instruction,
1007 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001008 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +00001009 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chad Rosier11ab9412014-08-14 15:23:01 +00001010 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001011 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1012 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001013 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001014
1015 // Everyone now refers to the add instruction.
1016 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001017 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001018
David Greened17c3912010-01-05 01:27:24 +00001019 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001020 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001021}
1022
Chris Lattnercea57992005-05-07 04:24:13 +00001023/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1024/// by one, change this into a multiply by a constant to assist with further
1025/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001026static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1027 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1028 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001029
Duncan Sands3293f462012-06-08 20:15:33 +00001030 BinaryOperator *Mul =
1031 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1032 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1033 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001034
1035 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001036 Shl->replaceAllUsesWith(Mul);
1037 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001038
1039 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1040 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1041 // handling.
1042 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1043 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1044 if (NSW && NUW)
1045 Mul->setHasNoSignedWrap(true);
1046 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001047 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001048}
1049
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001050/// FindInOperandList - Scan backwards and forwards among values with the same
1051/// rank as element i to see if X exists. If X does not exist, return i. This
1052/// is useful when scanning for 'x' when we see '-x' because they both get the
1053/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001054static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001055 Value *X) {
1056 unsigned XRank = Ops[i].Rank;
1057 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001058 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001059 if (Ops[j].Op == X)
1060 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001061 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1062 if (Instruction *I2 = dyn_cast<Instruction>(X))
1063 if (I1->isIdenticalTo(I2))
1064 return j;
1065 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001066 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001067 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001068 if (Ops[j].Op == X)
1069 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001070 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1071 if (Instruction *I2 = dyn_cast<Instruction>(X))
1072 if (I1->isIdenticalTo(I2))
1073 return j;
1074 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001075 return i;
1076}
1077
Chris Lattner4c065092006-03-04 09:31:13 +00001078/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1079/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001080static Value *EmitAddTreeOfValues(Instruction *I,
1081 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001082 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001083
Chris Lattner4c065092006-03-04 09:31:13 +00001084 Value *V1 = Ops.back();
1085 Ops.pop_back();
1086 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001087 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001088}
1089
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001090/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001091/// multiplication sequence, and if this sequence contains a multiply by Factor,
1092/// remove Factor from the tree and return the new tree.
1093Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001094 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1095 if (!BO)
1096 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001097
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001098 SmallVector<RepeatedValue, 8> Tree;
1099 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001100 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001101 Factors.reserve(Tree.size());
1102 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1103 RepeatedValue E = Tree[i];
1104 Factors.append(E.second.getZExtValue(),
1105 ValueEntry(getRank(E.first), E.first));
1106 }
Chris Lattner4c065092006-03-04 09:31:13 +00001107
1108 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001109 bool NeedsNegate = false;
1110 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001111 if (Factors[i].Op == Factor) {
1112 FoundFactor = true;
1113 Factors.erase(Factors.begin()+i);
1114 break;
1115 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001116
Chris Lattner0c59ac32010-01-01 01:13:15 +00001117 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001118 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001119 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1120 if (FC1->getValue() == -FC2->getValue()) {
1121 FoundFactor = NeedsNegate = true;
1122 Factors.erase(Factors.begin()+i);
1123 break;
1124 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001125 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1126 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1127 APFloat F1(FC1->getValueAPF());
1128 APFloat F2(FC2->getValueAPF());
1129 F2.changeSign();
1130 if (F1.compare(F2) == APFloat::cmpEqual) {
1131 FoundFactor = NeedsNegate = true;
1132 Factors.erase(Factors.begin() + i);
1133 break;
1134 }
1135 }
1136 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001137 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001138
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001139 if (!FoundFactor) {
1140 // Make sure to restore the operands to the expression tree.
1141 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001142 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001143 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001144
Chris Lattner0c59ac32010-01-01 01:13:15 +00001145 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001146
Chris Lattner1d897942009-12-31 19:34:45 +00001147 // If this was just a single multiply, remove the multiply and return the only
1148 // remaining operand.
1149 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001150 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001151 V = Factors[0].Op;
1152 } else {
1153 RewriteExprTree(BO, Factors);
1154 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001155 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001156
Chris Lattner0c59ac32010-01-01 01:13:15 +00001157 if (NeedsNegate)
Chad Rosier11ab9412014-08-14 15:23:01 +00001158 V = CreateNeg(V, "neg", InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001159
Chris Lattner0c59ac32010-01-01 01:13:15 +00001160 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001161}
1162
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001163/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1164/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001165///
1166/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001167static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001168 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001169 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001170 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001171 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001172 Factors.push_back(V);
1173 return;
1174 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001175
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001176 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001177 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1178 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001179}
1180
Chris Lattner5f8a0052009-12-31 07:59:34 +00001181/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1182/// instruction. This optimizes based on identities. If it can be reduced to
1183/// a single Value, it is returned, otherwise the Ops list is mutated as
1184/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001185static Value *OptimizeAndOrXor(unsigned Opcode,
1186 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001187 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1188 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1189 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1190 // First, check for X and ~X in the operand list.
1191 assert(i < Ops.size());
1192 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1193 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1194 unsigned FoundX = FindInOperandList(Ops, i, X);
1195 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001196 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001197 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001198
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001199 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001200 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001201 }
1202 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001203
Chris Lattner5f8a0052009-12-31 07:59:34 +00001204 // Next, check for duplicate pairs of values, which we assume are next to
1205 // each other, due to our sorting criteria.
1206 assert(i < Ops.size());
1207 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1208 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001209 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001210 Ops.erase(Ops.begin()+i);
1211 --i; --e;
1212 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001213 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001214 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001215
Chris Lattner60c2ca72009-12-31 19:49:01 +00001216 // Drop pairs of values for Xor.
1217 assert(Opcode == Instruction::Xor);
1218 if (e == 2)
1219 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001220
Chris Lattnera5526832010-01-01 00:04:26 +00001221 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001222 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1223 i -= 1; e -= 2;
1224 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001225 }
1226 }
Craig Topperf40110f2014-04-25 05:29:35 +00001227 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001228}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001229
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001230/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1231/// instruction with the given two operands, and return the resulting
1232/// instruction. There are two special cases: 1) if the constant operand is 0,
1233/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1234/// be returned.
1235static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1236 const APInt &ConstOpnd) {
1237 if (ConstOpnd != 0) {
1238 if (!ConstOpnd.isAllOnesValue()) {
1239 LLVMContext &Ctx = Opnd->getType()->getContext();
1240 Instruction *I;
1241 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1242 "and.ra", InsertBefore);
1243 I->setDebugLoc(InsertBefore->getDebugLoc());
1244 return I;
1245 }
1246 return Opnd;
1247 }
Craig Topperf40110f2014-04-25 05:29:35 +00001248 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001249}
1250
1251// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1252// into "R ^ C", where C would be 0, and R is a symbolic value.
1253//
1254// If it was successful, true is returned, and the "R" and "C" is returned
1255// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1256// and both "Res" and "ConstOpnd" remain unchanged.
1257//
1258bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1259 APInt &ConstOpnd, Value *&Res) {
1260 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1261 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1262 // = (x & ~c1) ^ (c1 ^ c2)
1263 // It is useful only when c1 == c2.
1264 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1265 if (!Opnd1->getValue()->hasOneUse())
1266 return false;
1267
1268 const APInt &C1 = Opnd1->getConstPart();
1269 if (C1 != ConstOpnd)
1270 return false;
1271
1272 Value *X = Opnd1->getSymbolicPart();
1273 Res = createAndInstr(I, X, ~C1);
1274 // ConstOpnd was C2, now C1 ^ C2.
1275 ConstOpnd ^= C1;
1276
1277 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1278 RedoInsts.insert(T);
1279 return true;
1280 }
1281 return false;
1282}
1283
1284
1285// Helper function of OptimizeXor(). It tries to simplify
1286// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1287// symbolic value.
1288//
1289// If it was successful, true is returned, and the "R" and "C" is returned
1290// via "Res" and "ConstOpnd", respectively (If the entire expression is
1291// evaluated to a constant, the Res is set to NULL); otherwise, false is
1292// returned, and both "Res" and "ConstOpnd" remain unchanged.
1293bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1294 APInt &ConstOpnd, Value *&Res) {
1295 Value *X = Opnd1->getSymbolicPart();
1296 if (X != Opnd2->getSymbolicPart())
1297 return false;
1298
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001299 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1300 int DeadInstNum = 1;
1301 if (Opnd1->getValue()->hasOneUse())
1302 DeadInstNum++;
1303 if (Opnd2->getValue()->hasOneUse())
1304 DeadInstNum++;
1305
1306 // Xor-Rule 2:
1307 // (x | c1) ^ (x & c2)
1308 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1309 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1310 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1311 //
1312 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1313 if (Opnd2->isOrExpr())
1314 std::swap(Opnd1, Opnd2);
1315
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001316 const APInt &C1 = Opnd1->getConstPart();
1317 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001318 APInt C3((~C1) ^ C2);
1319
1320 // Do not increase code size!
1321 if (C3 != 0 && !C3.isAllOnesValue()) {
1322 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1323 if (NewInstNum > DeadInstNum)
1324 return false;
1325 }
1326
1327 Res = createAndInstr(I, X, C3);
1328 ConstOpnd ^= C1;
1329
1330 } else if (Opnd1->isOrExpr()) {
1331 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1332 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001333 const APInt &C1 = Opnd1->getConstPart();
1334 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001335 APInt C3 = C1 ^ C2;
1336
1337 // Do not increase code size
1338 if (C3 != 0 && !C3.isAllOnesValue()) {
1339 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1340 if (NewInstNum > DeadInstNum)
1341 return false;
1342 }
1343
1344 Res = createAndInstr(I, X, C3);
1345 ConstOpnd ^= C3;
1346 } else {
1347 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1348 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001349 const APInt &C1 = Opnd1->getConstPart();
1350 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001351 APInt C3 = C1 ^ C2;
1352 Res = createAndInstr(I, X, C3);
1353 }
1354
1355 // Put the original operands in the Redo list; hope they will be deleted
1356 // as dead code.
1357 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1358 RedoInsts.insert(T);
1359 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1360 RedoInsts.insert(T);
1361
1362 return true;
1363}
1364
1365/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1366/// to a single Value, it is returned, otherwise the Ops list is mutated as
1367/// necessary.
1368Value *Reassociate::OptimizeXor(Instruction *I,
1369 SmallVectorImpl<ValueEntry> &Ops) {
1370 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1371 return V;
1372
1373 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001374 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001375
1376 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001377 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001378 Type *Ty = Ops[0].Op->getType();
1379 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1380
1381 // Step 1: Convert ValueEntry to XorOpnd
1382 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1383 Value *V = Ops[i].Op;
1384 if (!isa<ConstantInt>(V)) {
1385 XorOpnd O(V);
1386 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1387 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001388 } else
1389 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1390 }
1391
Shuxin Yang331f01d2013-04-08 22:00:43 +00001392 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1393 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1394 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1395 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1396 // when new elements are added to the vector.
1397 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1398 OpndPtrs.push_back(&Opnds[i]);
1399
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001400 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1401 // the same symbolic value cluster together. For instance, the input operand
1402 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1403 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001404 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001405
1406 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001407 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001408 bool Changed = false;
1409 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001410 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001411 // The combined value
1412 Value *CV;
1413
1414 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1415 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1416 Changed = true;
1417 if (CV)
1418 *CurrOpnd = XorOpnd(CV);
1419 else {
1420 CurrOpnd->Invalidate();
1421 continue;
1422 }
1423 }
1424
1425 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1426 PrevOpnd = CurrOpnd;
1427 continue;
1428 }
1429
1430 // step 3.2: When previous and current operands share the same symbolic
1431 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1432 //
1433 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1434 // Remove previous operand
1435 PrevOpnd->Invalidate();
1436 if (CV) {
1437 *CurrOpnd = XorOpnd(CV);
1438 PrevOpnd = CurrOpnd;
1439 } else {
1440 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001441 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001442 }
1443 Changed = true;
1444 }
1445 }
1446
1447 // Step 4: Reassemble the Ops
1448 if (Changed) {
1449 Ops.clear();
1450 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1451 XorOpnd &O = Opnds[i];
1452 if (O.isInvalid())
1453 continue;
1454 ValueEntry VE(getRank(O.getValue()), O.getValue());
1455 Ops.push_back(VE);
1456 }
1457 if (ConstOpnd != 0) {
1458 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1459 ValueEntry VE(getRank(C), C);
1460 Ops.push_back(VE);
1461 }
1462 int Sz = Ops.size();
1463 if (Sz == 1)
1464 return Ops.back().Op;
1465 else if (Sz == 0) {
1466 assert(ConstOpnd == 0);
1467 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1468 }
1469 }
1470
Craig Topperf40110f2014-04-25 05:29:35 +00001471 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001472}
1473
Chris Lattner5f8a0052009-12-31 07:59:34 +00001474/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1475/// optimizes based on identities. If it can be reduced to a single Value, it
1476/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001477Value *Reassociate::OptimizeAdd(Instruction *I,
1478 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001479 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001480 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1481 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001482 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001483
Chris Lattner5f8a0052009-12-31 07:59:34 +00001484 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001485 Value *TheOp = Ops[i].Op;
1486 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001487 // instances of the operand together. Due to our sorting criteria, we know
1488 // that these need to be next to each other in the vector.
1489 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1490 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001491 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001492 do {
1493 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001494 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001495 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001496
Chris Lattnered189172009-12-31 19:25:19 +00001497 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001498 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001499
Chris Lattner60b71b52009-12-31 19:24:52 +00001500 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001501 Type *Ty = TheOp->getType();
1502 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1503 : ConstantFP::get(Ty, NumFound);
1504 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001505
Chris Lattner60b71b52009-12-31 19:24:52 +00001506 // Now that we have inserted a multiply, optimize it. This allows us to
1507 // handle cases that require multiple factoring steps, such as this:
1508 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001509 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001510
Chris Lattner60b71b52009-12-31 19:24:52 +00001511 // If every add operand was a duplicate, return the multiply.
1512 if (Ops.empty())
1513 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001514
Chris Lattner60b71b52009-12-31 19:24:52 +00001515 // Otherwise, we had some input that didn't have the dupe, such as
1516 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1517 // things being added by this operation.
1518 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001519
Chris Lattner60c2ca72009-12-31 19:49:01 +00001520 --i;
1521 e = Ops.size();
1522 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001523 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001524
Benjamin Kramer49689442014-05-31 15:01:54 +00001525 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001526 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1527 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001528 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001529
Benjamin Kramer49689442014-05-31 15:01:54 +00001530 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001532 X = BinaryOperator::getNegArgument(TheOp);
1533 else if (BinaryOperator::isNot(TheOp))
1534 X = BinaryOperator::getNotArgument(TheOp);
1535
Chris Lattner5f8a0052009-12-31 07:59:34 +00001536 unsigned FoundX = FindInOperandList(Ops, i, X);
1537 if (FoundX == i)
1538 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001539
Chris Lattner5f8a0052009-12-31 07:59:34 +00001540 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001541 if (Ops.size() == 2 &&
1542 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001543 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001544
Benjamin Kramer49689442014-05-31 15:01:54 +00001545 // Remove X and ~X from the operand list.
1546 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1547 return Constant::getAllOnesValue(X->getType());
1548
Chris Lattner5f8a0052009-12-31 07:59:34 +00001549 Ops.erase(Ops.begin()+i);
1550 if (i < FoundX)
1551 --FoundX;
1552 else
1553 --i; // Need to back up an extra one.
1554 Ops.erase(Ops.begin()+FoundX);
1555 ++NumAnnihil;
1556 --i; // Revisit element.
1557 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001558
1559 // if X and ~X we append -1 to the operand list.
1560 if (BinaryOperator::isNot(TheOp)) {
1561 Value *V = Constant::getAllOnesValue(X->getType());
1562 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1563 e += 1;
1564 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001565 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001566
Chris Lattner177140a2009-12-31 18:17:13 +00001567 // Scan the operand list, checking to see if there are any common factors
1568 // between operands. Consider something like A*A+A*B*C+D. We would like to
1569 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1570 // To efficiently find this, we count the number of times a factor occurs
1571 // for any ADD operands that are MULs.
1572 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001573
Chris Lattner177140a2009-12-31 18:17:13 +00001574 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1575 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001576 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001577 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001578 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001579 BinaryOperator *BOp =
1580 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001581 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001582 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001583
Chris Lattner177140a2009-12-31 18:17:13 +00001584 // Compute all of the factors of this added value.
1585 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001586 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001587 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001588
Chris Lattner177140a2009-12-31 18:17:13 +00001589 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001590 SmallPtrSet<Value*, 8> Duplicates;
1591 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1592 Value *Factor = Factors[i];
Chad Rosier11ab9412014-08-14 15:23:01 +00001593 if (!Duplicates.insert(Factor))
1594 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001595
Chris Lattner0c59ac32010-01-01 01:13:15 +00001596 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001597 if (Occ > MaxOcc) {
1598 MaxOcc = Occ;
1599 MaxOccVal = Factor;
1600 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001601
Chris Lattner0c59ac32010-01-01 01:13:15 +00001602 // If Factor is a negative constant, add the negated value as a factor
1603 // because we can percolate the negate out. Watch for minint, which
1604 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001605 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001606 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001607 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1608 assert(!Duplicates.count(Factor) &&
1609 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001610 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001611 if (Occ > MaxOcc) {
1612 MaxOcc = Occ;
1613 MaxOccVal = Factor;
1614 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001615 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001616 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1617 if (CF->isNegative()) {
1618 APFloat F(CF->getValueAPF());
1619 F.changeSign();
1620 Factor = ConstantFP::get(CF->getContext(), F);
1621 assert(!Duplicates.count(Factor) &&
1622 "Shouldn't have two constant factors, missed a canonicalize");
1623 unsigned Occ = ++FactorOccurrences[Factor];
1624 if (Occ > MaxOcc) {
1625 MaxOcc = Occ;
1626 MaxOccVal = Factor;
1627 }
1628 }
1629 }
Chris Lattner177140a2009-12-31 18:17:13 +00001630 }
1631 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001632
Chris Lattner177140a2009-12-31 18:17:13 +00001633 // If any factor occurred more than one time, we can pull it out.
1634 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001635 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001636 ++NumFactor;
1637
1638 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1639 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001640 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001641 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001642 Instruction *DummyInst =
1643 I->getType()->isIntegerTy()
1644 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1645 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1646
Bill Wendling274ba892012-05-02 09:59:45 +00001647 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001648 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001649 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001650 BinaryOperator *BOp =
1651 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001652 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001653 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001654
Chris Lattner177140a2009-12-31 18:17:13 +00001655 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001656 // The factorized operand may occur several times. Convert them all in
1657 // one fell swoop.
1658 for (unsigned j = Ops.size(); j != i;) {
1659 --j;
1660 if (Ops[j].Op == Ops[i].Op) {
1661 NewMulOps.push_back(V);
1662 Ops.erase(Ops.begin()+j);
1663 }
1664 }
1665 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001666 }
1667 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001668
Chris Lattner177140a2009-12-31 18:17:13 +00001669 // No need for extra uses anymore.
1670 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001671
Chris Lattner177140a2009-12-31 18:17:13 +00001672 unsigned NumAddedValues = NewMulOps.size();
1673 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001674
Chris Lattner60b71b52009-12-31 19:24:52 +00001675 // Now that we have inserted the add tree, optimize it. This allows us to
1676 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001677 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001678 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001679 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001680 if (Instruction *VI = dyn_cast<Instruction>(V))
1681 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001682
1683 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001684 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001685
Chris Lattner60c2ca72009-12-31 19:49:01 +00001686 // Rerun associate on the multiply in case the inner expression turned into
1687 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001688 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001689
Chris Lattner177140a2009-12-31 18:17:13 +00001690 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1691 // entire result expression is just the multiply "A*(B+C)".
1692 if (Ops.empty())
1693 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001694
Chris Lattnerac615502009-12-31 18:18:46 +00001695 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001696 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001697 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001698 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1699 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001700
Craig Topperf40110f2014-04-25 05:29:35 +00001701 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001702}
Chris Lattner4c065092006-03-04 09:31:13 +00001703
Chandler Carruth739ef802012-04-26 05:30:30 +00001704/// \brief Build up a vector of value/power pairs factoring a product.
1705///
1706/// Given a series of multiplication operands, build a vector of factors and
1707/// the powers each is raised to when forming the final product. Sort them in
1708/// the order of descending power.
1709///
1710/// (x*x) -> [(x, 2)]
1711/// ((x*x)*x) -> [(x, 3)]
1712/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1713///
1714/// \returns Whether any factors have a power greater than one.
1715bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1716 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001717 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1718 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001719 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001720 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1721 Value *Op = Ops[Idx-1].Op;
1722
1723 // Count the number of occurrences of this value.
1724 unsigned Count = 1;
1725 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1726 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001727 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001728 if (Count > 1)
1729 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001730 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001731
Chandler Carruth739ef802012-04-26 05:30:30 +00001732 // We can only simplify factors if the sum of the powers of our simplifiable
1733 // factors is 4 or higher. When that is the case, we will *always* have
1734 // a simplification. This is an important invariant to prevent cyclicly
1735 // trying to simplify already minimal formations.
1736 if (FactorPowerSum < 4)
1737 return false;
1738
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001739 // Now gather the simplifiable factors, removing them from Ops.
1740 FactorPowerSum = 0;
1741 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1742 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001743
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001744 // Count the number of occurrences of this value.
1745 unsigned Count = 1;
1746 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1747 ++Count;
1748 if (Count == 1)
1749 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001750 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001751 Count &= ~1U;
1752 Idx -= Count;
1753 FactorPowerSum += Count;
1754 Factors.push_back(Factor(Op, Count));
1755 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001756 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001757
Chandler Carruth739ef802012-04-26 05:30:30 +00001758 // None of the adjustments above should have reduced the sum of factor powers
1759 // below our mininum of '4'.
1760 assert(FactorPowerSum >= 4);
1761
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001762 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001763 return true;
1764}
1765
1766/// \brief Build a tree of multiplies, computing the product of Ops.
1767static Value *buildMultiplyTree(IRBuilder<> &Builder,
1768 SmallVectorImpl<Value*> &Ops) {
1769 if (Ops.size() == 1)
1770 return Ops.back();
1771
1772 Value *LHS = Ops.pop_back_val();
1773 do {
Chad Rosier11ab9412014-08-14 15:23:01 +00001774 if (LHS->getType()->isIntegerTy())
1775 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1776 else
1777 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001778 } while (!Ops.empty());
1779
1780 return LHS;
1781}
1782
1783/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1784///
1785/// Given a vector of values raised to various powers, where no two values are
1786/// equal and the powers are sorted in decreasing order, compute the minimal
1787/// DAG of multiplies to compute the final product, and return that product
1788/// value.
1789Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1790 SmallVectorImpl<Factor> &Factors) {
1791 assert(Factors[0].Power);
1792 SmallVector<Value *, 4> OuterProduct;
1793 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1794 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1795 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1796 LastIdx = Idx;
1797 continue;
1798 }
1799
1800 // We want to multiply across all the factors with the same power so that
1801 // we can raise them to that power as a single entity. Build a mini tree
1802 // for that.
1803 SmallVector<Value *, 4> InnerProduct;
1804 InnerProduct.push_back(Factors[LastIdx].Base);
1805 do {
1806 InnerProduct.push_back(Factors[Idx].Base);
1807 ++Idx;
1808 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1809
1810 // Reset the base value of the first factor to the new expression tree.
1811 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001812 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1813 if (Instruction *MI = dyn_cast<Instruction>(M))
1814 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001815
1816 LastIdx = Idx;
1817 }
1818 // Unique factors with equal powers -- we've folded them into the first one's
1819 // base.
1820 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1821 Factor::PowerEqual()),
1822 Factors.end());
1823
1824 // Iteratively collect the base of each factor with an add power into the
1825 // outer product, and halve each power in preparation for squaring the
1826 // expression.
1827 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1828 if (Factors[Idx].Power & 1)
1829 OuterProduct.push_back(Factors[Idx].Base);
1830 Factors[Idx].Power >>= 1;
1831 }
1832 if (Factors[0].Power) {
1833 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1834 OuterProduct.push_back(SquareRoot);
1835 OuterProduct.push_back(SquareRoot);
1836 }
1837 if (OuterProduct.size() == 1)
1838 return OuterProduct.front();
1839
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001840 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001841 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001842}
1843
1844Value *Reassociate::OptimizeMul(BinaryOperator *I,
1845 SmallVectorImpl<ValueEntry> &Ops) {
1846 // We can only optimize the multiplies when there is a chain of more than
1847 // three, such that a balanced tree might require fewer total multiplies.
1848 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001849 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001850
1851 // Try to turn linear trees of multiplies without other uses of the
1852 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1853 // re-use.
1854 SmallVector<Factor, 4> Factors;
1855 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001856 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001857
1858 IRBuilder<> Builder(I);
1859 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1860 if (Ops.empty())
1861 return V;
1862
1863 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1864 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001865 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001866}
1867
Chris Lattner4c065092006-03-04 09:31:13 +00001868Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001869 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001870 // Now that we have the linearized expression tree, try to optimize it.
1871 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001872 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001873 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001874 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1875 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1876 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1877 }
1878 // If there was nothing but constants then we are done.
1879 if (Ops.empty())
1880 return Cst;
1881
1882 // Put the combined constant back at the end of the operand list, except if
1883 // there is no point. For example, an add of 0 gets dropped here, while a
1884 // multiplication by zero turns the whole expression into zero.
1885 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1886 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1887 return Cst;
1888 Ops.push_back(ValueEntry(0, Cst));
1889 }
1890
1891 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001892
Chris Lattner9039ff82009-12-31 07:33:14 +00001893 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001894 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001895 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001896 switch (Opcode) {
1897 default: break;
1898 case Instruction::And:
1899 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001900 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1901 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001902 break;
1903
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001904 case Instruction::Xor:
1905 if (Value *Result = OptimizeXor(I, Ops))
1906 return Result;
1907 break;
1908
Chandler Carruth739ef802012-04-26 05:30:30 +00001909 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001910 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001911 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001912 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001913 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001914
1915 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001916 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001917 if (Value *Result = OptimizeMul(I, Ops))
1918 return Result;
1919 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001920 }
1921
Duncan Sands3293f462012-06-08 20:15:33 +00001922 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001923 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001924 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001925}
1926
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001927/// EraseInst - Zap the given instruction, adding interesting operands to the
1928/// work list.
1929void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001930 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1931 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1932 // Erase the dead instruction.
1933 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001934 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001935 I->eraseFromParent();
1936 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001937 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001938 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1939 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1940 // If this is a node in an expression tree, climb to the expression root
1941 // and add that since that's where optimization actually happens.
1942 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001943 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Duncan Sands78386032012-06-15 08:37:50 +00001944 Visited.insert(Op))
Chandler Carruthcdf47882014-03-09 03:16:01 +00001945 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001946 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001947 }
1948}
1949
Chad Rosier094ac772014-11-11 22:58:35 +00001950// Canonicalize expressions of the following form:
1951// x + (-Constant * y) -> x - (Constant * y)
1952// x - (-Constant * y) -> x + (Constant * y)
1953Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1954 if (!I->hasOneUse() || I->getType()->isVectorTy())
1955 return nullptr;
1956
Chad Rosier9074b182014-11-13 15:40:20 +00001957 // Must be a mul, fmul, or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001958 unsigned Opcode = I->getOpcode();
Chad Rosierf53f0702014-11-11 23:36:42 +00001959 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1960 Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001961 return nullptr;
1962
1963 // Must have at least one constant operand.
1964 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1965 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1966 if (!C0 && !C1)
1967 return nullptr;
1968
1969 // Must be a negative ConstantInt or ConstantFP.
1970 Constant *C = C0 ? C0 : C1;
1971 unsigned ConstIdx = C0 ? 0 : 1;
1972 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1973 if (!CI->isNegative())
1974 return nullptr;
1975 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1976 if (!CF->isNegative())
1977 return nullptr;
1978 } else
1979 return nullptr;
1980
1981 // User must be a binary operator with one or more uses.
1982 Instruction *User = I->user_back();
1983 if (!isa<BinaryOperator>(User) || !User->getNumUses())
1984 return nullptr;
1985
1986 unsigned UserOpcode = User->getOpcode();
1987 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
1988 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
1989 return nullptr;
1990
1991 // Subtraction is not commutative. Explicitly, the following transform is
1992 // not valid: (-Constant * y) - x -> x + (Constant * y)
1993 if (!User->isCommutative() && User->getOperand(1) != I)
1994 return nullptr;
1995
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001996 // Change the sign of the constant.
Chad Rosier094ac772014-11-11 22:58:35 +00001997 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1998 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
1999 else {
2000 ConstantFP *CF = cast<ConstantFP>(C);
2001 APFloat Val = CF->getValueAPF();
2002 Val.changeSign();
2003 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2004 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002005
Chad Rosier094ac772014-11-11 22:58:35 +00002006 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2007 // ((-Const*y) + x) -> (x + (-Const*y)).
2008 if (User->getOperand(0) == I && User->isCommutative())
2009 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002010
Chad Rosier094ac772014-11-11 22:58:35 +00002011 Value *Op0 = User->getOperand(0);
2012 Value *Op1 = User->getOperand(1);
2013 BinaryOperator *NI;
2014 switch(UserOpcode) {
2015 default:
2016 llvm_unreachable("Unexpected Opcode!");
2017 case Instruction::Add:
2018 NI = BinaryOperator::CreateSub(Op0, Op1);
2019 break;
2020 case Instruction::Sub:
2021 NI = BinaryOperator::CreateAdd(Op0, Op1);
2022 break;
2023 case Instruction::FAdd:
2024 NI = BinaryOperator::CreateFSub(Op0, Op1);
2025 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2026 break;
2027 case Instruction::FSub:
2028 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2029 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2030 break;
2031 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002032
Chad Rosier094ac772014-11-11 22:58:35 +00002033 NI->insertBefore(User);
2034 NI->setName(User->getName());
2035 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002036 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002037 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002038 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002039 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002040}
2041
Duncan Sands3293f462012-06-08 20:15:33 +00002042/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2043/// instructions is not allowed.
2044void Reassociate::OptimizeInst(Instruction *I) {
2045 // Only consider operations that we understand.
2046 if (!isa<BinaryOperator>(I))
2047 return;
2048
Chad Rosier11ab9412014-08-14 15:23:01 +00002049 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002050 // If an operand of this shift is a reassociable multiply, or if the shift
2051 // is used by a reassociable multiply or add, turn into a multiply.
2052 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2053 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002054 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2055 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002056 Instruction *NI = ConvertShiftToMul(I);
2057 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002058 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002059 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002060 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002061
Chad Rosier094ac772014-11-11 22:58:35 +00002062 // Canonicalize negative constants out of expressions.
2063 if (Instruction *Res = canonicalizeNegConstExpr(I))
2064 I = Res;
2065
Chad Rosier11ab9412014-08-14 15:23:01 +00002066 // Commute floating point binary operators, to canonicalize the order of their
2067 // operands. This can potentially expose more CSE opportunities, and makes
2068 // writing other transformations simpler.
2069 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) {
2070
Owen Andersonf4f80e12012-05-07 20:47:23 +00002071 // FAdd and FMul can be commuted.
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002072 unsigned Opcode = I->getOpcode();
2073 if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002074 Value *LHS = I->getOperand(0);
2075 Value *RHS = I->getOperand(1);
2076 unsigned LHSRank = getRank(LHS);
2077 unsigned RHSRank = getRank(RHS);
Owen Andersonf4f80e12012-05-07 20:47:23 +00002078
Chad Rosier11ab9412014-08-14 15:23:01 +00002079 // Sort the operands by rank.
2080 if (RHSRank < LHSRank) {
2081 I->setOperand(0, RHS);
2082 I->setOperand(1, LHS);
2083 }
Owen Andersonf4f80e12012-05-07 20:47:23 +00002084 }
2085
Chad Rosier11ab9412014-08-14 15:23:01 +00002086 // FIXME: We should commute vector instructions as well. However, this
2087 // requires further analysis to determine the effect on later passes.
2088
2089 // Don't try to optimize vector instructions or anything that doesn't have
2090 // unsafe algebra.
2091 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra())
2092 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002093 }
2094
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 // Do not reassociate boolean (i1) expressions. We want to preserve the
2096 // original order of evaluation for short-circuited comparisons that
2097 // SimplifyCFG has folded to AND/OR expressions. If the expression
2098 // is not further optimized, it is likely to be transformed back to a
2099 // short-circuited form for code gen, and the source order may have been
2100 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002101 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002102 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002103
Dan Gohman1c6c3482011-04-12 00:11:56 +00002104 // If this is a subtract instruction which is not already in negate form,
2105 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002106 if (I->getOpcode() == Instruction::Sub) {
2107 if (ShouldBreakUpSubtract(I)) {
2108 Instruction *NI = BreakUpSubtract(I);
2109 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002110 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002111 I = NI;
2112 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002113 // Otherwise, this is a negation. See if the operand is a multiply tree
2114 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002115 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2116 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002117 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002118 Instruction *NI = LowerNegateToMultiply(I);
2119 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002120 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002121 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002122 }
2123 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002124 } else if (I->getOpcode() == Instruction::FSub) {
2125 if (ShouldBreakUpSubtract(I)) {
2126 Instruction *NI = BreakUpSubtract(I);
2127 RedoInsts.insert(I);
2128 MadeChange = true;
2129 I = NI;
2130 } else if (BinaryOperator::isFNeg(I)) {
2131 // Otherwise, this is a negation. See if the operand is a multiply tree
2132 // and if this is not an inner node of a multiply tree.
2133 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2134 (!I->hasOneUse() ||
2135 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2136 Instruction *NI = LowerNegateToMultiply(I);
2137 RedoInsts.insert(I);
2138 MadeChange = true;
2139 I = NI;
2140 }
2141 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002142 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002143
Duncan Sands3293f462012-06-08 20:15:33 +00002144 // If this instruction is an associative binary operator, process it.
2145 if (!I->isAssociative()) return;
2146 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002147
2148 // If this is an interior node of a reassociable tree, ignore it until we
2149 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002150 unsigned Opcode = BO->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00002151 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002152 return;
2153
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002154 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002155 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002156 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002157 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002158 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002159 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2160 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2161 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002162
Duncan Sands3293f462012-06-08 20:15:33 +00002163 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002164}
Chris Lattner1e506502005-05-07 21:59:39 +00002165
Duncan Sands78386032012-06-15 08:37:50 +00002166void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002167 assert(!I->getType()->isVectorTy() &&
2168 "Reassociation of vector instructions is not supported.");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002169
Chris Lattner60b71b52009-12-31 19:24:52 +00002170 // First, walk the expression tree, linearizing the tree, collecting the
2171 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002172 SmallVector<RepeatedValue, 8> Tree;
2173 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002174 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002175 Ops.reserve(Tree.size());
2176 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2177 RepeatedValue E = Tree[i];
2178 Ops.append(E.second.getZExtValue(),
2179 ValueEntry(getRank(E.first), E.first));
2180 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002181
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002182 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2183
Chris Lattner2fc319d2006-03-14 07:11:11 +00002184 // Now that we have linearized the tree to a list and have gathered all of
2185 // the operands and their ranks, sort the operands by their rank. Use a
2186 // stable_sort so that values with equal ranks will have their relative
2187 // positions maintained (and so the compiler is deterministic). Note that
2188 // this sorts so that the highest ranking values end up at the beginning of
2189 // the vector.
2190 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002191
Chris Lattner2fc319d2006-03-14 07:11:11 +00002192 // OptimizeExpression - Now that we have the expression tree in a convenient
2193 // sorted form, optimize it globally if possible.
2194 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002195 if (V == I)
2196 // Self-referential expression in unreachable code.
2197 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002198 // This expression tree simplified to something that isn't a tree,
2199 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002200 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002201 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002202 if (Instruction *VI = dyn_cast<Instruction>(V))
2203 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002204 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002205 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002206 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002207 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002208
Chris Lattner2fc319d2006-03-14 07:11:11 +00002209 // We want to sink immediates as deeply as possible except in the case where
2210 // this is a multiply tree used only by an add, and the immediate is a -1.
2211 // In this case we reassociate to put the negation on the outside so that we
2212 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002213 if (I->hasOneUse()) {
2214 if (I->getOpcode() == Instruction::Mul &&
2215 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2216 isa<ConstantInt>(Ops.back().Op) &&
2217 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2218 ValueEntry Tmp = Ops.pop_back_val();
2219 Ops.insert(Ops.begin(), Tmp);
2220 } else if (I->getOpcode() == Instruction::FMul &&
2221 cast<Instruction>(I->user_back())->getOpcode() ==
2222 Instruction::FAdd &&
2223 isa<ConstantFP>(Ops.back().Op) &&
2224 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2225 ValueEntry Tmp = Ops.pop_back_val();
2226 Ops.insert(Ops.begin(), Tmp);
2227 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002228 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002229
David Greened17c3912010-01-05 01:27:24 +00002230 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002231
Chris Lattner2fc319d2006-03-14 07:11:11 +00002232 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002233 if (Ops[0].Op == I)
2234 // Self-referential expression in unreachable code.
2235 return;
2236
Chris Lattner2fc319d2006-03-14 07:11:11 +00002237 // This expression tree simplified to something that isn't a tree,
2238 // eliminate it.
2239 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002240 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2241 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002242 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002243 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002244 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002245
Chris Lattner60b71b52009-12-31 19:24:52 +00002246 // Now that we ordered and optimized the expressions, splat them back into
2247 // the expression tree, removing any unneeded nodes.
2248 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002249}
2250
Chris Lattner113f4f42002-06-25 16:13:24 +00002251bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002252 if (skipOptnoneFunction(F))
2253 return false;
2254
Duncan Sands3293f462012-06-08 20:15:33 +00002255 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002256 BuildRankMap(F);
2257
Chris Lattner1e506502005-05-07 21:59:39 +00002258 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002259 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2260 // Optimize every instruction in the basic block.
2261 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2262 if (isInstructionTriviallyDead(II)) {
2263 EraseInst(II++);
2264 } else {
2265 OptimizeInst(II);
2266 assert(II->getParent() == BI && "Moved to a different block!");
2267 ++II;
2268 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002269
Duncan Sands3293f462012-06-08 20:15:33 +00002270 // If this produced extra instructions to optimize, handle them now.
2271 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002272 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002273 if (isInstructionTriviallyDead(I))
2274 EraseInst(I);
2275 else
2276 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002277 }
Duncan Sands3293f462012-06-08 20:15:33 +00002278 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002279
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002280 // We are done with the rank map.
2281 RankMap.clear();
2282 ValueRankMap.clear();
2283
Chris Lattner1e506502005-05-07 21:59:39 +00002284 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002285}